DISINFECTION BY-PRODUCTS OCCURRENCE AND ESCHERICHIA COLIFORM REMOVAL IN A POINT-OF-ENTRY CISTERN PURIFICATION UNIT

by

Laura Camille Rodríguez-González

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

in

CIVIL ENGINEERING

(Environmental Engineering and Water Resources)

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

2012

Approved by:

Sangchul Hwang, PhD President, Graduate Committee

Raúl E. Zapata-López, PhD Member, Graduate Committee

Rafael Segarra-García, PhD Member, Graduate Committee

Freya M. Toledo, MS Graduate School Representative

Ismael Pagán-Trinidad, MSCE Director, Department of Civil Engineering and Surveying Date

Date

Date

Date

Date

ABSTRACT

This research aims to develop and test a Point-of-Entry Cistern Purification Unit (POE-CPU) to guarantee water quality for household purposes, with an emphasis on turbidity, E. coli removal and minimal occurrence of disinfection by-products (DBPs). Many countries, especially underdeveloped countries lacking water treatment plants, depend on rainwater collection for their water supply. There is great potential for this supply to be exposed to contamination at the collection point, due to pollution, animal waste and deposition of particulate matter. Other contamination factors, such as aged cistern structures, poor roofing maintenance, pipe corrosion, etc., can result in infectious diseases and other pathogenic illnesses. DBPs have been a rising concern for regulatory agencies, such as United States Environmental Protection Agency (USEPA) and World Health Organization (WHO), because of their toxicity and probable carcinogenic effects. With these factors in mind, a lab-scale POE-CPU, composed of gravel and sand filters and disinfection unit, was developed and tested. Rainfall was collected periodically, pumped through the system and disinfected with controlled amounts of sodium hypochlorite. Analyses were conducted for physiochemical and biological characteristics such as turbidity, pH and E. coli, and the concentration of trihalomethanes as surrogate DBPs in the effluent water. The POE-CPU achieved 44% removal of turbidity and 4-log removal of E. coli in disinfection samples but exceeded (barely) USEPA Drinking Water Standards. DBPs results varied greatly because of organic matter concentration in the water, but for the most part complied with the 80 ppb standard. Additional experimental runs were made either with calcium alginate (AG) bead or activated carbon (AC) as innovative addition for the removal of heavy metals. AG treatment excelled over both original and AC treatment by removing and average of 55% turbidity, producing no detectable DBPs and achieving 4-log removal of E. coli.

RESUMEN

Esta investigación tiene como objetivo desarrollar y probar una unidad de punto de entrada de purificación de cisternas (POE-CPU) para garantizar la calidad del agua para uso doméstico, con un énfasis en la turbidez, la eliminación de E. coli y la presencia mínima de productos de desinfección (DBPs). Muchos países, especialmente los países subdesarrollados que carecen de plantas de tratamiento de agua, dependen de la recolección de agua de lluvia para su abastecimiento de agua. Hay una alta probabilidad de que este suministro esté expuesto a contaminación en el punto de colección, debido a los residuos de animales y la deposición de partículas. Otros factores de contaminación, como la edad y el mantenimiento de la cisterna, el pobre mantenimiento de los techos, la corrosión de tuberías, entre otros, pueden resultar en enfermedades infecciosas y otras enfermedades patógenas. Los DBPs han sido motivo de creciente preocupación para las agencias reguladoras, tales como la Agencia de Protección Ambiental de Estados Unidos (USEPA) y la Organización Mundial de la Salud (WHO), debido a su toxicidad y posibles efectos cancerígenos. Con estos factores en mente, un POE-CPU a escala de laboratorio, compuesto por filtros de grava y arena y una unidad de desinfección, fue desarrollado y probado. El agua de lluvia se recolecto periódicamente, se bombeo a través del sistema y se desinfecto con cantidades controladas de hipoclorito de sodio. Se realizaron análisis para las características fisicoquímicas y biológicas tales como la turbidez, pH, E. coli, y la concentración de cloroformo en el agua efluente del sistema. El POE-CPU logro eliminar un 44% de la turbidez y una eliminación mayor de 4 log de E. coli en las muestras de desinfección, pero superaro levemente los estándares de la USEPA para agua potable. Resultados de DBPs variaron grandemente debido a la concentración de materia orgánica, pero para la mayor parte cumplieron con el estándar de 80 ppb. Otras corridas experimentales fueron realizadas con

cuentas de alginato de calcio (AG) o carbón activado (CA) como adición innovadora para la eliminación de metales pesados. El tratamiento de AG se destaco sobre el tratamiento original y el AC eliminando un promedio de 55% de la turbidez, produciendo concentraciones de DBPs no detectables y alcanzando una eliminación mayor de 4-log de *E. coli*.

To my loving and supporting parents,

Mílagros & Russell

ACKNOWLEDGMENTS

It is a pleasure to thank those who made this thesis possible, in particular my advisor and mentor Dr. Sangchul Hwang. Thanks to his encouragement and support I was inspired to further my studies in the field of environmental engineering and experience the field of research. I would also like to thank my committee members, Dr. Raul Zapata and Dr. Rafael Segarra for all their help in polishing this work for the scientific community. Finally I would like to show my appreciation to Ismael Pagán and Myriam Hernandez from Civil Engineering and Surveying Department and my colleagues in the Environmental Engineering Laboratory for their incredible support. I would forever be thankful for your help and hope that this work makes you proud!

TABLE OF CONTENTS

ABSTRACTii
RESUMENiii
ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
1. INTRODUCTION
1.1. Scope and objectives
1.1.1. Scope
1.1.2. Objectives
2. LITERATURE REVIEW
2.1. Rainwater harvesting and treatment
2.2. Escherichia coli
2.3. Filtering Media
2.4. Heavy metal adsorption
2.5. Disinfection by-products (DBPs)
3. MATERIALS AND METHODOLOGIES 11
3.1. Materials
3.1.1. Rainwater harvesting
3.1.2. Escherichia coli
3.1.3. Filtering media
3.1.4. Adsorption with calcium alginate beads
3.2. Methods
3.2.1. <i>E. coli</i> reactors and inoculation

3.2.2.	DBP's interaction with <i>E. coli</i> and humic acid	15
3.2.3.	Adsorption with calcium alginate beads	17
3.2.4.	Point of entry cistern purification unit (POE-CPU)	20
3.3. Ana	alytical method	23
4. RESUL	TS AND DISCUSSION	24
4.1. <i>E.</i> a	coli	24
4.1.1.	Life patterns	24
4.1.2.	<i>E. coli</i> inoculation	27
4.2. Dis	infection by-products	28
4.3. Cal	cium alginate beads	32
4.4. PO	E-CPU experiments	36
4.4.1.	POE-CPU runs	36
4.4.2.	POE-CPU run with AC	44
4.4.3.	POE-CPU run with AG	50
4.4.4.	Comparison between treatments	55
5. CONCL	USIONS AND RECOMMENDATIONS	61
REFERENC	ES	63
APPENDIX		65
A. <i>E. c</i>	coli inoculation	65
A.1. F	irst experiment	65
A.2. S	econd experiment	66
А.З. Т	Third experiment	67
A.4. F	Sourth experiment	68
A.5. F	ifth experiment	69
B. Dis	infection by-products	70

B.1. Exp	periments with rainwater and E. coli spike	70
B.1.1.	Experiment 1	70
B.1.2.	Experiment 2	70
B.2. Exp	periments with humic acid spike	71
B.2.1.	Experiment 1	71
B.2.2.	Experiment 2	73
C. Calci	um Alginate Beads	74
C.1. Ad	sorption Kinetics	74
C.1.1.	Experiment 1	74
C.1.2.	Experiment 2	74
C.2. Ad	sorption Kinetics	75
C.2.1.	Adsorption experiment 1	75
C.2.2.	Adsorption experiment 2	76
C.3. Filt	er column experiments	76
C.3.1.	Column experiment 1	76
C.3.2.	Column experiment 2	77
D. POE-	CPU experiments	78
D.1. PO	E-CPU run	78
D.1.1.	Experiment 1	78
D.1.2.	Experiment 2	79
D.1.3.	Experiment 3	80
D.1.4.	Comparison between all experiments with the POE-CPU	80
D.2. PO	E-CPU run with AC	82
D.2.1.	Experiment 1	82
D.2.2.	Experiment 2	83

D.2.3.	Experiment 3	84
D.2.4.	Comparison between all experiments of the POE-CPU with AC	84
D.3. PO	E-CPU run with AG	86
D.3.1.	Experiment 1	86
D.3.2.	Experiment 2	87
D.3.3.	Experiment 3	88
D.3.4.	Comparison between all experiments with the POE-CPU	88
D.4. PO	E-CPU treatment comparison	90

LIST OF FIGURES

Figure 1: Bead preparation
Figure 2: <i>E. coli</i> cultivation reactor preparation
Figure 3: <i>E. coli</i> reactors in shaker
Figure 4: Four reactor experiment setup 15
Figure 5: Reactor for DBPs and <i>E. coli</i> interaction
Figure 6: DBPs interaction with humic acid setup16
Figure 7: Batch reactor procedure for kinetics experiment 17
Figure 8: Lead sorption experiment setup 18
Figure 9: <i>E. coli</i> adsorption experiment setup
Figure 10: Filter column setup 20
Figure 11: Schematic of POE-CPU design
Figure 12: Sampling ports in the POE-CPU
Figure 13: POE-CPU photo 22
Figure 14: <i>E. coli</i> life patterns
Figure 15: Growth pattern for <i>E. coli</i> culture
Figure 16: Death pattern for <i>E. coli</i> cultures
Figure 17: Free residual chlorine concentration
Figure 18: CFU variation for <i>E. coli</i> inoculation experiments
Figure 19: Chloroform and residual chlorine variations in DBPs experiments
Figure 20: DBP and residual chlorine in experiment 2
Figure 21: Chloroform and residual chlorine plots for humic acid DBPs experiments
Figure 22: pH variation in humic acid DBPs experiments
Figure 23: AG beads before drying and after drying

Figure 24: AG kinetic adsorption results	33
Figure 25: AG sorption to 5 ppm lead solution	34
Figure 26: Sorption-Desorption results for AG and AC	35
Figure 27: pH variation in the gravel filter for all POE-CPU runs	37
Figure 28: pH variation in the sand filter for all POE-CPU runs	38
Figure 29: COD variation in the gravel filter for all POE-CPU runs	38
Figure 30: COD variation in the sand filter for all POE-CPU runs	39
Figure 31: Conductivity variation in the gravel filter for all POE-CPU runs	40
Figure 32: Conductivity variation in the sand filter for all POE-CPU runs	40
Figure 33: Turbidity variation in the gravel filter for all POE-CPU runs	41
Figure 34: Turbidity variation in the sand filter for all POE-CPU runs	41
Figure 35: Residence time plot for gravel and sand filters	44
Figure 36: pH variation in the gravel filter for all POE-CPU runs with AC	45
Figure 37: pH variation in the sand filter for all POE-CPU runs with AC	45
Figure 38: COD variation in the gravel filter for all POE-CPU runs with AC	46
Figure 39: COD variation in the sand filter for all POE-CPU runs with AC	46
Figure 40: Conductivity variation in the gravel filter for all POE-CPU runs with AC	47
Figure 41: Conductivity variation in the sand filter for all POE-CPU runs with AC	48
Figure 42: Turbidity variation in the gravel filter for all POE-CPU runs with AC	48
Figure 43: Turbidity variation in the sand filter for all POE-CPU runs with AC	49
Figure 44: pH variation in the gravel filter for all POE-CPU runs with AG	51
Figure 45: pH variation in the sand filter for all POE-CPU runs with AG	51
Figure 46: COD variation in the gravel filter for all POE-CPU runs with AG	52
Figure 47: COD variation in the sand filter for all POE-CPU runs with AG	52

Figure 48: Conductivity variation in the gravel filter for all POE-CPU runs with AG5	3
Figure 49: Conductivity variation in the sand filter for all POE-CPU runs with AG 5	3
Figure 50: Turbidity variation in the gravel filter for all POE-CPU runs with AG	4
Figure 51: Turbidity variation in the sand filter for all POE-CPU runs with AG	4
Figure 52: pH variation comparison between treatments	6
Figure 53: COD variation comparison between treatments	6
Figure 54: Conductivity variation comparison between treatments	7
Figure 55: Turbidity variation comparison between treatments	8
Figure 56: Free residual chlorine concentration for 1 st experiment	5
Figure 57: CFU variation for <i>E. coli</i> inoculation in 1 st experiment	6
Figure 58: Free residual chlorine concentration in 2 nd experiment	6
Figure 59: CFU variation for <i>E. coli</i> inoculation in 2 nd experiment	7
Figure 60: Free residual chlorine concentration in 3 rd experiment	7
Figure 61: CFU variation for <i>E. coli</i> inoculation in 3 rd experiment	8
Figure 62: Free residual chlorine concentration in 4 th experiment	8
Figure 63: CFU variation for <i>E. coli</i> inoculation in 4 th experiment	9
Figure 64: CFU variation for reactor 2 <i>E. coli</i> inoculation in 5 th experiment	9
Figure 65: Chloroform and residual chlorine plots for 1 st experiment	0
Figure 66: Chloroform and residual chlorine plots for 2 nd experiment	1
Figure 67: Chloroform and residual chlorine plots for 1 st experiment with humic acid	2
Figure 68: pH variation in humic acid DBP 1 st experiment	2
Figure 69: Chloroform and residual chlorine plots for 2 nd experiment with humic acid	3
Figure 70: pH variation in humic acid DBP 2 nd experiment	3
Figure 71: AG kinetic adsorption7	4

Figure 72: AG kinetic adsorption	75
Figure 73: AG sorption to 5 ppm lead solution for 1 st experiment	75
Figure 74: AG sorption to 5 ppm lead solution for 2 nd experiment	76

LIST OF TABLES

Table 1: Extract from USEPA Primary Drinking Water Standards	7
Table 2: Heavy metals in rainwater and their effect on human health	8
Table 3: Disinfection and their by-products	9
Table 4: Cancer risk assessment for DBPs at Aqua III	9
Table 5: DBPs regulation	. 10
Table 6: Sand distribution in secondary filter	. 12
Table 7: Specifications for filter column setup	. 19
Table 8: Summary of parameter analysis	. 23
Table 9: Life rates for E. coli cultures	. 26
Table 10: Characterization of AG beads	. 32
Table 11: Sorption-Desorption test setup and results	. 34
Table 12: E. coli % reduction for AG and AC	. 35
Table 13: Filter column results for both AG and AC	. 36
Table 14: POE-CPU run results comparison to USEPA standards	. 42
Table 15: Residence time in the POE-CPU at 5 GPH	. 43
Table 16: POE-CPU run with AC results comparison with USEPA Standards	. 50
Table 17: POE-CPU run with AG results comparison with USEPA Standards	. 55
Table 18: POE-CPU treatment comparison with USEPA Standards	. 59
Table 19: Rainwater quality variation	. 59
Table 20: Estimation of turbidity results for all treatments	. 60
Table 21: E. coli estimation results from all treatments	. 60
Table 22: Filter column results for both AG and AC for 1 st experiment	. 76
Table 23: Filter column results for both AG and AC for 2 nd experiment	. 77

Table 24: Water quality parameters for POE-CPU run 1 st experiment	78
Table 25: Water quality parameters for POE-CPU run 2 nd experiment	79
Table 26: Water quality parameters for POE-CPU run 3 rd experiment	80
Table 27: Normalized results for experiments with POE-CPU	81
Table 28: Water quality parameters for POE-CPU run with AC 1 st experiment	82
Table 29: Water quality parameters for POE-CPU run with AC 2 nd experiment	83
Table 30: Water quality parameters for POE-CPU run with AC 3 rd experiment	84
Table 31: Normalized results for experiments with POE-CPU with AC	85
Table 32: Water quality parameters for POE-CPU run with AG 1 st experiment	86
Table 33: Water quality parameters for POE-CPU run with AG 2 nd experiment	87
Table 34: Water quality parameters for POE-CPU run with AG 3 rd experiment	88
Table 35: Normalized results for experiments with POE-CPU with AG	89
Table 36: Normalized results for all POE-CPU treatments	90

1. INTRODUCTION

Throughout the last decades a substantial growth of the world population has caused an enormous increase in the use of our water bodies not only for human consumption but also for industrial uses and manufacture. With this growth come shortages of potable and clean water and an increase in wastewater production. Wastewater typically contains high concentrations of heavy metals, pathogenic and non-pathogenic bacteria as well as many other pollutants and is often discharged into rivers causing contamination. With this in consideration arises the concern as to where we will acquire sufficiently clean water for potable use in our country. Developed countries have already responded to this increase of polluted water bodies and have established water for the public, but many underdeveloped countries don't fare as well. According to the World Health Organization (WHO, 2011), 88% of the diarrheal deaths, which occur mostly in underdeveloped countries, are due to unsafe water, inappropriate sanitation and lack of hygiene. Because of this health risk factor many countries have turned their attention to rainwater as a cleaner and safer alternative water supply for every day needs.

Rainwater harvesting (RWH) is an old technology that is now being explored as a possible solution for water scarcity. Typical RWH occurs with water barrels connected to the residence or building roof spouts. The water collected can be and is used for non potable purposes, but with the appropriate treatment it has great potential for potable uses. Rainwater collected from roof spouts is not without its hazards. Rainwater quality can be influenced by many factors including air contamination, weather condition and biological contamination. Air contaminants, such as smog, cause the rainwater to be acidic and when in contact with any organic matter they will cause decomposition and production of other contaminants such as nitrates. Particularly to the

Caribbean, dust clouds from the Sahara desert cause increases in rainwater turbidity. Other weather phenomena, such as heavy rains and winds also affect turbidity. Biological contamination factors are influenced by birds and other animals that have contact with the roof. Most of the biological contamination comes from *Escherichia coliform* bacteria, better known as *E. coli*. This bacteria is a natural stomach flora secreted in the feces of humans and other warm blooded animals, which can be harmful to human health (WHO, 2011). For example, Enterohaemorrhagic *E. coli* (EHEC) is a pathogenic strain that if found in water and/or food can cause abdominal cramps, diarrhea, fever, or vomiting. For immune challenged individuals, such as the elderly and young children, EHEC infection can lead to haemolytic uraemic syndrome (HUS) characterized by acute renal failure, haemolytic anaemia and thrombocytopenia (WHO, 2011). Other contaminants in rainwater can be brought by roofing treatments, including heavy metals. Typical heavy metals found in rainwater are copper, zinc and lead which can cause liver, kidney and pancreas disorders, decreased fetal development and anaemia and brain damage in children (Lye, 2009).

Considering the hazards found in rainwater, there is a need to develop a treatment that will improve water quality to comply with the existing potable water standards. The most common treatment systems include sand filtration and disinfection, typically using a sodium hypochlorite solution. Even though the use of chlorine at the correct dosage can achieve 4-log removal it can also be hazardous because of disinfection by-products (DBP's). DBP's from chlorine disinfection are typically caused by the interaction of chlorine and organic matter. This interaction may produce Trihalomethanes (THM's), haloacetic acids (HAA) and many others that are considerably harmful and/or toxic with short or long term exposure. The United States Environmental Protection Agency (USEPA) has recognized the health risk of DBP's and it is enforcing the Stage 2 DBP rule which strengthens public health protection for customers of systems that deliver disinfected water by requiring such systems to comply with maximum contaminant levels (USEPA, 2009).

Rainwater harvesting and treatment presents a solution for the growing need of a safer, low cost, and more readily available water supply. Because of its significantly lower levels of contamination, rainwater would typically require less treatment which will result in less DBP's concentrations. With sufficient research rainwater could become an essential tool to fight future water scarcity with reduced health and environmental impacts.

1.1. Scope and objectives

Many studies and research aim at the creation of a filtration and disinfection system with the best achievable technologies. However, because of the rising concern of the lack of healthy and safe drinking water, there is a need for more investigation. Even though rainwater harvesting has been a technology that has existed for many years, its application as the main drinking water source for households and communities hasn't been explored enough. New research should be focused on developing small filtration systems that are cost effective and relatively easy to use by the general public. Special considerations for the system must include, but not be limited to, removal of emerging pollutants, such as heavy metals and disinfection by-products.

1.1.1. Scope

The overall goal of this study is the development of a low-cost, efficient POE-CPU for those countries and communities that rely on rainwater as their main and/or alternative water resource. The system is intended to be connected to rooftop spouts for rainwater treatment which will be later stored and used as needed. To meet this goal, a lab-scale POE-CPU purification unit was tested with rainwater collected at the field.

1.1.2. Objectives

To achieve the goal aforementioned, this study specifically aims to:

- Assess the general physical-chemical water quality parameters in the effluent of the POE-CPU unit, and its compliance with the drinking water standards;
- Evaluate the POE-CPU unit for 4-log disinfection of *E. coli* with minimal to no DBPs; and
- Evaluate the adsorption capacities of the alginate bead filter for future innovation of the POE-CPU.

2. LITERATURE REVIEW

2.1. Rainwater harvesting and treatment

Water scarcity is a major problem in many developing countries. Mwabi et al. (2011) mentions that an estimated 1.1 billion people, most from developing countries and rural communities, do not have access to safe potable water. Depending on precipitation intensity, rainwater presents potential as a direct source of water. In addition, its proper management could reduce water crisis in some of these regions. Rainwater harvesting is a technology where surface runoff is effectively collected during rainfall periods and used for multiple purposes in the household (Helmreich and Horn, 2009). Rainwater reuse offers a number of benefits (Kloss, 2008) such as:

- provides an inexpensive supply of water,
- augments drinking water supplies,
- reduces stormwater runoff and pollution,
- reduces erosion in urban environments,
- provides water that needs little treatment for irrigation or non potable indoor uses, and
- helps reduce peak summer demands.

Harvested rainwater can be used for rainfall fed agriculture or as a water supply for households. Cisterns are typically used for rainwater collection and the feasibility of its use depends on amount of storage needed for household use and adequate roof area (Morris et al., 19984). Rainwater typically has a pH of approximately 5.5 and depending on location and method of collection it might be polluted by bacteria and hazardous chemicals requiring treatment before usage (Lye, 2009). For purification of harvested rainwater, point-of-use or household treatment methods improve quality and reduce risk of illness in the absence of improved sanitary conditions (Mwabi et al., 2011).

2.2. Escherichia coli

E. coli is a natural stomach flora secreted in the feces of humans and other warm blooded animals, which can be harmful to human health. *E. coli* contamination of the water resources can result from municipal wastewater discharges, illegal sewer discharges and farm animal contact. Pathogenic strains of *E. coli*, such as Enterohaemorrhagic *E. coli* (EHEC), can cause abdominal cramps, diarrhea, fever, or vomiting. According to WHO, the EHEC infection can cause HUS¹ particularly in young children and the elderly. Patients with this syndrome can suffer acute renal failure, haemolytic anaemia and thrombocytopenia (WHO, 2011). It is a top priority of treatment systems to achieve 4-log removal of total coliforms and comply with the USEPA Maximum Contaminant Level Goal (MCLG) for drinking water, which states that *E. coli*, total and fecal coliform are not to exceed zero (0) colony forming units (CFU) per 100 mL in order to not cause harm to the public.

2.3. Filtering Media

Filtering media can be prepared with a variety of materials but typically consists of beds of different types of sand. Slow sand filtration (SSF) has the capacity to reduce a variety of pathogens and its low cost and simple operation makes it optimum for emerging countries (Bauer et al., 2010). Other applications for sand filtration are with planted and non planted columns (Wand et al., 2007), biosand filters (Mwabi et al., 2011; Elliot et al., 2008), combined with

¹ haemolytic uraemic syndrome

gravel beds and variation in materials for chamber construction. Efficiency of the sand filter will depend on parameters such as turbidity, temperature, filter depth and filtration rate (AWWA, 1999). Granular Activated carbon (GAC) can also be used as filtering media. Although GAC is typically employed for its adsorptive capacity to remove micro pollutants and organic matter, its rates and grain sizes are comparable to rapid sand filtration and it possess higher bio-film concentration (Hijnen et al., 2010). Filtering material aside the primary concern would be that the effluent complies with USEPA regulations and standards (USEPA, 2009). According to USEPA regulations, the filter's effluent should not exceed a turbidity of five (5) NTU at all times and at least 95% of the samples must not exceed one (1) NTU for a time frame of one month. Other USEPA regulations are shown in Table 1.

Contaminant	MCLG (mg/L)	Potential Health Effects from Long-Term Exposure Above the MCL (unless specified as short-term)	Sources of Contaminant in Drinking Water
Heterotrophic plate count ¹	n/a	No health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.	HPC measures a range of bacteria that are naturally present in the environment
E. coli	Zero	Not a health threat in itself; it is used to indicate whether other potentially harmful bacteria may be present	Naturally present in the environment; as well as feces; fecal coliforms and <i>E</i> . <i>coli</i> only come from human and animal fecal waste.
Turbidity ²	n/a	Measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness. Higher turbidity levels are often associated with higher levels of disease-causing microorganisms such as viruses, parasites and some bacteria. These organisms can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.	Soil runoff
Chlorine (as Cl ₂)	MRDLG =4	Eye/nose irritation; stomach discomfort	Water additive used to control microbes

Table 1: Extract from USEPA Primary Drinking Water Standards (USEPA, 2009)

Note: ¹ HPC: No more than 500 bacterial colonies per milliliter (USEPA, 2009).

 2 Turbidity: For systems that use conventional or direct filtration, at no time can turbidity (cloudiness of water) go higher than 1 nephelolometric turbidity unit NTU), and samples for turbidity must be less than or equal to 0.3 NTU in at least 95 percent of the samples in any month. Systems that use filtration other than the conventional or direct filtration must follow state limits, which must include turbidity at no time exceeding 5 NTU (USEPA, 2009).

2.4. Heavy metal adsorption

The increase in industrial activities has created an intense need for heavy metals removal and, according to Gok and Aytas (2005), natural occurring biopolymers are now being used because of their excellent adsorption for multivalent metal ions. Even though rainwater is considered to be cleaner than any other surface water it can be exposed to many heavy metals deposited by roof treatments and pipe corrosion. Table 2 presents some heavy metals present in rainwater (Lye, 2009) and their effects on health (USEPA, 2009). Because of the health risks listed there is an urgent need for remediation technologies. Alginate gel is a new material characterized by its adsorption capabilities of heavy metal ions like cadmium, copper, zinc, lead and chromium (Lin, 2005).

Heavy Metal	Harm	Other effects
Cooper	Short term exposure: Gastrointestinal distress Long term exposure: Liver or kidney damage	Corrosion of household plumbing systems; erosion of natural deposits
Lead	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits
Zinc	May cause cosmetic effects	None listed

Table 2: Heavy metals in rainwater and their effect on human health (Lye, 2009; USEPA, 2009)

2.5. Disinfection by-products (DBPs)

The amount of organic matter concentration in raw water has become an issue of high concern because of the possibilities of DBPs occurrence when submitted to treatment. By-products of humic acid and conventional water treatment processes can be Trihalomethanes (THM) and Haloacetic acids (HAA), which are known as carcinogenic and hazardous to health (Lowe, 2008). Table 3 shows a summary of two (2) common disinfection processes and their by-

products. Care must be taken when choosing the disinfection method so as to not aggravate the emergence of by-products. Quoting Ashbolt (2004), many agencies are using chloramines disinfectant to avoid chlorine disinfectant by-products, and in the process possibly creating one more harmful.

Disinfectant	Reactions	By-Product	Harm
Chlorine	Natural organic matter (humic acids and fulvic acids)	Trihalomethanes (THMs) and haloacetic acids	Carcinogen
Chloramine	Chlorine plus ammonium yielding monochloramine	Nitrosodimethylamine (NDMA)	Carcinogen

 Table 3: Disinfection and their by-products (Ashbolt, 2004)

Since 1998, the USEPA has established the Stage 1: Disinfectant/Disinfection byproducts rule, in which it states new regulations for Total trihalomethanes (TTHM) to 80 ppb, Haloacetic acids (HAA5) to 60 ppb, Bromate to 10 ppb and Chlorite to 1.0 ppm. Table 4 presents the carcinogenic risk assessment for DBP at Aqua III advanced wastewater treatment works.

Chemical	Concentration (µgl ⁻¹)	Cancer Risk ¹		
		50 th percentile	Mean	95 th percentile
Bromodichloromethane	0.48	1.3x10 ⁻⁷	4.9×10^{-7}	1.8×10^{-6}
Chloroform	0.51	6.1x10 ⁻⁹	2.2×10^{-8}	8.9x10 ⁻⁸
Chloromethane	0.11	$1.6 \mathrm{x} 10^{-9}$	6.1x10 ⁻⁹	2.5×10^{-8}

Table 4: Cancer risk assessment for DBPs at Aqua III

Notes: ¹ Assumed 2 L per day consumption of water

Similarly, USEPA has already established Maximum Contaminant Levels (MCL) for DBP's which are presented in Table 5. As of 2006, USEPA has developed Stage 2 DBP rule (USEPA, 2005) which is intended to reduce potential cancer and reproductive and

developmental health risks from DBP's by enforcing the requirement to meet maximum contaminant levels for trihalomethanes and some haloacetic acids.

DBP	Treatment Measures
Total Trihalomethanes (TTHM)	80 ppb
Haloacetic Acid	60 ppb
Bromate	10 ppb
Chlorite	1 ppm

Table 5: DBPs regulation (USEPA, 2005)

3.1. Materials

3.1.1. Rainwater harvesting

Rainwater was collected from rooftop spouts. To cover dissimilar characteristics of rainwater, rainwater was collected in both residential and commercial zones. Rainwater was collected and stored in Nalgene 5 gallon bottles for no more than 24 hours to preserve biological characteristics of rainwater.

3.1.2. Escherichia coli

Non pathogenic *E. coli* strain ATCC 15597 was used and its medium was obtained from Cole Parmer. They were prepared for experimental use through enrichment-culture technique. Other materials used for cultivation include Erlenmeyer flasks (250 mL and 500 mL), pipette (1 mL), graduated cylinder (100 mL) and caps. Experiments for *E. coli* inoculation required one (1) liter Erlenmeyer flasks, Clorox, pipette (1 mL), Millipore filtering unit, membranes and Petri dishes.

3.1.3. Filtering media

The system consisted of two (2) filters. The first filter had 8.49 kg of commercial gravel medium ranging in sizes of 0.635~1.905 cm. The second filter consisted of a sand medium with three (3) beds of varying particle size. Table 6 presents the sand distribution. The filter medium was contained in a cylindrical crystal column with a diameter of 8 inches and 24 inches high.

Table 6: Sand	distribution	in secondary	filter
---------------	--------------	--------------	--------

Media	Size	Total Weight (kg)	Weight (%)
Course Sand	Global No. Sieve Size 30/65 Effective size = 0.18 mm	1.87	25
Medium Sand	Global No. Sieve Size 20/30 Effective size = 0.55 mm	3.75	50
Fine Sand	Global No. Sieve Size 6/20 Effective size = 1.10 mm	1.87	25

3.1.4. Adsorption with calcium alginate beads

The alginate beads were prepared with 2% sodium alginate solution dropped in a 0.5 M calcium chloride solution. Other equipment used for this process includes 50 mL plastic syringe, syringe pump and beakers. The preparation of the sodium alginate solution consists of adding 10 grams to Di-ionized (DI) water to achieve a solution of 500 mL (Gok and Aytas, 2009; Papageorgiou et al., 2006). The calcium chloride solution was prepared by adding 55.5 gms of calcium chloride to DI-water to make a 1 L solution. Using a syringe and a mechanic syringe pump, the alginate solution was pumped drop-wise into the calcium chloride solution. The pump was set at a rate of 0.5 mL per minute. Based on the reviewed literature 200 mL of alginate solutions were prepared to comply with an approximate of 400 mL of alginate solution. During the process the solutions were constantly mixed with a magnetic stirrer. The beads were stored for 24 hours in a calcium chloride solution, after which they were washed with and let stand in DI-water. The beads were dried at room temperature in the hood. Figure 1 shows a picture of the preparation.

Figure 1: Bead preparation

3.2. Methods

3.2.1. *E. coli* reactors and inoculation

The medium for *E. coli* reactors was prepared with 37 grams of EC-Medium to 1 liter of DIwater. This medium was sterilized in the autoclave. A volume of 100 mL of the prepared solution was added to Erlenmeyer flask that received 1 mL of *E. coli* stock ampoule. Four (4) enrichment-culture flasks were put on a shaker. After a week of enrichment, 1 mL of grown *E. coli* culture was transferred to fresh growth medium. Figure 2 shows a scheme of the preparations while Figure 3 shows a real time photo of the reactors in the shaker.

Figure 2: E. coli cultivation reactor preparation

Figure 3: E. coli reactors in shaker

An *E. coli* inoculation experiment was prepared in order to determine chlorine dosages for disinfection in *E. coli* spiked rainwater. The experiment consisted of four (4) previously sterilized reactors (Erlenmeyer flasks) of at least one (1) liter with varying spikes of stock solution. A 1% (v/v) stock solution was prepared with 5.25% NaHOCl₂ (Clorox) and DI. Figure 4 shows a schematic of the preparation and varying conditions of each reactor.

Figure 4: Four reactor experiment setup²

3.2.2. DBP's interaction with E. coli and humic acid

To observe chlorine disinfection by-products and its interaction with *E. coli*, a five (5) reactor experiment was developed. Each reactor contained 100 mL sample water and varying amounts of chlorine concentration spike. In some experiments, the sample water was rainwater and in others the sample water was prepared by adding *E. coli* culture to 1 L of rainwater. The stock solution consisted of 1% sodium hypochlorite solution. Figure 5 shows a scheme of the described process, including the chlorine spike for each reactor. A total contact time of thirty (30) minutes was allowed and samples were collected to determine residual chlorine concentration, *E. coli* bacteria concentration and THMs concentration.

Additionally, batch reactor experiments with 2.5% humic acid spike were developed as shown in Figure 6. Hydrogen ion concentrations (pH) was measured in three (3) stages, the first when there was only the solution with humic acid, the second right after spiking chlorine and the

² RW- rain water

third after the allotted time. Samples were later analyzed for their chemical oxygen demand (COD), residual chlorine and THMs concentrations.

Figure 5: Reactor for DBPs and E. coli interaction³

Figure 6: DBPs interaction with humic acid setup⁴

³ RE - sample water; DI- Di-ionized water

⁴ HA-humic acid; DI-di-ionized water

3.2.3. Adsorption with calcium alginate beads

As collected rainwater often contains heavy metals (Lye, 2009), like copper, lead and zinc, an effort was made to innovate the POE with an addition of calcium alginate (AG) beads. For this, heavy metal adsorption study was conducted in a batch reaction mode. A batch sorption kinetic experiment was done to determine the amount of time necessary for sorption equilibrium between heavy metals and AG bead. Each sample vial contained 0.05 grams of AG beads and 30 mL of 5 ppm lead solution. A total of five (5) vials along with duplicates were prepared and set to spin in a lab shaker. One (1) vial (and its duplicate) was removed after 15, 30, 60, 90 and 120 minutes of contact time, respectively. The beads were removed from the sample and placed in a separate vial to avoid more adsorption. All vials (sample and beads) were stored in the refrigerator until analyzed. Figure 7 shows a schematic of the vial preparation.

Figure 7: Batch reactor procedure for kinetics experiment⁵

The sorption isotherm experiment was conducted with the time acquired from the sorption kinetic study aforementioned. Similar to the kinetics experiment, 30 mL of lead solution

⁵ Pb- lead

was added to each vial but the amount of AG bead varied from 0.03 grams to 0.48 grams. The reactors (vials) will be placed in a shaker for the selected optimum contact time determined from the kinetics experiments. Figure 8 shows the setup for this experiment.

Figure 8: Lead sorption experiment setup

An *E. coli* sorption experiment was prepared by adding1 mL of *E. coli* bacteria to 29 mL of working solution which was later added to a 40 mL sample vial. A total of two (2) vials were prepared, one with 0.24 grams of AG beads and the other with 0.24 grams of activated carbon (AC). A schematic of this setup can be seen in Figure 9. The vials were later set to spin for a total time of 30 minutes.

Figure 9: E. coli adsorption experiment setup

For the purpose of testing AG beads filtering capabilities, two (2) small columns of about 0.69 inch diameter and 3.13 inch length were prepared with 8.7 grams of AG and 6.4 grams of AC, respectively. Rainwater collected was pumped through the columns and kept being pumped until a total of 200 mL of effluent was achieved (approximately 2 hours). Physical-chemical parameters, such as turbidity, pH, temperature and conductivity were measured. The specifications for column setup are shown in Table 7 and a real time photo is shown in Figure 10.

Parameter	Amount	Units
AG	8.7	grams
AC	6.4	grams
Diameter	0.6875	in
Length	3.125	in
Flowrate	100	mL/hr

Table 7: Specifications for filter column setup

Figure 10: Filter column setup

3.2.4. Point of entry cistern purification unit (POE-CPU)

The POE-CPU is a simple filtering unit comprised of three (3) unit processes (rainwater reservoir, disinfection tank and backwash water storage), two (2) filters (gravel and sand media) and four (4) pumps (rainwater supply, chlorine supply and back wash pumps). Figure 11 shows a schematic of the design for the POE-CPU. Rainwater was pumped through the system at 3-5 gallons per hour (GPH) and backwash was done when either poor water quality parameters are found or head loss is observed. The system was set to run for an hour without interruptions. If POE-CPU runs were designed for more than an hour an average time of 30 minutes was allowed for the pump to cool off. Sampling was done at the end of each 30 minute run session. Samples were taken from each port and labeled accordingly (Figure 12).

Figure 11: Schematic of POE-CPU design

For disinfection purpose, a sample allocation of 100 mL was taken from the sand filter and spiked with a determined amount of chlorine to then allowed 30 minute contact time. Figure 13 shows a real time picture of the POE-CPU system in the current study.

Figure 12: Sampling ports in the POE-CPU

Figure 13: POE-CPU photo

3.3. Analytical method

Water samples taken from each port in the POE-CPU were analyzed in order to determine physical-chemical parameters, contaminant and microbial content. Table 8 summarizes all the analysis for the samples and includes the method and equipment used for each. Note that DBPs analysis was done only for disinfected effluent.

Parameters	Equipment	Method	Details
Sampling	WHIRL-PAK THIO-BAG	-	Sample storage with chlorine neutralization
Chlorine Concentration	HACH Pocket Colorimeter II, Chlorine	-	HACH, DPD Free Chlorine Reagent
Lead	Perkin Elmer AAnalyst 400	Pb	
Fecal Coliforms Membrane Filtration Unit		Membrame filtration technique	0.45 μm opening membrane
pH and temperature	pH Meter 300 series	-	-
Turbidity	Turbidity HACH 2100P Turbidimeter		-
Conductivity OAKTON CON 6 Acorn Series Conductivity/C Meter		-	-
COD HACH Spectrophotometer/ Ultra Low Range COD vials		Reactor Digestion Method, Method 8000	Ultra low range (0-40 mg/L) and Low range (0 to 150 mg/L) vials
Disinfection by-products HACH Spectrophotometer		THM Plus [™] Method, Method 10132	-

Table 8: Summary of parameter analysis

4.1. E. coli

4.1.1. Life patterns

Bacteriological analysis was done within 24 hrs of sampling or sample preparation. The prepared sample was diluted and filtered through the unit and the membrane was placed in a Petri-dish containing m-FC 2 mL broth ampoules or *E. coli* medium. The incubation time for *E. coli* was twenty-four (24) hours. The results of the daily monitoring of the *E. coli* in the batch reactor are shown in Figure 14.

Figure 14: *E. coli* life patterns (10¹⁰ dilution)

The seven (7) day trial was determined during the monitoring made in the month of July, because as can be appreciated, the bacteria growth and death phase are easily distinguished. It can be observed that there was a considerable difference between the bacteria concentration in July and September's experiments. This lag phase shows the time it took the bacteria to acclimate to the new medium. Meanwhile, the September monitoring started with a reactor sampling just before the medium was replenished. The bacteria in this reactor had more time in the medium resulting in a higher concentration. Also note that the monitoring of October was stopped at Day 5 (96 hours) this was because of difficulties with the autoclave, which is essential in the sterilization of the instrumentation due to *E. coli* sample sensitivity. The following figures show growth/death patterns for the same samples. Linear regression where chosen for the figures presented in order to approximate growth/death rates of the *E. coli* in the reactors. Figure 15 shows the average growth rate of *E. coli* at 3.3×10^9 CFU/day, while Figure 16 shows and average of 3.7×10^9 CFU/day.

Figure 15: Growth pattern for *E. coli* culture (10¹⁰ dilution)

Figure 16: Death pattern for *E. coli* cultures

Table 9 shows the average results from all monitoring weeks. These results prove that the 7 day replenishment schedule was appropriate, since there was a great possibility that at the 8^{th} day no significant *E. coli* was present in the reactors. By following these instructions it will guarantee very healthy and highly concentrated bacteria cultivation.

Table 9: Life rates for *E. coli* cultures

Parameter	Growth phase	Death phase	Units
Rate	3.3 x 10 ⁹	$3.7 \ge 10^9$	CFU/100 mL * hr
Days in effect	3.67 (88.08)	3 (72)	Days (hours)
Total bacteria	2.9×10^{11}	2.7×10^{11}	CFU/100 mL
Bacteria left in reactor		$2.4 \ge 10^{10}$	CFU/100 mL

4.1.2. *E. coli* inoculation

A total of four (4) experiments were done to determine correct disinfectant dosages for *E*. *coli* inoculation. Figure 17 shows the averaged result for total testing runs (4).

Figure 17: Free residual chlorine concentration

Chlorine solution is reacting quickly with bacteria present in the sample as can be seen for both reactors that have *E. coli* and disinfectant (R3 and R4) versus the control reactor (R1) which has no *E. coli*. Comparing reactors R4 and R5 shows that a chlorine spike of 0.5 mL of 1% NaHOCl achieves similar free chlorine concentrations as a 1mL spike, meaning that less chlorine will be available to react with organic matter and create disinfection by-products. As for bacteria concentrations, Figure 18 shows the averaged results from all four (4) experiments. As can be seen both chlorine stock spike achieved 0 CFU after 30 minutes of contact time.

Figure 18: CFU variation for E. coli inoculation experiments

4.2. Disinfection by-products

A total of two (2) experiments were done and their average results are shown in Figure 19. Observations show that an increase in chlorine demand for bacteria inoculation causes a decrease in chloroform formation. This could be to do either low organic concentration in the samples and/or increasing pH.

The following formula shows sodium hypochlorite and water interaction:

$$HOCl + H_2O \leftrightarrow H^+ + OCl^-$$

When calculating reaction rate, increasing pH causes and increase in OCl⁻ concentrations and a decrease in HOCl. For disinfection purposes HOCl is desirable because of its strength.

$$k_a = \frac{[H^+][OCl^-]}{[HOCl]} = 2.5 \times 10^{-8}$$

That is, if pH was increased with increasing chlorine stock spike, then it would explain the increasing chlorine demand but decreasing chloroforms formation. Considering residual free chlorine in the samples, there is need to present the plotted results from one of the experiments, where there can be clearly seen the trend expected. As can be seen on Figure 19, the residual chlorine and chloroform concentrations remain constant after chlorine demand passes 2500 mg/L (spike of 5 mL stock solution). So based on both figures an assumption can be made that between the ranges of 1000 mg/L and 2500 mg/L chlorine demand there is a pH between 7 and 8, which is causing formation of HOCl and causing increases in residual chlorine.

Figure 19: Chloroform and residual chlorine variations in DBPs experiments

Now going back to Figure 19, and assuming data point 3 (6000,0.03) for chlorine demand as an outlier, 2250 mg/L (approx. 4.5 mL spike) demand achieves global minimums for free chlorine and chloroform concentrations of 0.09 mg/L and 22.5 ppb respectively.

Figure 20: DBP and residual chlorine in experiment 2

In order to observe DBPs interaction with humic acid, two (2) experiments where developed and their average results are shown in Figures 21 and 22. These results differ from the experiments above by showing a direct relationship between residual chlorine concentrations and chloroform occurrence. Note that the chlorine demand is half of what it was in the first experiment because there are no bacteria present. Similar to the first experiment, chloroform concentrations started to decrease while chlorine demand increased (Figure 20). Also, in Figure 22, the trend shows that increasing stock spike increases pH, which validates the assumption made on the first experiment. An important observation for all experiments made is that only one (1) sample exceeded USEPA standard of 80 ppb for drinking water, the rest of the samples were well below the limit.

Figure 21: Chloroform and residual chlorine plots for humic acid DBPs experiments

Figure 22: pH variation in humic acid DBPs experiments

4.3. Calcium alginate beads

The AG beads were prepared as mentioned in the methodology and Table 10 shows their characterization.

Parameter	Dry	Wet	Reduction
Mass (mg/Bead)	0.962	12.7	92.4%
Volume (µl/Bead)	0.638	19.6	96.7%
Density (g/ml)	1.51	0.65	

 Table 10: Characterization of AG beads

Both mass and volume reduction were very high but similar to results found in the literature (Gok and Aytas, 2009). A picture of the beads before drying and after drying is shown in Figure 23.

Figure 23: AG beads before drying (left) and after drying (right)

A total of two (2) kinetic experiments were done to determine optimum interaction time between 5 ppm lead solution and the AG beads (Figure 24). In both plots there was a constant trend towards the end of the experiment or 120 minutes. A 50% reduction of the lead in the solution was achieved at 75 minutes where there was an adsorption of 2.5 mg of lead per gram of bead while a 72% reduction was achieved at 120 minutes differing from Gok and Aytas (2009) where it achieved 80% reduction at 90 minutes.

Figure 24: AG kinetic adsorption results

Following the results from the kinetics experiment, the sorption experiment was prepared. A total of 120 minutes contact time was allowed and the results for both adsorbed lead in mg/L and adsorbed lead in mg/g of bead are shown in Figure 25. The results showed that lead sorption to AG beads varied from ~90% reduction per 0.06 to 0.48 g AG beads. Another test developed was to determine sorption-desorption properties of the beads. In order to be able to compare the beads properties, the test was also done for activated carbon. Every 30 minutes the beads were transferred to a fresh 5 ppm lead sample for 2.5 hours. The beads were later transferred to a DI water sample and the transfer process was repeated every 30 minutes for another 2.5 hours. The samples were analyzed for lead concentrations to determine the AG bead

(and AC) ability to adsorb and retain the lead. Table 11 shows the setup and results for this experiment, while Figure 26 shows the plotted results for both AG and AC.

Figure 25: AG sorption to 5 ppm lead solution

		Amount AG	Amount AC
Time (hrs)	Solutions	0.04 grams	0.04 grams
0.5	Lead (5ppm)	0.90	2.94
1	Lead (5ppm)	1.54	3.23
1.5	Lead (5ppm)	1.80	2.59
2	Lead (5ppm)	1.54	3.23
2.5	Lead (5ppm)	0	3.38
3	DI water	0	0
3.5	DI water	0	0
4	DI water	0	0
4.5	DI water	0	0
5	DI water	0	0

Table 11: Sorption-Desorption test setup and results

As can be observed in both Table 11 and Figure 26, AG achieved more adsorption at all times and no desorption was noted for either. This proves that AG innovation is more effective

Figure 26: Sorption-Desorption results for AG and AC

Table 12 shows the result for AG and AC *E. coli* adsorption. Similar to the sorptiondesorption test, AG beads excelled over AC by been able to reduce some *E. coli* concentrations at after 60 minutes of contact time while AC showed no reduction.

Time	AC	AG
30	125.81	0
60	112.90	48.39

Table 12: E. coli % reduction for AG and AC

When testing the filtering capabilities of the AG bead Table 13 was obtained. AG results show that the beads were able to reduce turbidity but increased COD, which could possibly be caused by initial bead leaching. In this particular case AC showed much better reduction in both turbidity, and COD. This can be explained by the form of the particles in each column. While beads are spherical shaped and equal in size, the AC particulate is amorphous and when packing it is compressed with its own weight reducing pore size causing more turbidity reduction. Note that the lead concentrations in both initial concentrations and effluent concentrations where under the detection limit (UDL) which is about 0.5ppm for the equipment used.

Parameter	Units	Initial	AC	AG
pН		5.4	4.2	5.5
COD	mg/L	11.41	10.33	41.55
Conductivity	µS/cm	10.06	44.7	326
Turbidity ¹	NTU	4.58	1.65	3.13
Lead	ppm	UDL	UDL	UDL
Removed %		-	63.97	31.66

Table 13: Filter column results for both AG and AC

Note: ¹ Turbidity removal= $\frac{(Port1-Port3)}{Port 1} \times 100$

4.4. POE-CPU experiments

4.4.1. POE-CPU runs

Three (3) experiments were done with the system with varying rainwater effluent conditions at a flow rate of 5 GPH. The next figures show the normalized results (C/C₀) for all three (3) experiments and their average. In the system (Figures 27-28), pH variations where minimal, ranging from 0.98 to 1.05. In most of the cases C/C₀ exceeded 1, which shows that the system increases the pH with respect to the initial value in the rainwater tank. This increase is expected and acceptable since pure rainwater tends to be acidic and it's desirable to acquire a final neutral pH of about 6-8. The average pH results showed a variance coefficient of less that 4% for the gravel effluent and less than 10% for the sand filter, which presents a low variance of

the data (See Appendix D for normalized table). Considering COD variations in both gravel (Figure 29) and sand (Figure 30) filters, there were increases compared to initial value, which is of surprise since it is expected that the sand filter removes certain percent of the organic matter. Variance coefficients were high, from 63-85% for gravel samples and 2.8-40% for sand samples. These results show low reliability in the averaged results.

Figure 27: pH variation in the gravel filter for all POE-CPU runs

Figure 28: pH variation in the sand filter for all POE-CPU runs

Figure 29: COD variation in the gravel filter for all POE-CPU runs

*Notes: Values from Experiment 3 were excluded since they were under the detection limit of the instrument utilized.

Figure 30: COD variation in the sand filter for all POE-CPU runs

Conductivity variations for both filters are shown in Figure 31 and Figure 32 and both show increases in the effluents conductivity. Variance coefficients were low, under 1.2% for gravel samples and under 1.8% for sand samples, which assure reliability when using averaged results. Results for turbidity variation are shown in Figure 33 and 34. As can be observed the gravel filter showed low removal (average~20%) while sand filter showed better performance (>40%). Variance coefficient for turbidity remained under 20% for gravel samples and under 32 % for sand samples.

*Notes: There are no conductivity values for experiment 1 since the equipment was malfunctioning

Figure 31: Conductivity variation in the gravel filter for all POE-CPU runs

*Notes: There are no conductivity values for experiment 1 since the equipment was malfunctioning

Figure 32: Conductivity variation in the sand filter for all POE-CPU runs

Figure 33: Turbidity variation in the gravel filter for all POE-CPU runs

Figure 34: Turbidity variation in the sand filter for all POE-CPU runs

In order to determine system performance, relevant water quality results were tabulated and compared to USEPA standard regulations (Table 14). Quality parameters such as pH and chloroform concentrations were in compliance with regulations while turbidity and *E. coli* limit were exceeded. It is important to note that although *E. coli* regulation was exceeded, the amount of chlorine spiked achieved more than 99.99% removal (4-log removal) of initial concentrations.

Aspects to take in consideration from these results in order to improve effluent quality are:

- Reduce flow rate in order to improve turbidity reduction
- Monitor free chlorine in stock solution to improve E. coli inoculation in the system

To improve water quality in the effluent an addition of either activated carbon or calcium alginate beads was added to the sand filter. But first, we needed to determine the residence time in the POE-CPU. 50 grams of salt were added to the rainwater basin with 10 gallons of DI water and the system was run at 5 GPH. Every 2 minutes the conductivity was measured in both gravel and sand ports until it reached initial conductivity in the basin (2.3 mS/cm). Table 15 and Figure 31 shows residence time results.

Parameter	Units	30 minutes	60 minutes	Standard
рН		6.8	6.5	6-8
Turbidity ^a	NTU	3.30 ^f	3.35 ^f	1
Turbidity Removal ^b	%	33	56	-
Cl ₂ spike	mg/L	49.37	4.06	-
Cl ₂	mg/L	19.97 ^f	0.48	4
Chloroform	ppb	69.5	5	80
E. coli ^{c,d}	CFU/100 mL	3 ^f	3 ^f	0
E. coli Removal ^e	%	99.9999975	99.9999975	-
Log removal		> 5	> 5	-

 Table 14: POE-CPU run results comparison to USEPA standards (USEPA 2005, USEPA 2009)

*Notes:

^aTurbidity is taken from the sand filter, the rest of the parameters are taken from disinfection port ^bTurbidity removal= $\frac{(Port1-Port3)}{Port 1} \times 100$

^cDBP and *E. coli* samples only for RUN 2 and RUN 3

^dFor *E. coli* cultivation m-FC Broth ampoules were used

^eE. coli removal= $\frac{(Port1-Port4)}{Port 1} \times 100$

^fRed values show non-compliance with USEPA standards

	Conductivity (µS/cm)			
Time (min)	Gravel	Sand		
0	24.4	14.7		
2	21.1	13.9		
4	18.17	15.1		
6	125.4	16.3		
8	592	49.2		
10	1149	132.7		
12	1622	230		
14	1910	319		
16	2030	681		
18	2020	860		
20	1643	1063		
22	1906	1288		
24	1226	1438		
26	2090	1642		
28	2040	1800		
30	2170	1015		
32	2170	1960		
34	-	2040		
36	1667	2090		
38	1206	2120		
40	1991	2210		
42	1969	1199		

Table 15: Residence time in the POE-CPU at 5 GPH

Figure 35: Residence time plot for gravel and sand filters

The results show 20 minutes of approximate residence time in the sand filter. In order to permit an acceptable contact time between AC or AG and the water it is desirable to increase it to at least 30 minutes. For the following experiments, especially those with heavy metal adsorption innovation, the optimum flow rate would be 3.25 GPH.

4.4.2. POE-CPU run with AC

A stocking containing approximately 150 grams of AC was placed a top of the sand bed and flow rate was adjusted again to 3.25 GPH. A total of three (3) experiments were done and the following figures show the normalized results (C/C_0) for all three (3) experiments and their average. Figures 36 and 37 show the variations on pH. In most cases, pH seemed to remain almost constant in both sample ports and showed variation coefficients under 11%. Similar to original POE-CPU runs most experiments showed increases in COD concentrations in the effluent from both filters while variance coefficients exceeded 65%, which again show low confidence in averaged results.

Figure 36: pH variation in the gravel filter for all POE-CPU runs with AC

Figure 37: pH variation in the sand filter for all POE-CPU runs with AC

Figure 38: COD variation in the gravel filter for all POE-CPU runs with AC

Figure 39: COD variation in the sand filter for all POE-CPU runs with AC

In the case of conductivity (Figures 40-41), results varied greatly from original experiments since most experiments showed a reduction in both filter effluents. Variance coefficient for gravel samples were high (100%) while sand results ranged from 54-90%. Figure 42 and 43 show all results for turbidity variations. Similar to the original runs, the gravel filter showed a removal of about 20% for all samples and about 40% for all samples. Variation coefficients for both filters remained under 5%.

Figure 40: Conductivity variation in the gravel filter for all POE-CPU runs with AC

Figure 41: Conductivity variation in the sand filter for all POE-CPU runs with AC

Figure 42: Turbidity variation in the gravel filter for all POE-CPU runs with AC

Figure 43: Turbidity variation in the sand filter for all POE-CPU runs with AC

Now when comparing with USEPA standards (Table 16), effluent turbidity exceeded (again) the 1 NTU regulation, but pH and chloroform where in compliance. In the case of *E. coli* presence, only in the averaged results from 30 minutes didn't comply, note again how the selected chlorine spike achieved more than 99.99% removal of the initial *E. coli* concentrations. Note that no lead concentrations were included in the results, this is because the results where under the detection limit of the equipment used.

Parameter	Units	30 minutes	60 minutes	EPA Standards
рН		7.3	7.2	6-8
Turbidity ^a	NTU	2.89 ^d	4.44 ^d	1
Turbidity Removal ^b	%	55	33	-
Cl ₂ spike	mg/L	24.97	24.97	-
Cl ₂	mg/L	11.4 ^d	9.47 ^d	4
Chloroform	ppb	UDL ^e	UDL ^e	80
E. coli	CFU/100 mL	1 ^d	0	0
<i>E. coli</i> Removal ^c	%	99.99999545	100	
Log removal		> 5	> 5	

Table 16: POE-CPU run with AC results comparison with USEPA Standards (USEPA 2005, USEPA 2009)

*Notes:

^aTurbidity is taken from the sand filter, the rest of the parameters are taken from disinfection port ^bTurbidity removal= $\frac{(Port1-Port3)}{Port 1} \times 100$

^cE. coli removal= $\frac{Port 1}{Port 1} \times 100$

^dRed values show non-compliance with USEPA standards ^eUDL=under detection limit

4.4.3. POE-CPU run with AG

Another three (3) experiments were done with the system with the AG bead addition. A stocking containing approximately 100 grams of AG beads was placed a top of the sand bed and flow rate was adjusted again to 3.25 GPH. The next figures (Figure 44-51) show the normalized (C/C_0) water quality variation for all three (3) experiments and their average. pH variations are shown in Figures 44 and 45. In all samples a sligth increase of pH is detected in the effluent from both filters while the variance coefficient remains under 9%. Variations of COD differ greatly from previous experiments because they were slightly reduced in all samples. Another notable difference is the variance coefficient which remained under 10% with the exception of samples from the sand filter after 30 minutes.

Figure 44: pH variation in the gravel filter for all POE-CPU runs with AG

Figure 45: pH variation in the sand filter for all POE-CPU runs with AG

Figure 46: COD variation in the gravel filter for all POE-CPU runs with AG

Figure 47: COD variation in the sand filter for all POE-CPU runs with AG

In the case of conductivity variations (Figures 48 and 49) all samples from the gravel filter showed increases while their averaged results remained under 13% (Figure 48). For sand samples (Figure 49) most samples showed increase in the conductivity but variance coefficient was considerably higher than gravel samples (16-70%). Meanwhile, turbidity variation results

are shown in Figures 50 and 51. For gravel samples (Figure 50), turbidity removal varied from 14 -37% but variance coefficients remained under 17%. In the case of sand samples (Figure 51), removal performance varied from 30-69%, which caused the variance coefficient to increase to about 26%.

Figure 48: Conductivity variation in the gravel filter for all POE-CPU runs with AG

Figure 49: Conductivity variation in the sand filter for all POE-CPU runs with AG

Figure 50: Turbidity variation in the gravel filter for all POE-CPU runs with AG

Figure 51: Turbidity variation in the sand filter for all POE-CPU runs with AG

When comparing effluent water quality to USEPA standards we achieve compliance at both time samples for pH and chloroform, while turbidity and free chlorine concentration were exceeded (Table 17). Microbial results showed compliance only in 60 minute samples, but a removal of 99.99% was achieved. Note again that no lead concentrations were included in the results, this is because the results where under the detection limit of the equipment used.

Parameter	Units	30 minutes	60 minutes	Standards
pН		7.7	7.5	6-8
Turbidity ^a	NTU	3.32 ^d	5.46 ^d	1
Turbidity Removal ^b	%	65	45	-
Cl ₂ spike	mg/L	13.4	13.4	-
Cl ₂	mg/L	8.95 ^d	7.65 ^d	4
Chloroform	ppb	UDL ^e	UDL ^e	80
E. coli	CFU/100 mL	1 ^d	0	0
<i>E. coli</i> Removal ^c	%	99.9999975	99.9999975	
Log removal		> 5	> 5	

Table 17: POE-CPU run with AG results comparison with USEPA Standards (USEPA, 2005; USEPA, 2009)

*Notes:

Turbidity is taken from the sand filter, the rest of the parameters are taken from disinfection port ²Turbidity removal= $\frac{(Port1-Port3)}{Port 1} \times 100$

³*E. coli* removal= $\frac{Port 1}{Port 1} \times 100$

⁴Red values show non-compliance with USEPA standards ^eUDL=under detection limit

4.4.4. Comparison between treatments

In order to determine best treatment for harvested rainwater the results from each treatment were averaged and are shown in the following figures. From Figure 52, we see that both POE-CPU and POE-CPU with AG slightly increased pH in the sand effluent while POE-CPU with AC showed slight reduction. In terms of variance coefficient, POE-CPU with AG showed more reliable data dispersion with a value of ~5%, while POE-CPU and POE-CPU with AC showed 7% and 11%, respectively. When considering COD variations (Figure 53) both initial treatment and treatment with AC showed increases in concentrations while treatment with AG showed removal of about 40%.

Figure 52: pH variation comparison between treatments

Figure 53: COD variation comparison between treatments
Now considering conductivity (Figure 54), both POE-CPU and POE-CPU with AC showed reduction while POE-CPU with AG showed an increase in concentrations which could be due to bead leaching. If we consider reliability of averaged results, only POE-CPU showed low variance coefficient (6.5%) while POE-CPU with AC and POE-CPU with AG showed values over 50%. Finally, comparing turbidity results in Figure 55, an average removal of 48%, 51% and 55% was achieved for initial treatment, AC treatment and AG treatment, respectively. Variance coefficient for all treatments remains under 36%.

Figure 54: Conductivity variation comparison between treatments

Figure 55: Turbidity variation comparison between treatments

Table 18 shows the comparison between treatment effluent and USEPA Standards. All values marked in red show non compliance with the established regulations. As can be observed all treatments complied with chloroform concentrations and pH secondary regulations, but exceeded both turbidity and residual chlorine concentrations. *E. coli* was present in all three disinfection samples, but to an extremely low degree. In general terms a conclusion can be made that the POE-CPU with the addition of AG beads is the best option for rainwater treatment since it achieved higher removal rates for turbidity and *E. coli*, while complying with chloroform and pH regulations.

Parameter	Units	POE-CPU	POE-CPU with AC	POE-CPU with AG	USEPA Standards
pН		6.6	7.2	7.6	6-8
Turbidity ^a	NTU	3.33 ^d	3.67 ^d	4.39 ^d	1
Turbidity Removal ^b	%	44.5	44	55	-
Cl ₂ spike	mg/L	26.72	24.97	13.4	-
Cl ₂	mg/L	10.23 ^d	10.43 ^d	8.3 ^d	4
Chloroform	ppb	37.25	UDL ^e	UDL ^e	80
E. coli	CFU/100 mL	3 ^d	1 ^d	1 ^d	0
<i>E. coli</i> Removal ^c	%	99.9999975	99.9999986	99.99999987	-
Log removal		> 5	> 5	> 5	-

Table 18: POE-CPU treatment comparison with USEPA Standards (USEPA, 2005; USEPA, 2009)

*Notes:

^aTurbidity is taken from the sand filter, the rest of the parameters are taken from disinfection port ^bTurbidity removal= $\frac{(Port1-Port3)}{Port 1} \times 100$ ^c*F* coli removal= $\frac{(Port1-Port4)}{V} \times 100$

E. coli removal=
$$\frac{COUT(10000)}{Port 1} \times 10$$

^dRed values show non-compliance with USEPA standards ^e UDL=under detection limit

A final comparison between the treatments can be made by considering rainwater quality

variation. Table 19 shows the rainwater quality variation from all collected samples⁶

	Min	Average	Max	25 Percentile	75 Percentile
Ph	5.2	6.1	7.5	5.4	6.6
Conductivity µ	3.18	27.46	62.21	16.36	32.4
Temperature (°C)	25	25	25	25	25
COD (mg/L COD)	-1	17.20	75	3.51	22.24
E-coli (CFU/ 100 mL)	5100	3.8 x 10 ⁸	1.5 x 10 ⁹	1.6 x 10 ⁵	3.8 x 10 ⁸
Turbidity (NTU)	0.68	2.64	6.90	1.22	3.21

Table 19: Rainwater quality variation

By applying the percent removal calculated in Table 18, we can estimate how the treatments would behave with the quality variation in parameters of major concern (turbidity and

⁶ See appendix for complete data

E. coli). Tables 20 and 21 shows the expected water quality results from all treatments by applying the percent removal obtained in Table 18.

Turbidity (NTU)	POE-CPU	POE-CPU with AC	POE-CPU with AG	USEPA Standard
Minimum	0.38	0.38	0.31	1
25%	0.68	0.68	0.55	1
Average	1.47	1.48	1.19	1
75 %	1.78	1.80	1.44	1
Maximum	3.83	3.86	3.11	1

Table 20: Estimation of turbidity results for all treatments (USEPA, 2005; USEPA, 2009)

Table 21: E. coli estimation results from all treatments (USEPA, 2005; USEPA, 2009)

<i>E. coli</i> (CFU/100 mL)	POE-CPU	POE-CPU with AC	POE-CPU with AG	Standard
Minimum	1.3 x 10 ⁻⁴	7.1 x 10 ⁻⁵	6.6 x 10 ⁻⁶	0
25%	4.1 x 10 ⁻⁴	2.3 x 10 ⁻⁴	2.1 x 10 ⁻⁵	0
Average	9.4	5.3	4.9 x 10 ⁻¹	0
75 %	9.4	5.3	4.9 x 10 ⁻¹	0
Maximum	37.5	21	2	0

As can be observed (Table 20), compliance of turbidity limits would only be reached when influent turbidity is less than 2.5 NTU for all treatments. Concerning *E* .*coli* removal (Table 21), AG treatment would comply with at least the 75% of the collected water, while original and AC treatment would have exceeded the standard.

5. CONCLUSIONS AND RECOMMENDATIONS

Scarcity and pollution of water supplies are a reality that the world currently faces and as time passes the situation grows bleaker. The utilization of rainwater provides a sustainable and cleaner water supply that can be made potable with minimal treatment. When rainwater is desired for potable uses, the POE-CPU may present a solution with many advantages. One of these advantages, is that it uses a very accessible and technically inexpensive water supply, that can be collected in the house or building rooftop. Another advantage is that the materials used for the filtration are relatively cheap and commercially available. Both gravel and sand media can be purchased from Sand and Silica Co. at about \$30 per 20 kg of material, while AG beads can be purchased from Acros Organics at \$50 per 250 grams. Because of its simplicity, the POE-CPU requires minimal maintenance and an easy to learn skill set to operate. As far as cleanup for this system is concerned, the gravel filter can be cleaned by moving the media and flushing the filter with tap water. On the other hand, because the sand filter is considered to be slow sand filtration, it is only needed to scrape the top of the filter to remove some of the bio-film that is formed with constant use, and flush it with tap water afterwards. A very significant advantage of the POE-CPU is that it requires less energy to operate than traditional systems since it is intended to be connected to roof spouts, so the water will move by gravity and it will only need a single pump to push the water to the storage unit.

When considering the effects of the POE-CPU regarding water quality, it can be observed that it is able to regulate rainwater acidic pH resulting in compliance with the USEPA Secondary Standards. With the studied sand filter design, the POE-CPU removes up to 44% turbidity at 5 GPH without any additives and 55% when innovated with calcium alginate beads at 3.25 GPH. In most cases, the POE-CPU achieves more than 4-log removal of *E. coli* when adding 0.1 mL of

1% sodium hypochlorite solution per 100 mL of water and uses commercial cleaner (bleach) as disinfectant, which can be found at many local retailers.

As presented, the system is currently recommended as a supplementary unit for locations with traditional water treatment systems and indispensable for improving water quality for locations that use raw rainwater as a supply source. In order to improve and adapt the POE-CPU to any desired conditions the following considerations and alterations are recommended:

- A study of rainwater occurrence and intensity is recommended to verify if installing the system would be viable and cost effective.
- Regular rooftop cleanup is recommended since it would greatly improve POE-CPU effluent water quality.
- Depending on desired use and need, augmenting filter dimensions, while keeping sand distribution (25% coarse, 50% medium, 25% fine), will help in increasing treated water volume.
- If household location is in an area where there are no trees in the vicinity, consider eliminating and/or bypassing gravel pre-filter, since removal of small particles is achieved only by the sand filter.
- Consider replacing liquid disinfectant with chlorine tablets, which will make system management and maintenance simpler and easier.

REFERENCES

AWWA (1999), American Water Works Association. Water Quality & Treatment, McGraw-Hill.

Ashbolt, N.J. (2008) "Risk analysis of drinking water microbial contamination versus disinfection by-products (DBP's)". Toxicology 198, pages 255-262.

Bauer, R., Dizer, H., Graeber, I., Rosenwinkel, K.H. and Lopez-Pila, J. (2010) "*Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration*". Water Research 49(2) pages 439-452.

Elliott, M.A., Stauber, C.E., Koksal, F., DiGiano, F.A and Sobsey, M.D. (2008) "*Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter*". Water Research 42, pages 2662-2670.

Gok, C. and Aytas, S. (2009) "Biosorption of uranium (VI) from aqueous solution using calcium alginate beads". Journal of Hazardous Materials 168, pages 369-375.

Helmreich, B. and Horn, H. (2009) "*Opportunities in rainwater harvesting*". Desalination 248, pages 118-124.

Hijnen, W.A.M., Suylen, G.M.H., Bahlman, J.A., Brouwer-Hanzens, A. and Medema, G.J. (2010) "GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment". Water Research 44, pages 1224-1234.

Kloss, C. (2008) "Municipal Handbook: Rainwater Harvesting Policies. Low Impact Development Center". USEPA-833-F-08-010.

Lin, Y., Fugetsu, B., Terui, N., Tanaka, S. (2005) "Removal of organic compounds by alginate gel beads with entrapped activated carbon". Journal of Hazardous Materials 120, pages 237-241.

Lowe, J. and Hossain, Md.M. (2008) "Application of ultrafiltration membranes for removal of humic acid from drinking water". Desalination 218, pages 343-354.

Lye, D.J. (2009) *"Rooftop runoff as a source of contamination: A review"*. Science of The Total Environment 407, pages 5429-5434.

Morris, G., Acevedo-Pimentel, R., Ayala, G. (1984) "*Yield and cost of water supplies from rainfed cisterns: Puerto Rico*". Prepared for: Second International Conference on Raind-fed cisterns. Department of Natural Resources, Puerta Tierra, Puerto Rico.

Mwabi, J.K., Adeyemo, F.E., Mahlangu, T.O., Mamba, B.B., Brouckaert, B.M., Swartz, C.D., Offrringa, G., Mpenyana-Monyatsi, L., Momba, M.N.B. (2011) "*Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of South Africa*". Physics and Chemistry of the Earth 36, pages 1120-1128.

Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., Nolan, J.W., Le Deit, H. and Kanellopoulos, N.K. (2006) *"Heavy metal adsorption by calcium alginate beads from Laminaria digitata"*. Journal of Hazardous Materials B137, pages 1765-1772.

USAEPA (2005), *United States Environmental Protection* Agency: <u>www.epa.gov</u>, Stage 2 Disinfection by Product Rule, USEPA 815-F-05-003, December 2005.

USAEPA (2009), *United States Environmental Protection* Agency: <u>www.epa.gov</u>, National Primary Drinking Water Regulations, USEPA 816-F-09-004, May 2009.

Wand H., Vacca G., Kuschk, P., Kruger, M. and Kastner, M. (2007) "*Removal of bacteria by filtration in planted and non-planted sand colum*". Water Research 41, pages 159-167.

WHO (2011), *World Health Organization*: <u>www.who.int</u>. Fact Sheet N°125, Enterohaemorrhagic Escherichia coli (EHEC). December 2011.

APPENDIX

A. E. coli inoculation

The following figures show both residual free chlorine and CFU variation for all four (4) inoculation experiments, including a fifth experiment made for the purpose of observing the *E*. *coli* bacteria variation in reactor 2 which contained no chlorine.

A.1. First experiment

Figure 56: Free residual chlorine concentration for 1st experiment

Figure 57: CFU variation for *E. coli* inoculation in 1st experiment

A.2. Second experiment

Figure 58: Free residual chlorine concentration in 2nd experiment

Figure 59: CFU variation for *E. coli* inoculation in 2nd experiment

A.3. Third experiment

Figure 60: Free residual chlorine concentration in 3rd experiment

Figure 61: CFU variation for *E. coli* inoculation in 3rd experiment

A.4. Fourth experiment

Figure 63: CFU variation for *E. coli* inoculation in 4th experiment

A.5. Fifth experiment

Figure 64: CFU variation for reactor 2 *E. coli* inoculation in 5th experiment

B. Disinfection by-products

This part of the appendix pertains to all experiments with disinfection by products such as those with rainwater reactors and those with humic acid spike.

B.1. Experiments with rainwater and *E. coli* spike

The following figures show results obtained from the two (2) experiments done to determine DBP production when spiking chlorine in rainwater reactor containing *E. coli*.

B.1.1. Experiment 1

Figure 65: Chloroform and residual chlorine plots for 1st experiment

B.1.2. Experiment 2

Figure 66: Chloroform and residual chlorine plots for 2nd experiment

B.2. Experiments with humic acid spike

The following figures show results obtained from the two (2) experiments done to determine DBP production when spiking chlorine to reactors containing humic acid.

B.2.1. Experiment 1

Figure 67: Chloroform and residual chlorine plots for 1st experiment with humic acid

Notes: Numbers 1, 2 and 3 in graph represent before adding chlorine, right after adding chlorine and after 30 minute contact time

stages.

Figure 68: pH variation in humic acid DBP 1st experiment

Figure 69: Chloroform and residual chlorine plots for 2nd experiment with humic acid

Notes: Numbers 1, 2 and 3 in graph represent before adding chlorine, right after adding chlorine and after 30 minute contact time stages.

Figure 70: pH variation in humic acid DBP 2nd experiment

C. Calcium Alginate Beads

Part C of the Appendix section corresponds to all experiments done with concern to calcium alginate beads, such as kinetics, adsorption and filter column experiments.

C.1. Adsorption Kinetics

Figure 71: AG kinetic adsorption

C.1.2. Experiment 2

Figure 72: AG kinetic adsorption

C.2. Adsorption Kinetics

C.2.1. Adsorption experiment 1

Figure 73: AG sorption to 5 ppm lead solution for 1st experiment

Figure 74: AG sorption to 5 ppm lead solution for 2nd experiment

Filter column experiments **C.3**.

C.3.1. **Column experiment 1**

Table 22: Filter column results for both AG and AC for 1 st experime	ent
---	-----

	Initial	AC	AG
рН	5.35	0.775701	1.02243
COD (mg/L)	11.4052541	0.9056	3.643205
Conductivity (µS/cm)	10.06	4.44334	32.40557
Turbidity (NTU)	4.58	0.360262	0.683406
E-coli (CFU/100 mL)			
Lead (ppm)	UDL	1.02924	1.02924
Removed	-	2.93	1.45
Removed %	-	63.9738	31.65939

C.3.2. Column experiment 2

	Initial	AC	AG
рН	6.68	5.05	6.31
COD (mg/L)	32.96681	20.03578	45.89784
Conductivity (µS/cm)	50.9	35.2	73.1
Turbidity (NTU)	10.9	1.77	3.83
E-coli (CFU/100 mL)	70000	300000	1000000
Lead (ppm)	UDL	UDL	UDL
Turbidity Removed	-	9.13	7.07
Turbidity Removed %	-	83.76147	64.86239
E-coli Removed	-	-230000	-930000
E-coli Removed %	-	-328.571	-1328.57

Table 23: Filter column results for both AG and AC for 2nd experiment

D. POE-CPU experiments

This part of the Appendix shows results from all POE-CPU runs, including those with the addition of AC and AG.

D.1. POE-CPU run

Figures in this section show all water quality parameters measured in all three (3) experiments done with the system with its original design

D.1.1. Experiment 1

Time: 30 minutes							
Parameter	Rain	Gravel	Sand	Disinfection			
рН	6.58	6.74	6.75	6.34			
Conductivity (μS/cm)							
E-coli (CFU/100mL)	1.2E+08	38000000	>10^4	>10^0			
COD (mg/L)	34.01507	43.705	42.62834	20.01852			
Turbidity (NTU)	1.61	1.55	0.87	0.99			
Free Cl ₂ (mg/L)				0.566667			
Consumed(Cl ₂)				0.8474747			
	Time:	60 minutes					
Parameter	Re	Gravel	Sand	Disinfection			
рН	7.05	6.88	6.57	6.45			
Conductivity (µS/cm)							
E-coli (CFU/100mL)	1.2E+08	61000000	>10^4	>10^0			
COD (mg/L)	34.01507	30.7851	26.47847	31.86176			
Turbidity (NTU)	1.6	0.99	0.81	0.82			
Free Cl ₂ (mg/L)				0.033333			
Consumed(Cl ₂)				1.3808081			

Table 24: Water quality parameters for POE-CPU run 1st experiment

D.1.2. Experiment 2

Time: 30 minutes						
Parameter	Re	Gravel	Sand	Disinfection		
рН	6.26	6.58	6.84	6.79		
Conductivity (µS/cm)	365	362	334	367		
E-coli (CFU/100mL)						
COD (mg/L)	38.32171	25.40181	51.2416	48.01163		
Turbidity (NTU)	3.6	3.4	1.5	1.6		
Free Cl ₂ (mg/L)				1.35		
DBP (ppb)				97		
Consumed(Cl ₂)				5.35		
	Time: 60) minutes				
Parameter	Re	Gravel	Sand	Disinfection		
рН	6.56	6.83	6.57	6.45		
Conductivity (µS/cm)	347	355	357	385		
E-coli (CFU/100mL)						
COD (mg/L)	38.32171	42.62834	51.2416	38.32171		
Turbidity (NTU)	3.8	3.2	1.5	1.8		
Free Cl ₂ (mg/L)				0.7		
DBP (ppb)				5		
				3		

Table 25: Water quality parameters for POE-CPU run 2nd experiment

D.1.3. Experiment 3

Time: 30 minutes						
Parameter	Re	Gravel	Sand	Disinfection		
рН	6.35	6.27	5.69	7.39		
Conductivity (µS/cm)	166.6	166.7	150.6	331		
E-coli (CFU/100mL)						
COD (mg/L)	4.945306	0.638674	-2.5913	-9.05125		
Turbidity (NTU)	9.64	9.99	7.54	6.9		
Free Cl ₂ (mg/L)				58		
DBP (ppb)				42		
Consumed(Cl ₂)				82		
	Time: 60) minutes				
Parameter	Re	Gravel	Sand	Disinfection		
рН	6.56	6.83	6.57	6.45		
Conductivity (µS/cm)	25	25	25	25		
E-coli (CFU/100mL)	166.7	167.7	167.1	332		
COD (mg/L)						
Turbidity (NTU)	0.638674	1.715332	-2.5913	-9.05125		
Free Cl ₂ (mg/L)	17.6	11.3	7.75	7.45		
DBP (ppb)				0.7		
Consumed(Cl ₂)				139.3		

Table 26: Water quality parameters for POE-CPU run 3rd experiment

D.1.4. Comparison between all experiments with the POE-CPU

The results shown in the next table shows the normalized results (C/C0) of all three (3) POE-CPU experiments. These values are used for bar charts presented in the results and discussion. Additional statistical calculations were made and are also presented in the table.

рН						
	Gravel 30	Gravel 60	Sand 30	Sand 60		
Experiment 1	1.024	0.976	1.026	0.932		
Experiment 2	1.051	1.041	1.093	1.002		
Experiment 3	0.987	1.041	0.896	1.002		
Average	1.021	1.019	1.005	0.978		
Std dev	0.032	0.038	0.100	0.040		
Variance coefficient	0.031	0.037	0.099	0.041		
Variance	0.001	0.001	0.010	0.002		
Con	ductivity (µ	S/cm / μS/cı	m)			
	Gravel 30	Gravel 60	Sand 30	Sand 60		
Experiment 1	-	-	-	-		
Experiment 2	0.992	1.023	0.915	1.029		
Experiment 3	1.001	1.006	0.904	1.002		
Average	0.996	1.015	0.910	1.016		
Std dev	0.006	0.012	0.008	0.019		
Variance coefficient	0.006	0.012	0.009	0.018		
Variance	0.000	0.000	0.000	0.000		
COD (mg/L / mg/L)						
	COD (mg/	L / mg/L)				
	COD (mg/l Gravel 30	L / mg/L) Gravel 60	Sand 30	Sand 60		
Experiment 1	COD (mg/ Gravel 30 1.321	L / mg/L) Gravel 60 0.893	Sand 30 1.286	Sand 60 0.750		
Experiment 1 Experiment 2	COD (mg/ Gravel 30 1.321 0.663	L / mg/L) Gravel 60 0.893 1.112	Sand 30 1.286 1.337	Sand 60 0.750 1.337		
Experiment 1 Experiment 2 Experiment 3	COD (mg/ Gravel 30 1.321 0.663 0.129	L / mg/L) Gravel 60 0.893 1.112 2.686	Sand 30 1.286 1.337 -	Sand 60 0.750 1.337 -		
Experiment 1 Experiment 2 Experiment 3 Average	COD (mg/l Gravel 30 1.321 0.663 0.129 0.704	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564	Sand 30 1.286 1.337 - 1.311	Sand 60 0.750 1.337 - 1.044		
Experiment 1 Experiment 2 Experiment 3 Average Std dev	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978	Sand 30 1.286 1.337 - 1.311 0.036	Sand 60 0.750 1.337 - 1.044 0.415		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625	Sand 30 1.286 1.337 - 1.311 0.036 0.028	Sand 60 0.750 1.337 - 1.044 0.415 0.398		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956	Sand 30 1.286 1.337 1.311 0.036 0.028 0.001	Sand 60 0.750 1.337 - 1.044 0.415 0.398 0.172		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 NTU/NTU)	Sand 30 1.286 1.337 - 1.311 0.036 0.028 0.001	Sand 60 0.750 1.337 - 1.044 0.415 0.398 0.172		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 U/NTU) Gravel 60	Sand 30 1.286 1.337 1.311 0.036 0.028 0.001 Sand 30	Sand 60 0.750 1.337 1.044 0.415 0.398 0.172 Sand 60		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30 0.963	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 VU/NTU) Gravel 60 0.619	Sand 30 1.286 1.337 1.311 0.036 0.028 0.001 Sand 30	Sand 60 0.750 1.337 - 1.044 0.415 0.398 0.172 Sand 60		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30 0.963 0.944	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 VTU/NTU) Gravel 60 0.619 0.842	Sand 30 1.286 1.337 1.311 0.036 0.028 0.028 0.001 Sand 30 0.540 0.417	Sand 60 0.750 1.337 1.044 0.415 0.398 0.398 0.172 Sand 60 0.506 0.395		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30 0.963 0.944 1.036	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 NTU/NTU) Gravel 60 0.619 0.842 0.642	Sand 30 1.286 1.337 - 1.311 0.036 0.028 0.028 0.001 Sand 30 0.540 0.417 0.782	Sand 60 0.750 1.337 1.044 0.415 0.398 0.172 Sand 60 0.506 0.395 0.340		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average	COD (mg/l Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30 0.963 0.944 1.036 0.981	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 VTU/NTU) Gravel 60 0.619 0.842 0.642 0.642 0.701	 Sand 30 1.286 1.337 1.311 0.036 0.028 0.001 0.001 0.001 0.0417 0.782 0.580 	Sand 60 0.750 1.337 1.044 0.415 0.398 0.398 0.172 Sand 60 0.506 0.395 0.440		
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average Std dev	COD (mg/ Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30 0.963 0.944 1.036 0.981 0.981	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 NTU/NTU) Gravel 60 0.619 0.842 0.642 0.642 0.701 0.123	Sand 30 1.286 1.337 1.311 0.036 0.028 0.028 0.021 5and 30 0.540 0.417 0.782 0.580 0.186	Sand 60 0.750 1.337 1.044 0.415 0.398 0.172 Sand 60 0.395 0.395 0.340 0.447 0.447		
Experiment 1 Experiment 2 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient	COD (mg/) Gravel 30 1.321 0.663 0.129 0.704 0.597 0.848 0.357 Turbidity (N Gravel 30 0.963 0.944 1.036 0.981 0.049 0.049	L / mg/L) Gravel 60 0.893 1.112 2.686 1.564 0.978 0.625 0.956 VTU/NTU) Gravel 60 0.619 0.842 0.642 0.642 0.701 0.123 0.175	Sand 30 1.286 1.337 (Sand 60 0.750 1.337 - 1.044 0.415 0.398 0.398 0.172 Sand 60 0.395 0.440 0.440 0.447 0.056		

Table 27: Normalized results for experiments with POE-CPU

D.2. POE-CPU run with AC

Results shown in the following subsections correspond to water quality measurements of all experiments done with the addition of AC to the sand filter.

D.2.1. Experiment 1

Table 28:	Water quality	parameters for	POE-CPU run	with AC 1 st	experiment
-----------	---------------	----------------	-------------	-------------------------	------------

Time: 30 minutes							
Parameter	Re	Gravel	Sand	Disinfection			
рН	6.57	6.81	6.76	7.58			
Conductivity (µS/cm)	318	301	86.2	125.8			
E-coli (CFU/100mL)	1000000	<10^6	>10^6	0			
COD (mg/L)	6.021963824	6.021964	4.945306	0.638674			
Turbidity (NTU)	7.07	5.73	2.68	2.58			
Free Cl ₂ (mg/L)				23.2			
DBP (ppb)				-9			
Consumed(Cl ₂)				3.55			
	Time: 60	minutes					
Parameter	Re	Gravel	Sand	Disinfection			
рН	7.27	7.19	6.56	7.21			
Conductivity (µS/cm)	321	311	231	193.6			
E-coli (CFU/100mL)	<10^6	<10^6	21000000	0			
COD (mg/L)	7.098621878	7.098622	3.868648	0.638674			
Turbidity (NTU)	7.6	6.05	4.01	4.16			
Free Cl₂ (mg/L)				21.7			
DBP (ppb)				-8			
Consumed(Cl ₂)				5.05			

D.2.2. Experiment 2

Time: 30 minutes							
Parameter	Re	Gravel	Sand	Disinfection			
рН	5.3	7.21	6.21	6.7			
Conductivity (µS/cm)	34.7	56.3	139.6	136			
E-coli (CFU/100mL)	43000000	32000000		0			
COD (mg/L)	43.705	38.32171	18.94186	18.94186			
Turbidity (NTU)	6.11	5.1	2.72	2.94			
Free Cl ₂ (mg/L)				8.1			
DBP (ppb)				-46			
Consumed(Cl ₂)							
	Time: 6	0 minutes					
Parameter	Time: 6 Re	0 minutes Gravel	Sand	Disinfection			
Parameter pH	Time: 6 Re 5.35	0 minutes Gravel 6.97	Sand 5.95	Disinfection 7.09			
Parameter pH Conductivity (μS/cm)	Time: 6 Re 5.35 33.7	0 minutes Gravel 6.97 44.4	Sand 5.95 62.2	Disinfection 7.09 51.7			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL)	Time: 6 Re 5.35 33.7 54000000	0 minutes Gravel 6.97 44.4 46000000	Sand 5.95 62.2	Disinfection 7.09 51.7 0			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L)	Time: 6 Re 5.35 33.7 54000000 43.705	0 minutes Gravel 6.97 44.4 46000000 40.47502	Sand 5.95 62.2 30.7851	Disinfection 7.09 51.7 0 25.40181			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU)	Time: 6 Re 5.35 33.7 54000000 43.705 6.07	0 minutes Gravel 6.97 44.4 46000000 40.47502 5.59	Sand 5.95 62.2 30.7851 4.65	Disinfection 7.09 51.7 0 25.40181 4.86			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L)	Time: 6 Re 5.35 33.7 54000000 43.705 6.07	0 minutes Gravel 6.97 44.4 46000000 40.47502 5.59	Sand 5.95 62.2 30.7851 4.65	Disinfection 7.09 51.7 0 25.40181 4.86 5.9			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L) DBP (ppb)	Time: 6 Re 5.35 33.7 54000000 43.705 6.07	0 minutes Gravel 6.97 44.4 46000000 40.47502 5.59	Sand 5.95 62.2 30.7851 4.65	Disinfection 7.09 51.7 0 25.40181 4.86 5.9 -38			

Table 29: Water quality parameters for POE-CPU run with AC 2nd experiment

D.2.3. Experiment 3

Time: 30 minutes							
Parameter	Re	Gravel	Sand	Disinfection			
рН	6.97	8.34	7.41	7.52			
Conductivity (µS/cm)	49.2	54.9	43.5	61.9			
E-coli (CFU/100mL)			97000000	3			
COD (mg/L)	51.2416	48.01163	27.55512	24.32515			
Turbidity (NTU)	6.2	5.51	3.28	3.09			
Free Cl ₂ (mg/L)				2.9			
DBP (ppb)				-5			
Consumed(Cl ₂)				-2.9			
	Time: 6	0 minutes					
Parameter	Re	Gravel	Sand	Disinfection			
рН	6.82	7.88	7.31	7.37			
Conductivity (µS/cm)	49	54.3	48.4	66.8			
E-coli (CFU/100mL)							
COD (mg/L)	53.39492	42.62834	28.63178	35.09173			
Turbidity (NTU)	6.3	5.44	4.66	5.27			
Free Cl ₂ (mg/L)				0.8			
DBP (ppb)				8			
Concurred(CL)				-0.8			

Table 30: Water quality parameters for POE-CPU run with AC 3rd experiment

D.2.4. Comparison between all experiments of the POE-CPU with AC

The results shown in the following table shows the normalized results (C/C0) of all three (3) POE-CPU experiments with the addition of AC. Bar charts presented in the results and discussion belong to these values. Additional statistical calculations were made and are also presented.

	pł	ł		
	Gravel 30	Gravel 60	Sand 30	Sand 60
Experiment 1	1.037	0.989	1.029	0.902
Experiment 2	1.097	0.959	0.945	0.818
Experiment 3	1.269	1.084	1.128	1.006
Average	1.134	1.011	1.034	0.909
Std dev	0.121	0.065	0.091	0.094
Variance coefficient	0.106	0.065	0.088	0.103
Variance	0.015	0.004	0.008	0.009
Con	ductivity (µ	S/cm / µS/cı	n)	
	Gravel 30	Gravel 60	Sand 30	Sand 60
Experiment 1	0.947	0.969	0.271	0.720
Experiment 2	0.177	0.138	0.439	0.194
Experiment 3	0.173	0.169	0.137	0.151
Average	0.432	0.425	0.282	0.355
Std dev	0.446	0.471	0.151	0.317
Variance coefficient	1.031	1.107	0.536	0.893
Variance	0.199	0.222	0.023	0.100
	COD (mg/	L / mg/L)		
	COD (mg/ Gravel 30	L / mg/L) Gravel 60	Sand 30	Sand 60
Experiment 1	COD (mg/ Gravel 30 1.000	L / mg/L) Gravel 60 1.000	Sand 30 0.821	Sand 60 0.545
Experiment 1 Experiment 2	COD (mg/ Gravel 30 1.000 6.364	L / mg/L) Gravel 60 1.000 5.702	Sand 30 0.821 3.145	Sand 60 0.545 4.337
Experiment 1 Experiment 2 Experiment 3	COD (mg/ Gravel 30 1.000 6.364 7.973	L / mg/L) Gravel 60 1.000 5.702 6.005	Sand 30 0.821 3.145 4.576	Sand 60 0.545 4.337 4.033
Experiment 1 Experiment 2 Experiment 3 Average	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236	Sand 30 0.821 3.145 4.576 2.847	Sand 60 0.545 4.337 4.033 2.972
Experiment 1 Experiment 2 Experiment 3 Average Std dev	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806	Sand 30 0.821 3.145 4.576 2.847 1.895	Sand 60 0.545 4.337 4.033 2.972 2.107
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663	Sand 30 0.821 3.145 4.576 2.847 1.895 0.665	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875	Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (1	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875 NTU/NTU	Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (N Gravel 30	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 0.663 7.875 NU/NTU) Gravel 60	 Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 Sand 30 	 Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440 5and 60
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (M Gravel 30 0.810	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875 7.875 VTU/NTU) Gravel 60 0.796	 Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 3.591 5and 30 0.379 	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440 Sand 60 0.528
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (M Gravel 30 0.810 0.721	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875 TU/NTU) Gravel 60 0.796 0.736	 Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 3.591 5and 30 0.379 0.385 	Sand 60 0.545 4.337 4.033 2.972 0.709 4.440 Sand 60 0.528 0.612
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (M Gravel 30 0.810 0.721 0.779	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 0.663 7.875 VTU/NTU) Gravel 60 0.796 0.736 0.716	 Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 3.591 5and 30 0.379 0.385 0.464 	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440 0.528 0.612 0.613
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (M Gravel 30 0.810 0.721 0.779 0.779	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875 TU/NTU) Gravel 60 0.796 0.736 0.716 0.749	Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 0.3591 0.379 0.379 0.385 0.464 0.409	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440 0.528 0.612 0.613 0.584
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average Std dev	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (M Gravel 30 0.810 0.810 0.721 0.779 0.779 0.0770	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875 VTU/NTU) Gravel 60 0.796 0.736 0.736 0.716 0.749 0.042	 Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 3.591 0.379 0.385 0.464 0.409 0.047 	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440 0.528 0.612 0.613 0.584 0.545
Experiment 1 Experiment 2 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coeffcient	COD (mg/ Gravel 30 1.000 6.364 7.973 5.112 3.651 0.714 13.330 Turbidity (M 6ravel 30 0.810 0.721 0.779 0.779 0.770 0.045	L / mg/L) Gravel 60 1.000 5.702 6.005 4.236 2.806 0.663 7.875 TU/NTU) Gravel 60 0.796 0.796 0.736 0.716 0.749 0.042 0.056	Sand 30 0.821 3.145 4.576 2.847 1.895 0.665 3.591 0.369 0.379 0.385 0.464 0.409 0.047 0.116	Sand 60 0.545 4.337 4.033 2.972 2.107 0.709 4.440 0.528 0.612 0.613 0.584 0.049 0.049 0.084

D.3. POE-CPU run with AG

The tables presented in the following subsections show water quality parameters of all experiments done with the addition of AG beads to the sand filter.

D.3.1. Experiment 1

Table 32: Water	quality parameter	s for POE-CPU run	with AG 1 st experiment
-----------------	-------------------	-------------------	------------------------------------

Time: 30 minutes							
Parameter	Re	Gravel	Sand	Disinfection			
рН	6.453	6.81	6.921				
Conductivity (µS/cm)	28.1	41.6	33.1				
E-coli (CFU/100mL)	-	4000000	24000000	2			
COD (mg/L)	42.62834	36.16839	23.24849	34.01507			
Turbidity (NTU)	10.6	6.6	3.2				
Free Cl ₂ (mg/L)				12.5			
DBP (ppb)							
Consumed(Cl ₂)							
	Time: 6	0 minutes					
Parameter	Time: 6 Re	0 minutes Gravel	Sand	Disinfection			
Parameter pH	Time: 6 Re 6.385	6.852	Sand 6.909	Disinfection			
Parameter pH Conductivity (µS/cm)	Time: 6 Re 6.385 30.5	60 minutes Gravel 6.852 42	Sand 6.909 40.5	Disinfection TMTC			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL)	Time: 6 Re 6.385 30.5 1E+08	60 minutes Gravel 6.852 42 -	Sand 6.909 40.5 77000000	Disinfection TMTC 34.01507			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L)	Time: 6 Re 6.385 30.5 1E+08 42.62834	60 minutes Gravel 6.852 42 - 41.55168	Sand 6.909 40.5 77000000 30.7851	Disinfection TMTC 34.01507			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU)	Time: 6 Re 6.385 30.5 1E+08 42.62834 11.4	60 minutes Gravel 6.852 42 - 41.55168 7.5	Sand 6.909 40.5 7700000 30.7851 4.5	Disinfection TMTC 34.01507			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L)	Time: 6 Re 6.385 30.5 1E+08 42.62834 11.4	60 minutes Gravel 6.852 42 - 41.55168 7.5	Sand 6.909 40.5 77000000 30.7851 4.5	Disinfection TMTC 34.01507 13			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L) DBP (ppb)	Time: 6 Re 6.385 30.5 1E+08 42.62834 11.4	60 minutes 6.852 42 - 41.55168 7.5	Sand 6.909 40.5 77000000 30.7851 4.5	Disinfection TMTC 34.01507 13			

Notes: Some parameters for the disinfection process weren't able to be measured because of lack of sample

D.3.2. Experiment 2

Time: 30 minutes							
Parameter	Re	Gravel	Sand	Disinfection			
рН	6.482	7.754	7.474	7.712			
Conductivity (µS/cm)	38.7	53.1	120.3	148.9			
E-coli (CFU/100mL)			2E+08				
COD (mg/L)	45.85831	41.55168	4.945306	26.47847			
Turbidity (NTU)	10.6	7.8	3.3	4.6			
Free Cl ₂ (mg/L)				5.4			
DBP (ppb)			UR	-32			
Consumed(Cl ₂)							
	Time: 6	0 minutes					
Parameter	Time: 6 Re	0 minutes Gravel	Sand	Disinfection			
Parameter pH	Time: 6 Re 6.671	0 minutes Gravel 7.127	Sand 7.148	Disinfection 7.461			
Parameter pH Conductivity (μS/cm)	Time: 6 Re 6.671 36.8	0 minutes Gravel 7.127 44.2	Sand 7.148 57.6	Disinfection 7.461 52.4			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL)	Time: 6 Re 6.671 36.8 2E+09	0 minutes Gravel 7.127 44.2 5.7E+09	Sand 7.148 57.6 1.3E+09	Disinfection 7.461 52.4			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L)	Time: 6 Re 6.671 36.8 2E+09 46.93497	0 minutes Gravel 7.127 44.2 5.7E+09 43.705	Sand 7.148 57.6 1.3E+09 35.09173	Disinfection 7.461 52.4 35.09173			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU)	Time: 6 Re 6.671 36.8 2E+09 46.93497 10.7	0 minutes Gravel 7.127 44.2 5.7E+09 43.705 8.3	Sand 7.148 57.6 1.3E+09 35.09173 6.1	Disinfection 7.461 52.4 35.09173 6.7			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L)	Time: 6 Re 6.671 36.8 2E+09 46.93497 10.7	0 minutes Gravel 7.127 44.2 5.7E+09 43.705 8.3	Sand 7.148 57.6 1.3E+09 35.09173 6.1	Disinfection 7.461 52.4 35.09173 6.7 8.3			
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L) DBP (ppb)	Time: 6 Re 6.671 36.8 2E+09 46.93497 10.7	0 minutes Gravel 7.127 44.2 5.7E+09 43.705 8.3	Sand 7.148 57.6 1.3E+09 35.09173 6.1	Disinfection 7.461 52.4 35.09173 6.7 8.3 -36			

Table 33: Water quality parameters for POE-CPU run with AG 2nd experiment

D.3.3. Experiment 3

Time: 30 minutes						
Parameter	Re	Gravel	Sand	Disinfection		
рН	7.405	7.533	7.415	7.596		
Conductivity (µS/cm)	40.5	47	37.4	38.9		
E-coli (CFU/100mL)	74000000	89500000	2000000	0		
COD (mg/L)	48.01163	43.705	26.47847	26.47847		
Turbidity (NTU)	7.72	6.66	3.47	4.02		
Free Cl ₂ (mg/L)				12.5		
DBP (ppb)				-2		
Consumed(Cl ₂)				0.9		
	Time: 6	0 minutes				
Parameter	Time: 6 Re	0 minutes Gravel	Sand	Disinfection		
Parameter pH	Time: 6 Re 7.119	0 minutes Gravel 7.359	Sand 7.337	Disinfection 7.543		
Parameter pH Conductivity (μS/cm)	Time: 6 Re 7.119 40.8	0 minutes Gravel 7.359 47.4	Sand 7.337 45.5	Disinfection 7.543 39		
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL)	Time: 6 Re 7.119 40.8 59000000	0 minutes Gravel 7.359 47.4 1.21E+08	Sand 7.337 45.5 4000000	Disinfection 7.543 39 0		
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L)	Time: 6 Re 7.119 40.8 59000000 46.93497	0 minutes Gravel 7.359 47.4 1.21E+08 44.78165	Sand 7.337 45.5 4000000 40.47502	Disinfection 7.543 39 0 41.55168		
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU)	Time: 6 Re 7.119 40.8 59000000 46.93497 8.06	0 minutes Gravel 7.359 47.4 1.21E+08 44.78165 7.13	Sand 7.337 45.5 4000000 40.47502 5.77	Disinfection 7.543 39 0 41.55168 6.52		
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L)	Time: 6 Re 7.119 40.8 59000000 46.93497 8.06	0 minutes Gravel 7.359 47.4 1.21E+08 44.78165 7.13	Sand 7.337 45.5 4000000 40.47502 5.77	Disinfection 7.543 39 0 41.55168 6.52 7		
Parameter pH Conductivity (μS/cm) E-coli (CFU/100mL) COD (mg/L) Turbidity (NTU) Free Cl ₂ (mg/L) DBP (ppb)	Time: 6 Re 7.119 40.8 59000000 46.93497 8.06	0 minutes Gravel 7.359 47.4 1.21E+08 44.78165 7.13	Sand 7.337 45.5 4000000 40.47502 5.77	Disinfection 7.543 39 0 41.55168 6.52 7 2 -18		

Table 34: Water quality parameters for POE-CPU run with AG 3rd experiment

D.3.4. Comparison between all experiments with the POE-CPU

The following table presents the normalized results (C/C0) for 30 minutes and 60 minutes samples of all three (3) POE-CPU experiments done with the addition of AG. Bar charts presented in the results and discussion section belong to these values. Statistical calculations, such as standard deviation and variance are also presented.

	pł	ł		
	Gravel 30	Gravel 60	Sand 30	Sand 60
Experiment 1	1.055	1.073	1.073	1.082
Experiment 2	1.196	1.068	1.153	1.072
Experiment 3	1.017	1.034	1.001	1.031
Average	1.090	1.058	1.076	1.061
Std dev	0.094	0.022	0.076	0.027
Variance coefficient	0.087	0.020	0.071	0.026
Variance	0.009	0.000	0.006	0.001
Con	ductivity (µ	S/cm / µS/ci	m)	
	Gravel 30	Gravel 60	Sand 30	Sand 60
Experiment 1	1.480	1.377	1.178	1.328
Experiment 2	1.372	1.201	3.109	1.565
Experiment 3	1.160	1.162	0.923	1.115
Average	1.338	1.247	1.737	1.336
Std dev	0.163	0.115	1.195	0.225
Variance coefficient	0.122	0.092	0.688	0.168
Variance	0.026	0.013	1.428	0.051
	COD (mg/	L / mg/L)		
	COD (mg/ Gravel 30	L / mg/L) Gravel 60	Sand 30	Sand 60
Experiment 1	COD (mg/ Gravel 30 0.848	L / mg/L) Gravel 60 0.975	Sand 30 0.545	Sand 60 0.722
Experiment 1 Experiment 2	COD (mg/ Gravel 30 0.848 0.906	L / mg/L) Gravel 60 0.975 0.931	Sand 30 0.545 0.108	Sand 60 0.722 0.748
Experiment 1 Experiment 2 Experiment 3	COD (mg/ Gravel 30 0.848 0.906 0.910	L / mg/L) Gravel 60 0.975 0.931 0.954	Sand 30 0.545 0.108 0.552	Sand 60 0.722 0.748 0.862
Experiment 1 Experiment 2 Experiment 3 Average	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953	Sand 30 0.545 0.108 0.552 0.402	Sand 60 0.722 0.748 0.862 0.777
Experiment 1 Experiment 2 Experiment 3 Average Std dev	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022	Sand 30 0.545 0.108 0.552 0.402 0.254	Sand 60 0.722 0.748 0.862 0.777 0.075
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.039	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.023	Sand 30 0.545 0.108 0.552 0.402 0.254 0.254	Sand 60 0.722 0.748 0.862 0.777 0.075 0.096
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.039 0.001	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.023 0.023	Sand 30 0.545 0.108 0.552 0.402 0.254 0.634 0.065	Sand 60 0.722 0.748 0.748 0.748 0.751 0.0755 0.096
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.039 0.001 Turbidity (1	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.023 0.000	Sand 30 0.545 0.108 0.552 0.402 0.254 0.634 0.065	Sand 60 0.722 0.748 0.862 0.777 0.075 0.096 0.006
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.039 0.001 Turbidity (N Gravel 30	L / mg/L) Gravel 60 0.975 0.931 0.953 0.022 0.023 0.023 0.000 NTU/NTU) Gravel 60	 Sand 30 0.545 0.108 0.552 0.402 0.402 0.254 0.634 0.065 Sand 30 	 Sand 60 0.722 0.748 0.862 0.777 0.075 0.096 0.006 Sand 60
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.039 0.001 Turbidity (M Gravel 30 0.623	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.023 0.000 VTU/NTU) Gravel 60 0.658	 Sand 30 0.545 0.108 0.552 0.402 0.254 0.634 0.065 3and 30 0.302 	 Sand 60 0.722 0.748 0.862 0.777 0.075 0.075 0.096 0.006 Sand 60 0.395
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.035 0.039 0.001 Turbidity (N Gravel 30 0.623 0.736	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.023 0.000 NTU/NTU) Gravel 60 0.658 0.776	 Sand 30 0.545 0.108 0.552 0.402 0.254 0.254 0.634 0.634 0.302 0.302 0.311 	 Sand 60 0.722 0.748 0.862 0.777 0.075 0.096 0.096 0.096 0.395 0.570
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.035 0.001 Turbidity (M Gravel 30 0.623 0.736 0.863	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.022 0.000 VTU/NTU) Gravel 60 0.658 0.776 0.885	 Sand 30 0.545 0.108 0.552 0.402 0.254 0.634 0.065 Sand 30 0.302 0.311 0.449 	 Sand 60 0.722 0.748 0.862 0.777 0.075 0.096 0.096 0.006 0.395 0.570 0.716
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.035 0.039 0.001 Turbidity (M Gravel 30 0.623 0.736 0.863 0.740	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.022 0.023 0.000 NTU/NTU) Gravel 60 0.658 0.776 0.885 0.773	Sand 30 0.545 0.108 0.552 0.402 0.254 0.634 0.065 0.302 0.311 0.449 0.354	 Sand 60 0.722 0.748 0.862 0.777 0.075 0.096 0.096 0.096 0.395 0.570 0.716 0.560
Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average Std dev	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.035 0.039 0.001 Turbidity (Gravel 30 0.623 0.736 0.863 0.740 0.120	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.022 0.023 0.000 NTU/NTU) Gravel 60 0.658 0.776 0.885 0.773 0.113	Sand 30 0.545 0.108 0.552 0.402 0.254 0.264 0.302 0.311 0.449 0.354 0.354 0.354	 Sand 60 0.722 0.748 0.862 0.777 0.075 0.096 0.096 0.096 0.395 0.570 0.570 0.560 0.161
Experiment 1 Experiment 2 Experiment 2 Experiment 3 Average Std dev Variance coefficient Variance Experiment 1 Experiment 2 Experiment 3 Average Std dev Variance coefficient	COD (mg/ Gravel 30 0.848 0.906 0.910 0.888 0.035 0.035 0.039 0.001 Turbidity (M Gravel 30 0.623 0.736 0.863 0.740 0.120 0.120	L / mg/L) Gravel 60 0.975 0.931 0.954 0.953 0.022 0.023 0.000 NTU/NTU) Gravel 60 0.658 0.776 0.885 0.773 0.113 0.147	Sand 30 0.545 0.108 0.552 0.402 0.254 0.254 0.302 0.302 0.311 0.449 0.354 0.354 0.354 0.323	Sand 60 0.722 0.748 0.862 0.777 0.075 0.0096 0.0096 0.0395 0.395 0.716 0.7500 0.716 0.287

Tuble bet for multiple for experiments with for or o with field	Table 35: Normalize	d results for ex	xperiments with	POE-CPU	with AG
---	---------------------	------------------	-----------------	---------	---------

D.4. POE-CPU treatment comparison

This final table shows the normalized results (C/C0) for all nine (9) POE-CPU experiments with the various treatments. Bar charts in the treatment comparison section belong to these values. Statistical calculations, such as standard deviation and variance are also presented.

		рН					
	POE-	CPU	POE-CPU	with AC	POE-CPU	with AG	
	Gravel	Sand	Gravel	Sand	Gravel	Sand	
Experiment 1 (30 minutes)	1.024	1.026	1.037	1.029	1.055	1.073	
Experiment 2 (30 minutes)	1.051	1.093	1.097	0.945	1.196	1.153	
Experiment 3 (30 minutes)	0.987	0.896	1.269	1.128	1.017	1.001	
Experiment 1 (60 minutes)	0.976	0.932	0.989	0.902	1.073	1.082	
Experiment 2 (60 minutes)	1.041	1.002	0.959	0.818	1.068	1.072	
Experiment 3 (60 minutes)	1.041	1.002	1.084	1.006	1.034	1.031	
Average	1.020	0.992	1.072	0.971	1.074	1.069	
Std dev	0.031	0.070	0.110	0.108	0.064	0.052	
Variance coefficient	0.031	0.070	0.103	0.111	0.059	0.048	
Variance	0.001	0.005	0.012	0.012	0.004	0.003	
C	onductiv	vity (µS/	cm / μS/cr	n)			
	POE-	CPU	POE-CPU	with AC	POE-CPU	with AG	
	Gravel	Sand	Gravel	Sand	Gravel	Sand	
Experiment 1 (30 minutes)	-	-	0.947	0.271	1.480	1.178	
Experiment 2 (30 minutes)	0.992	0.915	0.177	0.439	1.372	3.109	
Experiment 3 (30 minutes)	1.001	0.904	0.173	0.137	1.160	0.923	
Experiment 1 (60 minutes)			0.969	0.720	1.377	1.328	
Experiment 2 (60 minutes)	1.023	1.029	0.138	0.194	1.201	1.565	
Experiment 3 (60 minutes)	1.006	1.002	0.169	0.151	1.162	1.115	
Average	1.005	0.963	0.429	0.319	1.292	1.536	
Std dev	0.013	0.062	0.410	0.226	0.135	0.800	
Variance coefficient	0.013	0.065	0.956	0.708	0.105	0.521	
Variance	0.000	0.004	0.168	0.051	0.018	0.640	
COD (mg/L /mg/L)							

Table 36: Normalized results for all POE-CPU treatments

	POE-CPU		POE-CPU with AC		POE-CPU with AG	
	Gravel	Sand	Gravel	Sand	Gravel	Sand
Experiment 1 (30 minutes)	1.321	1.286	1.000	0.821	0.848	0.545
Experiment 2 (30 minutes)	0.663	1.337	6.364	3.145	0.906	0.108
Experiment 3 (30 minutes)	0.129		7.973	4.576	0.910	0.552
Experiment 1 (60 minutes)	0.893	0.750	1.000	0.545	0.975	0.722
Experiment 2 (60 minutes)	1.112	1.337	5.702	4.337	0.931	0.748
Experiment 3 (60 minutes)	2.686		6.005	4.033	0.954	0.862
Average	1.134	1.178	4.674	2.910	0.921	0.589
Std dev	0.864	0.286	2.952	1.794	0.044	0.266
Variance coefficient	0.762	0.243	0.632	0.616	0.048	0.450
Variance	0.747	0.082	8.712	3.217	0.002	0.070
Turbidity (NTU/NTU)						
	POE-CPU		POE-CPU with AC		POE-CPU with AG	
	Gravel	Sand	Gravel	Sand	Gravel	Sand
Experiment 1 (30 minutes)	0.963	0.540	0.810	0.379	0.623	0.302
Experiment 2 (30 minutes)	0.944	0.417	0.721	0.385	0.736	0.311
Experiment 3 (30 minutes)	1.036	0.782	0.779	0.464	0.863	0.449
Experiment 1 (60 minutes)	0.619	0.506	0.796	0.528	0.658	0.395
Experiment 2 (60 minutes)	0.842	0.395	0.736	0.612	0.776	0.570
Experiment 3 (60 minutes)	0.642	0.440	0.716	0.613	0.885	0.716
Average	0.841	0.513	0.760	0.497	0.757	0.457
Std dev	0.175	0.143	0.041	0.105	0.106	0.161
Variance coefficient	0.208	0.278			0.140	0.351
Variance	0.031	0.020	0.002	0.011	0.011	0.026