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ABSTRACT

An integrated study that explores the capability of Time-Frequency Analysis combined
with another technique of signal analysis and system identification for damage detection

purposes using only output signals is presented in this work.

The necessary background theory of Time-Frequency Analysis is presented, some
definitions of damage and general approach employed in this research is given. The problems
associated with the selection of a best-performance Time-Frequency Representation (TFR)
for structural damage detection in civil engineering structures are discussed and a new multi-
criteria measure for an objective and user-independent selection of Time-Frequency
Representation is developed. An evaluation of the proposed multicriteria method to select a
TFR from several Linear and Quadratic TFRs is shown using synthetic ambient vibration

signals and real strong motion records.

A new methodology for system identification and damage detection using output data
from Ambient Vibration records is developed. This methodology is based on direct
application of a proposed Mean Time-Frequency Representation (MTFR) and the Frequency
Domain Decomposition (FDD), this last technique was developed by Brincker et. al. [124].
The methodology proposed in this work has been tested using synthetic and real ambient
vibration signals. Several real case studies using ambient vibration data from structures are

shown.

The damage detection using Time-Frequency Representations of output records of strong
events are addressed, in this regard a new algorithm for instantaneous frequency tracking
from TFR maps is proposed and a mathematical expression to link instantaneous frequency

changes with damping and structural stiffness loss is also developed. The expression and



algorithms have been tested for damage analysis of non-linear SDOF and MDOF using

numerical data.

A Graphical User Interface (GUI) program named “Time-Frequency Damage Detection
Program - TFDDP” has been developed using MatLab®[125] language; the developed
algorithm has been published as a GNU — Licensed Open File, and can be downloaded from

the Puerto Rico Strong Motion Program web page at the internett§te/prsmp.uprm.edu/

or contacting to author of this research on the e-mail: leocano-s@hotmail.com




RESUMEN

Un estudio integrado que explora la capacidad del analisis en Tiempo-Frecuencia unido
con otras técnicas de andlisis de sefiales e identificacion de sistemas para propésitos de
deteccion del dafio usando solamente las sefiales de salida es presentado en este trabajo.

Los conceptos tedricos basicos de analisis en Tiempo-Frecuencia son presentados, algunas
definiciones de dafio y el enfoque general empleado en esta investigacion son mostrados. Los
problemas asociados con la seleccion de la Representacion en Tiempo-Frecuencia (TFR) con
mejor desempefio para la deteccion de dafio en estructuras de ingenieria civil son discutidos y
una nueva medida de multi-criterios para una seleccién objetiva e independiente del usuario
de representaciones tiempo-frecuencia es desarrollada. Una evaluacion del método de multi-
criterios propuesto para seleccionar una TFR desde varias TFRs cuadraticas y lineales es
mostrada usando sefiales sintéticas de vibracién ambiental y registros reales de movimiento

fuerte.

Se desarrolld una nueva metodologia para identificacion de sistemas y deteccion de dafio
usando datos de salida de registros de vibracion ambiental. La metodologia esta basada en la
aplicacion directa de una propuesta de representacion tiempo-frecuencia promedio (MTFR)

y la descomposicion en el dominio de la frecuencia (FDD), esta ultima técnica fué propuesta
recientemente por Brincker et. al. [124]. La metodologia propuesta en este trabajo ha sido
ensayada usando sefales sintéticas y reales de vibracién ambiental. Varios estudios de casos

reales usando datos de vibracién ambiental en estructuras son mostrados.

La deteccion de dafio usando Representaciones Tiempo-Frecuencia de registros de salida
de eventos fuertes es abordada, en este sentido un nuevo algoritmo para el seguimiento de la
frecuencia instantdnea desde mapas TFR es propuesta y una expresion matematica que

vincula los cambios en la frecuencia instantanea con el amortiguamiento y la pérdida de
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rigidez estructural es también desarrollada. La expresion y los algoritmos han sido
ensayados para analisis de dafio de sistemas no lineales de uno y varios grados de libertad

usando datos numeéricos.

Un programa de interfaz gréafica (GUI) denominado “Programa de Deteccion de Dafio en
Tiempo-Frecuencia — TFDDP” ha sido desarrollado usando el lenguaje MatLab [125], los
algoritmos desarrollados han sido publicados como un GNU — Archivo de Licencia Abierta,

y pueden ser descargados desde la pagina del Programa de Movimiento Fuerte de Puerto
Rico en el sitio de Internet: http://prsmp.uprm.edub contactando al autor de esta

investigacion en el e-mail: leocano-s@hotmail.com




To my wife Maria Teresa and my beloved son Alejandro.
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A STRUCTURAL REFLECTION

“You'll play the music, I'll give the key. The rest is easy, leave it to nidrello in
Act | from The Barber of Seville (IL Barbiere Di Siviglia) Opera in Three Acts by G. Rossini
(Figure adapted from reference [232])

“The most beautiful Time-Frequency Representation that the human kind has conceived is
the musical representation. Like music, the Civil Engineering Structures have their own
language, there exists a lot of information in the signal which is not evident and the future
advancement of Earthquake and Structural Engineering depends upon our capability to
extract and understand the information contents of the structural symphony by using its own
natural language: The signals.”

Leonardo Cano Saldafia
Mayaguez P.R., USA
October 2008
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1 INTRODUCTION

For a long time, structural engineers have tried to detect damage through instrumentation.
Several techniques have been used, among them changes in modal frequencies and in mode

shapes, and matrix updating (stiffness, mass, and damping).

Because the building earthquake structural response depends upon the dynamic properties
and the signal itself, changes in the dynamic properties are associated with stiffness and
damping changes, and may associated to damage. In low or moderate vibration (ambient
vibration and small tremors) such changes may be associated to nonlinear elastic response
and non-structural elements response, and not necessarily to damage. In moderate or large
events such changes may be associated to soil-structure inelastic response, nonlinear elastic
and inelastic response and building permanent structural damage. Damage in the structure
will be reflected by a permanent shift of the pre-event natural frequency. Therefore, the
establishment of pre-event, event and post-event frequencies and other modal parameters
such as mode shapes of the structure is very useful for damage detection. Furthermore, it
shall be possible to determine the time of occurrence and the magnitude of the structural
dynamic properties changes, and hence the time associated of occurrence, location, and
intensity of the damage. For real cases of damage detection in almost all cases, structural
identification begins by taking geometrical and materials properties of structural “as built”
drawings or other available field information. Also several assumptions regarding supports

and boundary conditions are inevitable, thus introducing errors in the mathematical models.

In recent times new techniques of signal analysis have been proposed in others fields such
as speech recognition, radar applications, image digital processing and others. Among
others techniques, methods using Wavelets Analysis in qualitative and quantitative sense and

Time-Frequency Distributions in qualitative sense has been used in damage detection.



1.1 Motivation

An integrated study that explores the capability of Time-Frequency Distributions joint
with another technique of signal analysis and system identification for damage proposes has
not been proposed yet. It is the goal of the present research to deal with the use of Time-
Frequency Analysis for damage detection in civil structures, using only output records of the
structure.

The main objective is to research the Time-Frequency Analysis together with other
techniques of signal analysis and system identification for structural damage detection using

only output data.

1.2 Thesis Overview

An introduction to the thesis is presented in Chapter 1, the motivation and comprehensive

bibliography review is given.

In Chapter 2, the necessary background theory of Time-Frequency Analysis is presented,
some definitions of damage and general approach employed in this research is shown.

Chapter 3 deals with the problem of selection of a best-performance Time-Frequency
Representation for structural damage detection in civil engineering structures. A new multi-
criteria measure for an objective and user-independent selection of Time-Frequency
Representation is developed and tested with typical signals.

A new methodology to system identification and damage detection using output data from
Ambient Vibration records is developed in Chapter 4. The proposed methodology is based
on direct application of a proposed Mean Time-Frequency Analysis and the Frequency
Domain Decomposition (FDD) technique which was recently proposed by Brincker et. al.
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[124]. The methodology proposed in this work has been tested using synthetic and real

ambient vibration signals.

In the Chapter 5, the damage detection using Time-Frequency Representations of output
records of strong events are addressed, in this regard an algorithm for instantaneous
frequency tracking is proposed and a new mathematical expression to link instantaneous
frequency changes with structural stiffness loss is also developed. The expression and
algorithms has been tested for damage analysis of non-linear SDOF and MDOF using

numerical data.

An Graphical User Interface (GUI) program named “Time-Frequency Damage Detection
Program - TFDDP” has been developed using MatLab®[125] language, the principal

modules and program characteristics are given in Chapter 6.

Finally the conclusion and future scopes are given in Chapter 7.

1.3 Literature Review

Damage detection of structures contributes to large amount of field research in civil
engineering, many methods using several approaches have been proposed. In the references
[1-6] a detailed analysis and classification of general and specific methodologies that use
changes in dynamic characteristics for damage detection is given. In reference [7] it has been
mentioned that the first attempt for damage detection using changes in dynamic properties in

concrete structures was done by E. Bock in 1942.

In general in accordance with reference [2], methods that use vibration properties can be
classified into: Resonant Frequencies, Frequency Response Functions, Mode Shapes (MAC

and COMAC), Mode Shape Curvatures, Modal Strain Energy, Dynamic Flexibility,
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Damping, Antiresonance, Ritz Vectors, ARMA Family Models, Canonical Variate Analysis
(CVA), Nonlinear Features, Time-Frequency Analysis, Empirical Mode Decomposition,
Hilbert Transform, Principal Component Analysis or Singular Value Decomposition, Finite
Model Updating, Wave Propagation, Autocorrelation Functions, and other Features

Methodologies.

Regarding to the methods that do not directly use signal analysis process, Alvandi and
Cremona [5] have assessed the most usual vibration-based techniques in damage
identification and concluded that the strain energy methods are the most stable methods.
However like to others, they had difficulties when the damage was far from the excitation
source. The scientific information on Vibration-Based Damage Detection (VBDD) is
extensive and a comprehensive review of this can in fact constitute a complete research

project (e.g. see ref. [1-6]).

Since long time ago, the scientific community has used structural vibration measurements
for damage detection, for example in reference [8] free oscillation tests in Switzerland

between 1922 and 1945 has been cited for this purpose.

Salawu[9], using a comprehensive literature review, established some conclusion about
damage detection through changes in frequency. In general frequency changes alone do not
necessarily imply the damage existence. Also because damage is a local characteristic the
changes in global stiffness and mode shapes are not very pronounced except in severe
damage stage. The models assumption, such as material properties, boundary conditions,
stiffness and structural damping are the main source of errors in damage detection using
mathematical models and the use of experimental and field test methods for updating the
analytical models are strongly recommended. Salawu concludesvibtitods that rely only
on measured data without any prior theoretical assumptions would be more appropriate to

civil engineering structures.”



Traditionally, standard methodologies of signal analysis have been used for interpretation.
The most common of these methods are:

* Analysis in Time-Domain (Time History Analysis)

* Analysis in Frequency-Domain (Fourier Analysis)

Recently other methods of signal analysis have been developed and although their basic
principles have been established many years ago, only the evolutions of personal computers
allow its current use. These methods are:

* Analysis in Time-Frequency Domain

* Analysis in Time-Scale Domain (mainly wavelets analysis)

In the following the works of traditional signal analysis (Time and Frequency Domains)
for system identification and damage detection are related briefly and later with more detalil

works in Time-Frequency Domain are also reviewed.

1.3.1 Time-Domain Research

In the Time-Domain, an early work by Giberson [10] compiled and described the most
important works developed by pioneers Structural Engineers from 1920 to 1967, among
those mentioned by Giberson are: Biot, Freeman, Kanai, Hudson, Housner, Caughey,
Penzien, lwan, Jennings, Newmark, Clough, Rosenblueth, Umemura, Shibata, E. L. Wilson.
The 1960’s decade is considered the beginning of vibration induced studies in civil
engineering. Kuroiwa [11] using a shake actuator placed on the roof of Millikan Library
(Caltech) determined the dynamic properties of the Building. In the same work [11], one can
find the most important research regarding Vibration-Based lIdentification and Damage
Detection development between 1960-1967.

Distefano et. al. [12] presents one method for structural identification for damage
detection using a filtering approach and iterative approximation through a Gauss-Newton

procedure. Several numerical models using nonlinear viscous damping models have been
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developed using Volterra integral equations and nonlinear differential equations, nonlinear

damping and bilinear hysteretic models are also treated but in minor scales.

In 1978, Beck [13] presents his Modal Minimization Method, this approach, considered a
novel method in structural identification and damage detection, can be applied to the whole
record or in a short time window. Furthermore the Modal Minimization Method and other

variants have actually been used extensively in structural health monitoring.

Carydis and Mouzakis [14] demonstrated that using vibration experimental data from
undamaged, damaged and repaired building through time analysis, it is possible to evaluate
the main dynamics characteristic of buildings. They showed that one major problem between
experimental and model results are the erroneous assumption used in the mathematical
models. On the other hand, they showed a notorious increase in vibration period of building
with damage and rigid body modes appear above the damage level.

In 1986, Beck and Beck [15] showed a comparison between transfer function and modal
minimization methods for system identification and damage detection, they concluded that
for linear models the modal minimization is a better technique for structural identification

and damage detection.

Loh and Tsuar [16] in 1987, presented two improved methods of identification, the
sequential regression analysis and the Kalman filtering algorithm. They concluded that the
Kalman and extended Kalman filtering techniques are more powerful than general methods

and it is suitable for non-linear applications and damage detection problems.

In 1991, Beck [17], presented a comprehensive dissertation of fundamental problems in

the application of structural identification procedures to damage detection, and he concluded



that:* .. the modeling error is the most serious issue in structural identification and damage
detection..”

Li and Jirsa [18], using data from an instrumented building damaged during the 1994
Northridge Earthquake showed the incapability of time analysis and Non-Linear dynamic
analysis of reliably prognosticating the damage occurrence without “a priori” estimation of
stiffness and other non-credible assumptions. These assumptions are used frequently in
design offices and research projects, in general the results obtained by time history analysis

and non-linear analysis are very sensitive of these assumptions.

Yang [19] in 1996 applied the statistical methods for system identification. The
importance of Yang's pioneer work was according with refereficeé[2almost none of the
hundreds of studies summarized in Doebling et al. (1996, 1998) (reference [3]) make use of
any statistical methods to assess if the changes in the selected features used to identify
damaged systems are statistically significanf.ori the contrary the Yang's research applied

rigorous statistical methods in this regard.

In 1997, Goel and Chopra [20] presented the most complete and extensive work in
systematic system identification available. The main goal of the study was the comparison of
the code empirical formulas to estimate the fundamental vibration period of building with
obtained period using record of instrumented buildings. They have been evaluating the
performance comparison of the three most popular procedures in system identification and
damage detection: Transfer Function, Modal Minimization Method and Auto-Regresive
Modeling Adaptative Method (ARMA). In this study Goel and Chopra concluded that the
Transfer Function based method is less reliable because when this method is applied in non-
steady-state response the variability of the peak rises.



De la Llera et. al. [21] using a multi-input-multi-output scheme and eigensystem
realization algorithm in time domain, identified the building response and damage in a time-
varying linear model approach. They concluded that for case study (a seven story reinforced
concrete structure in Van Nuys) the damage to the building was the main consequence of
inelastic torsional behavior. This conclusion is absolutely opposite to the report in reference

[31] which uses a frequency domain approach.

In recent times, studies for damage detection in time domain have been the main focus in
updating techniques (FEM). These methods can be classified in supervised learning and
unsupervised learning. In this sense applications in Neural Networks are very common. The
interested reader can review references [2, 5, 22]. Another important issue in time domain
in recent times is the Empirical Modal Decomposition (EMD), but this approach will be

mentioned in detail in the Chapter 5.

1.3.2 Frequency-Domain Research

Although it is not a procedure for structural system identification, the work by Haskell [23]
maybe is the first attempt for the identification in the frequency domain, and has the

beginning of the soil dynamics and the propagation of waves in layered media.

Previous to 1971 the existing data for frequency domain research was fairly limited. A
few data like those recorded in San Fernando 1957 Earthquake allowed Hudson [24] to
present the first scientific paper with the use of real data employed in structural identification

of buildings using a frequency domain approach.

In 1974, Distefano et. al. [12] showed the application of frequency domain identification
of building to an non-linear model of a two stories building. In the same work, they presented

a time-domain method which was previously discussed.

8



For system identification and damage detection in frequency domain the research by
McVerry [25] is the great importance. He showed that identification of single linear models
is possible through modal parameters which produce match in a least squares algorithm in
frequency bandwidths. McVerry also showed that selecting short-time segments structural

parameters identification is possible when structural damage is present.

Using identification in frequency domain Luco and Trifunac [26] showed that the model
using structure only do not have enough precision and it is therefore necessary to involucrate

soil-structure interaction in structural and damage identification.

Using Nonparametric methods based on Fourier amplitude spectra, transfer function and
cross-correlation, Boroschek and Yafiez [27] showed that for system identification and
damage detection the common structural analytical models have an error between 40% to
80% in structural response prediction if it is compared with real records obtained from the

buildings.

Using FFT analysis and Wavelet analysis Melhem and Kim [28], showed that damage
detection in Frequency Domain is less reliable than analysis in Time-Scale Domain

(Wavelets Analysis).

In a recent work by Bisht and Singh [29], the performances of Wavelet Analysis,
Empirical Model Decomposition (EMD), and Parametric Models and Peak-Picking Method
(PPM) for structural identification are assessed. They concluded that PPM (an method based
in direct interpretation of Fourier Transform) is a simple, easy and reliable method for system

identification and damage detection.

An improved method for frequency domain identification has been proposed by Hong and

Yun [30], they used an exponential weighting function to improve the frequency response



function (FRF) and using this FRF they could predict the natural frequencies, damping ratios
and modes of the structure.

Trifunac et al [31] proposed the use of Fourier Spectrum of average building angle for
system identification and damage detection. They used time history angles obtained by
relations of horizontal relative motion between the top and ground level divided by building
height and its respective Fourier spectra. Contrary to reference [21] (a time domain approach),
Trifunac et. al. [31] concluded that building damage (the same building of references [18, 21,
31]) is caused by nonlinearities in the soil.

1.3.3 Time-Frequency Domain Research

Except for Time-Scale Analysis (e.g. Wavelets) the number of investigations on time-
frequency analysis application in civil engineering is fairly limited, for example extensive
papers review, cited in references [1, 2, 3, 9] do not included any information about of time-
frequency analysis for structural damage detection in civil engineering structures. Only in
two very recent state of the art publications [80], the Time-Frequency based methods are
reviewed. The Empirical Mode Decomposition (EMD) and Hilbert-Huang Transforms
(another time-frequency methodology) have been mentioned [81].

This research is focused on time-frequency analysis and not time-scale analysis (like
wavelets). For this reason, detailed information analysis about wavelets application for
damage detection is omitted in this bibliography review. However, the link between Time-
Frequency analysis and Time-Scale analysis will be shown in the chapter 2, some references
should be given in this regard. Beginner readers interested in wavelets analysis should refer
to “The World According to Wavelets: the story of a mathematical technique in the making”
[32], an excellent non mathematic introductory book. In contrast the intermediate and
advanced readers may found the mathematical approach to wavelet analysis of great interest

[230]. The reference [33] has an excellent, comprehensive and update bibliography review of
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“state of the art” on wavelets analysis applied to structural health monitoring. For advanced
readers, the select references [34-47] show some recent and interesting applications of
wavelets analysis for damage detection in civil engineering structures. Finally reference [48]
presents a comprehensive use of continuous wavelet transform for estimation of

instantaneous frequency of signal, one topic very close to the focus of this research.

The main idea of time-frequency distributions is to provide a distribution that shows the
energy of a signal in time and frequency domain simultaneously [49]. It is well known that
damage is a direct consequence of energy balance in the structure [50, 51, 52]. Therefore, if it
is possible to calculate the energy distribution of a signal in time and frequency domain then
it would be possible to correlate its distribution with damage intensity, location, and time of
occurrence. The problem is that the energy distribution is not positive for all the time-
frequency intervals. Therefore, the correlation between the energy distribution and damage is
difficult. Another approach for damage detection may use the identification of time-varying
properties of structures from a time-frequency analysis and correlate these changes with

damages into structure.

Time-Frequency energy distribution has its origin in the early work of Wigner [53]. This
work does not look like a direct consequence of a spectrogram improvement but as a
guantum mechanics problem joining momentum with position (like time and frequency in
signal analysis). From basic signal analysis principles it is known that the instantaneous

energy for a signal x(Bnd the energy density spectrum of its Fourier transforméw)

|x(t)|2 . Instantaneous Energy (intensity jp@it time at time t

|S(a))|2 . Intensity per unit frequency at frequerwy 1-1

Therefore, for a Time-Frequency Energy Distribution (TFED),t), the instantaneous

energy and energy density spectrum are:
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—00
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IS(a)” = j At w) dt
o 1-2
Then if the marginal conditions are satisfied, the total energy of the signal is [49]:

E = [ P(t w)dawdt 1-3

An infinite number of distributions satisfy the equation (1-2, 1-3). Unfortunely the
Wigner Distribution had been lost in scientific community until 1948 when Ville [54] applied
this distribution to signal analysis and introduced the analytical signal concept. In 1960
Cohen [55] rediscovered its applicability for quantum mechanics, statistical mechanics and
signal processing of light waves. In this work, Cohen [55] also showed that the joint-phase-
space distribution like time-frequency distribution can take negatives values.

In 1989, Cohen [56] proposed in a classical paper the following general form for these

representations, actually known as Cohen’s Class:

+00 +00 +00

P(t,w):%j I Ie‘ja‘““’”ajgo(é?,r)x*(u—%rj x(u+%rj dud @ 1.4

—00 —00 —00

where ¢(8,7)is the kernel, which for Cohen’s Class Distributions is independent of time

and frequency. According to equation (5), the Cohen’s Class Distributions satisfy time and
frequency shift invariance [56]. If the kernel is independent of time then the TFED is time-
shift invariant. On the other hand, if the kernel is frequency independent then the TFED is

frequency-shift invariant [49].

Since Cohen’s classification [56], a large number of TFEDs has been proposed,
theoretically, it is possible to construct infinite TFED by selecting different independent time

and frequency kernels.
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Hlawatsch and Boudreaux-Bartels [57] present a complete study and classification of
Time-Frequency Representations (TFR). According to this reference, TFRs are classified as:
a) Linear TFRs: Garbor Expansion (GE), Short Time Fourier Transform (STFT),

Wavelet Transform (WT) .

b) Quadratic TFRs: Active Unterberger Distribution (AUD), Ambiguity Function
(AF), Bertrand Distribution (BED), Bon-Jordan Distribution (BJD), Butterworth Distribution
(BUD), Choi-Williams Distribution (or exponential distribution) (CWD), Cone-Kernel
Distribution (CKD), Generalized Exponential Distribution (GED), Generalized Wigner
Distribution (GWD), Levin Distribution (LD), Page Distribution (PD), Passive Unterberger
Distribution (PUD), Pseudo Wigner Distribution (PWD), Real-Valued Generalized Wigner
Distribution (EGWD), Reduced Interference Distribution (RID), Rihaczek Distribution (RD),
Scalogram (or quadratic Wavelet Distribution), Smoothed Pseudo Wigner Distribution
(SPWD), Spectrogram (or quadratic STFT), Wigner-Ville Distribution (WVD).

C) Nonlinear, Nonquadratic TFRs: Signal-Adaptative Radially-Gaussian Kernel
Distribution (RGD), Cohen’s Nonnegative Distribution (CND).

From civil engineering point of view the early work by Udwadia and Trifunac [58] is one
of first attempts for joint time and frequency analysis in system identification and damage
detection. Although they do not use strictly a time-frequency distribution, in their work
Udwadia and Trifunac obtained the sequence and frequency shift of two buildings during
Lyttle Creek (1970) and San Fernando Eartquake (1971). They used transfer function
calculated for 8 sec windows and overlap 2 sec between each sliding window. They also
noticed partial or completed recovery of frequency changes during the following months

after strong motion.

Udwadia and Marmarelis [59, 60] using Short Time Fourier Transform (STFT) and

Weiner method showed the use of STFT in system identification and damage detection in
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linear and non-linear range. They also proposed the use of a time-time representation. A
similar technique has been recently proposed in references [61, 62].

Until mid 90’s, the use of Short Time Fourier Transform (STFT) is almost the only
method cited for damage detection in civil engineering structures. For more details consult

the recent compilation of these works cited in reference [6, 63].

One of the first technical references in damage detection for civil structures using Wigner
distribution has been reported on 1992 by Robin et. al. [64], using acoustic monitoring of
hammer impact in metallic beams they concluded that time-frequency representation are

more suitable for damage detection that traditional stationary analysis.

In 1996, Hammond and White [65], showed a comparison between several signal analysis
techniques including STFT, Wavelets, Evolutionary Spectrum, and quadratic time-frequency
methods (Wigner-Ville Distribution and others). They applied several methods to a cantilever

beam.

Bonato et. al. [66], using a beam structure, compared the performance of six different
time-frequency bilinear transform: Spectrogram, Wigner-Ville(WV), Pseudo Wigner-Ville
(PSWV), Choi-Williams (CW), Cone-Kernel and Reduced Interference Distribution(RID)
and conclude respect to resolution CW and RID have the best resolutions. They also showed

that variations in single frequencies alone do not allow the damage localization.
Staszewski et. al. [67], using a weighted WVD, reduced the interference terms for fault

detection and proposed an automatic fault detection method based on image processing

techniques and pattern recognition using neural networks.
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Olivito and Surace [68], using nondestructive ultrasonic techniques and time-frequency
distribution of the cross-ambiguity functions determined the damage in concrete cubes
specimenes. Perhaps this is one of the few works in which an attempt, to correlate the

damage with wave energy and volume of cross-ambiguity function has been made.

A method using instantaneous cross-correlation, ambiguity function, WVD and CWD to
identify dynamics properties of structures has been proposed by Bonato et. al. [69]. The
authors found that cross-terms present in time-frequency representations can be suppressed
most efficiently in the ambiguity function domain. On the other hand they also found that
using channels located in nodal positions and cross-correlation the time frequency
distributions becomes more clear. The methodology has been tested using record obtained

from a bridge in Vancouver.

Using only the recorded data and without introducing strong model assumptions, De la
Llera and Chopra [70], applied a time-dependent Fourier transform (spectrogram) to study
the dynamic characteristics of eight buildings and they compared this result with UBC-97
code provisions and standard procedures of design. They found that code and standard
theoretical models predicted dynamic properties with error between 40% and 100%
compared with analysis of the recorded data. For steel building the predicted error has been
less than concrete buildings.

In two complementary papers, in 1998 and 1999, Bonato et. al. [71, 72], proposed a new
method based on time-frequency and cross-time-frequency techniques for structural
identification. In the proposed methodology, using the Choi-William Distribution(CWD)
modal and external components are extracted. For system frequencies identification a Phase
Ratio Estimation was proposed using cross-time-frequency distribution between two

channels. When the identified frequency correspond to system frequency, the phase
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difference standard deviation diagram depicted a minima. An analytical three-story shear-
type frame has been used for methodology testing.

In 1999, Huang et. al. [73], showed a powerful approach for system identification of
dynamic systems, based primarily on empirical mode decomposition and Hilbert transform.
This method is known today as Hilbert-Huang Transform (HHT). Actually HHT is one of
the most promising modern signal analysis tools available. Huang proved that any real signal
could be disintegrated into n-empirical modes and a residue such:

X(t) zq ()+1, (1)

wherex(t): Original signal
Ci(t): component

I',(t): residue after sifting process.

After empirical mode decomposition has been made, the Hilbert transform is applied to

each component resulting in a Hilbert Spectrum.

For linear signals, Bonato et. al. [74, 75] showed an improved parameter estimator based
on earlier works (see references [71, 72]), the improvement has the advantage that no filter in
time domain is necessary. For nonlinear systems, the technique was also shown to provide
good results for a numerical model of a three story frame building [74]. Using ambient-
vibration data, the technique has been used in system identification of an old masonry bell
tower in Italy with the Wigner-Ville Distribution [75].

Trifunac et. al. [76] used relative rocking response data (see complementary papers in the
reference[31]) from an instrumented building(see other papers from the same building in the
references [18, 21]) and two different signals analysis techniques (time-frequency windowed
Fourier analysis and zero-crossing analysis). The authors found that the predominant
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frequency changes in soil-building response is detectable by time-frequency analysis and that
nonlinearities of building response for this particular case is due mainly to the response of the

foundation soil.

Using an output only scheme in time-frequency domain, De Stefano et. al. [77] and
Ceravolo et. al. [78], proposed a method for structural damping identification. They show
that damping obtained using time-frequency methodologies is by far a better estimate
compared with other three methods (Direct System Parameter Identification, Eigensystem
Realisation Algorithm, Polyreference Time Domain).

In 2002 Cohen et. al. [79] showed that time-frequency distribution can be used for

obtaining reliability variable stiffness and damping of a single degree of freedom fault model.

Neild et. al. [80] using accelerometer data from a concrete beam and windowed fourier
transform concluded that this time-frequency methodology is suitable for early stages of

damage.

In a recent state of the art paper [81], the authors compared the performance in structural
vibration analysis of the moving window discrete Fourier transform, the moving window
auto-regresive (AR) model, the armonic wavelet transform, and Wigner-Ville distribution.
Using synthetic signals and experimental data they concluded discrete Fourier transform and
AR models have similar resolutions. Windowed Wigner-Ville distribution has similar time-
frequency estimations compared with wavelet transform. In high modes no method was

capable of giving correct estimation.

Yan et. al. [82], presents a very recent state of the art review paper on vibration-based
damage detection, they compared traditional-type vibration-based structural damage

detection method (TTDD) versus modern-type vibration based structural damage detection

17



(MTDD). In the last category only time-frequency (Hilbert-Huang Transform and Empirical
Mode Decomposition) and time-scale (Wavelet), Neural Network and GA method is

included. The authors believe that future of damage detection is in MTDD.

Similar to aforementioned Empirical Mode Decomposition (see ref. [73]), Zhang et. al..
[83], proposed a modal parameter identification based on Gabor expansion. They used
simulated data of a simply supported beam of three DOF, the method can decompose each
signal into uncoupled responses and extracted for each one of the structural modal
parameters. The authors mentioned that results are very sensitive to signal noise ratios (SNR)

and that damage estimation is less accurate.

Zhou [84] presented the application of time-frequency distribution analysis method to
determine the damage of a reinforced concrete high-rise (38 floors) scaled model (1:20)
building under white noise and four level of earthquake excitations. Although he has
problems during super-strong level earthquake acquisition data, Zhou can evaluate the
damage using structural frequency response functions (FRFs), neural networks, joint time-
frequency analysis and autoregressive and moving average model (ARMA). Regarding the
time-frequency methods, he concluded that Choi-Williams distribution and adaptive
spectrogram has the best performance in time-frequency resolution and suggested that
damage detection using time-frequency methodologies should be the focus in instantaneous

properties rather than energy approach.

In 2004, Mucciarelli et. al. [85] reported that for the first time in Europe, nonlinearilitie
building response was recorded. Using four analysis methodologies (Short-Time Fourier
Transform, Wavelet Transform, Horizontal to Vertical Spectral Ratio and Horizontal to
Vertical Moving Window Ratio), they showed that the frequencies estimated by four
techniques are consistent. An exception was given for Wavelet Transform where frequencies

were underestimated. Therefore WT become less suitable for damage assessment. The
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authors proposed, as comparison factor between several techniques, the use of percentage
frequency shift.

Zou and Chen [86] using numerical simulations of rotors found in an comparative study
that Wavelet Transform is most useful for detect stiffness variation and damage detection

than Wigner-Ville distribution.

The use of instantaneous estimators obtained from time-frequency analysis for structural
damping evaluation has been proposed in reference [87]. The author using vibration
measurements of a Hospital compared the results obtained with a classic identification
method (Eigensystem Realization Algorithm — ERA) and thus obtained with Short Time

Fourier Transform. She found an excellent agreement between results of both methods.

Politis [88] on 2005, compared the use of adaptive decomposition and empirical mode
decomposition using time-frequency and wavelets analysis for system identification and
concluded that adaptive methods are most effective. On the other hand empirical mode

decomposition required most user supervision when the modes are coupled.

An improved method of Hilbert-Huang transform has been presented by Peng et. al. [89]
in 2005. The method is based in application of wavelet packed transform to decompose the
signal into a set of narrow band signals and after the empirical mode decomposition is

applied.

Bradford [90] and Bradford et. al.[91] worked extensively work on the use of time-
frequency analysis for system identification of structures with changing dynamics properties.
The authors compared, in gqualitative sense, the performance of some time-frequency
distributions for chirp functions analysis and three instrumented buildings in California. In

general the building response was shown in a qualitative sense with direct user interpretation
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of Reduced Interferenced Distribution (RID) results. The authors concluded that wavelet
transform and spectrograms are diffuse for this type of analysis and time-frequency
representation are most suitable for this purposes.

Roshan-Ghias et. al. [92], presented a method for extract vibration modes using the
Smoothed Pseudo Wigner-Ville distribution, the authors showed numerical results obtained

with his algorithm for a two DOF’s uncoupled system.

Using measurements data from San Fernando earthquake (1971) recorded in the basement
of Alhambra Building, Ceravolo et. al. [93] showed the results of a parametric method of
instantaneous system identification based on Short Time Fourier Analysis. The identified

parameters are affected by external noise and system behavior.

Todorovska and Trifunac[94], used the ridge of Gabor transform for determining the
instantaneous system frequency and damage detection of Imperial County services building
for Imperial Valley earthquake (1979). The authors mentioned that time-frequency

representation offers better control of frequency resolution rather than wavelet transform.
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2 FUNDAMENTAL CONCEPTS

The structural language is too extensive, and in general some technical words have been
used in different context and usually it does not have the same meaning for all persons
involved. A similar situation occurs in signal processing analysis, for this reason this chapter
starts with a few but very important definitions that are used in this work and claim to
explain their meaning in the context of this thesis.

The second part of the Chapter is a briefly visual and graphical demonstration of some
abilities of time-frequency analysis (TFA) to system identification and damage detection.
Because the objective of this part is to show TFA in an intuitive sense, in depth mathematical

formulations is avoided.

The last part of the chapter is dedicated to time-frequency analysis theory. The main
focus is on the mathematical concept useful for analysis of signals from Civil Engineering

structures.

2.1 Definitions and General Aspect of Structural Damage

2.1.1 Damage

Damage is one of most controversial words in the structural health monitoring field. In
many cases it refers to a subjective scale of comparison or acceptable performance according
to several levels of exposition. In general, it refers to changes (almost always permanent) of
structural properties like stiffness, strength, dynamic properties, or loss of acceptable

structural performance according to a pre-established behavior criteria. For buildings it is
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frequently associated with inter-story drift and behavior of structural and nonstructural
components [126].

Because we attempt to identify damage using only output signals therefore no additional
structural information is allowed, for the purposes of this research we define damage like

permanent changes in structural frequency (associated with stiffness losses).

Obviously the above definition of “damage” is not absolute, mainly because a
“permanent” change in frequency or a permanent displacement does not necessarily imply
damage according to several scales or criteria. In general, damage in a scale for one scenario
is not necessarily damage for another scenario. For example, in common buildings you can
accept a 1.0% of drift during a strong event (and its damage probability associated with it),
but in a nano-technological laboratory facilities or nuclear plants a 0.1% of drift may be
unacceptable.

According to the literature review there are several other approaches to damage detection
like mode-shape-based and modal strain energy, but all of these methods depend on
mathematical models of the structure (so one needs structural data like geometry, material
properties etc.) and frequency identification. If one can only use the ouput signal (like in this
research), the natural way will be to associate damage to the instantaneous frequency
identification or any parameter evaluated from record. One selects frequency because any
other structural characteristic that one attempts to get directly is dependent of the signal-

based frequency estimation.

Another important issue with previous “damage” definition is the damage severity or
danger of the damage. Thus a small frequency change does not necessarily imply no severe
damage or non-danger in the structure [2, 9, 147]. The contrary is also true but is less

common.

22



For example, if you have a single span frame and you decrease the stiffness of a column in
one corner or reduce its capacity to a very low value, the overall changes in frequency may
be very low. An erroneous conclusion in this case will be that no important damage has
happened but it is obvious that from structural point of view the damage is severe and the
structure is in danger. In this case an additional small demand on a column may cause its

failure and the global stability of the structure can be compromised.

This research does not attempt to establish the global stability of the structure or the
danger of the damage, because it requires additional structural information (not allowable
according to the research objectives of an output-only scheme). Here only the presence of
the damage, the damage localization and damage quantity can be evaluated. The resolutions
of this information (when, where and how much the damage is?) is obviously limited by the

extend of instrumentation in the structure.

The discussion about the damage and its infinite evaluation approaches is currently open.
Anybody can argue divine and the human on the matter, but in fact it is necessary to know
that at this time the structural engineer does not have a simple and straightforward approach
for damage detection and a correct prediction of the damage severity and collapse stages are

very far from the actual structural knowledge even in laboratory controlled tests [148].

According to the previously description of the damage in this work, it is evaluated from
the analysis of output signal only and one does not use any other structural information. This
definition is acceptable and it has been used widely by many research groups [1-8, 14, 29, 37,
47, 66-69, 74-76, 80-82, 84, 90, 93, 94, 118, 121, 147, 168, 190, 223].

2.1.2 Frequency

Frequency is defined as the number of complete cycles of a periodic process occurring per
unit time [127].
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From structural point of view one can evaluate the undamped frequency of a SDOF using :

f=— |— 2-1

where:
f: frequency (Hz),
k: system stiffnessand

m: system mass.

Structural system with one DOF have only one frequency and the output signals are

monocomponent mainly (the other signal frequencies are noise or from external sources).

The word “frequency” in this thesis is referring to signal frequency associated directly to

structural frequency.

In a MDOF system the frequencies are associated to modal responses and the signals
obtained from these types of systems have several frequencies. These signals are namely
multicomponent signals. The system frequencies and a lot of other frequencies from noise
and external forces are present in the output signal of MDOF systems. In this sense, the
system frequencies are referred as signal frequencies. Because the noise or external

frequencies have been already separated (or isolated or minimized).

From equation (2-1) it is evident that any change in frequency is due to changes in
stiffness or mass or both. It is frequently assumed that mass does not change and it stays
constant. Therefore, if there is a change in frequency, it is due to the change in stiffness. In
damped systems changes in frequency may result as a consequence of changes in damping

and it is common that both (stiffness and damping) change.
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In this research it is assumed that changes in frequency are due to changes in stiffness.
Thus mass is considered to be constant at all times and damping plays a secondary role in the
frequency changes. These assumptions are in accordance with a large number of scientific
publications, as it can be seen in the following references [1-10, 14, 17, 18, 20, 21, 25, 26, 31,
69, 70, 81-85, 90, 94, 106-112, 118, 119, 121, 147, 150, 151].

The main reason for taking the damping role as secondary is based on the mathematical
relation between damped and undamped frequency:

W, = WA1- &2
where:

Q) - Damped circular frequency (rad/sec),

A, - Undamped circular frequency (rad/sec), and

¢ © Percent of critical damping (in decimal form).

Therefore it is necessary to use an excessive damping factor in order to produce a
significant change in frequency (i.e. a damping factor of 30%, only produces a 5% of
frequency change).

Like damage definition the previous definition of frequency and structural frequency
haves some inconveniences, first signal frequency associated directly with structural
frequency and it is not absolutely true. One important thing is that in the output signal exists
the apparent structural frequency and not the real structural frequency, due to soil-interaction
[17, 31], non-structural components response and other signal perturbations (i.e. instrument
response, measurements errors) and finally numerical errors and approximations during

signal processing.
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Therefore, it may be necessary to point out that in this research the input signals are not
used and hence is not possible to have a reliable extraction of the soil-structure interaction
effect [152]. In fact, even in a controlled laboratory test (like shake table) one can not extract
reliably the table-structure interaction if one does not have the input signal or the system

properties [84, 151], in this research we do not have neither of them.

It is assumed that external signal perturbations like instrument response, measurements
error, quantizitation error, frequency drift [174], instrument tilt, localization and instrument
setup errors and errors during signal processing are small and therefore it can be neglected.
Study of these effects is out of scope of this work, the readers can find in the references [116,

206] excellent documents about these topics.

It is important to point out that small changes in frequency of the structure not necessarily
imply permanent damage in the structure. In the case of Millikan Library in Caltech, for
example, several recent researches [114 - 116] have demonstrated the correlation between the
changes in building frequencies and weather conditions, windstorms, daily temperature, and
rainfall. A similar behavior has been reported on bridges [8, 150], when weather conditions
have directly influenced the mass (concrete absorption of water) and therefore the structural
frequencies. However, it has been shown in the same study that theses changes are small
when compared with frequency changes produced during earthquakes.

Another aspect is that some times, the total changes in frequency is not permanent, it has
been reported that structures have a little frequency recovery through time and it is
dependent on several factors [26, 76, 94, 114]. Therefore, it may be necessary to detect
permanent damage based on frequency changes when analyzing these frequency changes
through time.
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Other research has proven the existence of a rare but mathematically possible case, when
the damage is severe but it does not produce any changes in the system frequencies, because
the damage has happened only at exact node points of the modes and no other place is
affected [186].

Fortunately this case has an extreme low probability of occurrence, and if this occurs any

damage detection method based on dynamic response will fail.

Finally remembering a few very recently words of one of the most famous world research
group in damage detectiofit was particularly interesting to note that the loss of natural
frequencies reached about 10% and still the cracks could not visually be observed. This
result is rather promising for the future applications of the non-destructive damage
estimations of structures from their natural frequencséesce we can detect damage from
vibrations before we could note it from ordinary inspectiéf$51], remarked is by the
author of this dissertation.

2.1.3 Overview of Application of Time-Frequency Analysis in System
Identification and Structural Damage Detection

As previously discussed in section 1.3.3, the main idea of time-frequency distributions is
to provide a distribution that shows the energy of a signal in time and frequency domain
simultaneously [49]. In this research a tracking of instantaneous characteristic of signal
using Time-Frequency Analysis (TFA) has been done and these values are associated with
the dynamic changes in the structure and therefore with damage success according to the

damage definition.

TFA has been employed in a diverse field, like radar applications, image processing,
biomedical-engineering studies, geophysics, quantum mechanics, signal processing,
economics analysis, mechanical, electronic among them [49].
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Before giving the mathematical background of time-frequency analysis, in this section the
time-frequency ability for system identification and damage detection are shown briefly and
graphically.

Suppose that for an instrumented structure of MDOF, the ouput signals from “n” channels
are given. A typical time-history output from ambient vibration (or in-operation conditions)

of any channel is shown in the Figure (2-1):
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Figure 2-1 Ambient Vibration Record taken from a MDOF system

From the Figure (2-1) it is evident that the system is submitted to random vibration force
and obviously in accordance with random vibration theory, its response is random also.
Practically one can not say anything about the structure using this time-domain signal, except

may be the excitation is small and do no exist evidences of high damping.
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If one is asked about the main frequencies (or periods) of a particular structure, an obvious
response would be to use Fourier transform theory. In Figure (2-2) the Power Spectra (square

magnitude of Fourier transform) is shown to ten time series of this signal.
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Figure 2-2 Power Spectra for signal of Figure (2-1)

In this case, the Fourier theory is not useful, because in ambient vibration conditions the
signal to noise ratio (SNR) is very low (thus signifing that the noise presents in the signal is
very high). A filter operation can be used in order to remove this noise, but it will require the
knowledge about the range of frequencies. Specifically, in Figure (2-1), what frequencies one
should remove? Again if one does not know anything about the structure, one end up

removing the noise but also the system frequencies.
One can use other ways, like stochastic subspace system identification [128], or other
useful approach, but in many of them one will need additional information of structural

system and in remaining the information about input forces are required.
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In the Figure (2-3) using a technique proposed in this research, a Normalized Mean Time-
Frequency Representation of the ten time series of this signal is shown (see details on section
4.4.2). Trying to answer the original question: what is the main frequencies (or periods) of

this structure?

Figure 2-3 Mean Time-Frequency Representation for signal of Figure (2-1)

Now, it becomes clear that by using this powerful theory of signal processing, which is the
possible structural frequencies of this structure are determined (may be: 0.12, 0.25 0.4, 0.54
and 0.76 Hz do you agree?). We say “possible” because it is probable that some of these
identified frequencies (or may be all of them) are not from the structure and are from the
external forces. Fortunately, it is possible to know what are system and not system

frequencies using random vibration theory.

Once the main frequencies of the structural system are identified the time-frequency
analysis, frequency domain decomposition [124] and singular value decomposition [149] can

be used to reconstruct an equivalent mass, stiffness and damping matrices that represent the
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dynamic model of the structure. In this particular case a 5 by 5 matrix for each case can be
reconstructed, as will be seen in Chapter 4.

For damage detection the time-frequency analysis is very useful also, take for example the
following output signal of a numerical simulation system submitted to an earthquake or

another strong event:

Figure 2-4 Time-History of a Simulated Structural Response

The response shown here is similar to a sine wave before a strong motion, the strong
motion was taken as an amplitude modulated sine wave and at 500 counts (any time scale)
the system fails. After 900 counts, the external force disappears and the system is back to

initial excitation.

All this can be deducted from the Figure (2-4) except may be the failure, because the
change in the time-history signal can be due to external force change and not necessarily for
damage in the structure. If one uses traditional signal analysis (like fourier analysis) one can

get another useful information, see the following graph:

Figure 2-5 Power Spectra for signal of fig. (2-4)
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Using Fourier analysis, two frequencies can be seen in Figure (2-5), 0.025 and 0.085 Hz.
The additional information although important is not useful for damage detection, because in
frequency domain, the information about temporal evolution of the frequency is lost.
Theoretically it is possible to extract temporal information of Fourier Spectra using the phase
of the transform [49, 57, 146], but it is not practical.

In the following graph a time-frequency of the signal using Pseudo-Wigner-Ville
Distribution is shown:

Figure 2-6 Pseudo-Wigner-Ville Distribution for simulated response
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From analysis of Figure (2-6), it is possible to have a frequency history evolution.
Tracking the damage evolution in the structure, for example, it is easy to see that the
frequency starting at 0.085 Hz (the same value of maximum power spectra) will remain
constant for up to 500 counts (any time scale) and at this moment the frequency drop
instantaneously to 0.033 Hz (loss of stiffness according to the damage definition). Afterward
the system has a stiffness softening between 500 and 850 time instants, with the system
frequency at 0.01 Hz at the end not return to initial value. Therefore, it is reasonable to

assume that a permanent damage has occurred.

A patrticular zone appear in the time-frequency plane of Figure (2-6), this zone is called
interference terms and its presence is in general due to the quadratic terms of the transform,
these terms are a numerical artifact and it is not true terms (autoterms), thus the signal do not
have frequencies at these time-frequency zones. The interference terms are considered a
serious drawback to apply time-frequency methodologies, because similar to the noise case if
one does not have information about the structure how one will be able to identify them?

Although many research groups had been dedicated to remove the interference terms and
several methodologies had been proposed in the last two decades [96, 100, 129-138, 225-
228], the interference terms are not an exclusive problem of time-frequency representations
but it is also present in time-scale representations like wavelets analysis, see references [ 57,
100, 132 ]. The main problem with many of these methodologies is in the smoothing process

the autocomponents terms will disappear together with cross terms.

A new method to search frequencies in zones of the time-frequency plane where
interference terms appear is proposed in this research for Civil Engineering structures.

33



2.2 Time-Frequency Representations

2.2.1 Basic Concept

Definition 2.2.1 :
“Time-Frequency Representation (TFRs) of signals map a one-dimensional signal of time,

X(t), into a two-dimensional function of time and frequency, Tx(t,f)” [57]

Definition 2.2.2:

Any time-frequency representation that fulfill the equations (2-2) is considered a Time-
Frequency Energy Distribution (TFEDP)(t,f) [49],

Ix(®) :TP(t, f)df

—00

|S( f)f:j Rt f)dt

If the marginal conditions are satisfied then the total energy of the signal is [49]:

E= j P(t, f)df dt 2.3

Cohen [56] proved that any time-frequency representation that fulfills equations (2-2, 2-3)

can be represented using the following equation:

1 +00 +00 +00 o ) . 1 1
C(t, f)=P(t f)=— g I y(6 1) X (u——rj{w—rj dud @ 2-4
X( ) ( ) 477.2 _J;__[o:[o ¢( ) 2 2

Where qa(é’,r) is the kernel, which for Cohen’s Class Distributions is independent of time

and frequency. According to equation (2-4) the Cohen’s Class Distributions satisfy time and
frequency shift invariance [56]. If the kernel is independent of time then the TFED is time-
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shift invariant. On the other hand, if the kernel is frequency independent then the TFED is
frequency-shift invariant [49].

In equation (2-4), it is important to note theft) is the complex associate analytical

signal of the real signa| (t) The analytical signal is defined as [49]:

X(t)=x.(0+ JHT(X(D) 2-5
where:
HT(x(t)): Hilbert Transform ok(t).

The use of analytical signal instead of real signal has its advantages, for computational
time and memory computation purposes the Fourier Transform of analytical signal are single

sided [123]. For mathematical and symbolic process, the use of analytical signal is also better.

Another good reason for using complex analytical signal instead of real signal is to satisfy
the Shanon’s sampling theorem and avoid aliasing problems in the time-frequency plane. If
the real signal is used then it is necessary to take a sampling rate equal to twice of sampling
used in Fourier Analysis. On the other hand, if complex analytical signal is used to evaluate
the time-frequency distribution the sampling rate can be taken simply equal to double of

Nyquist frequency.

From equation (2-4) it is clear that the only representation that will fulfill equations (2-2,
2-3) is reallyTime-Frequency Energy Distributions (TFED)otherwise it is only a time-
frequency representation (TFR). Frequently this point is not very clear in scientific literature,
and is very common to read indistinctly TFR or TFED or Time-Frequency Distribution
(TFD).

In this dissertation when Time-Frequency Representations (TFRs) or Time-Frequency
Distributions (TFDs) are used, it refers to Time-Frequency Representationsnahat

35



necessarily fulfill the equations (2-2) and (2-3). The words Time-Frequency Energy
Distribution (TFED) are used for Time Frequency Representations that fulfill the equations
(2-2) and (2-3).

This concept is important for structural damage detection if one wishes to use an energy
approach, because only time-frequency energy distributions (TFED) can show a real and

complete energy flux in the time-frequency plane.

In general time-frequency energy distributions have the drawback that in some places of
the time-frequency plane it has negative values, neglecting any physical direct interpretation
(relative to energy) [49, 56, 57, 65, 84, 88, 90], and therefore an approach to structural

damage detection using the volume (energy) of the distribution is not set yet.

In this regard some authors proposed methodologies to achieve truly positives
TFEDs[139-141, 144,] and others have believed that positive TFEDs only can be achieved
using smoothing Wigner-Ville Distributions and therefore it is not a truly TFED and it is

only TFRs. In reference [142], one attempt for analytical demonstration has been proposed.

Negative local energy values can appear in some places of the time-frequency plane.
However it has been demonstrated in the reference [170] that even if negative energy values
are present, the local integration over an elliptic domain never exceed the total energy in the
system. This will keep the door open for future research of joint structural energy approach

with time-frequency analysis.

In this research, an energy approach is not used and the use of direct energy values
(equation 2-3) from the TFDs is avoided. Therefore, possible punctual negative energy
values from the distributions do not affect ours estimation. The approach for this research is

to evaluate instantaneous frequency values from the TFRs and link these values with
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instantaneous structural response. When the use of energy is required, a cumulative time-
dependent energy flux is evaluated by using integration of TFRs along the frequency axis;
therefore we do not deal with negative energy values.

2.2.2 Classification of Time-Frequency Representations

Since Cohen’s [56] classification; a large number of TFRs have been proposed.
Theoretically, it is possible to construct infinite TFRs by selecting different independent time
and frequency kernels. Dozens of TFRs are available and construction of new TFRs is an
important part of research in signal analysis field.

An attempt is not made to show and describe hundreds of TFRs actually available. In this
work it is preferable to show the main branches of grouping and the desirable mathematical
properties that a TFRs must have in order to do the signal analysis for civil engineering

structures.

Interested reader on this topic can find additional information about some TFRs
application specifically for structural engineering in the references [81, 84, 90]. The
applications in soil dynamics, earthquake engineering and seismology can be found in
references [143, 153-155, 172, 221]. A brief application of spectrogram to soil liquefaction
can be found in the reference [116].

According to reference [57], TFRs can be classified as linear, quadratic and non-linear. At
this time it is necessary to add a new class of TFRs, because recently others types of TFRs
have begun to appear [73, 97, 145]. In this work the TFRs classification has been enhanced
and it is shown in the Figure 2.7. In the same Figure a few typical TFRs are included. As
previously mentioned the number of TFRs is extensive. For example regarding Figure. 2-7,
in the Adaptive Optimal Kernel type you can get 15 or more TFRs. In Reassigned type you

can get 20 or more and so on, for this reason particular description of TFRs is avoided here.
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Figure 2-7 Classification of Time-Frequency Representations

2.2.3 Desirable Mathematical Properties for Time-Frequency Representations
in Signal Analysis of Structures

There is not an unique criteria to establish mathematical properties of TFRs. Many of
them has been shown in the literature, and frequently with different names for the same

properties.
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The mathematical properties presented here was collected mainly from references [49, 56,
57, 66, 90, 102, 224], and only those with some structural engineering interest were selected.

In what follows, we will explain the principal mathematical properties that TFRs should

have in order to have a complete use in structural damage analysis.

The function P(t,f) must be calculated using equation (2-4). For example in the

multiplication property:

X0 =x0x%(0) = Rt H=[" RB(tf- MHR(t FHdF 26

One needs to evaluate the following expressions:

X1 =x(0%() =
T —je-jr(f -f )+ja of 1 1_ .
1 e [I J Jermme ¢(9’T))i(u Erj ){mzrj dud ﬁj 27

Pt fy=—o| | 777 df

1677 oo | (ot
[J' j _fe‘”’""”'”a‘(o(e,r)x;(u—%rjxz(u+%rj dud d?j

—00 —00 —00

Always the simple asterisk sigr) jmply multiplication and the superscript asterisk sign
(") imply complex conjugation, the signe(t) refers to analytical signal (eq. 2-5 using the
complex Hilbert transform) instead of the real signal. When uppercase iX(fsetis refer

to Fourier Transform of x(t)

The Kernel function will be taken according to Table (2-1), if one uses a Levin

Distribution for example, the kernel is defined by:

ﬂg, T) — eiidr\e 28
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Substituting equation (2-7) into equation (2-6) we obtained:

ETTTe—Jﬂ‘V(f y u+j@é’ﬁ9¥( u—%r) ]{ u-—;Tj dud ﬁ}c
R A= -

J‘—OO ~+00 +00 +00
16t U | je-l'a-i”'ﬂ@é’*’*"g( u—%rj ;{ Ur—;rj dud dj

—00 —00 —00

Simplifying the preceding equation, finally the valid expression (2-10) for multiplication

using Levin Distribution is obtained:

XO=x(0%() =

1 [TTT i =1 7+J&;+Jnf716’)E (u_} j)‘{ 5 J dud ej
Rt =[]
1671 (J-II _Ja-m + @+ 7|6 ( % j ( j dud 6}

—00 —00 —00

I\)

d 1 2'10

2.2.3.1 Linearity (P1)

If a signal is a linear combination of two or more components, the TFR is the linear

combination of individual TFRs.

xO=3(k%(0) = Rt H=X(KkR(1 ) 211

Only linear TFRs (see fig. 2-7) fulfill the equation (2-6), therefore only Garbor Expansion,
Short Time Fourier Transform (STFT) and Wavelet Transform in its time-frequency version

(WT) have this good property.
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2.2.3.2 Multiplication (P2)
If a signal is a product of two signals, its TFRs can be obtained using:
XD=xOx%(1) = Rt H=[" R(tf- HR(L MHdF 21
2.2.3.3 Convolution (P3)

If a signal is a convolution of two signals, its TFRs can be obtained using:
X() = [ x(t-t)%(t)dt= R(t =] R(tt, HR(t Hdt 13

2.2.3.4 Real Valued (P4)

If a signal x(t)has P(t,f), the TFRs is real valued if:
P (t f)=R(t f) 2-14

2.2.3.5 Time Shift (P5)

Any time shift in the signal, imply the same time shift in its TFR, thus:
x () =x(t-%) = B (t f)=R(t-t, f) 2-15
2.2.3.6 Frequency Shift (P6)
Any frequency shift in the signal, imply the same frequency shift in its TFR, thus:

(1) = x()e*™ = P(t )= R(t f- f) 2-16

2.2.3.7 Time Marginal (P7)

The instantaneous energy of the signal x(t), can be obtained:
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[ Pt £)df =|x(f 217

2.2.3.8 Frequency Marginal (P8)
The total power spectrum of the signal x(t), can be obtained:

j P(t, f)dt=|X( f) 518

2.2.3.9 Instantaneous Frequency (P9)

The instantaneous frequency of the signal x(t), can be obtained using the equation 2-19:

T fP(t, f)df
IF,@=f0="23—— 2-19
j P(t, f)df

2.2.3.10Group Delay (P10)

The first derivate of the phase with respect to frequency is called group delay:

Tth(t, f)dt
GD(f)=t(f)=30—— 2-20
j P(t, f)dt

2.2.4 Common Time-Frequency Representations

If you take several forms to the kernel function of equation (2-4) you can get theoretically
infinite possible TFRs, as has been mentioned earlier, there may exist dozens of TFRs in the
literature and its description require a large volume book, therefore for the sake of simplicity
in this section we will show only some common Quadratic TFRs and its kernel function. The
properties of TFRs aforementioned in the section 2.2.3 that it fulfill.
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In the Table (2-1) the common Quadratic TFRs are shown, these types of TFRs are

included in Cohen’s Class.

In the references [49, 56, 57, 123] similar and equivalent

expression can be found.

TABLE 2.1- Kernel, Expression and Properties for a few Cohens Class of TFRs

Time-
Frequency Kernel TFR Properties
Representation
' P(t.[)
(ﬁ.\' ( ‘9’ T) X J .
Born-Jordan sin( 767 ) o er|r| / 4-10
. j J. o x| — ‘due T T
7] \
Zhao-Atlas- - sin( 7o) o i_H / 3 . 410
Marks (Cone- h(z) Tt ,[ h(z )j _H v = ‘d?:’-e_ﬂﬁﬁdz
Shape Kernel) o 5\ 2
Chot- 9272 o wolbetf o Vo1 4-10
Williams e ° oy __[j _,[j \/ ¥ 20T | s '| dudz
Margenau- cos(mot) ! o . | 1,3
Hill | Re x(t)e X (f) 58
\_ 2z ) |
. ac _ T Or o v oy -2 g 1,3, 5-8

Rihaczek o’ or ()X (f)e i
Levin ejﬁ ,-7|f? ( )4\ ( f ) — il 2,4-8
Wigner-Ville 1 1 1 2-10
Distribution — j —1’ x ‘ t—=7|e i dr
(WVD) \ / = J
Page ille sl 1 2 2,4-8

> 2 — x(t')e " dr!

N Ct|\\2m =,
Pseudo- 1) 1 \ _ 2-6,9-10
Wigner-Ville h ( T ) j h(t)x f+ B T |a f— —r e dr
Spectrogram | : 4-6

?h“(u_l ]h(mlf}-%h ‘— j x(r)h(c—t)e Pdr
= 2 2 2 =,
sme sin(afr’ = o [rHaT N oof 24-8
['7'} 1 j le’”ﬂr T u+lr x | rr—lr du |dt
afr dra | T f-ar 2 ) L 2
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2.2.5 A Survey From Spectrogram To Wavelets Trough Time-Frequency
Distributions

Another useful and big group of TFRs is the Affine Class of representation.

In general any TFRs of affine class can be represented by a Wigner-Ville Distribution
with a smoothing function, where the Wigner-Ville Distribution (WVD) is defined by [53,
54]:

WVD(t,f——.fx{H rjx( %Tje d 2-21

Thus imply that the kernel of WVD according to general Cohen’s class has the following
form [56]:
woe,r)=1 2-22

The importance of Affine Class of distribution is that it is the joint between time-
frequency analysis and time-scale analysis, so the most prominent group of affine class is the

Wigner-Ville Distribution and the scalogram (square magnitude of wavelets).

If an arbitrary frequency scale is defined as equal to:

1:0

a=-% 2-23
f

Then a distribution in the new time- scale domain (t,a) will fulfill covariance by
translation in time and dilatation. It can be obtained using [123]:
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; a)+f2 _j2rmft
X|—=|e 2 dfdw
a a 224

+00 +00 a)_

Q,(t,a;n) |a|H

00 —00

Where a bi-frequency kernel is defined by:

+00

W(f,w):jﬂ(t,f)e‘jz”“dt 225

—00

Like before,X in uppercase is the Fourier transformxé), and superscript X is the

complex conjugation.

In general any Cohen’s class or affine class of distribution can be obtained as function of
another using the following equation, this equation joint time-frequency with time-scale
analysis, equations (2-4) and (2-24) [123]:

Cx(t,%;ﬂj:Qx(t,a;ﬂ) 2-26

Because all Cohen’s class [56] time-frequency representations can be expressed as a

smoothing Wigner-Ville Distribution using the following expression [123]:

C,(t.f;n)=] [nN(u-t,6- FIWVD(u6) dud 2.27

—00 —00

where:

= [ [ o(6.,7)e '™ dtdf 228

—00 —00
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WVD(u6) ——j >{u+ rj (u— ;rj e’ d 2.29

Therefore one can get a time-scale distribution like wavelets using a time-frequency
distribution or one can get a time-frequency distribution like Wigner-Ville using a time-scale

distribution such as scalograms (square magnitude of wavelet transform).

In this sense WVD can be used to obtain all Cohen’s time-frequency bilinear distribution
such as spectrogram or Choi-Williams and on the other hand WVD can be used to obtain

time-scale representation.

In this regard it is important to point out that the procedure for obtaining any Cohen’s
class and time-scale representation using WVD is valid for all continuous cases, but in the
discrete case there is some Cohen’s class distribution that can not be obtained using the

discrete formulation of WVD, this has been demonstrated in the references [164, 165].

To show the dependence or interconnection between TFRs, for example, it is not difficult
to prove [49, 123] that the spectrogram can be obtained by smoothing of Wigner-Ville

Distribution using:

400 +o00

S(tf)=[ [wvD(r-t6- HwvD(r,6) ¢ @ 230

—00 —00

where:

WVD, (7 - t,8~ f): Is the Wigner-Ville Distribution of the window h,

WVD, (T, 49) . Is the Wigner-Ville Distribution of the signal x(t) using lag variables.
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In the same way, in the reference [65] it has been proved that using affine smoothing, the
scalogram (square magnitude of wavelet transform) can be obtained from Wigner-Ville
Distribution using the following expression:

+00 +00

cwT(az \ HWVD ra)quﬂw( :, eﬁj d & 231

—00 —00

where:

WVDwy : Is the Wigner Distribution of the mother wavelet.

CWT(ar), j t)w( j 2.32

CWT is the continuous wavelet transform of the a sigidl[33], and the second term

within integral is named the mother wavelet.

WVD, (7,6) = I X(T—%Jx{r+%j e a 2.33

—00

In fact by using TFRs members of Cohen'’s class is possible to get the scalogram, this has

been proved mathematically in the reference [173].
Finally an alternative method that link wavelet transform to time-frequency using
constant Q-short-time spectral analysis in the time domain has been reported in the reference

[156].

2.2.5.1 Bi-Frequency Kernel Distributions

Another good way to express the equation (2-24) is [123]:
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where: G, H are any independent functions.

The equation (2-34) represent a new group of affine class namely the localized bi-frequency
distributions. By selecting several G, H functions we can get many interesting TFRs, some
of these TFRs are shown in the Table below [123]:

TABLE 2.2 Expression for Localized Bi-Frequency Distributions

Time-
Frequency G(D) H(f) TFR
Representati
on
Q (t.a:11)
Bertrand f 7 1 PR PR
q ™ — ) ) —j2mft
2f 4c:¢:rth(T 1 3{ Y Je 2{ |y ﬁz/ _ 'ja df
‘5i1111| 5 | - . | |*°°~111h| | _(Hi11h| = | ersinh‘ é |
]:)'Flal].dl‘]-_'ll -'/f\'2 1 +?-_,f I r.f.\z I N . .\2 I N —janf
1*‘\:‘ H.’L\_ == 1_|I_,| la |X Y -'(I.f% daf
Interberger ; (o L SR N-7 |
Sl S e o df
‘a‘ Looat) La) \oa)
Pasive 1 ﬂm(a_l
Unterberger ot (1) —%
(L] (L] 2 wf
L2 ) V2 ‘({‘ \ da od

2.2.5.2 High Order and Polynomial TFRs

Finally it is important to discuss the possibility of defining a high order or polynomial
HO-WVDs using [145]:
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WVD,(t f) “—J[ x(t+ 6r)" x( t+ gir)a‘} et ¢ 535

Changing values of the parametersbh, 6, c;, the polynomial WVD of severaf%orders
are obtained, for example by taking the following values into equation (2-35):
=1
b,=
2
c,=05

H X O QO
I

The equation (2-21) is obtained, therefore WVD is a particular case of polynomial TFRs
[145].

In general any type of High-Order Cohen’s class TFRs can be obtained using
multidimensional kernels, a list of the High-Order generalized Cohen’s class and its

mathematical properties is given in the reference [166].

Therefore it is possible to define also a great group of High-Order Time-Scales
representations, such as High Order Scalograms (square magnitude of wavelet transform),

using the High Order Polynomial TFRs, this has been demonstrated in the reference [167].

Another way to obtain time-scale representation from TFRs is to take the time-frequency
kernel's second order derivatives to generate symmetrical wavelets like Mexican-Hat,

Laplacian or Gaussian wavelets, as has been demonstrated in the reference [168].
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2.3 Instantaneous Frequency
2.3.1 Monocomponent Signals

As it has been mentioned before, structural damage will be reflected by a permanent shift
of the pre-event frequency [1-10, 84, 90]. For this reason it is important to precisely establish
the pre-event, event, and post-event frequencies of the structure. When the analysis of a
signal shows just one frequency per each time interval (monocomponent signal), like a
constant chirp function, the instantaneous frequency is equal to the first derivative of the
phase [49, 123, 127]:

(a TTO0) g X0

HT( X D)
_det) dt _d . HT(XY)
F(t)= dt X (1) + HT?(1) _dttan[ x(1) j =3

where:

X(t): Real signal,

@At) : Phase of signal, and
HT(x(t)): Hilbert Transform ok(t).

If you have the TFRs of a signal, you can evaluate the time variability of the frequency
using the equation (2-19). As repeated here, this expression is valid for even high order
polynomial TFRs as has been demonstrated in the reference [145] :

T P (t, f)df

IFX(t) = fx(t) = _:Ooo 2-37

j P.(t, f)df
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Although the equation (2-36) or (2-37) is useful, the instantaneous frequency is a very
controversial term. That is because if instantaneous frequency exist, then the uncertainty
principle is violated.

The demonstration of uncertainty principle or Heisenberg principle of quantum mechanics
can be found in the literature, and its equivalent to signal analysis as defined by [49, 56]:
1
At* Af == 2-38
2
From equation (2-38), it is absolutely clear that one can not determine time and frequency
simultaneously with a desirable precision. In other words if one wishes to have a very good
resolution in frequency, one will have a poor time resolution. Conversely if one have an

excellent time resolution, it will result in a poor frequency resolution.

Therefore, really the “instantaneous frequency” will not exist because one can not

evaluate the exact frequency at an exact time.

The consequences of aforementioned discussion are that the absolute instantaneous time
of damage of the structure can not be evaluated. Because we can not preclude the uncertainty
principle. This applies for any structure and all structural damage methods. Only the time-

window when the damage appears can be estimated.

In this sense when we refer to instantaneous frequency (or instantaneous frequency shift)
we are referring to a frequency evaluated in a short time window (but not infinitesimal time
window). In the same way, when we refer to an instant time of damage occurrence, we are

referring to a short frequency bandwidth when this frequency-shift (damage) happened.

Theoretically, using the instantaneous frequency evaluated by equations (2-19) or (2-36),
(2-37), we can estimate the damage and its time of occurrence in all structural system that

can be modeled like a SDOF, because the output signal of these structures are
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monocomponent mainly. However the noise presence and instability in the IF estimation

becomes a difficult procedure, as will be seen in the Chapter 5.

2.3.2 Multicomponent Signals
For multicomponent signals, like output signal of structures with MDOFs, the
instantaneous frequency of the signal has a bandwidth. For this reason, the weighted average

of the instantaneous frequency is evaluated rather than the instantaneous frequency itself.

The mean instantaneous frequency is defined as [49, 90, 121]:

()= | 2 x|,
W)t [ [x()[ ot

The problem with the equation (2-39) is that it refers to a frequency bandwidth, therefore

its direct application is limited to structural system with only one dominant mode.

When a MDOFs system have high modal participation factors for secondary modes, the
expression (2-39) is useless. In this case we can attempt to isolate individual frequencies,
using several approaches such as Frequency Domain Decomposition (FDD) [124] or
Empirical Mode Decomposition (EMD) [73], or Instantaneous Frequency Estimators (IFE)
[74, 75, 77].
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3 OBJETIVE SELECTION OF BEST-
PERFORMANCE TIME-FREQUENCY
REPRESENTATION FOR STRUCTURAL DAMAGE
DETECTION IN CIVIL ENGINEERING
STRUCTURES

In the first part of this Chapter the principal problems with the selection of TFRs is
addressed, then a brief review of different approaches for selecting the TFRs is mentioned.

The second part is dedicated to develop a new multi-criteria method for specific selection
of TFRs for structural damage detection in civil engineering structures. Finally an example of

application of new proposed selector method is presented.

3.1 Problems with Selection of Time-Frequency
Representations

The selection of a TFRs is not an easy task, many aspect have to be considered. In
addition, the amount of available TFRs in the technical literature is extensive; hundreds of

TFRs has been proposed.

The problems associated with selection of a TFRs can be classified in three branches:
- Amount of TFRs already allowed
- Resolution vs Information Loss

- Aspect inherent to structural applications
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3.1.1 The Amount of Available TFRs

There are many TFRs available in the technical literature; on a daily base a new type of
“theoretically perfect” TFRs is being published.

In addition to this, new techniques for smoothing TFRs being introduced by new sub-
groups of “advanced”, “improvement” or “enhanced” TFRs. In wavelets for example
frequently new wavelets families are proposed and the dictionaries of waveletes increases

constantly.

The structural engineer will be confronted by an immense problem, due to the
performance of his system identification or damage detection. At first it is necessary to
decide which of the hundreds of TFRs is optimal or adequate for analysis of structure signal

output.

In the Figure 3.1, the result of six TFRs of two small tremors recorded in a residential

building has been shown.

According to Figure (3-1), which of these TFRs have the best-performance?

As it can be seen, the answer to the previous question begins with subjective criteria, and

it is not easy to get a unified and common or unique criteria.

Only a very few TFRs is used, actually the number of available TFRs is greater than one
hundred.
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Figure 3-1 Comparison of TFRs of two tremors recorded in a Residential Building
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3.1.2 Resolution vs Information Losses

As it has been shown in Chapter 2, the TFRs have the shortcoming due to uncertainty
principle, one can not obtain perfect resolution in time and frequency simultaneously, thus if

one increases the time resolution the frequency resolution is worst and viceverse.

On the other hand a lot of TFRs, like bilinear or quadratic TFRs, have the presence of so

called interference terms.

To remove these interference terms many techniques has been proposed, but in general all
of them attempt to smooth the TFRs at the expense of loss information, because when one
remove the interference terms (cross-term) one may be removing the signal terms (auto-

terms).

Another problem with smoothing process is that detection of small frequency changes or

non-stationary events becomes less accurate [67].

New adaptive and optimal kernel design and other techniques of removal interference
terms has been proposed [129-135, 137, 138, 145, 170, 178], but at this time, it is not
possible to have free interference quadratic distribution without information loss, and the
techniques in many cases are signal dependent and do not work in a general sense.

If one sees the previous Figure (3-1) one can see that some of the TFRs appear to have a
better performance than others, but their appearance may be deceptive, because important

information will be lost in the smoothing process.

In fact, when a specific TFR is selected, for example a subjective visual criteria selection,

the problem is far from being over because one will have a new problem: The parameters of
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the selected TFR will be taken multiples values, so again one can obtain another group of
TFRs.
Let us explain this last problem, by using Fourier inversion in the reference [56], it has

been proved that the kernel of the Cohen’s general class (equation 2-4) can be obtained by:

X HT[eJﬂ*i”TTTe‘Jﬂ"‘”ﬂW(u—;rj { m;r) dud ﬁ] d} d

6,r)= - - 3-1
# )4772 *“iw*( 1){ 1)
Ie X|u-=r1 w—r | du
i 2 2
If the kernel function is set to an exponential form such as:
0%r?
A0, r)=e ¢ 3.2

Replacing the equation (3-2) into general bilinear Cohen’s class form (equation 2-4), the
Choi-Williams Distribution (CWD) can be obtained [129]:

+00 400 —U(u—t)2 —ir
CWDX(’[. f):ﬁj‘ J'\/ge ar? fo’(u—%r]{&%rj dud 3-3

—00 —00

From equation (3-2) is clear that the smoothing function is dependent of standard

deviation coefficient, so if this coefficient changes the distribution will change.

If the value of standard deviation coefficient in equation (3-2) is big the kernel function
tends to be one, therefore the CWD of equation (3-3) becomes like the WVD of (equation 2-
21), and otherwise the distribution is a WVD with a filtering effect [66, 69].

Therefore which is the optimal CWD ?, The answer is logically signal dependent.
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For example in structural engineering applications, the reference [69] suggest that
0.1< 0 < 1.Ccan be taken when low values are recommended for structural linear range
and large values are recommended for nonlinear response range. But any way between 0.1

and 1.0 there are infinites values, so there are theoretically infinites CWDs.

In the same way the result obtained using diffe@nvalues present great differences in
the attenuation of interference terms, and similar results can be obtained for cone-kernel

representation, where result are absolutely window length-dependent [171]

As can be seen, there are many TFRs available and for each one of them, a new set of

possible TFRs can be obtained.

3.1.3 Aspects Inherent to Structural Applications

The structural responses of civil engineering structures have some particular aspect that is

important to take into account.

The definition of structure is too broad, because in the civil engineering field, for example
there are micro-structures such as beams or elements in composite studies and huge

structures such as dams or similar.

In this work we are referring to typical medium-large civil structures such as buildings,
trusses, metallic tower, bridges, tanks, oil platforms, dams and soil instrumented profile (we

refer to borehole instrumentation and not to dynamic soil tests in laboratory specimens).

For these typical structures, their vibration signatures have very interesting characteristics,
in general the frequency bandwidth is too short, because the principal modes are in the range

between 0.1 sec to a few seconds (maybe 5-10 sec for very large buildings or 3-5 sec for very
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soft clay soil deposits), therefore the frequency range of interest is between 0.05 and 10-20
Hz.

Note that the frequency bandwidth of response for civil engineering structures is really
narrow (10" Hz to 10 Hz) if one compares it with other signal applications, for example in
radio the bandwidth is between 3 KHz (3000 Hz) and 300 GHz (300.000.000 Hz), therefore
the radio frequency bandwidth is*18z to 16 Hz.

The short frequency bandwidth imply that may be in structural engineering application the
use of logarithmic TFRs is not adequate or at least not strictly necessary and linear frequency

scales are enough for many applications.

Another important aspect is the duration of the signal itself, in operation conditions
(ambient vibration) the signal is in general very long (from hours to weeks, months and some

cases years).

In strong events the duration is relatively short lie from a few minutes or hours in strong
wind events, a few dozens of seconds in earthquake strong motions and a few milliseconds in

blast, explosions and terrorist attack.

In this way you can separate Time Frequency Analysis (TFA) for civil engineering

applications in two main applications:
a) Applications when the frequencies are semi-constant or its variability in the time is

slow (like ambient vibration).
b) Applications when the frequency change occurring very fast (like strong events)
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Using the precedent philosophy, this dissertation separates the applicability of (TFA),
because the requirements in one or another case are different. In the first case one generally
have a lot of information for system identification and in the second case one have few data

for damage detection problem.

On the other hand, the range of the changes in frequency in civil engineering is relatively
short, according to several previous studies in ambient vibration conditions a frequency
range variation between 0 to 5% is common and for strong motion events and severe damage

the change is expected to be no more of 2.5 times the original frequency [114-119].

3.2 Approaches Used to Select TFRs

In Civil Engineering applications to the author best knowledge no work has yet been
reported on systematic and objective selection of TFRs. In general, selection of specific TFR
has been based on visual criteria or trial-error parameters adjusted to some specific TFR [66,
69, 143, 153].

Even in time-scale analysis (like wavelets) is common in civil engineering applications

and damage detection to select the wavelets using general criteria [44].
In other fields, such as speech analysis, imaging process, radar application, radio,

automatic face identification, bio-engineering, medical applications, some authors report
procedures for selection of TFRs, in the following these approaches will be briefly discussed.
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3.2.1 Visual Inspection of TFRs

It is the most common criteria of selections TFRs in all fields. For civil engineering
applications, it is almost the only used criteria, some times complemented with optimization
iterations of parameters to get a “best-look” TFRs [66, 69].

The visual inspections consist of human inspection (visually comparing plots of the TFRS),
in essence are an absolutely subjective criteria, is user-dependent and require the expertise of

the person in charge [160].

In visual inspection a common criteria is that the TFRs have a “clean-look”, thus that it

does not have much interference terms.

One can try to do a visual inspection procedure, by looking at the previous Figure 3-1,
which of these TFRs have the “best-look™?

As it can be seen the answer is personal-dependent, for example regarding the same
Figure (3-1) the following observations using visual inspection has been reported in the

reference [121], comparing these discussion with your personal observations:

- “Traditional Signal Analysis TSA (STFT — Spectrogram), has the worst resolution
for identification of frequency changes in time.

- Wigner-Ville Distribution has good resolution, but the presence of interference
terms makes the interpretation difficult. The reassignment version of the Wigner-
Ville Distribution has fairly better resolution, and less interference terms.

- The Choi-Williams Distribution shows an excellent resolution in time-frequency
plane, and shows interference terms only in the frequency band represented by the
vertical lines.

- Among the distributions studied for damage detection the Margenau-Hill
Distribution has the worst resolution. The presence of many interference terms in
frequency and time is evident.
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- The Reduced Interference Distribution has a good time-frequency resolution, but
some interference terms appear in both, time and frequency.

- For all distributions it is noticeable that when the signal is more disperse then the
presence of interference terms in time-frequency distribution increase.” [121]

3.2.2 Measure of the TFRs Concentration and Resolution

In general, the measures of the TFRs concentration attempt to give a numerical estimate

value of the quality TFR based on energy concentration around the frequency signal.

This type of measure can be divided into norm-base and non-norm-base measures, several
measures norm-based has been proposed in the literature [95-102], here only we will refer to
an interesting measure proposed in the reference [157], because its optimization procedure is
taken into account the proposed multicriteria selection procedure.

According to reference [157] to obtain an optimal and adaptive TFR, it is necessary to

maximize the following measure:

TT\Dp(EQ)W(r—t)\“ drdQ
C(tp)=—==

TT\Dp (r.Q)w(r-1) drdo

—00 —00

2 3-4

Where:
Dp : Is a TFR with a single parameter p select (i.e. in Choi-Williams Distribution
(equation 3-3), the standard deviation value is optimized.

w : Is an one dimensional window function.
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ThereforeCx can be taken like a measure for a TFR and one single parameter p, this
decisive factor is employed in reference [157] for optimization of several TFRs like STFT,
CWD, WVD and wavelets representation.

In a set of recently published papers Sucic and Boashash [159-163], have developed a
measure of concentration and resolution for TFRs. The proposed normalized instantaneous

resolution measure is evaluated using [159, 162]:

P (t) :1—?13(%((?) +% ﬁ: 8 +(1- D(t))}

0<PR(t)<1

3-5

where:

Pi(t) : Resolution Performance Measure,

As(t) Ax(t): Is the magnitudes of sidelobe of auto and cross-term respectively,
Am(ty Magnitude of the mainlobe, and

D(t): Component separation measure.

This resolution measure proposed by Sucic and Boashash [162] is incorporated in our

multicriteria measure proposal and we will refer in detail to it in the next section.

3.3 Relevant Topics for Multicriteria Method

In the previous sections the special characteristics of signal obtained from Civil
Engineering structures has been discussed. The main problems in selecting a TFRs has also
been pointed out and it has been mentioned that for a specific case of civil engineering
applications do no exist a precedent in a systematic and objective procedure for selection of
TFRs.
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In order to get an objective multicriteria measure of the best TFRs performance, any
visual inspection can not be used; therefore its use in the proposed method is avoided.

In this section a new scheme for objective selection of TFRs for structural applications
will be proposed. The proposal is based on the special characteristic of structural signals,

strengths, and weakness of general measurements reviewed in section 3.2.

3.3.1 The Philosophy of Proposed Multicriteria Performance Measure of the
TFRs

3.3.1.1 Desirable Mathematical Properties

Although the methods of the previous section have many strengths, none have taken into
an account the desirable mathematical properties that an ideal TFR should have and that has
been discussed in the section 2.2.3. These properties are important in civil engineering

applications.

In order to do this, here for each TFR according to the desirable mathematical properties
that it satisfies a qualification is assigned.

3.3.1.2 Structural Behavior Performance

The frequency laws of signal obtained from structures submitted to strong event have
particular behavior. In general notorious frequency shift (almost always for low frequency
side) is noted and reported, as it has been mentioned in previous chapters. In cases when one
have additional device (like in semi-controlled or controlled structures) one can get notorious

shift for high values.
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On the other hand, the characteristics damage that impulsive waves cause in the structures
(like damage for shear, flexural, or shear-flexural behavior), produce in general like-pulse
(shear damage) or like exponential frequency laws (flexural damage).

The damping in vibration process of civil structures is important, over all when it is
submitted to strong event, in which case the damping increases, for this reason during and
when the external excitation disappear or becomes less, the structure is in free vibration and
the response signal have a decay exponential form, this is especially true for earthquake

motions.

For this reason, TFRs that perform best under the cone-shape signals and have good
performances under short like pulse and exponential decay frequency laws will be selected
for civil engineering applications. Therefore, a namely TFR structural behavior performance

criteria to the multicriteria TFRs measure has been added.

3.3.1.3 Resolution and Concentration Measure

The resolution and concentration of TFRs is strongly important, therefore it is proposed to
incorporate in the multicriteria measure the method proposed by Boashash and Sucic [162]. It
was modified in the optimization procedure according to equation (3-4) proposed in the

reference [157].

3.3.1.4 Information and Complexity Measure

It has been mentioned that there is a compromise between a free-interference term TFRs

and the loss of the information.

Also it has been mentioned that one of the most popular method for selecting a TFR is a

visual inspection, there exist a strong link between Renyi entropy measure and visually based
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on notion of complexity [175]. Thus it is possible to have an objective selection of TFR using

a measure of information and complexity.

For this reason and in order to have into account that important information of the signal
is not lost forever in the smoothing process, the Renyi information measure proposed in the

references [95] will be used as another useful criteria.

3.4 Proposed Multicriteria Method

According to previous section a weighting multicriteria performace measure for structural

civil engineering applications using the following expression will be proposed:

SMQ=Y. W EF
0<SMQ=<1

n

D W =1 3-6

i=1

W >0

EF <1

where:

SMQ Structural Multicriteria Quality factor for the TFR,
W: Weighting factor,
EF: Evaluation Factor, and
As it has been described the Evaluation factaFs)(are:
- Desirable Mathematical Propertid3MP)
- Performance in typical signal analysis for structures, namely here Structural
Performance IndicatoSP)).
- Resolution and Concentration MeasurREM) [162]
- Information Measurelli/) [95]
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Therefore the Structural Multicriteria Quality factor for a TFR can be evaluated using:

SMQ=Y W EF
SMQ=W* DMP+ W SP+ W RCM W I

3-7

The best-performance TFR is those that have the largest SMQ value.

In the following sections the procedure for obtaining the require parameters for evaluating
equation 3-7 will be explained.

3.4.1 Weighting Factors (Wi)

There is not a unique way for determining the importance of the sdsfgrado there is

not a consensus about of weighting factors, because it is not mathematically obtainable.

But in fact due to a free-user decision in an objective sense, all factors are taken equal to

0.25. This means a 25% of importance of the factor in the selection procedure of TFRs.
However the engineer can argue that for a particular case the valMésdf change,
regardless of any arguments or selected valuedifahe sum of weigthing factor always is

equal to one, according to equation 3-6.

In the Table 3.1, the recommended weighting factors are shown:
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TABLE 3.1 Parameter values for the Structural Multicriteria Quality Measure of
Time-Frequency Representation

Evaluation Factor (EFi)

Wi

(Recommended Range)

Mathematical Desirable Properties 0-025
Structural Performance Indicator (SPI) 0-04
Resolution and Concentration Measure [162, 157] (RCM) 0-04
Intormation Loss Information Measure [95] (IM) 0-0.25

SW,=10 . W,z0

3.4.2 Evaluation Factors (EFi)

As it can be seen, the proposed multicriteria method for objective selection of TFRs for
Earthquake Engineering and Civil Engineering (EE-CE) applications consider four criteria.
The first two are specifically oriented to EE-CE, while the last two has been proposed

previously in the literature for general applications.

The first criteria identify and quantify the desirable mathematical properties of TFRs

relevant to EE-CE applications.

The second criteria namely Structural Performance Indicator is taking into an account the
impulsive waves from strong motion records from structures that produce a signal that have a
combination of pulse like (shear damage) and exponential frequency laws like characteristics
flexural damage, and also the damping of the structure produces a decay exponential form of

the signal.
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In addition, two qualifications previously proposed for general applications has been taken
into account. The first one is the Resolution Measure Criteria proposed by Boashash and
Sucic [162] with an adaptive optimization scheme based on the proposal of Jones and
Barakiuk [157].

The Renyi-norm proposed by Sang and William [95] is included in the multicriteria
method as the fourth criteria; it takes into account the information loss during smoothing
process.
3.4.2.1 Desirable Mathematical Properties

As it has been explained in the section 2.2.3 there exist a few mathematical properties that
a best-performance TFR have to comply with, and it has been explained in detail in the

aforementioned section.

Therefore it was proposed to assign high EF to those TFR that fulfill the mathematical

properties described in section 2.2.3

In a specific case the analyst may be required to change the wei@Hirfgctors
proposed here, but in an objective sense an equal factor for all properties will be used.

In the Table 3.1, the recommended weighting factors for each mathematical property are

shown:
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TABLE 3.2 Quality Mathematical Factors

Mathematical

Property Simplify Expression Quality
that TFR fulfill factor
Lmearity (P1) x(t)= (kx,(1))

= A= (kA1)

i=1

Multiplication (P2) x(t) = x, (1)x, (F) 0.05-0.2
= P(t.f)=[_ B .f-f)P, G f)df’

Convolution (P3) = 0.1-0.3
x(t)y = | X (F—1 ), (tHdt!
= P(t.f)=] B (—t. )P (" frdr’
Real Valued (P4) P*(t =Pt ) 0.1-0.3
Tiume-Shitt (Ps) Y, (1) = x(r—1,) 0.1-0.2
= B(1,)= Bt~ 1. /)
Frequency-Shitt (P¢) 3, (1) = x(r)e! A 0.1-0.2
= B, (t.f)=B(t./~ f;)
Time-Marginal (P+) +o ) 0.1-0.3
[ Pt ydr =|xh)
Frequency Marginal +® ‘ s 0.1-0.3
(Po) [P frdr=x(F)
Instantaneous e 0.1-0.35
Frequency (Ps) | B Ddf
IF,0=1,0=33
| B fHdf
v 0.1-0.2
Group Delay (Py) _[ 1P, (t. f)dt
GD,(H=t,(f)=Z%—
[ B frdr
- 10
S =10
7=l
=0
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Therefore, to qualify a specific TFR with respect to desirable mathematical properties is
necessary to identify which of these properties it will fulfill. The quality factor can be
assigned according to a specific application; in order to have a user-free assignment an equal

value of 0.1 can be applied.

Again, regardless of any argument or selected values for quality f&fiprthe sum of

weighting factor always is equal to one, according to equation 3-6.

In the following Table, the mathematical property values for some quadratic TFRs are
shown, in this case a quality factor of 0.1 are assigned for all properties presented in Table
(3.2).

TABLE 3.3 Mathematical Properties values for some Quadratic TFRs

Mathematical Property

TFR Pi|P,|Ps | Py Ps|Ps|P:| Pg| Py | Pio ITU‘

P
Born-Jordan XX x|\ gl 0T
Zhao-Atlas-Marks XX x|\ gl d I 0T
Cho1-Williams XXX\ J LS| ] 0T
Margenau-Hill JI x| x| || ] x| x]|006
Rihaczek JI X x| d ] x] x]|06
Levin XX ||| x| x|06
Wigner-Ville Distribution | X |V |V |V | J [V |V | V[ V]| 4|09
Pseudo-Wigner-Ville XIS X x| 4|07
Spectrogram XX X g x X x| x 103
sinc X x| d || x] x |06

The specific mathematical properties of other TFRs can be found in the technical literature,
the interested reader can review the following references [49, 55-57, 65, 66, 96-98, 100, 102,

129-132, 139, 141, 145, 166, 167, 171, 185, 224].
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3.4.2.2 Structural Performance Indicator

In order to take into account the specific-signal characteristics of signal obtained from

structures, the structural performance indicator evaluates the behavior of each TFR for two

types of signal:
- Ambient Vibration

- Strong Event.

The Structural Performance Indicator for a TFR is obtained using:
SPh =1_(q* AVE,+ ¢* SE’ER) 3-8

where:

AVE.;: Ambient Vibration Performance of TFR
SER.;: Strong Event Performance of TFR

C, C,: Weighting factors for AVP and SEP, suggest vages 0.3, ¢, = 0.7

In ambient vibration conditions the frequency changes in general and becomes smooth

(very smooth in sense), the SNR is low and the duration is long.

In this context, the best qualification is obtained for those TFRs that identified better the
structural frequencies in a high noise signal, using only the principal values of the time-

frequency map.

To evaluate the ambient vibration performand®R) of one particular TFR, we select

multicomponent synthetical signals contaikatumber of frequencies using:
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x(t):Z(Acos( 27 £t))+ n(1) 3-9

k
i=1
where:
Ai: Constant amplitude for frequengy f
f. :Frequency (Hz)
n(t): Gaussian noise added

k: Number of the frequencies in the signal

In each signal tes frequencies are included, and the constant amplitude is controlled to
have a SNR<<<1.

The AVP qualification procedure statrs by applying a sort to the time-frequency map and
selecting the first kth maximum values ( of the time-frequency map).

Because the theoretical frequency values are constant in time, it can evaluate a time
qualify factor for eack™ frequency value using:

‘fT - fTFR (t)‘

3-10
fT

fTFRke(t) =
Where:
fTFRke(t) . Instantaneous frequency error in decimal form

f: Theoretical frequency

frer (t) . Frequency value for time instant ‘t’ obtained from TFR map

It is known thatf(t) can get extreme variations therefore it is not desirable to qualify a
TFR according to these extreme values (min or max) and we attempt to obtain a medium

performance of TFRs for each frequency using:
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> fremselt)

f == 3-11

ImAVTFRe N

Where:

iavere - Mean Ambient Vibration instantaneous frequency error in decimal form for

frequency i

N : Number of signals samplings

Finally, the mean global frequency error detection for a specific TFR in Ambient
Vibration conditions is evaluated using:

f

mMAVTFRe

k
f — =1
TFRAve k s-12

Where:

fTFRAVe . Mean global frequency error detection for a specific TFR in Ambient Vibration

conditions

The TFR qualification to ambient vibration conditions is then evaluated using:

AVRer = fTFRA\g 3-13

The second part of Structural Performance Indicator, is the assessments of the TFR

performance to deal with strong event, this is called:

SER-;: Strong Event Performance of TFR

For strong event, the signals obtained from earthquake and wind response of structures are

chosen, for this a real base data signal for the response of structures to several events is
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selected and used in order to classify the signals in the following groups according to
frequency laws obtained from its TFRs:
- Linear Response (without frequency changes)
- Linear Response and then linear stiffness degradation
- Linear Response and then exponential stiffness degradation
- Linear Response, instantaneous stiffness loss and then linear stiffness degradation
- Linear Response, instantaneous stiffness loss and then exponential stiffness
degradation
- Linear Response, and then exponential stiffness degradation and instantaneous
stiffness loss and then exponential stiffness degradation or linear degradation

- Any precedent behavior and some frequency recovery until the end of signal

Because the first type of signals (Linear response without frequency changes) is included
in all types (in its initial segment) and evaluated in the ambient vibration conditions, only the

other types of signal are considered for typical structural response.

For modeling these types of signals piecewise monocomponent signals with the following

characteristics is chosen:

- The first interval with variable amplitude (increase), and constant frequency

- The second interval with randomly variable amplitude and frequency decreasing
according to a linear or exponential frequency law

- The final interval with constant frequency and decreasing amplitude, in some cases
to simulate a system stiffness recovery we can use a linear increasing frequency law.

- A combination of any previous behavior and sudden stiffness loss at any time

These types of signals are not only presented in mechanical or structural system, but a lot

of natural phenomena'’s like biological signals can be represented by similar models [169].
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Some signals with similar characteristic have been defined in the references [79, 169]
using a similar notation as the references for the signals. It can be defined as the following

general form:

at
A(t)cos( 2rft) if Ost<t ; A(t) = Ae?
Alt) -¢2

x(t)=1 A(t)cos 27f,e™) if t<t<t ; AY)with dﬁ(b)=%£egd£

A(t)cos( ZTfoe‘bZ‘) if  t<t ; A(t)=Ae?
3-14
X(t) = x(t) + (1)
Where:
X(t) - Time history (Acceleration, velocity or displacement)

A(t): Amplitude like time function

fo . Initial structural frequency (Hz)

a ,b . Parameters greater than zero to control the time variable rate of amplitude or

frequency, respectively

t, . Time instant when a change in amplitude and/or frequency begin or end

n(t): Gaussian noise added.

Therefore, by changing the parameters it is possible to find many signals with desirable
structural response appearance. In fact, it is possible to obtain an approximate spectrum form
(i.e. for example the spectrum form proposed in the reference [143]), only by adjusting the
parameters of the equation 3-14. The amplitude and frequency can be controlled.
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In the following plots, typical examples of aforementioned structural signals and the
approximate general frequency law obtained from its TFRs are shown, using a Reduced
Interference Distribution with Bessel Window [123].

In the graphs the amplitude of time history are any acceleration, velocity or displacement
units and for facility interpretation the sampling rate is set to 1 Hz, and the time scale is set to

counts units (one can use sec, millisecond or any time unit).
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Figure 3-2 Reduced Interference Distribution for a Typical Structural Signal # 1

In the Figure 3-2 a linear response interval, between 0-64 counts with a constant
frequency of 0.45 Hz can be seen. The system have a stiffness loss between 64 and 330
counts and in the same interval a shifting in frequency has happened with an exponentially
decay frequency. At the end of the signal the structural frequency becomes constant to 0.12
Hz.
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The next example is a structure with an instantaneous shift in frequency (may be

associated with shear damage):

Tirne History Signal
T T T T T T T

o g
]
B |
< -1
Il Il Il 1 Il 1 1 1 1 1
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Fourier Spectra Reduced Interference Distribution - Using Bessel Window
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o
5

| L !
0 50 100 150 200 0 £0 100 150 200 250 300 350 400 450 500
Amp. Time (counts)

Figure 3-3 Reduced Interference Distribution for a Typical Structural Signal # 2

Analyzing the TFR plot, it is possible to deduce that the initial structural frequency is 0.25
Hz and at a time of 40 counts the structure have a sudden frequency shift (stiffness loss) to
0.2 Hz and then have a linear constant frequency shift to 0.13 Hz (linear stiffness loss), the

final frequency of the system is 0.13 Hz.

From the figures 3-2, 3-3, note that by using only time analysis (upside of the plots) or
traditional Fourier Analysis (left side of the plots) is practically impossible to get behavior of
the structure along the time, and for a system with dynamic properties changing with time the

natural choice is to analyze it using joint time-frequency.
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According to the previous signal form, several general syntectic signals can be designed
and use for testing the structural performance of TFRs. The basic criteria are evaluating each
specific signal in the following form:

f (t) _ ‘ fr (t) B fTFR(t)‘

3-15
1)

Where:

f, (t) : Instantaneous frequency error
fr (t) . Theoretical frequency obtained the instantaneous frequency law from eq. 3-13

frer (t) . Frequency value obtained from TFR map

As before, in ambient vibration casgt) can get extreme variations and it is not desirable
to qualify a TFR according to this extreme values (min or max) and we attempt to obtain a
medium performance of TFRs using:

31 (1)

= 3-16

ImTFRSEe N

Where:

itrrsee - Mean instantaneous frequency error for a signal type of Strong Event in

decimal form for each frequency

N : Number of signal samplings

The procedure is to repeat for each of type signals for Strong Event and finally the mean

global frequency error detection for a specific TFR is evaluated using all typical signals :
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k
f

i=1 ImTFRSEe

fTFng _T 3-17

Where:
i : Mean instantaneous frequency error in decimal form to frequency i

ImTFRSEe

K- Number of Strong Event typical signals

The TFR qualification for Strong Events is then evaluated for a specific TFR using:

SER = _frFRSRg 3-18

Once the qualification factor for Ambient Vibration Performané&K) and Strong

Events Performanc&EP) has been obtained, the Structural Performance Indicator for a TFR

is evaluated using the equation 3-8

3.4.2.3 Resolution and Concentration

According to the philosophy (see 3.3.1), it is necessary to evaluate the resolution of TFRs,

in a sense that qualificator factor is signal dependent.

Note that the previous two criterias are of specific structural application and in general it

means that it is necessary to apply once for all types of TFRs, because the results are not

signal dependent.

On the contrary the present criteria is signal dependent, it means that if you have a new

signal is necessary to perform the qualification process again and it might be a time-

consuming procedure.
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The method proposed by Boashash and Sucic [159, 162] is used here to evaluate signal

dependent criteria for resolution and concentration.

The theoretical background of the method and its practical applications have been
presented by the original authors in several technical publications (see references [158-163]).
Therefore only the general methodology necessary to obtain the resolution performance

measure is shown.

For clarity the equation (3-5) is repeated :

3-19
0<P(t)<1

Where:

Pi(t) : Resolution Performance Measure

As(t) Ax(t): Is the magnitudes of sidelobe of auto and cross-term respectively.

Au(t): Magnitude of the mainlobe.

D(t): Component separation measure.

According to Boashash and Sucic [159, 162], for each instant ‘' the parameters of the

equation 3-19 are obtained from the following graph:
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Figure 3-4 Parameters to Measure Concentration and Resolution for TFRs according to
Boashash and Sucic [159, 162]

From the geometry of Figure 3-4 and using the following expression the parameters to
evaluate the Resolution Performance Measure by means of equation 3-19 can be obtained:

2

NTENCEENG 320
RAVANIPRRIAL

D(t):[f.zm \ Jz[lm Y

Where:

As(t), Ax(t): Is the magnitudes of sidelobe of auto and cross-term respectively.
Au(t): Magnitude of the mainlobe.

D(t): Component separation measure.
V, (t).V. (1) : bandwidth of the mainlobes, taken to a high JAZ.ELAMI and

NG

- A, respectively.
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A systematic procedure to perform the evaluation of parameters of equation 3-20 has been

reported in the reference [160].

Although the expression (3-20) is derived for two main frequencies only, in the reference
[161] has been reported the procedure to extend the same principle for a signal with more

than two frequencies.

According to reference cited for each TFRYgarameter (i.ed value for Choi-William
Distribution) can be selected for evaluating #é) resolution measure. Then th(t)
overall (mean ofP;(t) for all times) for this parameter can be evaluated. The precedent
procedure is repeated for all possible parameters. Therefore, the opffmeatue for this
TFR can be obtained.

The above procedure is shown in Figure 3-5, finally the TFR with best resolution is the

one that have the maximuny(tp overall.

The previous procedure requires a lot of computations becauge'sh@ptimization is
very slow. Furthermore, the optimal value f@ris not constant in general, and it is time-
dependent. For this reason a time-dependent scheme for optimization of TFR is been

proposed. This scheme is called in signal analysis a time-frequency adaptive representation.
There are many ways to get an adaptive TFR, according to Figure 2-7, the signal adaptive

TFR proposed by Jones and Baraniuk [157] is chosen, because it is powerful and its

implementation is not computing demanding.
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TFR, (1, f)

l

fori=1N

!
t=t =>TFR (t,f)
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TFRmax = arg {TFRX (Iz"f)}max
Z’FRX(IJ.,f)
TFER,

TFRNorm(Iz’f):
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Figure 3-5 Flow Chart to Measure Concentration and Resolution of TFRs According to
Boashash and Sucic [160]

As it has been mentioned earlier, according to reference [157] to obtain an optimal and

adaptive TFR, it is necessary to maximize the following measure:

TT\D (r.Q)w(r-t) drdQ
C,(t, p)=—== 2 3-21
J' HDp(r,Q)W(r—t)‘2 dr dQ
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where:
Dp : Is a TFR with a single parameter p selected (i.e. in Choi-Williams Distribution
(equation 3-3), The standard deviation vaties optimizedw: Is one dimensional window

function.

Therefore, to apply the procedure shown in Figure 3-5 first the optimization procedure
(thus calculated the adaptive TFR using Jones and Baraniuk[157]) is done for evaluating to
“N” instant time the Kt) value, and then evaluate thgtPoverall for each TFR using:

ZNZF?(E)

— =l

I:?I—':Fiwerall 3-22

The Resolution and Concentration MeasREN) is evaluated for each TFR using the

equation 3-22, consequently the R@Wequation 3-7 is obtained for each TFR using:

RCM = F%FR)verall 3-23

3.4.2.4 Information Measure (IM):

An important thing in the selection of a best-performance TFR is to take into account the

complexity of the TFR and its information content.

In this regard and in a rough sense complexity is linked with the diffuse or visual clarity of
a TFR and the capacity of the TFR to concentrate the energy around the fundamental

frequencies. As a result an optimal TFR would be less complex (i.e. a best look-like).

In this way traditionally a user-dependent procedure has been applied, because this criteria
in general is indirectly accomplished using visual inspection.
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In order to avoid the subjective user intervention in the process, some researchers have
proposed a few measure of the information content and complexity based mainly on
information theory techniques like entropy measures (i.e. Shannon entropy and Renyi
entropy) and divergence techniques like Kullback-Leibler divergence, Renyi divergence,
Jensen-Shannon divergence and Jensen-Renyi divergence, adapted to time-frequency

analysis [176].

A measure the joint information content and complexity simultaneously is the entropy,
according to literature the entropy I measure of the absence of information about a

situation, or, equivalently, the uncertainty associate with the nature of a situgfiéa]

In information theory a classical functional to express the entropy is the Shannon entropy,

this functional can be represented to time-frequency analysis using [177] :

+00 +00

H(P)=-] | R(t f)log, (R(t f))dtdf 3-24

where:
H(Py) : Shannon Entropy tBy
P(t,f) : Time-Frequency Representation of siga@l

As it has been mentioned earlier, the negative values can appear inside the time-frequency
plane, for this reason the Shannon entropy measure (eq. 3-24) can not be used directly,

unless that strictly positive TFR is used, like reported in the references [139-141, 144]

To avoid this limitation, the Renyi entropy has been proposed by several researchers like a
measure of complexity and information of the TFRs [95, 175-178], a complete description
and analytic derivation of Renyi entropy for information theory and probability theory can be

found in the appendix of the reference [179].
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In time-frequency analysis, the Ren§ll &rder entropy can be defined by [176]

+00 +00

Ra(a)_l—logzjj t, f) dtdf

—00 —00

Where:

R (R): Renyi K order entropy
a: Order of Renyi entropy@ =1
PNX (t, f ) . Normalized time frequency representationx@jf evaluated using:

PNX(t’ f): +00 +00 P(t’ f)

[ [P(t f)dtdf

—00 —00

Considering a low value for Renyi entropy is indicative of TFR good performance and

comparable with each other.

An important aspect to be defined is, what is th@ider of the Renyi to be used ?, In this

3-26

vice versa, because all Renyi values for each type of TFR has been normalized and it is

sense =1 produced the Shannon entropy measure [178, 180] and it can not be used.

Although some researchers have used the quadratic Renyi entropy=i&)[178, 181,

182], it has been demonstrated that the minimum optimal value for well-defined yield for

For discrete case the Renyi third order entropy defined by Sang and Williams [95] is
adopted:
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information measure ig =3 [175, 178], so in the proposed method the third order Renyi
entropy R3) will be used .



R(R(t f))=§logz(i > (PNX(I,k))S] 327

The normalized R distribution can be obtained with respect to energy of TFR [95]:

P.(t f
PNx(t’ f): L K ( ) 3-28
> 2 (Pu(1K))
I=—L k=-K
Or with respect to volume of TFR, using [95]:
t, f
Pu(t f)= (t.1) 3-29

The information bounds for discrete random signals of the Renyi entrgpyc4dR be

obtained by means of:

Upper Bound [183]:

E[R(R(t 1))]<log, (28 + (2 +3)

Lower Bound [183]:
E[R(R(t 1)]>
1 g[ 4772(2K+:|_)2(Z\l+;|)2 3 1

—lo - _
2 3 SN w(nr) +ar(eN+)P+2 2(In2)(2N+T 2(In2)(2N + 7

3-31
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where in the equations 3-30 and 3-31:
E[] : Expectation for R
2N+1: Number of time points

2K+1: Number of frequency points

W (n,7):Kernel in the time-lag domain

Using the equation 3-27 (with TFR normalized using eq. 3-28 or 3-29) a useful and
objective measure of complexity and information content of TFR can be obtained. This
measure can get any value between the maximum and minimum limits obtained by equations
3-30 and 3-31, respectively.

Finally, the information factor to the multicriteria method is evaluated using:

IM (P (t, f))=1-R,(R(t, )) 3-32

This factor of qualification play a role similar to visual inspection traditionally used, with

the advantage that is not user dependent and it is a totally objective criteria.

3.5 Application of Multicriteria Method for Selection of Best-
Performance Time-Frequency Representations with Fixed Kernel

In the following section an application for a real case of the multicriteria method

developed to select a best-performance TFR will be shown.

The signal to be used is the East-West acceleration record obtained on the roof of the
Robert Millikan Library of the California Institute of Technology, during the earthquake of
San Fernando on February 9 of 1971, with the following general characteristics [184]:

- M =6.4

- Epicenter: 3224.7' N, 118 24'W
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- Depth =13 km
- Distance to Millikan Library = 30 km.

The San Fernando Earthquake, produced a peak ground acceleration of 0.20g and a peak
acceleration on the roof of 0.35g, according to reference [25] the building has a nonlinear
response during the event, additional information about this specific record in Millikan
Library can be found in the references [16, 25, 26, 58, 59, 90, 121].

In the following figures the time histories of acceleration, velocity and displacement for

this record and the Fourier and Pseudo-Acceleration spectra evaluate for a 5% critical

damping are shown:

Figure 3-6 Acceleration, Velocity, and Displacement Time Histories of San Fernando
Earthquake recorded on the Roof of Millikan Library (EW Component)
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Figure 3-7 (a) Fourier Spectra (a) and (b) Pseudo-Acceleration Spectra of San
Fernando Earthquake recorded on the Roof of Millikan Library (EW Component)

The best-performance TFR for this signal between the following TFRs will be selected:
- Spectrogram
- Wigner-Ville Distribution
- Smoothed Pseudo-Wigner Ville Distribution
- Choi-Williams
- Margenau-Hill

- Reduced Interference Distribution

Recalling the multicriteria method (equation 3.7)

SMQ= Y W EF
SMQ= W* DMP+ WW* SP+ W RCM W I
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And remember that:

W: Weight factor

DMP: Qualification for Desirable Mathematical Properties
SPtL Structural Performance Indicator

RCM Resolution and Concentration Measure [159, 162]

IM: Information Measure [95]

3.5.1 Evaluation of Weighting Factors

In order to avoid any subjective decision all factors are set to an equal value, therefore the

weight factor is set to:

W =0.25 3-33

3.5.2 Evaluation of Qualification for Desirable Mathematical Properties
(DMP)

The first qualification factor is the desirable mathematical properties that each TFRs has,
in this case the values suggested in the Table 3.3 can be used. For the Reduced Interference
Distribution (thus TFR do not appear in Table 3.3) the properties reported in the reference
[185] can be obtained.
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TABLE 3.4 Evaluation of Qualification for Desirable Mathematical Properties (DMP)

Mathematical Property (see table 3.2)
TFR P P, P, Py Ps Ps P- Ps Py Pia DMP
Spectrogram % X X J J J bd X X X 0.3
Wigner-Ville X J J J J J J J J J 0.9
Distribution
Smoothed % J J J J J X X J J 0.7
Pseudo-Wigner-
WVille
Choi-Williams X X X J J J J J J J 0.7
Margenan-Hill J X J X J J J J X X 0.6
Feduced % J J J J J J J J J 0.9
Interference
Distnibution

3.5.3 Evaluation of Structural Performance Indicator (SPI)

According to the section 3.4.2.2 the Structural Performance Indic&®jrfor each TFR
takes into account the performance for Ambient Vibration conditions and Strong Event, and

it can be obtained by means of the equation (3.8):

SPheg =1_( G* AVRg+ ¢* SE’ER)
Where:
AVRB_.: Ambient Vibration Performance of TFR

SER.;: Strong Event Performance of TFR

C., C,. Weighting factors for AVP and SEP, suggest vaiges 0.3, ¢, = 0.7

For ambient vibration conditions the global mean error in the detection of “k” frequencies
from a severe noisy signal need to be calculated. This signal is multicomponent and

frequency modulated and it is obtained through equation 3-9:
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K(t)=3: (A cos( 2r10)+ ()

[
i=1
For this particular case, the following parameters are selected:

Number of frequencies k=5; Sampling rate = 10 sps, Number of samplings: 1024, t=102.3
sec, Structural frequencie$:= 0.1 Hz, 0.3 Hz, 0.5 Hz, 1.0 Hz, and 2 KAz; Equal to all
frequencies, x(t) max = +/- 2 gals (2 cm/sec"Z:0.00Bﬁi) . Gaussian noise added, with a

SNR maximum of 1/16

Fourier Spectra for Ambient Vibration (b)

@
=]

~
o

@
=]

Ambient Vibration Time History

[N
-
L)
-
3

=
=]

Acceleration (cmlsecz)
o o
m o m =
Amplitude
o ]
__—

o

o

25 0 0.5 1 15 2 25
o 10 20 30 40 s0 [=(u) 7o 80 i=ln) 100
Time (sec) Frequency (Hz)

Figure 3-8 (a) Time-History and (b) Fourier Spectra of Ambient Vibration Record for
Test of TFR

For this severally contaminated signal is evident that neither the time-history nor the
Fourier spectra allow to extract reliably the structural fundamental frequencies (0.1, 0.3, 0.5,
1, 2 Hz), because it is clear from Figure 3-8 that other frequencies with equal or most high

energy exist in the signal also.

Only for a comparative purpose in the Figure 3-9 a TFR of this noise signal is shown:
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Figure 3-9 Choi-William Representation

From the right side of the previous graph is obvious that the fundamental frequencies of
the structure emerge close t@=0.1, £=0.3, £=0.5, {,=1.0, and §=2 Hz.

Taking a particular TFR for each time instant and each frequency, the instantaneous
frequency error for this TFR can be evaluated by using equation 3-10. Then for each
frequency, the mean ambient vibration instantaneous frequency error for each TFR can be
evaluated by using equation 3-11.

> frenselt)

— =1

imA\/TFRe N

The result of application of the precedent equation for the TFRs of Figure 3-10 is shown
in the following Table:

TABLE 3.5 Mean Ambient Vibration Instantaneous Frequency Error

TR [=01[f, [7-03 5 =037 %07, Th=20]7,
(%) (%) (%) (%) (%)
Spectrogram 0.1341 341 0.2112 296 0.6069 214 1.3218 32.2 2.0558 28
Wigner-Ville 0.0851 14.9 0.2807 64| 04886 2.3 1.2252 225 2.0854 4.3
Smoothed Pseudo-Wigner-Ville 0.1123 12.3 0.2276 241 0.4406 11.9] 0.9457 54 1.9377 341
Choi-Williams 0.1221 221 0.1929 35.7 04441 11.2 0.9445 56 1.9394 3.0
Margenau-Hill 0.0879 121 0.3481 16.0 0.5696 13.9 0.9906 0.9 1.5453 227
Reduced Interference 0.1174 174 0.2809 64| 0.5606 121 1.0068 0.7 1.9228 3.9
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Figure 3-10 TFRs for Ambient Vibration Test Signal
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Finally, the mean global frequency error detection for a specific TFR in Ambient
Vibration conditions is evaluated using the equation 3-12 and it is shown in the Table 3-6:

TABLE 3.6 Mean Global Frequency Error for Ambient Vibration Test

TFR o
AVPEFR — fTFRAV

(%)
Spectrogram 24.0
Wigner-Ville 10.1
Smoothed Pseudo-Wigner-Ville 114
Choi-Williams 15.5
Margenau-Hill 13.1
Reduced Interference 8.1

Remembering the equation 3-13, from the above Table, the qualification factor for

ambient vibration condition of each TFR is obtained.

Note: In the expression 3-13 the qualification factor AVP is expressed in decimal.

It is important to recall some aspects about the values from Table 3.6:

- These errors are means and in a particular time instant it can take other values

- The large values of error is due to the nature of time-history, because it is a very
noise signal, in fact far than normal case really (SNR=1/16)

- The duration of the signal is very short (t=102.3 secs), and most exactly the
number of the samplings are very few (only 1024 samplings).

- In areal case, we deal with signals of several minutes and even hours or days. For
example as it has been reported in references [90, 114, 116, 121] and the chapter 4
of this research, therefore the mean frequencies become more stable.

- This type of signal (extremely noise and very short) was selected because it is the
worst case.

97



The next step is the assessments of the TFR performance for dealing with strong event,
this is called:

SER-;: Strong Event Performance of TFR.

The Figure 3-11 shows a TFR of San Fernando Earthquake, to select a typical signal
according to this record:

Time History : Millikan Library - San Fermnando (1971) - Roof - EW(NIDE)
T T

350 T T T T T

Acceleration (cr/sec?)

1
1] Gl 10 15 20 25 30 5 40
Time (sec)
Fourier Spectra Reduced Interference Distribution - RID
T T

Frequency (Hz)
Frequency (Hz)

08

0B

04

02

0

il I I
] 1000 2000 ] 5 10 15 20
Amp Time (sec)

Figure 3-11 TFRs of San Fernando Earthquake (1971) recorded at Millikan Library
(EW-Roof Component)

25 30 B 40

If we see a TFR of the San Fernando Earthquake (shown in the Figure 3-11), we can see
that the pattern of the time-frequency plane is like typical signal #1 of section 3.4.2.2., (linear,
then exponential decay and finally linear again with a permanent frequency shift), so we

select this typical signal in the following test procedure, this synthetic pattern is shown in the
Figure 3-12
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Therefore in this cade=1 in the equation 3-17, if there is any doubt about the pattern, we
can select other similar signal-patterns and perform an evaluation using these signals, in

those cases k>1 in the equation 3-17.

Figure 3-12 Synthetic Pattern to TFRs of San Fernando Earthquake (1971) recorded at
Millikan Library (EW-Roof Component)

To acquire the previous synthetic signal, the following values are set into equation 3-14:
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0.001
A(t)cos( 2r*1.3)  if  0st< 40 A(t)=0.5%e 2
A(t) iZ
x(t)=1 A(t)cos{ 27 *1.2°°*) if 40<t<128 ; A(t) with p(A(t))z%je2 dé
T

—00

A(t)cos( 27*1.°%) if  128<t Alt)=e 2

x(t) = 200*(x( t) + n( t))

- Duration: 42 sec
- Noise Level : 10%

- The factor scale of 200 is only to get an acceleration close to real signal

From figures 3-11 and 3-12 it is evident that to perform an evaluation using an
approximate (or synthetic) pattern is a very valuable tool to select the best performance TFR,

because the exact frequency law of the signal is known.
With this theoretical frequency law the ability of any TFR ca be evaluated in order to
adjust or track at each instant for this type of frequency law. This pattern should be

associated with a typical mechanism of structural damage as can be seen in chapter 5.

The next step is the evaluation of all the TFRs for this synthetic signal; it is shown in the

next graph:
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Figure 3-13 Synthetic Pattern for TFRs of San Fernando Earthquake (1971) recorded
at Millikan Library (EW-Roof Component)
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From the Figure 3-13, the empirical instantaneous frequency law for each one of TFRs
can be evaluated, as it is shown in the following graph:

Figure 3-14 Frequency Laws for TFRs Vs Theoretical Frequency Law

For each TFR in each time instants an instantaneous frequency error using the equation 3-

15 can be evaluated, as it is shown in the following Figure:

Figure 3-15 Percent of Instantaneous Frequency Error for TFRs
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Using the equation 3-16 the mean global frequency error for each TFR can be evaluated,
as it is shown in the next Table:

TABLE 3.7 Mean Global Frequency Error for Strong Event

TFR o
> £.0)
Frmsse == 37—
(%)
Spectrogram 4.8
Wigner-Ville 4.7
Smoothed Pseudo-Wigner-Ville 2.9
Choi-Williams 2.6
Margenau-Hill 3.5
Reduced Interference 2.1

Therefore the TFR qualification for Strong Events is the values from Table 3.7, but in
decimal form, thus for this case :

SERy, = e

Finally the Structural Performance Indicator is evaluated replacing the values from tables
3.6 and 3.7 into equation 3.8, it is calculated in the next Table, and for thiss@sand
c,=0.7 are taken according to general suggestion:

TABLE 3.8 Structural Performance Indicator for TFR

TFR SPLy=1-(c,* AV +¢,*SEP, )
Spectrogram 0.8947
Wigner-Yille 0.9369
Smoothed Pseudo-Wigner-Ville 0.9455
Choi-Williams 0.9351
Margenau-Hill 0.9358
Reduced Interference 0.9607

TFRs with higher values represent a well-structpesformance.
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3.5.4 Evaluation of Resolution and Concentration Measure (RCM)

Prior to systematic application of equation 3-19 it is necessary to optimize each available
parameter in each single TFR, as have mentioned earlier for a minimization procedure using
the equation 3-21 [157]. For example for Choi-Williams Distribution it is necessary to
minimize the following function:

TT(@?’ZTT( ~op(u- —]Tf $ u_irj{w;rj dud} V(/T— d 0

—00 —Co

C(tp)=

2 2

TT 4773,27)]?\/7 _m u—;r}{w;rj dud} Wr - d 0

—00 —00

In Figure 3-16 the systematic application of thevjines equation is shown for four values
of standard deviation. On the bottom side of the same Figure the optimal standard deviation
values that should be used in order to get a signal-adaptive optimal Choi-Williams
Distribution is shown. The standard deviation values that minimize the equation 3-21

through time are shown in part (b) of the Figure 3-16:
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Figure 3-16 Optimization Procedure for Choi-Williams Distribution. (a) Functional
Operator for several Standard Deviation Values. (b) Optimal Instantaneous Standard
Deviation to be use.

Once the optimization procedure is performed for each TFR, the procedure of the flow
chart from Figure 3-5 can be applied and thgff of the equation 3-23 is then evaluated.

The results are presented in Table 3.9:
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TABLE 3.9 Resolution and Concentration Measure (RCM) for TFRs

TFR Resolution and Concentration Measure (RCM)

Poverall (According to Sucic and Boashash [160])

Spectrogram 0.7608
Wigner-Ville 0.7115
Smoothed Pseudo-Wigner-Ville 0.8011
Choi-Williams 0.7457
Margenau-Hill 0.8363
Reduced Interference 0.7707

3.5.5 Evaluation of Information Measure (IM)

As it has been discussed in the literal 3.4.2.4, the Order Three Renyi Entropy Measure has
been chosen in the multicriteria method such as a non-user depend criteria to link the best-
look TFR appearance.

For discrete case the Renyi third order entropy defined by Sang and Williams [95] was

adopted and it was normalized with respect to the energy, thus are:

F%.(PX('[,f)):%Iog2 ZZK: . Ili(t’f)
I=-L K=K :Z Z(PNX(I!k))

I=-L k=-K

Finally the information factor for the multicriteria method is evaluated using the equation
3-32:

M (P(t 1)) =1-R(R(t ))

In Table 3-10, the results of the application of equations 3-27, 3-28 and 3-32 for each TFR

are shown:
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TABLE 3.10 Information Measure (IM) for TFRs

TFR

Information Measure

IM=1-R3 (According to Sang and Williams [95])

Spectrogram 0.8658
Wigner-Ville 0.8701
Smoothed Pseudo-Wigner-Ville 0.8618
Choi-Williams 0.8619
Margenau-Hill 0.8649
Reduced Interference 0.8627

3.5.6 Final Evaluation of Structural Multicriteria Quality Factor (SMQ)

Finally using the information from tables 3.4, 3.8, 3.9, and 3.10, the Structural
Multicriteria Quality factor can be obtained. The values for each TFR are shown in Table 3-

11:

TABLE 3.11 Structural Multicriteria Quality factor (SMQ) for TFRs.

Desiderable Mathematical |Structural Performance Resolution Information |Structural Multicriteria
TFR Properties Indicator and Concentration | Measure Quality Factor

DMP SPI RCM M SMQ
Spectrogram 0.3000 0.8947 0.7608 0.8658 0.7053
Wigner-Ville 0.9000 0.9369 0.7115 0.8701 0.8546
Smoothed Pseudo-Wigner-Ville 0.7000 0.9455 0.8011 0.8618 0.8271
Choi-Williams 0.7000 0.9351 0.7457 0.8619 0.8107
Margenau-Hill 0.6000 0.9358 0.8363 0.8649 0.8092
Reduced Interference 0.9000 0.9607 0.7707 0.8627 0.8735

The values on the Table 3.11 are evaluated usinggbhation 3-7:

From Table 3.11 the best perform TFR of the selected TFRs is the Reduced Interference

Distribution, the traditional Wigner-Ville Distribution closely follows.
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4 STRUCTURAL SYSTEM IDENTIFICATION AND
DAMAGE DETECTION USING AMBIENT
VIBRATION OUTPUT SIGNALS

In this chapter, the system identification and damage detection of structures using only
ambient vibration output signals and time-frequency analysis combined with other system

identification procedures will be shown.

A method for system identification and damage detection based on information extracted
from a Mean Time-frequency Representation (MTFR) plane is proposed. Using this
information in the Frequency Domain Decomposition (FDD) system identification technique
the damage can be evaluated. This last technique was previously proposed by Brinker et. al.

[124]. The main factors of incidence in system identification procedure are also investigated.

Several test using data obtained for MDOFs from simulated structures are shown,
including a comparison of the results obtained by applying the methodology for Phase | of
IASC-ASCE Structural Health Monitoring Benchmark Problem with previous benchmark
result reports [41, 106-112].

Finally the proposed methodology is applied to output signals from finite element models

and real ambient vibration records obtained from four real structures.
The studied structures are: Millikan Library of Caltech (in Pasadena, California) a

Residential Building in Mayagtiez, Puerto Rico, the Airport Control Tower at British Virgin

Islands, and a Residential Building, in San Juan, Puerto Rico.
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4.1 General Procedure for Structural Damage Detection Using
Output Signals From Ambient Vibration

Before presenting the theoretical formulation of the problem, let us show the general
approach for system identification and damage detection used here. Basically, the procedure
for damage detection using only output signal from ambient vibration proposed here consists
of a comparative analysis of the system identification results before and after the event (like
earthquake, explosions, blasting, hurricanes). Thus, the structural properties before an event
and after the event were identified. By comparing the two the damage can be evaluated. This

is shown schematically in Figure 4-1:

-, - -
MTFR-FDD Identification Procedure MTFR-FDD Identification Procedure

\

COMPARISON PROCEDURE

\l/ ]

)

1  DAMAGE EVALUATION

Figure 4-1 Schematic Procedure for Structural Damage Detection Using Output Signals
from Ambient Vibration
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Some important cases are possible:
- Non instrumented structures (the most common case)
- Instrumented structure in not continuous recording

- Instrumented structure in continuous data acquisition.

4.1.1 Non Instrumented Structures

For non instrumented structures, it is necessary to do a previously and posteriori field
record recollection. It is recommended that the signals will be acquired simultaneously in
several structural DOF’s, for this purpose a wireless acquisition equipment is a good option.

In this case, the damage detection procedure can not get any information about the

damage sequence and we only attempt to identify the amount of damage and its location.

It is not commonly possible to trigger at the same time all instruments (i.e. In a building
the sensor connection in different floors is not as easy as in the field). In such cases, we can

trigger each sensor at different times.

In the case that all sensors have common time from GPS, it is easy to take a particular
time like starting time for the records. In the case when GPS information is not available, we
can search for a single common peak in all channels and then align the wave forms in time
and phase using, for example, the high-resolution alignment procedure proposed in the

reference [189]
It is equally important to take the output signals in places where most of the building

damage can be acquired. In this sense, valuable information previously reported about the
sensor optimal location for damage detection can be viewed in the references [187, 188].
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It is obvious but important to take into account the location of places for taking signals
before the event and we must use the same location to take measurements after the event,

otherwise a reliable comparison would not be possible.

Finally, it is assumed that structural mass does not change before and after the event,
therefore if there is any change in structural mass or stiffness, it is absolutely necessary to
take additional vibration measurements and make the system identification procedure prior to

any strong event.

In fact the same procedure for stiffness changes detection can be applied to mass changes
detection, thus if we know that no changes in stiffness happened then any frequency variation
imply a mass change. This is useful for evaluation of changes in structural dynamic

properties produced by architectural modifications by adding or removing masses.

4.1.2 Instrumented Structures

When a permanent array of sensors has been installed in the structure, there are two
possible cases:
- The acquisition is not continuous

- Acquisition is continuous

The former case is very common and requires complete system identification prior to the
event. It is highly probable that the record for the strong event is available. In this case the
damage sequence can be evaluated using the proposed procedure of chapter 5. On the
contrary we could make a previous and posteriori system identification and extract the
damage by comparing the two.
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An instrumented structure with continuous acquisition is the ideal case. Unfortunately,
this is also the least common case. In this case, we will have a complete sequence about

structural performance before, during and after the event.

For structures with continuous recording, an on-line or real-time structural damage
detection algorithm should be developed using the methodologies proposed in this work.

This is not proposed here because it is out of the scope of this research.

4.2 Main Characteristics of Ambient Vibration Excitations

In structural health monitoring technical literature, there exist an extensive amount of
references about the ambient vibration, its applications, limitations, and theoretical
background. See references [1, 4, 5, 6, 8, 11, 14, 29, 74, 77, 81-84, 89, 90, 113, 114, 119, 121,
150] among them.

Some aspects regarding to origin, nature, amplitude, signal to noise ratio and structural
response according to the applications will be briefly mentioned.

Regarding the origin of ambient vibration the source of ambient vibrations are internal and

external to the structure.

Within internal source, the strain produced by changes in temperature and humidity,
degree of saturation of the soil beneath and around the foundations of the structure can be

mentioned.

External sources include wind, soil microtremors, rain, traffic, waves of the sea,

machinery, human and animal movements, operational use, trains, and others sources.
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Because the time of occurrence, type, amplitude and distance to the structure are variable,
all of aforementioned sources, produce in general low intensity waves. These combinations

of waves generate a permanent random vibration process.

This type of vibration produces in the structure a multicomponent input signal that have
particular characteristic such as a large frequency band-width and low amplitude, in general

both amplitude and frequency are random in any particular instant.

Because the excitation is random, the structural response is also random according to
random vibration theory [127]. Therefore, the system identification results are absolutely

probabilistic and not a closed form solution can be found regardless the analysis method used.

A frequent probabilistic density function in random vibration is the Gaussian distribution
[2, 3, 7-9, 74, 124, 127] and this kind of distribution was selected for the analysis.

The amplitude of ambient vibration may be taken from very low values to high values, but
in general according to literature reports [3, 5, 8] it is low if compared with strong events,
therefore the signal to noise ratio (SNR) is expected to have very low values, thus the noise is

a key factor in ambient vibration analysis.
It is obvious that the input signal can not be measured, because it is from unknown
sources. This is an important reason to avoid the use of support input signal in this research,

because it contribute only a little to the ambient vibration input for the whole structure.

Therefore an estimative of probabilistic structural response using only the output signals
will be generated.
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Finally, it is important to point out that the duration of ambient vibration records are
generally very long, lasting from a few minutes to days, weeks, and months. This will
produce problems with the process and computational capabilities.

4.3 The Equivalent Structural Model (ESM)

4.3.1 Main Characteristics of the Equivalent Structural Model

As it has been mentioned earlier, there are a number of system identification procedures
such as ARMA models, stochastic methods, or updating models [1-5, 17, 22]. All of these
procedures, use input signals and structural information (i.e. material properties, geometry).

In the approach we do not use neither.

Since a damage procedure without the use of any structural information has been proposed,
an equivalent structural model (ESM) will be obtained that represents the behavior in the

linear range of the real structure. The ESM have the following characteristics:

a) The ESM, represent a reduced equivalent structural system of the real structure.
Therefore, the ESM is equivalent to a scale version of the real system modeled to
the instrumented DOFs.

b) The response of the real system and equivalent system are equal for static and
dynamic loading in the linear range of response.

c) The response of the real structure before and after damage is linear, thus after the
damage the real structure have a linear response with a modified stiffness
parameters.

d) The damping values are very low, and therefore it does not have significant
influence in the identification procedure.

e) A classical damping is assumed, thus we only have one damping ratio for each
mode.
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f)  The real and ESM structure have classical normal modes of vibration and it can
be modeled using the traditional chains of spring and masses.
g) The mass and stiffness matrix can be normalized by the modes.

h)  The mass matrix of any ESM can be normalized.

Figure 4-2 demonstrates a typical equivalent structural model procedure, showing the real
structure (a), reduced common structural model (b) and our equivalent model for a 3 channel

setup (c).

Figure 4-2 Typical Equivalent Structural Model

In the system identification procedure the structural properties (i.e. mass, stiffness, and
damping matrix) for an equivalent structural system that have the same static and dynamic

linear response as the real structure will be evaluated.

It is necessary to introduce the ESM concept because it is impossible to reconstruct the

exact matrixes of the structure using only the output signals from a very few sensors.
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For example in Figure 4-2, there is a finite element model of the structure with 6488 DOF
and for this structure there are only 3 sensors (the traditional ground sensor does not count,

because we do not use input signal). Therefore it is necessary to reduce the model to a 3 DOF.

In this regard the reader must remember that the 6488 DOFs model of Figure 4-2 is not
necessarily more precise. In the reference [27], it has been proven that the typical error in the

predictions of this type of model for linear response is between 40% to 80%.

Since the structural engineer does not know exactly the important factors such as real
support conditions, real material properties, real geometry, real mass distributions, non-
structural components interaction, soil-structure interaction, the predictions of its large and
“perfect” finite element models differ significantly, There are reported difference of 40% to
120% of the measurements obtained in laboratory and field test. [5, 8, 9, 11, 14, 17, 18, 20,
21, 24, 26, 27, 70, 84].

It will be demonstrated that the error predictions in the linear range are below 5%,
possibly because the procedure does not use the strong typical assumptions and only use real

structural measurement outputs.

The other important things to point out here are the following aspects:

- The amount of DOFs of the ESM is not necessarily equal to the number of sensor in
the structure; in the majority of cases a model equal or bigger than the number of
sensors available can be used.

- The size of the ESM is limited to the amount of structural frequencies that can be
identified from signals.
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Because we are dealing with linear response, it is possible to obtain probable response
for non instrumented DOFs using interpolation algorithms. By using this it is possible
to expand the ESM for many additional non instrumented DOFs.

In general the identified mass, damping and stiffness values do not have any physical
meaning and is only a representative of scale values from real values. Since no
structural information or input signal was used, therefore the scale factor can not be

obtained.

If there are additional information about the structure (i.e. geometry, mass) or input
signals, the real stiffness values can be obtained using traditional updating models of
system identification. But the use of any structural information or input signal is

prohibited for the goal of this research.

For a particular structure with constant properties, the identification procedure using
TFRs and FDD always converges to the same ESM, thus equivalent mass, stiffness

and damping matrices obtained from signals are unique.

The abovementioned is the key for the damage detection procedure, because it is
possible to extract the damage for comparison between damage and undamaged

identification results.

The identified damage of the ESM is in absolute proportion to the real structure.
Therefore the percentage of stiffness loss in the ESM is equal to stiffness loss
percentage in the real structure. It will be demonstrated by using numerical models
and real cases.
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4.4 Mathematical Formulation for Damage Detection Using
Time-Frequency Representation of Output Signals From
Ambient Vibration

4.4.1 General Considerations

For a MDOF with external forces, the classical movement equation in matricial form can
be written as [127]:

[M]{x} +[CI{ (0} +[ KI{ 0} ={ (D} 4-1
Where:
[M]: Mass matrix, defined, positive
[C]: Damping matrix
[K]: Stiffness Matrix
{x(t)}: Displacement time history vectors (superscript dot represent time derivative)

{F(t)}: Force time history vectors

In linear range the structure values of mass, damping and stiffness matrices are
independent of the external force f(t), therefore the matrix values do not alter if the system is

in free vibration conditions:

[M{xO} +[C{ 30} +[ KI{ x(8} ={0} 42

For the equations 4-1 and 4-2, the solutions become a matrix eigenvalue problem [127]:

[[K]-A[M]T{a, ={0

Where:
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{/]} : eigenvalues

{(0} . eigenvector

The eigenvalue vector defines the circular frequencies of the system as:

{/]i} :{C‘f} 4-4

And the eigenvector matrix defines the structural modes shapes as:

(4. (2] (@] ]
[(D]: q:’2> 440_2’2> <¢r_"2> it
4. |2, @) |

Assuming that the structure has classical damping and the modes are orthogonal, the

eguations of motion can be uncoupled; and the damping matrix can be evaluated using [127]:

[C]= 26,0 | 46
Where:

gj . Critical damping coefficient to mode J’

The structural frequencies and mode shapes can be obtained from experimental

measurements, then by using the equations 4-5, 4-4 and 4-3 the mass and stiffness matrices

are obtained.

119



An important field of structural dynamic is known as Operational Modal Analysis or
Empirical Modal Analysis have developed several methods for obtaining frequencies and
mode shapes from real signals, the number of methods available to obtain frequencies and

modes are extensive.

When the structure of the stiffness matrix is known, it is possible to obtain efficient
algorithm to estimate mass and stiffness values from experimental measurements. A solution
for the shear-building which is of major interest in civil engineering has been recently
proposed by Udwadia [190], fo noise free vibration the estimation of k can be evaluated
using [190]:

[k} =A" [Cbim}_l{ @ 4-7

Where the vector {k} is the stiffness estimative values for a matrix with the following
form:
ktk, -k
_kz kz + ks - ks
[K]= . .

4-8

KoK

And the inverse of measure modal matrix can be obtained for this particular case as [190]:

120



@
[or]" = ' 4-9
1 1
ﬁ]—l,n—2 ¢?n—l,n— 2
1
W

When the noise is present the author of reference [190] proposed an iterative algorithm.

Although the equations 4-7, 4-8 and 4-9 are very useful, the procedure has the problem
that it is necessary to know the form of the stiffness matrix beforehand and it is only useful

for the shear building models.

4.4.2 Mathematical Formulation for Extraction of System Frequencies using
the Mean Time-Frequency Representation

For a general model-free method, it is proposed here to use the information available in

the time-frequency representations of the output signals.

Based on the premise that in a random process with statistical regularity the response has

also statistical regularity, we have the mean value at an arbitrary fixed time [127, 206]:

e (t) = ”m%ixk(t) 4-10

Where:
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M (tl) . Mean value at timg t

X (t) . Time history

For an ergodic process such as random vibration the mean value is constant and it is

assumed to be zero mean.

The implication of the ergodic process is that any sample function is representative of the
complete random process [127, 205, 206], so the temporal mean value can be obtained by:

(1) = tm = 11 x, (1) 411

-T/2

Therefore, it is possible to obtain a time-lag lattice of a Mean Time-Frequency

Representation for the process by taking a time-lag variable and evaluating:

1
P.(7. f) :WZ Pom (T ) 4-12

where:
Pﬂ (Tk, f) . Time lattice of Mean time-frequency representation in the time-lag domain

PNorm(Tk, f) . Normalized time-frequency lattice at time |&g

The normalized time-frequency representation can be obtained using [180]:

I:)Norm(t' f) = +00 400 P(t’ f) 4-13

[ [ P(t f)dtdf

—00 —00

122



As before, the time-frequency distribution can be obtained using the classical quadratic
Cohen class form (see equation 2-4):

P(t, f):%j I '[e‘ja‘”“"a’go(e,r)x*(u—%rj x( u+%rj dud @&

—00 —00 —00

In an instrumented structure with “n” sensors we have “n” time histories and the equation

4-12 can be expanded in matricial form:

I:)Norni1 ( Ly f ) I:)Norrp'2 (T K f) o I:)Norrrln (Tk’ f)

_ 2 0 F?\lorn*b,2 (Tk’ f) Tt I:I)\Iorrrhn (Tk’ f)
F;J(Tk’f)_mz 4-14

0 0 - Ry (7f)

In the equation 4-14 the sum is for all possible time-frequency and cross time-frequency
representations obtained from all channels, the subscripts imply single time-frequency when

i=j and cross time-frequency whér¥ |

Note that in the expression 4-14 the matrix form is triangular, and we only evaluate
n(n+1)/2 terms of TFRs because the cross time-frequency representations are the same when
we interchange “i” and “j” subscripts (i.e. “i” and “j” channels) .

Finally, collect in a plane thEL(Tk, f) for all time-lag instants we get the Mean Time-

Frequency Representation (MTFR) in the time-lag domain.

The vector with structural frequencies can be obtained from this Mean Time-Frequency

Representation using:
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{f}=ar£{FL(T,f)}max 4-15

The resolution of the frequencies obtained using the equation 4-15 is quite remarkable,
and for the high capacity of time-frequency analysis it is very stable, even for high noise

levels.

It can be shown that almost all structural frequencies present in the signal can be reliably
extracted using the equation 4-15, even in the common case of having only few sensors.

Further more, the performance can be evaluated by using equation 4-15.

The MTFR proposed here can be used not only for structural frequency estimation, but
also the technique is useful in the identification of site response of soil, as it has been shown

in a recent published research [221].

4.4.3 Detection of Non-System Frequencies

The frequencies extracted using the equation 4-15 may have two uncertainties:
- The first one is: what is the manner of ensuring that the frequency is really from the
structure and not from an external source?
- The second one is: if you have two structural frequencies very close to each other,
does the structure really have these two frequencies or may be one frequency that

wanders?

The solution of the problem can be obtained using one of these three methods (in some
cases a combination of them):
- Frequency stability in the time-frequency plane
- Using the form of the probabilistic density function
- Using the excess coefficient evaluated in time-frequency domain
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For the former case we can obtain a TFR of the signal and then study the time of
occurrence of its frequency. Thus frequencies that appear temporarily in the record have a
high probability that its origin is from external sources (i.e. temporary noise produced by

machines).

However the previous identification method is not absolute. In a sense that if the
frequency is always present in the signals, it is not a uniquely indicator that this is a system

frequency, because it can be produced by a permanent equipment.

In the next graph we show a typical TFR plane with these cases:

Figure 4-3 Detection of Non-Structural Frequencies using frequency stability in TFR
plane
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With respect to Figure 4-3, we can see a frequency near to 28 Hz, is practically constant
between the 10:00 p.m. (i.e. Beginning of the record) and 9:30 a.m. and disappears between
9:30 a.m. and 3:30 p.m. approximately. It is highly probable that this frequency corresponds
to an equipment or machine installed in the building and not from the structural response.

Although this evaluation was based on visual inspection of TFR plane, it is a powerful
tool for understanding the structural behavior and it is strongly recommended to begin the
signal study with this type of analysis.

A second method to address this problem is the use of random vibration theory. Based on
the fact that if we have a random input the structural response is also random (i.e. Gaussian
response), but if we have a non-random input (i.e. a systematic vibration produced by a

machine), the structural response is not random (i.e. non-gaussian response).

This method has been mentioned theoretically as a direct consequence of the central limit
theorem in the references [127, 190, 193, 205, 206], and has been proved experimentally as

an excellent indicator for separation of structural and harmonics modes in the reference [192].

Therefore, for a true structural frequency we have a probabilistic density distribution
normal or Gaussian (only one peak or a bell form) and for a systematic response (i.e. an
external machine frequency) we will have a non-Gaussian probabilistic density function (flat

or with two or more peaks), it is shown schematically in the next Figure:
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Figure 4-4 Typical Empirical Probabilistic Density Functions (epdf) for Structural
Frequencies and Non-Structural Frequencies

For a continuous random variable X (i.e. acceleration, velocity or structural displacement),
the probability density function (pdf) is:

_dProt{sz}

4-16
dx

P (¥

If the process is Gaussian the equation 4-16 becomes:
‘(X‘:Ux)z
20%
B (¥ = - 4-17
(ax N, 277)
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Where:

Py (X) . Probabilistic Density Function (pdf) for normal or Gaussian random variable.
,Ux - Mean

0}2( - Variance

By attempting to identify the true real frequencies using only the output signals, the real
pdf cannot be obtained. Therefore an approximately shape scale version of pdf or an

empirical scale probabilistic density function is used.

For this reason it is assumed that “the TFR can be treated as a joint two-dimensional
probability density function” [98]. In this way, only the truly positive TFRs and its

normalized version by applying the expression 4-13 is used.

The negative values in most of the TFRs really limit its application like pdf. For
overcoming this limitation we proposed here to use an empirical-shape probabilistic density
function based mainly on the concept that the frequency distribution in a bandwidth has

approximately the shape of a scale version of pdf.
With this concept in mind, a normalized frequency distribution (histogram) around any
frequency of interest can be constructed, since only the shape of the pdf is important and not

its real values. This approach is extremely useful and practical.

Therefore, for each frequency of interest the following procedure is proposed:
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Figure 4-5 Determination of Non-Structural frequency from Empirical Probabilistic
Function Shapes

Here it is important to point out that the marginal properties of the TFR can be used in
order to acquire a near to real pdf, but because the final result do not improve significantly

the method by using the direct time history is preferred.

As it can be seen, a apriori a Gaussian distribution is assumed for the precedent procedure.
This distribution has been accepted for many years. It has been demonstrated theoretically
and experimentally that it has a good performance for random vibration of structures [193].
However, other types (i.e. shapes) of the probability density functions of common use in
signal analysis or random vibration can be used [191] (i.e. for wind response non-Gaussian
models are frequently used [207], because Gaussian models can underestimate the response
[208]).
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In signal processing and noise reduction, the other probability density functions such as
[191, 206] Multivariate Gaussian Probability Distribution, Mixture Gaussian, Poisson
Probability Distribution, Gamma Distribution, Rayleigh Probability Distribution, Laplacian

Probability Distribution are frequently used.

The important thing to remember is that regardless of the probability density function
chosen, the output signal shall have a shape similar to the original probability density
function for any particular frequency, when this frequency is a real structural frequency and
have a non-original probability density shape for external frequencies (i.e. non-structural
frequencies). Thus the major strength of this “shape” method may be in the fact that,
according to random vibration theory, the probability density function of the output signal,
for any system is the same as the probability density function of the input signal [191, 205,
206].

If the probability distribution is unknown for the input signals, then probability
distribution for our output signals is also unknown. The inaccuracy theory can be used in
order to get the unknown probability distribution shape, this theme is not considered here and

interested readers can find further information in the references [179, 181].

When the two previous methods fail to determine which of the identified frequencies
corresponds to the true system frequencies, one alternative would be the use of coefficient of
excess. Values closer to zero for this coefficient indicate that the frequency is a structural

response mode, values greater than zero is obtained for non-structural frequencies [193]

It is proposed to evaluate the excess coefficient for TFR by using a lattice frequency of the
TFR plane :

130



V( fO) = 2 = -3 4-18

Where:

14 ( fo) . Excess coefficient for TFR at the frequengy f
P(t, fo) . Lattice at frequency ffor the Time-Frequency Representation

O-P(t,fo): Standard deviation of the Lattice at frequerfgyfor the Time-Frequency

Representation.

Using the equation 4-18, a graph can be plotted with all excess coefficients for each
frequency of TFR and from this graph evaluate which of these frequencies are or not truly

system frequencies.

Finally, discharging the non-structural frequencies from the vector obtained using the
Mean Time-Frequency Representation (equation 4-15), eigenvalues matrix can be found by

using:

(A=

4-19

Where:
[/\] * Diagonal matrix with the structural eigenvalues

A :C‘f :(277-fi)2
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4.4.4 Modal Coupling and Frequency Separation

Although the previous procedures can reliably extract the non-structural frequencies of the
system, a last threat that will obscure the identification is the close modes or similar

frequencies.

The main problem of close frequencies is the fact that it may or may not be truly system
frequencies. There is a high probability that we can identify all close frequencies as system
frequencies and the prediction will fail because of that.

If structure or the input signals is known, the close frequencies separation is possible,
because any simple information is useful. For example, for input-ouput systems a robust
method for closely-spaced modes separation based on Singular Value Decomposition (SVD)
and Signal Subspace Correlation (SSC) has been proposed in the reference [196].

Unfortunately, for this case the structural information or the input signals are not known.
Therefore, it can not be mathematically demonstrated if two very close frequencies that
appear like structural frequencies correspond to two separate modes or only to one mode with
a wander frequency. Similar cases are presented in echo separation in radar and speech
signals [206].

For example what would be the answer about the number of frequencies in the Power
Spectra of the output signal of the MDOF in Figure 4-6.
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Figure 4-6 Power Spectra for a Coupling MDOF system

The answer is may be one frequency: 3 Hz., although it is true, the system is MDOFs and

it has another close-space mode or coupled mode.

Usually, coupled modes are coupled in frequency but not in time (at least not coupled at

all time instants), thus in the time-frequency plane the frequency changes in a coupled system.

When these changes are medium or large, it is easy to do the system identification and
separation using time-frequency methodologies, because as can be seen in the previous

chapters the time-frequency analysis is a useful methodology to deal with this.
However, when the changes are very small the problem of modes separation araise. Figure

4-7 shows, the time-frequency representation of the same structure. A highly coupled

frequency system has been adopted intentionally.
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Figure 4-7 Wigner-Ville Distribution of Closely-Spaced Coupled Structure

From the Figure 4-7, it is clear that time-frequency analysis do not append any additional
information about the system.

In order to deal with this problem, an interesting alternative is the use of adaptive kernels
in the TFRs [130-132, 137, 157, 178]. Other approaches based on time-scale analysis
(wavelets) has been also proposed.

A method based on mode separation using warping techniques in the time-frequency
plane has been recently proposed in the reference [197]. The method is similar to empirical
mode decomposition (EMD) proposed by Huang et. al. [73] in the time domain, and
performs satisfactory when the modes are not very close or the structural properties are

known.
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In this research, a simple but very practical procedure based on the results of Cepstrum
analysis [198] and the evaluation of the partial marginals of time-frequency distribution has
been proposed.

Because it is very often that the structure has coupling in the frequency domain but not in
the time domain (or at least not in all time instants), close modes are coupled in frequency
but not necessarily in all time instants. Thus a method that allow separation of modes in time
can be used.

A widely used method in radar, sonar, speech separation and seismology is the Cepstrum
Analysis [198], the basic idea is to perform an inverse Fourier transformation of the natural
logarithm of the Fourier transform of the signal. Therefore, the complex Cepstrum is defined
by [122, 198]:

v, (7) =2—1ﬂ ["in| [ x(t) e dt| & do

—00

The complex Cepstrum provides a transformation in a new domain defined by a horizontal

axis namely “quefrency” and amplitude Cepstra, namely “gamnitude”.

In the literature of Cepstrum analysis other terms like “rahmonics”, “lifter”, saphe” are
often used, (i.e. frequency = quefrency, harmonics=rahmonics, filter= liftebtained
basically by reversing the phoneme of the first syllable of the normal Wb8a3].

The advantages of the Cepstrum is that it is possible to detect the separations of very close
“rahmonics” in the signal and with this information the close mode in the structural system
will be discriminated, using the partial marginals of time-frequency plane evaluated between

rahmonics.
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The above characteristic of Cepstrum Analysis has been used widely. For example, in
seismology, to detect the time arrivals for compress waves and its reflect waves [199], in
structures for detection of damage using ultrasonic reflection [200], in speech and radar to

pitch and echo detection, respectively [198]
Once the quefrency for each rahmonic has been detected, the partial marginal to the time-

frequency representation can be applied in order to get the “hidden” structural frequencies

using:

[ Rt fydt=|X( D) po

For example, by taking the signal from figures 4-6 and 4.7, and applying the equation 4-
20 the Cepstra plot is obtained as shown in the Figure 4.8.

From the Figure 4-8, it is clear that the cepstrum analysis can be used to detect a clear

disturbance in the signal produced by uncoupling the structure in the time domain.
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Figure 4-8 Complex Cepstrum

Therefore, the partial frequency marginal for Wigner-Ville Distribution can be evaluated
by using the Cepstra information as shown in Figure 4-7, thus the marginal is evaluated from
0 to 5.12 secs and the marginal from the 5.12 sec to the end of signal, as shown in the Figure
4-9:

Partial Frequency Marginal to TFR using the information in the Cepstra

Partial Frequency Marginal from 0 to 5.12 sec ‘

- - - Partial Marginal from 5.12 sec to End

Normalized Amplitude
&
/

0 05 1 15 2 25 3 35 4 45 5
Frequency (Hz)

Figure 4-9 Partial Frequency Marginal for TFR using the information in the Cepstra
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Now it is clear that the structure has two frequencies. From Figure 4-9 the values at 2.95

Hz and 3 Hz can be obtained.

The additional frequencies obtained with this method can be added to previously

identified frequencies (eigenvalues defined in equation 4-19).

It is important to point out that the additional frequencies detected using Cepstrum
analysis and TFR do not support the test procedures from the section 4.4.3. Thus if the
dominant frequency (3 Hz in this case) is reported as a true structural frequency, it is highly
possible that the close-spaced frequency will be identified as a structural frequency also,

although it is not necessatrily certain.

In order to have the most reliable identification, any information regarding the structure or
the input signal will be very useful, but according to the objectives it is prohibited in this
research.

4.4.5 Mass, Stiffness and Damping Matrices Estimation

Once the system frequencies have been evaluated, the next step would be the estimation of
mass, stiffness, and damping matrices of the structure.

As it was mentioned previously there are a number of methods that do this. However the

most of them use input signals and models updating [103-105].
A method based on the Frequency Domain Decomposition (FDD) proposed by Brincker

et. al [124] has been selected and this method has been improved by using the information

content in the Time-Frequency plane.
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The complete theoretical background of FDD has been presented in the reference [124]. It
is pointed out that, according to Brincker, the Singular Value Decomposition (SVD) of the
spectral matrix is decomposed into auto spectral density functions for each DOF-.

The decomposition of the spectral matrix into auto spectral density functions for each
DOF has also been reported in the works by Chern [196]. As previously discussed, one can

use the SVD to closely-spaced mode separation in the time-domain.

The Singular Value Decomposition (SVD) is actually a routine procedure and many
numerical programs have the algorithm to do this. For example, in MatLab [122, 125] the
procedure is performed using the single svd() command. It is because the algorithms of the

LAPACK group are included in MatLab computer program.

The estimative of the power spectral density matrix can be obtained using the Fourier
transform of the correlation function or approximately using the product of the Fourier
transforms of the signal and the complex conjugation of the signal Fourier transform.
However, this simplification do not fulfill the periodic constraint of Fourier Transform as has

been mentioned in the reference [194]:

(G, (i ]={ X(a}{ X (a} 4-22

Where:

[ny( Ja{)} Estimate of power spectral density matrix

{X(@} . Fourier transform ok(t), superscript asterisk implies complex conjugation.

Using the Brincker’s notation, the power spectral density matrix can be decomposed using
the SVD in the form [124] :
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Where:

[Ui] - Unit matrix with singular vectors, (H) denotes complex transpose conjugation.

[S] - Diagonal matrix with scalar singular values:

Expand [U]:

[U]:{uHuat{ w} ] 4-24

{u,} : Singular vector.

It has been proven by Brincker [124] that an estimation of the scale mode shape

corresponding to any structural frequency can be obtained from the first singular vector, so:

{a} ={u,} 4-25

By taking the system frequency values that have been identified using MTFR, and
applying the equations 4-19, and 4-22 to 4-25, an estimation of the scale eigenvector matrix

or modal matrix can be constructed for the structure with the following form:

[©]: {ud{wd--{ ] 226

It has been pointed out that the quality of the estimation of the scale modal matrix is

strongly dependent of the resolution in the estimation of the structural frequencies [194, 195].
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Since the direct information of MTFR plane is been used, an excellent time-frequency

resolution and therefore an excellent modal shape resolution is assured.

It is assumed normal modes with classical damping and using the orthogonal properties of

the mass and stiffness matrix [127]:

[@][M][e] =[]

[@][K][@] =[A] =

Because up to this point the estimative eigenvalue matrix (equation 4-19) and the
estimation of the eigenvector matrix (equation 4-26) are available, from the precedent

eqguation the estimation of the mass and stiffness matrix become:

[m] =[] *[1][[o] |
[K] =[] *[Al[o] |

Although the equation 4-28 is useful to predict the stiffness and mass matrix, it has the

4-28

problem that is data-dependent and, in general, produce matrices with the following
characteristics:

- Mass and Stiffness matrix are symmetric

- ltis real value matrices

- Mass and stiffness values do not have any physical meaning.

- Mass can take negative values, corroborating that it does not have any physical

meaning.
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- Mass and stiffness values estimated from different time histories are not equal, even
if the structures do not have any changes (i.e. damage or mass changes), so they are
data-dependant.

A short explanation of the previously controversial characteristics is been given.

Because by using MTFR-FDD only one of the infinite possible solutions for the
eigenvalue problem defined by equation 4-3 has been found:

[[K]-4[M] {4, ={d}

Any pairs of the stiffness and mass matrix that satisfies the equation 4-3 are the solution
of the problem. Because the estimative are signal-dependent, it changes when the signal

changes.

In fact, when the structural engineers defined the material properties (i.e. Young modulus,
shear strength, poisson ratio, mass), geometry properties (i.e. inertia, area), they constructed a
particular stiffness and mass matrix for their structure, and with this they found a pair of
eigenvalues (frequency) and eigenvector (modes) using the above expression (equation 4-3),

so they have pre-defined a particular solution to the problem.

Therefore, again it is clear that the particular mass and stiffness matrices used by
structural engineers are only one of the infinite possible solutions, and any other pairs of
mass and stiffness matrices that fulfill the equation 4-3 are equivalent systems, consequently
the “perfect” finite element model is only one of the infinite equivalent structures that

satisfys the eigenvalue problem.
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But then, which of these infinite possible domain solutions are the correct one?
Mathematically the answer is easy: All of them!

Remember, the “perfect” and largely extensive finite element model is also an estimation
of a real structure, and very often (almost always) a very poor estimative [13, 14, 17, 18, 26,
27, 70, 104, 119, 148]. Note that the structural engineers only have an approximate idea of
the real values of material properties, geometry, mass, load distribution and structure
boundary conditions.

The key for damage detection using ambient vibration signals with MTFR-FDD is
whatever the solution; all of them differ in a scale or proportional factors (i.e. the scale factor

between model or “real” modes and any particular solution).

Therefore, if the mass is unchanged, any possible change in the frequencies and modes
shapes is due to stiffness change. Note that the damping factors are very small and it does not

contribute to frequency changes in the ambient vibration conditions.

The mass and stiffness matrices estimated by using the equation 4-28 in two different time
histories are different because the power spectral density matrices are similar but not equals,

it is a scale version of one to another.

If the mass is unchanged an approximate scale or transformation matrix can be defined in

order to relate the two different identification results for real signals cases.

Here a simple but very consistent scale matrix is proposed:

| SM]=[m]/[M] 429

Where:
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[/SWI]: Scale matrix between two different system identification results.
[MO] . Mass matrix estimated using the data set zero (i.e. before of damage)

[Ml] . Mass matrix estimated using the data set one (i.e. after of damage)

[MO] /[M 1] - Scalar division (term by term) between mass matl{iMz§] and[Ml]

Therefore, any particular term of the matrix [SM] will be obtained by scalar division:

éﬁn’j :& 4-30

Once the scale matrix has been evaluated, a corrected stiffness matrix will be obtained

using:

[Ke]HK]/[SM 431

Where:
SM] . Scale matrix between two different system identification results.
_Kl] . Stiffness matrix estimated using the data set one (i.e. After of damage)

_KCl] - Stiffness matrix included correction for data set differences

:Kl] /[/Sm] - Scalar division (term by term)

Again, the corrected particular values of the matkx;] can be obtained by scalar
division:
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_ Kk
kCL,,- - §Fm, 4-32

Finally, any damage in the structure will be detected by using:

K, kg, |

Ak = )
o 4-33

According to the numerical and experimental tests, the approximate correction for scale
(equation 4-29) produced errors between 0% to 2%. Therefore, the minimum damage

detection threshold for events that produce changes in the stiffness is at 2%.

Practical recommendation about record length and field measurements is given in order to

improve the reliability of this damage detection procedure.

The final aspect in identification is the damping estimation. Since dealing with ambient
vibration signals, it is expected that damping will take very low values, for this reason it was
not taken into account for the MTFR-FDD method of damage detection using ambient

vibration signals.

However, if there is any interest in damping factor for ambient vibration conditions, any
method previously proposed in the literature or the damping estimative based on MTFR that

is proposed in this research can be used.

Using FDD, Brincker [124] has proposed an estimation of damping using the logarithm

decrement method of a time lag-history obtained by inverse Fourier transform of SDOF bells
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estimated from mean power spectral density. In the reference [195] numerical results for this

method has been presented.

A method for damping estimation using time-frequency information has been reported by
one of the most active research group in time-frequency theory for civil engineer applications;
the method is based mainly on the instantaneous amplitude ratio and phase ratio estimation.
The theoretical background including numerical and real cases studies, for these types of
time-frequency based estimators can be found in the references [69, 71, 72, 74, 75, 77, 78, 87,
93]

A method based on the detection of time intervals is proposed when one modal
component is dominating. A similar approach has been proposed recently by Ceravolo [87]

using instantaneous estimators.

The method for damping estimation can be synthesized in the following steps:

- Determine the structural frequencies using MTFR (section 4.4.2)

- Extract any non-structural frequencies (section 4.4.3)

- Filter the output signals using band-pass between system frequencies with an
bandwidth less than 0.2f

- Using a reduced interference time-frequency distribution, obtain the time intervals
when this frequency component is dominating in the whole TFR plane (i.e.
maximum TFR amplitude).

- Use random logarithm decrement techniques to obtain an estimation of the

damping for each time interval.

In the chapter 5, some study-cases for this method is presented.
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4.5 Numerical Simulations

In the following the results for damage detection method using numerical models with
known properties are shown and some possible error sources and capability of this method is

also studied.

It is assumed that ambient vibration data has been obtained before and after of strong
event. Records during the event are not available (because this type of analysis is shown in
the chapter 5).

It is compulsory that the records before and after the event has been taken at the same
places (the same DOFs measurements points in both case is assumed). This assumption is
one of the most important aspect of this method. Otherwise, the comparison scheme is not
applicable.

Theoretically it is possible to do an interpolation procedure in order to estimate the
outputs for unmeasured points (for the case when the measurements places change

unintentionally).

First a structural model with known properties is defined and then this model is submitted

to random vibration excitations at all DOFs and also at the supports.
In an attempt to simulate real conditions, the output signals are contaminated with

Gaussian noise added with very low signal to noise ratio (SNR) (in fac,t frequently less than

normal conditions).
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Using structural dynamic theory, the output signals of the model are evaluated. Using only
these output signals (i.e. the initial set of measurements) and applying the method developed
in this chapter, the structural parameter for the “unknown” undamaged model are estimated.

Next, damage to the mathematical model is generated (i.e. modifying the stiffness matrix)
and submitting the modified model again to random vibration excitations. Then another set of
output signals (i.e. the second set of measurements) is obtained and finally noise for these
output signals is added.

The damage identification method is applied for estimating the structural parameters for

the “unknown” damage model by using the second set of output signals.

It can be determined where and how much is the structural damage by comparing the
undamaged stage identification with damaged stage identification.

The performance of this method and the possible error sources can be evaluated by
comparing the results from the calculation damage of the method with the previous known

damage.

4.5.1 Single Degree of Freedom Model

SDOF model is the most basic case. However, it has important practical applications for

identifying damage in towers or inverted pendulum structures.

For this particular case, only the results obtained directly from the time-frequency plane
can be applied. Noise effects and other sources of error are not considered here. It will be
shown in the section 4.5.3.

The following structural values (in a compatible free unit system) are assumed:
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M=1

K=100

Damping = 3% of the critical
Noise=10%

Sampling rate: 5Hz
Sampling Length: 6.83 minutes
Number of Records:12

/k
a): _
m
w= 271t

f =1.5919+z
SNR=10%

In the Figure 4-10 a typical 6.83 minutes record and its Fourier Transform is shown. The
maximum value is obtained at 1.61 Hz, the difference between real frequency and frequency

from the FFT is due to noise in the signal.

Figure 4-10 Typical output signal and its FFT for SDOF model
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In the Figure 4-11 the Mean Time-Frequency Representation (MTFR) obtained for the

first set of measurements (12 Records) using the equation 4-14 is shown

Figure 4-11 Mean Time-Frequency Representation for undamaged SDOF model

Using the equation 4-15, the maximum amplitude of MTFR can be evaluated and with it
the corresponding frequency fit1.592 Hz which is practically the same as theoretical

frequency.

If a mass unitary value is assumed, then the scale stiffness value can be obtained. Note
that any value for the mass can be assumed. The important thing is that the assumed mass

value is unchanged before and after damage:
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f,=1.502 Hz
o} = 2m1f, =10.0028

@ = %:kﬁaém)

k, =100.057

Next a physical damage to the structure is introduced by decreasing the stiffness by 50%.
Then in order to make the identification procedure more challenging, the noise level (40%) is
increased intentionally and a permanent equipment is introduced with a frequency exactly

equal to undamaged structure, thus f=1.5915 Hz (w=10 rad/sec).

Figure 4-12 Typical output signal and its FFT for SDOF model

From the previous Figure, it can be seen that it is practically impossible to get the system

frequencies and only one dominant peak at f=1.592 Hz appears (the machine frequency in

this case).

Now the MTFR for the set of signals from the damage stage (12 Records) will be

evaluated as it is shown in the following graph:
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Figure 4-13 Mean Time-Frequency Representation for damaged SDOF model

From the Figure 4-13 two frequencies emerge, a dominant frequehs$.802 Hz and a

second frequency at$1.13 Hz.

If there is no information available about the structure, the first frequency can be

interpreted wrongly because it is equal to undamaged frequency identified earlier.

Now the second or third method for frequency differentiation that has been proposed in

the literal 4.4.3 can be applied in order to extract non-structural frequencies.

It is important to remember that the first method for extraction of non-structural
frequencies is not useful here, because the equipment is permanent and does not make any

changes in the time-frequency plane.
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Evaluating the empirical probabilistic density function (epdf) with the proposed procedure
in the Figure 4.5, it is clear that the real structural frequency is identified as f=1.13 Hz, see
the Gaussian form of the epdf for this frequency and non-gaussian form for the frequency at
f=1.592 Hz (Machine).

Figure 4-14 Empirical Probabilistic Density Function for damaged SDOF model

The new stiffness value by using the real structural frequehey.(3 Hz) and the

previous mass value (m=1) can be evaluated:

f, =1.13Hz
rad
=2f, =7.099—
“ ! sec

W= %:kfafm

k, =50.41
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Finally, the damage (stiffness loss) using a simplified version of equation 4.33 is obtained:

LK
ky
100.057 50.41

100.057
Ak =49.63% Vs Theoretical value (50

For this case the stiffness loss with an error of 0.7% was evaluated. This error is very low,
considering that the noise level in the signal has been set for values much higher than the

noise in normal conditions.

4.5.2 Multiple Degree of Freedom Models

In the evaluation of MDOF models, three models; a 3 DOFs structure, the benchmark
ASCE problem with 12 DOFs [106-112], and a large structure of 30 DOF will be used.

45.2.1 A Three DOF Model

A structure with the following matrices is defined (in any consistent units):
50 20 10

[M]{zo 50 5]
10 5 30

1000 —500 — 2

-500 700 30?)}Z

—200 300 400

[K]=

By solving the eigenvalue problem, the following frequencies and modal matrix are

obtained:
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0.329
{f} :{0.47213 Hz)

117

0.0632 -0.0503- 0.13§
[cb]:[o.loeﬁ 0.0271 0.1081

—-0.0530 - 0.1605 0.084

Taken the output signals (20 records of 10 minutes each, sampling rate=5Hz, Noise Level

15%), the structural frequencies using the MTFR can be identified:

Mean Time-Frequency Representation {Undamaged)
25

E 1.5
g
g f3=1.174 Hz
g
L
05 f2 =0.4761 Hz
f1=0.3296 Hz

0 50 100 150 200 250 300 350 400
time-lay (sec)

Figure 4-15 Mean Time-Frequency Representation (Undamaged) 3 DOFs model

For this set of signal using the eigenvalues from MTFR and applying FDD the following
scale version of stiffness matrix for undamaged stage can be obtained:
345100 -21.3208 -8.71

[Ko]=|-21.3208 22.8500 11.27
-8.7114  11.2767 13.003
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Now by generating punctual damage in the DOF number 3 of 30%, the theoretical

frequencies and modes are obtained:

50 20 10
[M]{ZO 50 5} 0.296
10590 {1} =]0.3065 fz)
1000 -500 -2 1.166
[K]=| 500 700 300 10,0396 0.0685 -0.137

200 300 259 [#] = -0.1057 00229 0.110

0.1171 0.1259 0.078

For this modified structure, a new set of output measurements is simulated by applying
random excitation (Noise Level=30%) and with these output signals the new estimative of
the structural properties will be obtained. The frequencies (and its eigenvalues) will be
obtained using MTFR, the estimative for the modes shapes will be obtained using FDD
(equations 4-22 — 4.24) and by applying the equation 4-26 a estimative of the stiffness

matrix will be obtained.

Figure 4-16 Mean Time-Frequency Representation (Damage Stage) 3 DOFs model
156



334100 -20.5115 -8.802
[K,]=|-20.5115 23.4642 10.
-8.8023 10.3449 9.329
Now by comparing the identified stiffness matrix for undamaged and damaged stage and
using the equation 4-33, the changes in stiffness matrix term by term can be evaluated thus

the damage in the structure.

K, k|

N, = qu

-3.1875 -3.7959 1.042
[AK]: 37959 2.6882 -8.262f \/giues in percentage)
1.0428 -8.2626 -28.247

The above matrix implies that by using the output signals a stiffness loss in the DOF
number 3 equal to 28.25% can be estimated (relative error of 5% in the estimative for this

case).

Note that although there were no changes for the other values in the stiffness matrix, from
the damage detection algorithm, it appears that others DOF were affected. This is useful
because this damage propagation effect can be used to detect the approximate localization of

the damage.

In real cases, the damage generally affects several members (one or numerous zones of the
structure). Therefore, a number of stiffness matrix elements will be affected. Consequently
the estimative matrix will perform in a real-like manner contrary to our punctual matrix

assumption.
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4.5.3 The Phase | — IASC-ASCE Structural Health Monitoring Benchmark
Problem

According to preceding results, by applying this methodology to Phase | of IASC-ASCE
Structural Health Monitoring Benchmark Problem and compare the performance of the

approach with previous benchmark result reports [41, 106-112].

The Benchmark Problem is a study proposed by IASC-ASCE in 2000 for system
identification and damage detection, Phase | consists of two analytical models; the first one
with 12 DOFs, and the second one with 120 DOFs, a complete review of the Benchmark

problems, its description and structural properties, can be found in the references [106, 107].

Figure 4-17 ASCE Benchmark model in University of British Columbia
(taken from: http://mase.wustl.edu/wusceel/asce.shm/structure.hfm
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Six damage patterns for this building has been proposed in the Phase | of Benchmark
problem[107]:

()

(if)
(iii)
(iv)
(v)

(vi)

No stiffness in the *ifloor braces

No stiffness in T floor braces and no stiffness iff 8oor braces

No stiffness in one®ifloor brace

No stiffness in one®ifloor brace and no stiffness in on@ fioor brace

No stiffness in one®ifloor brace and no stiffness in orf@ floor brace and beam-
column connection weakened.

2/3 of the stiffness in one€'Tloor brace

For the 12 DOFs model, there are no differences between the cases (iv) and (v) therefore

the Benchmark problem is reduced to 5 cases.

The procedure for damaged detection in all patterns is:

1)

2)

3)

4)

Using the “datagen” program provided by the IASC-ASCE benchmark task group

(http://mase.wustl.edu/wusceel/asce.shm/structurg.himise output data for the

undamaged stage and for the six damage cases will be generated.

Using only the output signals and applying MTRF and FDD, the structural
frequencies, modal shapes , mass and matrix for undamaged and damaged stages
will be identified.

The damage will be estimated by comparing the stiffness matrix for undamaged and
damaged stages.

Finally, a comparison between the estimative damage with theoretical damage [107]

will be made.

The following Figure was taken directly from reference [107], the general geometry and

the aforementioned cases are shown:
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(a)

X_ (west)

= / (strong)

‘%

/)
\

INIX]

Y

7

(i) no stiffness in 1% floor braces (ii) no stiffness in l:é floor braces (i) no stiffness in one 1% floor brace
no stiffness in 3™ floor braces

(iv) no stiffness in

i in one lr'"; floor brace  (v) no stiffness in one l:‘; floor brace  (vi) %5 stiffness in one 1% floor brace
no stiffness in one 3 floor brace no stiffness in one 3" floor brace
beam-column connection weakened

Figure 4-18 ASCE Benchmark problem (a) Geometry (b) Damage patterns (taken from
reference [107])

Next, the first damage pattern is shown in detail, for the additional patterns only graph and
tables resume result are shown.
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Figure 4-19 Mean Time-Frequency Representation for ASCE Benchmark problem

In Figure 4-19, the fundamental frequencies are estimated using the MTFR of 320 records
of 2048 data each one (sampling rate 200 Hz), as can be seen the noise is spread in all time-

frequency domain and the fundamental frequencies emerge clearly.
Using FDD with this eigenvalues constraint, an estimative of the structural mode shapes is

obtained and by using the equations 4-26 the mass and stiffness matrices for the undamaged

case is evaluated:
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TABLE 4.1 Estimative for undamaged case — Phase | — ASCE Benchmark problem

K estimative (Undamaged) K theorical (Undamaged)

1 2 3 4 5 1] T B a 0 1 12 1 2 3 4 5 & 7 g 3 i 1 12
1 #3130 o o 42710 1] 1] o o o 1] 1] of 232 1] 1] 0B & o o 1] 1] o o ] 0]
2] 1] 52940 o L] -272o0 0 o o o 0 0 0] o 13581 0 o E73 o 0 0 o o o 0]
3 a o 160830 0 L] 82070 o o 0 L] L] 0 0 L] 46404 o 0 -z L] L] o o 0 0]
4] 42710’ o o 84330 1] 1] 42410 o ] 1] 1] of -0BE 1] 1] 2132 o ] -0BE 1] o o ] 0]
5] 1] 27200 o L] BaT30 L] o 27010 o L] L] 0] o -B78 L] o 13581 o L] 678 o o o 0]
] a o -82070 L] 0 162630 o o G640 0 0 0] o 0 -2z o 464,04 0 0 -2%20z o o oMNim
7 a o o 42410 0 L] 4540 o 0 42340 0 0 0 L] L] 1066 o 0 2132 0 o 1066 0 0]
il a o o 1] 27010 1] o 54040 ] 1] -ZEIE0 of ] 1] 1] o £73 ] 1] 136.81 o o £73 0]
3| 0 o o 0 0 81640 o o 13600 0 0 -81520| o 0 0 o o -232.02 0 0 46404 o o 232.02|
0] a o o L] L] L] 42340 o 0 #1350 0 0 0 L] L] o o 0 1066 L] o EE 0 0]
1 a o o 1] 1] 1] o -2B360) ] 1] 26730 of ] 1] 1] o o ] 1] -678 o o B73 0]
12] 0 o o 0 0 0 o o -81520 0 0 E|[I4[II 1] 0 0 o o o 0 0 -232.02 o o 232. [IZI

Mass estimative (All cases) M theorical (Undamaged)

1 2 3 4 5 1] T B a 0 1 12 I 'ul 2 3 4 5 & 7 g a i 1 12
1] 13445 o o 0 0 0 o o o 0 0 of 34624 0 0 o o o 0 0 o o o [
2] a 13441 o L] L] L] o o 0 L] L] 0 0 524 0 o o 0 L] L] o o 0 0]
3 a o 13245 1] 1] 1] o o ] 1] 1] of ] 1] 33134 o o ] 1] 1] o o ] 0]
4| 0 o o 10633 0 0 o o o 0 0 of o 0 0 26624 o o 0 0 o o o 0|
5 a o o L] 10534 L] o o 0 L] L] 0 0 L] L] o 26524 0 L] L] o o 0 0]
€] a o o ] ] 10682 o o o ] ] 0of o ] ] o o 28361 ] ] o o o ofKg
7 a o o L] 0 0 10736 o o 0 0 0] o 0 0 o o o 26524 0 o o o 0]
3| 0 o o 0 0 0 o 10738 o 0 0 of o 0 0 o o o 0 26524 o o o 0|
k| a o o L] L] L] o o 10774 0 L] 0 0 L] L] o o 0 L] L] 23861 o 0 0]
0] a o o L] 0 0 o o o 07246 0 0] o 0 0 o o o 0 0 o 1809.3 o 0]
il 0 o o 0 0 0 o o o 0 07247 of o 0 0 o o o 0 0 o o 18039 0|
12] '] o o L] 0 0 o o 0 0 0 0. ?313' 0 0 0 o o 0 0 0 o o 0 2055.9'

As can be seen from Table 4.1, the structure of the estimate mass and stiffness matrices
are perfect, however the values are not equal (mass differ in a factor of 350~400 depending
of the DOF and stiffness in a factor of 2500~2800).

Since the theoretical undamaged matrix is not known, the scale factors can not be
evaluated. Therefore for damaged detection cases, the estimative stiffness matrix will be

taken from Table 4.1, like the zero reference matrix.

Next the damage patterns 1 to 6 will be introduced and for each one using MTFR-FDD,
the following stiffness matrix estimative will be obtained. By comparing each term with the
original undamaged stiffness estimative matrix, the location and severity of the structural
damage can be evaluated.
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TABLE 4.2 Estimative for damage pattern 1 — Phase | - ASCE Benchmark problem

K estimative (Undamaged) Estimate Stiffness Loss (%)

1 2 3 4 1 3 7 & 3 10 n 12 1 2 3 4 ] B T ] a 0 1 12

1 B3130 1] o -42710 o o 1] o 1] o a [ 21617 o 0 -208382 a o o 1] o 1] ] 0]

2] o 52940 o L -27200 o 0 o L o 1] 0 0 33869 L 0 264706 o o 0 o L o 0]
3 o 0 1E0330 L o -BZ070 L] o 0 o 1] 0 o 0 3027 0 o 27 o L] o 0 o 0]
4] 42710 o 84330 ] o 42410 o 1] ] a 0] 208382 o 0 1BE014E a 0 -0.0236% 1] o 1] ] 0]
5| o 27200 o 1] 53730 o 1] -27010 1] ] a 0] 0 264706 1] 0 2568338 ] 0 -007405 o 1] ] 0]
] o 0 22070 0 o 162630 0 o 81640 o a 0l 0 o -2FITE o 0 229355 o 0 007343 0 o 0]
7 o 1] o -42410 ] o 24840 o 1] 42340 a 0] 1] o 0 002368 a 0 0836363 1] 0 -181308 ] 0]
4 o 0 o 0 27010 o L] 54040 0 o 26360 0l L] o 0 0 007405 o 0 l221ne o 0 259644 0]
9] o L] o L] o 21640 L] o 163500 o 1] -81520) L] o L] o 0 -007349 o 0 1149 L] 0 24285
0] o L] o L] o o 42340 41350 1] 0 L] o L] o 1] 0 181308 0 187EI0E 0 0]
1 o 1] o 1] ] o 1] -ZE3E0) 1] ] 26730 0] 1] o 1] ] a ] 0 -2B3E44 o 0 2B43368 0]
12] 0 0 o 0 o o L] o 81520 o a 31040] ] o 0 o a o o 0 242385 0 L2 203?85'

K estimative (Damage Pattern 1) Theorical Stiffness Loss (%), according to reference [107]

1 2 3 4 5 7 B El jul n 12 1 2 3 4 5 & 7 g £l 10 n 12

1 65160 0 0 43600 [ [] 0 [] 0 [ 0 [ 22622 [] 0 [ 0 [ [] 0 [] 0 [ 0]

2] [ 35010 [ 0| -27am0 [ [ [ [1] [} 0 of 0 35513 [1] [} 0 [} [ [ [ [1] [} [i
3 [ 0 10330 [} 0 -a4300 [ [ [} [} 0 of [ 0 3248 [} 0 [} [ [ [ [} [} [i
4] 4300 0 0 BsTI0 [ 0 -4za00 [ 0 [ 0 of 0 [ 0 [ 0 [ [ 0 [ 0 [ 0
5] o 27920 o L] 55110 o L] 27030 L] o 1] 0 L] o L] o 1] o o L] o L] o 0]
[ 0 0 24300 0 0 186380 0 0 -21700 o 0 0l 0 0 0 o 0 o 0 0 0 0 o of
7 o L] o 42400 o o 85550 o L] 43150 1] 0 L] o L] o 1] o o L] o L] o 0]
il o L] o L] 27030 o L] S4700 0 o -2TEED) 0 L] o L] o 1] o o L] o L] o 0]
3 o 1] o 1] ] -&1700 1] o 1B6360; ] a 23500} 1] o 1] ] a ] o 1] o 1] ] 0]
0] o 0 o 0 o o -43150 o 0 42610 a 0l L] o 0 o a o o L] o 0 o 0]
1 o L] o L] o L] -27EE0 o 27410 0 L] o L] o 1] o o L] o L] o 0]
12] 0 0 o 0 o o 0 o 83500 o 1) 52530) 0 o 0 o 1] o o 0 o 0 o 0]

From Table 4.2 it can be seen that for damage pattern 1 (No stiffness thfber braces),

the MTFR-FDD method performs an excellent estimative of the damage in value and
location, another important thing is that the method has errors in estimative for all DOFs
around 2%.

For damage pattern 2 (No stiffness fhftbor braces and no stiffness iff 8oor braces),
from Table 4.3 it can be seen that the method performs a good damage estimative in location

and value, with a mean error in damage prediction of 5.8%.

TABLE 4.3 Estimative for damage pattern 2 — Phase | - ASCE Benchmark problem

K estimative (Undamaged) Estimate Stiffness Loss (%)

1 2 3 4 5 & 7 g £l 10 n 12 1 2 3 4 5 B 7 B El jul n 12
1 3130 o L] 4270 1] o o L] o L] o 0] 24.347 0 0 -2zeed 0 o L] o L] o 1) [
2] ] 52340 ] ] 27200 ] o ] o ] ] 0] 0 40538 o 0 108386 o ] o ] ] a 0]
3 1] o 160830 ] a -820700 o 1] o 1] ] 0] o 0 36332 1] 0 -T43268 1] o 1] ] a 0]
4] -42710 o 0 24330 a o 42410 L] o 0 o 0] 22243 0 0 23.052 o 0 -3T432 o 0 o a 0l
9 L] 27200 L] o 83730 o o 2700 o L] o 0] 0 -0EES o 0 40.555 o L] 3495 L] o 1] 0
[ 0 0 82070 ] 0 162630 ] 0 B840 0 ] 0| ] 0 743268 0 0 35.824 0 0 -G8.5409 ] 0 [
7] 0 o L 42410 1] o 24840 0 o 42340 o 0] o L 0 -37a912 o o 17.61 o 0o -rzzr 1] 0
B L] o 0 o 270 o o 54040 o 0 -ZEIE0 0] o 0 o 0 -E343% o 0 26.391 0 o 18135 0]
3] 1] o 1] ] a 21840 o 1] 1E3600 1] ] -&1620) o 1] o 1] 0 -GE5403 o 24 55 ] 0 -13.3587)
o| 1] o 1] ] a ] 42340 1] o 41350 ] 0] o 1] o 1] ] o -reeva o 0 4E00TIS a 0]

) 0 o L o 1] o o 26960 o L 2730 0] o L o L o o 0 16135 L 0 13pe212
12| 0 o L o 1] o o 0 #1620 L o B|U4U| 0 L o L o o 0 0133887 o 0__10.52567)

K estimative (Damage Pattern 2) Theorical Stiffness Loss (%), accerding to reference [107]

1 2 3 4 ] T ] a 0 1 12 1 2 3 4 1 3 7 & 3 10 n 12
| esan [ 0 4760 0 [} [ [ [ [ [} 0| 22 622 [ [ [ [} [ [ [} 0 o}
2] 0 480 0 0 24290 [ [ 0 [ 0 [ 0 0 35512 [ 0 [ [ 0 [ 0 [ 0 of
3 o o 102300 o 1] -78870 o L] o 0 o 0] o 0 3248 0 o o o o 0 o 1] 0
4] -H7E0 1] B4330 ] 26510 1] o 1] ] 0] o 1] 0 22822 ] 0 452433 o 1] ] a 0]
5] 1] 24230 ] 31340 ] o 3860 o 1] ] 0] o 1] o 0 35513 o 0 -710303 1] ] a 0]
3 0 0 -75470 13 0/ 104370 ] 0 35460 0 13 7640 ] 0 ] 0 0 3248 0 0 -54.9599 13 0 of
7] 1] o 1] -ZEI0 a ] E3300 1] o 45400 ] 0] o 1] 0 -45.2433 ] 0 22822 1] ] a 0]
B L] o 0 o 9360 o o 39500 o 0 30 0] o 0 o 0 -TL0309 o 0 35.513 0 o a 0l
El L] o L] o 1] -35480 o L] 123360 L] o 32410} o L] o L] 0 -E49599 L] o 32.48 o 1] 0
10} L] o L] o 1] o 45400 0 o 43880 o 0] o L] o L] o o L] o L] o 1] 0
) 1] o 1] ] a ] o 31310 o 1] 30430 0] o 1] o 1] ] o 1] o 1] ] a 0]
12| ] o 0 o a FEE0 o L] -az410 0 0 £3570)] 0 0 o 0 o o L] o 0 o a 0|
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In the following Table, the performance of the MTFR-FDD for damage pattern 3 ( No
stiffness in one i floor brace) is shown, it is clear that the results are highly precise in
location and damage value (less than 1%).

TABLE 4.4 Estimative for damage pattern 3 — Phase | — ASCE Benchmark problem

K estimative (Undamaged) Estimate Stiffness Loss (%)

1 2 3 4 5 B 7 B El jul n 12 1 2 3 4 5 & 7 g £l 10 n 12
1 B30 0 o -42710 o o L] o L] o 1) [ 0024059 o 0 004683 1] o o L] o L] o 0]
2] o 52340 o a 27200 o 1] o 1] ] a 0] 0 88513 1] 0 036638 ] o 1] o 1] ] 0]
3] o 1] 160330/ a ] 82070 1] o 1] ] a 0] 1] o 3768 ] 0 -046302 o 1] o 1] ] 0]
4] 4270 L o 84330 o o -42410 o L o 1] 0 -0.04683 o 0 0.0mese 1] o o L o L o 0]
5] o 27200 o 1] 53730 o L] 27010 L] o 1] 0 0 085588 L] 0 0558347 o 0 014809 o L] o 0]
B o 0 -82070 0 o 162630 0 o -BIB4D. o 0 0f 0 0 -046302 o 0 0301297 o 0 -0.043 0 o 0f
7 o L] o -42410 o o 84040 o L] 42340 1] 0 L] o L] o 1] 00023574 L] o L] o 0]
il o L] o 1] 27010 o L] 54040 0 o -ZEIE0 0 L] o L] 0 014303 o 0 0240563 o 0 07 0]
3 o 1] o a ] &840 1] o 163600 ] a -31620| 1] o 1] ] -0.043 o 0 0777 1] ] 0.33121)
0] o 0 o a o o 42340 o 41350 a 0l L] o 0 o a o o 0 0 002338 o 0]
1 o L] o 1] o o L] -ZB9E0 L] o 26730 0 L] o L] o 1] o 0 0744 o 0 0523756 0]
12] 0 0 o 1] o o 0 o -81620 o 1) 51040} 0 o 0 o 1] o o 0 -0gEEl 0 0 028381

K estimative (Damage Pattern 3) Theorical Stiffness Loss (%), according to reference [107]

1 2 3 4 5 7 & £l 10 n 12 2 3 4 5 3 T 8 a 0 1 12
1 #3110 0 0 42630 [} [ [ [ 0 [} 0 o} 0 [} 0 [} [ 0 [ 0 [} [
2| 0 sE3m0 [ 0| 27460 [ [ [ 0 [ 0 of 0 83801 0 [ 0 [ [ 0 [ 0 [ [i
3 [] 0 154770 0 0 52450 0 [] 0 1] 0 [ 0 [] 4.06 1] 0 1] [] 0 [] 0 1] [1
4] 4280 0 B4320 0 42410 [ [1] [} 0 of [ [ 0 [} 0 [} [ [1] [ [1] [} [i
5| [ [ 0/ 54000 [ 0 -ZE9T0 [ [} 0 [ [ [ [ [} 0 [} [ [ [ [ [} [i
] o 0 52450 a o 1620 0 o 81630 o a 0l 0 o 0 o a o o 0 o 0 o 0]
7 o 1] o -42410 ] o 24860 o 1] 42340 a 0] 1] o 1] ] a ] o 1] o 1] ] 0]
4 o 0 o a 26970 o L] 4170 0 o -2T160 0l L] o 0 o a o o 0 o 0 o 0]
El o L] o 1] o 51650 L] o TB37I0 o 1] -51790) L] o L] o 1] o o L] o L] o 0]
10] o 0 o 0 o o 42340 o 0 41360 0f 0 o 0 o 0 o o 0 o 0 o 0|
1 o 1] o a ] o 1] 2TIE0 ] 26270 0] 1] o 1] ] a ] o 1] o 1] ] 0]
12] 0 0 o a o o L] o 81790 o a 31270] ] o 0 o a o o 0 o 0 0 0

Similar to the previous case, the results obtained for damage pattern 4 (No stiffness in one
1% floor brace and no stiffness in on& 8oor brace) are quite remarkable, the damage
location is almost perfect and the damage severity is predicted with an error of less than 1.5%,

it is shown in Table 4.5:

TABLE 4.5 Estimative for damage pattern 4 — Phase | — ASCE Benchmark problem

K estimative {Undamaged) Estimate Stiffness Loss (%)

1 2 3 4 5 B 7 £l 9 jul n 12 1 2 3 4 5 & 7 g £l 10 n 12
1 B30 0 o -42710 o o L] o L] o 1) [ 0541321 o 0 014048 1] o o L] o L] o 0]
2] o 52340 o ] 27200 o ] o ] ] a 0] 0 886513 ] 0 102341 ] o ] o ] ] 0]
3] o 1] 160330/ 1] ] 82070 1] o 1] ] a 0] 1] 0 37928 0 -057268 o 1] o 1] ] 0]
4] 42710 0 o 54330 o o 42410 o 0 o a 0l -0.14048 o 0 5.7275 a 0 -10.186 L] o 0 o 0]
5] o 27200 o L] 53730 o L] 27010 L] o 1] 0 L] 102941 L] 0 0642 o 0 -007a05 o L] o 0]
E] o 0 -B2070 0 o 16ZE30) 0 o 81640 o 1] 0 0 0 -0&B7ES o 0 3.6156 o 0 -rores 0 o 0]
7 o L o -42410 o o 84040 o L 42340 1] 0 0 o 0 -10.186 1] 0 51744 0 0 -DasErs o 0]
i o 0 o 0 27010 o L] 54040 L o 26360 0 L] o 0 0 007405 o 0 0.2036 0 -DEEFEE 0]
3 o 1] o 1] ] 21840 1] o 183600 ] a -21620] 1] o 1] ] 0 -7.0793 o 0 34434 1] 0 07148
10] o 1] o 1] ] o 42340 o 1] 41350 a 0] 1] o 1] ] a 0 0443875 1] 0 0035352 ] 0]
1 o L o L o o 0 -2E960 o 26730 0 0 o L o 1] o 0 -DEETEE o 0 0448924 0]
12] 0 L o L o o 0 o 81620 o 1) 51040} 0 o L o 1] o o LUy 1 LX:S L o_0. 494225'

K estimative (Damage Pattern 4) Thecrical Stiffness Loss (%), according to reference [107]

1 2 3 4 1 7 & 3 10 n 12 1 2 3 4 ] B T ] a 0 1 12
1 2680 1] o 42650 o o 1] o 1] o a [ o 1] o a o o 1] o 1] ] 0]
2] o 48260 o L 27480 o 0 o L o 1] 0 0 s.8801 L o 1] o o 0 o L o 0]
3 o 0 154730 L o 52540 o o 0 o 1] 0 L] o 4.0 0 1] o o L] o 0 o 0]
4] 42850 1] o 78600 ] o 38080 o 1] ] a 0] 1] o 0 58567 a 0 N33 1] o 1] ] 0]
5| o 27480 o 1] 54060 o 1] 26330 1] ] a 0] 1] o 1] o ] o 1] o 1] ] 0]
§ ] 0| 2540 0 0 156750 0 0 -75EE0 13 0 of 0 ] 0 13 0 406 ] 0 -8.12 0 13 0l
7 1] [} 0 -3R090 [} 0 80460 1] 0 42830 0 of [ 1] 0 -1.313 0 0 56567 [ 1] [} [} [i
B [ [ [ 0 -26990 [ [ 54150 [ 0 -2THO [ [ [ [ [} 0 [} [ [] [ [ [} [i
9 [ 0 [ 0 0 .75%60 [ o 157ET0 [ 0/ -sz100) [ [ 0 [ 0 -8.12 [ [ 4.06 0 [ [i
0] o L] o L] o o 42530 o L] 41390 0 L] o L] o 1] o o L] o L] o 0]
1 o 1] o 1] ] o 1] -2T140 1] ] 26250 0] 1] o 1] ] a ] o 1] o 1] ] 0]
12] 0 0 o 0 o o L] o -82100 o a 31400} ] o 0 o a o o L] o 0 0 0
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Finally, for damage pattern 5 and 6, excellent results with an error less than 0.5% and
perfect location of damage is obtained, as shown in Table 4.6:

TABLE 4.6 Estimative for damage pattern 5 — Phase | — ASCE Benchmark problem

K estimative (Undamaged) Estimate Stiffness Loss (%)

1 2 3 4 5 & 7 g £l 10 n 12 1 2 3 4 5 ] T B El 10 1 12
1 3130 o L] 4270 1] o o L] o L] o 0] 0.024053 L] o L] o 1] o o L] o L) [
2] 1] 52340 1] ] 27200 ] o 1] o 1] ] 0] 0 28334 o 0 040441 a ] o 1] o 1] 0]
3 1] o 160830 ] a -820700 o 1] o 1] ] 0] o 0 12622 1] 0 -013436 ] o 1] o 1] 0]
4] -42710 o L 24320 1] o 42410 0 o L o 0] o 0 0 0otess o 1] o o L o L 0
Bl L] 27200 L] o B3T30 o o 2700 o L] o 0] 0 040441 o 0 DIZETE 1] o o L] o L] 0
| 0 o -B2070 o 0 1B2630 o 0 -B1B40 0 o 0f o 0 -013436 0 0 0104532 o o 0.01226 o 0 0f
7l L] o L] 42410 1] o 24840 L] o 42240 o 0] o L] o L] o 1] o o L] o L] 0
8 L] o L] o -27mo o o 54040 L] -ZBFE0 0] o L] o L] o 1] 0 0129534 0 -D2IETY 0
3] 1] o 1] ] a 21640 o 1] 163600 1] ] -&1620) o 1] o 1] 0 -001226 ] 0 0055046 o 0 -012267)
0} L] o 0 o a o 42340 L] o 41950 o 0] o L] o 0 o a o o 00023838 0 0l
) L] o L] o 1] o o -2B9E0 o L] 26730 0] o L] o L] o 1] 0 029674 L] 0 0149645 0
12| 0 o 0 o 1] o o 0 #1620 0 o B|U4U| 0 0 o 0 o 1] o 0 -0122E7 o 0_0.074033)

K estimative (Damage Pattern 5-6) Theorical Stiffness Loss (%), according to reference [107]

1 2 3 4 5 3 T 8 a 0 1 12 1 3 4 5 ] T & £l 1 1 12
1 310 o 0 42710 a o o L] o 0 0 [ o L] o 0 o a o o 0 o 0 [
2] L] 51440 L] o -2730 o o L] o L] o 0] o 2.9 o L] o 1] o o L] o L] 0
3 0 o 158800 1] 82230 o L] o L] o 0] o 0 13533 L] o 1] o o L] o L] 0
4] 42710 o 1] 24340 ] -42410 1] o 1] ] 0] o 1] o 1] ] a ] o 1] o 1] 0]
5 L] -27310 0 o 53830 o o 27010 o 0 o 0] o L] o 0 o a o o 0 o 0 0l
6] 0 o 82230 o a 162500 o 0 -F1650 0 o 0] o 0 o 0 o a o o 0 o 0 0l
7] 1] o 1] 42410 a ] 24340 1] o 42340 ] 0] o 1] o 1] ] a ] o 1] o 1] 0]
B L] o 0 o 27010 o o 54110 o 0 27040 0] o L] o 0 o a o o 0 o 0 0l
El L] o L] o 1] -B1B50 o L] 163590 L] o -F1Z0) o L] o L] o 1] o o L] o L] 0
10| 0 o 0 o 0 o -42340 0 o 41360 o 0| o 0 o 0 o 0 o o 0 o 0 0f
) 1] o 1] ] a ] o 27040 o 1] 2E7T0 0] o 1] o 1] ] a ] o 1] o 1] 0]
12| ] o 0 o a o o L] -F1620 0 0 EﬂODl 0 L] o 0 o a o o 0 o 0 0|

4.6 Variables Dependence

In the damage detection procedure using MTFRs and FDD only from output signals,
several variables have strong importance in the final results. A complete and mathematical

study of this topic is out of the scope of this research.

However, some brief comments based exclusively on numerical simulations and real case

studies will be mentioned here.

Additional information and some results of the FDD errors for load estimation using

output signals can be found in the reference [195].

The amount of installed sensor plays a crucial role in the final result. In general, a big
amount of the sensors are desirable, and even redundant information is always welcome (i.e.
sensors localized in symmetrical places in plan and elevation). It is so because the real

structure is not symmetrical and always the stiffness discontinuities exists.
165



Although it is not strictly necessary, it is recommended to have the same number of sensor
equal to DOF model that will be constructed.

For example, if only 5 sensors are available in a 30 story building, it can reliably identify
many structural frequencies (perhaps 10 or more) using MTFR. The matrix model
reconstruction beyond 5x5 not only have additional mathematical complications and but also
it's reliably decreases because of the lack of cross information to extract the singular values
from the scaled epdf.

A strong aspect of damage identification using MTHBD is the fact that the frequency
identification using MTFR is quite remarkable and also it is one of the most important things
in an output signal identification procedure, since the possible errors decreases considerably.

Regarding the noise effect this method is reliable, even for high noise levels. A 1.53% of
mean error in the stiffness prediction for 150 noise levels from to 0 to 20% in a 10 DOF

models can be seen in the following graphs:

Figure 4-20 Noise effect in stiffness predictions for a 10 DOFs model
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It is recommended to take long time duration records but the signal processing stage of
these records require computational effort and memory capacity, on the other hand in a

temporary field measurement program the allowed time for taking measurements is limited.

Therefore, it is recommended to take record length of minimum 10 — 30 minutes and of

course take as many as possible.

For a continuous recording program it is recommended to windowed (with overlapping

not less than 20%) the records in 30 minutes — 1 hour of length for computational efforts.

In the next graph, the results of record length variations for 10 DOFs models using 50
measurements of durations between 1 to 120 minutes are shown, for these cases the mean

stiffness error is 1.58%.

Figure 4-21 Length of measurement effect in stiffness predictions to a 10 DOFs model

According to the above analysis, it has been established that the amount of measurements

might be the most important factor, as shown in the Figure 4.22.
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It is important to indicate that for less than 5 measurements of 10 minutes, the stiffness
errors predictions were between 40% to 160%, not shown in the Figure 4-22 for clarity
purposes. Therefore, it is strongly recommended to avoid any structural damaged

identification using MTFR-FDD methodology with less than 5 sets of 10 minutes each.

Figure 4-22 Number of measurements effect in stiffness predictions for a 10 DOFs
model

By using 1000 structures and simulated 50 measurements of 10 minutes each, it was found
that in the 99.98% of the cases, the algorithm have errors of less than 2% in stiffness
prediction and when the structures have frequencies that are too close to each other, the error

increases.
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Figure 4-23 Stiffness error for 1000 simulated structures

In order to identify the location and severity of damage in the structure, a test has been
done using 80 structures of 30 DOFs, with a random damage (between 5% and 45%) in any

DOF (randomly chosen also).
In localization the 96% of the cases have been absolutely successful, and the remaining

4% failed with a maximum error of one DOF. The real and estimate damage localization is

presented in the following graph.
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30 DOF's, Damage Location: Random in any DOF, Damage Severity: Random between 5% - 45%
80 Structures, 20% Noise Level, 50 Measurements of 10 minutes each one Real DOF's
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Figure 4-24 Error in damage location predictions for 80 models of 30 DOFs

In the evaluation of the damage severity the results are also quite remarkable, the mean
error is less than 2% in all cases, in the following graph, the real and estimate damage

severity is presented.

170



Figure 4-25 Error in location for 80 models of 30 DOFs

In the following tables, the real stiffness matrices and its estimate for the structure number
5 is shown. This structure has been damaged in the DOF #14 with a damage of 22%, the
MTFR-FDD algorithm predicted an estimated damage of the 20.31% in the same DOF.

As it can be seen, not models, not material properties, structural geometry, types of
elements, supports conditions, cracking level (in the concrete structures cases) or connections
stiffness (in the steel structures cases), amount and distribution of dead and live load,

damping or stiffness values are used in the estimation.
The 900 terms of the stiffness matrix has been obtained aslygoisily output signals

recorded by equipment in the structure and processed with MTFR-FDD algorithm. Therefore

an error of around 2% is considered acceptable.
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TABLE 4.7 Estimation for a 30 DOFs Model
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4.7 Case Studies

In this section an attempt is made to show the results for real structures with seismic
instrumentation. The structures that will be shown are:
- El Castillo Building — Mayaguiez, Puerto Rico
- Robert Millikan Library — California Institute of Technology at Pasadena,
California
- Airport Control Tower — British Virgin Island

- Plaza Inmaculada Building — San Juan, Puerto Rico

For each one of these structures we will show the following:

- A brief description of the structure and its instrumentation

- An identification of the structure using real output signal and MTFR-FDD

- A Finite Element Model (FEM) using a computer structural program

- An identification and calibration of the FEM using the result of the structural
properties obtained from the real output signals, thus we attempt to match the
model results with real structure results.

- A comparison between real earthquakes recorded in the building (when it is
available) and output signal obtained from the FEM and MTFR-FDD models.

4.7.1 El Castillo Building — Mayagtez, Puerto Rico

El Castillo Building is a Reinforced Concrete Shear Building, localized in the city of
Mayagiez which is at the West of Puerto Rico Island, the general information is:

Name: “El Castillo Building”

Location: Road #2 — Mayaguez, PR.

Construction Date: 1992

Structural Designer: Walter M. Ruiz
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Total Levels: 21
Underground levels: 2
Height:
Total absolute: 203.83 ft (top of roof-stairs)
194.4 ft (roof floor)

Over ground height: 174.4 ft (roof floor)

Underground height: 19.66 ft
Earthquake & Wind Resistant System: Reinforced Concrete Shear Wall
Gravitational Load System: Reinforced Concrete Shear Wall
Floor System: Slabs thickness of 47, 5” and 6” (Two way slabs)
Concrete strength (28 days): 4.000 psi (basementtéddr)

3.000 psi (12 to roof floor)
Steel strength (reinforcement bar): 60.000 psi
Wall thickness: 10” (Basement to Lobby floor)
8" (Second to Roof)

Figure 4-26 Photo of El Castillo Building in Mayagiez, P.R. (photo by: L. Cano)
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A plan and elevation view of the building is shown in the following Figure:
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Figure 4-27 Elevation and Plan view of El Castillo Building

An ambient vibration test has been performed during five days (continuous recordings).
The typical acceleration recorded for several points in the roof floor in the “X” direction is

shown in the next Figure:
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Figure 4-28 Typical acceleration recorded from Ambient Vibration taken in several
points of roof floor in El Castillo Building

In the next Figure the continuous acceleration record for channel oriented in the “x”

directions is shown. As can be seen from the two small earthquakes recorded during the time

lapse

Figure 4-29 Five days of continuous acceleration recorded from Ambient Vibration
taken on the roof floor in El Castillo Building
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For the first 2.5 days of the record of the Figure 4-29, a 3D time-frequency representation
using the STFT is shown in the following graph:

Figure 4-30 Time Frequency Representation for 2.5 days of continuous acceleration
recorded from Ambient Vibration taken on the roof floor in El Castillo Building

It is necessary to use the technique developed in chapter 3 of this dissertation, at first the

Mean Time Frequency Representation is evaluated, it is shown in Figure 4-31.:
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MEAN TIME-FREQUENCY REPRESENTATION - EL CASTILLO BUILDING
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Figure 4-31 Mean Time Frequency Representation for El Castillo Building

From the MTFR of Figure 4-31, all dominant signals frequencies can be extracted,
although machines and structural frequencies appear together (i.e. the frequencies in 10.6 Hz
and 11.8 Hz).

The next step consists of the differentiation between real structural and external or
machines frequencies. In order to do that, the empirical density distribution can be
constructed around frequencies and by using the form criteria discussed earlier extract the

real structural frequencies.

In the Figure 4-32 the empirical probabilistic density distributions obtained from MTFR

are shown:
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Figure 4-32 Empirical Probabilistic Density Functions from MTFR of ambient
vibration test in the El Castillo Building.

Now using MTFR-FDD the relative and stiffness matrix of the structure can be evaluated.

In order to get an independent structural identification result, the continuous record of 5
days has been divided in five parts. By taking the first interval (day 1) and the last interval of

record (day 5), thus a three day gap between set has been established.

In the following Table the results of these two different identification process using
MTFR-FDD is shown (Note: Mass values divided by 1E6, and Stiffness values divided by
1EB8 for both sets):
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TABLE 4.8 Estimative for a 3 DOFs Model from El Castillo Building (Uncorrected)

Mass Matrix Estimative (First day) Stiffness Matrix Estimative (First day)
1 2 3 1 2 3
1| 0.35396413136143 | -0.78303150977644 | 0.39122637081562 1| 0.31296593745373 | -0.63748059554801 0131646257 480024
2| -0.78303150977644 | 1.58683940569779 | -0.79756562854860 2| -0.53748059554801 | 1.29857799555242 -0.6487 2840737885
3| 0.33122537081562 ) -0.75785562554560  0.35865234585825395 3| 0.31546257480024 -0.64872840737885 0.32408487452768
Mass Matrix Estimative (Fifth Day) Stiffness Matrix Estimative (Fifth Day)
1 2 3 1 2 3
1] 2.155154556455894  -4.36193560673253 | 2.17725489268950 1] 1.75761921106213 -3.555609691749592 1.77468181836639)
2| -4.38193560673253 | 8.52843484545719 | -4.4067 1063739082 2| -3.55560865174992 | 7.19293964533202  -3.59015646236029
3|_2.17725489268050  -4.4067 1063739082 _2.19960066623057) 3| 1.77458151536630 | -3.59015646236020 _1.79192781537580

As can be seen from Table 4.8, the mass matrix estimative and stiffness matrix change,
since the mass do not have any changes between measurements, the equations 4.29 and 4.31

can be applied. Therefore the corrected stiffness matrix for the two independent measurement

sets Is:
TABLE 4.9 Stiffness Matrix Estimative for a 3 DOFs Model from El Castillo Building
(Corrected)
Stiffness Matrix Estimative (First Day) Stiffness Matrix Estimative (Fifth Day)
1 2 3 1 2 3
1] 1.75659224260208 -3.551133348813500 1.77231566258022 1| 1.78761821106213 -3.55560868174882 ) 1 77468181836634
2] -3.55113334981350  7.17809805802336824 -3.58201748003450 2] -3.555609691749082 ) 7.19293064833202 -3 50015646236029
3] 1.77231566258922 -3 68281748003450 1.788175148208585 3| 1.77468181836630 -3.59015646236028 ) 1 79192781537580

From Table 4.9 is evident that no changes occur in the structure and according to the

damage definition no damage occurred between the first set of measures and the second set.

From the MTFR-FDD by solving the eigenvalue problem the modal matrix is:

TABLE 4.10 Modal Matrix Estimative for a 3 DOFs Model from El Castillo Building
Modal Matrix Estimative

1 2 3
0.01601236557993 -0.24501488092588 -0.30795239137751
0.452682360588460 -0.5275969 7660066 -0.547 18004901450
0.89145633224765 -0.613152180680056 -0.76179616665240

[

]

Using the traditional dynamic formulation [127], and from the results of MTFR-FDD and
tables 4.8 and 4.9, the following dynamic structural model can be constructed:
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[MI{s}+[CI{ O} +[ KX} ={ RO} ag

Where:

[M]: Mass matrix

[C]: Damping matrix.

[K]: Stiffness Matrix

{x(t)}: Displacement time history vectors (superscript dot represent time derivative)

{F(t)}: Force time history vectors

The coefficient of damping matrix@]) can be evaluated using:
T I
[o] [c][®] =g ] 435
Where:
¢ =2¢w
In order to do that, the damping coefficient was set to 5% of the critical damping for all

modes.

Using the frequency values extracted from MTFR (see Figure 4-31):

1.15356445
{f,}=11.330566406 (Hz 4-36
1.61132812

In addition, remembering that:

w, :Zﬂfj
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7.24743718513091
{w}=18.36019528943606  (rad/se 4-37
10.124273196719

Therefore:
¢ =2 w

0.72474371851309
{¢]} =10.83601952894361
1.0124273196719

4-38
0.72474371851309 0 0
(¢ ]= 0 0.83601952894361 0
0 0 1.0124273196719¢

From equation 4-35, and solving for [C]:

[c]=[[e]"| ¢ [le]]" 439

Using the modal matrix From the Table 4-10, and by replacing the equation 4-38 into 4-39:

1.93663707470189 -3.91870046593497 1.95595746351539
[C]=|-3.91870046593496  7.92937992638448 -3.FB242973 *E | 4-40
1.95595746351539  -3.95783078242975 1.97549272603928

Finally, by replacing the results from tables 4.8, 4.9 and equation 4-40, into the equation

4-34, the following equivalent dynamic structural system for El Castillo Building is obtained:
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[MI{x(} +[CI{ 0} +[ KI{ X8} ={ R}
Where:

2.15515455648894 -4.36193560673253 2.17725489268950
[M]=]-4.36193560673253 8.82843484845719 48571063739082 *H |
2.17725489268950 -4.40671063739082 2.19960966628057

1.93663707470189 -3.91870046593497 1.95595746351539
[C]= -3.91870046593496 7.92937992638448 -3.BWB242975% *E ¢
1.95595746351539 -3.95783078242975 1.97549272608928

1.75761921106213 -3.55560969174992 46818183663
[K]=|-3.55560969174992 7.19293964833202 -3.5WAE236029 *E !
1.77468181836639 -3.59015646236029 1.79192781537580 4-41

Using the Extend Tridimensional Analysis of Building Systems (ETABS — V.9.04)
computer program [201], a finite element model of the building has been constructed; the

schematic view of this model is shown in the next graph:

Figure 4-33 Schematic view of the Finite Element structural model for El Castillo
Building
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A comparison between MTFR apply to ambient vibration and a finite element model of
the structure can bee seen in the Table 4.11, the results are very consistent, the first three
modal frequencies and modal shapes can be obtained using the analytical model acquired
through MFTR-FDD:

TABLE 4.11 Comparison between MTFR-FDD and Finite Element Model for El
Castillo Building

Frequency [Hz)
Mode MTFR-FDD |ETABS

@ |~ o |en [ o b | —
w0 bk .

[

@

=1

I

o

~

e

Finally the output result for El Castillo Building from two different models will be shown,
the first one is the output signal of the finite element model building (ETABS model) and the
second one is the output signal from the 3 DOFs model obtained using MTFR-FDD.

The selected input signal is the EW acceleration record for the earthquake of Tokachi-Oki

of 2003, recorded in the Station TKCH11, (Mw=8.3), the acceleration recorded and the

Fourier Spectra are shown in the following Figures:
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Figure 4-34 Acceleration record and Fourier Spectra for Earthquake of Tokachi-Oki
(2003), recorded in the Station TKCH11.

Using the previous record, the two models of the building has been excited at the base and
the output signals for this event is shown in Figure 4-35:
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Figure 4-35 Comparison of output signal to El Castillo Building, from Etabs Model and
MTFR-FDD Model for Earthquake of Tokachi-Oki of 2003, recorded in the Station
TKCH11.

As can be seen, the match between two different models is quite good. In order to evaluate

the frequency match, the coherence function can be evaluated using [193]:
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V(@) = 4-42

Where:

S, (CU) , §y (CU) . Power Spectral Density for signal x and y respectively.
Sxy (CU) . Cross-Power Spectra Density Function between signal x and y.

szy (CU) . Coherence function between signal x and y.

For this earthquake the coherence function is shown is the following graph:

EL CASTILLO BUILDING - COHERENCE FUNCTION BETWEEN ETABS MODEL Vs MTFR-FDD MODEL (Welchs Method)
T T T T

0 | | | |
0 5 10 15 20 Ed

Frequency (Hz)

Figure 4-36 Coherence Function for El Castillo Building, from Etabs Model and
MTFR-FDD Model for Earthquake of Tokachi-Oki of 2003, recorded in the Station
TKCH11.

From the previous graph is evident that the single 3 DOFs model obtained using only
output signals from the building has an excellent agreement in frequency with the huge finite

element model of the EI Castillo Building.
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4.7.2 Robert A. Millikan Library - Caltech

The Robert A. Millikan Library is located at the campus of the California Institute of
Technology — Caltech at Pasadena Californa. It is a nine story shear-wall reinforced concrete
building.

Millikan Library is perhaps one of the most recognize instrumented building in the world.
Many technical reports of this building are available, geometry description and results of
several researches for this building can be found in the references [11, 16, 25, 26, 58-60, 90,
91, 113-117, 119, 121].

Some general data for Millikan library are [11]:
Full Name: “Robert A. Millikan Memorial Library”
Location: Campus of the California Institute of Technology at Pasadena (Cal.) USA
Construction Date: 1967
Structural Designer: Flewelling and Moody Inc. using ACI-318-63 and UBC-64
Total Levels: 10 (9 above the ground)
Underground levels: 1
Height:
Total absolute: 48.2 mts (top of roof-Wall lateral cover)
43.3 mts (roof floor)
Over ground height: 39 mts (roof floor)
Underground height: 4.3 mts
Earthquake & Wind Resistant System: Perimetral Concrete Shear Wall (N-S) and Columns
(E-W) and an internal Shear Wall Core
Gravitational Load System: Concrete Shear Wall and Concrete Columns
Floor System: Slabs 9” (Two way)
Concrete strength (28 days): 5.000 psi (basemefitflod) (Shear Walls and Columns)

4.000 psi (8 to roof floor)
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4.000 psi to floor slabs
Steel strength (reinforcement bar): 36.000 psi
Wall thickness: 12” (Basement to Roof) and a few Internal Shear Wall=10"
Column Section: 20"x36"
Beam Sections; 36"x24” and 16"x36”
Total Area per floor = 8.450%t
Shear Wall area in NS direction: 234 {.8% of Total Area)
Shear Wall are in EW direction: 73.8 (0.87% of Total Area)

The building has a permanent monitoring system and on-line records can be obtained
trough Internet from the COMET web site at http://www.comet.caltech.edu [113], in addition
a permanent copy of the data is stored in the Southern California Earthquake Data Center

[204] (Station MIK) Internet: http://www.data.scec.org/index.html

Figure 4-37 Photo of Robert Millikan Library Caltech (photo by: L. Cano)

A plan and elevation view of the building are shown in the following graph:
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Figure 4-38 Elevation and Plan view of Millikan Library (taken from COMET website
[113])

Although the building has an extensive set of permanent instrumentation (above 36
channels), actually only 3 channels localized in the nine floors are available from Internet

website. The building instrumentation is shown in the following graph:

Figure 4-39 Millikan Library Instrumentation (taken from COMET website [113])
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In the Figure 4-40 a typical continuous one day of recording (June 16/2005) is shown. The
Yucaipa earthquake can be seen in this graph, (Mw=4.9, Depth= 11.8 km., Epicenter distance
from Millikan Library ~ 125 Km)

Figure 4-40 Time History of a continuous 24 hours recording in Millikan Library

A linear time-frequency representation for the ambient vibration records from the building

can be obtained using ambient vibration real data, it is shown in the next Figure:
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Figure 4-41 Linear Time-Frequency Representation for 19 days of continuous
recording in Millikan Library
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Figure 4-42 Linear 3D Time-Frequency for 19 days of continuous recording in Millikan
Library

Figures 4-41 and 4-42 show that the Yucaipa earthquake of June 16/2005 produced a
temporary shift in frequency in Millikan Library of 6% (from 1.22 Hz to 1.15 Hz, the
frequency returned to its initial value of 1.22 Hz at the end of the excitation).

Long time continuous recording is a good way to understand the behavior of structures; in
this case linear time-frequency representation is an excellent tool for the analysis of small
frequency changes in the structure. For Millikan Library, for example, recently several
researchers [114-116] have demonstrated the correlation between the changes in building
frequencies and weather conditions, windstorms, daily temperature, rainfall and small

earthquakes.
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In order to apply the MTFR-FDD method for Millikan Library a continuous six days
record for the three channels available in SCEDC [204] was selected. The records beginning
at the 00:00:00 hours of June 12/2005 and ending at 23:59:59 of June 17/2005.

As can be seen from Figure 4-42 the select days include the two earthquakes (Anza and

Yucaipa), because of the interest in determining if any of these earthquakes has produced a
permanent damage in the building.

In the first stage 500 measurements of 1 min at a sampling frequency of 20 Hz has been
processed from 00:00:00 to 08:20:00 of Jurfe2a@05, prior to Anza Earthquake.

The MTFR for this first set is shown in the next graph:

MEAN TIME-FREQUENCY REPRESENTATION - MILLIKAN LIBRARY
(00:00:00 to 08:20:00 June 12th/2005)
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Figure 4-43 MTFR to Millikan Library (00:00:00 to 08:20:00 June 12"/2005)
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The next step consists of the differentiation between real structural and external or
machines frequencies.

In the Figure 4-44 the empirical probabilistic density distributions obtained from MTFR
for Millikan Library are shown:

EMPIRICAL PROBABILISTIC DENSITY FUNCTIONS
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Figure 4-44 Empirical Probabilistic Density Functions from MTFR from ambient
vibration for Millikan Library.
From Figure 4.44 and according to Brincker’s criteria [192], all frequencies identified

from MTFR are structural frequencies.

The procedure to get the MTFR for the second measurements set (JY2@0%Y has
been repeated and the obtained frequencies are the eigenvalues of the second identification

stage.
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Now using MTFR-FDD the relative and stiffness matrices for the structure can be
evaluated.

In order to get an independent structural identification result, the continuous record of 6
days has been divided in six parts. the first interval (day 1) and the last interval of record (day

6) has been taken, thus a four day gap between set has been established.

For each of those days 500 measurements of 1 minute each (8:20 hours) was used. In the
following Table the results of these two different identification process using MTFR-FDD
are shown (Note: Mass values divided by 1E5, and Stiffness values divided by 1E7 for the

first set and 1E8 for the second set):

TABLE 4.12 Estimative for a 3 DOFs Model for Millikan Library (Uncorrected)

Mass Matrix Estimative (2005-06-12 - First day) Stiffness Matrix Estimative (2005-06-12 - First day)
1 2 3 1 2 3
1| 0.86610022238664  -1.78673813325745  0.91174704877052 169189046181392 -3 27596341812187 | 1.670350323235308
2| -1.78673813325745 | 3 68662268561622| -1.68124981244445 -3.27506341812187 | 6.74219040299165 | -3.43775298869124
3| 0.91174704877052 -1.88124951244445 0 9599895479034 167035032335308 -3 43775298869124 1 75287216674734
Mass Matrix Estimative (2005-06-17 - Sixth Day) Stiffness Matrix Estimative (2005-06-17 - Sixth Day)
1 2 3 1 2 3
1] 1.65173770262574] -3 40620792606054  1.73795974528419 0.30003569873001 | -061751082584008 | 0.31488858624413
2| -240620792606054 | 7.02493679012762 -3.58437623852224 -0.61751082564908  1.27097352392202 | -064311463297627
3| _1.73795974828419 -3 58437623852224 | 1.82888323843600 0.31438858624413 -064811463297627 _0.33049753220312

As it can be seen from Table 4.12, the mass matrix estimative and stiffness matrix change,
since the mass do not have any changes between measurements, the equations 4.29 and 4.31
can be applied. Therefore, the corrected stiffness matrix for the two independent
measurement sets is:

TABLE 4.13 Stiffness Matrix Estimative for a 3 DOFs Model from Millikan Library
(Corrected)

Stiffness Matrix Estimative (First Day) Stiffness Matrix Estimative (Sixth Day)
1 2 3 1 2 3
1| 0.3035B8805658548  -0.62452422952140  0.31839988287863 1| 0.30003568873091 -0.61751082584908 0.31488858624413)
2| -0.62452422052140)  1.26473851126881 | -0 55500073648180 2| -051751052554008  1.27007362302202 -0.6451 1463207627
3| _0.31839080207863 -0 55500073646180 _0.33304008215651 3| 0.31488050624413 -0.64511463207627 _0.330407563220312
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From Table 4.13 is evident that no changes occur in the structure and according to the

damage definition no damage occurred between the first set of measures and the second set.

From the MTFR-FDD by solving the eigenvalue problem the modal matrix is:

TABLE 4.14 Modal Matrix Estimative for a 3 DOFs Model for Millikan Library
Modal Matrix Estimative

1 2 3
0.26683585929471 -0.02058653416948 -0.04124836657 365

0.5375745680859289 0.44218879415339 0.43882745710591
0.79584805302662  0.89643358342874 0.88782405H81245

[ =

(]

Using the traditional dynamic formulation [127] and from results of MTFR-FDD and

tables 4.8 and 4.9, the following dynamic structural model can be constructed:

[M]{} +[CI{ 30} +[ KI{ %0} ={ A9} 443

Where:

[M]: Mass matrix

[C]: Damping matrix

[K]: Stiffness Matrix

{x(t)}: Displacement time history vectors (superscript dot represent time derivative)

{F(t)}: Force time history vectors

Using common modal dynamic equations:

1.23 7.7283179278245
{1}={1728 (Hz) {w]=110.86362739608425 (rad/s 4-44
2,51 15.77079512094639
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And using 5% of damping:

1.15480555465352  -2.37931217422767 1.21363063741182
[C]=|-2.37931217422767  4.90281781536189 -2&MN8574906 *E 4-45
1.21363063741182  -2.50084048574906 1.27564071224913

Finally, replacing the results of tables 4.12, 4.13 and equation 4-45, into the equation 4-34,
the following equivalent dynamic structural system for Millikan Library is obtained only

from the output signals:

[M]{x} +[Cl{ o} +[ KI{ x(8} ={ R}
Where:
1.65173770262574 -3.40620792606054 1.73795974828419
[M]=]-3.40620792606054 7.02493679012762 5837623852224 *H E
1.73795974828419 -3.58437623852224 1.82888323843600

1.15480555465352  -2.37931217422767 1.2136306374]182
[C] =|-2.37931217422767 4.90281781536189 -2&BMA8574906 *E
1.21363063741182 -2.50084048574906 1.27564071224913

0.30003569873091 -0.61751082584908 148885862441
[K]: -0.61751082584908 1.27097352392202 -0.648B297/627 *E ¢
0.31488858624413 -0.64811463297627 0.33049753220312 4-46

Using the Extend Tridimensional Analysis of Building Systems (ETABS - V.9.04)
computer program [201], a finite element model of the building from the “As built” drawings
has been constructed, the schematic view of this model is shown in the next graph:
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Figure 4-45 Finite Element Model of the Millikan Library

A comparison between MTFR apply to ambient vibration and a finite element model of
the structure is shown in the Table 4.15, the results are very consistent, the first three modal
frequencies and modal shapes can be obtained using the analytical model acquired through
MFTR-FDD:

TABLE 4.15 Comparison between MTFR-FDD and Finite Element Model to Millikan
Library

Freq. ETABS |Freq. MTFR-FDD|Modal Participation Mass Ratios JCumulative Modal Participation
Mode {Hz) {Hz) L% U RZ Surnl} JSumly JSumBX
1 1.17121802 1.23] 70.1629 0.022 0.0748] 70.1628 0.022)  0.0337
2 1.815478406 1.73]  0.0321] 69.2128 0.0282| 70.195] BO9.234B) 974232
3 2.229635741 281 0.1 00876) 727828 70.305 69.3224 97.57
4 4574565416 5.37| 17.6725( 0.0205 0.0321] 87.9774] 69.3428) 875745
5 4.800837268 552 0.0085 1.019 1.89483| B7.9839 70.3619 9B.B686
B 6.444627758 G.B6| 0.0046] 29961 10.0807| 879885 73.358) 598.8943
7 6.525540967 77| 0.0072( 14.2869 2445) B87.9956| 87.6448] 59.6443
8 8.855795204 0.0558 0 0| BB.0515| B7.6448( 99.68444
g 5.982362552 0.0003) 01944 0.2522| 98.0518) ©7.8392) 59982
10 7.323432083 0.1538 0.004 0.0001| 86.2058| 87.8432) 99.8229
11 7.B52163267 0.0457 0 0| BB.2512 B7.8432 99.8229
12 8.171536903 B.564| 1.6¥56| 00018 0| B9.8269 87.845] 99823
13 B.632075085 0.1516] 00005 0| B9.9785| B7.8456[ 99823
14 9.621768289 24088) 00018 0| 923872 B7.B473[ 99.8231
18 10.76797174 0.2572]  0.0001 0.0001] 92.5445| 87.8474] 898231
18 11.38537781 1.886| 0.0028 0.2721| 94.5004) 878503) 598232
17 11.3918571 0.1116) 00083 51181 94.6121) 97.8586) 99.8236
18 12.25535253 0.0002) 15974 0.8422| 94.6122) 89.456) 599.8444
19 12.70825655 0.0083] 14605 0.8182| 94.6185) 909165 898774
20 13.07548477 0.5078) 0.0006 0.0005| 95.1204] 90.917) 998774
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Finally the output result for Millikan Library for two different models and the real record

will be shown, the first one is the output signal of the finite element model building (ETABS

model) and the second one is the output signal from the 3 DOFs model obtained using

MTFR-FDD and the final is the real record obtained from the Millikan Library.

The selected input signal is the NE270 acceleration record of San Simeon Earthquake
(December 22 - 2003, Mw=6.5), recorded in the basement of Millikan Library (PGA=3.4
cm/sec”2), Hipocentral Distance=322 Km.

For this earthquake recorded output signal in the building roof are available. Therefore it

is possible to make a complete comparison between the two analytical models (damping ratio

5%) and the real record. The time histories for the real record and the output signals from
MTFR-FDD and ETABS model are shown in the Figure 4-46.

25

20

Acceleration (cm/sec?2)
[e=]

TIME HISTORY COMPARISONS FOR SAN SIMEON EARTHQUAKE
(RECORDS IN MILLIKAN LIBRARY)

I

—

——

.
%“12:';'
—F

—— ETABS Model (Amax=17.3 cmfsec”2) at 13.12 sec)

—— Real Roof Record (Amax=20.3 cm/sect2) at 10.7 sec

Basement Record

0

—— MTFR-FDD (3 DOFs Model) {Amax=17.5 cmisec2 at 13.03 sec)

20 25 30 35 40
time (sec)

45

Figure 4-46 Time History Comparisons for San Simeon Earthquake recorded in
Millikan Library
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From the previous Figure is evident that there is an excellent correlation between the three
records, although in the lapse between 20 and 25 seconds the real record have a significantly

higher level than the two analytical models.

However, the results for the simple 3 DOFs model obtained from MTFR-FDD method
have a remarkable behavior, since the maximum acceleration predicted is only 15% less than

the real record (17.3 cm/sec”2 vs 20.3 cm/sec”2).

Regarding to frequency behavior, in the Figure 4-47 we can see a good correlation also

between real and numerical models.

FOURIER SPECTRA COMPARISONS FOR SAN SIMEON EARTHQUAKE
(RECORDS IN MILLIKAN LIBRARY)

25000
—— MTFR-FDD ({3 DOFs Model)
—— ETAES Model
—— Real Roof Record
Basement Record

20000

15000

Amplitude

10000

b

0.00 050 1.00 150 2.00 250 3.00 3.50 4.00 4.50 500
frequency (Hz)

Figure 4-47 Fourier Spectra Comparisons for San Simeon Earthquake recorded in
Millikan Library

Finally, the coherence function (Equation 4.42) has been evaluated and is shown in the
Figure 4-48. From this graph it is evident that a non-uniform good coherence is presented in
the whole frequency range. Therefore, it is recommended to take information from the other

sensors in order to enhance the models results.
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Millikan Library - COHERENCE FUNCTION BETWEEN ETABS MODEL Vs MTFR-FDD MODEL (Welchs Method)
T T T T T T

—— MTFR-FDD {3 DOFs Model) Vs ETABS Model
—+— MTFR-FDD (3 DOFs Model) Vs Real Roof Record
— — ETABS Model vs Real Roof Record

equency (Hz)

Figure 4-48 Coherence Function for Millikan Library, from Etabs Model and MTFR-
FDD Model for San Simeon Earthquake of 2003, recorded in the MIK Station.

4.7.3 Airport Control Tower — Beef Island (British Virgin Islands)

The Airport control tower of the British Virgin Island is in Beef Island, in the central zone

of Caribbean Sea.

The general information of Airport Control Tower is [202]:
Full Name: “Airport Control Tower — Beef Island (British Virgin Islands)”
Location: Beef Island — (682’ 18™W, 18°26’ 38”N)
Construction Date: 2001. Structural Designer: No data available
Total Levels: 7. Underground levels: O
Height: Total absolute: 25.73 mts (top of roof-Wall lateral cover)
Earthquake & Wind Resistant System: Concrete Shear Wall (thickness: 10” and 12”)
Gravitational Load System: Concrete Shear Wall
Floor System: Slabs 8” (One way)
Concrete strength (28 days): 3.000 psi. Steel yield strength (reinforcement bar): 60.000 psi
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Figure 4-49 Photo of Airport Control Tower of British Virgin Island. (Photo by: J.
Martinez-Cruzado)

In the next Figure a plan and elevation view of the Airport Control Tower are shown:

Figure 4-50 Plan view of Airport Control Tower of British Virgin Island. A) Base B)
One to 4" floor C) 5" Floor D) 6" floor (Taken from reference [202])
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Figure 4-51 Elevation view of Airport Control Tower of British Virgin Island. (Taken
from reference [202])

An ambient vibration monitoring test has been done during 22 continuous hours, the
general data of the ambient vibration test is:

Duration: 22 hours, 1 min, 23 seconds (79274 seconds)

Number of Channels: 3

Sampling rate: 100 sps

Start time: 7/30/2007 - 22:08:58.000 (10:08 p.m.) End time: 7/31/2007 - 20:10:21
(8:10 p.m.)

The acceleration record of longitudinal sensor placed onhéoér of the building is

shown in Figure 4-38:
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Figure 4-52 Acceleration record of ambient vibration test in the Airport Control Tower
of British Virgin Island.

From the traditional direct analysis of the ambient vibration (such as Fourier analysis) is
not straightforward to extract the fundamental frequencies of the system without the use of

additional building information. As it is evident in the next Figure:

Figure 4-53 Fourier spectra of ambient vibration test in the Airport Control Tower of
British Virgin Island (Horizontal Channels: 1 and 2, Vertical Channel: 3).
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Using a simple time-frequency representation such as a spectrogram, some useful

information about the system emerges, thus it is evident from the Figure 4-54:

Figure 4-54 STFT Spectrum for ambient vibration test in the Airport Control Tower of
British Virgin Island.

Observing the Figures 4.53 and 4-54, some frequencies can seen that looks like machines
(close to 40 Hz and between 25 to 30 Hz), and frequencies that seems to be from the

structure (i.e. near to 5 Hz), but this visual inspection is not absolute.

It is necessary to use the technique developed in this Chapter, first the Mean Time

Frequency Representation will be evaluated, as shown in the Figure 4-55:
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Figure 4-55 Mean Time Frequency Representation of ambient vibration test in the
Airport Control Tower of British Virgin Island.

From the MTFR of Figure 4-55, all dominant signals frequencies can be extracted,
although machines and structural frequencies appear together (i.e. the frequencies in 10.69
Hz and 11.85 Hz).

The next step consists in the differentiation between real structural and external or

machines frequencies from MTFR.

In the Figure 4-56 the empirical probabilistic density distributions obtained from MTFR is
shown, and from this Figure it is clear which frequencies are or which are not structural
frequencies.
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Figure 4-56 Empirical Probabilistic Density Functions from MTFR of ambient

vibration test in the Airport Control Tower of British Virgin Island.

Now using MTFR-FDD the relative mass and stiffness matrices of the structure can be

evaluated.

In order to get an independent structural identification result, the continuous record of 22
hours has been divided in two parts, the first interval between zero time to 10 hours (10:00
p.m. to 8:00 a.m.), and the second part between 12 hours and the final of record (10:00 a.m.

to 8:00 pm.), thus a two hours gap between set has established..

In the following Table the results of these two identification process is shown (Note: Mass
values divided by 1E5 and Stiffness values divided by 1E9) :
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TABLE 4.16 Estimative for a 3 DOFs Model from Airport Control Tower
(Uncorrected)

Mass Matrix Estimative (First 10 Hours) Stiffness Matrix Estimative (First 10 Hours)
i 2 3 i 2 3
1| 067347717481820] -2.33363415401125 | 1.39121254831664 1[ D 1BEEBEE2296403 05793241 2692466 | U.33792507911578
2| -239383415401125  B.44025015220022 -4.92693530566408 2| -0579z0412602066 2 02722405699632 | -1.18260924975239)
3|_139121254831664 4. 90593630566408_2,07491 320566494 3| o.3s750587911578 -1.16250924979239_0.6897 7550866141
Mass Matrix Estimative (Second 10 Hours) Stiffness Matrix Estimative (Second 10 Hours)
1 2 3 1 2 3
1] 0.45991850662484 -1.66564296968441 097847 183279040 1] 0.11352335306900  -0.405549569397 41 0.23742960312546
2| -1 6A9642069ER442 6 05479930501595 -3 55445IIR566057 2| 0405549569307 41 1 44ADB5IBI707Y5 | 0 BABIZINATEZT 15,
3| _097847183279041 -3 55446326568057 2. 05322096856133 3| 0.23742850312545 01 B4A72303752715 0 4966E026353635,

As can be seen from Table 4.16, the mass matrix estimation and stiffness matrix change,
since the mass do not have any changes between measurements, the equations 4.29 and 4.31
can be applied. Therefore, the corrected stiffness matrix for the two independent

measurement sets is:

TABLE 4.17 Stiffness Matrix Estimative for a 3 DOFs Model from Millikan Library
(Corrected)

Stiffness Matrix Estimative (First Day) Stiffness Matrix Estimative (Sixth Day)
1 2 3 1 2 3
1[ Uan3E56056E654E| -0.62452422052140 0 3183950267863 1[ 0 20003586573001 -0.61751082584408| (.314852556244 13
2| -0.62452422852140  1.284738511268881 -0.655000736848180) 2| -0B1751082564908  1.27097352392202 | -0.64811463297627
3| 0.31839989297863 -0.B55000736468180 0.33394088215651 3| 031488858624413 -0.64811463297627 0.33049753220312

The comparison between MTFR-FDD apply to ambient vibration and a finite element
model of the structure is shown, the FE model has been elaborated by N. Rojas and Matrtinez-
Cruzado [202], using ETABS[201] software.

As can be seen from Table 4.18, the results of the FE model [202] are very consistent with
the ambient vibration and MTFR-FDD results of this study:
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Figure 4-57 Finite Element Model for the Airport Control Tower of British Virgin
Island [202].

TABLE 4.18 Comparison between MTFR-FDD and Finite Element Model [202] for
Airport Control Tower

Frequency (Hz)
Mode MTFR-FDD |ETABS
1 2986 3.020
2 3.234 3533
3 11.862 9811
4 14620 14 982
5 16.667 19.045
6 22124 22 163
7 30,675 33.052
] 36.168 35573
9 40.984 43 800

Finally the output result for the Control Tower for the two different models is shown. The
first one is the output signal of the finite element model building (ETABS model) and the
second one is the output signal from the 3 DOFs model obtained using MTFR-FDD.
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The selected input signal is the acceleration record for the earthquake of Novethber 29
2007, recorded in the basement of the Airport Control Tower, (Mw=7.4, Depth= 140 Km,

Hipocentral Distance= 543 Km), the acceleration record and the Fourier Spectra are shown in
the following Figure:

of 11-29-2007 - in the (Channel 1)
of Airport Control Tower of British Virgin Island
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Figure 4-58 Horizontal Acceleration record and Fourier Spectra for Earthquake from
11-29-2007, recorded in the Basement of Airport Control Tower of British Virgin

Islands.
Using the previous record, the two models of the building has been excited in the base and
the output signals for this event is shown in Figure 4-59. From this Figure is evident that the

single model obtained using MTFR-FDD can predict the real output signal better:
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Figure 4-59 Comparison of output signal for Etabs Model, MTFR-FDD Model and Real
record for Earthquake from 11-29-2007, recorded in the roof of Airport Control Tower
of British Virgin Islands.
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4.7.4 Plaza Inmaculada Building — San Juan, Puerto Rico

For the first case, a complete system identification and damage detection evaluation of the
structure has been done using the MTFR-FDD technique. The second stage is the
development of a complete FEM for the Building and a comparison of the model results with
the MTFR-FDD.

The Plaza Inmaculada Building is located in the Santurce area in the city of San Juan
Puerto Rico. It is a 27 story shear-wall reinforced concrete building. The complex is
conformed by two slender twin buildings, and only the Torre Norte (or Plaza Inmaculada II)
has been instrumented. A view of the complex is shown in the Figure 4-60. In this Figure the
slender instrumented building can be seen. They are the most slender towers in Puerto Rico
[120].

Figure 4-60 View of Plaza Inmaculada Building (Photo by: L. Cano).
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Some general data for Plaza Inmaculada Building are [120]:

Full Name: “Plaza Inmaculada II”

Location: Santurce, San Juan, Puerto Rico, (Building is at: 18.44282 N, 66.06153 W)
Design Date: 1987

Final Construction Date: 1992

Desing Code: Puerto Rican Building Code (1987) and ACI-318-83

Total Levels: 27

Height: 253 ft

Mean Interstory height: 8.5 ft

Earthquake & Wind Resistant System: Reinforced Concrete Shear Walls
Gravitational Load System: Reinforced Concrete Shear Wall

Floor System: Slabs 5.5” (One way)

Concrete strength (28 days): 5.000 psi (basemerlt io®) (Shear Walls and Columns),
4.000 psi (18 to roof floor), 4.000 psi to floor slabs

Steel yield strength (reinforcement bar): 60.000 psi

Wall thickness: 8”, 10” and 12" (First Floor) and 8” and 10” (Second to roof floor)
Beam Sections: b=8" to 14", Depth: 14" to 36"

Total Area per floor = 5.400%Shear Wall area in NS direction: 256.5(#.75% of Total
Area), Shear Wall are in EW direction: 129.%5(%.4% of Total Area)

A plan and elevation view of the building and the installed instrumentation is shown in the

following Figure:
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Figure 4-61 Plan, Elevation and Installed Instrumentation view of Plaza Inmaculada
Building (Adapted from [120])

In the Figure 4-62 a typical continuous 15 hours of recording (December 26/2005) is
shown.

12/26/2005 12/27/2005

| n L I - L

ChE: RF W- e ; 3 : ¥ | b
L

Cha: RF - T

TR L . n
Ch &: 16th T ' ' |

Ch 5: 16th

e L Lo , " . L
Ch7:8th sz o ey gt y A 5 pntoss

Ch 4:8th

Ch1: BF v

Acceleration (cmis?) - Auto Scale +/-4.6e-001

R fofati + ’ 4 e
Ch2: BF : i Laams ot i $

" PR ) A . T o N N
Ch 3: GF % T T T i) T ¥ t

10:49a.m. 1:36p.m 4:22p.m 7:09p.m 9:56p.m. 12:42p.m 2:29a.m.
Local Time
Figure 4-62 Time History of a continuous 15 hours recording in Plaza Inmaculada
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As it can be seen from Figure 4-62, the amplitudes increase for higher stories and the
movements in the N-S direction (Channels 4, 5 and 6) are significantly less than the
movements in E-W direction for the same stories (Channels 7, 8 and 9). This is a clear
indicative of the stiffness differences between the strong (N-S direction) and weak (E-W
direction) axis of the structure. In Figure 4-63, a continuous recording of twenty days for the
Channel 9 is shown, in this graph the two small earthquakes can be noted which appear in a

spike fashion can be seen.

Figure 4-63 Time History of a continuous 20 days (Channel 9) recording in Plaza
Inmaculada

Using ambient vibration real data a linear time-frequency representation for the five days
of ambient vibration record windows (Figure 4-63) from the building can be obtained, it is
shown in the Figures 4-64 and 4-65:

Figure 4-64 Linear Time-Frequency Representation for a 5 days of continuous
recording in Plaza Inmaculada
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A 3D view of this linear time-frequency representation can be seen in Figure 4-65:
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Figure 4-65 Linear 3D Time-Frequency for a 5 days of continuous recording in Plaza
Inmaculada Building

Figures 4-64 and 4-65 show that the small earthquakes of August 14th "Ari2006
produced a temporary shift in the third frequency in Plaza Inmaculada of 4% (from 1.28 Hz
to 1.22 Hz, the frequency returned to its initial value of 1.28 Hz at the end of the excitation).
The previous temporary frequency shift is not due to damage. For this building the third
frequency is the fundamental translational mode in the strong direction (N-S) of the building
and it will be discussed in detail furthermore.

In order to apply the MTFR-FDD method for Plaza Inmaculada, two years of available
data were selected, the previous continuous 20 days record for nine of the fifteen channels
available in Plaza Inmaculada (the six input channels in the building basement are not used
due to the philosophy of this research).
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As can be seen in the Figure 4-63 the selected days include the two small earthquakes of
August 14" and 1%8' of 2006, because of the interest in determining if any of these
earthquakes had produced a permanent damage in the building.

For the first stage 500 measurements of 1 min at a sampling frequency of 200 Hz has been
processed from 00:00:00 to 08:20:00 of Augusf-2Q06, prior to August 4 and 15th
Earthquakes. The MTFR for the first set is shown in the next two graphs:

Figure 4-66 MTFR from DC to 100 Hz for Plaza Inmaculada Building (00:00:00 to
08:20:00 August 11/2006) (Left: Linear Scale, Right: Logarithmic Scale)
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Mean Time-Frequency Representation (MTFR) for Plaza Inmaculada Building
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Figure 4-67 MTFR from DC to 10 Hz for Plaza Inmaculada Building (00:00:00 to
08:20:00 August 11/2006)

From the Figures 4-66 and 4-67 it is evident that there exist a lot of frequencies that
should be structural frequencies. If one knows what type of structure is the records from, one
can perform a direct elimination of several frequencies (i.e. in this case frequencies more
than 20 Hz), on the other hand the frequencies due to electric and electronic noise [206] can
also be eliminated, for instance frequencies at 28.66 and 59.5 Hz [206].

For other frequencies from non-evident source, it is necessary to perform a detail

separation using for example the empirical probabilistic density procedure.

In the Figure 4-68 the empirical probabilistic density distributions obtained from MTFR

for Plaza Inmaculada is shown :
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Figure 4-68 Empirical Probabilistic Density Functions from MTFR of ambient
vibration for Plaza Inmaculada Building.

From Figure 4.68 and according to Brincker’s criteria [192] all frequencies below 10 Hz
identified from MTFR are structural frequencies.

The procedure to get the MTFR for the second measurements set (AU@O08H has

been repeated and the frequencies obtained are the eigenvalues for the second identification
stage.

Now using MTFR-FDD the relative stiffness matrix for the structure can be evaluated. In
order to get an independent structural identification result, the continuous record of 20 days
has been divided in twenty parts. The first interval is corresponding to the record of August
11" (day 1), and the second interval corresponds to August 17th, thus a five day gap between

sets has been established and this gap includes the two small earthquakes from August 14
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and 15th. For each of those days we have used 500 measurements of 1 minute each (8:20
hours).

In the following Table the results for these two different identification process using
MTFR-FDD are shown (Note: Mass values divided by 1E6, and Stiffness values divided by
1E8):

TABLE 4.19 Estimative for a 9 DOFs Model for Plaza Inmaculada Building
(Uncorrected)

Mass Matrix Estimative (2006-08-11) Mass Matrix Estimative (2006-08-17)
1 2 3 4 Bl B T & 9 1 2 3 4 Bl B 7 & £
1 0015180 -0.009390 -0.003380 0011830 -0009070 0055260 -0.083500 -0.013430 0.030200 1 0020920 0008950 -0.018570 0023420 -0.009540 0018000 -0.025630 -0.0M3630  0.018630)
2 0008580 0.006830 0001620 -0007150 00058800 0038290 0047300 0008080 0020670 2 -0006360 0006340 -0004660 0002260 0000480 -0018640 0023280 0004830 -0010510
3 -0.003950  0.001820 0003010 -0005180 0002840 -0.011300 0014380 0003320 -0.008730 3 0018570 0004660 0052050 -0068570 0019890 0009170 -0.005170 0014980 -0.011500
4 001180 -0.007150 -0005180 0011800 -0007650 0041070 -0051260 -0010600 0023080 4 0028420 0002260 -0066570 0088110 -0027410 0001250 -0010010 -0023470 0022330
B -0.009070  0.005990 0002640 -0007650 0005890 -0.034460 0042580 0008210 -0.018650 s -0.009540 ) 0000450 0019390 -0027410 0012180 0015970 0020050 0005810 -0.0M0380
3] 0055260 -0.036290 0011300 0.041070 -0.034460 02160M0 -0.269030 -0.051030  0.117050 [ 0018000 0018640 0009170 0001250 -0.015970 0120190 -0.142730 -0.015660  0.052410)
7 -0068500  0.047300 0014360 -0051260 00425800 -0.268050 0332240 0063220 -0144720 T 0025630 0023250 -0005170 0010010 0020050 -0142730 0172110 0023970 -0 067610
g -0.013450  0.009090 0003320 -0.010600 0003210 -0051050 0083220 0012830 -0.028020, g 0013630 0004390 0014960 -0.023470 0005810 -001S660 0023970 0016660  -0.020590]
] 0030200 -0.020670 -0006750 0023080 -0018550 0417050 -0.144720 -0028020 M a M 0010510 -0011500 0022830 -0010560 0052410 -0067610 -0020580 0035370
Stiffnes Matrix Estimative (2006-08-11) Stiffnes Matrix Estimative (2006-08-17)
1 2 3 4 = ] T 8 ] 1 2 3 4 s L] 7 8 il
1 0190200 -0.119100 -0.049300 0146600 -0113600 0637700 -0.851500 -0165700 0377000 1 0261500 -0.083000 -0.230400 0354300 -0.119700 0224500 -0318300 -0.163200  0.234100)
2 -0120100  0.087700 0022200 -0088200 0074700 -0481100 0580400 0417600 -0 266800 2 -0084300 0080700 -0056800 0028000 0006000 -0.233000 0289200 0063300 -0136100
3 -0.050400  0.022800 0037000 -0.084200 0032100 -0140200 0177800 0.043000 -0.086000) 3 -0.234000 0053700 0641300 -0.839800 0.242600 04113000 -0.084200 0194300 -0.145600|
4 0146700 -0.085900 -0064800 0143500 -0039300 0516700 -0651800 -0134300 0231600 4 0356600 0026100 -0834700 1122600 -0361100 0015800 -0125400 -02858300 0292500
B 015800 0.076800 0033000 -0095000 0073900 -0.439300 0545200 0401600 -0.237300 s 021800 0006200 0250400 -0343700 0154400 -0.205100 0254400 0071500 -0.135100
3] 0635400 -0.475500 0142700 0522300 -0425800 2643400 -3.358500 -0645200 1465600 [ 0223200 0230900 0116500 0015900 -0.188900 1.447000 -1.769800 -0.196200 0651100
7 -0E83300 0587400 0182400 -0630700 0518800 -3407700 4 037300 0765700 -1 787100 T 03315000 0289100 -0065200 -0123100 0243700 -1.800100 2087300 0283500 -0837500
g 0463100 0114900 0041300 -0129100 0100800 -0625600 0759100 0150200 -0.345400] g -0163400 0062100 0186500 -0.267500 0071100 -0193000 0297600 0193500 -0.250700|
9 [1.367000 -0.26M00 -0085600 0289300 -0232600 0 1.386000 -1810000 -0344200 07885300 El 01227000 0131800 -0145000 0288300 -0131600 0625100 -0846100 -0254800 0446400

As can be seen from Table 4.19, the mass matrix estimation and stiffness matrix change.
Since the mass does not have any changes between measurements, the equations 4.29 and
4.31 can be applied. Therefore, the corrected stiffness matrix for the two independent
measure sets are:

TABLE 4.20 Stiffness Matrix Estimative for a 9 DOFs Model from Plaza Inmaculada
Building (Corrected)

Final Stiffnes Matrix Estimative (2006-08-11) Final Stiffnes Matrix Estimative (2006-08-17)

1 2 3 4 5 6 7 & 4 1 2 3 4 5 6 7 8 4
0190200 0118100 -0.043300 0146600 -0113600 0687700 -0851500 -0.165700 0377000 0189750 -0117603 -0048380 0145103 0113803 0689215 0852308 -0165978 03579466
-0120100 0057700 0022200 -0033200 0074700 04511000 0590400 0.117600 -0.266500) -0120295 0033210 0022223 00553584 0074575 -0.478625 0557593 0117668 | -0.267663
-0050400) 0022800 0037000 -0064200 0032100 -0140200 0477800 0.043000 -0086000 -005M52 0022826 0037086 -0065332) 0032200 -0139248 0178320 0043120 -008564
0148700 0058900 -0.084900 0149800 -0099900 0516700 -0651800 -0.134300 0291600 0149064 | -0053900 0084950 0150343 -0100781  0.519125 0642158 -0.134724 | 0293645
-0115600) 0076800 0033000 -0085000 0073300 -0439300 0545200 0101600 -0237300 -0115798 0077371 0033236 -0035925 0074665 -0442564 0540267 0101035 -0238600
0682400 0475500 -0.142700 0522000 -0425800 2643400 -3.359500 -0.645200 1 465600 0685224 -0474311 0143561 0522410 0420186 2624682 -3.373760  -0639592 1 .454136)
-0.653300 0567400 0162400 -0630700 05156800 -3407700) 4037300 0769700 -1.767100] -0.885983 0567380 0181037 -0530360) 0517543 -3.382986 4040614 0753546 -1.792679
-0163100 0114800 0041300 -01291000 01008900 -0625600 0789100 0150200 -0 3545400 -01B1242 0115437 0041389 -0129847 0100470 -0629160 0784909 0151242 -0 3541166
0.367000) -0.260100 -0085300 0289300 -0232600 1356000 -1.810000 -0.344200 0.753500) 0.367976 -0.259211 -0.085457 0200031 -0232419  1.396069 1511087 -0346746 0787312

oo~ m o o[

oo~ W =

From Table 4.20 it is evident that no changes occur in the structure and according to the

damage definition no damage occurred between the first and second sets of measurements.
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From the MTFR-FDD by solving the eigenvalue problem the modal matrix is:

TABLE 4.21 Modal Matrix Estimative for a 9 DOFs Model from Plaza Inmaculada
Building
Modal Matrix Estimative

1 2 3 4 A B 7 g J
0.000500 -0.022200 0.008900 -0.007600) 0.071100 0.075800 0.051200 0.052100 -0.023600
0.002100 -0.092600 0.040000 -0.019200) 0.202400 0.215400 0.072200 0.068100 -0.023100
0.005700 -0.237400 0102700 -0.021300) 0.256300 0.245400 0.166900 0.149200 -0.062200

0.013100] 0356900 0170400 -0.1082000 0.251300 0322100 02251000 0.230100 -0.135400
-0.055000| -0.444600) 0242000 -0.2421000 0.215200 0407600 0308300 0.307600 -0.183200
0.215300| -0.4230000 0330300 -0.262800 0.256300 0435200 0339600 0.386700 -0.305900
-0.350300| -0.4038000 0418000 -0.369300 0.351000 0.417500 0412500 0.426400 -0.417600
0.543600| -0.3787000 0506700 -0.559000 0502300 0346300 0451400 0.494000 -0.5265900
0712800 -0.3522000 0599600 -0.641000 0.581100 0362100 0547900 0.497400 -0.626000

WO e D kD —

Using the traditional dynamic formulation [127] and from results of MTFR-FDD and
tables 4.20 and 4.21, the following dynamic structural model can be constructed:

[M]{x} +[Cl{ 30} +[ KI{ (0} ={ (Y} 4-47

Where:

[M]: Mass matrix

[C]: Damping matrix

[K]: Stiffness Matrix

{x(t)}: Displacement time history vectors (superscript dot represent time derivative)

{F(t)}: Force time history vectors

Using data from MTFR-FDD:
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0.660 4.1469
0.952 o816
1.280 8.0425
3.180 19.9805
{f}=13630 (H) {w)=122.808¢ (radise 4-48
4.180 26.2637
7610 47.815(
7.860 49.3854
8.400 52.7788
And using 5% of damping:
[ 0.1216 -0.0703 -0.0504 0.1128 -0.0680 0.3533 -0.4423 -0.1018 10.2076
-0.0703 0.0537 0.0001 -0.0367 0.0367 -0.2636 0.3253 0.0634 40.1428
-0.0504 0.001 0.1047 -0.1398 0.0470 -0.0402 0.0622 0.0423 -0.0534 4-49

0.1128 -0.0367 -0.1398 0.2141 -0.0899 0.2366 -0.3089 -0.1002 |0.1705
[C] =| -0.0680 0.0367 0.0470 -0.0899 0.0560 -0.2338 0.2883 0.0585 (01EAB9
0.3533 -0.2636 -0.0402 0.2366 -0.2338 1.5247 -1.8670 -0.3342 |0.7950
-0.4423 0.3253 0.0622 -0.3089 0.2883 -1.8670 2.2932 0.4204 10.9853
-0.1018 0.0634 0.0423 -0.1002 0.0585 -0.3342 0.4204 0.1052 40.2040
0.2076 -0.1428 -0.0534 0.1705 -0.1289 0.7950 -0.9853400.2D4429

Finally, by replacing the results from tables 4.19, 4.20 and equation 4-49 into the equation
4-34, the following equivalent dynamic structural system for Plaza Inmaculada Building is

obtained only from the output signals:
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[M]{x(o} +[CI{ o} +[ KI{ X9} ={ F(9}

Where:

0.1518 -0.0989 -0.0398 0.1188 -0.0907 0.5526 -0.6850 -0.1345 1]0.3020
-0.0989 0.0693 0.0182 -0.0715 0.0599 -0.3829 0.4780090 -0.2067
-0.0398 0.0182 0.0301 -0.0518 0.0264 -0.1130 0.1436 0.0332 10.0678
0.1188 -0.0715 -0.0518 0.1180 -0.0765 0.4107 -0.5126 -0.1060 |0.2308
[M]=] -0.0907 0.0599 0.0264 -0.0765 0.0589 -0.3446 0.4258 0.0821 {P1E¥5
0.5526 -0.3829 -0.1130 0.4107 -0.3446 2.1801 -2.6903 -0.5105 |1.1705
-0.6850 0.4730 0.1436 -0.5126 0.4258 -2.6903 3.3224 0.6322 11.4472
-0.1345 0.0909 0.0332 -0.1060 0.0821 -0.5105 0.6322 0.1263 10.2802
0.3020 -0.2067 -0.0678 0.2308.18B5 1.1705 -1.4472 -0.2802 0.6844

0.1216 -0.0703 -0.0504 0.1128 -0.0680 0.3533 -0.4423 -0.1018 |0.2076
-0.0703 0.0537 0.00010.0367 0.0367 -0.2636 0.3253 0.0634 -0.1428

-0.0504 0.0001 0.1047 -0.1398 0.0470 -0.0402 0.0622 0.0423 -0.0534
0.1128 -0.0367 -0.1398 0.2141 -0.0899 0.2366 -0.3089 -0.1002 |0.1705
[C]: -0.0680 0.0367 0.0470 -0.0899 0.0560 -0.2338 0.2883 0.0585 01EXB9
0.3533 -0.2636 -0.0402 0.2366 -0.2338 1.5247 -1.8670 -0.3342 |0.7950
-0.4423 0.3253 0.0622 -0.3089 0.2883 -1.8670 2.2932 0.4204 +0.9853
-0.1018 0.0634 0.0423 -0.1002 0.0585 -0.3342 0.4204 0.1052 40.2040
0.2076 -0.1428 -0.0534 0.1705 -0.1289 0.7950 -0.9853 -0.2040 |0.4429

0.1902 -0.1191 -0.0493 0.1466 -0.1136 0.6877 -0.8515570.10.377(
-0.1201 0.0877 0.0222 -0.0882 0.0747 -0.4811 0.5904 0.1176 +0.2668
-0.0504 0.0228 0.0370 -0.0642 0.0321 -0.1402 0.1778 0.0430 +0.0860 4-50
0.1487 -0.0889 -0.0649 0.1498 -0.0999 0.5167 -0.6518 -0.1343 |0.2916

[K]: -0.1156 0.0768 0.0330 -0.0950 0.0739 -0.4393 0.5452 0.1016 61EF73

0.6884 -0.4755 -0.1427 0.5229 -0.4258 2.6434 -3.3595 -0.6452 |1.4656
-0.8833 0.5874 0.1824 -0.6307 0.5188 -3.4077 4.0373 0.7697 +11.7871
-0.1631 0.1149 0.0413 -0.1291 004 -0.6256 0.7891 0.1502 -0.3454

0.3670 -0.2601 -0.0858 0.2893 -0.2326 1.3860 -1.8100 -0.3442 |0.7888

Using the Extended Tridimensional Analysis of Building Systems (ETABS — V.9.04)
computer program [201], a finite element model of the building from the “As built” drawings

has been constructed, the schematic view of this model is shown in the next graph:
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Figure 4-69 Finite Element Model of the Plaza Inmaculada Building, (a) 3D View, (b)
Plan View of typical floor

Comparison between MTFR-FDD and the ETABS model is shown in Table 4.22. The
results are very consistent and it can be seen that the second mode is a torsional mode. Other
important characteristic is that the modes 7, 8 and 9 can not be obtained through the ambient
vibration. It is due to the fact that the physical sensors localization does not get enough
information about these modes. However, these modes can be reconstructed for the linear

range using signal interpolation methods.
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Nine modal frequencies and modal shapes can be obtained using the analytical model
through MFTR-FDD.

TABLE 4.22 Comparison between MTFR-FDD and Finite Element Model for Plaza
Inmaculada Building

Frequency (Hz) Modal Participation Cumulative Modal Participation
Mode MTFR-FDD ETABS |UX (N-S) JUY (E-W) |RZ SumUX (N-S) |SumUY (E-W} |SumRZ

1 0.660 0.739 0.0247) BB.E114) 0.0034 0.0247 B6.8114 0.0034
2 0.952 0.839 0.8007 0.0051 68.32 0.9254 FE.8165 BE.3234
3 1.280 0.934 70.6545 0.022] 0.8003 71.5799 BE.8385 B9.1243
4 3.180 3.073 0012| 176136 0.0207 71.582 84 4521 B59.1448
5 3.830 3.174 0BB858| 00325 15.0911 72.2778 84 4848 B84.2361
B 4.180 3.315 14.1458|  0.00B84| 0.8627 86.4238 B84 491 85.0837
7 G657 41488 00057 1.1524 80.5725 B4 4957 B6.2511
g 5.794 1.2197 00025  3.8537 §1.7921 B4 4993 §0.1048
g 5.933 0.0014 54268 0.0081 §1.7936 B9.9262 g0.1109
10 7.610 7.880 1 0.0002 0 41.7936 B9.9263 g0.1109
11 7.960 8.183 0.0437 D i 91.8373 89.9264 80.1108
12 8400 8717 0.0001] 0.0002]  0.0001 91.8374 89.9266 80.1108

Finally the output result for Plaza Inmaculada Building for different models and the real
record is shown. The first one is the output signal of the finite element model building
(ETABS model) and the second one is the 9 DOFs model obtained using MTFR-FDD. The
final comparison is made between the two analytical models and the real record obtained in
the Plaza Inmaculada Building for a small earthquake.

The selected input signal is the acceleration record for Earthquake of Jarfliarpa36
(Origin time: 04:10:17 UTC, Mw=4.0, Depth: 54.5 Km, Epicentral Distance: 116 Km),
recorded in the basement of Plaza Inmaculada Building (PGA=2.29 cm/sec”2, at 21.14 sec).

For this earthquake the output signal on the roof of the building was recorded. Therefore,
it is possible to make a complete comparison between the two analytical models and the real
record. The time histories for the real record and the ouput signals from MTFR-FDD and
ETABS model are shown in the Figure 4-70.
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TIME HISTORY COMPARISON
EETWEEN: MTFR-FDD MODEL, ETAES MODEL AND REAL RECORD ON THE ROOF

Acceleration (cm/sec”2)

| I —— MTFR-FDD Model (Amax=7.59 cm/sec*2 at 21.89 sec)
-8 Etabs Model (Amax=7.03 cm/sec"2 at 22.06 sec)

Recorded in the Roof (Amax=8.6 cm/sec’2 at 21.52 sec)

a |53 10 15 20 25 30 a5 40 45 a0 55 G0
Time (sec)
Figure 4-70 Time History Comparisons for Earthquake recorded in Plaza Inmaculada
Building

From the previous Figure is evident that there is an excellent match between the three
records. The results of the 9 DOFs model obtained from MTFR-FDD method have a
remarkable behavior, since the maximum predicted acceleration is only 1.3% more than the
real record (21.89 cm/sec”2 vs 21.52 cm/sec”2), and the predicted time of occurrence for this
peak is less than 0.17 sec the real record.

As can be seen in Figure 4-71, there is a good correlation between the real record and
numerical models frequencies.
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Figure 4-71 Fourier Spectra Comparisons for Earthquake recorded in Plaza
Inmaculada Building

Finally, the coherence function has been evaluated and is shown in Figure 4-72. From this

graph it is clear that a good coherence exists in the whole frequency range.

Figure 4-72 Coherence Function for Plaza Inmaculada Building, ( Etabs Model, MTFR-
FDD Model and Real Record for Earthquake of January 18 -2006 recorded on the
roof of the building).
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5 DAMAGE DETECTION USING TIME-
FREQUENCY ANALYSIS OF STRONG EVENTS
OUTPUT SIGNALS

A new method namely Time-Frequency Structural Damage Method (TFSDM) for
tracking the damage in instrumented structures during strong events will be proposed in this
chapter. One of the most remarkable characteristic of this method is that it uses only output

signals from the system and no additional structural information is required.

The method is based mainly on the direct association of system frequency changes during
the event with changes in stiffness and damping. Due to a very precise tracking of time-
frequency behavior of the system in association with the damping history, it is possible to

make an estimative of when, where and how much the damage is.

Initially, the methodological approach is shown and then, the basic equations for damaged

tracking are developed completely.

Numerical applications of methodology for nonlinear SDOF and MDOF are shown.

5.1 Time-Frequency for Structural Damage Detection Method
from Strong Events (TFSDDM)

A new method for damage detection using only output signals from the structure for
strong events like earthquakes, hurricanes, blast and explosion will be proposed in this

section.
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The difference between TFSDDM and the damage detection using ambient vibration of
the structure is that the TFSDM method does not attempt to use a complete matrix system

identification reconstruction.

For the proposed method no previous knowledge of the system is necessary and only a
rigorous frequency and damping tracking is required, in order to determine the answer to the
When, Where and How much the damage is (WWH)?

Obviously the exact answer to WWH is absolutely depended to how many sensors are
available and where they are located. Theoretically, if we have infinite number of sensors, we

can answer WWH with certainty.

The basic idea of the TFSDM is to evaluate the damage of the structure using the tracking
of frequency in the time-frequency plane for signals from the structural modes.

In order to do that, the original multicomponent signal is decomposed into single modes
(monocomponent signals) using the Empirical Mode Decomposition (EMD) proposed by
Huang [73], with the frequencies band limits (buffer zones) extracted from an initial TFR

analysis as it will be proposed in this Chapter.

Once the signal is decomposed into its monocomponents, for each modal component a
time-frequency transformation was applied (using TFR with fixed kernels like WVD, CWD
or RID or adaptive kernels like Kernel Adaptive Distribution or Adaptive Optimal Kernel)
and using this TFR we will track the frequency of this monocomponent signal in each time

instant, thus we evaluate the instantaneous signal frequency for each mode.
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Because for strong event the frequency changes are not only function of stiffness changes
but due to the changes in damping also, it is necessary to obtain the time history damping
variations. In order to obtain these damping variations, the Random Decrement Signature
Method (RDM) proposed by Cole [203] is used for each modal monocomponent signal,
previously extracted using EMD. The algorithm developed by Bejarano [222] has been
enhanced through a three step method proposed in this thesis. The proposed method for

damping tracking is namely the Improvement Random Decrement Method (IRDM).

Finally, the damage is evaluated from frequency and damping changes of the system

instant by instant, using the equation developed in the next section.

A schematic representation of this process for a 3 DOFs is shown in the Figure 5.1.
Regarding this Figure it can be seen that 3 different records have been taken from the
structure, for each one of these records a TFR is calculated using a bilinear time-frequency
representation or an adaptive time-frequency distribution. Using this TFR plane we can
generate several buffers zones around its main values, it is the constraint for the EMD
method. Next the modes are separated in each channel using the EMD and for these separate
signals a TFR-IRDM is applied in order to get the damping time-history. Finally the damage
detection for each independent modal signal for each channel using the tracking of the
frequency history is obtained from its TFR according to the procedure that will be explained

in this Chapter.

The proposed method for damage detection is straightforward and does not require any
human intervention or previous knowledge of the structural properties. Only the output
signals from the structure are required. For this reason this method is a perfect candidate to
be implemented in an on-line algorithm for real-time damage detection or a continuous

structural health monitoring program. However, this topic is out of the scope to this research.
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Figure 5-1 Schematic Process of Time Frequency Structural Damage Detection Method
(TFSDM) for a MDOF system.
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5.1.1 Mathematical Formulation for TFSDM

For a MDOF with external force the classical movement equation in matricial form can be
written as [127]:

[M{ (0} +[CI{ 50} +[ KI{ %} ={ A9} 51

Where:

[M]: Mass matrix, defined, positive
[C]: Damping matrix

[K]: Stiffness Matrix

{x(t)}: Displacement time history vectors (superscript dot represent time derivative)
{F(t)}: Force time history vectors

Using modal analysis and assuming classical damping, it can be proved [127] that the
coupled system of differential equation represented by equation (5-1) can be resolved as an

uncoupled system using a matrix transformation:

{x(v} =[@]{n(1)
Where:
[®]: Modal Matrix 5-2

{n(t)} . Displacement time history vector in dad coordinate

Replacing the equation 5-2 into equation 5-1, and pre-multiplying by the transpose of
modal matrix:

[o] [M][@]{i@} +[] [C][e){n®} +[®] [C][e]{n(} =[®] { F(1)}
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And using the orthogonal properties of the modal matrix the following uncoupled system

is obtained:
[1{7@)} +[C [{n®} +[Al{n®)} =[N ()]
Where:
[1]: Identity matrix
[é]: Diagonal Modal Damping Matri>(éj = ij) 5-3

[A]: Diagonal Eigenfrequency Matriédlj = wf)

[N(t)]: Modal Forces([N ()] =[] {F (t)})

/7(t): Displacement in modaoordinates (superscript dot imply tirdderentiation)

Any single equations of the (5-3) system have the following form:
i, (t)+2&wn )+ afnt) = N(t) 5-4

And its solution can be obtained using the Duhamel’s integral [127]:

(t)——_[ e " singy, (t-1)dr .

Thus the whole response of a MDOF can be evaluated by summation of individual
responses of SDOFs. The behavior of this single modal component can be evaluated by

decomposing the output signal into a single response of modal components.

The previous equation is only valid in linear range; in the case of non-linear range the
linear approximations between intervals can be used. A popular method for these types of

approximation is known as the incremental method.

Therefore by knowing the correct values of damping and frequency in a time interval for

any SDOF, its impulse response can be evaluated. Therefore, the only difference between

233



linear or non-linear response is that these values are constant for the first case and varies in

the second case.

Lets consider one of these SDOFs systems with constant mass and nonlinear behavior at

two different instants (end t.;). The systems will have the following frequencies:

Wy =a)n«/1—£2(ti) @, :\/Erﬁ parat =t
wdi+1 = wml Vl_fz (ti+1) ;wniﬂ = \’% parat = ti+1

5-6

As it can be seen the instantaneous system frequencies are functions of stiffness and
damping at this time (constant mass). Therefore, by knowing the instantaneous damping and
system frequency, the system stiffness as a function of mass can be evaluated. If the mass
does not change then the change in frequency is due to damping and/or stiffness changes.

The subscriptsi’, and ‘i+1’ indicate the values at instantsand t.;, where (t < t.q1).

From equation 5-6 it is evident that:

—_ / 2 / 2
wdi _a)qﬂ —Cl)r' 1_£i _wﬂﬂ 1_5”1 57

And remembering that:

w, = 2rf

wdi - wdﬂ = 2”( fi \/1_ Ctiz - fi+1 1_ iil) >8
Therefore:

\/%ﬁ—\/%dl—ﬁl = 277( fiy1-&° -1 ﬁl) 5-9
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Solving for k., from equation 5-9:

2

,[1—52\/51—277'(1:”[1_52_fi+1\/ 1- iil)
m 5-10
1_{51

K =

A relative stiffness change (damage) between the two time instants can be defined as:

Ak:%=l—% 5-11

Substituting the equation 5-10 into equation 5-11 the stiffness changes betweenjinstant t

and {;; can be express as:

m ﬁ\/ﬁrﬁ_m(fi 1-& - f, 1_5‘31)

Ak =1-—
5-12
K 1- iil

2

The equation 5-12 is a powerful tool for damage detection using time-frequency analysis,

because the damage can be tracked instant by instant for a SDOF system from the direct

interpretation of instantaneous frequency changes obtained from its time-frequency plane.

Note that in the equation 5-12, if no frequency and damping changes occur between the

two instants ther; andfi,; becomes equal and the damping factor will cancel each other.
Therefore, the stiffness changtk] becomes equal to zero and no damage is produged a

expected for this situation.

The subscriptsi®, and i+1’ indicate the values at instantsahd t.;, where (t< t+1), the

damage can be tracked during whole event as:
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ﬁf o1, 18 - 12

1- ftz 5-13

i+1

Ak(t)=1

At this point it is important to remember that according to the philosophy of this thesis
(only using the output signal information and not using any structural information), since
there are no available information about mass and initial system stiffness. But this is not a
problem, since there is no attempt in evaluating the “real” stiffness value and the goal is only
to evaluate the damage (the stiffness changes through time). Therefore, the prediction of
damage is in percentage of stiffness loss at a particular instant, and the total percentage of
stiffness loss at the final of strong event. Therefore, any value for the mass can be assumed,
the only condition is that this assumption does not change through the time, a good selection

is to set the mass value equal to one.

In fact when a nonlinear finite element model of the structure is used, the information will
only have meaning if the initial structural properties are compared with the final properties.

Therefore a percentage scale in all cases is always used.

For example, if we were to tell you that during a strong event the moment capacity of one
column is decreased by 300 KN.m, practically you would not have any idea about how much
the damage is. But if we were to tell you that the moment capacity of the column has been

reduced by 80%, you will immediately know that a severe damage has happened.

It is the approach of the TFSDM using only output signals that we can evaluate the

percentage losses of the stiffness for any MDOF-.
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5.1.2 Algorithm for Instantaneous Frequency Tracking Estimation for Quasi-
Monocomponent Structural Signals

The evaluation of equation 5-13 for structural damage detection requires instant by instant

estimation of the damping and frequency.

As aforementioned in the literal 2.3, for a perfect monocomponent signal the
Instantaneous Frequency (IF) can be evaluated using the first derivative of the phase
(Equation 2-36) and for multicomponent signals a weighted average of the instantaneous
frequency is evaluated rather than the instantaneous frequency itself (Equation 2-37).

However in real cases, direct application of Equation 2-36 is limited for some types of
machinery or perfect controlled systems, because it produces inacceptable high spurious
oscillations in frequency. The signal from the structures is not monocomponent, even if the
structure is a SDOF because the noise and external forces induced additional frequencies in
the system. Obviously, the signal for MDOFs is multicomponent. Therefore a direct
application of equations 2-36 and 2-37 is not adequate for signals from civil engineering

structures.

It is necessary to evaluate the (IF) from the TFR map; in order to do this a specifically
structural oriented algorithm is proposed. This algorithm deals with quasi-monocomponent
signals of SDOF structures. Since the output signal from MDOFs systems can be
decomposed in SDOF responses using the EMD. Only a frequency tracking algorithm for
SDOF is required.

The term quasi-monocomponent signals (namely here monocompoment signals) refer to
signals from SDFOs that are close to have only one main frequency at any time instant. In
fact, the signal is not a pure tone, because noise and imperfections in the EMD extraction
algorithm introduce non system additional frequencies.
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In the technical literature there exist methods for frequency estimation from TFR, because
this problem is common in other fields like communications, wireless, imaging processing,
medical signal analysis, radar, speech and others. The frequency estimation is strongly linked
to the optimal kernel design and optimal filter theory used to noise reduction [206]. By using
the optimal kernel design, it is possible to obtain free interference time-frequency
distributions [97, 129, 131-138, 144, 225)].

Fundamental concepts of the IF estimation can be reviewed in the classical papers of
Boashash [226, 227]. A common method for IF from TFR is based on determination of TFR
maxima [227, 228, 229], in the same way the method proposed is based on tracking of the

TFR maxima with the restrictions according to the structural source of signal.

The proposed algorithm is based on the principle that the IF is usually a slow varying
function. In a short interval, this function varies quickly for uncommon higher stiffness
losses. Therefore it is possible to limit the frequency tracking area in the time-frequency map
to the areas closer to the fundamental structural frequency (i.e. initial frequency of the

system).

Very often the time history contains a pre-event time interval that is useful in order to set a
pre-event system frequency. However, if no pre-event record is available, we can setup the
structural system frequency to the main value in the time-frequency map for a short window

length taken at initial instants record.

Next, the proposed algorithm for IF tracking of signal from civil engineering structures is
described:

1) For a real signax(t) (Obtained from a SDOF or an empirical mode obtained from a

MDOFs), evaluate the associated analytical signal by using:
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X(t)=x.()+ JHT (% (1)
Where:
JHT(X:(t)) : Hilbert Transform

2) If a short pre-event record interval is available (from Qy)othe initial frequency of

the system is evaluated using)f(t

f (t,) =arg ma#FT ( x(t) *w( t))‘

Where:
1 if 0<st<t
w(t) = ’
0 t, <t
Where:

FT: Fourier Transform
If the pre-event record interval is not available, then evaluate the initial system frequency
of the system using:

f (t,) =argmaxP, ¢ .f )
Where:

Pu(t,f): Is the time-frequency distribution of the analytical signal at an initial short time

length window.
3) Optional : Evaluate a direct mean instantaneous frequéRgy (or the signal, (Note:

Some times the instabld4, show trends that can be used for a final general

frequency trend comparison), using:
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HT(x (1) _ 4 % (9
. (t)zd(”(t):xr(t)d at d at HT(x (9)

am dt X2 () + HT2(9)
where:
x(t) : Real Signal
@(t) : Phase of signal
HT (x(t)): Hilbert transform ofx ( )

4) Using the maximum value of spectrogram, evaluate the mean time instantaneous

frequency IR, (t) using :
2

— im - Wik
IF_(t) =arg ma{m[’x(r)h(r t)e " dr

£=0. trax

Recommendation: Select a good set of winddwg)((lots of numerical simulations

shown in this research that 100 Hamming windows with 30% of overlap conduced to a

stable mean instantaneous frequency).

5) Evaluate the most common frequer(€y from the frequency history which has been

obtained in the step 4, this frequency is taken from a frequency histogram using:

f =arg ma>{hist( IF, (t))}

6) Perform a bandpass filter around {fi¢ obtained in the step 5. The lower and upper

limits will be set at 0.25f;) and 21f.) respectively.

7) Calculate a time-frequency transform for the filter signal obtained in the step 6.
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8) Evaluate the final Instantaneous FrequenEyt)) history using the maximum values
of the TFR obtained in the step 7, using:

IF (t) =argmaP ¢ f ) _,,

“max

9) Smooth thelF(t) (Optional): Using the information content in the TFR and the
concept of energy (like Arias Intensity) it is possible to evaluate the time intervals
when the energy have been introduced into the system. The smoothing process
consists of taking the frequency values of the tracking between the time interval when
En(t)=0.05 andEn(t)=0.97, these limits agree with common engineering practice for
Energy Methods and Arias Intensity. For frequencies outer of these limits the
frequency can be taken equalfg@andf=IF(ty). TheEy(t) can be evaluated using the

normalized time marginal of the TFR:

) jpx(t, f)df
By (t) ) 2rarg ma>(_[ P {.f )Jlf)

It is important to point out two aspects regarding the precedent algorithm. The first one is
the frequency limits for the bandpass filter of the step 6. It has the justification in the
structural response of any SDOF, thus it is physically impossible that any common structure
can have variations in its fundamental frequency beyond this limit. In the Figure 5-2 we can
see the frequency value in function of remanent stiffness (i.e. available stiffness) for any
SDOF (the mass value does not have any influence):
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Figure 5-2 Remanent Stiffness vs Unitary Frequency for a SDOF system

Although theoretically the Wigner-Ville have the major energy concentration around
fundamental frequency, there exist other bilinear TFR that is concentrated near to the IF [49,
56, 220, 224]. Therefore, a WVD or smoothed family can be used (i.e. a Cohen’s Class) for
IF estimation, if a fixed kernel type of TFR is selected. However other types of TFRs, such
as adaptive or optimal time varying kernels, can be used without requiring any modification
to the algorithm proposed. The algorithm is an off-line procedure working in a TFR map

regardless the procedure used in the TFR map construction.
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5.1.3 Empirical Mode Decomposition (EMD) with Time-Frequency
Bandwidths

The equation 5-13 is valid only for a SDOF, as it will be seen further on for these types of

systems (i.e. inverted pendulum, elevated tanks and others) its direct application is possible.

In general, the structures are more complex than SDOF models, the response of any
MDOF can be obtained as a summation of SDOF systems. This approach is valid in the
linear range and is acceptable in intervals of the non-linear range when the structural

properties do not change during these intervals.

In order to apply the equation 5-13 for a MDOF, it is necessary to perform signal
decomposition to extract from the signal, the modal components individually. Then the
proposed algorithm of the 5.1.2 can be applied to get the time history frequency variation.
This frequency variation jointly with the damping history are used in equation 5-13 to obtain
the stiffness loss time history.

There is not a unique way to perform this modal decomposition and in the technical

literature, several methods can be found as was mentioned earlier in Chapter 1.

Signal decomposition methods based on time-frequency and cross-time-frequency
techniques can be found in references [71, 72]. Decomposition methods based on Phase
Ratio Estimation from TFR can be reviewed in De Stefano et. al. [77] and Ceravolo et. al.
[78]. An interesting method using Smoothed Pseudo Wigner-Ville distribution can be found

in the reference [92].

Based on Gabor expansion, Zhang et. al.. [83], proposed a modal parameter identification

method. It can decompose each signal into uncoupled responses.

243



Renyi entropy can also be used in order to extract the basic components of a signal [177,
180, 183], as was discussed in chapter 3. It is a good criteria for time-frequency separation

and distribution performance.

In this research, the Empirical Mode Decomposition (EMD) will be used in order to get

the individual signals corresponding to each mode component.

The main reasons for selecting EMD is that there exist a lot of experimental and analytical
studies that support this method. It may be one of the most powerful methods actually
available for signal decomposition of non-stationary signals. This method is fully data-driven
and data-adaptive [209].

Another important issue is that EMD consider oscillation in signals at very local level and
it can be used for extraction of modes with nonlinear trends in time [214].

The EMD has its beginnings in 1998, when Huang et. al. [73] showed a powerful
approach for system identification of dynamic systems based mainly on empirical mode
decomposition and Hilbert transform. This method today is known as Hilbert-Huang
Transform (HHT). Huang proved that any real signal could be decomposed into n-empirical

modes and one residue such as:

x(t) => 6 (t)+r(t) 5-14
i=1
Where :
X(t): Original signal
Ci(t): component

I',(t): residue after sifting process.
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The extraction procedure has been explained in the original paper of Huang et.. al. [73],
additional explanation and algorithms can be found in reference [209], improvements of this
technique can be found in the references [89, 209-212], sampling effects and limits for EMD

can be reviewed in the references [210, 213].

Unfortunately, the EMD does not have a pure mathematical prove and it is based only on
an algorithm [73, 214, 217]. There were several attempts to link the EMD with the filter
bank theory and adaptive time filters to give a mathematical base to EMD [214, 215], but the
results had not been satisfactory.

Due to the fact that the mathematical base for the EMD is lacking, the general algorithm
description for performing EMD based on the references [73, 209] is sketched and a
numerical example of its operation will be shown.

According to [73, 209], the EMD process for a signal can be summarizing as:

1) Identify the positive and negative extremes @f

2) Interpolate between minimum and maximum extremes to ohta{t) @nd @.axt)

3) Compute the mean m(t) betwes(t) andenaxt)

4) Extract the detail from the original signal, thus d(t)=x(t) — m(t)

5) Take x(t)=d(t) and repeat steps 1 to 4 urdift) can be considered as a zero-mean

signal according to a stop criteria (this iteration process is namely sifting process)

6) Once the stopping criteria is achievedt) is considered an Intrinsic Mode Function

(IMF).
7) Evaluate the residual lika(t)=x(t)-IMF(t), and take a newhew(t)=Xoriginai(t)-IMF(t)
8) Repeat all the process for this n&(). The process end when no new IMFs can be

obtained from residuals or when the residue becomes small.

In the following graph a step-by-step representation of the EMD procedure is shown, this

graph has been adapted from Flandrin work [216] :
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Figure 5-3 Schematic Empirical Mode Decomposition procedure (adapted from
Flandrin [216]).

As it can be seen in Figure 5-3 the procedure for EMD starts with the evaluation of the

mean value between the local maximum and minimum of the original signal.

Next the first Intrinsic Mode Function candidate (IMF) can be evaluated by subtracting
the mean value (see picture (d) in the previous Figure) from the original signal, thus is shown

in the next Figure:

Figure 5-4 Evaluation of the Intrinsic Mode Function (IMF) (adapted from Flandrin
[216]).
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The IMF obtained in Figure 5-4 is the first mode contained in the signal. However,
according to references [73, 209-213] this IMF is not a pure mono-component signal, and it
IS necessary to perform an iterative process namely sifting [73, 209] to remove spurious

spikes from this mode.

The sifting process is similar to the main algorithm but in this case the IMF is evaluated in

the Figure 5-4 like the original signal.

Therefore, the local maximum and minimum of this IMF is obtained, next spline cubic
interpolation performed and evaluate a new mean value signal, and finally it is subtracted
from the original IMF the mean value. This depurate IMF is submitted again to sifting

process and the procedure will be finished when the stopping criteria is reached.

Figure 5-5 Sifting Process (adapted from Flandrin [216]).

As it can be seen in Figure 5-5, the mean value becomes a flat signal (zero amplitude) in

the sifting process iteration.
Huang et. al. [73] has established stopping criteria as standard deviation (S.D.) values

between 0.2 — 0.3, when the SD is evaluated using the equation 5-15. Other authors have
suggested different stopping criteria for sifting process [209, 218, 219].
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SD= ; ‘h‘k 1% 1 () )‘ 5-15

Where: SD: Standard Deviation from the two consecutive sifting results

h](k_l) (t) . Time history of precedent sifting operation

h](k_l) (t) . Time history of actual sifting operation

Once the sifting process has ended for the first IMF, this depurated IMF is extracted from
the original signal (signal (a) of Figure 5-2) and the residue is submitted to a new sifting
process in order to get a new IMF (second empirical mode), this new IMF is subtracted from
the previous residue and the process will continue. In the next Figure the results of EMD

process for the original signal (Figure 5-2 (a)) can be see.
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Figure 5-6 Final results of EMD applied to an original signal of Fig. 5-2 (Taken from
Flandrin [216]).
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Although the EMD procedure is quite simple, there are many evidence that show the final
IMFs are not necessarily mono-component, regardless of how many iterations were made
during the sifting process. Thus the empirical modes are not exactly isolated specialy when
its frequencies are close [218], the energy component is low [89]. Also EMD performs
poorly when the frequency content of the signal approaches the sampling frequency [210]

and when high noise is present in the original signal [219].

Although theoretically the Instantaneous Frequency (IF) of a monocomponent signal is its
phase derivative [49, 123, 127] (see the section 2.3), a direct evaluation of this mathematical

IF only produces good results if the signal is absolutely monocomponent.

The Hilbert-Huang method [73] applies reiteratively the evaluation of IF of IMFs obtained
from an EMD in order to get a time-frequency signal representation, this TFR is known as
Hilbert-Huang Transform. For structural applications, Huangs in a recent paper proposed a
preprocessing method prior to EMD evaluation [112] and other authors have also proposed

alternative methods for improving the EMD results [209, 219].

A preprocessing procedure was adopted in order to get a more reliable performance from
EMD. This process consists of applying a Time-Frequency transformation and decomposing
the original signal into narrow band signals. This approach has been proposed by Peng et. al.
[89] but by using wavelet transforms instead of the time-frequency representations. The
advantages of preprocessing the signal with time-frequency analysis is that, if the frequency
bandwidth of the signal submitted to EMD is not wide, then the output of IMFs becomes

almost monocomponent.

Suppose that there is an output signal corresponding to a two single degree of freedom
system. As a result of stiffness softening of the structure its frequencies will decrease. The

time history and Fourier Transform for this behavior are shown in the following Figure:
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Figure 5-7 Time History and Fourier Spectra for a 2 DOFs with stiffness softening

As it can be seen from Figure 5-7 there is no useful information using time or frequency
domain analysis.
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Figure 5-8 Time History and Fourier Spectra for a 2 DOFs with stiffness softening
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From the Figure 5-8 it is clear that two non-constant frequencies are presented in the
signal, and the information obtained from TFR can be used to establish two buffer zones
around principal frequencies of the system.

Thus the frequency evolution can be obtained directly from the TFR of the original signal
and by predefining two frequencies zones to perform the EMD algorithm. In fact this type of
pre-constrained has been mentioned by Huang et. al. in the EMD original paper [73] and
proposed to use a wavelet approach in the reference [89].

By proposing a +/- 0.3*(30%) in transition zones around frequencies and using these

parameters the buffer zones for TFR are:
50

45
A0

Buffer Zone
35

30

25

Fregquency (Hz)

20

Buffer Zone

1] 2 4 5 g 10 12 14 16 18 20
Time (sec)

Figure 5-9 Frequency Constrained Buffer Zones from TFR to use in EMD algorithm.
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Finally by applying the EMD algorithm in order to obtain the two empirical modes for this
structure. In this research the algorithms developed in the references [209, 216] is used.

The two IMFs (modes) are shown in Figure 5-10. It is important to note that only 2 IMFs
(empirical modes) are significant in Figure 5-10, and the other IMFs obtained can be ignored

by using correlation criteria as has been proposed in the reference [89].

Empirical Mode Decomposition
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Figure 5-10 EMD result of a signal from Figure 5-7
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5.1.4 Improving Random Decrement Technique with a Windowed Scheme
Obtained From Time-Frequency Bandwidths (IRDM)

Once the multicomponent signal has been decomposed in its intrinsic mode functions
(modes) using the procedure described in the section 5.1.3, the next step is to get the

instantaneous damping of the system.

Before describing the methodology for damping assessment, first let us show relative

influence of the damping in the system frequency change.

According to equation 5-13, if the mass and stiffness do not change, any frequency
changes is due to the damping change. Therefore, the frequency changes can be evaluated as

a function of damping changes. It is shown in Figure 5-11.:

Figure 5-11 Damping vs Frequency Changes

From the previous Figure is clear that a strong damping by itself is incapable of producing
a significant frequency change (.i.e. an enormous damping factor of 20% only produces a 2%
of frequency changes). Therefore damping is a secondary factor in frequency changes,
although high damping values can be indicative of inelastic damage, the primary key in
frequency changes is the stiffness. This theme has been controversial and at this time is the

subject of several studies.
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From the point of view of this research the mean instantaneous damping for each separate
mode will be evaluated seperately and then by introducing this damping in equation 5-13 in
order to take into account the damping effect in the frequency change.

Several methods have been proposed for damping assessment, specifically using time-
frequency methodologies in the references [66, 69, 71, 72, 74-78, 87, 93].

On the other hand, the Random Decrement Method (RDM) proposed by Cole [203] has
been used successfully as a powerful and computational efficient method to achieve a

damping estimation for structural systems submitted to random excitations.

The RDM is basically an empirical procedure for obtaining a pseudo free vibration
damped curve namely decay curve. This method has been proposed by Cole [203] using the

following expression:

Zx(l‘m +7)
J(T):””T 5-16

where:

X(t) : Time History
tn. Time at the threshold ¢yvalue is exceed by a sub-time history array (segments)
7 : Time index varying between zero to preset value.

M: Number of segments satisfying the threshold and time length.

The segments that satisfy the amplitude threshold and time length are superimposed into a
new time-lag axes and its mean value are evaluated using the equation 5-16. The result is a
pseudo free vibration damped curve that is a candidate for extracting the damping value and

the system frequency.
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In the next Figure, a schematic procedure for obtaining the pseudo free vibration damped
curve is shown. The selected signal is the NE270 acceleration record of San Simeon
Earthquake (December 22 - 2003,#6.5), recorded on the roof of Millikan Library.

The threshold amplitude value is set tg=¥2.5 cm/seT and the length of segmen) {s

set to 8 sec. Ten segments have been obtained as shown in the following Figure:

TIME HISTORY FOR SAN SIMEON EARTHQUAKE
(RECORDED ON THE ROOF OF MILLIKAN LIBRARY) (a)

Figure 5-12 Pseudo Vibration Damped Curve (PVDC) for Millikan Library: (a) San
Simeon Earthquake. (b) Segments and SVDC
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From the Figure 5-12(b), it is easy to apply the classical equation of logarithmic

decrement in order to get the damping [127]:

5:lln£ X ]: 278

J Xjis ) 1-&7
5 5-17
¢ = =
(2m)" + 07
Where:
¢: Damping

0. Logarithmic decrement

X1, %+1: Amplitude measurement corresponding to timesitl {+jT (T: Period)

In this particular case the damping obtainedt i2.6%

Although the RDM procedure appears to be easy and straightforward, there exist many
tricks and traps that can not be solved without an expertise intervention. To mention some of

the major problems:

a) For a whole record the damping obtained (if there is possible any) is a mean
damping, thus time history evolution of the damping is not extracted.

b) For multicomponent signals the damping is a mean damping of the system or the
corresponding damping of the system dominant mode.

c) The obtained damping is strongly depends on the amplitude threshold and segments

length, thus a unique solution is not guaranteed.

Unfortunately the RDM lacks a rigorous mathematical support, and it is not possible to

constrain an analytical solution for the aforementioned problems.
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In a recent research Bejarano [222] proposed two indicators in order to minimize the
uncertainty of a unique solution in the damping estimation (literal (c)). In the first one the
Pearson correlation coefficient. It is evaluated for a least square regression of the PVDC
maximums in a semi-log scale. The second indicator is the test of the null hypothesis.

Additional informations can be found in Bejarano’s thesis [222].

However the aforementioned problems related to time-history damping evolution (literal a)
and modal damping discrimination (literal b) have not been resolved in the Bejarano’s work.

For this reason in this research it was proposed to use the Bejarano’s algorithms [222]

with the following improvements:

1) For a multicomponent, given signal to perform the EMD with buffers using the
procedure shown in the section 5.1.3 in order to get single mode responses (quasi-
monocomponent signals).

2) For each quasi-monocomponent signal obtained in the previous step, establish a
scheme based on the selection of time windows according to frequency laws
obtained from TFR.

3) For each selected windows apply the Bejarano’s algorithms to obtain the mean
damping values for this window, thus the time-history evolution of damping for

each mode can be extracted with this approach.
The previous enhanced procedure is namely the Improvement Random Decrement

Method (IRDM), numerical applications of the IRDM will be shown in the section 5.2 for
SDOF models and 5.3 for MDOF models.
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5.2 Numerical Simulations for Time-Frequency Structural
Damage Detection Method (TFSDDM)

5.2.1 Single Degree of Freedom Models

In this literal the application of the TFSDDM for SDOF models will be shown, in order to
do that, the model of known properties is set and at several time instants its known
properties will be changed, the goal is to predict when and how much is the damage using
TESDDM.

For the evaluation of the output time-history of each structure a MatLab [125] program
has been developed. The main assumption of the program is that the dynamic non-linear
response of the structure can be evaluated using linear variation between time instants of
samples and set the new structural properties according to damaged values. Thus the
structural variations (if any exist) are supposed to be linear between two sample instants. The
response takes into account the initial conditions of the equilibrium equations at each time

intervals.

The use of any theoretical hysteretic behavior (i.e. bilinear, tri-linear, pinching) is avoided,
because in fact there is no information about the structural properties, thus not even the
material type which the structure has been made of, and only the output signals from the

response will be used.

Let consider a SDOF with constant mass equal to 1, initial stiffness equal to one (1), and

initial ratio of 3% with respect to critical damping.

For this system the following characteristics has been assumed:
- Random number of the damage occurrences (between 2 to 15) and random time
instants when these damages happened.
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- Random number of the amount of damages between 0% to 95% (stiffness loss)

- Random number of the damping changes and random number of the damping
values between (3% to 12%) and random time instants when these damping
changes are happening.

- Random input excitation with an earthquake like shape.

- For each time history of random output signal, a random white Gaussian noise is
added.

One thousand of these structures have been created and submitted to random external
excitation and the output signal has been analyzed using the proposed TFSDDM method, the

theoretical values have been compared with the predicted values.

In Figure 5-13, the procedure for generating these models is shown. Note that in the
proposed methodology only the output time-history is known. Therefore, the reliability of
damage estimative only can be evaluated in a probabilistic sense, as will be shown later on.

Figure 5-13 Schematic procedure to obtain the Estimation damage for SDOFs
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In the next section a completed damage evaluation for one of these 1000 structures will be
shown:
- Step One: Time history of the structural damping
The RDM has the limitation that the damping evaluation is an average damping of the
whole record. A Reduced Interference Distribution of the output signal is used in order to get
the time intervals when the frequency changes. By using these intervals, the original output

time series is divided and applied to the RDM method.

In the next Figure this procedure for the selected case study is shown:
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Figure 5-14 Time intervals obtained from TFR-RID to apply the Random Decrement
Method
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In Figure 5-14, four time intervals are clearly indentified from time-frequency plane.
Although for explanation purposes, the procedure has been made visually and the Gaussian
noise has been removed, the algorithm was developed to do this procedure automatically
(without any human intervention).

Using these four time zones, the output signal has been divided in the following intervals
(0-27 sec, 27-57 sec, 57-80 sec, 80-102 sec). For each one of these intervals the RDM

algorithms proposed by Bejarano [222] has been applied. In the next Figure the results of the
IRDM algorithms is shown.

Figure 5-15 Pseudo Vibration Damped Curves for each time intervals obtained from
TFR-RID
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Using the information of Figures 5-14 and 5-15, the estimate structural damping time-
history is extracted; it is shown in Figure 5-16. From this Figure an excellent agreement
between theoretical and estimate damping can be observed. A complete study of the
prediction quality of the RDM can be found in the reference [222], and this topic is omitted
in this thesis. It is only mentioned so if the whole signal is used for RDM, the estimative

damping is 6% (a constant time history damping to the Equation 5-13).
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Figure 5-16 Estimate structural damping time history and Theoretical damping time
history
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- Step Two: Time History of Instantaneous Frequency

The next step is the evaluation of the instantaneous time history frequency using the
algorithm proposed in 5.1.2. :

- The complex analytical signal is evaluated using the Hilbert transform.

- Using the maximum value of a time-frequency represent®ighf) for a short
window time (the first 10 seconds) an initial frequency equal to 0.156 Hz can be
calculated, the theoretical value is 0.1592 Hz (Unitary mass and stiffness) .

- The exact mathematical instantaneous frequency (time derivative of the phase) do

not produced any useful information in this case, as can be seen in the Figure 5-17.

Frequency (Hz)
I

1
0 10 0 a0 0 Eil 60 0 60 el 10
time (sec)

Figure 5-17 Instantaneous Frequency (IF) evaluated from Phase time derivative.

- Using the maximum value of spectrogram, evaluate the mean time instantaneous

frequency Ik, (t) using:
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1 I cifr
IF_(t) = arg maﬁﬁix(r) h(r-t)e' o

t=0.1

—Y-tmax

Thus is shown in the Figure 5-18, using 100 Hamming windows with 50% of overlap:

Spectrogram of Quput Signal (100 Hamming Windows)
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Figure 5-18 Spectrogram using 100 Hamming windows (50% overlap)

As it can be seen from Figure 5-18 the resolution of the spectrogram is not good. However,
it is useful for a frequency bandwidth limitation of the problem.

- The most common frequencff;) in the frequency history from spectrogram is
f=0.1172 .

- Next a bandpass filter around i@ is made, the filter limits have been taken as 0.03 Hz

and 0.23 Hz for lower and upper limits, respectively.
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Next a Reduced Interference Distribution of the filter signal obtained in step 6 has
been made, it is shown in Figure 5-19:
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Figure 5-19 Reduced Interference Distribution for Output Signal

The final stage is the evaluation of the final Instantaneous Frequé&itt)y Kistory using

the maximum values of the TFR obtained in the step 7, using:

IF (t)=argmaxP § f hi:m

“max
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In the Figure 5-20 the tracking of the IF(t) is shown:

Output Time History (Displacement)

=)
=]

= .
(=]

Displacement (cm)
3 o 8
%
| |

o | | |
1} 10 20 30 40 a0 B0 70 a0 a0 100
Time (sec)

Fourier Snectra Reduced Interference Distribution
04 T T .

035+ b

03k b

Tracking of Instantaneous Frequency (IF)

Frequency (Hz)
=]
b
L

o

b

L
Frequency (Hz)

o
m
1

oE b

0.05 0 b

D 1 1 L
0 s00 1000 1500 50 B0

Amp. Time (sec)

Figure 5-20 Reduced Interference Distribution for Output Signal

The previous IF(t) has been smoothed using the information of the time energy by using
the time marginal of the TFR, it is shown in Figure 5-21. Note that the energy axis appears at

the right side of the plot and it can be read in unitary normalized scale using:

) _[Px(t, f)df
S (t) ) 2irarg ma>(_[ P tf )if)
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Output Time History (Displacement)
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Figure 5-21 Reduced Interference Distribution for Output Signal

Using the limits from normalized cumulative energy, the initial value of the frequency can
be taken from zero to time when the cumulative energy is equal to 5% (0.05) and the final
value equals to the instantaneous frequency at the time when the cumulative energy is equal
to 97% (0.97).

Finally the time history stiffness loss is evaluated from the damping time history and the
Instantaneous Frequency time history by applying the equation 5-13.
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Figure 5-22 Comparative time history Stiffness Loss between theoretical and stiffness
loss from TFSDDM

As can be seen in the Figure 5-22, the stiffness loss prediction perform well correlate at
time (instant of occurrence) and value (stiffness loss). In this particular case the final stiffness
loss from the TFDDSM algorithm is 67%, the exact value of the random model is at 63%,
thus a relative error of the 6% (1-0.63/0.67=0.06).

One thousand of damage random cases have been made, a comparison between predicted
against theoretical damage is shown in Figure 5-23 for 100 of these cases. As can be seen in
this Figure the method appears to perform very well, However, the final question is how
much is the relative error for any particular prediction of the stiffness loss?
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Figure 5-23 Theoretical and Predicted Damaged Comparisons (Note: Connecting lines
are only for viewing purposes).

The answer to the aforementioned question is absolutely probabilistic, due to the fact that
there is not a close solution for the problem. This is true even if a sophisticated finite
element model of structure with millions of DOFs is used. There are enormous uncertainties
associated with the problem (i.e. materials, base conditions, external loads etc.). At this time
the structural engineering does not have the capacity for a collapse prediction [148] and the

response of structural models can be too different of the real responses even in the linear
regime [27].

Therefore, in this research a probabilistic evaluation of the performance prediction has
been developed using the random database of the numerical simulations. Because in this
work we do not appeal for any pre-established damaged pattern and all variables such as the
input signals, the number, level and time instants of the damage, the noise added has been
obtained in a random manner. Considering that the results are general and its validity can be
expanded for any damage pattern of SDOF models.
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First a distribution of the maximum relative error against occurrence probability is shown
in the Figure 5-24. From this Figure it is clear that relative errors above 10% have very low
probability of occurrence (i.e. below to 0.02). .

Probability of Ocurrence vs Maximum Relative Error in Stiffness Loss Prediction
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Figure 5-24 Probability of Ocurrence of Relative Error in Stiffness Loss Predictions.

The absolute excedence probability of any particular threshold error value is one minus its
cumulative occurrence probability and for the test database the following equation has been
obtained:

P.(x)=155.06x" - 151.0% + 53.3¢ - 9.1& 0. 5-18

where:
X;: Maximum Relative Error

Pe: Excendence Probability

A graphical representation of the equation 5-18 is shown in Figure 5-25:
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Figure 5-25 Excedence Probability for Relative Error in Stiffness Loss Predictions

If the equation 5-18 (or Figure 5-25) is taken as a representative of an ergodic process, it

is valid for establishing the following general observations for the damage method proposed

in this research:

The mean value of relative error in stiffness loss prediction is around 5%

Only 16% of the predictions have a zero error in its prediction

Errors in prediction above 25% have a minimum excedence probability (Less than
5%).

Error in prediction above 40% will never happen

For example if a threshold value of 25% in relative error prediction is taken, the reliability

of the method is 90%. In other word if a damage level of 30% is predicted, the real damage
level is in the interval (22.5% < 30% < 37.5%) with a 90% of probability that it is true. This

performance is quite remarkable if we consider that it has been obtained only using the very

short-length time series of structural output signals for strong events and no additional

structural information has been required.
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5.2.2 Multiple Degree of Freedom Models

In this literal the application of the TFSDDM for MDOF models is shown.

For testing the proposed methodology in this work the numerical example number 8
developed by Filippou and Constantinides [231] has been selected. The structure is a two
story steel frame submitted to the recorded motion of Erzican (Turkey) earthquake of 1992.
For nonlinear analysis of the model which include elements ditributed inelasticity
with 5 integration points along the span and discretization of each section in layers with
uniaxial material responsef231]. Additional information of the model and computational
capabilities of the FEDEASLab software can be found in the reference [231]. Geometry,

section types and vertical and horizontal additional loads are shown in the figure 5-26:
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Figure 5-26 Two story steel frame used for MDOFs testing (Taken from reference
[231])
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It is assumed that two horizontal accelerometers have been installed in the structure in the
floor of first level and the roof. According to the philosophy only the output signals of these
instruments are available and no other additional structural information is on hand. The

acceleration records obtained using FEDEASLab are shown in the next figure:

Figure 5-27 Acceleration records obtained in the building

The displacement records are obtained by using numerical integration and it is shown in
the Figure 5-28. From this figure a permanent displacement of 0.748cm at the level 1 and
3.1cm at the roof can be obtained, thus it is evident that the structure has a permanent

damage.
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Figure 5-28 Displacement records obtained in the building

A comparison between the linear and nonlinear response of the structure at the roof level
is shown in the Figure 5-29. It is clear that at the beginning of the record the two models
have the same response, but at the 3.12 sec the system have an important incursion in the
inelastic range and a permanent damage happened. In the real cases for strong motion events
the complete time-history of the linear response of the structure is not measurable and only

the real signal is obtainable (Nonlinear for this example).

Figure 5-29 Linear and Nonlinear Displacement Records obtained at the Roof
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Figure 5-30 Schematic Process of Time Frequency Structural Damage Detection
Method (TFSDDM) for a the FEDEASLab example 8 [231].

The system can be interpreted as a two degree of freedom system as shown in the Figure
5-30. Regarding to the schematic procedure for damage detection of Figure 5-30 it is
important to point out that the damping in the example 8 of reference [231] has been set to
2%. For this reason it is not necessary to apply the IRDM method and the equation 5-13

becomes:

i tig

Therefore the procedure for damage detection starts with an evaluation of TFR for each
recorded signal. It is shown in Figures 5-31 and 5-32, that the buffer zones have been

established in the time-frequency plane.
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Figure 5-31 Buffer Zones for Acceleration Record from Sensor 1 (Level 1).

Figure 5-32 Buffer Zones for Acceleration Record from Sensor 2 (Roof Level).
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From Figures 5-31, 5-32 it is evident that the two buffer zones can be limited from TFR
maps. It represents the time-frequency zone where the structural response of the two
component modes is concentrated. The initial system frequencies have set at 1.08 Hz and
3.49 Hz respectively. These values have been obtained using the first 2 seconds of the TFR

maps of Figures 5-31 and 5-32.

Using the buffer as constraints of the EMD algorithms [209, 216] it is possible to extract
the empirical mode functions for each output signal. The application of the EMD algorithm
produces several empirical functions for each independent signal (i.e. it is assumed that the
first two empirical functions of each signal with the buffer zones are the modes for each

recorded output signal). In Figure 5-33 the extracted empirical mode functions are shown:
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Figure 5-33 Empirical Mode Functions Extracted using the Buffer Zones of TFR maps.
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Regarding to Figure 5-33, it is important to point out that the most non-linear response is
for the mode 1 of the each recorded signal. Because the extracted empirical mode signals are
guasi-monocomponent, it is possible to apply the algorithm used for SDOF output signals
(see literal 5.2.1), in order to obtain the frequency tracking from the TFR maps and with this

link the frequency changes with the damage.

In Figures 5-34 to 5-37 the frequency tracking (red lines) for each empirical mode
functions are shown. In the same Figures the evolution of the energy (blue line) evaluated
from the TFR marginal can be read using the right lateral scale
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Figure 5-34 TFR for Empirical Mode Functions — Level 1 — Mode 1.
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Figure 5-36 TFR for Empirical Mode Functions — Roof Level — Mode 1
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Figure 5-37 TFR for Empirical Mode Functions — Roof Level — Mode 2

Finally by using the Equation 5-13 or its simplified version Equation 5-19 when the
damping is constant or neglected, it is possible to obtain the damage sequence (stiffness loss)

as it is shown in Figure 5-38:

Figure 5-38 Predicted Damage for a MDOF model
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6 TIME-FREQUENCY DAMAGE DETECTION
PROGRAM - TFDDP: A Graphical User Interface
(GUD

In this chapter the main characteristics of a Graphical User Interface program (GUI)
which has been developed in order to help in the process of damage detection using the

methodologies proposed in this research will be shown briefly.

The program named “Time-Frequency Damage Detection Program - TFDDP” has been
developed using MatLab®[125] language and the current version can be downloaded free of
charge in the web site of the Puerto Rico Strong Motion Program at the internet site:
http://prsmp.uprm.edu/or by contacting the author of this research on the e-teatdano-

s@hotmail.com

The current complete documentation and the Open File Archives can be downloaded
directly from the internet, due to the fact that the software is being updated continuously, not

many details are given here.

6.1 Software Requirements of TFDDP Program

The program developed is not a stand alone program in the sense that it is supported on
the MatLab base platform and some MatLab Toolbox and other Open File Programs

developed by others.

The main software requirements for the TFDDP are:
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- MatLab Program Version 7.14 [125] or higher for Windows.
- Signal Processing Toolbox [122]
- Time-Frequency Toolbox [123]

- Empirical Mode Decomposition Algorithms for MatLab developed by Flandrin et.

al. [209, 216].
- Random Decrement Technique Algorithms for MatLab developed by Bejarano
[222]

At the Puerto Rico Strong Motion Program webs@®LY the open file algorithms
developed in this research can be obtained, the other software requirements can be purchased
or acquired directly from the other developers. Internet Links for doing that can be found in

the Puerto Rico Strong Motion Program website.

6.2 General Description of TFDDP Program

The program does not have a strict sequence of operation, but obviously for doing some
task is necessary to make some preceding steps.

Basic knowledge in signal processing and time-frequency analysis is required to operate

the program. The bibliographic references have been provided in the previous chapters.

To start the program, it is necessary to install the software requirements mentioned in 6.1
and type “tfddp” in the MatLab prompt window.

Once the TFDDP has been initialized, a welcome window will be displayed in the screen

as is shown in the figure 6-1:
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Figure 6-1 Initial Screen of Time-Frequency Damage Detection Program - TFDDP

The program has been divided into independent modules:

File

Ambient Vibration
Strong Motion Events
Tools

About

Next a brief description of each module is presented

6.2.1 File Module

In this module the following procedures will be done:

Load the data previously saved in MatLab format (extension .mat)

Save the data in MatLab format.
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- Print the current graphic available
- Finish the tfddp program

A view of the screen when the Sub-Menu File is active can be seen in the figure 6-2:

Figure 6-2 Sub-Menu File

6.2.2 Ambient Vibration Module

In this module the following procedures will be done:

- Perform a Mean Time Frequency Representation for Ambient Vibration Signals
using any type of fixed kernel TFR included in the Time-Frequency Toolbox [123].

- Perform a structural system identification procedure using the MTFR results and
applying FDD methodology [124].

- Evaluate the matrix stiffness loss according to the procedure proposed in the

Chapter 4 of this research.

A view of the screen when the Sub-Menu Ambient Vibration is active can be seen in the
figure 6-3:
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Figure 6-3 Sub-Menu Ambient Vibration

6.2.3 Strong Motion Events Module

For any SDOF signal using this module the following procedures will be done:

o

Using a signal of a strong motion event recorded in a single channel one
can evaluate a Time Frequency Representation by using any type of fixed
kernel TFR included in the Time-Frequency Toolbox [123].

From the precedent TFR plane the macro-windows where the frequency
change can be selected.

Using the pre-selected windows of the previous step it is possible to apply
the RDM algorithms [222] in order to get the time history damping.

Using the completed TFR information plane the tracking of the frequency
can be evaluated in an automatic procedure.

For the previous time history frequency and damping changes, the stiffness

loss is evaluated in an automatic form.
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For any MDOF signal using this module the following procedures will be done:

o0 Select particular skeletons curves for constructing buffer zones center in
the skeleton to constrain the EMD results.

o Apply the EMD algorithms [209, 216] to get the quasi-monocomponent
signals corresponding to each SDOF modal component.

o Once the SDOF quasi-monocomponent signal has obtained it is possible to
apply the procedure developed in the SDOF module to evaluate the damage
for each one SDOF.

A view of the screen when the Sub-Menu Strong Event is active is shown in the figure 6-4:

Figure 6-4 Sub-Menu Strong Motion Events

6.2.4 Tools Module

In this module, several tools for signal analysis and pre-processing can be found.
For any single signal using this module the following procedures will be done:

o Perform a Baseline Correction using a Linear or Polynomial trend.
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o Evaluate Low Pass, High Pass and Band Pass Filters, using several
windows functions like Butter, Hanning, Hamming, Rectangular and
Gaussian.

0 Add Gaussian random noise.

o Perform a single Fourier Transform for a signal in the time domain or a
Inverse Fourier Transform for a complex signal in the frequency domain.

o Evaluate the Elastic Response Spectra to any damping coefficient between
Oand0.7.

o Evaluate the signal differentiation or signal integration in the time domain.

o Perform a Cepstrum Analysis.

o Convert K2 and ETNA digital records into TFDDP format (MatLab
format).

o Convert a single text file (in columns format) into TFDDP format.

A view of the screen when the Sub-Menu Strong Event is active is shown in the figure 6-5:

Figure 6-5 Sub-Menu Tools
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6.2.5 About Module

In this module, two options can be activated:

- Atopic help with link describing the main characteristics of the TFDDP

- An About window with the author information and the program version

It is shown in the Figure 6-6:

Figure 6-6 Sub-Menu Help
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7 CONCLUSIONS

In this work the capacity of the Time-Frequency Analysis together with other techniques
of signal analysis and system identification for structural damage detection using only output

data has been investigated.

According to the philosophy of this research only the output signal from structures has
been used. The damage has been defined as permanent changes of one or more structural
properties and it will be estimated from analysis of the output signals. It has been determined
that permanent changes in structural frequency can be associated with stiffness losses and

hence, damage.

Regarding the Time-Frequency Analysis, one of the first problems to use these
methodologies is the selection of a TFRs useful in dealing with signals from civil engineering
structures. In order to solve this problem a new objective methodology has been developed.
The methodology is based on four aspects, the first two directly associate with earthquake
and civil engineering application and the last two based on resolution and information
measure. Using the methodology proposed in this research it has been shown that from a
group of Cohen Class TFRs, the Reduced Interference Distribution have the best

performance dealing with signal from civil engineering structures.

The problems of damage detection using ambient vibration signal has been studied in
detail. The mathematical formulation of a Mean Time-Frequency Representation has been
developed and the remarkable and stable frequency detection of this representation has been
introduced as eigenvalues constraint in the Frequency Domain Decomposition algorithm

proposed by Brincker [124] for system identification.
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For structural and non-structural frequency separation, the direct observation of Time-
Frequency plane has been suggested and the shape method of scale Empirical Probabilistic
Density form has been adopted. An additional equation for the excendence coefficient based

on Time-Frequency information has also been proposed.

Regarding frequency separation of very close and coupled modes, the Cepstrum analysis
has been used and complemented with the evaluation of time marginals of the Time-
Frequency Representation. For the simulated data this proposed methodology showed a
good behavior. For coupled modes, the identification or separation between real structural
frequencies and non-structural frequencies for a narrow frequency bandwidth around natural
frequencies is not possible without using any additional structural information or information

about the external sources.

Using exhaustively simulated and real signals of ambient vibration, it has been proved that
the methodology proposed here is valuable for damage detection using output signal in a dual
scheme that require the data acquisition and system identification before and after the event.
The resolution of the MTFR-FDD method is remarkable but depends strongly on the amount
and location of sensors. A variable sensibility study has been made and it was shown that the
other important variable in the methodology is the amount of available records. Mean errors
in damage detection predictions have been established close to 2% and the predictions in

location have been quite remarkable.

Damage detection using output signals from strong event has been investigated. For
SDOF systems a mathematical relation that links the frequency and damping changes with
the stiffness loss has been developed. A complete scheme based on the frequency tracking
from Time-Frequency plane has been established and proved using numerical data. A
complete algorithm for the aforementioned frequency tracking has been proposed and proved.
A probabilistic study has shown that the reliability of the predictions of amount damage is
around 90%. The damping tracking has been made using the Random Decrement Method
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[222] with an improvement based on a windowed scheme obtained directly from the TFR
plane. For MDOF systems a mode separation has been proposed using the Empirical Mode
Decomposition (EMD) algorithms [79] enhanced with time-frequency buffers around the
main frequencies, once the MDOFs system is reduced to modal SDOFs, its TFRs are
evaluated and the developed algorithm for these cases is applied again.

A computer program has been developed and published as an open file in the internet
website of Puerto Rico Strong Motion Program. The program named “Time-Frequency
Damage Detection Program - TFDDP” has been developed using MatLab®[125] and the
current version can be downloaded free of charge in the web site of the Puerto Rico Strong
Motion Program at the internet sitettp://prsmp.uprm.edu/or by contacting the author of

this research on the e-mail: leocano-s@hotmail.com
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