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ABSTRACT 

This project is the continuation of a previous simulation study based on a trial and 

error approach that pretended to find a better system. This new phase pursued a scientific 

approach for the simulation study in order to identify the best alternative: sensitivity 

analysis, design of experiments, regression analysis for metamodeling purposes, and 

optimization. Typical simulation optimization methods were not of practical value for 

this application. An optimization tool based on mathematical programming was 

developed using Microsoft’s Excel Solver. The tool was validated in terms of the 

metamodels accuracy and the capacity to find a local optimum within the search region. 

It was concluded that additional experimental designs were needed in order to find the 

global optimum. Nevertheless, the tool was valid for the practical application of this 

project. Finally, it was also concluded that the scientific approach rendered better results 

than the trial and error approach.  
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RESUMEN 

Este proyecto es la continuación de un estudio de simulación que pretendía 

resolver un problema de aplicación práctica siguiendo una metodología de prueba y error. 

Esta nueva fase perseguía encontrar la mejor alternativa siguiendo una metodología 

científica: análisis de sensitividad, diseño de experimentos, metamodelos y optimización. 

Se determinó que los métodos de optimización comúnmente utilizados en simulación no 

eran prácticos para este problema. Se desarrolló una herramienta de optimización basada 

en programación matemática con el uso de “Microsoft Excel Solver”. La herramienta fue 

validada en términos de la precisión de los metamodelos y la capacidad para encontrar el 

óptimo dentro de la región de búsqueda. Se concluyó que para determinar el óptimo 

verdadero, era necesario realizar experimentos adicionales. Sin embargo, se demostró que 

la herramienta era válida para el problema que se pretendía resolver. Por último, se 

demostró que el método científico rindió mejores beneficios que el método de prueba y 

error. 
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CHAPTER I. Introduction 

1.1. Introduction 

This project is based on a real scenario in which simulation modeling is used in 

order to understand the behavior of the system. Design of experiments and optimization 

are key elements of the simulation output analysis in order to identify critical parameters 

and their relationships to multiple responses or output variables. Understanding this 

relationship allows to build mathematical expressions for the output variables which is 

the foundation for the optimization.  

The project is the continuation of a previous project that was developed as part of 

the requirements for a computer simulation course towards the Master in Engineering 

degree. Contrary to the previous project which was a practical application with direct 

involvement of members of the company including management, this new phase is more 

of an academic interest with no interrelation with the company representatives. In the 

previous phase, focus was given to the data gathering and analysis, to the development, 

verification and validation of the model, and to the experimentation by means of a trial 

and error approach. In this new phase, focus will be given to the output analysis by means 

of sensitivity analysis, design of experiments, metamodeling and optimization. 

1.2. Justification 

Computer simulation is a technique widely used in operations research and 

management science. It can be defined as the process in which a real or a proposed 

system1 is mimic or imitated by designing a model2 using the computer. The purpose of 

simulation is to understand the behavior of the system over time in order to evaluate 

different improvement alternatives or strategies for its operation. This is usually 

accomplished by experimenting with the simulation model for a given set of conditions. 

                                                 
1 System – the facility or process of interest, either actual or planned, which is composed of elements that interrelate to 
achieve a specific objective.        
2 Model - the representation of the system in a set of assumptions that usually take the form of mathematical or logical 
relationships in order to understand the behavior of the system itself.  
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Computer simulation includes both the construction of the model and the experimental 

use of the model.    

The process of developing or constructing a model takes the form of different 

tasks: working with the end users of the simulation results, defining a problem, 

understanding the system, collecting and analyzing the data, formulating the conceptual 

model, coding and verifying the simulation model, and then validating its behavior. 

Usually, a great deal of effort is spent on the development phase of the model instead of 

on the experimental and output analysis phase. The lack of effort to analyze appropriately 

the outcome data of the simulation model leads to erroneous inferences about the system 

under study.  

The experimental and output analysis phase is generally less time consuming than 

the development phase of the model. Output analysis allows the analyst and the end user 

to understand better the performance of the model leading to better decisions in terms of 

possible improvements for the system. This project focuses on the output analysis of the 

simulation model for a real system, in which understanding the relationships between the 

input parameters and multiple interrelated performance metrics or output variables with 

restrictions is key to achieve the expected goal of the system. Several input parameters 

are factors in which the end user can specify any value within a given range of interest. 

The fact that there are variable input parameters and multiple responses with restrictions, 

suggests the necessity for using computer simulation with design of experiments 3 , 

metamodels and optimization4, emphasizing the importance of the output analysis and 

experimentation of the simulation model.   

The previous simulation model was verified and validated and the solution to the 

problem was attempted using a trial and error approach and by fixing the input 

parameters to the optimum scenario. Even though the output data was statistically 

                                                 
3 Design of experiments – a test or series of tests in which purposeful changes are made to the input variables of a 
process or system so that we may observe and identify the reasons for changes that may be observed in the output 
response [as per Montgomery (2001)].  
4  Mathematical modeling and optimization – a process in which a decision problem is mathematically modeled 
allowing the systematic evaluation of all the alternatives or possible solutions of the problem.  It has three basic 
components: decision options or alternatives, problem restrictions and objective criteria. 
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analyzed in an appropriate manner, the trial and error approach does not guarantee that 

the best alternative was selected. More than that, the solution provided satisfies only the 

scenario or condition, in which the input parameters are only at the optimum condition, 

neglecting the end user to understand the behavior of the system under other conditions. 

This is indeed the justification for this project since the expectation is to provide the end 

user with an understanding of the behavior of the system within the given spectrum of the 

input parameters. Traditional simulation optimization methods are not of practical value 

for this problem due to the lack of resources availability from the end user and the 

uncertainty related to the values that the variable input parameters can assume. The 

approach followed is to express the relation between the simulation input parameters and 

the responses in terms of a mathematical optimization problem by use of metamodels. 

Even though the simulation literature recommends caution from the analyst side when 

pretending to solve simulation optimization problems with deterministic methods, mainly 

due to the inheriting variability of any simulation model, it is believed that this approach 

will provide the end user with the full understanding of the system without having to 

invest in expensive simulation software. Microsoft’s Excel Solver is used for the 

development of the optimization tool, showing to be of practical value due to its 

universality in today’s business world and its use of well known algorithms for solving 

optimization problems. In addition, we will attempt to demonstrate that the trial and error 

approach did not reach the optimum solution.  

1.3. Description of the System 

The previous project took place in a multinational company that manufactures and 

services electromechanical components used in electrical substations. The mission of the 

company is to provide innovative products and services of impeccable quality that will 

add value to the customers, employees and shareholders. Until several years ago, when 

they introduced a global product, their products were designed for the domestic or 

international markets. Due to the acceptance that the new product had in both markets, 

the management identified the necessity for increasing the volume.   
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The system under study was the assembly line for the new product which is a one-

piece flow progressive assembly line. Each product is individually assembled, tested, and 

final inspected and packed. The testing area was identified by the management as the 

bottleneck and the area of major concern due to the high cost of the testing equipment, 

the high rejection rate and the excessive time to test a unit. Management understood that 

assembly capacity was available or relatively inexpensive to increase, contrary to the 

testing and final inspection areas. The study was then focused on those two areas as well 

as packaging.  

The purpose of Figure 1.1 is to provide a visual aid for a better understanding of 

the system. It also shows the total number of employees working at each area. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.1 Conceptual model for the system under study 
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The product gets to the testing area from the assembly stations by mean of a 

manual conveyor. The first working station in the testing area is to perform the dielectric 

test and there is a buffer before this station. Once the testing person is available, he/she 

pulls the product out from the buffer to the testing area and performs the dielectric test 

which is a manual test. The product will be returned to the assembly area if it fails the 

test. Once the test is completed, the testing person pushes the product to the testing 

machine that he/she serves and loads the testing machine if available. Otherwise, the 

product is buffered until the machine is available. There are two identical testing 

machines served by independent testing personnel. Once the testing machine is loaded, 

the testing person is available for other responsibilities since the machine runs 

automatically. After completion of the testing process, the testing person unloads the 

testing machine and returns the product to the assembly area if the product was rejected. 

Otherwise, he/she proceeds to perform a visual inspection and some required 

adjustments. Once completed, the testing person pushes the product to the assembly area 

if the product was rejected or to the final inspection area and it is buffered until the 

assembler or final inspector are available. Task priority in the testing area is given first to 

the loading/unloading of the testing machine, second to the dielectric test and finally to 

the adjustment process.     

Personnel classified as an assembler or the final inspector, whoever is available 

but priority given to the assembler performs a visual inspection to the product and takes it 

to the assembly area if it is rejected or proceeds to load the draw out machine if the 

product is accepted. The draw out test is then performed and it requires the presence of 

the personnel all the time. Once again, priority is given to the assembler for this test. If 

rejected, the product will be taken to the assembly area; otherwise it will be buffered for 

the final inspection which can only be done by the final inspector. Final inspection is 

performed and once again, the product will be routed to the assembly area if rejected or 

pushed into the packing buffer. The product will finally be packed by packing personnel 

and stacked until the shipper proceeds to move it to the dock area. The shipping process 

was not part of the scope of the project.    
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Table 1.1 shows the number of employees working at each of the three main 

areas. It also shows the statistical distribution that follows the process time for each 

working station and the acceptance levels or yield for the working stations in which the 

product is inspected or tested. Please note that “N/A” in this table means that no 

inspection is performed.     

Please refer to Appendix A for more information related to the simulation model 

used for this project. This project will not cover the data gathering and analysis, nor the 

development, verification and validation of the model. These critical stages of any 

simulation process were already covered during the previous project as specified in 

section 1.1. Appendix A will cover the assumptions of the simulation model, and the 

definition of entities, attributes, type of events and state variables. It will also cover a 

brief summary of the data gathering and analysis, verification and validation of the  

model, trial and error runs, conclusions and recommendations.  

Table 1.1 Data and input parameters from system 

 

1.4. Definition of the Problem  

The problem will be defined in two categories: the practical application of 

computer simulation for the system under study, and the academic interest on simulation 

output analysis for systems with multiple response variables and restrictions.  

Working 
Area 

Number 
of 

Employees 
Employee 

Classification Process 
Process Time             

(Min.) 
Yield 
(%) 

Dielectric Test 1.06 + Logn (0.423,0.266) 99.0 

Loading Testing Machine 1+Logn (0.334, 0.231) N/A 

Testing 3 + 52 Beta (2.93, 4.65) 72.6 
Unloading Testing 

Machine 1.05+Weib (0.17,2.03) N/A 

Testing 2 Tester 

Adjustment 1.03+Logn (0.369,0.202) 100.0 

Inspection I Tria (5.5,10.5,18.5) 97.5 

Draw Out Test 7.5 + Weib(8.6,2.32) 96.1 Inspection 2 1 Assembler;   
1 Inspector 

Final Inspection 3.5 + Expo (3.27) 94.8 
Packing 

Area 2 Packer Packing 8 + 9 * Beta (1.15, 0.554) N/A 
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1.4.1. Practical Application 

As previously mentioned in section 1.3, the system of interest in this project is the 

assembly line for a new product manufactured by a multinational company, in particular 

the testing, final inspection and packing areas. The testing area was identified by the 

management of the company as the bottleneck and the area of major concern due to the 

high cost of the testing equipment and the excessive time for testing a unit. In addition, 

there was a high rejection rate in this area and the management was interested in knowing 

how this poor quality performance was impacting the performance of the line. 

Due to the market acceptance for the new product, the management of the 

company identified the necessity for increasing their volume from 800 units per month to 

3000 units per month. At first glance, identifying the requirements for the increment in 

volume seemed to be a relatively easy task since the new product was under production 

for about two years. Nevertheless, the local management was restricted to find the best 

alternative with the minimum capital investment and operational cost due to the new 

business acquisition strategy of the main company. For the purpose of the analysis, 

capital investment was related to the acquisition of new equipments and work-in-process 

inventory, and operational cost was mostly related to labor. Table 1.2 shows the costs 

associated to labor and equipment acquisition.  In order to facilitate the cost analysis 

related to depreciation of capital equipment, the straight line method was assumed with a 

10 year period. Any equipment with a purchasing cost higher than $2,000 was considered 

as capital equipment, otherwise, it was considered as expense. The estimated cost for a 

unit in work-in-process is $1500 and each unit is sold by $3500. Please note that “N/A” 

in this table means that the equipment used in that working area, if any, is an expense 

item rather than capital equipment, in other words, there is no depreciation associated 

with that piece of equipment.  
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Table 1.2 Cost related data 

Working 
Area 

Employee 
Classification 

Labor Cost 
($/Hr-Emp) Equipment 

Capital 
Expenditure 

($/Equip) 
 Book Value 

($)  

Dielectric Testing Machine 300  N/A  Testing Tester 7.35 
Testing Machine 350,000 50,000 

Assembler 6.35 
Inspection 

Inspector 8.35 
Draw Out Testing Machine 50,000 

10,000 

Packing Area Packer 6.85 Packing N/A  N/A  
 

The management was facing machine downtime in particular with the testing 

equipment and the draw out machine. Even though the breakages were infrequent, the 

management set up a maximum limit for the equipment up-time in order to allow the 

simulation study to consider machine downtime since no data was available for the 

stoppages. Similarly, limits were set up for the personnel utilization in order to allow for 

random tasks that could be assigned by the supervisors. Table 1.3 shows the restrictions 

for the up-time of the equipment and the utilization of the personnel. Please note that 

“N/A” in this table means that no equipment is used to perform the operation at that 

particular station.   

Table 1.3 Maximum machine up-time and personnel utilization 

Working Area 
Employee 

Classification 

Maximum 
Utilization 

(%) Equipment 

Maximum 
Up-time   

(%) 

Dielectric Testing Machine 100 Testing Tester 70 
Testing Machine 95 

Assembler 90 
Inspection 

Inspector 80 
Draw Out Testing Machine 95 

Packing Area Packer 85 Packing N/A 
 

The rejection rate was high in particular at the testing area. In addition, the testing 

process time was also considered to be excessively high. The management goal was to 

improve the yield at the testing machine from 72.6% to 90%, and reduce the testing 

process time to 70% of the actual value. In both cases, the investment was not a 

restriction and it was considered by management as a most do task for their team.   
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In summary, the management of the company wanted to determine the 

arrangement needed in order to increase the volume to the projected levels at the 

minimum operational and capital expenditure costs. The suggested arrangement in terms 

of equipment and personnel requirements must be determined considering the restrictions 

of equipment up-time and personnel utilization.  

1.4.2. Academic Interest 

Simulation modeling and analysis was identified as the right tool to be used due to 

the stochastic5 nature of the system under study, which seems to be modeled relatively 

easy using simulation software like ARENA/SIMAN. Nevertheless, once the model is 

coded, the subsequent experiments and output analysis are of a complex nature due to the 

multiple interrelated response variables and their relationship with the input parameters 

of the process. This relationship with the input parameters suggests design of experiments 

as a tool to be used as part of the simulation analysis. In addition, the constraints or 

restrictions over the response variables combined with the fact that there is a specific 

objective of achieving 3000 units per month at the lowest cost in terms of capital 

investment and operational costs, suggest the possibility for using metamodels and 

mathematical programming for optimization purposes. The interrelated response 

variables will be integrated into the optimization analysis by means of constraints and the 

cost (objective) function.      

The analysis of simulation models of this complexity is usually simplified by 

reducing the search region, thus defining a manageable number of feasible scenarios. 

This is achieved by fixing or setting up input parameters to conditions that will impact 

positively the main goal of the analysis. For example, by fixing the yield to 90% instead 

of 72.6% and fixing the testing process time to 70% of the actual value instead of 85%, 

we can expect more throughput6 and a reduction of the up-time7 for the testing machine 

which allows the expected volume to be reached with the least number of machines, thus 

                                                 
5  Stochastic process – a collection of random variables ordered over time, which is all defined on a common sample 
space [as per Law et al. (1991)]. 
6 Throughput - the maximum rate of production in a multistage production process [as per Martinich (1997)]. 
7 Up-time – the percentage of time that the testing machine resource was busy or available.  
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reducing the capital expenditure cost. Nevertheless, the analysis has no value for the end 

user if those optimum conditions for the input parameters are not reached in real life.   

In the previous attempt for solving the problem described in section 1.4.1, the 

yield and the testing process time were fixed to the optimum conditions, and the 

experiments followed a trial and error approach. Not only the capacity for understanding 

the model was limited but there was no guarantee that the alternative suggested was the 

best alternative in terms of reducing the capital and operational costs. 

1.5. Objectives and Scope 

As in section 1.4, the objectives and scope of this project will be defined in terms 

of the practical application and the academic interest on simulation output analysis. 

1.5.1. Practical Application 

The purpose of this project is to define the arrangement needed in terms of 

number of equipment and personnel, to support the objective of increasing the throughput 

from a total of 800 units per month to 3000 units per month with the minimum 

investment in terms of capital expenditures and operational costs. The above objective 

must be achieved considering the following restrictions or constraints: 

• Work-in-process must not exceed 22 units in average. 

• Equipment up-time (%) must not exceed the limit specified on section 1.4.1. 

• Labor utilization (%) must not exceed the limit specified on section 1.4.1.  

For the particular scenario in which the yield of the testing process is 90% and the testing 

process time is 70% of the actual value, the probability for the throughput will be defined 

as well as the size of the buffers. 

Achieving a total of 3000 units per month is the main driver for the project. The 

end user will not be given the option to set up the system for fewer units. Contrary to the 

yield and testing process time, understanding the behavior of the system for the whole 

spectrum of alternatives between 800 to 3000 units is not within the scope of this project. 
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1.5.2. Academic Interest    

The main purpose of this project is to provide the end user with a tool of practical 

value that allows him/her to understand the behavior of the system for the whole 

spectrum of alternatives or possibilities as defined by the limits specified for the yield and 

testing process time. This objective will be achieved by focusing on the experimental and 

the output analysis phase of the simulation model. The use of design of experiments, 

metamodels8, and optimization are of major academic interest for the simulation output 

analysis. These tools as well as the appropriate statistical analysis for the response or 

output variables of the simulation model are key ingredients for achieving the main 

objective of this project.  

The optimization will be done by expressing the relationship between the input 

parameters and the simulation responses in terms of a mathematical programming model, 

which will then be solved by the appropriate optimization method. Caution is suggested 

when applying deterministic methods for solving simulation optimization problems due 

to the variability of the simulation model. Nevertheless, as per Banks et al. (2001) it is 

understood that this risk is minimized if the appropriate statistical analysis is done during 

the following stages of the simulation study: output analysis with effort on running 

sufficient replicates for variability reduction, experimental designs analysis with the 

respective regression for metamodeling building purposes, and finally the selection of the 

appropriate optimization method. Microsoft’s Excel Solver and Visual Basic for 

Applications will be used for the development of the optimization tool mainly for the 

following reasons: (1) Microsoft’s universality in today’s business world makes the 

optimization tool developed of great practical value for the end user, and (2) the use by 

Excel Solver of well known algorithms for solving optimization problems, which for this 

problem is the Generalized Reduced Gradient method. 

Finally, another objective of this project is validating as per simulation literature 

that the use of scientific tools as part of simulation modeling and analysis render better 

results than the traditional trial and error approach. 

                                                 
8 Metamodel – is an algebraic model of the simulation model [as per Law et al. (1991)].  
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1.6. Summary 

This chapter described the system under study as the testing, final inspection and 

packing areas on the assembly line of a new product manufactured by a multinational 

company. Due to market acceptance, the management identified the need for increasing 

the throughput at the lowest possible cost, both capital and operational. There are some 

input parameters that are variable and understanding the behavior of the system for the 

spectrum of possible values that those parameters can assume is critical for the success of 

the project. There are also multiple interrelated performance measures with restrictions as 

defined by the management of the company.  

It was also mentioned that this project is the continuation of a previous project 

that focused on finding a solution by means of a trial and error approach, different to this 

new phase in which focus will be given to the output analysis by means of sensitivity 

analysis, design of experiments, metamodeling and optimization. 

The problem, and objectives and scope, were presented in terms of the practical 

application and the academic interest in simulation output analysis for multiple responses. 

With respect to the application, the main objective is to determine the personnel and 

equipment required, as well as the space requirements due to the buffers. There is special 

academic interest in formulating the problem as a mathematical model for optimization 

purposes, and solving the same by means of the Generalized Reduced Gradient algorithm 

that Microsoft Excel Solver employs for solving smooth non-linear optimization 

problems.    

The following chapter (II) will discuss the literature review with major focus on 

the output analysis, comparison of alternatives, experimental designs, and simulation 

optimization. Chapter III will cover the methodology followed for the execution of the 

project, Chapter IV will discuss the results and statistical analysis, and Chapter V will 

present the conclusions and recommendations in terms of future research. 
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CHAPTER II. Literature Review 

2.1.  Introduction 

This section summarizes the literature reviewed related to computer simulation. It 

focuses mostly on the output analysis, the experimental design and optimization methods 

rather than on the coding, the verification and validation of the model.  Even though 

simulation is widely used for decision making in the industry, most of the time the effort 

is placed on building, verifying and validating the model rather than analyzing the output 

data appropriately.  In addition, in many situations the analyst tends to follow the 

traditional trial and error approach instead of a scientific approach based on experimental 

design in order to understand the behavior of the system. Unfortunately, the power of 

simulation is minimized by these two conditions, therefore increasing the probability for 

making erroneous inferences about the system and defeating the purpose of the 

simulation study.  

2.2.  Simulation Process 

There is much in the literature related to simulation and how to build a credible 

simulation study. The following are some references on this subject: Banks et al. (2001), 

Law et al. (1991), Law (2003), Pegden et al. (1995), and Sargent (1998). 

Researchers and experts in computer simulation agree that any successful 

simulation study must follow some specific steps. Even though they differ in the number 

of steps, the essence of the suggested process is the same. In order to facilitate the 

explanation of the process, this section will present the steps as defined by Banks (2001). 

Nevertheless, the four references will be used to explain each step.   

• Problem formulation – Clearly stating the problem and assuring that it is 

understood by the end user of the simulation study. There are occasions where 

the problem has to be reformulated as the study progresses.  

• Setting of objectives and overall project plan – Clearly defining the objective 

and scope of the simulation study and confirming that simulation is the right 
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or appropriate tool to use. This is also the step for defining the performance 

measures that will be used to evaluate different configurations for the system 

under study. Assuring sufficient personnel, management support, computer 

hardware and software resources should also be considered as part of the 

planning stage.  

• Model conceptualization – Developing a preliminary model either graphically 

or in pseudo-code to define the components, descriptive variables, and 

interactions (logic) that constitute the system. The model assumptions, 

algorithms, and data summaries should be documented. The end user should 

participate to enhance the quality and increase the confidence of the resulting 

model.  

• Data collection – identifying and collecting from the system the relevant data 

that will be used by the model. This data will be used to specify model 

parameters and probability distributions. In most situations, the required data 

elements may change as the complexity of the model changes. This data 

should include the system performance data necessary for the validation of the 

model. As in the model conceptualization step, it is a good practice to involve 

the end user.  

• Model translation – Programming or coding the model. The analyst or 

modeler must decide whether to program the model using a general purpose 

programming language such as FORTRAN, C, C++, or by simulation 

language such as SIMAN, SLAM II, GPSS/H, or by using special purpose 

simulation software such as ARENA, AWESIM, WITNESS, etc.   

• Verification of the model – Confirming that input parameters and logical 

structure of the model are correctly represented in the computer, so that the 

model operates the way it is intended.  

• Validation of the model – Confirming that the model is an accurate 

representation of the real system. This is achieved through the comparison of 

the model output versus the output of the real system. 
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• Experimental design – designing an experiment that will generate the desired 

data. For each system configuration or experimental run of interest, the 

analyst must decide on simulation run length, length of the warm up period 

and the number of independent replications. The experiment could follow a 

trial and error approach or a scientific approach based on design of 

experiment. It is also highly recommended to perform a sensitivity analysis to 

determine the factors or model parameters that have the major impact on the 

performance measures.  

• Production runs and analysis – Executing the experimental runs to determine 

the performance measures for each experimental configuration. This step 

includes the subsequent analysis of the results and the decision of running 

more experiments if needed.  

• Documentation and reporting – Documenting the program, the results and 

conclusions of the simulation study. The documentation should include the 

conceptual model and the verification and validation to promote model 

credibility. Frequent progress reports are highly recommended to enhance the 

successful completion of the simulation study by surfacing misunderstandings 

early, when the problem can be solved easily. The results of the experiments 

and the analyses should be reported clearly and concisely in a final report. 

Including the animation in the final presentation helps also on the model 

credibility. 

• Implementation – Putting the results to use. The success of the implementation 

phase depends on how well the previous steps were implemented. The 

involvement of the end user through out the simulation process or study, and 

gaining his/her confidence on the model are critical factors for the success of 

the project. 
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2.3.  Output Data Analysis 

This section describes how to perform the appropriate statistical analysis to the 

output variables or performance measures of a simulation study. The following references 

were used for this section: Banks et al. (2001), Charnes (1991), Kelton (1997), Law et al. 

(1991), Pegden et al. (1995), Sanchez (2001), Sargent (1998), Sargent et al. (2002) and 

Wilson et al. (2002). 

As per Banks et al. (2001), output analysis is the examination of data generated by 

a simulation and its purpose is to predict the performance of a system or to compare the 

performance of two or more alternative system designs. This definition suggests the 

importance of output analysis in any simulation project but despite of this importance, 

many simulation studies lack of an appropriate statistical analysis for the output variables 

obtained from the simulation. Law et al. (1991) states that as a matter of fact, a very 

common mode of operation is to make a single simulation run of somewhat arbitrary 

length and then to treat the resulting simulation estimates as the “true” model 

characteristics. This mistake increases the probability of making erroneous inferences 

with respect to the behavior of the system under study, resulting in wrong conclusions 

and recommendations.  

The need for statistical analysis is driven by the use of random generators to 

produce the values of the input parameters. As a result, the output data from the 

simulation will exhibit random variability and the estimates of the performance measures 

could differ greatly from those of the real system without the proper statistical analysis. 

Another reason for inadequate statistical results is that the output variables from almost 

any computer simulation are autocorrelated, meaning a lack of statistical independence 

which is assumed by classical statistical techniques. As per Sanchez (2001) you cannot 

treat successive output values as independent observations; if you do so, particularly for 

short output streams, you are likely to vastly underestimate the system variance and, 

perhaps provide a biased estimate of the system mean. This can lead to unpleasant 

surprises when the system is implemented. 
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The initial conditions of the system at the moment of starting to run the simulation 

may influence the output data and should be taken into consideration by the analyst. The 

output data may not be identically distributed if the specified initial conditions are not 

chosen correctly. This is another reason for inadequate statistical analysis since 

simulation output is usually conveyed by constructing the confidence interval (or 

confidence regions in the case of multivariate output) for the estimate of the variable of 

interest, which is assuming that the data is not only independent but also normally or 

identically distributed. Traditionally, analysts have expressed the output data from a 

simulation in the form of confidence intervals in order to have information of both, the 

center and the spread of the output variable distribution.  

The analysis of simulation output data is divided into two categories depending 

upon the system under study: terminating simulation or non-terminating/steady-state 

simulation. As per Banks et al. (2001), a terminating simulation is one that runs for some 

duration of time TE, where E is a specified event (or set of events) which stops the 

simulation. Such systems have well-specified initial conditions. The output data for 

different runs form a terminating simulation model are independent and identically 

distributed random variables since each run uses independent random numbers and the 

same initialization rule. Law et al. (1991) specifies that since the initial conditions for a 

terminating simulation generally affect the desired measures of performance, these 

conditions should be representative of those for the actual system.  

A non-terminating simulation is one for which there is no natural event E to 

specify the length of a run. The previous definition is given by Law et al. (1991). Banks 

et al. (2001) defines such a system as one that runs continuously or at least over a long 

period of time. The simulation of a non-terminating system starts with some initial 

conditions defined by the analyst and runs for some stopping period TE specified also by 

the analyst. In this type of simulation, the analyst is usually more concerned about the 

steady-state condition of the system. Steady-state can be defined as the long run 

properties of the system, which are not influenced by the initial conditions of the 

simulation model at each run. The estimate value of an output variable at the steady-state 
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condition does not depend on the initial conditions of the simulation; however, the rate of 

convergence to the steady-state condition does. 

The system that is being modeled under this simulation project is a non-terminal 

system, and as specified above, the interest is to analyze the model under the steady state 

condition. This is the main reason for focusing from this point on the literature review 

related to steady-state simulation.  

2.3.1. Statistical Analysis for Steady-State Simulation 

As per Sargent (2002), systems modeled for steady-state analysis introduce the 

complexities of: (1) removal of the bias of the imposed initial model state and (2) 

definition of a sample that admits an accepted estimate of sample variance, which is 

needed to determine the precision of estimates of steady-state parameters. Removal of the 

initial state bias or initialization bias 9  is also called the initial transient problem. 

Estimation of sample variance is usually calculated by applying the method of 

replications or the batch means method, which are the most common used methods by 

simulation analysts.  

The method used for estimating the sample variance in this study was the 

replications method. A detailed explanation of this method will be discussed in a further 

section of this literature review. The following is a brief explanation of some of the 

methods that have been developed for the estimation of the sample variance including the 

replications and the batch means methods. Please refer to Kelton (1997), Sanchez (2001) 

and Wilson et al. (2002). 

• Replication – The main idea under this method is to make runs as long as 

possible and then to replicate them. This method will yield independent 

replications if different sets of random numbers are used for each replication, 

allowing the use of classical statistics. The problem with this method is that 

the initial conditions of the model, which are likely to be atypical of the 

                                                 
9 Initialization bias – refers to the fact that if most (or all) of the output stream is generated during the 
warm-up period or initial transient, the averages or other summary measures of the data may dramatically 
overestimate or underestimate the steady-state performance.  
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system of interest, bias the output at least for a while. Two approaches to 

overcome the initialization bias are: (1) to plot the output variable with respect 

to time and find the point where the output stabilizes, then to delete the data 

prior to that point for each replication; (2) to find a set of initial conditions 

that are more representative of the system under study. Unfortunately for the 

latter approach, initial conditions maybe unknown until the simulation is run 

and some output analysis is done. 

• Batch means – The main idea under this method is to get as close as possible 

to the steady-state by running one enormously long run. The problem with this 

method is that the output data will not be independent (not correlated) since 

all of the data is coming from one run. The idea is then to split the data into 

batches that are big enough to guarantee the independency of the data between 

batches. Classical statistics can then be used as the means of these batches are 

treated as independent unbiased observations of the behavior of the model 

under steady-state.  

• Time series model – The correlated, non-stationary simulation output series 

can be thought of as a time series. Then a time series model is fit to the data, 

and the fitted model is used for inferences. 

• Standardize time series – A process version of the central limit theorem is 

applied to “standardize” the output series, and methods for statistical analysis 

have been worked out based on this. 

• Regeneration cycles – Some simulations return now and then to a state from 

where they “start over” probabilistically. For instance, if a queue empties out 

at some point in time, it looks just like it did at the beginning of the simulation 

(assuming it started empty). This creates independent cycles that are 

manipulated for statistical analysis.  

• Spectral Analysis – Estimates of the correlation structure of the process are 

used to form a variance estimate for statistical analysis. 
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2.3.2. Transient and Steady-State Behavior  

As per Kelton (1991), consider the output data for a particular performance 

measure from a stochastic process simulation Y1, Y2,…. Let,   

( ) ( )IyYPIyF ii || ≤=              (2.1) 

for i = 1, 2,…, where y is a real number and I represents the initial conditions at the 

beginning of the simulation run. The conditional probability P(Y ≤ y | I) is the probability 

that the event {Yi≤ y} occurs given the initials conditions I. Fi(y | I) is the transient 

distribution of the output process at discrete time i for initial conditions I. The density 

functions for the transient distributions corresponding to the random variables Yi1, Yi2, 

Yi3,…Yik, are shown in Figure 2.1 for a particular set of initial conditions I and increasing 

time indices i1, i2, i3,…ik, where it is assumed that the random variable Yij has a density 

function fYij. The density fYij specifies how the random variable Yij can vary from one 

replication to another.  

If Fi(y | I) → F(y) as i → ∞ for all y and for any initial condition I, then F(y) is 

called the steady-state distribution of the output process Y1, Y2,…. Strictly speaking, F(y) 

is only obtained as i → ∞. In practice, however, there will often be a finite time index, 

say, k + 1, such that the distributions from this point on will be approximately the same 

as each other; steady-state is figuratively said to start at time k + 1 as shown in Figure 

2.1. Note that the steady-state distribution F(y) does not depend on the initial conditions; 

however, the rate of convergence of the transient distributions Fi(y | I) to F(y) does. 
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Figure 2.1 Transient and steady-state density functions for a particular stochastic Y1, Y2,… and initial conditions I. 
Modified from Law et al. (1991).  

2.3.3. Removal of the Initial Bias 

Law et al. (1991) states that supposing we want to estimate the steady state mean 

v = E(Y), which is also generally defined by  

( )ii
YEv

∞→
= lim          (2.2) 

Thus, the transient means converge to the steady-state mean. The problem of the 

initial transient is that v ≠ E(Yi) during the initial transient period due to the arbitrary 

initialization conditions specified by the analyst. There are several methods for dealing 

with this problem: (1) to initialize the simulation to a state more representative of the 

long run conditions, (2) to delete some number of observations from the beginning of a 

run and to use only the remaining observations to estimate v (this method is called 

warming up the model or initial data deletion), and (3) to use (1) and (2) in conjunction. 

As per Banks et al. (1991), there are two ways to intelligently specify the initial 

conditions. The first approach is to collect data of the existing system and to use it to 

specify initial conditions that are more typical to the real system. Usually, this method 

requires a large data collection effort and it is impossible to implement if the system 

v = E(Y) 
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being modeled does not exist. The second approach is to use queuing theory to obtain 

initial conditions from a second model that has been simplified enough for this purpose.  

The warm up or initial data deletion approach is the technique most often 

suggested for dealing with the problem of the initial transient, as per Law et al. (1991). 

The idea, as mentioned before, is to delete some number of observations from the 

beginning of a run and to use only the remaining observations to estimate v. For example, 

given the observations Y1, Y2,…,Ym, it is often suggested to use 

( )
lm
Y

lmY
m

li i

−
= ∑ += 1,                          (2.3) 

(1 ≤ l ≤ m-1) rather than ( )mY  as an estimator of v, which is estimated as 

( )
m

Y
mY

m

i i∑== 1                 (2.4) 

In general, ( )lmY , is expected to be less biased than ( )mY  because the 

observations near the beginning of the simulation run has been deleted. The major 

concern with this method is how to choose the warm up period or deletion amount l. As 

per Law et al. (1991), the following is a graphical procedure due to Welch (1981, 1983), 

which is the most generally used technique. This procedure is based on making n 

independent replications of the simulation and employing the following four steps:  

1. Make n replications of the simulation (n ≥ 5), each of length m (where m is 

large). Let Yij be the ith observation from the jth replication (j = 1, 2,…, n; i = 

1, 2,…, m). 

2. Let ∑ =
=

n

j iji nYY
1

/  for i = 1, 2,…, m. The averaged process   1Y , 2Y , has 

mean ( ) ( )ii YEYE =  and variance ( ) ( ) nYVarYVar ii /= . Thus, the averaged 

process has the same transient mean curve as the original process, but its plot 

has only ( )n/1 th the variance. 
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3. To smooth out the high-frequency oscillations in 1Y , 2Y ,… (but leave the low 

frequency oscillations or long run trend of interest), we further define the 

moving average ( )wYi , (where w is the window and is a positive integer such 

that  2/mw ≤  as follows: 

( )
( )
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Thus, if i is not too close to the beginning of the replications, then ( )wYi  is 

just the simple average of 12 +w  observations of the averaged process 

centered at observation i. It is called a moving average since i move through 

time. 

4. Plot ( )wYi  for i = 1, 2,…, m – w and choose l to be that value of i beyond 

which ( )wY1 , ( )wY2 ,…appears to have converged.  

The major concern with this approach is that the number of replications could be 

relatively high if the process being modeled is highly variable.  

2.3.4. Replication/Deletion Approach 

This section presents the replication/deletion approach for obtaining a point 

estimate and a confidence interval for the steady state mean ( )YEv =  of the process Y1, 

Y2,…. There are several conveniences for using this approach:  

• Gives reasonably good statistical performance. 

• Is the easiest approach to understand and implement. 

• Applies to all types of output parameters. 

• Can easily be used to estimate several different output parameters. 

• Can be used to compare different systems configurations. 
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As per Law et al. (1991), suppose that we make n′  replications of the simulation 

each of length m′  observations, where m′  is much larger than the warm up period l  

determined by the graphical approach discussed in the previous section of this document. 

Let jiY  be the ith observation from the jth replication (j =1, 2,…, n′ ; i =1, 2,…, m′ ) and 

let jX  be given by  

( )  2,..., 1,for          1 nj
lm

Y
X

m

li
ij

j ′=
−′

=
∑

′

+=     (2.6) 

 

Note that only the data from the steady state is being used to calculate jX . Then the 

s'jX are independent and identically distributed random variables with ( ) vXE j ≈ , ( )nX ′  

is an approximately unbiased point estimator for v, and an approximate ( )α−1100 percent 

confidence interval for v is given by 

( ) ( )
n

nStnX n ′
′

±′ −−′
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2/1,1 α                            (2.7) 

where, 
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          (2.9) 

Banks et al. (2001) suggests that as a rule of thumb, the length of each replication beyond 

the deletion point should be at least ten times the amount of the data deleted.   
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In a steady state simulation, the number of replications can increase in order to 

achieve a desired confidence interval. Let’s say that h is the half-width for the confidence 

interval of ( )nX ′ , and then it is computed as follows: 

( )
n

nSth n ′
′

= −−′

2

2/1,1 α                 (2.10) 

Assuming that h has been determined to be too large after it has been calculated from n′  

initial replications, then the total number of replications, ∗n , required to reduce the half 

width, h, to a desired value, ∗h , can be estimated as follows:   

])/([ 2∗∗ = hhnn                     (2.11) 

where [] denotes the value rounded up to the next integer. Please refer to Pegden (1995). 

2.3.5. Multivariate Simulation Output Analysis 

The following is a brief summary of the literature related to multivariate analysis 

of simulation output taken from Charnes (1991) and Law et al. (1991). No in-depth 

discussion will be presented in this section since multivariate techniques for simulation 

output analysis are not part of the scope of this project. The major reason is that decision 

making in this project will not be based on confidence interval nor confidence regions (in 

the case of multivariate output) but in constructing metamodels to specify the problem in 

the form of mathematical modeling for optimization purposes. The expected result is to 

define the number of machines and personnel required to achieve a required throughput 

or output volume, based on the input values of the simulation parameters: yield and 

testing process time. Ultimately, another expected result is to provide the probability 

distribution of the model throughput rather than the mean confidence interval. 

For most simulation models, several performance measures are of interest to the 

analyst on a simultaneous fashion. The outputs from these performance measures are 

usually cross-correlated as well as being auto-correlated. A multivariate statistical 

technique should be used to analyze the data if cross-correlation is important to the 
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analyst, thus extracting more information from the simulation model from which to make 

inferences.  

For the case of terminating simulations, one multivariate technique that can be 

applied is the construction of a joint confidence region, rather than individual intervals 

for each performance measure of interest. The validity of the procedure rests upon the 

assumption of multivariate normality and independence of the vector observations taken 

from each replication. 

Usually, the analyst will want to construct individual confidence intervals on the 

mean of each performance measure of interest. As per Charnes (1991), the analyst must 

be careful as the overall level of confidence that all intervals with the same nominal 

confidence level will cover their respective means is less than the nominal confidence 

level of each interval. Law et al. (1991) warns about the lack of confidence on the 

conclusions drawn from such a study. The Bonferroni Inequality gives a simple means of 

setting the individual confidence levels in order to obtain a lower bound on the overall 

level of confidence.  

For the case of steady-state simulations, the analyst is interested in estimating the 

steady-state parameters of the model, which is the state of statistical equilibrium where 

the means, cross covariances and auto-covariances are invariant of time. This means that 

the output vectors are not independent nor identically distributed, and the dependence 

among the elements and across time is characterized by the auto-covariance function. 

Please refer to Charnes (1991). 

Another method that can be used in the case of steady-state simulations is the 

multivariate batch-means (MBM). This method attempts to circumvent the 

autocorrelation problem without losing the information on cross-correlation by grouping 

the data into approximately uncorrelated batches.  
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2.4.  Comparison of Alternative System Designs 

This sections discusses a few of the many statistical methods developed for 

comparison purposes of two or more system designs on the basis of some performance 

measures. Comparison of competing alternatives is one of the most important uses of 

simulation since it gives the analyst the opportunity to compare such alternatives before 

implementation. The following are some of the references used related to this subject: 

Banks et al. (2001), Chen (2001), Chick (2000), Goldsman et al. (1998), Jacobson et al. 

(1999), Law et al. (1991), Nelson et al. (2003a, 2003b), Pegden et al. (1995), Sánchez 

(2001), and Sargent (1998).   

As per Sánchez (2001), the purpose of preparing a simulation model is not to 

assess the capability of a single system, but to compare one or more systems to a standard 

level of performance, to compare several systems to one another, or to determine how the 

performance of one system changes according to particular variants of operating 

conditions.  

Hypothesis tests, confidence intervals, or multiple comparison procedures can be 

used for comparison of systems against a pre-determined standard. Hypothesis tests can 

be used in the comparison of means, variances, distributions, and time series of the output 

variables of a model for each set of experimental conditions. When comparing several 

systems to one another, selection and ranking procedures can be used. The selection and 

ranking approach is also useful for comparing systems characterized by different 

protocols like LIFO and FIFO, or different layout alternatives for a manufacturing facility 

or process. Surface response methodology can be used if the comparison is based on 

changes in quantitative input variables. Response surface metamodels seek to 

approximate the relationship between the input and output variables of the simulation on 

an analytical fashion, by means of mathematical models developed through regression 

analysis. 

For the purpose of this project, hypothesis tests based on confidence intervals for 

the mean of the output variables of interest, and response surface based on metamodels 

will be explained into more details throughout this chapter. Hypothesis tests were used as 
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part of a sensitivity analysis performed to determine the critical simulation parameters or 

input variables with respect to the objectives of the project. Metamodels were developed 

for the experimental region with the purpose of optimizing a particular configuration of 

interest for the end user. Response surfaces were developed not for optimization purposes 

as it will be explained later in this chapter, but to confirm that an optimum for a particular 

configuration was within the experimental region. 

Hypothesis tests will be explained in section 2.4.1, construction of confidence 

intervals for the output mean was discussed in section 2.3.4, metamodels and response 

surface will be explained in sections 2.5.5 and 2.6.1, respectively. For literature related to 

ranking and selection procedures, please refer to Chen (2001), Goldsman et al. (1998), 

Jacobson et al. (1999), Law et al. (1991), Nelson et al. (2003a, 2003b).      

2.4.1. Hypothesis Test for Two System Comparison 

As previously mentioned, in many occasions the analyst is interested in 

comparing two systems. The general procedure used for this comparison assumes the 

number of observations is the same for both systems, which is achieved by performing n 

replications to each system.    

Let’s say the names of the two systems under study are System A and System B. 

The first step is to state the hypothesis to be tested:  

• Ho: Both systems have the same performance based on the output variable 

being evaluated. 

• Ha: Both systems performed different based on the output variable being 

evaluated.  

The second step is to construct the paired-t confidence interval. Please refer to 

Pegden (1995) for the following explanation of the test; Banks et al. (2001) and Law et 

al. (1991) can also be referenced.  
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Let aiX  and biX  denote as the observation recorded on the ith replication of 

Systems A and B, respectively, and let di denote the difference between Systems A and B 

on the ith replication (i.e., biaii xxd −= ). Please refer to Table 2.1 

Table 2.1 Theoretical values for t-paired test. Modified from 
Pegden et al. (1995)  

 

 

 

 

 

 

The comparison of the two systems is approached by developing a confidence 

interval on the expected value of di, which for purpose of this explanation will be named 

δ . The resulting confidence interval is referred to as a paired-t confidence interval. 

The statistical convenience of using this method is the following: (1) the 

assumption that the variances of each system are equal (as in the two sample-t method) is 

not necessary, (2) there is no need for assuming that aiX  and biX are independent. We 

only need to assume that within System A the observations are independent as well as in 

System B, which is fair considering that each observation within a system is coming from 

different replications. 

In order to compute the confidence interval, we begin by estimating d , ( )ds , and 

( )ds , as follows: 

∑
=

=
n

i

i

n
d

d
1

                            (2.12) 

( ) ( )∑
= −

−
=

n

i

i

n
dd

ds
1

2

1
              (2.13) 

Replication System A System B Difference 

1 Xa1 Xb1 d1 

2 Xa2 Xb2 d2 

... 

... 

... 

... 

n Xan Xbn dn 
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( ) ( )
n
dsds =        (2.14) 

The half-width for α−1  confidence interval on δ  centered at d  is then given by 

( )dsth n 2/1,1 α−−=                      (2.15) 

If the two systems perform identically, then the expected value for d  is 0. 

Therefore, if the computed confidence interval contains 0, there is not enough evidence to 

reject H0 and the analyst cannot reliably state that both systems are different. However, if 

the interval does not contain 0, then H0 can be rejected and the analyst can assert with 

appropriate confidence level that both systems perform different with respect to output 

variable or performance measure X. 

A second approach for forming the confidence interval of δ  when the number of 

observations from both systems is not equal is the two sample-t confidence interval. As in 

the previous approach, there is no need for assuming that aiX  and biX are independent, 

but the variances of each system must be equal. However, n1 and n2 can be different.  For 

more detail on this approach, please refer to Law et al. (1991) and Devore (1982). 

2.5.  Experimental Design  

As per Montgomery (2001), experimental design is a test or series of tests in 

which purposeful changes are made to the input variables of a process or system so that 

we may observe and identify the reasons for changes that may be observed in the output 

response.  In the context of simulation, the system or process is a computer model of the 

real system under study, either actual or planned. This section is an introduction to the 

use of design of experiments when the experiment is the execution of a computer 

simulation.  

In experimental design terminology, the input parameters and structural 

assumptions of the simulation model are called factors, and the output performance 

measures are called responses. Usually, there are several responses or performance 

measures of interest. Factors may be either quantitative or qualitative, and in some 
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occasions the distinction is not clear. Factors can also be classified as being controllable 

or uncontrollable, depending on whether they represents action options to managers of 

the corresponding system of interest. Please refer to Law et al. (1991).  

Usually, at the early stages of experimentation, the analyst is concerned about 

which factors are important and how they might affect the responses. As the analyst 

understanding of the model’s behavior progresses, the interest on experimentation turns 

from identifying critical factors to defining the optimal combinations of factor levels that 

maximize or minimize a response of interest. At this stage, the use of metamodels and 

response surface methodologies can be of great value. Once metamodels are constructed, 

the estimation of the gradient could also be of interest to the analyst for purposes of 

quantifying how the responses react to small changes in the quantitative factors as well as 

for optimization purposes. 

This section explains into more details the use of sensitivity analysis, 2k full 

factorial designs, 2k-p fractional factorial designs, central composite designs and 

metamodels.  

    The following are the references used for this section: Banks et al. (2001), 

Barton (1998), Chik (2000), dos Santos et al. (1999), Ivanova et al. (1999), Kelton 

(1997), Kelton et al. (2003), Kleijnen et al. (2001), Law et al. (1991), Montgomery et al. 

(2001), Sánchez (2001), and Wan (2003). 

2.5.1. Sensitivity Analysis 

As per Kleijnen et al. (2001), sensitivity analysis is the systematic investigation of 

the reaction of the simulation responses to extreme values of the model’s input or to 

drastic changes in the model’s structure. Such an analysis helps identify the most 

important factors in a simulation study. Kelton (1997) states that a direct way to address 

this is to make two sets of runs, one at the original value and another one at the changed 

value of the input parameter, and then to look at the difference.  Law et al. (1991) 

specifies that if the output is sensitive to some aspect of the model, then that aspect must 

be modeled carefully.  
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It is important to control the randomness in the simulation when using sensitivity 

analysis. Otherwise, the effect of changing one input parameter may be confounded with 

other changes in the model as a result of not using the same set of random numbers for 

the elements of the model that were not changed.  

Sensitivity analysis can be used during different steps of the simulation study. It is 

highly recommended during the validation step; it can also be used during the early 

stages of the experimental step to determine critical factors, and during the optimization 

phase.  

Usually, only one factor is changed at a time during sensitivity analysis, but if the 

analyst is interested in changing two or more factors at the same time, then statistical 

design of experiments is the most appropriate tool to use. Sensitivity analysis was used in 

this project for the purpose of identifying input parameters of the simulation that should 

be considered as experimental factors as well as for defining the experimental levels for 

those factors. 

2.5.2. 2k Factorial Designs 

One of the main objectives of experimental design in simulation is to determine 

how changes in the factors or input parameters of the model affect the responses or 

performance measures of the model. In the case in which the model has only one factor, 

the idea is to run the simulation at different levels or values of the factor. Law et al. 

(1991) suggests that it may be useful to form a confidence interval of the expected 

response at each of the factors levels, and to graph the response as a function of the factor 

levels.  

Suppose that a system with k ( 2≥k ) factors or input parameters of interest is 

being modeled. The analyst is interested in understanding, not only how each factor may 

affect the responses, but also how each factor interact within each other. One way to 

address this problem is through experimental design, in particular 2k factorial design. 

This experimental design requires from the analyst to choose two levels for each factor 
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and then calls for simulation runs at each of the 2k possible factor-level combinations, 

which are known as design points or treatments.  

The statistical model for a 2k design would include k main effects, c2 two-factor 

interactions, c3 three-factors interactions,…, and one k-factor interaction. Where,  









=

22
k

c         (2.16) 

and 

         



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


=

33
k

c                       (2.17) 

The complete model would contain 2k – 1 effect. As per Montgomery (2001), the 

treatment combination may be written in standard order by introducing the factors one at 

a time, with each new factor being successfully combined with those that precede it. For 

example, the standard order for a 24 design is (1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, 

cd, acd, bcd, abcd. Refer to Table 2.2.  

Table 2.2 Design matrix for a 2k factorial design. Modified from Law et al. (1991) and Montgomery (2001). 
Coded Factors Response Variable (Yij) 

Design 
Point 

Treatment 
Combination A B C … K 

Rep. 
1 

Rep. 
2 … 

Rep. 
n Total 

1 (1) - - - … - Y11 Y12 … Y1n Y1 
2 a + - - … - Y21 Y22 … Y2n Y2 
3 b - + - … - Y31 Y32 … Y3n Y3 
4 ab + + - … - Y41 Y42 … Y4n Y4 
5 c - - + … - Y51 Y52 … Y5n Y5 
6 ac + - + … - Y61 Y62 … Y6n Y6 
7 bc - + + … - Y71 Y72 … Y7n Y7 
8 abc + + + … - Y81 Y82 … Y8n Y8 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

k abc…k + + + … + Yk1 Yk2 … Ykn Yk 
  

Montgomery et al. (2001) describes the following procedure for the statistical 

analysis of the 2k design. It is important to mention that even though the procedure is not 

described in the context of computer simulation experiments, the procedure is for generic 
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application and for any number of k factors. This was the procedure followed during the 

evaluation and analysis stage for this project.  

1. Estimate the factor effects and examine their signs and magnitudes. This gives 

the experimenter preliminary information regarding which factors and 

interactions may be important, and in which directions these factors improve 

the response.  

2. Form the initial regression model or metamodel in the simulation slang. The 

full model, that is, all main effects and interactions, provided that at least one 

of the design points has been replicated, is the following:    

    ∈++++++++= KABABKBAY KABABKBA ......... ...0 ββββββ      (2.18) 

where coded factors are represented by A, B,…, K, s'β  are the regression 

coefficients, and ∈  is a random error with mean zero and constant variance 
2σ .  

3.  Perform an analysis of variance to formally test for significance of main 

effects and interactions. Refer to page 243 in Montgomery (2001) for general 

form of an analysis of variance for a 2k factorial design with n replicates.  

4.  Remove any non-significant variables from the full model. There is no need to 

create a new model with only the significant factors since by design these 

experiments have no presence of multicollinearity 10 . These experimental 

designs are orthogonal or nearly orthogonal; as per Myers et al. (1995) 

multicollinearity is not a problem in this type of designs. This also applies to 

models derived from 2k-p fractional factorial and central composite 

experimental designs. 

5.  Residual analysis to check for model adequacy and to check the following 

assumptions related to the analysis of variance: mean value of the residuals is 

cero, residuals are normally distributed, residuals are independent, and 

                                                 
10 Multicollinearity – when there is near-linear dependency among the regressor variables of the regression 
model; it can have serious effects on the estimates of the model parameters and on the general applicability 
of the final model. 
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variance of the residuals is constant. Montgomery (2001) suggests the 

following graphical analysis of residuals:   

• Normal probability plot of residuals   

• Plot of residuals in time sequence   

• Plot of residuals versus fitted values   

6.  Graphical analysis that usually consists of either main effects or interaction 

plots, or response surface and contour plots. 

In order to estimate the effect of the main factors and interactions (e), and the sum 

of squares for an effect (SSE), it is necessary to determine first the contrast associated 

with that effect. In general, we determine the contrast for effect KABe ...  by expanding the 

right hand side of 

( ) ( )1k ... 1b)1a(Contrast K...AB ±±±=         (2.19) 

In expanding Equation 2.19, ordinary algebra is used with “1” being replaced by (1) in 

the final expression. The sign in each set of parentheses is negative if the factor is 

included in the effect and positive if the factor is not included. 

To illustrate the use of equation 2.19, consider a 22 factorial design. The contrast 

for AB would be 

abbabaContrast AB +−−=−−= )1()1)(1(        (2.20) 

Note that the same results can be obtained using Table 2.2.  Simply multiply the 

“Treatment Combination” column by the column of the factors of the effect of interest. 

This is a relatively easy way of calculating the effects for small values of k; but for large 

number of factors is better to calculate the contrast. For the numeric value of the contrast, 

just replace the codification in standard order for the treatment combination by the 

corresponding response value under the column “Total” of Table 2.2.  Assuming that Yi is 

the summation of the values observed for all replications at the design point i, then  

4321 YYYYContrast AB +−−=                  (2.21) 
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The effects and sum of squares of the effects can be estimated once the contrast 

has been calculated, by the use of the following equations: 

           ( )KABkKAB Contrast
n

e ...... 2
2

=                          (2.22) 

and 

  ( )2
...... 2

1
KABkKAB Contrast

n
SSE =        (2.23) 

respectively, where n denotes the number of replicates.   

A potential concern with the use of 2k factorial designs is the assumption of 

linearity. Even though the full regression model or metamodel described on Equation 

2.18 has the capability of presenting some curvature in the response function as result of 

the interaction terms added to the main effects, there could be situations in which the 

curvature in the response function is not adequately modeled. In such cases, a second 

order or quadratic response surface model will be required. Adding center points to a 2k 

factorial design is helpful in identifying curvature. The presence of curvature is identified 

calculating the single-degree-of-freedom sum of squares for pure quadratic curvature 

given by 

( )
CF

CFCF
Pure nn

yynn
SS

+
−

=
2

quadratic      (2.24) 

where Fn  is the number of factorial design points, Cn  is the number of observations at 

the center point, Fy  is the average of the runs at the factorial point, and Cy  is the average 

of  observations at the central point. Refer to Montgomery (2001) for more details on 

factorial designs with center point. 

Kelton et al. (2003) states that another difficulty with 2k factorial designs is that if 

the number of factors becomes even moderately large, the number of runs explodes 

exponentially. A way around this is to use what are known as fractional-factorial designs 

in which only a fraction of all the possible factor-combinations are run.  



 

 

37

 

2.5.3. 2k-p Fractional Factorial Design 

One of the concerns with 2k factorial designs is that the number of design points 

grows exponentially as the number of factors increases, thus outgrowing the resources 

available by the analyst and increasing the cost of the simulation study. As per 

Montgomery (2001), if the experimenter can reasonably assume that certain high-order 

interactions are negligible, information of the main effects and low-order interactions 

may be obtained by running only a fraction of the full factorial experiment.  

As per Law et al. (1991), the 2k-p fractional factorial design is constructed by 

choosing a certain subset of size 2k-p of all possible design points, and then running the 

simulation for only those chosen points. Fractional factorial designs are used as screening 

experiments. These are experiments in which many factors are considered and the 

objective is to identify those factors that have large effects. Screening experiments are 

usually performed at the early stages of the project and the factors identified as critical to 

the responses of interest are then investigated more thoroughly in subsequent 

experiments. The fractional factorial designs are based on three main ideas: 

• The sparsity of effects principle – when there are several variables, the system 

or process is likely to be driven primarily by some of the main effects and 

low-order interactions. 

• The projection property – Fractional factorial designs can be projected into 

stronger (larger) designs in the subset of significant factors. 

• Sequential experimentation – It is possible to combine the run of two or more 

fractional factorials to assemble sequentially a larger design to estimate the 

factor effects and interactions of interest.  

The following explanation of the 2k-p fractional factorial design has been taken 

from Montgomery (2001). These designs require the selection of p independent 

generators. The defining relation for the design consists of the p generators initially 

chosen and their 2p-p-1 generalized interactions. Care should be exercised in choosing the 
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generators so that effects of potential interest are not liased with each other. Each effect 

has 2p-1 aliases. For moderately large values of k, it is common to assume that higher-

order interactions, such as interactions within 3 factors or higher are negligible. In many 

situations, this is a practical assumption that greatly simplifies the alias structure. 

It is important to select the p generators for a 2k-p fractional factorial design in 

such a way that the best possible alias relationship is obtained. A reasonable criterion is 

to select the generators such that the resulting 2k-p design has the highest possible 

resolution. Law et al. (1991) states that in simulation, resolution IV designs may be 

inadequate and resolution III designs should probably be avoided except in desperation. 

As per Montgomery (2001), sometimes, resolution alone is insufficient to 

distinguish between experiments. Consider the case of a study in which the possible 

fractional factorial designs that can be used have the same resolution. In such a case, the 

design with the least number of lower-order interactions should be taken. 

The effects of a 2k-p fractional factorial design is estimated by 

( )









==

2

2
N

Contrast
N

Contrast
e ii

i                 (2.25) 

Where the Contrasti is found using the plus and minus signs of the 2k-p design matrix, and 
pkN −= 2  is the total number of observations. The 2k-p design allows only 2k-p – 1 effects, 

and their aliases, to be estimated. 

For more information related to 2k-p fractional factorial design and its applications 

to simulation, refer to Law et al. (1991). Nevertheless, for a more detailed explanation of 

this type of experiment but with focus on experimental design literature rather than 

simulation, Montgomery et al. (2001) is a good starting point.  

With respect to simulation theory, Law et al. (1991) states that for a moderate 

number of factors, 2k-p fractional factorial designs are able to indicate which factors are 

irrelevant and can be fixed at some reasonably value, and omitted from further 
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consideration. But in the situation where too many factors are present for even a highly 

fractionated factorial design to be workable, other screening designs can be used. Some 

of these experiment designs are: Plackett-Burman designs, supersaturated designs, 

random-balance designs (which is one kind of supersaturated design), systematic 

supersaturated designs and group-screening designs. For more references on this subject, 

please refer to Law et al. (1991). For a practical application of a group-screening design, 

refer to Ivanova et al. (1999). Finally, refer to Wan et al. (2003) for a theoretical 

explanation of a new type of factor-screening design.     

2.5.4. Central Composite Design 

As previously mentioned in section 2.4.2, a potential concern with the use of 2k 

factorial designs is the assumption of linearity. In the case in which the curvature in the 

response function is not adequately represented by a model of first order (linear model), 

such as the one described in Equation 2.18, a second order or quadratic response surface 

model, such as the one described in Equation 2.26 will be required.  

∈+++++++++= 22
...0 ............ KAKAKAY KAKAKA ββββββ       (2.26) 

As per Montgomery (2001), an experiment design that will fit this model is a 2k factorial 

design (or fractional factorial of resolution V) with Fn  runs, 2k axial or star runs, and Cn  

center runs. Such a design is called central composite design.   

Usually, central composites are designed after a 2k factorial design failed to fit a 

first order model by adding the axial runs to allow the quadratic terms to be incorporated 

into the model. Central composites are very efficient and are the most popular class of 

designs for fitting the second order models. There are two parameters in the design that 

must be specified: the distance α  of the axial runs from the design center, and the 

number of center points Cn . The choice of α  is dictated primarily by the region of 

interest. Refer to Montgomery (2001) for possible values of α  and more details about 

this type of experiment design.   
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2.5.5. Metamodels 

A simulation model can be thought of as a process in which input parameters are 

transformed into output variables or responses. In that sense, the relationship between the 

parameters and the response of the simulation can be expressed as an algebraic or 

mathematical function, which in turn is a model of the simulation model itself. This 

algebraic function is developed with the use of regression analysis from data taken from 

experimental designs, in which the dependent variable of the regression is the output 

variable or response of the simulation, and the independent variables are the factors or 

input parameters. Kelton et al. (2003), mentions that since the regression model is an 

approximation of the simulation model, the regression is a “model of a model” and so is 

called a metamodel.  

Kelton et al. (2003) states that the metamodel can serve several different 

purposes:  

• Partial derivatives can be taken of the metamodel to estimate the effect of 

small changes in the factors on the output response, and any interaction that 

might be present as modeled, would show up naturally. 

• The analyst can use the metamodel as a proxy for the simulation, and very 

quickly explore many different input-factor-level combinations without 

having to run the simulation. 

• The metamodel can be optimized (maximize or minimize) to give a sense of 

where the best input-factor-combinations might be.    

Barton (1998) specifies that the major issues in metamodeling include: (1) the 

choice of a functional form for the regression model, (2) the experimental design and (3) 

the assessment of the adequacy of the metamodel.  

For the purpose of this project, it was decided to use regression models of first 

(linear) and second order (quadratic), which are the base for 2k factorial and 2k-p fractional 

factorial designs, and central composite designs, respectively. Refer to Equation 2.18 and 

Equation 2.26; sj 'β  are the coefficients of the regression models and could easily be 
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estimated as follows (for the 2k factorial, 2k-p fractional factorial and central composite 

designs):    

Y=0β                             (2.27) 

2
ei=iβ        (2.28) 

where 0β  is the grand average of all observations, and iβ  are one-half of the 

corresponding factor effect estimate (refer to equations 2.22 and 2.25).   

As for the metamodel adequacy, the test for lack of fit can be done. The main 

objective for the lack of fit test is to determine whether a specific type of regression 

function adequately fits the data. The lack of fit test is done as follows: 

( )

( )mn
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−

−
=0        (2.29) 

where LOFSS  and PESS , are the sum of squares due to lack of fit and the sum of squares 

due to pure error, respectively; n is the total number of observations, m is the number of 

levels for each factor, and p is the number of parameters that will be estimated. LOFSS  

and PESS  are calculated using equations 2.30 and 2.31.   
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Where ni is the number of observations at the ith level of factor X. If the true regression is 

linear, then F0 follows the mnpmF −− ,   distribution. Therefore, if mnpmFF −−> ,,0 α , it can be 

concluded that the true regression function is not linear.  

For more details on metamodels and its application to simulation, please refer to 

Banks et al. (2001), Barton (1998), Kelton (1997), dos Santos et al. (1999), Kelton et al. 
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(2003), and Law et al. (1991). For more detailed information on regression analysis to 

Montgomery (2001) and Neter et al. (1996). 

2.6.  Simulation Optimization 

Fu (2001) defines simulation optimization as the optimization of performance 

measures based on outputs from stochastic (primarily discrete events) simulations. As in 

any optimization problem, the primary components are also present: input and output 

variables, objective function, and constraints. The input variables or parameters may be 

either quantitative or qualitative (categorical). The quantitative input variables may 

assume continuous or discrete values. Usually, there are multiple performance measures 

or output variables of interest, which are combined into one objective function by the use 

of appropriate weights, or by including them as constraints. As per April et al. (2003), 

The main goal of simulation optimization is to find the combination of factor levels that 

minimizes or maximizes the objective function subject to the constraints imposed on 

factors and/or responses. The factors of interest are the ones that have the greatest effect 

on the responses as determined by the experimental designs. 

As per Banks (2001), the main approaches for simulation optimization are 

categorized by algorithms that: 

• Guarantee a pre-specified probability of correct selection – The main purpose 

of these methods is to select the best alternative from a set of pre-defined 

systems, as in ranking and selection methods. In that sense, they are not 

optimization procedures per se, since they lack the search feature.   

• Guarantee asymptotic convergence – These procedures are usually for 

quantitative-continuous input parameters that guarantee convergence to the 

global or a local optimal solution.  

• Optimal for deterministic counterpart – The idea is to find the optimal 

solution by the use of an algorithm typical to deterministic optimization 

(mathematical programming formulations). This approach is suggested only if 

the simulation performance of each design or alternative can be evaluated 

with certainty, in other words, there is no statistical error or sampling 
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variability. In order to guarantee this, the analyst must make sure that enough 

simulation effort (replications or run length) is expended.   

• Robust heuristics – These are heuristic procedures that have been developed 

for deterministic optimization, that have shown to be effective for difficult 

practical problems, even though they do not guarantee the optimum. Some of 

these heuristics use randomness as part of their search strategy. Nevertheless, 

it is still important to make sure that enough simulation effort is expended. 

The challenge associated with finding the optimal combination of input 

parameters is that the relation (algebraic function) between the parameters and the 

response is unknown, which means that it has to be estimated. Swisher et al. (2000), 

states that the stochastic nature of the simulation output complicates the optimization 

problem. This may require multiple simulation runs (replicates) or long simulation runs 

to assure no misled of the optimization algorithm by the variability of the response.  

The simulation optimization techniques can be classified by the input parameters 

of the model since they are applied depending upon the type of input parameters, in 

particular, continuous or discrete, both being quantitative type of variables. In the case of 

qualitative or categorical variables, ranking and selection can be used as previously 

mentioned in section 2.4. The following is a brief explanation of several of these 

techniques. The following have been used as reference: Andradóttir (1998), April et al. 

(2003), Banks et al. (2001), Fu (2001), Jin et al. (2003), Law et al. (1991), Stuckman et 

al. (1991), and Swisher et al. (2000). 

2.6.1. Continuous Input Parameter Methods 

As per Swisher et al. (2000), in the case of continuous input parameters, methods 

may be classified as either gradient-based or non-gradient-based. In the case of the 

gradient based, the analyst is looking at the partial derivatives of the estimated response 

function (regression model) with respect to the input parameters. The gradient is 

important since it gives the sensitivity of the response variable to small changes in the 

input parameters, thus providing the direction in which to search for the optimum. For 

references on non-gradient-based approaches, see Swisher et al. (2000).   
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 Some of the gradient based algorithms are: the finite differences gradient 

estimation approach, perturbation analysis, the likelihood ratio method, stochastic 

approximation algorithms, and sequential surface response methodology. As per 

Andradóttir (1998), a difficulty implementing the finite differences gradient estimation 

approach is that the estimators obtained usually have a large variance, which requires the 

use of common random numbers for the different simulation runs or replicates. Whereas 

perturbation analysis and likelihood ratio method require only a single run, producing 

estimators with the desire statistical conditions in terms of variability. As per April et al. 

(2003), stochastic approximation algorithms attempt to mimic the gradient search method 

used in deterministic optimization by estimating the gradient in the objective function in 

order to determine a search direction. In the case of surface response methodology, the 

goal is to obtain an approximate functional relationship (regression model) between the 

input variables and the output objective functions, as stated by Fu (2001). When this is 

done on the entire (global) domain of interest, in principle, appropriate deterministic 

procedures can be applied to obtain an estimate of the optimum. However, in practice, 

sequential response surface methodology is used rather than deterministic approaches 

when optimization is the main objective of the study, mainly due to the concern of 

misleading a deterministic based algorithm by the variability of the stochastic process of 

the simulation model. In the case of sequential response surface methodology, the 

metamodel characterizes the objective function in a local area, rather than in the entire 

solution space; then, this local response surface is used to determine a search strategy by 

means of moving in the direction of the estimated gradient.  

2.6.2. Discrete Input Parameter Methods 

Several techniques are available for optimization simulation when the input 

parameters are discrete. Ranking and selection and multiple comparison procedures can 

be applied when the set of alternatives is finite and small. On the other hand, if the set of 

possible alternatives is infinite or large, ordinal optimization, simulated annealing, 

genetic algorithms, tabu search and random search can be applied.  
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As previously mentioned, ranking and selection is used when the objective is to 

select the best alternatives from a set of finite pre-defined alternatives. As per Swisher et 

al. (2000), the objective is to determine the combination of input parameters that 

minimizes the objective function. This is done in two phases: (1) looks to determine a 

subset of input combinations that most likely minimizes the objective functions, and (2) 

select the best alternative. Multiple comparison procedures attempt also to identify the 

best system from a set of possible alternatives but do not guarantee a decision. 

In the case where there are a large number of feasible solutions, the following can 

be said: 

• Ordinal optimization - Focuses on finding a good alternative, rather than the 

best one.   

• Simulated annealing – Emulate the annealing process for crystalline solids, 

where a solid is cooled very softly from a very high temperature. Simulated 

annealing is a variation of local search for deterministic problems. 

• Genetic algorithms – Mimics the evolutionary behavior of biological systems 

to create subsequent generations that guide the search towards or near optimal 

solutions.  

• Tabu search – It is a variation of local search that incorporates two strategies: 

adaptive memory and responsive exploration, to guide the search near optimal 

solutions by dynamically managing a list of forbidden moves (from where the 

process derived its name). 

• Random search – These algorithms moves iteratively between neighboring 

feasible points in search of the optimal solution.  

 

 

 

 
Figure 2.2 Meta-heuristic approach for simulation optimization. 
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All of the above methods for a large number of alternatives are known as meta-

heuristic methods to simulation optimization, in which the simulation is run to define the 

function that relates the input parameters with the response variable, and then feedback 

into the meta-heuristic method to define a new set of alternatives and starting the process 

all over again.  

2.7.  Solver Methodology 

Frontline Systems is the company that developed the Solver in Excel for 

Microsoft. They offer different platforms compatible with Microsoft’s Excel and Visual 

Basic for Applications, and even C/C++ and other languages. The recommended platform 

depends on the type and size of the problem, which in the case of this project, turned out 

to be the standard Microsoft Excel Solver. 

The standard Microsoft Excel Solver can solve linear programming up to 200 

decision variables with a basic implementation of the primal Simplex method; mix 

integer programming with a basic implementation of the Branch and Bound method, but 

limited to 10 to 20 integer variables; smooth non-linear optimization using the 

Generalized Reduced Gradient (GRG) method up to 200 decision variables and 100 

constraints in (addition to bounds on the variables). In the case of this project the 

optimization models were of the smooth non-linear optimization type, thus developing 

the optimization tool with Excel Solver was of practical value for the end user. A smooth 

non-linear programming is one in which the objective function or at least one of the 

constraints is a continuous non-linear function of the decision variables. Quadratic 

programming is a special case of the non-linear optimization problem. 

The GRG method is an algorithm well known in the mathematical programming 

arena for solving optimization problems in which non-linear constraints and arbitrary 

bounds on the decision variables are allowed. The form is: Max f(x): h(x)=0, L <= x <= 

U, where h has dimension m. The method supposes we can partition x = (v, w) such that:  

• v has dimension m (and w has dimension n-m);  

• the values of v are strictly within their bounds: L_v < v < U_v   
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• grad_v[h(x)] is nonsingular at x = (v,w).  

For any w there is a unique value, v(w), such that h(v(w),w)=0, which implies that dv/dw 

= grad_vh(x)–1 grad_w[h(x)]. The idea is to choose the direction of the independent 

variables to be the reduced gradient: grad_w[f(x) - yh(x)], where y = dv/dw = 

(grad_vh(x)–1)grad_w[h(x)]. Then, the step size is chosen and a correction procedure 

applied to return to the surface, h(x) =0.  

  The code used by Microsoft Excel Solver is the GRG2, which was written in 

ANSI Fortran. It seeks a feasible solution first (if one is not provided) and then retains 

feasibility as the objective is improved. It uses a robust implementation of the BFGS 

quasi-Newton algorithm as its default choice for determining a search direction. A 

limited-memory conjugate gradient method is also available, permitting solutions of 

problems with hundreds or thousands of variables. The problem Jacobian is stored and 

manipulated as a dense matrix, so the effective size limit is one to two hundred active 

constraints (excluding simple bounds on the variables, which are handled implicitly). The 

GRG2 software may be used as a stand-alone system or called as a subroutine. The user 

is not required to supply code for first partial derivatives of problem functions; forward or 

central difference approximations may be used instead.  As per Boesel (2001), a special 

development of recent interest in simulation optimization is the integration of meta-

heuristic search with classical non-linear optimization such as the state-of-the-art GRG2. 

There are other Microsoft Excel compatible platforms that can solve the same 

type of optimization problems described above but with more complexity in terms of the 

number of variables and restrictions. In addition, those platforms can solve the following 

type of optimization problems: quadratic programming, constraint programming, global 

optimization, and non-smooth optimization.  

In summary, other algorithms used to solve optimization problems are: active set 

methods, Interior Point or Newton-Barrier method, Cut Generation methods, Strong 

Branching method, Preprocessing and Probing methods, integer heuristic methods, multi-

start methods for global optimization, Sequential Quadratic Programming method, 
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interval methods, Continuous Branch and Bound method, Genetic and Evolutionary 

algorithms, Tabu Search and Scatter Search. 

2.8.  Summary 

This chapter covered the most relevant subjects discussed in the computer 

simulation literature with focus given to the output analysis, experimental designs and 

optimization.  

It was mentioned that output analysis is the examination of data generated by a 

computer simulation with the purpose of predicting the performance of the system or 

performing a comparison of the performance of two or more system designs. The need 

for statistical analysis is driven by the use of random generators to produce the values of 

the input parameters. As a result, the output data from the simulation will exhibit random 

variability and the estimates of the performance measures could differ greatly from those 

of the real system without the proper statistical analysis.  

Statistical analysis for the non-terminating/steady state simulation was discussed 

in detail. In particular, the chapter covered the transient or steady state behavior as well 

as the replication/deletion approach for calculating the estimates of the performance 

measures of interest. Hypothesis test was discussed for the comparison of alternative 

systems designs. 

Experimental designs with respect to simulation were also discussed, in particular 

2k factorial, 2k-p fractional factorial and central composite. Focus was given to the 

calculation of the effects, the sum of square errors, analysis of variance and lack of fit 

test, and regression analysis for metamodeling purposes. 

The chapter covered also the simulation optimization literature with a summary of 

the most common techniques. It was mentioned that the applicable technique will depend 

on the type of input parameters. A brief summary was given with respect to Microsoft’s 

Excel Solver and the algorithms used based on the type of optimization problem.  
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The following chapter (III) will discuss the methodology followed for the 

execution of this project. In particular, it will cover the use of sensitivity analysis, 

experimental designs, and regression analysis for metamodeling purposes. It will also 

discuss the optimization tool developed with the use of Microsoft’s Excel and Visual 

Basic for Applications, and the methodology followed for validation purposes. Chapter 

IV will discuss the results and statistical analysis, and Chapter V will present the 

conclusions, and recommendations in terms of future research. 
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CHAPTER III. Methodology 

3.1.  Introduction 

This section describes the methodology followed for the execution of this project. 

As previously mentioned on sections 1.4 and 1.5, the objectives were defined as related 

to the practical application of the problem being addressed, and the academic interest in 

the output analysis of computer simulation models. Related to the practical application, 

the objective was to provide the end user with a tool that allows him/her to understand the 

behavior of the system for the whole spectrum of alternatives or possibilities as defined 

by the yield and testing process time. In terms of the academic interest, there were two 

main objectives: (1) the use of design of experiments, metamodels, and optimization, and 

(2) to demonstrate that the use of such tools as part of simulation modeling and analysis 

yields better results than the traditional trial and error approach. The methodology 

described below, pretends to achieve these objectives.  

The section has been divided into four subsections: (1) Sensitivity analysis (2) 

Reducing the problem with experimental designs, (3) Development of metamodels, and 

(4) Optimization tool. Section (1) describes the methodology followed to determine the 

critical factors or input parameters with respect to the response variables or performance 

measures of interest. Section (2) covers the application of experimental designs in order 

to reduce the number of critical factors to be considered in the metamodels. Section (3) 

explains the use of experimental designs in order to establish the metamodels, and finally, 

section (4) describes the optimization tool developed, having in mind the end user.  

Whenever appropriate, the section refers to the Appendixes for backup 

information or data. It is important to mention at this stage, that ARENA11 was the 

simulation software used for modeling and output analysis purposes. Please refer to 

Appendix B to view the simulation model in terms of the SIMAN codes.    

                                                 
11 ARENA – A simulation software that combines the ease of use of high level simulators with the 
flexibility of SIMAN, and even all the way down to general purpose languages. SIMAN is a simulation 
language. 
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3.2.  Sensitivity Analysis 

Sensitivity analyses were done with respect to two main objectives: (1) to validate 

the warm-up period defined during the simulation analysis of the model for the actual 

(real) system, and (2) due to the high number of input parameters at the beginning of the 

study, to identify with the minimum simulation time effort the parameters that should be 

considered as experimental factors and their respective experimental levels. The 

methodology followed was practically the same for both cases. In general, the objective 

was to vary one factor at a time to determine its impact on the responses of the 

simulation. Any input parameter that statistically impacted by means of hypothesis 

testing at least one performance measure was considered as an experimental factor. It is 

important to mention that even though the warm-up period can not be defined as an input 

parameter of the model per se; the methodology followed can still be described as 

sensitivity analysis.     

3.2.1. Validation of the Warm-up Period 

As previously mentioned on section 1.3, the simulation model (actual/real system) 

was verified and validated following the suggested methodology by the simulation 

literature (refer to Appendix A for a summary). For this reason, verification and 

validation of the model was not in the scope of this project. Nevertheless, it was 

considered as a best practice to do some kind of not-in-depth confirmation of the 

verification and validation. Considering that during the previous verification and 

validation processes, the simulation responses were compared to the performance 

measures of the real system, it was decided to do the confirmation by means of the warm-

up period only. In other words, if the responses were statistically proven to be the same as 

with a longer warm-up period, then there were no reasons to doubt about the previous 

verification and validation of the model. 

The validation of the warm-up period was done following the next steps: 

1. The simulation model was run with the same conditions (input parameters, 

simulation run-length, warm-up period, and number of runs) as it was run 
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before for validation purposes. Please refer to Appendix C to view the level or 

value at which the input parameters were setup. The simulation run-length 

was 19,320 minutes, the warm-up period was 920 minutes, and the number of 

runs was 100. 18,400 minutes per replicate, were used for data collection and 

output analysis purposes. This is the equivalent to 920 minutes per day (2 

shifts of 460 minutes each) on a month of 20 production days. Data from all of 

the output variables from the model were recorded. This model was named as 

the “Actual System”. 

2. All performance measures except the “Throughput” were assumed to be 

independent and identically distributed without doing any statistical 

validation. This is a fair assumption based on the replication/deletion method 

(refer to section 2.3.4.). As for the “Throughput”, data was assumed to be 

independent as they are the result of different replicates, but a normality test 

was performed using Minitab to validate that they were identically distributed.  

3. Confidence intervals for each simulation responses or output variables 

(performance measures) were built with the Output Analyzer option from 

ARENA using Equation 2.7 and 95% confidence level as a default value.   

4. Output data was loaded into Excel and Equation 2.11 was used to calculate the 

minimum number of runs for the performance measures of interest, which 

were the output variables related to the utilization of personnel, machine or 

equipment up-time, throughput and work-in-process inventory. The following 

are the percentages used to calculate the desired half-width: 

• Utilization of personnel – it was decided to use 1% due to the cost 

associated with labor.  

• Equipment up-time – it was decided to use 1% due to the cost associated 

with equipment acquisition.  

• Throughput – it was decided to use 2.5% due to the risk associated with 

loosing sales. At an average of 821.4 units per month (average throughput 

from the “Actual System”), the company could loose $72k monthly if the 

average throughput of the real system comes 2.5% below the average 



 

 

53

estimated by the simulation model. This could represent up to $865k per 

year if the minus 2.5% is consistent throughout the year.  

• Work-in-process inventory – it was decided to use 10% since this 

represents only 2.2 units from the maximum allowable average inventory 

of 22 units.  

5. The “Actual System” was modified by increasing the simulation run-length to 

27,600 minutes, and the warm-up period to 9,200 minutes. The model was 

named as “Warm-up Period Validation”. No changes were done to the number 

of runs as well as to the input parameters of the model. Please note that the 

simulation run-length was increased in proportion to the warm-up period, as a 

result, the same amount of minutes per replicate were used for data collection 

and output analysis as in the “Actual System”. Data from all output variables 

of the model were recorded.  

6. Step 2 was repeated for the “Warm-up Period Validation” model.  

7. Step 3 was repeated for the “Warm-up Period Validation” model. 

8. Step 4 was repeated for the “Warm-up Period Validation” model. 

9. The Output Analyzer from ARENA was used to perform a hypothesis test as 

explained in section 2.4.1. The Output Analyzer used 05.=α  as a default 

value.  

10. Finally, results from the hypothesis test were analyzed in order to validate or 

reject the warm-up period.      

3.2.2. Sensitivity Analysis for Critical Input Parameters (Factors) 

Sensitivity analyses were done with the main objective of finding out input 

parameters of the model that had no major impact on the performance measures of 

interest or to the objectives of the project. Once identified, those parameters were fixed to 

a particular value that allowed objectives to be reached, and were excluded from further 

experimental designs. In addition, another objective was to gain some knowledge of the 

behavior of the system in order to define the experimental levels for the input parameters 

considered as experimental factors.    
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In summary, four sensitivity analyses were done. The first analysis was a 

comparison between the “Actual System” and a new model, in which the inter-arrival rate   

was increased to receive more than 3000 units at the testing area. The objective was to 

confirm the criticality of the inter-arrival rate and to gain knowledge at how the “Actual 

System” would behave at 3000 units, which is the goal in terms of throughput. From this 

point on, the inter-arrival rate was setup for receiving at least 3000 units at test. The 

second sensitivity analysis was focused on the testing area. In general, each input 

parameter from the testing area was changed on a one by one basis. Based on the lessons 

learned at this stage, input parameters at testing were changed to allow 3000 units to 

reach the final inspection area (inspection I, draw out and final inspection) and the second 

sensitivity analysis was done changing only input parameters from the final inspection 

area. The same approach was repeated again, but this time setting input parameters at 

final inspection area to allow 3000 units reach the packing area, and then changing input 

parameters from the packing area only.  

The methodology followed will be described in the next four sub-sections, 

following the order in which they were performed. 

3.2.2.1.“Actual System” vs. “3000 Units Through Test” 

1. Table 3.1 was used to setup the input parameters for the models being 

compared. The simulation run-length was setup to 19,320 minutes, the warm-

up period to 920 minutes, and the number of runs to 100. 18,400 minutes per 

replicate, were used for data collection and output analysis purposes. This is 

the equivalent to 920 minutes per day (2 shifts of 460 minutes each) on a 

month of 20 production days. Data from all of the output variables from both 

models were recorded. The first model was named as “Actual System” and the 

second as “3000 Units Through Test”. Please note that the only change 

between both models is the inter-arrival time. 
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Table 3.1 Input Parameters – “Actual System” vs. “3000 Units Through Test”. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. All performance measures except the “Throughput” were assumed to be 

independent and identically distributed without doing any statistical 

validation. This is a fair assumption based on the replicate/deletion method 

(please refer to section 2.3.4). As for the “Throughput”, data was assumed to 

be independent as they are the result of different replicates, but a normality 

test was performed using Minitab to validate that they were identically 

distributed. 

3. Confidence intervals for the simulation performance measures of both models 

were built by the ARENA-Output Analyzer option using Equation 2.7 and 

95% confidence level.   

4. Output data from both models were loaded into Excel and Equation 2.11 was 

used to calculate the minimum number of runs for the performance measures 

of interest, which were the output variables related to the utilization of 

Testing Area Actual System 
3000 Units Through 

Test 

Inter-arrival time (Mins.) Expo (14.3) 0.4*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 1 1 

Qty. testing personnel - Tester #2 1 1 

Qty. testing machines - Tester #1 1 1 

Qty. testing machines - Tester #2 1 1 

Tester#1 processing time  3+52*Beta(2.93,4.65) 3+52*Beta(2.93,4.65) 

Tester #2 processing time  3+52*Beta(2.93,4.65) 3+52*Beta(2.93,4.65) 

Yield % - Tester #1 72.6 72.6 

Yield % - Tester #2 72.6 72.6 

Draw Out Area Actual System 
3000 Units Through 

Test 
Qty. Assy. Personnel 1 1 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 1 

Packing Area Actual System 
3000 Units Through 

Test 
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Qty. packing personnel 2 2 
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personnel, machine or equipment up-time, throughput and work-in-process 

inventory. The following are the percentages used to calculate the desired 

half-width: 

• Utilization of personnel – it was decided to use 1% due to the cost 

associated with labor.  

• Equipment up-time – it was decided to use 1% due to the cost associated 

with equipment acquisition.  

• Throughput – it was decided to use 2.5% due to the risk associated with 

loosing sales. At an average of 824.1 units per month (average throughput 

from the “Actual System”), the company could loose $72k monthly if the 

average throughput of the real system comes 2.5% below the average 

estimated by the simulation model. This could represent up to $865k per 

year if the minus 2.5% is consistent throughout the year.  

• Work-in-process inventory – it was decided to use 10% since this 

represents only 2.2 units from the maximum allowable average inventory 

of 22 units.  

5. ARENA-Output Analyzer was used to perform a hypothesis test as explained 

in section 2.4.1. The Output Analyzer used 05.=α  as default value.  

6. Finally, the results from the hypothesis test were analyzed in order to reject or 

fail to reject the hypothesis null (H0).   
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3.2.2.2.Testing Area 

1. Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.2. The models were named as “New System at 3000 Units Through 

Test” and “6 Testing Machines”. Please note that the only difference between 

both models is the number of testing machines. 

Table 3.2 Input Parameters – “New System at 3000 Units Through Test” vs. “6 Testing Machines”. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Testing Area 3000 Units Through Test 6 Testing Machines 

Inter-arrival time (Mins.) 0.4*(Expo (14.3)) 0.4*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2   

Qty. testing machines - Tester #1 2 6 

Qty. testing machines - Tester #2   

Tester#1 processing time 3+52*Beta(2.93,4.65) 3+52*Beta(2.93,4.65) 

Tester #2 processing time   

Yield % - Tester #1 72.6 72.6 

Yield % - Tester #2   

Draw Out Area 3000 Units Through Test 6 Testing Machines 

Qty. Assy. personnel 1 1 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 1 

Packing Area 3000 Units Through Test 6 Testing Machines 

Si
m

ul
at

io
n 

Pa
ra

m
et

er
s 

Qty. packing personnel 2 2 
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2.  Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.3. The models were named as “New System at 3000 Units Through 

Test” and “90% Yield”. Please note that the only difference between both 

models is the Yield. 

Table 3.3 Input Parameters – “New System at 3000 Units Through Test” vs. “90% Yield”.  

Testing Area 3000 Units Through Test 90% Yield 

Inter-arrival time (Mins.) 0.4*(Expo (14.3)) 0.4*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2     

Qty. testing machines - Tester #1 2 2 

Qty. testing machines - Tester #2     

Tester#1 processing time  3+52*Beta(2.93,4.65) 3+52*Beta(2.93,4.65) 

Tester #2 processing time      

Yield % - Tester #1 72.6 90.0 

Yield % - Tester #2     

Draw Out Area 3000 Units Through Test 90% Yield 

Qty. Assy. personnel 1 1 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 1 

Packing Area 3000 Units Through Test 90% Yield 

Si
m

ul
at
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n 
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ra

m
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Qty. packing personnel 2 2 
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3. Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.4. The models were named as “New System at 3000 Units Through 

Test” and “30% Reduction in Testing Process Time”. Please note that the only 

difference between both models is the testing process time. 

Table 3.4 Input Parameters – “New System at 3000 Units Through Test” vs. “30% Reduction Test. Proc. 
Time”.   

Testing Area 
3000 Units Through 

Test 
30% Reduction Testing 

Processing Time 

Inter-arrival time (Mins.) 0.4*(Expo (14.3)) 0.4*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2     

Qty. testing machines - Tester #1 2 2 

Qty. testing machines - Tester #2     

Tester#1 processing time  3+52*Beta(2.93,4.65) 0.7*(3+52*Beta(2.93,4.65)) 

Tester #2 processing time      

Yield % - Tester #1 72.6 72.6 

Yield % - Tester #2     

Draw Out Area 
3000 Units Through 

Test 
30% Reduction Testing 

Processing Time 

Qty. Assy. personnel 1 1 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 1 

Packing Area 
3000 Units Through 

Test 
30% Reduction Testing 

Processing Time 

Si
m

ul
at

io
n 

Pa
ra

m
et
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s 

Qty. packing personnel 2 2 
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3.2.2.3.Final Inspection Area 

1. Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.5. The models were named as “New System at 3000 Units Through 

Draw Out” and “4 Assemblers”. Please note that the only difference between 

both models is the number of assemblers. 

Table 3.5 Input Parameters – “New System at 3000 Units Through Draw Out” vs. “4 Assemblers”.    

Testing Area 
3000 Units Through Draw 

Out 4 Assembly Personnel 

Inter-arrival time (Mins.) 0.38*(Expo (14.3)) 0.38*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2     

Qty. testing machines - Tester #1 6 6 

Qty. testing machines - Tester #2     

Tester#1 processing time  0.7*(3+52*Beta(2.93,4.65)) 0.7*(3+52*Beta(2.93,4.65)) 

Tester #2 processing time      

Yield % - Tester #1 90.0 90.0 

Yield % - Tester #2     

Draw Out Area 
3000 Units Through Draw 

Out 4 Assembly Personnel 

Qty. Assy. personnel 1 4 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 1 

Packing Area 
3000 Units Through Draw 

Out 4 Assembly Personnel 

Si
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Qty. packing personnel 2 2 
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2.  Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.6. The models were named as “New System at 3000 Units Through 

Draw Out” and “4 Final Inspectors”. Please note that the only difference 

between both models is the number of final inspectors. 

Table 3.6 Input Parameters – “New System at 3000 Units Through Draw Out” vs. “4 Final Inspectors”.    

Testing Area 
3000 Units Through Draw 

Out 4 Final Inspectors 

Inter-arrival time (Mins.) 0.38*(Expo (14.3)) 0.38*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2     

Qty. testing machines - Tester #1 6 6 

Qty. testing machines - Tester #2     

Tester#1 processing time  0.7*(3+52*Beta(2.93,4.65)) 0.7*(3+52*Beta(2.93,4.65)) 

Tester #2 processing time      

Yield % - Tester #1 90.0 90.0 

Yield % - Tester #2     

Draw Out Area 3000 Units Through Test 4 Final Inspectors 

Qty. Assy. personnel 1 1 

Qty. Final Insp. personnel 1 4 

Qty. Draw Out testing machines 1 1 

Packing Area 3000 Units Through Test 4 Final Inspectors 

Si
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Qty. packing personnel 2 2 
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3. Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.7. The models were named as “New System at 3000 Units Through 

Draw Out” and “3 Draw Out Machines”. Please note that the only difference 

between both models is the number of draw out machines. 

Table 3.7 Input Parameters – “New System at 3000 Units Through Draw Out” vs. “3 Draw Out 
Machines”. 

Testing Area 
3000 Units Through Draw 

Out 3 Draw Out Machines 

Inter-arrival time (Mins.) 0.38*(Expo (14.3)) 0.38*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2     

Qty. testing machines - Tester #1 6 6 

Qty. testing machines - Tester #2     

Tester#1 processing time  0.7*(3+52*Beta(2.93,4.65)) 0.7*(3+52*Beta(2.93,4.65)) 

Tester #2 processing time      

Yield % - Tester #1 90.0 90.0 

Yield % - Tester #2     

Draw Out Area 
3000 Units Through Draw 

Out 3 Draw Out Machines 

Qty. Assy. personnel 1 1 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 3 

Packing Area 
3000 Units Through Draw 

Out 3 Draw Out Machines 

  S
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Qty. packing personnel 2 2 
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3.2.2.4.Packing Area 

1. Steps 1 thru 6 of section 3.2.2.1 were repeated for input parameters shown at 

Table 3.8. The models were named as “New System at 3000 Units Through 

Packing” and “3 Packers”. Please note that the only difference between both 

models is the number of packers. 

Table 3.8 Input Parameters – “New System at 3000 Units Through Packing” vs. “3 Packers”. 

Testing Area 
3000 Units Through 

Packing 3 Packers 

Inter-arrival time (Mins.) 0.33*(Expo (14.3)) 0.33*(Expo (14.3)) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 2 2 

Qty. testing personnel - Tester #2     

Qty. testing machines - Tester #1 6 6 

Qty. testing machines - Tester #2     

Tester#1 processing time  0.7*(3+52*Beta(2.93,4.65)) 0.7*(3+52*Beta(2.93,4.65)) 

Tester #2 processing time      

Yield % - Tester #1 90.0 90.0 

Yield % - Tester #2     

Draw Out Area 
3000 Units Through 

Packing 3 Packers 

Qty. Assy. personnel 4 4 

Qty. Final Insp. personnel 4 4 

Qty. Draw Out testing machines 3 3 

Packing Area 
3000 Units Through 

Packing 3 Packers 

Si
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Qty. packing personnel 2 3 
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3.3.  Reducing the Problem with Experimental Designs 

As previously mentioned, the main objective at this stage of the simulation study 

was to reduce the number of critical factors to be considered in the metamodels. This 

objective was achieved through a series of sequential experimental designs with major 

focus on the categorical and discrete input parameters, in particular, the labor balancing 

issue, the number of assemblers, the number of final inspectors and the number of draw 

out machines. 

The expected result was to eliminate these factors from the critical list by fixing 

them to a level that would allow the model to achieve the objectives mentioned on 

section 1.5.1. In order to do so, 2k-p fractional factorial design with center points and 2k 

factorial design were used. The sensitivity analyses (refer to section 3.2 for the 

methodology and section 4.2 for the results) were the base for setting the levels for each 

factor considered on the following experiments. It is important to mention that at this 

stage, the simulation was set to run the equivalent of 1 shift and to achieve the goal of 

1000 units per month per shift. This decision was based on the conclusions of the 

sensitivity analyses (refer to section 4.2.2.5).  

The section has been divided in two sub-sections: (1) Labor Balancing, and (2) 

Setting Up the Draw Out/Final Inspection Area. The methodology followed is described 

ahead. 

3.3.1. Labor Balancing 

 It was observed from the execution of the sensitivity analysis (refer to section 

4.2.2.1 of this report) a labor balancing (work load) problem related to locating the task 

Inspection I (refer to Figure 1.1) at the testing area vs. locating it at the draw out/final 

inspection area. It was decided to run a 28-2 fractional factorial design with 10 center 

points and 1 replicate In order to understand the behavior of the model with respect to the 

labor balancing issue. This is a fractional factorial design of resolution V with a total of 

74 experimental runs. Center points were added with the objective of having a better 

understanding on the behavior of the performance measures (or responses) with respect to 
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the presence of curvature. Only one replicate was specified in order to keep the number 

of design points at the lowest number that was thought could give the necessary 

information to decide about the balancing issue.  

Statistically speaking, one replicate was of concern because at least two replicates 

were needed to have an estimate of the error. So the error obtained with this experiment 

was not a true estimate of the error itself. For this reason, it was decided to focus the 

analysis on good graphical plots rather than in analysis of variance. This approach made 

sense since the focus was on the categorical parameter and helped on keeping the 

simulation run time on the minimum possible. 

The following was the methodology: 

1. Minitab12 was used to design the 28-2 fractional factorial design. The following 

was specified in order for Minitab to generate the design: 

• 10 center points and 8 factors; 2 levels per factor (refer to Table 3.9). 

• Factors were coded (-1, 0, 1). 

Table 3.9 28-2 fractional factorial design with center point - Factor levels. 

Coded Levels  
Performance Measure Factor -1 0 1 

Inter-arrival Time A 0.8 0.6 0.4 

Number of Testing Machines B 3 4 5 

Number of Testing Personnel C 2 3 4 

Yield (%) D 72.6 81.3 90.0 

Testing Process Time (%) E 100.0 85.0 70.0 

Number of Assembly Personnel F 2 3 4 

Number of Final Inspectors G 1 3 5 

Location of Inspection I H Draw Out N/A Testing 

Note: Categorical factors do not have center point. 
          

                                                 
12 Minitab – is a software package for statistical applications. 
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• ¼ fraction of 8 factors was selected for the design. This selection gave an 

experiment design of resolution V. 

• 1 replicate and 1 block. 

Refer to Appendix D (output from Minitab) for more detail on the design. 

Figure 3.1 is a graphical plot of the experimental design. Note that the number 

of draw out machines was not included in this experiment as a critical factor. 

This was based on the results of the sensitivity analyses (refer to section 

4.2.2.5). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Cube Plot of the 28-2 fractional factorial design with center points.  

2. Each experimental design point was run with ARENA, setting the simulation 

run-length to 18,400 minutes, the warm-up period to 9,200 minutes, and the 

number of runs to 100. 9,200 minutes per replicate were used for data 

collection and output analysis purposes. This was the equivalent to 460 

minutes per day (1 shift) on a month of 20 production days. In addition, the 
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number of resources related to dielectric machines, draw out machines and 

packing personnel were set to 1, 2, and 2, respectively. Since the experimental 

design had 10 replications at the center point, simulation seeds for the random 

generators related to the experimental factors were changed with every 

replicate. Each design point was filed with a different name, and data from all 

output variables were recorded for future reference if needed.   

3. The average output for each performance measure of interest, except for the 

throughput, was entered into Minitab for analysis purposes. In the case of the 

throughput, it was decided to use the minimum value observed from the 

simulation runs in an effort to offer the end user with a system that will 

achieve the expected throughput most of the time, instead of 50% of the time 

which is what the average would do.  

4. The labor cost per unit was calculated and entered into Minitab as a 

performance metric. The calculation was done by estimating the labor cost for 

each design point using Table 1.2, and dividing by the throughput data from 

the respective design point. Equation 3.1 was used for the calculation of the 

labor cost per unit for a particular design point: 

( )( )( )( )

( )( )Throughput

emphremp
UnitLaborCost i

ii

12

5240/$#
/

3

1
∑
=

−
=       (3.1) 

where, i is the personnel classification (testing, assembly or final inspection), 

iemp#  is the number of employee with that classification, iemphr −/$  is the 

hourly cost of an employee with classification i, 40 is the total number of 

regular hours in a week, 52 is the total number of weeks in a year, 12 is the 

total number of months in a year, and Throughput is the throughput obtained 

from the simulation for that particular design point. Note that cost related to 

packing personnel was not included in the equation because the number of 

packing personnel was a fix value.      

5. Each response variable was analyzed using Minitab. As previously mentioned, 

the focus of the analysis was on the labor balancing issue and graphical plots 
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were the main resources used at this stage of the analysis. The final decision 

to resolve the balancing issue was taken after analyzing the labor cost per unit 

($/unit) performance metric. 

3.3.2. Setting Up the Draw Out/Final Inspection Area 

In order to understand the behavior of the model with respect to the draw out/final 

inspection area, it was decided to run a 23 full factorial design with three replicates and 

three blocks. The design had a total of 24 experimental runs. Three replicates were 

specified in order to estimate the error. The simulation seeds for the random generators 

related to the experimental factors were changed with every replicate. Blocking was done 

for each new replicate in order to have a better understanding about the impact that the 

seeds could have on the statistical analysis of the experiment.  

The main objective of this experimental design was to define the fix values at 

which to set the number of assembly personnel, the number of final inspection personnel 

and the number of draw out machines. Keep in mind that for the monthly throughput, the 

objective was 1000 units in one shift (equivalent to 3000 in 3 shifts); all other objectives 

remained the same (refer to section 1.5.1). All input parameters from the testing area 

were fixed to a value that allowed the model to process a total of 1000 units monthly at 

the packing station in each design point.  

The decision with respect to the value at which to fix each factor was based on the 

labor cost per unit, the labor utilization for the assembly and the final inspection 

personnel, the up-time for the draw out machine, and the work-in-process inventory, in 

particular, the buffer in front of the draw out machine. The approach was to define the 

combination of assembly personnel, final inspection personnel, and draw out machines 

that minimized the labor cost per unit and met the constraints related to labor utilization, 

machine up-time and work-in-process inventory.   

As in the previous experimental design, the analysis relied mostly on graphical 

plots. This approach made sense since the focus was on discrete input parameters. The 

following was the methodology: 
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1. Minitab was used to design the 23 factorial design. The following was 

specified in order for Minitab to generate the design: 

• 3 factors; 2 levels per factor (refer to Table 3.10). 

• Factors were coded (-1, 1). 

• 3 replicates. 

• 3 blocks. 

Table 3.10 23 factorial design - Factor levels. 

Coded Levels  
Performance Measure Factor -1 1 

Number of Assembly Personnel A 3 4 

Number of Final Inspectors B 2 3 

Number of D.O. Machines C 2 3 

Refer to Appendix E (output from Minitab) for more detail on the design. 

Figure 3.2 is a graphical plot of the experimental design. 
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Figure 3.2 Cube Plot of the 23 factorial design.  



 

 

70

2. Each experimental design point was run with ARENA, setting the simulation 

run-length to 18,400 minutes, the warm-up period to 9,200 minutes, and the 

number of runs to 100. 9,200 minutes per replicate were used for data 

collection and output analysis purposes. This was the equivalent to 460 

minutes per day (1 shift) on a month of 20 production days. The number of 

resources related to dielectric machines, testing machines, testing personnel 

and packing personnel were set to 1, 5, 4, and 2, respectively. The inter-arrival 

time and the testing process time were set to 46.5% and 70% of the values 

observed from the real system. In addition, the yield was set to 90%. Since the 

experimental design had 3 replications, simulation seeds for the random 

generators related to the experimental factors were changed with every 

replicate. Each design point was filed with a different name, and data from all 

output variables were recorded for future reference if needed.   

3. The average output for each performance measure of interest, except for the 

throughput, was entered into Minitab for analysis purposes. In the case of the 

throughput, it was decided to use the minimum value observed from the 

simulation runs in an effort to offer the end user with a system that will 

achieve the expected throughput most of the time, instead of 50% of the time 

which is what the average would do.  

4. The labor cost per unit was calculated and entered into Minitab as a 

performance metric. The calculation was done by estimating the labor cost for 

each design point using Table 1.2, and dividing by the throughput data from 

the respective design point. Equation 3.2 was used for the calculation of the 

labor cost per unit for a particular design point: 

( )( )( )( )

( )( )Throughput

emphremp
UnitLaborCost i

ii

12

5240/$#
/

2

1
∑
=

−
=       (3.2) 

where, i is the personnel classification (assembly or final inspection), iemp#  

is the number of employees with that classification, iemphr −/$  is the hourly 

cost of an employee with classification i, 40 is the total number of regular 
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hours in a week, 52 is the total number of weeks in a year, 12 is the total 

number of months in a year, and Throughput is the throughput obtained from 

the simulation for that particular design point. Note that cost related to testing 

and packing personnel was not included in the equation because the number of 

testing personnel and packing personnel were fixed values.      

5. Each response variable of interest was analyzed using Minitab.   

3.4.  Development of Metamodels 

This section describes a series of parallel experimental designs that were 

performed to develop the metamodels used in the optimization process of the study. 

These experimental designs focused on the testing area since the input parameters from 

the draw out/final inspection and packing areas were already fixed to a particular set of 

values; thus, reducing the complexity of the model.  

The testing area had four critical factors: inter-arrival time, number of testing 

machines, yield and testing process time. All of the four critical factors were quantitative 

input parameters, but the number of testing machines was discrete. In addition, it was 

already understood at this stage of the simulation study that some of the performance 

measures of interest could have a quadratic relationship with these factors. It was decided 

to run three parallel central composite experimental designs; one experiment for each 

testing machine. 

The evaluation of the outcomes from the experimental designs was based on 

statistical techniques generally used for these purposes, such as: hypothesis tests, analysis 

of variance, normality test, run charts, surface plots and a series of other commonly used 

graphical plots. The expected result from this stage of the simulation study was a set of 

algebraic expressions for each experiment that expressed the relationship between the 

factors (input parameters) and the response variables of interest.  

The methodology followed is described in the next three sub-sections: (1) 

Metamodels for 3 Testing Machines, (2) Metamodels for 4 Testing Machines, and (3) 
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Metamodels for 5 Testing Machines. Whenever appropriate, the section refers to the 

Appendixes for backup information or data.  

3.4.1. Metamodels for 3 Testing Machines 

This section describes the experiment performed to develop the metamodels 

related to the behavior of the simulation model when three testing machines were used. 

The experiment was a central composite design with three factors with two levels each, 

two replicates and two blocks. A total of 40 experimental runs were done for each 

experiment: 16 for cube points, 12 for center points in cube, and 12 for axial points. The 

value for α, distance of the axial runs from the design center (refer to section 2.5.4), was 

1.68179, which was the default value from Minitab for a central composite design with 

those specifications. 

The performance measures of interest were the throughput, the up-time for the 

testing machines, and the work-in-process inventory. For each of these response 

variables, regression analysis was done with the respective analysis of variance including 

the lack of fit test. In addition, graphical plots for corroboration of the assumptions of the 

analysis of variance were done as well as surface plots. 

The methodology followed is explained next: 

1. Minitab was used to design the 23 central composite factorial design. The 

following was specified in order for Minitab to generate the design: 

• 3 factors; 2 levels per factor with center point and axial points. 

• Factors were coded (-1.68179, -1, 0, 1, 1.68179). Refer to Table 3.11. 

Table 3.11 23 central composite factorial design - Factor levels. 

Coded Levels  Performance 
Measure Factor -1.68179 -1 0 1 1.68179 

Inter-arrival Time A 0.485000 0.480946 0.475000 0.469054 0.465000 

Yield (%) B 0.850000 0.860135 0.875000 0.889865 0.900000 

Testing Process 
Time (%) C 0.750000 0.739865 0.725000 0.710135 0.700000 



 

 

73

 

• 2 replicates 

• 2 blocks. 

Refer to Appendix F (output from Minitab) for more detail on the design.  

2. Each experimental design point was run with ARENA, setting the simulation 

run-length to 18,400 minutes, the warm-up period to 9,200 minutes, and the 

number of runs to 100. 9,200 minutes per replicate were used for data 

collection and output analysis purposes. This was the equivalent to 460 

minutes per day (1 shift) on a month of 20 production days. The number of 

resources related to dielectric machines, testing personnel, assembly 

personnel, final inspection personnel, number of draw out machines, and 

packing personnel were set to 1, 2, 4, 2, 3, and 2, respectively. The inter-

arrival time, the testing process time, and yield were the experimental factors. 

The simulation seeds for the random generators related to the experimental 

factors were changed with every replicate of a design point. Each design point 

was filed with a different name, and data from all output variables were 

recorded for future reference if needed.   

3. The average output for the performance measures of interest was entered into 

Minitab for analysis purposes.   

4. Each response variable of interest was analyzed using Minitab. The following 

analysis was done: regression, analysis of variance with lack of fit test, normal 

probability plot for residuals, histogram of the residuals, plot of the residual 

vs. fitted values, plot of the residuals vs. the order of the data. 

3.4.2. Metamodels for 4 Testing Machines 

This section describes the experiment performed to develop the metamodels 

related to the behavior of the simulation model when four testing machines were used. 

The experiment was a central composite design with three factors with two levels each, 

two replicates and two blocks. A total of 40 experimental runs were done for each 

experiment: 16 for cube points, 12 for center points in cube, and 12 for axial points. The 
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value for α, distance of the axial runs from the design center (refer to section 2.5.4), was 

1.68179, which was a default value from Minitab for a central composite design with 

those specifications. 

The performance measures of interest were the throughput, the up-time for the 

testing machines, and the work-in-process inventory. For each of these response 

variables, regression analysis was done with the respective analysis of variance including 

the lack of fit test. In addition, graphical plots for corroboration of the assumptions of the 

analysis of variance were done as well as surface plots. 

The methodology followed is explained next: 

1. Minitab was used to design the 23 central composite factorial design. The 

following was specified in order for Minitab to generate the design: 

• 3 factors; 2 levels per factor with center point and axial points. 

• Factors were coded (-1.68179, -1, 0, 1, 1.68179). Refer to Table 3.12. 

Table 3.12 23 central composite factorial design - Factor levels. 

Coded Levels  Performance 
Measure Factor -1.68179 -1 0 1 1.68179 

Inter-arrival Time A 0.485000 0.477905 0.467500 0.457094 0.450000 

Yield (%) B 0.800000 0.820270 0.850000 0.879730 0.900000 

Testing Process 
Time (%) C 1.000000 0.939190 0.850000 0.760810 0.700000 

 

• 2 replicates. 

• 2 blocks. 

Refer to Appendix F (output from Minitab) for more detail on the design.  

2. Each experimental design point was run with ARENA, setting the simulation 

run-length to 18,400 minutes, the warm-up period to 9,200 minutes, and the 

number of runs to 100. 9,200 minutes per replicate were used for data 

collection and output analysis purposes. This was the equivalent to 460 

minutes per day (1 shift) on a month of 20 production days. The number of 
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resources related to dielectric machines, testing personnel, assembly 

personnel, final inspection personnel, number of draw out machines, and 

packing personnel were set to 1, 2, 4, 2, 3, and 2, respectively. The inter-

arrival time, the testing process time, and yield were the experimental factors. 

The simulation seeds for the random generators related to the experimental 

factors were changed with every replicate of a design point. Each design point 

was filed with a different name, and data from all output variables were 

recorded for future reference if needed.   

3. The average output for the performance measures of interest was entered into 

Minitab for analysis purposes. 

4. Each response variable of interest was analyzed using Minitab. The following 

analysis was done: regression, analysis of variance with lack of fit test, normal 

probability plot for residuals, histogram of the residuals, plot of the residual 

vs. fitted values, plot of the residuals vs. the order of the data. 

3.4.3. Metamodels for 5 Testing Machines 

This section describes the experiment performed to develop the metamodels 

related to the behavior of the simulation model when five testing machines were used. 

The experiment was a central composite design with three factors with two levels each, 

two replicates and two blocks. A total of 40 experimental runs were done for each 

experiment: 16 for cube points, 12 for center points in cube, and 12 for axial points. The 

value for α, distance of the axial runs from the design center (refer to section 2.5.4), was 

1.68179, which was a default value from Minitab for a central composite design with 

those specifications. 

The performance measures of interest were the throughput, the utilization for the 

packing personnel, and the work-in-process inventory. For each of these response 

variables, regression analysis was done with the respective analysis of variance including 

the lack of fit test. In addition, graphical plots for corroboration of the assumptions of the 

analysis of variance were done as well as surface plots. 
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The methodology followed is explained next: 

1. Minitab was used to design the 23 central composite factorial design. The 

following was specified in order for Minitab to generate the design: 

• 3 factors; 2 levels per factor with center point and axial points. 

• Factors were coded (-1.68179, -1, 0, 1, 1.68179). Refer to Table 3.13. 

Table 3.13 23 central composite factorial design - Factor levels. 

Coded Levels  Performance 
Measure Factor -1.68179 -1 0 1 1.68179 

Inter-arrival Time A 0.4850000 0.4687840 0.4450000 0.4212160 0.4050000 

Yield (%) B 0.7260000 0.7612698 0.8130000 0.8647302 0.9000000 

Testing Process 
Time (%) C 1.0000000 0.9391900 0.8500000 0.7608100 0.7000000 

 

• 2 replicates. 

• 2 blocks. 

Refer to Appendix F (output from Minitab) for more detail on the design.  

2. Each experimental design point was run with ARENA, setting the simulation 

run-length to 18,400 minutes, the warm-up period to 9,200 minutes, and the 

number of runs to 100. 9,200 minutes per replicate were used for data 

collection and output analysis purposes. This was the equivalent to 460 

minutes per day (1 shift) on a month of 20 production days. The number of 

resources related to dielectric machines, testing personnel, assembly 

personnel, final inspection personnel, number of draw out machines, and 

packing personnel were set to 1, 2, 4, 2, 3, and 2, respectively. The inter-

arrival time, the testing process time, and yield were the experimental factors. 

The simulation seeds for the random generators related to the experimental 

factors were changed with every replicate of a design point. Each design point 

was filed with a different name, and data from all output variables were 

recorded for future reference if needed.   
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3. The average output for the performance measures of interest was entered into 

Minitab for analysis purposes.    

4. Each response variable of interest was analyzed using Minitab. The following 

analysis was done: regression, analysis of variance with lack of fit test, normal 

probability plot for residuals, histogram of the residuals, plot of the residual 

vs. fitted values, plot of the residuals vs. the order of the data. 

 

3.5.  Optimization Tool 

This section describes the optimization tool developed for the practical 

application of this project. The main objective of the tool was to determine the number of 

machines that were required to meet the expected production as well as the constraints 

specified by the management of the company, given a combination of the input 

parameters yield and testing process time. 

It would have been easier for the analysis and execution of this project, fixing the 

yield and testing process time to their respective optimum level. Nevertheless, this would 

have not been practical for the end user due to the uncertainty with respect to achieving 

those levels. Basically, the objective was to develop a tool that could be used for 

management decision making. This in fact was the complexity behind this project, since 

we have tried so far to understand the behavior of the system for the whole spectrum of 

alternatives or possibilities with respect to the yield and testing process time. 

Typical simulation optimization techniques such as the ones discussed in section 

2.6, were not practical options for the end user in terms of the availability of resources, 

contrary to developing a set of metamodels that could easily be used in exchange of the 

simulation model. The metamodels were used to build mathematical programming 

models for optimization purposes. These models were of the type of smooth non-linear 

optimization problems with 3 decision variables and 3 constraints, where at least one 

restriction was not linear. Microsoft Excel Solver provided the desired easiness of use 

and represented an inexpensive alternative for optimization purposes since it was already 



 

 

78

available for the end user. In addition, it was mentioned on section 2.7 that the 

Generalized Reduced Gradient method employs by Microsoft Excel Solver could solve 

this type of problem for up to 200 decision variables and 100 constraints.   

The tool was developed using Microsoft Excel Solver and Visual Basic for 

Applications. Basically, the end user enters the values for the yield and testing process 

time, the tool selects the optimization model (for 3, 4 or 5 testing machines) and 

Microsoft Excel Solver finds the optimum based on maximizing an objective function 

and meeting the restrictions imposed by the metamodels. The search variable is the inter-

arrival time. It is important to mention that the search is done within the experimental 

region, thus the experimental region was critical for finding the global optimum.  

This section has been divided in two sub-sections: (1) Description of the 

Optimization Tool, and (2) Validation of the Optimization Tool. 

3.5.1. Description of the Optimization Tool  

Even though there was no contact with the company representatives at this stage 

of the project, the optimization tool was developed having the end user in mind. It was 

decided to use Microsoft Excel Solver and Visual Basic for Applications due to their 

universality in today’s business world.  

Figure 3.3 shows the data entry screen. The end user enters the values for the 

yield and testing process time and clicks on “Next>>”. Visual Basic for Applications 

revises that the values are valid numbers and select the optimization model to be used 

(refer to Appendix G). Figure 3.4 shows the Excel worksheet for optimization purposes. 

There is one worksheet for each optimization model (3, 4 or 5 testing machines). The end 

user enters information with respect to the sales price per unit, inventory cost per unit, 

acquisition cost per the testing machine, book value at the end of the depreciation period, 

and the depreciation period. The end user selects the solver option from Excel and the 

optimization is run.       
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0.900

0.700

Range for Yield: 0.726 - 0.90

Range for Testing Process Time: 0.7 - 1.0

Model Optimization Toolbox

Created by: Roberto L. Seijo, MS Candidate © 2004

Yield

Testing Process Time

Please insert the following values

Next >>

Figure 3.3 Data entry screen. 

Coded 1.682 Limits

Coded 1.682 94.3% 95.0%

Uncoded 90.0% 18.6 22

Coded 1.682 1090.4 1000

Uncoded 70.0%

STEPS: 1.

3,500.00$      
6. Select "Tools" menu.

2.

1,500.00$      
7. Select "Solver" option.

3.

350,000.00$  
8. Select "Solver" tab.

4.

50,000.00$    
5.

10

Enter depreciation period in terms of 
years.

Enter the sales price/unit. 

Enter the inventory cost/unit.

Enter the equipment acquisition cost. 

Enter the book value at the end of 
depreciation period.

Max. Income (Objective)

Metamodel

Optimization w/ 3 Testing Machines

Yield (Y)

Testing Process Time (TPT)

Interarrival Time (IT)

Up-Time Testing Machine

WIP

Throughput

$3,787,773.33

 
Figure 3.4 Optimization Screen. 

The following are the objective functions used for the optimization model for 

each testing machine (3, 4, or 5). Z is the monthly cost function per shift of the 
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optimization model, which represents the income generated by the throughput less the 

cost related to the work-in-process and the depreciation of the testing machines.   

• 3 Testing Machines 

( )( ) ( )( ) ( )( )( ) 3/12// DYBVEACWIPICTHPTSPZMax −−−=       (3.3) 

Where SP is the sales price per unit, THPT is the throughput, IC is the inventory 

or material cost per unit, WIP is the work-in-process, EAC is the acquisition cost for a 

new testing machine, BV is the book value at the end of the depreciation period, DY is the 

depreciation period in years, 12 is the number of months in a year, and 3 is the number of 

shifts. Equation (4.1), Equation (4.2), and Equation (4.3) were used to build the 

restrictions of the model.  

• 4 Testing Machines 

( )( ) ( )( ) ( )( )( )( ) 2*3/12// DYBVEACWIPICTHPTSPZMax −−−=      (3.4) 

Where SP is the sales price per unit, THPT is the throughput, IC is the inventory 

or material cost per unit, WIP is the work-in-process, EAC is the acquisition cost for a 

new testing machine, BV is the book value at the end of the depreciation period, DY is the 

depreciation period in years, 12 is the number of months in a year, 3 is the number of 

shifts, and 2 is the number of new testing machines. Note that the portion of the equation 

related to depreciation is multiplied by 2; the reason for this is that at the present, there 

are 2 testing machines being used at the company. Equation (4.4), Equation (4.5), and 

Equation (4.6) were used to build the restrictions of the model.  
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• 5 Testing Machines 

( )( ) ( )( ) ( )( )( )( ) 3*3/12// DYBVEACWIPICTHPTSPZMax −−−=      (3.5) 

Where SP is the sales price per unit, THPT is the throughput, IC is the inventory 

or material cost per unit, WIP is the work-in-process, EAC is the acquisition cost for a 

new testing machine, BV is the book value at the end of the depreciation period, DY is the 

depreciation period in years, 12 is the number of months in a year, 3 is the number of 

shifts, and 3 is the number of new testing machines. Note that the portion of the equation 

related to depreciation is multiplied by 3; the reason for this is that at the present, there 

are 2 testing machines being used at the company. Equation (4.7), Equation (4.8), and 

Equation (4.9) were used to build the restrictions of the model.  

3.5.2. Validation of the Optimization Tool 

The validation was done mostly by focusing on three subjects: (1) predicting the 

accuracy of the metamodels vs. the simulation output, (2) the ability of the experimental 

region to contain a local optimum with respect the combination of possible values for the 

yield and testing process time input parameters, and (3) the ability of the experimental 

region to contain the global optimum.   

For subject (1), it was decided to run three scenarios for possible combinations of 

yield and testing process time (refer to Table 3.14). The output from the optimization tool 

was then compared to the output of the simulation model. It is important to mention that 

for simulation purposes, the input parameter inter-arrival time was obtained from the 

optimization tool. 
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Table 3.14 Validation Scenarios for the metamodels accuracy. 
 Input Output 

Scenario # Yield (%) Testing Proc. Time (%) Optimization Model 

1 90 70 3 Testing Machines 

2 81.3 85 4 Testing Machines 

3 72.6 100 5 Testing Machines 
 

It is common to validate metamodels by means of confidence interval hypothesis 

tests. In this approach, the confidence interval for the prediction is statistically compared 

to the confidence interval of the simulation response. It was understood that for the case 

of this project, such a comparison was of no practical value for the end user or 

management of the company. The main reason being that the management was more 

interested in knowing the probability distribution for the performance measure 

throughput, rather than the confidence interval for the mean (average throughput) at the 

stationary point. In other words, they were more interested in the behavior of the 

population at the stationary point. It was then decided to do the validation by comparing 

the point estimate of the simulation for the responses of interest (throughput, up-time 

testing machines, utilization packing personnel and work-in process inventory) vs. the 

prediction from the metamodels. The decision criteria for validation purposes were the 

same percentages used for estimating the number of simulation replicates at the time of 

doing the sensitivity analysis (refer to section 3.2.1). The criteria were of practical value 

since they represented the allowable error for each performance measure given by the 

management of the company. It was understood that in the eventuality of presenting these 

results to the management, this validation approach was of common sense for them, thus 

gaining confidence on the results of the project.  

In order to calculate the point estimate for the performance measures or 

simulation responses of interest, 1000 replicates were run for each validation scenario. 

Since 1 replicate was equivalent to a month worth of production, then 1000 replicates 

were equivalent to 83.3 years; from the point of view of the manufacturing life for this 

product, such amount of replicates were understood to be representative of the 
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population. Statistically speaking, the confidence interval for each simulation response of 

interest was small enough to consider the simulation averages as the point estimates at the 

steady state.   

For subject (2), the optimization tool was run with two scenarios presented in 

Table 3.15. Scenario #1 represented the limit for the 3 testing machines experimental 

region (in terms of yield and testing process time). Scenario #2 was the limit for 4 testing 

machines. In the case of scenario #1, the expectation was for the optimization tool not to 

find a feasible solution with the optimization modeling for 3 testing machines, but with 

the optimization modeling for 4 testing machines. This guaranteed that for any 

combination of yield and testing process time feasible for 3 testing machines, the 

optimum was contained within the experimental region, at least within the limits 

provided for yield and testing process time. The same being true for scenario #2 and 4 

testing machines, but in this case, the feasible solution lying within 5 testing machines 

optimization model. This approach was feasible because the combination of 90% yield, 

70% of the testing process time, and 48.5% of the inter-arrival time, was a common point 

or the starting point for the development of the three experimental regions. In other 

words, the region for 3 testing machines was contained within the region for 4 testing 

machines, which in turn was contained within the region for 5 testing machines. 

Table 3.15 Validation Scenarios for the experimental regions. 
 Input Output 

Scenario 
# 

Yield 
(%) 

Testing Proc. Time 
(%) 

No Feasible 
Solution Feasible Solution 

1 85 75 3 Testing Machines 4 Testing Machines 

2 81.3 85 4 Testing Machines 5 testing machines 

 

Finally, for subject (3), the conclusion was made by observation of the results 

from the previous 5 validation scenarios. In order for the experimental region to contain 

the global optimum for any combination of yield and testing process time, the inter-

arrival time for the feasible solution must not be the experimental limits defined by 

±1.68179. Nevertheless, and in the eventuality that the global optimum was not within 
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the region defined by the inter-arrival time, the decision with respect to the number of 

testing machines for a particular combination of yield and testing process time were still 

valid as long as the previous two subjects were validated. 

3.6.  Summary 

This chapter described the methodology followed for the execution of this project. 

It covered the use of sensitivity analysis, experimental designs, regression analysis for 

building metamodels, and the description of the optimization tool developed as well as its 

validation process.  

Several sensitivity analyses were defined at the early stage of this project with 

two main objectives: (1) to validate the warm-up period of the simulation model for the 

actual system, and (2) to determine the simulation input parameters that should be 

considered as experimental factors. Validating the number of runs, and performing 

hypothesis tests for two systems comparison were must do steps as part of the 

methodology described. 

This chapter described the methodology followed for the use of 2k factorial 

designs and 2k-p fractional factorial designs. The main objective of these experiments was 

to minimize the complexity of the initial model by finding levels at which to set non-

critical input parameters. The use of central composite designs with the objective of 

developing metamodels for the performance measures of interest was also explained in 

this chapter. 

The description of the optimization tool developed with Microsoft’s Excel Solver 

and Visual Basic for Applications was described in this chapter. In addition, the 

methodology followed for the validation of the tool was also described. It was mentioned 

that the mathematical programming model was of the smooth non-linear type which 

Microsoft Excel Solver can find a solution by means of the Generalized Reduced 

Gradient algorithms  
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The following chapter (IV) will discuss the results and statistical analysis for the 

sensitivity runs, experimental designs, and the optimization tool validation process. 

Chapter V will present the conclusions, and recommendations in terms of future research. 
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CHAPTER IV. Analysis and Results 

4.1.  Introduction 

This section explains the results obtained from the application of the methodology 

described in the previous chapter. The section has been divided into five sub-sections: (1) 

Sensitivity analysis (2) Reducing the problem with experimental designs, (3) 

Development of metamodels, (4) Optimization tool and (5) Comparison of 

methodologies.  

Section (1) explains the results obtained from the sensitivity analyses. Section (2) 

explains the results obtained from the sequential experimental designs executed in order 

to reduce the number of critical factors to be considered in the metamodels. Section (3) 

explains the results obtained from parallel experimental designs executed in order to 

develop the metamodels. Section (4) describes the validation for the optimization tool. 

Finally, section (5) presents the comparison between the results obtained from this 

project and the results obtained from the previous project. It is important to remember 

that the previous project pretended to solve the practical problem by trial and error 

approach. 

The results are presented by means of tables, charts and/or text. Each subsection 

covers the explanation and conclusions with respect to the results. Whenever appropriate, 

the section refers to the Appendixes for backup information or data.  

4.2.  Sensitivity Analysis 

This section explains the results and conclusions related to the sensitivity 

analyses. As previously mentioned, sensitivity analyses were done with respect to two 

main objectives: (1) to validate the warm-up period defined during the simulation 

analysis of the model for the actual (real) system, and (2) to determine the simulation 

input parameters that should be considered as experimental factors and their respective 

experimental levels. The methodology followed was pretty much the same for both cases. 

In general, the objective was to vary one factor at a time to determine its impact on the 
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responses of the simulation. Any input parameter that statistically impacted by means of 

hypothesis testing at least one performance measure was considered as an experimental 

factor. For more details on the methodology, please refer to sections 3.2.1 and 3.2.2. 

4.2.1. Validation of the Warm-up Period 

The output analysis started with the normality test for the performance measure 

“Throughput”, for which the assumption of independency was valid but not necessarily 

the assumption of being identically distributed. All other variables were assumed to be 

independent and identically distributed. 

The assumption of normality for the simulation output variable “Throughput” for 

the “Actual System” was validated by the normality test (refer to Figure 4.1). The 

hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  
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Figure 4.1 Normality test – “Actual System” model. 
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Based on the p-value > 0.05, it was concluded that there was not enough evidence 

to reject H0. Therefore, the assumption of the data being identically distributed prevailed, 

allowing the simulation output analysis to continue.  

The assumption of normality for the simulation output variable “Throughput” for 

the “Warm-up Period Validation” was validated by the normality test (refer to Figure 

4.2). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  
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Figure 4.2 Normality test – “Warm-up Period Validation” model. 

Based on the p-value > 0.05, it was concluded that there was not enough evidence 

to reject H0. Therefore, the assumption of the data being identically distributed prevailed, 

allowing the simulation output analysis to continue.  

Table 4.1 shows the simulation responses or output variables of interest for the 

“Actual System” model. It shows for each performance measure the expected average 

value, the minimum and maximum data observed, and the confidence interval (minimum 
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and maximum limits), the number of runs done during the simulation, and the minimum 

number of runs required for achieving the desired confidence interval accuracy for the 

average value. It was concluded from this table that no additional replicates were 

required. 

Table 4.1 Validation of the warm-up period – “Actual System” model.  

Actual System 

Testing Area 
Average    

µ1 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 10.5% 9.8% 11.4% 10.5% 10.6% 100.0 38.1 

% Up-time Test. Mach. 
- Tester #1 90.0% 82.2% 97.0% 89.4% 90.6% 100.0 45.1 

% Up-time Test. Mach. 
- Tester #2 90.2% 82.2% 97.7% 89.6% 90.8% 100.0 46.9 

% Util. Test. Pers. - 
Tester#1 18.4% 17.1% 19.6% 18.3% 18.5% 100.0 31.5 

% Util. Test. Pers.  - 
Tester#2 18.4% 17.0% 19.8% 18.3% 18.5% 100.0 37.1 

% Up-time Draw Out 
tester 79.5% 72.0% 85.7% 79.0% 80.0% 100.0 46.3 

% Utilization  
assembler 83.5% 77.8% 89.0% 83.0% 84.0% 100.0 30.3 

% Utilization final 
inspector 81.7% 73.4% 88.5% 81.1% 82.3% 100.0 52.8 

Units packed - 
Throughput 821.4 752.0 878.0 816.0 826.8 100.0 6.8 

% Util. packers 31.4% 28.5% 33.6% 31.1% 31.6% 100.0 48.8 

W.I.P. 11.6 7.4 24.1 11.0 12.1 100.0 21.3 

 

Table 4.2 shows the simulation responses or output variables of interest for the 

“Warm-up Period Validation” model. It shows for each performance measure the 

expected average value, the minimum and maximum data observed, the confidence 

interval (minimum and maximum limits), the number of runs done during the simulation, 

and the minimum number of runs required for achieving the desired confidence interval 

accuracy for the average value. It was concluded from this table that no additional 

replicates were required. 
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Table 4.2 Validation of the warm-up period – “Warm-up Period Validation” model.   

 

Table 4.3 shows the results from the hypothesis tests for the validation of the 

warm-up period. It shows for each performance measure of interest the mean difference 

between the “Actual System” model and the “Warm-up Period Validation” model, the 

confidence interval (minimum and maximum limits) and the suggested action from the 

tests. It was concluded from this table that there was not enough evidence to have 

concerns about the warm-up period used during the validation process of the “Actual 

System” model. Thus, concluding that there were no reasons to doubt about the previous 

verification and validation processes of the model. This conclusion opened the door for 

the continuation of the simulation output analysis. 

Warm-up Period Validation 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 10.5% 9.7% 11.1% 10.5% 10.6% 100.0 33.1 

% Up-time Test. 
Mach. - Tester #1 90.1% 82.6% 97.7% 89.5% 90.7% 100.0 44.5 

% Up-time Test. 
Mach. - Tester #2 89.9% 81.2% 98.6% 89.3% 90.5% 100.0 45.0 

% Util. Test. Pers. - 
Tester#1 18.4% 17.1% 19.5% 18.3% 18.5% 100.0 30.8 

% Util. Test. Pers.  - 
Tester#2 18.4% 16.9% 19.7% 18.3% 18.5% 100.0 33.2 

% Up-time Draw Out 
tester 79.9% 71.8% 85.5% 79.3% 80.4% 100.0 46.2 

% Utilization 
assembler 83.8% 76.9% 89.1% 83.3% 84.2% 100.0 32.0 

% Utilization final 
inspector 82.2% 73.8% 88.4% 81.6% 82.7% 100.0 52.6 

Units packed - 
Throughput 826.2 747.0 884.0 820.8 831.6 100.0 6.9 

% Util. packers 31.5% 28.5% 34.2% 31.3% 31.7% 100.0 46.5 

W.I.P. 11.5 7.9 27.3 10.9 12.0 100.0 21.8 
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Table 4.3 Validation of the warm-up period – Hypothesis test 

Hypothesis Testing                                             
Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area 
Mean  
Diff. 

Conf. Int. 
Min. 

Conf. Int. 
Max. Comments 

% Up-time Dielectric 
machine 0.01% -0.07% 0.09% Fail to Reject Ho 

% Up-time Test. Mach. - 
Tester #1 -0.11% -0.90% 0.68% Fail to Reject Ho 

% Up-time Test. Mach. - 
Tester #2 0.35% -0.47% 1.16% Fail to Reject Ho 

% Util. Test. Pers. –  
Tester#1 -0.04% -0.17% 0.10% Fail to Reject Ho 

% Util. Test. Pers.  - 
Tester#2 -0.01% -0.15% 0.13% Fail to Reject Ho 

% Up-time  
Draw Out tester -0.37% -1.09% 0.35% Fail to Reject Ho 

% Utilization  
assembler -0.25% -0.83% 0.34% Fail to Reject Ho 

% Utilization  
final inspector -0.41% -1.18% 0.35% Fail to Reject Ho 

Units packed –  
Throughput -4.8 -11.91 2.31 Fail to Reject Ho 

% Utilization  
packers -0.16% -0.45% 0.12% Fail to Reject Ho 

W.I.P. 0.0893 -0.5277 0.7063 Fail to Reject Ho 

 

4.2.2. Sensitivity Analysis for Critical Input Parameters (Factors) 

Sensitivity analyses were done with the objective of finding out input parameters 

of the model that had no major impact on the performance measures of interest or to the 

objectives of the project, and to define the experimental levels for the critical parameters. 

In summary, four sensitivity analyses were done. Results and conclusions are explained 

ahead, starting in the next page.  

4.2.2.1.“Actual System” vs. “3000 Units Through Test” 

The assumption of normality for the simulation output variable “Throughput” for 

the “Actual System” was previously validated. Please refer to section 4.2.1 and Figure 

4.1.  
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The assumption of normality for the simulation output variable “Throughput” for 

the “3000 Units Through Test” model was validated by the normality test (refer to Figure 

4.3). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed. 
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Figure 4.3 Normality test – “3000 Units Through Test” model 

Based on the p-value > 0.05, it was concluded that there was not enough evidence 

to reject H0. Therefore, the assumption of the data being identically distributed prevailed, 

allowing the simulation output analysis to continue.  

No additional replicates were required for the “Actual System” model. Please 

refer to section 4.2.1 and Table 4.1.  

Table 4.4 shows the simulation responses or output variables of interest for “3000 

Units Through Test” model. It shows for each performance measure the expected average 

value, the minimum and maximum data observed, the confidence interval (minimum and 

maximum limits), the number of runs done during the simulation, and the minimum 
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number of runs required for achieving the desired confidence interval accuracy for the 

average value.  

Table 4.4 “3000 Units Through Test” – required number of runs. 

3000 Units Through Test 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 26.5% 25.3% 27.8% 26.4% 26.6% 100.0 13.9 

% Up-time Test. Mach. 
- Tester #1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Up-time Test. Mach. 
- Tester #2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Util. Test. Pers. - 
Tester#1 28.0% 27.2% 28.9% 28.0% 28.1% 100.0 5.5 

% Util. Test. Pers.  - 
Tester#2 28.0% 26.7% 29.0% 28.0% 28.1% 100.0 6.8 

% Up-time Draw Out 
tester 88.7% 82.7% 93.9% 88.3% 89.0% 100.0 17.1 

% Utilization 
assembler 91.5% 87.0% 96.2% 91.1% 91.8% 100.0 13.7 

% Utilization final 
inspector 91.6% 85.4% 96.8% 91.2% 92.0% 100.0 17.6 

Units packed - 
Throughput 911.9 865.0 966.0 907.8 915.9 100.0 3.1 

% Util. packers 34.8% 32.8% 37.2% 34.6% 35.0% 100.0 22.7 

W.I.P. 986.5 899.5 1057.9 980.0 993.1 100.0 0.4 

The following was concluded from this table: 

• The number of dielectric machines was not considered as a critical factor for 

the achievement of the goals of this project. This was concluded after 

observing the low percentage of up-time at 3000 units already.  

• Note that the up-time for testing machines #1 and #2 showed no variability, 

thus the number of runs was estimated as 0. The main reason for this was that 

at 3000 units, the testing machines became the bottleneck as they achieved 

100% up-time for all replicates. This was also the main reason for the high 

number of units in work-in-process. The conclusion from these observations 
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was that the testing machines were critical factors to be included in further 

experimental designs.  

• Note that the testing personnel utilization (#1 and #2) is at 28% while the 

utilization for the assembly and final inspection personnel is at 91.5% and 

91.6%, respectively. This suggests a labor balancing (work load) problem 

related to the execution of the task named Inspection I (refer to Figure 1.1). It 

was decided to add the balancing issue as a critical factor for further 

consideration in experimental designs. This factor will consider the location of 

Inspection I at the testing area vs. draw out/final inspection area.  

The need for adding testing machines was also identified during the previous 

project. At that time, the possibility for adding machines raised a labor related concern if 

the total number of machines required was an odd number, and multiple machines per 

employee were suggested due to the possibility of having employees with the same 

classification not serving the same number of machines. The reason for the concern was 

that testing personnel used to work independently; they were not supporting each other. 

At that time, management decided that testing personnel must support each other and no 

longer were they working at only one machine.  

Returning to this project, the above explanation was the reason for modifying the 

model “3000 Units Through Test” to reflect the change in the company policy, in other 

words, any entity at any of the testing area processes could seize available units from the 

resources named testing personnel. This new or updated model was used for the 

sensitivity analysis at the testing station (refer to section 3.2.2.2 for the methodology and 

section 4.2.2.2 for the output analysis).  

Table 4.5 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “Actual System” model 

and the “3000 Units Through Test” model, the confidence interval (minimum and 

maximum limits) and the suggested action from the tests. It was concluded that the model 

was sensitive to the inter-arrival rate since H0 was rejected for all variables. These results 

suggested the inclusion of this parameter in further experimental designs. 
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Table 4.5 “Actual System” vs. “3000 Units Through Test” – Hypothesis test 

Hypothesis Testing                                    
Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area Mean Diff. 
Conf. Int. 

Min. 
Conf. Int. 

Max. Comments 
% Up-time Dielectric machine -15.90% -16.02% -15.78% Reject Ho 

% Up-time Test. Mach. - Tester #1 -10.00% -10.60% -9.40% Reject Ho 

% Up-time Test. Mach. - Tester #2 -9.78% -10.39% -9.17% Reject Ho 

% Util. Test. Pers. – Tester #1 -9.69% -9.81% -9.57% Reject Ho 

% Util. Test. Pers.  – Tester #2 -9.65% -9.79% -9.51% Reject Ho 

% Up-time Draw Out tester -9.18% -9.88% -8.48% Reject Ho 

% Utilization assembler -7.94% -8.54% -7.34% Reject Ho 

% Utilization final inspector -9.88% -10.65% -9.11% Reject Ho 

Units packed - Throughput -90.4 -97.53 -83.27 Reject Ho 

% Util. packers -3.45% -3.74% -3.16% Reject Ho 

W.I.P. -975 -981.48 -968.52 Reject Ho 
 

4.2.2.2.Testing Area 

4.2.2.2.1. The following is the analysis done to determine if the number of testing 
machines was a critical factor: 

The assumption of normality for the simulation output variable “Throughput” 

for the “New System 3000 Units Through Test” model was validated by the normality 

test (refer to Figure 4.4). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.4 Normality test – “New System 3000 Units Through Test” model. 

The assumption of normality for the simulation output variable “Throughput” 

for the “6 Testing Machine” model was validated by the normality test (refer to Figure 

4.5). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.5 Normality test – “6 Testing Machines” model.  

The conclusions from Table 4.6 were the same as of Table 4.4. This was 

expected because the only change between model “3000 Units Through Test” and model 

“New System 3000 Units Through Test” was the new company policy related to the 

testing area. Note that the up-time for the testing machines showed no variability, thus the 

number of runs was estimated as 0. The main reason for this was that at 3000 units, the 

testing machines became the bottleneck as they achieved 100% up-time for all replicates. 

This was also the explanation for the high number of units in work-in-process. In 

summary, the conclusions were the following: the number of dielectric test machines was 

not considered a critical factor, the number of testing machines was considered a critical 

factor, and the labor balancing issue between the testing area and draw out/final 

inspection area was also considered a critical factor. It was also concluded that no more 

replications were needed. 
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Table 4.6 “New System 3000 Units Through Test” – required number of runs. 

3000 Units Through Test 

Testing Area 
Average    

µ1 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 27.1% 25.9% 28.6% 27.0% 27.2% 100.0 14.1 

% Up-time Test. Mach. 
- Tester #1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Util. Test. Pers. – 
Tester #1 28.1% 27.5% 28.8% 28.1% 28.2% 100.0 4.4 

% Up-time 
Draw Out tester 89.0% 84.7% 93.0% 88.7% 89.4% 100.0 15.6 

% Utilization 
assembler 91.8% 87.3% 95.7% 91.5% 92.1% 100.0 13.1 

% Utilization 
final inspector 92.0% 87.9% 96.1% 91.6% 92.4% 100.0 16.3 

Units packed – 
Throughput 914.0 864.0 951.0 910.2 917.8 100.0 2.8 

% Utilization 
packers 34.9% 32.8% 36.6% 34.7% 35.1% 100.0 21.0 

W.I.P. 981.8 892.0 1052.3 975.2 988.4 100.0 0.5 

 

Table 4.7 shows the simulation responses or output variables of interest for “6 

Testing Machines” model. It shows for each performance measure the expected average 

value, the minimum and maximum data observed, the confidence interval (minimum and 

maximum limits), the number of runs done during the simulation, and the minimum 

number of runs required for achieving the desired confidence interval accuracy for the 

average value. The following was concluded from this table: 

• No additional replication was required for the output analysis. 

• At this stage, the number of testing personnel was not identified as a 

critical factor. Please note the low utilization of the personnel at 3000 

units already. 

• The draw out/final inspection area became the bottleneck as the testing 

area increased the number of units processed due to the increment in 

testing machines. Note that the utilization for the assembly and final 

inspection personnel showed no variability, thus the number of runs was 
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estimated as 0. The main reason for this was that 100% utilization was 

achieved for all replicates. This was also the explanation for the high 

number of units in work-in-process. The number of assembly and final 

inspection personnel were identified as critical factors.   

Table 4.7 “6 Testing Machine” – required number of runs. 

 6 Testing Machines 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 29.8% 28.1% 31.8% 29.6% 29.9% 100.0 26.4 

% Up-time Test. Mach. 
- Tester #1 75.4% 72.1% 78.8% 75.1% 75.6% 100.0 14.6 

% Util. Test. Pers. – 
Tester #1 45.9% 44.0% 48.0% 45.7% 46.1% 100.0 12.9 

% Up-time 
Draw Out tester 96.7% 95.8% 97.7% 96.6% 96.8% 100.0 0.7 

% Utilization 
assembler 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization 
final inspector 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

Units packed - 
Throughput 994.6 963.0 1022.0 992.3 996.8 100.0 0.8 

% Utilization 
packers 38.0% 36.8% 39.0% 37.9% 38.1% 100.0 6.9 

W.I.P. 664.3 579.8 727.6 658.8 669.8 100.0 0.7 

 

Table 4.8 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Test” model and the “6 Testing Machines” model, the confidence interval 

(minimum and maximum limits) and the suggested action from the tests. It was 

concluded that the model was sensitive to the number of testing machines since H0 was 

rejected for all variables. These results suggested the inclusion of this parameter in 

further experimental designs  
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Table 4.8 “New System 3000 Units Through Test” vs. “6 Testing Machines” – Hypothesis test 
Hypothesis Testing                                   

Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area Mean Diff. 
Conf. Int. 

Min. 
Conf. Int. 

Max. Comments 

% Up-time Dielectric machine -2.63% -2.70% -2.56% Reject Ho 

% Up-time Test. Mach. - Tester #1 24.60% 24.32% 24.89% Reject Ho 

% Util. Test. Pers. – Tester #1 -17.80% -17.92% -17.68% Reject Ho 

% Up-time Draw Out tester -7.64% -8.00% -7.28% Reject Ho 

% Utilization assembler -8.19% -8.52% -7.86% Reject Ho 

% Utilization final inspector -7.99% -8.36% -7.62% Reject Ho 

Units packed - Throughput -80.5 -84.88 -76.12 Reject Ho 

% Utilization packers -3.06% -3.24% -2.88% Reject Ho 

W.I.P. 317 312.97 321.03 Reject Ho 

 

4.2.2.2.2. The following is the analysis done to determine if the yield was a critical 
factor: 

The assumption of normality for the simulation output variable “Throughput” 

for the “New System 3000 Units Through Test” was previously validated. Please refer to 

Figure 4.4.   

The assumption of normality for the simulation output variable “Throughput” 

for the “90% Yield” model was validated by the normality test (refer to Figure 4.6). The 

hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.6 Normality test – “90% Yield” model. 

As for the number of required replicates for the model “New System 3000 

Units Through Test” refer to Table 4.6. It was already concluded that no additional 

replications were needed.  

Table 4.9 shows the simulation responses or output variables of interest for 

“90% Yield” model. It shows for each performance measure the expected average value, 

the minimum and maximum data observed, the confidence interval (minimum and 

maximum limits), the number of runs done during the simulation, and the minimum 

number of runs required for achieving the desired confidence interval accuracy for the 

average value. The following was concluded: 

• No additional replicates were required. 

• The results confirmed the criticality of the number of testing machines. 

Note that the up-time for the testing machines showed no variability, thus 

the number of runs was estimated as 0. The main reason for this was that 

the testing machines became the bottleneck as they achieved 100% up-
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time for all replicates. This contributed to the high number of units in 

work-in-process.   

• The results confirmed the criticality for the number of final inspectors and 

assemblers as they became the reason for the bottleneck at the draw 

out/final inspection area. Note that the utilization for the assembly and 

final inspection personnel showed almost no variability, thus the estimate 

for the number of runs was rounded to 0. The main reason for this was that 

100% utilization was achieved for almost all replicates; in fact the 

minimum utilization for a replicate was 99.8% for both performance 

measures, which can be rounded to 100%. This contributed also to the 

high number of units in work-in-process.   

Table 4.9 “90% Yield” – required number of runs. 
90% Yield 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 27.4% 26.0% 28.8% 27.3% 27.5% 100.0 14.2 

% Up-time Test. Mach. 
- Tester #1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Util. Test. Pers. –  
Tester #1 29.2% 28.5% 30.0% 29.1% 29.2% 100.0 3.9 

% Up-time 
 Draw Out tester 96.7% 95.6% 97.6% 96.7% 96.8% 100.0 0.6 

% Utilization  
assembler 100.0% 99.8% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization  
final inspector 100.0% 99.8% 100.0% 100.0% 100.0% 100.0 0.0 

Units packed –  
Throughput 996.3 971.0 1020.0 994.2 998.5 100.0 0.8 

% Utilization 
packers 38.0% 37.0% 39.0% 37.9% 38.1% 100.0 6.0 

W.I.P. 1067.9 977.1 1145.6 1061.2 1074.6 100.0 0.4 

 

Table 4.10 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Test” model and the “90% Yield” model, the confidence interval 

(minimum and maximum limits) and the suggested action from the tests. It was 

concluded that Yield was a critical input parameter since H0 was rejected for almost all of 

the performance measures. Note that no significant difference was observed in the case of 



 

 

103

the up-time for the testing machines; but this result was mostly driven by the fact that the 

up-time was 100% for all replicates under both models, showing that additional testing 

machines were required. These results suggested the inclusion of this parameter in further 

experimental designs. 

Table 4.10 “New System 3000 Units Through Test” vs. “90% Yield” – Hypothesis test 
Hypothesis Testing                                       

Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area Mean Diff. 
Conf. Int. 

Min. 
Conf. Int. 

Max. Comments 

% Up-time Dielectric machine -0.24% -0.27% -0.21% Reject Ho 

% Up-time Test. Mach. - Tester #1 0.00% 0.00% 0.00% Fail to Reject Ho 

% Util. Test. Pers. – Tester #1 -1.05% -1.09% -1.01% Reject Ho 

% Up-time Draw Out tester -7.69% -8.04% -7.34% Reject Ho 

% Utilization  assembler -8.19% -8.52% -7.86% Reject Ho 

% Utilization final inspector -7.98% -8.35% -7.61% Reject Ho 

Units packed - Throughput -82.3 -86.7 -77.9 Reject Ho 

% Utilization packers -3.14% -3.32% -2.96% Reject Ho 

W.I.P. -86.1 -88.11 -84.09 Reject Ho 

 

4.2.2.2.3. The following is the analysis done to determine if the testing process time was 
a critical factor: 

The assumption of normality for the simulation output variable “Throughput” 

for the “New System 3000 Units Through Test” was previously validated. Please refer to 

Figure 4.4.   

The assumption of normality for the simulation output variable “Throughput” 

for the “30% Reduction Testing Process Time” model was validated by the normality test 

(refer to Figure 4.7). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  
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Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.7 Normality test – “30% Reduction Testing Process Time” model. 

As for the number of required replicates for the model “New System 3000 

Units Through Test”, refer to Table 4.6. It was already concluded that no additional 

replications were needed.  

Table 4.11 shows the simulation responses or output variables of interest for 

“30% Reduction Testing Process Time” model. It shows for each performance measure 

the expected average value, the minimum and maximum data observed, the confidence 

interval (minimum and maximum limits), the number of runs done during the simulation, 

and the minimum number of runs required for achieving the desired confidence interval 

accuracy for the average value. The conclusions were the following: 

• No additional replicates were required. 
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• The results confirmed the criticality of the number of testing machines. 

Note that the up-time for the testing machines showed no variability, thus 

the number of runs was estimated as 0. The main reason for this was that 

the testing machines became the bottleneck as they achieved 100% up-

time for all replicates. This contributed to the high number of units in 

work-in-process.     

• The number of final inspectors and assemblers became the reason for the 

bottleneck at the draw out/final inspection area. Note that the utilization 

for the assembly and final inspection personnel showed no variability, thus 

the number of runs was estimated as 0. The main reason for this was that 

100% utilization was achieved for all replicates. This contributed also to 

the high number of units in work-in-process.    

Table 4.11 “30% Reduction Testing Process Time” – required number of runs. 

30% Reduction Testing Processing Time 

Testing Area 
Average    

µ2 Min. Max. 
Conf. Int. 

Min. 
Conf. Int. 

Max. 
# Runs 
Mod 

# Runs  
Est. 

% Up-time Dielectric 
machine 27.7% 26.3% 29.1% 27.6% 27.8% 100.0 15.5 

% Up-time Test. Mach. 
- Tester #1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Util. Test. Pers. – 
Tester #1 33.4% 32.6% 34.2% 33.3% 33.5% 100.0 3.0 

% Up-time 
Draw Out tester 96.8% 95.9% 97.6% 96.7% 96.9% 100.0 0.7 

% Utilization 
assembler 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization 
final inspector 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

Units packed – 
Throughput 994.7 974.0 1016.0 992.7 996.8 100.0 0.7 

% Utilization 
packers 38.0% 36.6% 38.9% 37.9% 38.1% 100.0 6.0 

W.I.P. 851.7 740.7 922.7 844.4 859.0 100.0 0.7 
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Table 4.12 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Test” model and the “30% Reduction Testing Process Time” model, the 

confidence interval (minimum and maximum limits) and the suggested action from the 

tests. It was concluded that the model was sensitive to the testing process time since H0 

was rejected for almost all of the performance measures. Note that no significant 

difference was observed in the case of the up-time for the testing machines; but this result 

was mostly driven by the fact that the up-time was 100% for all replicates under both 

models, showing that additional testing machines were required. These results suggested 

the inclusion of this parameter in further experimental designs. 

Table 4.12 “New System 3000 Units Through Test” vs. “30% Red. Test Proc. Time” – Hypothesis test 
Hypothesis Testing                                     

Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area Mean Diff. 
Conf. Int. 

Min. 
Conf. Int. 

Max. Comments 
% Up-time Dielectric 

machine -0.58% -0.61% -0.54% Reject Ho 

% Up-time Test. 
Mach. - Tester #1 0.00% 0.00% 0.00% Fail to Reject Ho 

% Util. Test. Pers. – 
Tester #1 -5.28% -5.32% -5.24% Reject Ho 

% Up-time Draw Out 
tester -7.75% -8.11% -7.40% Reject Ho 

% Utilization 
assembler -8.19% -8.52% -7.86% Reject Ho 

% Utilization final 
inspector -7.99% -8.36% -7.62% Reject Ho 

Units packed - 
Throughput -80.7 -84.82 -76.58 Reject Ho 

% Utilization 
packers -3.08% -3.25% -2.91% Reject Ho 

W.I.P. 130 127.04 132.96 Reject Ho 
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4.2.2.3.Final Inspection Area 

4.2.2.3.1. The following is the analysis done to corroborate if the number of assemblers 
was a critical factor: 

The assumption of normality for the simulation output variable “Throughput” 

for the “New System 3000 Units Through Draw Out” model was validated by the 

normality test (refer to Figure 4.8). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.8 Normality test – “New System at 3000 Units Through Draw Out” model. 

The assumption of normality for the simulation output variable “Throughput” 

for the “4 Assemblers” model was validated by the normality test (refer to Figure 4.9). 

The hypothesis test was: 
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• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.9 Normality test – “4 Assemblers” model 

Table 4.13 shows the simulation responses or output variables of interest for 

“New System 3000 Units Through Test” model. It shows for each performance measure 

the expected average value, the minimum and maximum data observed, the confidence 

interval (minimum and maximum limits), the number of runs done during the simulation, 

and the minimum number of runs required for achieving the desired confidence interval 

accuracy for the average value. The conclusions were the following: 

• No additional replicates were required. 

• The results confirmed the criticality of the number of final inspectors and 

assemblers as they became the reason for the bottleneck at the draw 

out/final inspection area. Note that the utilization for the assembly and 
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final inspection personnel showed no variability, thus the number of runs 

was estimated as 0. The main reason for this was that 100% utilization was 

achieved for all replicates. This was the main reason for the high number 

of units in work-in-process.   

Table 4.13 “New System 3000 Units Through Draw Out” – required number of runs. 

3000 Units Through Draw Out 

Testing Area 
Average    

µ1 Min. Max. 
Conf. Int. 

Min. 
Conf. Int. 

Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 32.2% 30.2% 34.7% 32.0% 32.3% 100.0 25.0 

% Up-time Test. 
Mach. - Tester #1 58.3% 55.8% 61.3% 58.1% 58.5% 100.0 13.2 

% Util. Test. Pers. – 
Tester #1 50.8% 48.5% 53.5% 50.7% 51.0% 100.0 12.1 

% Up-time Draw Out 
tester 96.8% 95.6% 97.8% 96.7% 96.8% 100.0 0.7 

% Utilization 
assembler 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization final 
inspector 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

Units packed - 
Throughput 995.4 960.0 1023.0 993.1 997.7 100.0 0.9 

% Utilization 
packers 38.0% 36.5% 39.2% 37.9% 38.1% 100.0 6.7 

W.I.P. 1050.4 953.3 1143.6 1043.2 1057.6 100.0 0.5 

 

Table 4.14 shows the simulation responses or output variables of interest for 

“4 Assemblers” model. It shows for each performance measure the expected average 

value, the minimum and maximum data observed, the confidence interval (minimum and 

maximum limits), the number of runs done during the simulation, and the minimum 

number of runs required for achieving the desired confidence interval accuracy for the 

average value. The conclusions were the following: 

• No additional replicates were required. 

• Note that the up-time for the draw out machine showed no variability, thus 

the number of runs was estimated as 0. The main reason for this was that 

the draw out machine became the bottleneck as it achieved 100% up-time 

for all replicates. This was the main reason for the high number of units in 
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work-in-process. This suggested the inclusion of the number of draw out 

machine into the critical factor list.  

Table 4.14 “4 Assemblers” – required number of runs. 

4 Assembly Personnel 

Testing Area 
Average    

µ2 Min. Max. 
Conf. Int. 

Min. 
Conf. Int. 

Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 32.1% 30.0% 34.3% 32.0% 32.3% 100.0 26.3 

% Up-time Test. 
Mach. - Tester #1 58.3% 55.7% 61.2% 58.1% 58.5% 100.0 13.8 

% Util. Test.Pers. - 
Tester#1 50.8% 48.5% 53.3% 50.7% 51.0% 100.0 12.1 

% Up-time Draw Out 
tester 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization 
 assembler 66.5% 65.0% 68.8% 66.4% 66.7% 100.0 5.0 

% Utilization final 
inspector 68.4% 66.3% 72.0% 68.1% 68.6% 100.0 9.6 

Units packed - 
Throughput 1107.1 1075.0 1143.0 1104.6 1109.6 100.0 0.8 

% Utilization  
packers 42.3% 40.9% 43.5% 42.2% 42.4% 100.0 6.3 

W.I.P. 957.3 857.2 1032.5 950.0 964.6 100.0 0.6 

 

Table 4.15 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Draw Out” model and the “4 Assemblers” model, the confidence interval 

(minimum and maximum limits) and the suggested action from the tests. It was 

concluded that the model was sensitive to the number of assembly personnel since H0 

was rejected at almost all of the performance measures. No significant difference was 

observed in the case of the performance measures related to the testing area, but this was 

expected since the products go first to the testing area and then to the draw out/final 

inspection area. These results suggested the inclusion of this parameter in further 

experimental designs. 
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Table 4.15 “New System 3000 Units Through Draw Out” vs. “4 Assemblers” – Hypothesis test 
Hypothesis Testing                                  

Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area 
Mean 
Diff. 

Conf. 
Int. Min. 

Conf. 
Int. Max. Comments 

% Up-time Dielectric 
machine 0.03% -0.03% 0.10% Fail to Reject Ho 

% Up-time Test. Mach. - 
Tester #1 -0.03% -0.12% 0.06% Fail to Reject Ho 

% Util. Test.Pers. - 
Tester#1 0.00% -0.03% 0.02% Fail to Reject Ho 

% Up-time 
Draw Out tester -3.25% -3.33% -3.17% Reject Ho 

% Utilization 
assembler 33.50% 33.35% 33.65% Reject Ho 

% Utilization final 
inspector 31.60% 31.39% 31.81% Reject Ho 

Units packed - 
Throughput -112 -115.24 -108.76 Reject Ho 

% Utilization 
packers -4.26% -4.40% -4.12% Reject Ho 

W.I.P. 93.2 90.73 95.67 Reject Ho 
 

4.2.2.3.2. The following is the analysis done to corroborate if the number of final 
inspectors was a critical factor: 

The assumption of normality for the simulation output variable “Throughput” 

for the “New System 3000 Units Through Draw Out” was previously validated. Please 

refer to Figure 4.8.   

The assumption of normality for the simulation output variable “Throughput” 

for the “4 final inspectors” model was validated by the normality test (refer to Figure 

4.10). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.10 Normality test – “4 Final Inspectors” model 

As for the number of required replicates for the model “New System 3000 

Units Through Draw Out”, refer to Table 4.13. It was already concluded that no 

additional replications were needed.  

Table 4.16 shows the simulation responses or output variables of interest for 

“4 Final Inspectors” model. It shows for each performance measure the expected average 

value, the minimum and maximum data observed, the confidence interval (minimum and 

maximum limits), the number of runs done during the simulation, and the minimum 

number of runs required for achieving the desired confidence interval accuracy for the 

average value. The conclusions were the following: 

• No additional replicates were required. 

• Note that the up-time for the draw out machine showed no variability, thus 

the number of runs was estimated as 0. The main reason for this was that 

the draw out machine became the bottleneck as it achieved 100% up-time 
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for all replicates. This was the main reason for the high number of units in 

work-in-process. This suggested the number of draw out machines as a 

critical factor.  

Table 4.16 “4 Final Inspectors” – required number of runs. 

4 Final Inspectors 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 32.1% 30.0% 34.2% 31.9% 32.3% 100.0 26.7 

% Up-time Test. Mach. 
- Tester #1 58.3% 55.3% 61.3% 58.1% 58.5% 100.0 15.3 

% Util. Test. Pers. – 
Tester #1 50.8% 48.6% 53.5% 50.7% 51.0% 100.0 11.8 

% Up-time Draw Out 
tester 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization  
assembler 78.6% 77.3% 80.3% 78.5% 78.7% 100.0 2.1 

% Utilization final 
inspector 64.0% 62.3% 66.2% 63.8% 64.2% 100.0 6.3 

Units packed - 
Throughput 1108.9 1079.0 1139.0 1106.4 1111.4 100.0 0.8 

% Utilization  
packers 42.3% 40.8% 43.6% 42.2% 42.4% 100.0 7.5 

W.I.P. 956.8 863.0 1032.9 949.6 964.0 100.0 0.6 

Table 4.17 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Draw Out” model and the “4 Final Inspectors” model, the confidence 

interval (minimum and maximum limits) and the suggested action from the tests. It was 

concluded that the model was sensitive to the number of final inspectors since H0 was 

rejected for almost all of the performance measures. No significant difference was 

observed in the case of the performance measures related to the testing area (except for 

the up-time of the dielectric test), but this was expected since the products go first to the 

testing area and then to the draw out/final inspection area. In the case of the dielectric 

machine, the difference was not related to the number of final inspectors, but rather to the 

need for controlling the random numbers. These results suggested the inclusion of this 

parameter (number of final inspectors) in further experimental designs. 
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Table 4.17 “New System 3000 Units Through Draw Out” vs. “4 final inspectors” – Hypothesis test 

Hypothesis Testing                                        
Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area Mean Diff. 
Conf. Int. 

Min. 
Conf. Int. 

Max. Comments 

% Up-time Dielectric machine 0.07% 0.00% 0.13% Reject Ho 

% Up-time Test. Mach. - Tester #1 -0.02% -0.11% 0.08% Fail to Reject Ho 

% Util. Test. Pers. – Tester #1 -4.61E-05 -0.03% 0.02% Fail to Reject Ho 

% Up-time Draw Out tester -3.25% -3.33% -3.17% Reject Ho 

% Utilization assembler  21.40% 21.29% 21.51% Reject Ho 

% Utilization final inspector  36.00% 35.84% 36.16% Reject Ho 

Units packed - Throughput -114 -117.49 -110.51 Reject Ho 

% Utilization packers -4.33% -4.48% -4.18% Reject Ho 

W.I.P. 93.7 91.07 96.33 Reject Ho 
 

4.2.2.3.3. The following is the analysis done to corroborate if the number of draw out 
machines was a critical factor: 

The assumption of normality for the simulation output variable “Throughput” 

for the “New System 3000 Units Through Draw Out” was previously validated. Please 

refer to Figure 4.8.   

The assumption of normality for the simulation output variable “Throughput” 

for the “3 Draw Out Machines” model was validated by the normality test (refer to Figure 

4.11). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough 

evidence to reject H0. Therefore, the assumption of the data being identically distributed 

prevailed, allowing the simulation output analysis to continue.  
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Figure 4.11 Normality test – “3 Draw Out Machines” model 

As for the number of required replicates for the model “New System 3000 

Units Through Draw Out”, refer to Table 4.13. It was already concluded that no 

additional replications were needed.  

Table 4.18 shows the simulation responses or output variables of interest for 

“3 Draw Out Machines” model. It shows for each performance measure the expected 

average value, the minimum and maximum data observed, the confidence interval 

(minimum and maximum limits), the number of runs done during the simulation, and the 

minimum number of runs required for achieving the desired confidence interval accuracy 

for the average value. The conclusions were the following: 

• No additional replicates were required. 

• The results confirmed the criticality of the number of final inspectors and 

assemblers as they became the reason for the bottleneck at the draw 

out/final inspection area. Note that the utilization for the assembly and 
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final inspection personnel showed no variability, thus the number of runs 

was estimated as 0. The main reason for this was that 100% utilization was 

achieved for all replicates. This was the main reason for the high number 

of units in work-in-process.   

Table 4.18 “3 Draw Out Machines” – required number of runs. 

3 Draw Out Machines 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 32.2% 29.8% 34.1% 32.0% 32.3% 100.0 26.3 

% Up-time Test. Mach. 
- Tester #1 58.3% 55.7% 61.1% 58.1% 58.5% 100.0 12.5 

% Util. Test. Pers. – 
Tester #1 50.9% 48.6% 53.4% 50.7% 51.0% 100.0 12.4 

% Up-time Draw Out 
tester 46.0% 45.2% 46.8% 46.0% 46.1% 100.0 1.5 

% Utilization 
assembler 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

% Utilization final 
inspector 100.0% 100.0% 100.0% 100.0% 100.0% 100.0 0.0 

Units packed - 
Throughput 995.7 959.0 1017.0 993.6 997.8 100.0 0.7 

% Utilization 
packers 38.0% 36.6% 39.1% 37.9% 38.1% 100.0 6.2 

W.I.P. 1050.6 952.1 1140.4 1043.2 1058.0 100.0 0.5 

 

Table 4.19 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Draw Out” model and the “3 Draw Out Machines” model, the confidence 

interval (minimum and maximum limits) and the suggested action from the tests. It was 

concluded that the model was sensitive to the number of draw out machines since H0 was 

rejected for at least one performance measure (“% Up-time Draw Out Tester”). The 

following are the explanations for the number of draw out machines not showing as 

critical for the other performance measures: 

• No significant difference was observed with the performance measures 

related to the draw out/final inspection and packing areas, except for the 

draw out machine up-time. This was driven mostly by the fact that the 

final inspectors as well as the assemblers were causing a bottleneck at this 
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area. As a result, the benefit of adding draw out machines was not 

observed throughout the other metrics. Note that the utilization for the 

assembly and final inspection personnel showed no variability, thus the 

number of runs was estimated as 0. The main reason for this was that 

100% utilization was achieved for all replicates. 

• No significant difference was observed with the performance measures 

related to the testing area, but this was expected since the number of draw 

out machines had no impact on the testing area.     

Table 4.19 “New System 3000 Units Through Draw Out” vs. “3 Draw Out Machines” – Hypothesis test 

Hypothesis Testing 
Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area Mean Diff. 
Conf. Int. 

Min. 
Conf. Int. 

Max. Comments 
% Up-time Dielectric machine -8.19E-05 -0.07% 0.05% Fail to Reject Ho 

% Up-time Test. Mach. - Tester #1 -0.04% -0.08% 0.01% Fail to Reject Ho 

% Util. Test. Pers. – Tester #1 -0.01% -0.03% 0.01% Fail to Reject Ho 

% Up-time Draw Out tester 50.70% 50.63% 50.77% Reject Ho 

% Utilization assembler 0.00% 0.00% 0.00% Fail to Reject Ho 

% Utilization final inspector 0.00% 0.00% 0.00% Fail to Reject Ho 

Units packed - Throughput -0.24 -2.18 1.7 Fail to Reject Ho 

% Utilization packers -0.02% -0.09% 0.06% Fail to Reject Ho 

W.I.P. -0.195 -2.055 1.665 Fail to Reject Ho 
 

4.2.2.4.Packing Area 

The following is the analysis done to determine if the number of packing 

personnel was a critical factor: 

The assumption of normality for the simulation output variable “Throughput” for 

the “New System 3000 Units Through Packing” model was validated by the normality 

test (refer to Figure 4.12). The hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  
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Based on the p-value > 0.05, it was concluded that there was not enough evidence 

to reject H0. Therefore, the assumption of the data being identically distributed prevailed, 

allowing the simulation output analysis to continue.  
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Figure 4.12 Normality test – “New System 3000 Units Through Packing” model. 

The assumption of normality for the simulation output variable “Throughput” for 

the “3 Packers” model was validated by the normality test (refer to Figure 4.13). The 

hypothesis test was: 

• H0: Data is normally distributed.  

• Ha: Data is not normally distributed.  

Based on the p-value > 0.05, it was concluded that there was not enough evidence 

to reject H0. Therefore, the assumption of the data being identically distributed prevailed, 

allowing the simulation output analysis to continue.  
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Figure 4.13 Normality test – “3 Packers” model. 

Table 4.20 shows the simulation responses or output variables of interest for 

“New System 3000 Units Through Packing” model. It shows for each performance 

measure the expected average value, the minimum and maximum data observed, the 

confidence interval (minimum and maximum limits), the number of runs done during the 

simulation, and the minimum number of runs required for achieving the desired 

confidence interval accuracy for the average value. The conclusions were the following: 

• No additional replicates were required. 

• The results showed the number of packers as a critical factor as they became 

the bottleneck at the packing area. Note that the labor utilization for the packer 

reached 100% for almost all replicates, thus the estimate for the number of 

runs was rounded to 0. In fact, the minimum value was 99.7% which can be 

rounded to 100%. In average, 2620.3 units were packed, meaning that more 

packing personnel were required to achieve 3000 units in two shifts.   
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Table 4.20 “New System 3000 Units Through Packing” – required number of runs. 

3000 Units Through Packing 

Testing Area Average       µ1 Min. Max. 

Conf. 
Int. 

Min. 

Conf. 
Int. 

Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 39.6% 37.2% 42.8% 39.4% 39.8% 100.0 32.6 

% Up-time Test. Mach. 
- Tester #1 67.4% 64.7% 71.1% 67.1% 67.6% 100.0 13.9 

% Util. Test. Pers. – 
Tester #1 58.5% 56.1% 61.3% 58.3% 58.7% 100.0 11.1 

% Up-time Draw Out 
tester 93.2% 89.6% 98.0% 92.8% 93.5% 100.0 13.6 

% Utilization  
assembler  83.4% 81.5% 85.5% 83.3% 83.6% 100.0 2.6 

% Utilization final 
inspector  71.6% 67.5% 77.5% 71.2% 72.0% 100.0 33.3 

Units packed - 
Throughput 2620.3 2603.0 2637.0 2618.8 2621.8 100.0 0.1 

% Utilization  
packers 100.0% 99.7% 100.0% 100.0% 100.0% 100.0 0.0 

W.I.P. 271.9 198.2 370.6 264.9 279.0 100.0 6.6 

Table 4.21 shows the simulation responses or output variables of interest for “3 

Packers” model. It shows for each performance measure the expected average value, the 

minimum and maximum data observed, the confidence interval (minimum and maximum 

limits), the number of runs done during the simulation, and the minimum number of runs 

required for achieving the desired confidence interval accuracy for the average value. The 

conclusions were the following: 

• No additional replicates were required. 

• The results confirmed the criticality of the number of packers. Note that the 

packing personnel utilization was at 78.5% at an average of 3083.5 units 

packed. 

• It was also concluded that a third shift was needed to achieve 3000 units 

monthly with the minimum capital investment on equipment. Please note that 

in Table 3.8 the number of testing machines was set to 6 per shift and the 

number of draw out machines was set to 3 per shift. Thus, suggesting the need 

to buy 4 additional testing machines and 2 additional draw out machines if 
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only two shifts were run. With a third shift, the additional testing machines 

and draw out machines were 2 and 1, respectively.  

• The balancing issue between the testing and draw out/final inspection areas 

was still noticeable. At this stage, the question of balancing the labor was 

raised. The possibility for balancing was available by moving the “Inspection 

I” from the draw out/final inspection area to the testing area. This question 

must be answered in terms of labor cost. It was decided to add the number of 

testers as a critical factor, and to experiment further on in order to determine 

where to locate “Inspection I”. 

Table 4.21 “3 Packers” – required number of runs. 

3 Packers 

Testing Area 
Average    

µ2 Min. Max. 
Conf. 

Int. Min. 
Conf. 

Int. Max. 
# Runs 
Mod 

# Runs 
Est. 

% Up-time Dielectric 
machine 39.59% 37.17% 42.84% 39.37% 39.82% 100.0 32.6 

% Up-time Test. Mach. 
- Tester #1 67.40% 64.73% 71.08% 67.15% 67.65% 100.0 13.9 

% Util. Test. Pers. – 
Tester #1 58.48% 56.13% 61.33% 58.28% 58.67% 100.0 11.1 

% Up-time Draw Out 
tester 93.2% 89.6% 98.0% 92.8% 93.5% 100.0 13.6 

% Utilization 
assembler 83.4% 81.5% 85.5% 83.3% 83.6% 100.0 2.6 

% Utilization final 
inspector 71.6% 67.5% 77.5% 71.2% 72.0% 100.0 33.3 

Units packed - 
Throughput 3083.5 2965.0 3228.0 3072.5 3094.5 100.0 2.0 

% Utilization 
packers 78.5% 75.4% 82.1% 78.2% 78.8% 100.0 13.3 

W.I.P. 20.9 16.8 41.2 20.3 21.6 100.0 10.8 

Table 4.22 shows the results from the hypothesis tests. It shows for each 

performance measure of interest the mean difference between the “New System 3000 

Units Through Packing” model and the “3 Packers” model, the confidence interval 

(minimum and maximum limits) and the suggested action from the tests. It was 

concluded that the model was sensitive to the number of packing personnel since H0 was 

rejected for the performance measures related to the packing area. Nevertheless, it was 

decided to fix the number of packing personnel to 2 per shift, having 3 shifts. Note that 
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no significant difference was observed for the performance measures related to the testing 

and draw out/final inspection areas, but this was expected since the number of packing 

personnel had no effect on those areas. These results suggested the inclusion of this 

parameter (number of packing personnel) in further experimental designs. 

Table 4.22 “New System 3000 Units Through Packing” vs. “3 Packers” – Hypothesis test 

Hypothesis Testing                                         
Ho: µ1- µ2 = 0; Ha: µ1- µ2 ≠ 0 

Testing Area 
Mean 
Diff. 

Conf. Int. 
Min. 

Conf. Int. 
Max. Comments 

% Up-time Dielectric machine 0.00% 0.00% 0.00% Fail to Reject Ho 

% Up-time Test. Mach. - Tester #1 0.00% 0.00% 0.00% Fail to Reject Ho 

% Util. Test. Pers. - Tester#1 0.00% 0.00% 0.00% Fail to Reject Ho 

% Up-time Draw Out tester 0.00% 0.00% 0.00% Fail to Reject Ho 

% Utilization assembler 0.00% 0.00% 0.00% Fail to Reject Ho 

% Utilization final inspector 0.00% 0.00% 0.00% Fail to Reject Ho 

Units packed - Throughput -463 -474.1 -451.9 Reject Ho 

% Utilization packers 21.50% 21.22% 21.78% Reject Ho 

W.I.P. 251 244.54 257.46 Reject Ho 

 

4.2.2.5.Summary of the Sensitivity Analysis 

The only parameter excluded from the critical or experimental factors list was the 

number of dielectric machines. The following input parameters were identified as critical 

factors: inter-arrival time, number of testing personnel, number of testing machines, 

testing process time, yield, labor balancing between testing area and draw out/final 

inspection area, number of assemblers, number of final inspectors, and number of draw 

out machines. In the case of the number of packing personnel, it was identified as a 

critical factor but a decision was made to fix the value to 2 per shift, having 3 shifts. 

Having factors that could be classified as qualitative (categorical) and quantitative 

(both, discrete and continuous), it was very difficult at this stage to try any optimization 
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approach. It was decided to perform a series of experimental designs with the objective of 

reducing the number of critical factors. The initial focus was on the categorical factor 

labor balancing. The following section provides the results from those experiments. 

4.3.  Reducing the Problem with Experimental Designs 

This section explains the results and conclusions related to the experimental 

designs performed with the main objective of reducing the number of critical factors or 

input parameters to be considered in the metamodels. A series of sequential experimental 

designs were executed with major focus on the categorical and discrete input parameters, 

in particular, the labor balancing issue, the number of assemblers, the number of final 

inspectors and the number of draw out machines. 

The section has been divided in two sub-sections: (1) Labor Balancing, and (2) 

Setting Up the Draw Out/Final Inspection Area. Refer to sections 3.3.1 and 3.3.2 for 

more detail on the methodology.  

4.3.1. Labor Balancing 

The following are the results and conclusions related to the experimental design 

performed with respect to the labor balancing issue between the testing area and the draw 

out/final inspection area. As a reminder, the experiment was a 28-2 fractional factorial 

design with 10 center points and 1 replicate, and design resolution V (refer to Appendix 

D).   

It is important to mention that caution was taken at the time of doing the 

interpretation of the statistical results from this experiment. The main reason was that 

having only 1 replicate did not guarantee the true estimate of the error. So instead, it was 

decided for conclusions to rely on graphical plots rather than analysis of variance. As 

previously mentioned, this approach made sense since the focus was on the categorical 

factor labor balancing.  

Even though all performance measures were statistically and graphically analyzed 

with respect to the experimental factors, only the graphical analysis related to the labor 
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cost per unit (refer to Equation 3.1 for the calculation of the labor cost) was included in 

this document. Conclusions related to the balancing issue were driven only by the 

analysis of the labor cost per unit performance metric. Other analyses with respect to the 

other output variables gave a flavor on the behavior of the system, which helped on 

defining the direction for future experimental designs but were not of value for the 

objective of this experiment.   

Figure 4.14 is a plot of the main effects. It was observed that apparently the 

location of Inspection I (II) was of no major impact to the labor cost per unit as 

compared, for example to the inter-arrival time (IT), the number of final inspectors (FI), 

the number of testing personnel (TP), the number of assembly personnel (AP) and the 

yield (Y). It is important to clarify that TM stands for the number of testing machines and 

TPT stands for testing process time. The effect of these factors on the labor cost per unit 

was somehow predictable, but they were a reminder that at some point in time, the 

simulation study would have to consider the optimization. For example, if more units get 

into the system and the yield increases, there is no doubt that the labor cost per unit will 

decrease (assuming everything else stays the same), but these actions will require the 

addition of personnel which in turn will tend to increase the labor cost per unit. The 

question is then raised about where is the point in which the benefit of increasing the 

arrival rate is maximized with respect to the interrelation within all factors and the 

performance measures, considering the constraints defined by the management of the 

company.  

Figure 4.15 is a box plot of the line balancing factor. It was again observed that 

apparently the location of Inspection I (II) was of no major impact to the labor cost per 

unit, not only in terms of the mean value but also in terms of the spread of the data. As in 

Figure 4.14, there was a slight decrease in cost when Inspection I was located at the draw 

out/final inspection area.  
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Figure 4.14 Main effects plot for 28-2 fractional factorial design with center points. 
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Figure 4.15 Box plot for the line balancing issue - 28-2 fractional factorial design with center points. 
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It could be concluded from Figures 4.14 and 4.15 that locating Inspection I at the 

draw out/inspection area was slightly beneficial as compared to the test area. 

Nevertheless, these two charts were not providing information with respect to the 

possible combinations that could be done with the number of final inspectors (FI), 

assemblers (AP) and testing personnel (TP). The question to answer before making a 

final decision was if there was a combination of these factors in which it was preferable 

to locate Inspection I at the testing area. This information was provided by Figure 4.16. 

Note that independently of the level at which the balancing factor was set, the pattern was 

similar. It was then decided not to balance the labor and to maintain Inspection I at the 

draw out/final inspection area. As a result, the number of assembly personnel and the 

number of final inspection personnel were not considered anymore as critical factors. But 

before doing so, it was necessary to define the fix values at which to set these parameters. 
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Figure 4.16 Box plot for different factors interaction - 28-2 fractional factorial design with center points. 

Figure 4.17 provided interesting information with respect to the number of draw 

out machines. Note that independently of the level of the balancing factor Inspection I 

(II), the box plot showed up-time utilization above 95%, which was the limit specified by 
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the management of the company. This meant that as with the number of assembly and 

final inspection personnel, it was necessary to define at which level to set the number of 

draw out machines. 
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Figure 4.17 Box plot for up-time draw out machine - 28-2 fractional factorial design with center points. 

In summary, it was decided to leave Inspection I at the draw out/final inspection 

area, and to define a value at which to fix the number of assembly and final inspection 

personnel, as well as the number of draw out machines by means of a 2k factorial design. 

Results of this experiment are explained in the next section. 

4.3.2. Setting Up the Draw Out/Final Inspection Area 

The following are the results and conclusions related to the experimental design 

performed with respect to the draw out/final inspection area. The main objective of this 

experiment was to define a set of values at which to fix the number of assembly 

personnel, the number of final inspection personnel, and the number of draw out 

machines. As a reminder, the experiment was a 23 factorial design with 3 replicates, 3 

blocks, and a total of 24 design points (refer to Appendix E).   
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The performance measures of interest were the labor cost per unit, the labor 

utilization for the assembly and the final inspection personnel, the up-time for the draw 

out machine, and the work-in-process inventory, in particular, the buffer in front of the 

draw out machine. These metrics were statistically and graphically analyzed, but the 

explanation of the results focused on the graphical analysis since the experimental factors 

were discrete variables. As in the previous experimental design, the whole package of 

analyses improved the understanding of the model behavior, but only the analyses 

pertinent to the objectives of this experiment were explained in this section. 

Table 4.23 Data sheet for 23 factorial design. 

Experimental Treatments Performance Measures 
Run 

Order Assy. 
Pers.  

Final 
Insp.  

D. O. 
Mach. 

% Up-
time 
D. O. 
Mach. 

% Util. 
Assy.  
Pers.  

% Util. 
Final 
Insp.  

Labor 
Cost per 

Unit 
WIP       

(Avg.) 

Buffer 
D. O. 

(Max.) 

Buffer 
D. O. 
(Avg.) 

1 -1 1 1 0.677 0.811 0.661 $7.51 12.1 0.5 0.3 

2 -1 1 -1 0.986 0.779 0.687 $7.53 36.7 95.5 26.6 

3 -1 -1 -1 0.992 0.871 0.884 $6.05 46.6 111.1 35.4 

4 -1 -1 1 0.726 0.899 0.861 $6.11 14.0 0.3 0.2 

5 1 -1 1 0.676 0.765 0.680 $7.30 12.4 0.4 0.3 

6 1 1 -1 0.985 0.708 0.523 $8.67 35.1 83.2 25.1 

7 1 1 1 0.664 0.723 0.509 $8.57 11.9 0.6 0.4 

8 1 -1 -1 0.987 0.742 0.715 $7.07 37.9 88.1 27.6 

9 -1 -1 1 0.724 0.897 0.858 $6.13 13.8 0.3 0.2 

10 1 -1 -1 0.985 0.741 0.712 $7.09 37.9 94.3 27.5 

11 -1 1 1 0.675 0.809 0.658 $7.46 12.1 0.4 0.3 

12 1 -1 1 0.671 0.761 0.676 $7.13 12.3 0.4 0.3 

13 -1 1 -1 0.984 0.778 0.683 $7.49 35.8 137.2 25.7 

14 1 1 -1 0.984 0.707 0.523 $8.35 34.2 74.8 24.2 

15 1 1 1 0.659 0.720 0.504 $8.56 11.8 0.7 0.4 

16 -1 -1 -1 0.990 0.870 0.883 $6.06 46.3 124.0 35.2 

17 -1 1 1 0.679 0.812 0.663 $7.39 12.2 0.5 0.3 

18 1 -1 -1 0.987 0.742 0.716 $7.13 37.7 93.5 27.4 

19 1 1 1 0.664 0.723 0.510 $8.54 11.9 0.6 0.4 

20 1 -1 1 0.676 0.765 0.681 $7.12 12.4 0.4 0.3 

21 -1 1 -1 0.987 0.780 0.687 $7.39 37.4 78.2 27.2 

22 -1 -1 1 0.726 0.900 0.862 $6.02 14.0 0.3 0.2 

23 -1 -1 -1 0.992 0.871 0.885 $5.95 47.7 127.8 36.6 

24 1 1 -1 0.986 0.708 0.525 $8.52 35.9 76.1 26.0 
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Table 4.23 shows the data obtained from the simulation output for each 

performance measure of interest. Note that the utilization for the assembly personnel was 

never above 90%, which was the limit specified by the management of the company. The 

average work-in-process inventory was explained by the buffer in front of the draw out 

machine, meaning that at some particular design points, the draw out machine became the 

bottleneck. Looking into more detail, the average work-in-process inventory exceeded the 

limit of 22 units only when the utilization of the draw out machine was higher than the 

95% limit. It was decided from these observations that the variables of major interest for 

the analysis were the labor cost per unit, the utilization of the final inspection personnel, 

and the up-time of the draw out machine.      

Figures 4.18 and 4.19 demonstrated that the significant factors for the labor cost 

per unit were the number of assembly personnel (AP) and the number of final inspection 

personnel (FI). Neither the number of draw out machines (DOM) nor interactions of the 

factors were critical. 
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Figure 4.18 Main effects plot - 23 factorial design. 
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Figure 4.19 Interaction plot - 23 factorial design. 

Figure 4.20 suggested that the number of assembly personnel (AP) and final 

inspection personnel (FI) should be set at the minimum levels. Nevertheless, that 

alternative was not an option since as per Figure 4.21, the utilization of the final inspector 

was above the limit of 80% for all design points calling for that combination. Setting the 

number of final inspection personnel to the lower experimental level, and the number of 

assembly personnel to the higher level was a feasible option. 
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Figure 4.20 Boxplot labor cost - 23 factorial design. 
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Figure 4.21 Boxplot % utilization final inspector - 23 factorial design  

Figure 4.22 showed that the number of draw out machines (DOM) should be set 

at the higher level, irrespective of the combination between the number of assembly 
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personnel (AP) and final inspection personnel (FI). Going back to Table 4.23, it was 

observed that the work-in-process inventory was always less than 22 units when the 

number of draw out machines was set to the higher level. 
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Figure 4.22 Boxplot %up-time draw out machine - 23 factorial design. 

In summary, the conclusion of this experiment was to fix the number of assembly 

personnel, the number of final inspection personnel, and the number of draw out 

machines to 4, 2, and 3, respectively. These will be the levels at which to fix these input 

parameters for future simulation runs related to the experimental design phase. 

4.4.  Development of Metamodels 

This section explains the results and conclusions of the experimental designs 

performed in order to develop the metamodels that were used in the optimization process 

of the study for the testing area. In total, three parallel central composite experiments 

were designed; one experiment for each testing machine. 

The section has been divided in three sub-sections: (1) Metamodels for 3 Testing 

Machines, (2) Metamodels for 4 Testing Machines, and (3) Metamodels for 5 Testing 

Machines. Whenever appropriate, the section refers to the Appendixes for backup 
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information or data. Refer to sections 3.4.1, 3.4.2, and 3.4.3 for more details on the 

methodology. 

4.4.1. Metamodels for 3 Testing Machines 

This section covers the results and conclusions related to the development of 

metamodels when 3 testing machines were used. As previously mentioned, the 

experiment was a central composite design with 3 factors and two levels at each factor, 2 

replicates and 2 blocks.   

The performance measures of interest were the throughput, the up-time for the 

testing machines, and the work-in-process inventory. The following analysis was done 

for each of these response variables: regression analysis, analysis of variance including 

the lack of fit test, normal probability plot for residuals, histogram of the residuals, plot of 

the residual vs. fitted values and plot of the residuals vs. the order of the data. 

Table 4.24 presents the data obtained from the simulation output for each 

performance measure of interest. Note that the utilization of the assembly personnel, the 

final inspector and the packing personnel was never above the respective limits specified 

by the management of the company. In addition, the up-time for the draw out machine 

did not exceed the specified limit. For this reason, it was decided not to build metamodels 

for those variables.  

After observing the throughput, minimum and average columns, it was decided to 

use the data of the average to build the metamodel. It was also decided to build 

metamodels for the up-time of the testing machines and the work-in-process inventory, 

since their respective limits were exceeded for some experimental runs. 

 



 

 

134

Table 4.24 Data sheet for 23 central composite factorial design – 3 testing machines. 

 
Up-Time 
Testing 

Machine 

Up-Time 
Draw Out 
Machine 

Util. Assy. 
Pers. 

Util. Final 
Insp. 

Through 
(Min.) 

Through 
(Avg.) 

Util. 
Packing 

Pers. 
WIP 

Run 
Order Model Model Model Model Model Model Model Model 

1 0.956 0.632 0.752 0.600 956 1046.2 0.799 20.5 

2 0.947 0.648 0.763 0.628 997 1073.4 0.819 19.9 

3 0.959 0.634 0.754 0.602 985 1051.4 0.802 22.5 

4 0.945 0.626 0.745 0.594 963 1037.4 0.791 19.4 

5 0.927 0.635 0.751 0.610 961 1050.1 0.801 16.8 

6 0.979 0.625 0.749 0.586 958 1036.6 0.791 32.5 

7 0.973 0.644 0.763 0.617 990 1065.9 0.814 28.0 

8 0.929 0.633 0.749 0.608 977 1047.3 0.799 16.6 

9 0.951 0.630 0.749 0.597 975 1041.6 0.794 20.2 

10 0.956 0.651 0.767 0.630 1001 1075.1 0.821 21.6 

11 0.952 0.630 0.750 0.597 919 1041.9 0.795 20.3 

12 0.959 0.612 0.737 0.567 940 1016.7 0.776 21.1 

13 0.957 0.614 0.737 0.572 930 1017.0 0.777 20.9 

14 0.950 0.629 0.748 0.596 927 1040.9 0.794 19.7 

15 0.957 0.632 0.752 0.600 963 1046.4 0.798 21.4 

16 0.953 0.629 0.749 0.597 952 1041.1 0.794 20.4 

17 0.979 0.648 0.767 0.622 1005 1072.8 0.819 34.3 

18 0.979 0.629 0.752 0.590 961 1041.1 0.794 31.9 

19 0.932 0.616 0.737 0.578 946 1020.2 0.779 16.5 

20 0.928 0.615 0.734 0.577 931 1017.9 0.777 16.2 

21 0.944 0.624 0.744 0.589 950 1034.3 0.790 18.6 

22 0.955 0.631 0.752 0.598 972 1044.9 0.797 21.2 

23 0.956 0.610 0.735 0.562 943 1011.7 0.772 20.4 

24 0.971 0.641 0.760 0.613 985 1060.9 0.810 26.9 

25 0.956 0.631 0.752 0.597 972 1045.1 0.798 20.8 

26 0.951 0.648 0.764 0.625 1001 1072.0 0.818 20.5 

27 0.952 0.628 0.748 0.594 927 1040.6 0.794 20.9 

28 0.924 0.631 0.749 0.603 968 1045.3 0.797 16.0 

29 0.921 0.629 0.745 0.601 973 1040.3 0.794 15.8 

30 0.951 0.610 0.733 0.566 947 1012.5 0.773 19.9 

31 0.924 0.610 0.731 0.568 932 1010.6 0.771 15.6 

32 0.947 0.627 0.747 0.593 962 1037.9 0.792 18.8 

33 0.950 0.629 0.749 0.597 953 1041.6 0.795 20.3 

34 0.976 0.644 0.764 0.616 980 1065.7 0.814 30.4 

35 0.944 0.647 0.762 0.626 973 1070.0 0.816 19.0 

36 0.947 0.625 0.745 0.590 962 1035.0 0.790 19.2 

37 0.950 0.630 0.749 0.596 977 1041.3 0.794 20.2 

38 0.976 0.621 0.746 0.579 950 1030.6 0.787 30.1 

39 0.977 0.626 0.751 0.586 962 1038.9 0.793 31.5 

40 0.932 0.616 0.736 0.578 935 1020.4 0.780 16.6 



 

 

135

4.4.1.1.Throughput 

Figure 4.23 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance.   

Response Surface Regression: Throughput  (Avg.) versus Block, IT, Y, TPT 
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for Throughput  (Avg.) 
 
Term         Coef  SE Coef         T      P 
Constant  1041.64   0.6831  1524.792  0.000 
Block       -2.04   0.3745    -5.433  0.000 
IT          11.60   0.4532    25.604  0.000 
Y           17.42   0.4532    38.432  0.000 
TPT          0.78   0.4532     1.711  0.098 
IT*IT       -0.10   0.4412    -0.217  0.830 
Y*Y          0.72   0.4412     1.626  0.115 
TPT*TPT     -0.08   0.4412    -0.177  0.861 
IT*Y         0.50   0.5922     0.844  0.405 
IT*TPT       0.65   0.5922     1.098  0.281 
Y*TPT       -0.05   0.5922    -0.084  0.933 
 
S = 2.369   R-Sq = 98.7%   R-Sq(adj) = 98.2% 
 
 
Analysis of Variance for Throughput  (Avg.) 
 
Source          DF   Seq SS   Adj SS   Adj MS       F      P 
Blocks           1    165.6    165.6   165.65   29.52  0.000 
Regression       9  12009.4  12009.4  1334.38  237.81  0.000 
  Linear         3  11982.4  11982.4  3994.14  711.83  0.000 
  Square         3     16.2     16.2     5.39    0.96  0.424 
  Interaction    3     10.8     10.8     3.60    0.64  0.594 
Residual Error  29    162.7    162.7     5.61 
  Lack-of-Fit   19     72.0     72.0     3.79    0.42  0.951 
  Pure Error    10     90.7     90.7     9.07 
Total           39  12337.8      
Figure 4.23 Regression analysis for throughput – 3 testing machines. 

The analysis of the coefficients suggested that the model had a linear behavior 

since only main factors (inter-arrival time and yield) were identified as critical elements 

of the model. Note that the block element was also considered as critical; this is as a 

result of using new set of seeds (for the random generators) for each new replicate and 

having only two replicates at the cube points and axial points. The impact of the seeds 

could have been minimized with more replicates. Nevertheless, the coefficient of the 

block was not included in the metamodel Equation (4.1), thus going into the error of the 

throughput estimate.  
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YITThroughput TM *42.17*60.1164.10413 ++=     (4.1) 

Where, Throughput3TM is the estimate for the throughput when 3 testing machines are 

used, IT is the inter-arrival time, and Y is the yield. 

It was confirmed by the analysis of variance that the model had a linear behavior. 

The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the throughput. The assumptions of normality and 

randomness of the residuals related to the analysis of variance were validated. Figure 

4.24 presents several plots related to the normality and randomness of the residuals, such 

as: normality plot of the residuals, residuals vs. fitted values, histogram of the residuals, 

residuals vs. the order of the data.  These plots suggested the validation of the 

assumptions, but in order to have a robust conclusion, a normality test and runs test were 

done. Figure 4.25 and Figure 4.26 shows the results of those tests. The normality 

assumption was clearly validated from the normality test (observe p > 0.05). As for the 

runs test, all p values from the hypothesis were greater than α = 0.05 except for the 

oscillation test. Oscillation is observable at the second half of the chart and was attributed 

to the seeds of the random number generators.  It was decided to accept with no major 

concern the randomness of the residuals based on the results of the other runs test. 
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Figure 4.24 Residual plots for throughput – 3 testing machines. 
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Figure 4.25 Normal probability plot for throughput – 3 testing machines. 
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Figure 4.26 Runs test for throughput – 3 testing machines. 

Figure 4.27 is a surface plot for the critical factors (inter-arrival time and yield); 

note the linear relation with respect to the throughput. It was observed that the throughput 

increases as both factors moved toward their respective high level on the experimental 

region. Note that yield was restricted at its high level of the experimental region based on 

the 90% constraint specified by the management of the company. 
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Figure 4.27 Surface plot for throughput vs. inter-arrival time and yield – 3 testing machines. 

 

4.4.1.2.Up-time Testing Machines 

Figure 4.28 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance. The analysis of the coefficients suggested that the 

model had a linear behavior since only main factors (inter-arrival time and testing process 

time) were identified as critical elements of the model. Note that the block element was 

also considered as critical; this is as a result of using new set of seeds (for the random 

generators) for each new replicate and having only two replicates at the cube points and 

axial points. The impact of the seeds could have been minimized with more replicates. 

Nevertheless, the coefficient of the block was not included in the metamodel Equation 

(4.2), thus going into the error of the up-time estimate.  

TPTITgMachinestimeTestinUp TM *015936.0*010674.09517.03 −+=−       (4.2) 

Where, Up-timeTesting Machines3TM is the estimate for the testing machines up-time 

when 3 testing machines are used, IT is the inter-arrival time, and TPT is the testing 

process time. 
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The analysis was done using coded units. 
 
Estimated Regression Coefficients for Up-Time Testing Machine 
 
Term           Coef   SE Coef         T      P 
Constant   0.951700  0.000654  1455.328  0.000 
Block     -0.001600  0.000359    -4.463  0.000 
IT         0.010674  0.000434    24.601  0.000 
Y         -0.000025  0.000434    -0.058  0.955 
TPT       -0.015936  0.000434   -36.729  0.000 
IT*IT     -0.000098  0.000422    -0.233  0.817 
Y*Y        0.000520  0.000422     1.232  0.228 
TPT*TPT   -0.000275  0.000422    -0.651  0.520 
IT*Y       0.000188  0.000567     0.331  0.743 
IT*TPT    -0.000188  0.000567    -0.331  0.743 
Y*TPT      0.000062  0.000567     0.110  0.913 
 
S = 0.002268   R-Sq = 98.6%   R-Sq(adj) = 98.1% 
 
 
Analysis of Variance for Up-Time Testing Machine 
 
Source          DF    Seq SS    Adj SS    Adj MS       F      P 
Blocks           1  0.000102  0.000102  0.000102   19.92  0.000 
Regression       9  0.010061  0.010061  0.001118  217.41  0.000 
  Linear         3  0.010048  0.010048  0.003349  651.42  0.000 
  Square         3  0.000011  0.000011  0.000004    0.74  0.540 
  Interaction    3  0.000001  0.000001  0.000000    0.08  0.972 
Residual Error  29  0.000149  0.000149  0.000005 
  Lack-of-Fit   19  0.000063  0.000063  0.000003    0.39  0.963 
  Pure Error    10  0.000086  0.000086  0.000009 
Total           39  0.010312       
Figure 4.28 Regression analysis for Uptime testing machine – 3 testing machines. 

It was confirmed by the analysis of variance that the model had a linear behavior. 

The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the up-time for the testing machines. The 

assumptions of normality and randomness of the residuals related to the analysis of 

variance were validated. Figure 4.29 presents several plots related to the normality and 

randomness of the residuals, such as: normality plot of the residuals, residuals vs. fitted 

values, histogram of the residuals, residuals vs. the order of the data.  These plots 

suggested the validation of the assumptions, but in order to have a robust conclusion, a 

normality test and runs test were done. Figure 4.30 and Figure 4.31 shows the results of 

those tests. The normality assumption was clearly validated from the normality test 

(observe p > 0.05). As for the runs test, all p values from the hypothesis were greater than 

α = 0.05 except for the oscillation test. Oscillation is observable at the second half of the 

chart and was attributed to the seeds of the random number generators.  It was decided to 
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accept with no major concern the randomness of the residuals based on the results of the 

other runs test. 

Standardized Residual

P
er

ce
nt

210-1-2

99

90

50

10

1

Fitted Value

St
an

da
rd

iz
ed

 R
es

id
ua

l

0.980.960.940.92

2

1

0

-1

-2

Standardized Residual

Fr
eq

ue
nc

y

210-1

10.0

7.5

5.0

2.5

0.0

Observation Order

St
an

da
rd

iz
ed

 R
es

id
ua

l

4035302520151051

2

1

0

-1

-2

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Up-Time Testing Machine

     
Figure 4.29 Residual plots for Uptime testing machine – 3 testing machines.  
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Figure 4.30 Normal probability plot for Uptime testing machine – 3 testing machines. 
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Figure 4.31 Runs test for Uptime testing machine – 3 testing machines. 

Figure 4.32 is a surface plot for the critical factors (inter-arrival time and testing 

process time); note the linear relation with respect to the up-time of the testing machines. 

Note that as the testing process time approaches its lower level of the experimental 

region, the up-time for the testing machine is above the 95% constraint. Thus, it was 

concluded that the testing process time factor was restricted at both sides of the 

experimental region since the high level was the limit given by the management of the 

company. It was also concluded that the inter-arrival factor was restricted by its high 

level of the experimental region based on the restriction for the up-time of the testing 

machines. 
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Figure 4.32 Surface plot for Uptime testing machine vs. inter-arrival time and testing process time – 3 testing machines. 

4.4.1.3.Work-in-Process Inventory 

Figure 4.33 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance. The analysis of the coefficients suggested that the 

model had a quadratic behavior. Note that the block element was also considered as 

critical; this is as a result of using new set of seeds (for the random generators) for each 

new replicate and having only two replicates at the cube points and axial points. The 

impact of the seeds could have been minimized with more replicates. Nevertheless, the 

coefficient of the block was not included in the metamodel Equation (4.3), thus going 

into the error of the throughput estimate. 

TPTITTPTIT

TPTYITWIP TM

**8875.1*2536.1*5642.0               

*4936.4*2924.0*3486.32662.20
22

3

−++

+−++=
  (4.3) 

Where, WIP3TM is the estimate for the work-in-process inventory when 3 testing machines 

are used, IT is the inter-arrival time, Y is the yield, and TPT is the testing process time. 
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The analysis was done using coded units. 
 
Estimated Regression Coefficients for WIP 
 
Term         Coef  SE Coef        T      P 
Constant  20.2662   0.2055   98.621  0.000 
Block     -0.4500   0.1127   -3.994  0.000 
IT         3.3486   0.1363   24.560  0.000 
Y          0.2924   0.1363    2.145  0.040 
TPT       -4.4936   0.1363  -32.958  0.000 
IT*IT      0.5642   0.1327    4.251  0.000 
Y*Y        0.1134   0.1327    0.855  0.400 
TPT*TPT    1.2536   0.1327    9.445  0.000 
IT*Y       0.0125   0.1781    0.070  0.945 
IT*TPT    -1.8875   0.1781  -10.596  0.000 
Y*TPT     -0.1250   0.1781   -0.702  0.488 
 
S = 0.7126   R-Sq = 98.5%   R-Sq(adj) = 98.0% 
 
 
Analysis of Variance for WIP 
 
Source          DF   Seq SS   Adj SS   Adj MS       F      P 
Blocks           1    8.100    8.100    8.100   15.95  0.000 
Regression       9  968.387  968.387  107.599  211.92  0.000 
  Linear         3  860.129  860.129  286.710  564.68  0.000 
  Square         3   51.003   51.003   17.001   33.48  0.000 
  Interaction    3   57.255   57.255   19.085   37.59  0.000 
Residual Error  29   14.724   14.724    0.508 
  Lack-of-Fit   19    8.776    8.776    0.462    0.78  0.696 
  Pure Error    10    5.948    5.948    0.595 
Total           39  991.211      
Figure 4.33 Regression analysis for WIP – 3 testing machines. 

It was confirmed by the analysis of variance that the model had a quadratic 

behavior. The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the work-in-process inventory. The assumptions of 

normality and randomness of the residuals related to the analysis of variance were 

validated. Figure 4.34 presents several plots related to the normality and randomness of 

the residuals, such as: normality plot of the residuals, residuals vs. fitted values, 

histogram of the residuals, residuals vs. the order of the data.  Some concerns were raised 

with respect to the residuals vs. the fitted values since the spread of the data seemed to 

increase as the fitted value increased. This could meant that the standard deviations were 

not the same at each experimental design point, thus suggesting that the model was 

loosing accuracy as it tried to estimate higher values for the work-in-process. 

Nevertheless, no further investigation was requested based on the results of the lack of fit 

test and the 2
adjR , and the fact that model accuracy was not critical for estimating values 

of the work-in-process greater than 22 units, which was the constraint defined by the 
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management of the company. It was decided then to perform a normality test and runs 

test. Figure 4.35 and Figure 4.36 shows the results of those tests. The normality and 

randomness assumptions were validated (observe p-values > 0.05).  
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Figure 4.34 Residual plots for WIP – 3 testing machines. 
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Figure 4.35 Normal probability plot for WIP – 3 testing machines. 
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Figure 4.36 Runs test for WIP – 3 testing machines. 

Figures 4.37, 4.38, and 4.39 are surface plots for the critical factors or input 

parameters (inter-arrival time, yield and testing process time); note the quadratic 

relationship with respect to the work-in-process inventory. It was concluded from Figure 

4.37 that the testing process time was restricted at the lower level of the experimental 

region based on the work-in-process constraint of 22 units.   

     
Figure 4.37 Surface plot for WIP vs. yield and testing process time – 3 testing machines. 
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Figure 4.38 Surface plot for WIP vs. inter-arrival time and yield – 3 testing machines. 

 

     
Figure 4.39 Surface plot for WIP vs. inter-arrival time and testing process time – 3 testing machines. 
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4.4.2. Metamodels for 4 Testing Machines 

This section covers the results and conclusions related to the development of 

metamodels when 4 testing machines were used. As previously mentioned, the 

experiment was a central composite design with 3 factors and two levels at each factor, 2 

replicates and 2 blocks.   

The performance measures of interest were the throughput, the up-time for the 

testing machines, and the work-in-process inventory. The following analysis was done 

for each of these response variables: regression analysis, analysis of variance including 

the lack of fit test, normal probability plot for residuals, histogram of the residuals, plot of 

the residual vs. fitted values and plot of the residuals vs. the order of the data. 

Table 4.25 presents the data obtained from the simulation output for each 

performance measures of interest. Note that the utilization of the assembly personnel, the 

final inspector and the packing personnel was never above the respective limits specified 

by the management of the company. In addition, the up-time for the draw out machine 

did not exceed the specified limit. For this reason, it was decided not to build metamodels 

for those variables.  

After observing the throughput, minimum and average columns, it was decided to 

use the data of the average to build the metamodel. It was also decided to build 

metamodels for the up-time of the testing machines and the work-in-process inventory, 

since their respective limits were exceeded for some experimental runs. 
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Table 4.25 Data sheet for 23 central composite factorial design – 4 testing machines. 

 
Up-Time 
Testing 

Machine 

Up-Time 
Draw Out 

Utilization 
Assembly 
Personnel 

Util. Final 
Inspector 

Trough- 
put (Min.) 

Through-
put  (Avg.) 

Utilization 
Packing 

Personnel 
WIP 

Run 
Order Model Model Model Model  Model Model Model Model 

1 0.834 0.624 0.732 0.605 959 1029.2 0.786 12.9 
2 0.777 0.665 0.762 0.666 1017 1089.3 0.832 13.0 
3 0.894 0.633 0.744 0.614 972 1046.2 0.799 15.0 
4 0.777 0.618 0.723 0.599 927 1016.5 0.776 11.9 
5 0.742 0.635 0.736 0.625 984 1042.2 0.795 11.9 
6 0.933 0.615 0.732 0.583 937 1015.7 0.776 17.9 
7 0.868 0.650 0.755 0.641 996 1068.1 0.815 14.4 
8 0.705 0.627 0.728 0.615 953 1029.9 0.786 11.4 
9 0.832 0.622 0.729 0.603 933 1025.1 0.783 12.8 
10 0.835 0.663 0.763 0.663 1005 1088.4 0.831 13.8 
11 0.832 0.621 0.729 0.601 929 1022.7 0.781 12.7 
12 0.892 0.589 0.707 0.546 911 975.8 0.745 14.1 
13 0.834 0.587 0.699 0.549 904 969.6 0.740 12.1 
14 0.832 0.623 0.730 0.604 922 1026.8 0.784 12.7 
15 0.837 0.626 0.733 0.608 948 1032.5 0.788 12.9 
16 0.834 0.622 0.729 0.602 942 1024.0 0.782 12.7 
17 0.932 0.661 0.769 0.654 1012 1090.6 0.832 18.9 
18 0.964 0.622 0.741 0.587 959 1028.4 0.785 24.1 
19 0.804 0.603 0.713 0.576 939 994.6 0.759 11.9 
20 0.742 0.592 0.698 0.563 903 976.7 0.746 10.9 
21 0.771 0.615 0.719 0.595 918 1012.6 0.774 11.8 
22 0.833 0.623 0.730 0.604 937 1028.0 0.785 12.7 
23 0.892 0.586 0.705 0.541 900 970.8 0.741 14.2 
24 0.864 0.647 0.751 0.638 979 1065.6 0.813 14.2 
25 0.892 0.632 0.743 0.612 963 1042.8 0.795 15.0 
26 0.833 0.661 0.761 0.659 1000 1083.6 0.827 13.7 
27 0.835 0.625 0.733 0.605 964 1029.2 0.786 12.8 
28 0.742 0.636 0.736 0.626 966 1043.7 0.796 11.9 
29 0.704 0.626 0.725 0.611 945 1025.3 0.783 11.3 
30 0.832 0.585 0.697 0.546 884 965.8 0.737 12.1 
31 0.741 0.590 0.696 0.561 920 971.8 0.742 10.9 
32 0.833 0.624 0.731 0.603 946 1026.9 0.783 12.8 
33 0.840 0.629 0.736 0.612 962 1037.6 0.793 13.2 
34 0.929 0.657 0.765 0.648 988 1083.1 0.827 18.2 
35 0.772 0.662 0.758 0.661 987 1082.3 0.826 13.0 
36 0.828 0.618 0.726 0.596 947 1017.5 0.777 12.6 
37 0.839 0.627 0.734 0.611 950 1034.0 0.789 13.0 
38 0.929 0.612 0.729 0.577 922 1013.0 0.774 17.3 
39 0.960 0.619 0.739 0.582 935 1023.6 0.781 23.1 
40 0.803 0.600 0.709 0.572 898 990.1 0.756 11.8 
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4.4.2.1.Throughput 

Figure 4.40 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance.   

Response Surface Regression: Throughput  (Avg.) versus Block, IT, Y, TPT  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for Throughput  (Avg.) 
 
Term         Coef  SE Coef        T      P 
Constant  1027.73   1.1381  903.039  0.000 
Block       -1.13   0.6240   -1.803  0.082 
IT          21.37   0.7551   28.301  0.000 
Y           35.34   0.7551   46.800  0.000 
TPT          0.09   0.7551    0.120  0.905 
IT*IT        1.02   0.7351    1.393  0.174 
Y*Y          0.05   0.7351    0.070  0.945 
TPT*TPT      0.03   0.7351    0.046  0.964 
IT*Y         0.48   0.9866    0.488  0.629 
IT*TPT      -0.03   0.9866   -0.032  0.975 
Y*TPT       -0.47   0.9866   -0.475  0.638 
 
S = 3.946   R-Sq = 99.0%   R-Sq(adj) = 98.7% 
 
 
Analysis of Variance for Throughput  (Avg.) 
 
Source          DF   Seq SS   Adj SS   Adj MS       F      P 
Blocks           1     50.6     50.6     50.6    3.25  0.082 
Regression       9  46619.8  46619.8   5180.0  332.62  0.000 
  Linear         3  46582.2  46582.2  15527.4  997.05  0.000 
  Square         3     30.4     30.4     10.1    0.65  0.589 
  Interaction    3      7.2      7.2      2.4    0.15  0.926 
Residual Error  29    451.6    451.6     15.6 
  Lack-of-Fit   19    149.3    149.3      7.9    0.26  0.994 
  Pure Error    10    302.3    302.3     30.2 
Total           39  47122.0      
Figure 4.40 Regression analysis for throughput – 4 testing machines. 

The analysis of the coefficients suggested that the model had a linear behavior 

since only main factors (inter-arrival time and yield) were identified as critical elements 

of the model. The metamodel was defined as Equation (4.4).  

YITThroughput TM *34.35*37.2173.10274 ++=     (4.4) 

Where, Throughput4TM is the estimate for the throughput when 4 testing machines are 

used, IT is the inter-arrival time, and Y is the yield. 

It was confirmed by the analysis of variance that the model had a linear behavior. 

The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 



 

 

151

metamodel was a good estimator of the throughput. Figure 4.41 presents several plots 

related to the normality and randomness of the residuals, such as: normality plot of the 

residuals, residuals vs. fitted values, histogram of the residuals and residuals vs. the order 

of the data. 
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Figure 4.41 Residual plots for throughput – 4 testing machines. 

The major concern with regards to the validation was the plot of the residuals vs. 

the fitted values. It was observed that the variance at the middle point was higher than the 

rest of the chart. It was concluded after detailed analysis of the data that this behavior was 

caused by the random number generators. It was observed that those values were 

representative of the center points in the experimental cube; by design, the number of 

runs in the center point was 12 while there were only 2 replicates at the cube points and at 

the axial points. Since new seeds were being used for every new replicate, ten more seeds 

were used in the center point, thus introducing more variability as compared to the cube 

points and axial points. Table 4.26 shows the throughput obtained from the simulation 

run for each replicate at the center point. Two important things were observed: (1) all 

values were above the constraint of 1000 units, and (2) the difference between the 

minimum and the maximum values was 17 units. It was concluded based on this 
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information, that the risk of using this data for the construction of the metamodel was 

low. A difference of 17 units was considered negligible as compared to 1000 units, and 

the probability of rejecting an alternative based on the throughput constraint was also 

considered to be low since all values obtained from the simulation were above a 1000 

units.     

Table 4.26 Data sheet for center points 23 central composite factorial design – 4 testing machines 

 Experimental Factors/Simulation 
Parameters 

Up-Time Testing 
Machine 

Throughput  
(Avg.) WIP 

Run 
Order IT Y TPT 

Simulation  
Model 

Simulation 
Model 

Simulation 
Model 

1 0.0000 0.0000 0.0000 0.834 1029.2 12.9 
9 0.0000 0.0000 0.0000 0.832 1025.1 12.8 

11 0.0000 0.0000 0.0000 0.832 1022.7 12.7 
14 0.0000 0.0000 0.0000 0.832 1026.8 12.7 
15 0.0000 0.0000 0.0000 0.837 1032.5 12.9 
16 0.0000 0.0000 0.0000 0.834 1024.0 12.7 
22 0.0000 0.0000 0.0000 0.833 1028.0 12.7 
27 0.0000 0.0000 0.0000 0.835 1029.2 12.8 
32 0.0000 0.0000 0.0000 0.833 1026.9 12.8 
33 0.0000 0.0000 0.0000 0.840 1037.6 13.2 
36 0.0000 0.0000 0.0000 0.828 1017.5 12.6 
37 0.0000 0.0000 0.0000 0.839 1034.0 13.0 

Normality test and runs test were done in order to gain more confidence with 

respect to the validation of the assumptions from the analysis of variance. Figure 4.42 and 

Figure 4.43 shows the results of those tests. It was assumed that both assumptions were 

validated based on the results of these tests (observe p > 0.05) and the explanation 

provided in the previous paragraph.   
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Figure 4.42 Normal probability plot for throughput – 4 testing machines 
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Figure 4.43 Runs test for throughput – 4 testing machines. 
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Figure 4.44 is a surface plot for the critical factors (inter-arrival time and yield); 

note the linear relation with respect to the throughput. It was observed that the throughput 

increases as both factors moved toward their respective high levels of the experimental 

region. Note that the yield was restricted to its high level by definition of the constraint 

specified by the management of the company.  

     
Figure 4.44 Surface plot for throughput vs. inter-arrival time and yield – 4 testing machines. 

 

4.4.2.2.Up-time Testing Machines 

Figure 4.45 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance. The analysis of the coefficients suggested that the 

model had a linear behavior since only main factors (inter-arrival time and testing process 

time) were identified as critical elements of the model with their respective interaction. 

Equation (4.5) is the metamodel for the up-time of the testing machines. 

TPTITTPT
ITgMachinestimeTestinUp 4TM

**0.001437*
0.076706*0.0180580.834051

−
−+=−      (4.5) 
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Where, Up-timeTesting Machines4TM is the estimate for the testing machines up-time 

when 4 testing machines are used, IT is the inter-arrival time, and TPT is the testing 

process time. 

Response Surface Regression: Up-Time Testing Machine versus Block, IT, Y, TPT 
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for Up-Time Testing Machine 
 
Term           Coef   SE Coef         T      P 
Constant   0.834051  0.000720  1159.203  0.000 
Block     -0.000700  0.000394    -1.775  0.086 
IT         0.018058  0.000477    37.827  0.000 
Y          0.000233  0.000477     0.488  0.629 
TPT       -0.076706  0.000477  -160.683  0.000 
IT*IT      0.000446  0.000465     0.959  0.346 
Y*Y        0.000004  0.000465     0.008  0.994 
TPT*TPT   -0.000085  0.000465    -0.182  0.856 
IT*Y      -0.000187  0.000624    -0.301  0.766 
IT*TPT    -0.001437  0.000624    -2.305  0.029 
Y*TPT      0.000062  0.000624     0.100  0.921 
 
S = 0.002495   R-Sq = 99.9%   R-Sq(adj) = 99.9% 
 
 
Analysis of Variance for Up-Time Testing Machine 
 
Source          DF    Seq SS    Adj SS    Adj MS        F      P 
Blocks           1  0.000020  0.000020  0.000020     3.15  0.086 
Regression       9  0.169656  0.169656  0.018851  3028.51  0.000 
  Linear         3  0.169616  0.169616  0.056539  9083.38  0.000 
  Square         3  0.000006  0.000006  0.000002     0.33  0.801 
  Interaction    3  0.000034  0.000034  0.000011     1.80  0.169 
Residual Error  29  0.000181  0.000181  0.000006 
  Lack-of-Fit   19  0.000064  0.000064  0.000003     0.29  0.991 
  Pure Error    10  0.000117  0.000117  0.000012 
Total           39  0.169856  
Figure 4.45 Regression analysis for Uptime testing machine – 4 testing machines. 

It was confirmed by the analysis of variance that the model had a linear behavior. 

The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the up-time for the testing machines. Figure 4.46 was 

built with the purpose of validating the assumptions of the analysis of variance related to 

the normality and randomness of the residuals. This figure presents several plots such as: 

normality plot of the residuals, residuals vs. fitted values, histogram of the residuals and 

residuals vs. the order of the data. The major concern with regards to the validation was 

the plot of the residuals vs. the fitted values. It was observed that the variance at the 

middle point was higher than the rest of the chart. It was concluded after detailed analysis 

of the data that this behavior was caused by the random number generators. It was 
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observed that those values were representative of the center points in the experimental 

cube; by design, the number of runs in the center point was 12 while there were only 2 

replicates at the cube points and at the axial points. Since new seeds were being used for 

every new replicate, ten more seeds were used in the center point, thus introducing more 

variability as compared to the cube points and axial points. Table 4.26 shows the testing 

machines up-time obtained from the simulation run for each replicate at the center point. 

Two important things were observed: (1) all values were below the constraint of 95%, 

and (2) the difference between the minimum (82.8%) and the maximum (84%) values 

was 1.2%. It was concluded based on this information, that the risk of using this data for 

the construction of the metamodel was low. A difference of 1.2% was considered 

negligible as compared to 95% when the data was between the range of 82.8% and 

84.0%. It was concluded that the probability of rejecting an alternative based on the up-

time constraint was low.    

     
Figure 4.46 Residual plots for Uptime testing machine – 4 testing machines. 

In addition to the explanation offered in the previous paragraph with respect to the 

assumptions of the analysis of variance, normality test and a runs test were done. Figure 

4.47 and Figure 4.48 shows the results of those tests. It was concluded that the 
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assumption of normality and randomness of the residuals were validated (observe p > 

0.05).   

     
Figure 4.47 Normal probability plot for Uptime testing machine – 4 testing machines. 
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Figure 4.48 Runs test for Uptime testing machine – 4 testing machines. 
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Figure 4.49 is a surface plot for the critical factors (inter-arrival time and testing 

process time); note the linear relation with respect to the up-time of the testing machines. 

Note that the up-time for the testing machines is 95% as the testing process time factor 

approaches its lower level on the experimental region. Thus, it was concluded that the 

testing process time factor was restricted at both sides of the experimental region since 

the high level was the constraint specified by the management. 

     
Figure 4.49 Surface plot for Uptime testing machine vs. inter-arrival time and testing process time – 4 testing machines. 

4.4.2.3.Work-in-Process Inventory 

Figure 4.50 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance. The analysis of the coefficients suggested that the 

model had a quadratic behavior but a major concerned was raised with the lack of fit test 

from the analysis of variance. This suggested that the model was not a good estimator for 

the work-in-process inventory. In addition, Figure 4.51 and Figure 4.52 showed that the 

assumptions of the analysis of variance with respect to the normality and the randomness 

of the residuals were not met. It was decided then to apply the Box-Cox transformation to 

the work-in-process data obtained from the simulation.  
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R esponse S urface  Regression: W IP  versus B lock, IT , Y, TPT   
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for WIP 
 
Term         Coef  SE Coef        T      P 
Constant  12.8320   0.2227   57.612  0.000 
Block     -0.0600   0.1221   -0.491  0.627 
IT         0.9644   0.1478    6.526  0.000 
Y          0.4924   0.1478    3.332  0.002 
TPT       -2.8009   0.1478  -18.954  0.000 
IT*IT     -0.0088   0.1439   -0.061  0.952 
Y*Y       -0.0618   0.1439   -0.430  0.670 
TPT*TPT    1.5468   0.1439   10.753  0.000 
IT*Y       0.0312   0.1931    0.162  0.873 
IT*TPT    -0.6187   0.1931   -3.205  0.003 
Y*TPT      0.0437   0.1931    0.227  0.822 
 
S = 0.7723   R-Sq = 94.9%   R-Sq(adj) = 93.2% 
 
 
Analysis of Variance for WIP 
 
Source          DF   Seq SS   Adj SS   Adj MS       F      P 
Blocks           1    0.144    0.144   0.1440    0.24  0.627 
Regression       9  323.394  323.394  35.9327   60.24  0.000 
  Linear         3  246.308  246.308  82.1027  137.65  0.000 
  Square         3   70.914   70.914  23.6381   39.63  0.000 
  Interaction    3    6.172    6.172   2.0573    3.45  0.029 
Residual Error  29   17.298   17.298   0.5965 
  Lack-of-Fit   19   17.015   17.015   0.8955   31.61  0.000 
  Pure Error    10    0.283    0.283   0.0283 
Total           39  340.836 
      
Figure 4.50 Regression analysis for WIP – 4 testing machines  

     
Figure 4.51 Residual plots for WIP – 4 testing machines. 
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Figure 4.52 Normal probability plot for WIP – 4 testing machines. 

 

Figure 4.53 is an output summary from Minitab for the transformed data. 

Response Surface Regression: WIP- Transformed versus Block, IT, Y, TPT  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for WIP- Transformed 
 
Term           Coef   SE Coef        T      P 
Constant   0.000256  0.000002  109.546  0.000 
Block      0.000001  0.000001    0.742  0.464 
IT        -0.000044  0.000002  -28.637  0.000 
Y         -0.000030  0.000002  -19.577  0.000 
TPT        0.000103  0.000002   66.156  0.000 
IT*IT     -0.000002  0.000002   -1.488  0.147 
Y*Y       -0.000002  0.000002   -1.179  0.248 
TPT*TPT   -0.000019  0.000002  -12.536  0.000 
IT*Y       0.000005  0.000002    2.416  0.022 
IT*TPT    -0.000002  0.000002   -0.835  0.411 
Y*TPT     -0.000018  0.000002   -9.026  0.000 
 
S = 0.000008100   R-Sq = 99.5%   R-Sq(adj) = 99.3% 
 
 
Analysis of Variance for WIP- Transformed 
 
Source          DF    Seq SS    Adj SS    Adj MS        F      P 
Blocks           1  0.000000  0.000000  0.000000     0.55  0.464 
Regression       9  0.000000  0.000000  0.000000   647.25  0.000 
  Linear         3  0.000000  0.000000  0.000000  1860.01  0.000 
  Square         3  0.000000  0.000000  0.000000    52.41  0.000 
  Interaction    3  0.000000  0.000000  0.000000    29.34  0.000 
Residual Error  29  0.000000  0.000000  0.000000 
  Lack-of-Fit   19  0.000000  0.000000  0.000000     0.36  0.974 
  Pure Error    10  0.000000  0.000000  0.000000 
Total           39  0.000000      
Figure 4.53 Regression analysis for WIP – 4 testing machines. 
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The analysis of the coefficients suggested that the model had a quadratic 

behavior. The metamodel developed is presented in Equation (4.6).  
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2

4TM (4.6) 

Where, WIP4TM is the estimate for the work-in-process inventory when 4 testing machines 

are used, IT is the inter-arrival time, y is the yield, and TPT is the testing process time. 

It was confirmed by the analysis of variance that the model had a quadratic 

behavior. The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the work-in-process inventory. Figure 4.54 presents 

several plots related to the normality and randomness of the residuals, such as: normality 

plot of the residuals, residuals vs. fitted values, histogram of the residuals and residuals 

vs. the order of the data.  The presence of an outlier was observed for the plot of residuals 

vs. the fitted values and the plot of residuals vs. the order of the data. After reviewing the 

data, it was decided to leave the datum as part of the analysis since it was found that it 

was a valid simulation output. A normality test and runs test were then performed. Figure 

4.55 and Figure 4.56 shows the results of those tests. The normality and randomness 

assumptions were validated (observe p-values > 0.05).  
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Figure 4.54 Residual plots for WIP – 4 testing machines 

     
Figure 4.55 Normal probability plot for WIP – 4 testing machines. 
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Figure 4.56 Runs test for WIP – 4 testing machines. 

Figures 4.57, 4.58, and 4.59 are surface plots for the critical factors or input 

parameters (inter-arrival time, yield and testing process time); note the quadratic 

relationship with respect to the work-in-process inventory. Figure 4.57 validated the 

previous conclusion with respect to the testing process time being restricted within the 

experimental region; in other words, it can not expand outside the experimental region 

due to the work-in- process constraint of 22 units imposed by the management of the 

company. Figure 4.60 showed that the inter-arrival time was restricted by its higher level 

of the experimental region in order to meet the work-in-process constraint. 
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Figure 4.57 Surface plot for WIP vs. yield and testing process time – 4 testing machines. 

     
Figure 4.58 Surface plot for WIP vs. inter-arrival time and yield – 4 testing machines 
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Figure 4.59 Surface plot for WIP vs. inter-arrival time and testing process time – 4 testing machines. 

4.4.3. Metamodels for 5 Testing Machines 

This section covers the results and conclusions related to the development of 

metamodels when 5 testing machines were used. As previously mentioned, the 

experiment was a central composite design with 3 factors and two levels at each factor, 2 

replicates and 2 blocks.   

The performance measures of interest were the throughput, the utilization of the 

packing personnel, and the work-in-process inventory. The following analysis was done 

for each of these response variables: regression analysis, analysis of variance including 

the lack of fit test, normal probability plot for residuals, histogram of the residuals, plot of 

the residual vs. fitted values, plot of the residuals vs. the order of the data. 

Table 4.27 presents the data obtained from the simulation output for each 

performance measures of interest. Note that the utilization of the assembly personnel and 

the final inspector was never above the respective limits specified by the management of 

the company.  
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Table 4.27 Data sheet for 23 central composite factorial design – 5 testing machines. 

 
Up-Time 
Testing 

Machine 

Up-Time 
Draw Out 

Utilization 
Assembly 
Personnel 

Utilization 
Final 

Inspector 

Through-
put (Min.) 

Through-
put (Avg.) 

Utilization 
Packing 

Personnel 
WIP 

Run 
Order Model Model  Model Model  Model Model Model Model 

1 0.704 0.632 0.730 0.622 946 1036.1 0.790 12.2 

2 0.675 0.719 0.802 0.735 1076 1163.5 0.888 15.1 

3 0.727 0.636 0.734 0.626 960 1040.6 0.794 12.5 

4 0.675 0.625 0.723 0.611 928 1022.4 0.780 11.8 

5 0.605 0.638 0.733 0.630 971 1041.6 0.795 11.6 

6 0.812 0.622 0.726 0.605 901 1022.1 0.780 13.3 

7 0.773 0.700 0.788 0.711 1071 1137.5 0.869 15.1 

8 0.594 0.634 0.729 0.626 953 1035.3 0.790 11.5 

9 0.702 0.631 0.729 0.619 952 1033.7 0.790 12.2 

10 0.704 0.706 0.792 0.720 1054 1147.0 0.876 14.7 

11 0.700 0.627 0.726 0.616 942 1028.7 0.786 12.0 

12 0.727 0.557 0.666 0.517 837 919.7 0.702 10.9 

13 0.703 0.561 0.667 0.523 854 925.2 0.706 10.7 

14 0.700 0.630 0.728 0.619 960 1033.6 0.789 12.1 

15 0.704 0.632 0.730 0.620 950 1035.1 0.790 12.2 

16 0.702 0.629 0.727 0.617 956 1031.1 0.787 12.1 

17 0.811 0.717 0.802 0.735 1096 1162.3 0.887 16.2 

18 0.812 0.630 0.733 0.618 953 1036.4 0.791 13.4 

19 0.645 0.578 0.681 0.548 881 951.6 0.727 10.5 

20 0.604 0.556 0.661 0.521 830 917.7 0.700 9.9 

21 0.673 0.624 0.721 0.610 950 1020.6 0.779 11.8 

22 0.707 0.638 0.734 0.628 952 1042.7 0.795 12.3 

23 0.725 0.554 0.662 0.513 826 914.6 0.698 10.8 

24 0.772 0.700 0.788 0.710 1030 1136.5 0.868 15.2 

25 0.725 0.634 0.733 0.624 956 1039.5 0.793 12.4 

26 0.702 0.705 0.791 0.717 1033 1143.7 0.873 14.6 

27 0.701 0.630 0.729 0.619 948 1032.9 0.789 12.1 

28 0.603 0.636 0.731 0.626 951 1038.6 0.792 11.5 

29 0.593 0.632 0.727 0.621 949 1033.4 0.789 11.4 

30 0.702 0.559 0.665 0.521 848 921.5 0.703 10.7 

31 0.602 0.554 0.659 0.519 822 913.3 0.697 9.9 

32 0.702 0.631 0.730 0.620 962 1034.3 0.790 12.1 

33 0.701 0.631 0.729 0.620 964 1032.6 0.787 12.1 

34 0.810 0.716 0.802 0.733 1074 1161.2 0.886 16.2 

35 0.674 0.718 0.801 0.733 1071 1160.9 0.886 15.1 

36 0.701 0.629 0.728 0.617 957 1031.1 0.787 12.1 

37 0.704 0.632 0.729 0.622 947 1034.4 0.789 12.2 

38 0.810 0.622 0.725 0.604 950 1021.4 0.780 13.2 

39 0.811 0.629 0.731 0.615 952 1033.9 0.790 13.4 

40 0.643 0.576 0.680 0.545 845 946.5 0.723 10.5 
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In addition, the up-time for testing machines and the draw out machines did not 

exceed the specified limit. For this reason, it was decided not to build metamodels for 

those variables.  

After observing the throughput, minimum and average columns, it was decided to 

use the data of the average to build the metamodel. It was also decided to build 

metamodels for the utilization of the packing personnel and the work-in-process 

inventory, since their respective limits were exceeded for some experimental runs. 

4.4.3.1. Throughput 

Figure 4.60 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance.   

Response Surface Regression: Throughput  (Avg.) versus IT, Y, TPT  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for Throughput  (Avg.) 
 
Term         Coef  SE Coef         T      P 
Constant  1033.94   0.8203  1260.430  0.000 
IT          56.42   0.5443   103.661  0.000 
Y           66.02   0.5443   121.294  0.000 
TPT         -0.20   0.5443    -0.369  0.714 
IT*IT        2.69   0.5298     5.086  0.000 
Y*Y         -0.37   0.5298    -0.703  0.488 
TPT*TPT     -0.23   0.5298    -0.436  0.666 
IT*Y         4.15   0.7111     5.836  0.000 
IT*TPT       0.23   0.7111     0.316  0.754 
Y*TPT        0.30   0.7111     0.422  0.676 
 
S = 2.844   R-Sq = 99.9%   R-Sq(adj) = 99.8% 
 
 
Analysis of Variance for Throughput  (Avg.) 
 
Source          DF  Seq SS  Adj SS   Adj MS        F      P 
Regression       9  206478  206478  22942.0  2835.59  0.000 
  Linear         3  205973  205973  68657.8  8485.98  0.000 
  Square         3     227     227     75.6     9.35  0.000 
  Interaction    3     278     278     92.6    11.45  0.000 
Residual Error  30     243     243      8.1 
  Lack-of-Fit    5      49      49      9.7     1.26  0.314 
  Pure Error    25     194     194      7.8 
Total           39  206721      
Figure 4.60 Regression analysis for throughput – 5 testing machines. 

The analysis of the coefficients suggested that the model had a quadratic 

behavior. The metamodel was defined as Equation (4.7).  
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YITITYITThroughput TM **15.4*69.2*02.66*42.5694.1033 2
5 ++++= (4.7) 

Where, Throughput5TM is the estimate for the throughput when 5 testing machines are 

used, IT is the inter-arrival time, and Y is the yield. 

It was confirmed by the analysis of variance that the model had a quadratic 

behavior. The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the throughput. Figure 4.61 presents several plots 

related to the normality and randomness of the residuals, such as: normality plot of the 

residuals, residuals vs. fitted values, histogram of the residuals and residuals vs. the order 

of the data. 

      
Figure 4.61 Residual plots for throughput – 5 testing machines. 

The major concern with regard to the validation was the plot of the residuals vs. 

the fitted values. It was observed that the variability at the middle point was higher than 

the rest of the chart. This visual impression was caused by two possible outliers with 

standard residual values of 2.07 and 3.22. No major reason was identified for the outliers 

since they seemed to be valid points. It was decided to maintain the two observations as 
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part of the analysis. Note that at the decision point (constraint defined by the 

management) with respect to the throughput (1000 units) the variability is minimum, thus 

it was concluded that the probability for the model rejecting an alternative that was 

feasible was low.  

Normality test and runs test were done in order to gain more confidence with 

respect to the validation of the assumptions from the analysis of variance. Figure 4.62 and 

Figure 4.63 shows the results of those tests. It was concluded that both assumptions were 

validated based on the results of these tests (observe p > 0.05) and the explanation 

provided in the previous paragraph.   

     
Figure 4.62 Normal probability plot for throughput – 5 testing machines. 
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Figure 4.63 Runs test for throughput – 5 testing machines. 

Figure 4.64 is a surface plot for the critical factors (inter-arrival time and yield); 

note the linear relation with respect to the throughput, even though the metamodel has 

been estimated as a quadratic model. It was observed that the throughput increases as 

both factors moved toward their respective high levels of the experimental region. Note 

that the yield was restricted to its high level by definition of the constraint specified by 

the management of the company. In addition, Figure 4.65 is showing that the inter-arrival 

time is restricted at its low level of the experimental region based on the throughput 

constraint of 1000 units. Thus, it was concluded that the testing process time factor was 

restricted at both sides of the experimental region since its high level was the constraint 

specified by the management.   
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Figure 4.64 Surface plot for throughput vs. inter-arrival time and yield – 5 testing machines. 

     
Figure 4.65 Surface plot for throughput vs. inter-arrival time and yield – 5 testing machines. 
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4.4.3.2.Up-time Packing Personnel 

Figure 4.66 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance. The analysis of the coefficients suggested that the 

model had a quadratic behavior. Equation (4.8) is the metamodel for the utilization of the 

packing personnel. 

Y*ITIT

YITrsonnelnPackingPeUtilizatio
2

5TM

*003187.0*0021963.0

*050407.0*043117.0789163.0

++

++=
(4.8) 

Where, UtilizationPackingPersonnel5TM is the estimate for the labor utilization of the 

packing personnel when 5 testing machines are used, IT is the inter-arrival time, and Y is 

the yield. It was confirmed by the analysis of variance that the model had a quadratic 

behavior. The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the up-time for the testing machines. 

Response Surface Regression: Utilization Pack versus Block, IT, Y, TPT  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for Utilization Packing Personnel 
 
Term           Coef   SE Coef         T      P 
Constant   0.789163  0.000610  1294.495  0.000 
Block     -0.000575  0.000334    -1.720  0.096 
IT         0.043117  0.000404   106.599  0.000 
Y          0.050407  0.000404   124.624  0.000 
TPT       -0.000233  0.000404    -0.576  0.569 
IT*IT      0.002193  0.000394     5.570  0.000 
Y*Y       -0.000370  0.000394    -0.940  0.355 
TPT*TPT   -0.000194  0.000394    -0.491  0.627 
IT*Y       0.003187  0.000528     6.032  0.000 
IT*TPT     0.000187  0.000528     0.355  0.725 
Y*TPT      0.000312  0.000528     0.591  0.559 
 
S = 0.002114   R-Sq = 99.9%   R-Sq(adj) = 99.9% 
 
 
Analysis of Variance for Utilization Packing Personnel 
 
Source          DF    Seq SS    Adj SS    Adj MS        F      P 
Blocks           1  0.000013  0.000013  0.000013     2.96  0.096 
Regression       9  0.120497  0.120497  0.013389  2996.19  0.000 
  Linear         3  0.120180  0.120180  0.040060  8964.92  0.000 
  Square         3  0.000152  0.000152  0.000051    11.37  0.000 
  Interaction    3  0.000165  0.000165  0.000055    12.28  0.000 
Residual Error  29  0.000130  0.000130  0.000004 
  Lack-of-Fit   19  0.000071  0.000071  0.000004     0.63  0.812 
  Pure Error    10  0.000059  0.000059  0.000006 
Total           39  0.120640 
       
Figure 4.66 Regression analysis for utilization packing personnel – 5 testing machines. 
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Figure 4.67 was built with the purpose of validating the assumptions of the 

analysis of variance related to the normality and randomness of the residuals. This figure 

presents several plots such as: normality plot of the residuals, residuals vs. fitted values, 

histogram of the residuals and residuals vs. the order of the data. The major concern with 

regards to the validation was the plot of the residuals vs. the fitted values. It was observed 

that the variability at the middle point and at the left side of the chart was higher than the 

rest of the chart. This visual impression was caused by two possible outliers with 

standard residual values of 2.06 and 3.21. No major reason was identified for the outliers 

since they seemed to be valid points. It was decided to maintain the two observations as 

part of the analysis. Note that at the decision point (constraint defined by the 

management) with respect to the utilization of the packing personnel (85% units) the 

variability is minimum, thus it was concluded that the probability for the model rejecting 

an alternative that was feasible was low.  

        
Figure 4.67 Residual plots for utilization of packing personnel – 5 testing machines. 

In addition to the explanation offered in the previous paragraph with respect to the 

assumptions of the analysis of variance, normality test and a runs test were done. Figure 

4.68 and Figure 4.69 shows the results of those tests. It was concluded that the 
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assumption of normality and randomness of the residuals were validated (observe p > 

0.05).   

     
Figure 4.68 Normal probability plot for utilization packing personnel – 5 testing machines. 

     
Figure 4.69 Runs test for utilization packing personnel – 5 testing machines. 
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Figures 4.70, 4.71 and 4.72, are surface plots for the utilization of the packing 

personnel. Note that the relation with respect to the factors seems to be linear.  

Nevertheless, the metamodel is a quadratic equation.  Note from Figure 4.71, that as the 

yield approaches its high level on the experimental region, the utilization of the packing 

personnel tends to be above 85%, which is the constraint specified by the management of 

the company. The yield is also restricted at the high level of the experimental region as 

result of the management constraint of 90%. Note from Figure 4.72, that as the inter-

arrival time approaches its high level on the experimental region, the utilization tends to 

be above 85%, thus restricting the yield at that side.   

     
Figure 4.70 Surface plot for utilization packing personnel vs. inter-arrival time and yield – 5 testing machines. 
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Figure 4.71 Surface plot for utilization packing personnel vs. yield and testing process time – 5 testing machines. 

      
Figure 4.72 Surface plot for utilization packing personnel vs. inter-arrival time and testing process time – 5 testing 
machines. 
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4.4.3.1.  Work-in-Process Inventory 

Figure 4.73 is an output summary from Minitab for the coefficients of the 

regression and the analysis of variance. It was observed from the analysis of the 

coefficients that the regression had a quadratic behavior. The metamodel developed is 

presented in Equation (4.9).  

TPTYTPTIT
YITTPTY

ITTPTYITWIP TM

**05.0**0875.0
**375.0*0929.0*1813.0

*2343.0*5623.0*182.1*422.11428.12
22

2
5

+−
+++

+−++=

  (4.9) 

Where, WIP5TM is the estimate for the work-in-process inventory when 5 testing machines 

are used, IT is the inter-arrival time, Y is the yield, and TPT is the testing process time. 

Response Surface Regression: WIP versus Block, IT, Y, TPT 
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for WIP 
 
Term         Coef  SE Coef        T      P 
Constant  12.1428  0.02192  553.997  0.000 
Block     -0.0100  0.01202   -0.832  0.412 
IT         1.4220  0.01454   97.784  0.000 
Y          1.1820  0.01454   81.283  0.000 
TPT       -0.5623  0.01454  -38.667  0.000 
IT*IT      0.2343  0.01416   16.552  0.000 
Y*Y        0.1813  0.01416   12.805  0.000 
TPT*TPT    0.0929  0.01416    6.562  0.000 
IT*Y       0.3750  0.01900   19.736  0.000 
IT*TPT    -0.0875  0.01900   -4.605  0.000 
Y*TPT      0.0500  0.01900    2.631  0.013 
 
S = 0.07600   R-Sq = 99.8%   R-Sq(adj) = 99.8% 
 
 
Analysis of Variance for WIP 
 
Source          DF   Seq SS   Adj SS   Adj MS        F      P 
Blocks           1    0.004    0.004   0.0040     0.69  0.412 
Regression       9  106.844  106.844  11.8716  2055.21  0.000 
  Linear         3  102.033  102.033  34.0109  5887.95  0.000 
  Square         3    2.399    2.399   0.7997   138.45  0.000 
  Interaction    3    2.412    2.412   0.8042   139.22  0.000 
Residual Error  29    0.168    0.168   0.0058 
  Lack-of-Fit   19    0.099    0.099   0.0052     0.76  0.706 
  Pure Error    10    0.068    0.068   0.0068 
Total           39  107.016 

        
Figure 4.73 Regression analysis for WIP – 5 testing machines. 
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It was confirmed by the analysis of variance the quadratic behavior of the model. 

The lack of fit test as well as the 2
adjR  confirmed that the regression equation or 

metamodel was a good estimator of the work-in-process inventory. Figure 4.74 presents 

several plots related to the normality and randomness of the residuals, such as: normality 

plot of the residuals, residuals vs. fitted values, histogram of the residuals and residuals 

vs. the order of the data. The plots suggested the validation of the assumptions for the 

analysis of variance. A normality test and runs test were performed in order to have 

robust evidence on which to base the conclusion with respect to the assumptions. Figure 

4.75 and Figure 4.76 shows the results of those tests. The normality and randomness 

assumptions were validated (observe p-values > 0.05).  

   
Figure 4.74 Residual plots for WIP – 5 testing machines. 
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Figure 4.75 Normal probability plot for WIP – 5 testing machines. 

     
Figure 4.76 Runs test for WIP – 5 testing machines. 

Figures 4.77, 4.78, and 4.79 are surface plots for the work-in-process inventory. 

Note the quadratic relationship with respect to the factors of the metamodel. It is 

important to mention that this metamodel was built for the purpose of doing the 
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optimization (objective function) since all values were within the acceptable region with 

respect to the constraint specified by the management of the company. Note that the 

surface response was always less than 22 units.  

     
Figure 4.77 Surface plot for WIP vs. yield and testing process time – 5 testing machines. 

     
Figure 4.78 Surface plot for WIP vs. inter-arrival time and yield – 5 testing machines. 
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Figure 4.79 Surface plot for WIP vs. inter-arrival time and testing process time – 5 testing machines. 
 

4.5.  Optimization Tool 

This section explains the results from the validation for the optimization tool. The 

main objective of the tool was to determine the number of machines that were required to 

meet the expected production as well as the constraints specified by the management of 

the company, given a combination of the input parameters yield and testing process time. 

The tool was developed using Microsoft’s Excel Solver and Visual Basic for 

Applications (VBA) mainly due to the practicality and inexpensive use of these tools 

from the end user point of view.  In addition, it was already learned from the literature 

review that Microsoft Excel Solver employs the Generalized Reduced Gradient algorithm 

which could solve smooth non-linear optimization problems up to 200 decision variables 

and 100 constraints. So, taking advantage of this algorithm became obvious since it was 

readily available to the end user, and the mathematical programming models (3, 4, and 5 

testing machines) that this project was pretending to solve were of the smooth non-linear 

type with only 3 decision variables and 3 constraints.   
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Basically, the end user enters the values for the yield and testing process time, the 

optimization tool selects then by means of Microsoft Visual Basic for Applications the 

optimization model (for 3, 4 or 5 testing machines) and Microsoft Excel Solver uses the 

Generalized Reduced Gradient (GRG) method as implemented in an enhanced version of 

Lasdon and Waren's GRG213 code to find the optimum within the search region.  The 

search variable is the inter-arrival time.   

The validation of the optimization tool was done mostly by focusing on three 

subjects: (1) predicting the accuracy of the metamodels vs. the simulation output, (2) the 

capability of the experimental region to contain a feasible solution or local optimum with 

respect to the combination of possible values for the yield and testing process time input 

parameters, and (3) the capability of the experimental region to contain the global 

optimum. In particular, the first two subjects were key to show the validity of the 

Generalized Reduced Gradient method as well as the usefulness of Microsoft Excel 

Solver for the optimization stage of this simulation project   

4.5.1. Accuracy of the Metamodels 

This section explains the results of the validation with respect to the metamodels 

accuracy as a tool to predict the point estimate. Table 4.28 presents the results for each 

validation run or scenario, and Table 4.29 presents the accuracy (error %) of the 

metamodels vs. the simulation outputs or responses. Note from Table 4.29 that the 

accuracy of the metamodel is within the allowable error for each of the performance 

measures of interest under each scenario. It was then concluded that the metamodels were 

validated. 

  

                                                 
13 This algorithm was developed by Leon Lasdon, of the University of Texas at Austin, and Allan Waren, of Cleveland 
State University. As per Frontline Systems, Inc., the company who developed the Solvers/Optimizers in Microsoft 
Excel, Lotus 1-2-3 and Quattro Pro, the GRG2 code has been proven in use over many years as one of the most robust 
and reliable approaches to solving difficult NLP problems.  
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Table 4.28 Optimization tool and simulation results for validation purposes. 
  Input Output Simulation Model    Optimization Tool 
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1 3 TM 90.0 70.0 0.465 1096.2 94.5 19.7 N/A 1090.4 94.3 18.6 N/A 

2 4 TM 81.3 85.0 0.450 1021.2 86.7 13.7 N/A 1019.7 86.4 13.7 N/A 

3 5 TM 72.6 100.0 0.405 1016 N/A 15.5 77.6 1013.7 N/A 14.3 77.4 

 
 Table 4.29 Accuracy (error %) of the metamodel vs. the simulation. 

  % Error 

Scen. # Opt. Model Through.  Up-time Testing Mach. WIP Util. Pack. Pers.  

1 3 TM 0.53% 0.21% 5.58% N/A 

2 4 TM 0.15% 0.35% 0.00% N/A 

3 5 TM 0.23% N/A 7.74% 0.26% 
  2.50% 1.00% 10.00% 1.00% 
  Allowable Error 

 

4.5.2. Validation of the Experimental Region 

This section explains the results of the validation with respect to the capability of 

the experimental region to contain a feasible solution (local optimum). Table 4.30 shows 

that scenario #1 has no feasible solution for 3 testing machines; instead, a feasible 

solution was obtained for 4 testing machines. Table 4.31 shows that scenario #2 has no 

feasible solution for 4 testing machines; instead, a feasible solution was obtained for 5 

testing machines. These were the expected results. 
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Table 4.30 Scenario #1 – Experimental region. 

  Optimization Tool 

 Constraints 3 Testing Machines 4 Testing Machines 

Throughput >= 1000 1000.0 1063.7 

Up-time Test. 
Mach. <= 95% 96.7 77.6 

WIP <= 22 24.6 12.6 

Scenario #1 
 

Table 4.31 Scenario #2 – Experimental region. 

  Optimization Tool 

 Constraints 4 Testing Machines 5 Testing Machines 

Throughput >= 1000 971.4 1113.1 

Up-time Test. 
Mach. <= 95% 96.6 N/A 

WIP <= 22 27.8 16.1 

Util. Pack. 
Pers. <= 85% N/A 85.0 

Scenario #2 
 

The conclusion from the above two tables was that the experimental region (in 

terms of the yield and testing process time factors) for a particular number of testing 

machines, had the capability to contain the optimum for a particular combination of yield 

and testing process time if in reality a feasible solution was within that particular number 

of testing machines.   

Validating the experimental region was important because it guaranteed the right 

selection of the number of testing machines required for a particular combination of yield 

and testing time factors. It also showed the validity of the Generalized Reduced Gradient 

method as well as the usefulness of Microsoft Excel Solver for the optimization stage of 

this simulation project.  
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4.5.3. Validation of the Global Optimum  

It was observed from tables 4.28 and 4.30 that the optimum was found before any 

of the constraints reached their respective limits. The main reason for this behavior was 

that the distance between the levels (low and high) of the inter-arrival time factor was not 

large enough for allowing the global optimum to be found; thus the optimization tool 

found only a feasible solution which was in fact the local optimum within the 

experimental region.  

The search was not done outside the limits of the inter-arrival time factor because 

there was no evidence that the metamodel would still explain the behavior of the 

simulation response. One way to address this issue in the future is by expanding the limits 

for the inter-arrival time factor, and then performing a new experimental design with the 

objective of developing new metamodels. Nevertheless, the results were still valid in 

terms of the number of machines required for a particular combination of yield and 

testing process time factors.   

4.6.  Comparison of Methodologies 

This section pretends to compare the results obtained by the scientific approach 

followed for this project (2) vs. the trial and error approach followed for the previous 

project (1).  The comparison was done for the particular combination in which the yield 

was set to 90% and the testing process time was set to 70% of the value of the actual 

system, which were the suggested conditions presented to the management of the 

company during the previous project. For both scenarios, the goal for the performance 

measure throughput was a total of 3000 units per month and all constraints were met. 

Table 4.32 presents the results in terms of number of personnel and equipment required. 

Inventory related data was not included because the difference was negligible between 

both methods. 
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Table 4.32 Comparison actual vs. previous project. 

  Previous 
Project (1) 

Actual Project 
(2) Benefits ($) 

Dielectric Machines 1 1 $0 

Testing Machines 4 3 $350,000 Testing 
Area 

Testing Personnel 4 2 $30,576 

Draw Out Machines 2 3 ($50,000) 

Assembly Personnel 2 4 ($26,416) 
Draw 
Out 
Area 

Final Inspectors 2 2 $0 

Packing 
Area Packing Personnel 2 2 $0 

 

It was concluded from the above table that the savings under method (2) as 

compared to method (1) were $300,000 for capital expenditures and $4,160 per year for 

labor cost. There were two main differences in terms of both scenarios: (1) labor 

balancing between the testing and draw out areas and (2) the maximum throughput that 

could be obtained from the systems. With respect to the labor balancing, scenario #1 

balanced the labor by locating Inspection I at the testing area, while in scenario # 2 the 

labor remained unbalanced by maintaining Inspection I at the draw out area. The second 

major difference was that the maximum throughput for the system under scenario #1 was 

3130 units, while scenario #2 could reach a maximum of 3270 units. This in fact 

explained the addition for the third draw out machine. This extra capacity would have 

given the company another benefit of 140 units or the equivalent of $490,000 in extra 

sales per month. It would have been management decision to decide if the investment on 

the extra capacity was worth it. Under both scenarios, the capacity limitation turned out 

to be the number of testing machines.    

Information that could help the management on decision making is the probability 

for achieving the throughput value (or more) at which the system was setup. Figure 4.80 

shows the probability curve for the monthly throughput under scenario #2 for 1 shift. The 

goal was to set a system that could achieve 3000 units monthly (1000 units per shift, 
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having 3 shifts). It was observable from the chart that the probability for reaching 3270 

units or 1090 per shift ( ( )1090≥XP ) was ±60%. It was understood that the probability 

for reaching 3130 units or 1043 per shift ( ( )1043≥XP ) was ±50% for scenario #1, while 

for scenario #2 the probability was ±95%. In fact, the probability for not achieving 1000 

units monthly per shift was almost 0% for scenario #2, which met the expectation set 

earlier about achieving a total monthly throughput of 3000 units most of the time. This 

could be a valuable piece of information for deciding whether to invest in the extra 

capacity or not. Note that on the eventuality that the management decision is not to invest 

in the extra capacity, the capital cost savings between methods (1) and (2) are $350,000 

instead of $300,000. In addition, the possibility for reducing labor from scenario #2 is 

worth trying with the simulation model. Of course, this will require revisiting the 

metamodels. 

     
Figure 4.80 Probability curve scenario #2 – Throughput (90% yield; 70% testing process time). 

 

Table 4.33 shows the average and maximum number of units at each buffer. It 

was concluded that for space requirements the management should plan around the 
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maximum number of units. If less space was required, then it was imperative to look into 

reasons for the variability at the testing area.   

Table 4.33 Buffer requirements. 

Buffer Average (units) Maximum (units) 
Dielectric  0.08 0.12 
Testing 8.80 51.67 

Adjustment 0.07 0.09 
Inspection I 0.05 0.11 
Draw Out 0.11 0.18 

Final Inspection 0.32 0.42 
Packing 0.89 2.08 

WIP 19.70 62.98 
 

 Finally, it was concluded that the scientific method followed in this project 

provided better results than the trial error approach followed in the previous project.  

4.7.  Summary 

This chapter presented the analysis and results of the scientific approach 

described in Chapter III. It covered the sensitivity analysis, experimental designs, 

metamodels, and the validation of the optimization tool.   

The warm-up period was validated and the critical input parameters (experimental 

factors) with respect to the performance measures of interest were identified by means of 

the sensitivity analysis. Several experimental designs were run and results analyzed with 

the main objective of reducing the number of critical factors. The model was simplified 

by defining the values at which to fix input parameters that were taken out from the 

critical list as the problem was being reduced. Regression analysis was done to develop 

the metamodels which were used to define the mathematical models for optimization 

purposes. Three optimization models (3, 4, and 5 testing machines) were developed and 

validated. The results showed the validity of the General Reduced Gradient method as 

well as the usefulness of Microsoft Excel Solver  
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The following chapter (V) presents the conclusions and recommendations with 

respect to this chapter. Conclusions will be presented in terms of the practical application 

that this project was trying to solve and in terms of the academic interest for simulation 

output analysis and optimization. Recommendations will be presented in terms of 

opportunities for future research. 
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CHAPTER V. Conclusions and Recommendations 

This chapter explains the conclusions and recommendations related to the 

execution of this project. Conclusions are provided with respect to the objectives defined 

in section 1.5, while recommendations are related to opportunities for future research. 

5.1.  Conclusions 

Conclusions are presented in terms of the practical application of computer 

simulation for the system under study, as well as the academic interest on simulation 

output analysis for systems with multiple response variables and restrictions.  

5.1.1. Practical Application 

The system under study was the assembly line for a new product manufactured by 

a multinational company, in particular the testing, final inspection and packing areas. Due 

to the market acceptance for the new product, the management of the company was 

interested in defining the arrangement needed in order to increase the monthly throughput 

from 800 units to 3000 units with the minimum investment in terms of capital and 

operational costs. Specifically, they were interested in knowing the amount of equipment 

needed and personnel requirements. Restrictions were specified by management for the 

maximum allowable personnel utilization and equipment up-time, as well as for the 

work-in-process inventory.  

In order to provide an answer to the management, it was important to focus first 

on the line balancing between the testing and the draw out/final inspection areas. An 

experimental design was run an analyzed to address this issue, mainly focused on the 

location of Inspection I. It was decided to leave Inspection I at the draw out area, even 

though this represented running the line on an unbalanced fashion.  

The level at which to set the number of dielectric and draw out machines, as well 

as the number of testing, assembly, final inspection and packing personnel, was defined 

after a series of sequential experimental designs. It was concluded that 1 dielectric 

machine and 3 draw out machines were required to achieve 3000 units consistently. With 
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respect to the labor requirements, it was defined that 2 testing personnel, 4 assembly 

personnel, 2 final inspectors and 2 packers were required.   

It was concluded that the number of testing machines was dependable upon the 

combination of yield and testing process time, ranging from 3 to 5 machines. An 

optimization tool was developed so that management could define the number of 

machines. The tool was developed using Microsoft Excel Solver and Visual Basic for 

Applications which was of practical value for the end user.  

For the specific combination of 90% yield and 70% testing process time, it was 

determined that 3 testing machines were required. Space requirements in terms of buffers 

were determined. The probability curve for the throughput was defined; it was found that 

the probability for achieving a monthly throughput of 3000 units (1000 units per shift 

having 3 shifts) was almost 100%. 

5.1.2. Academic Interest 

This project was a continuation of a previous project in which the yield and 

testing process time were fixed to 90% and 70%, respectively, followed by a trial and 

error approach in order to provide an alternative. As a result, the capacity for 

understanding the model under the whole spectrum of alternatives defined by the possible 

combinations of yield and testing process time was lost. In addition, there was no 

guarantee that the system suggested was the optimum or best alternative in terms of 

capital and operational costs.  

The main academic interest of this project was to understand the behavior of the 

system by means of sensitivity analysis, experimental designs, regression analysis for the 

construction of metamodels, and optimization.  These tools as well as the appropriate 

statistical analysis for the simulation responses were key ingredients for the success of 

this project. The optimization tool was developed using Microsoft Excel Solver and 

Visual Basic for Application, mainly due to their availability and practicability for the 

end user. The optimization problem that this project pretended to solve was of the smooth 

non-linear type which the standard Microsoft Excel Solver had the capability to solve by 
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means of the Generalized Reduced Gradient method.  Another major academic interest 

was the comparison of both methods (trial and error vs. scientific approach) for the 

particular combination of 90% yield and 70% testing process time. 

The use of sensitivity analysis showed to be of great value at the time of defining 

critical input parameters that were included in the experimental designs.  In addition, it 

was also an important tool for the determination of the experimental levels for those 

critical factors. Finally, it also helped on reducing the problem.    

The use of experimental designs was important for reducing the problem and 

understanding the relationship between the critical factors and the performance measures 

of interest. It was also the base for the regression analyses and the construction of the 

metamodels. Performing 2k-p fractional factorial design was an important tool for factor-

screening purposes at the beginning of the experimental phase. Nevertheless, other type 

of experimental design may have been more appropriate. In this case in particular, the 

statistical analysis of the experiment was sacrificed in favor of the number of simulation 

replicates and computer run time. The analysis was done by means of graphical plots 

since the factors being screened were qualitative and discrete. 2k factorial designs showed 

also to be useful for setting the draw out testing area in terms of the number of machines 

and personnel required.  

Once the model was reduced, the focus of the project was on understanding the 

behavior at the testing area. It was understood that typical simulation optimization tools 

were not of practical value at this stage, since management had no certainty for the values 

at which to set the yield and the testing process time. This forced the analysis to focus on 

understanding the behavior of the model for all possible combinations. It was decided to 

perform three experimental designs, one for each number of testing machines (3, 4 and 

5). The major concerns were (1) to define the experimental region so that feasible 

solutions were guaranteed for any possible combination of yield and testing process time, 

and (2) the presence of curvature.  Central composite designs were run in which the 

experimental region for 3 machines was contained inside the experimental region for 4 

machines, and 4 machines was contained inside the experimental region for 5 machines. 
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This approach guaranteed a feasible solution for all possible combinations. The curvature 

concern was also addressed since the base for the central composite design is a quadratic 

model.   

 Metamodels were built from the results of the central composite experimental 

designs. Mathematical programming models were defined and the Generalized Reduced 

Gradient method was employed for optimization purposes. The accuracy of each model 

was verified by means of the computer simulation output.   It was demonstrated that the 

optimization tool had the capability to find a feasible solution or local optimum for any 

combination of yield and testing process time within the experimental region. It was 

shown that the tool felt short for finding the global optimum. In order to do so, it was 

concluded that the experimental region must have been wider with respect to the inter-

arrival time factor. This could be a matter for future research. Nevertheless, this was of 

no major concern for the practical problem that this project pretended to address since 

feasible solutions were being guaranteed.  

It was shown that the results obtained from the scientific approach followed 

during this project rendered better results than the trial and error approach followed 

during the previous project.    

The approach followed (mathematical programming) for understanding the 

behavior of the system for all combinations of yield and testing process time, and 

developing the optimization tool using Microsoft Excel Solver and Visual Basic for 

Applications proved to be of great value for the practical problem being addressed with 

this project. It is the understanding of the author, that this approach has applications for 

other practical situations in which (1) the end user does not have the resources for the 

application of any of the simulation optimization methods frequently found in the 

simulation literature, and (2) there is uncertainty with respect to the levels at which to fix 

some of the critical input parameters. Once the metamodels are developed and the 

optimization model (mathematical programming) built with Microsoft Excel Solver, the 

end user can practically study all possibilities for decision making purposes without 

investing on extensive simulation studies.  
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It is important to mention that there is a trade-off between understanding the 

behavior of all possible combinations for the critical factors and the cost of developing 

such a tool. In the case of this project, it was relatively easy since the problem was 

already reduced to three quantitative critical factors (yield, testing process time, and inter-

arrival time) for each number of testing machines. Note that as the number of factors 

increases, defining the experimental region become more difficult. In addition, the 

experimental region may tend not to fit a quadratic model, which complicates the analysis 

even further.  

The value of Microsoft Excel Solver for simulation optimization purposes was 

demonstrated in this project. Its usefulness was based on the fact that Microsoft’s tools 

are commonly used in today’s business world, and modeling an optimization problem 

with Microsoft Excel Solver is relatively easy to do. In addition, the Excel Solver 

employs algorithms that have been widely used in the optimization arena. The standard 

Microsoft Excel Solver uses known algorithms, as the Generalized Reduced Gradient 

method, for solving optimization problems of some degree of complexity, most probably 

of the complexity range for many simulation optimization problems.  

Finally, the impact that the optimization algorithms used by Microsoft Excel 

Solver may have on solving a mathematical programming model, becomes of interest as 

the number of critical factors increases as well as the complexity of the model itself.   

5.2.  Recommendations 

This section presents recommendations for future research. The order in which 

they are presented is of no relevant importance. 

• The optimization tool should be further improved by expanding the 

experimental region for the inter-arrival time in order to find the global 

optimum for any combination of yield and testing process time.  

• The optimization tool should provide information related to all performance 

measures, including the maximum number of units in each buffer. In addition, 

the probability curve for the throughput should also be mathematically 



 

 

195

modeled for at least increments of ten percent. These whole set of information 

completely allows the end user not having to depend on the simulation model 

for a particular combination of yield and testing process time of interest.  

• A comparative research between the optimization tool developed for this 

application and any of the methods typically used for simulation optimization 

should be done. This research could contribute to the validation of the 

methodology followed in terms of using mathematical programming and 

employing the Generalized Reduced Gradient method as the optimization 

algorithm. 

• The complexity of this project was reduced by setting the throughput goal 

around 3000 units per month. In the eventuality that management has serious 

concerns with those projections, designing only for the case of 3000 units may 

have no practical value. This raises the concern for understanding the behavior 

of the system for the possible values of throughput. This brings back the 

whole complexity of the project since practically no input parameter could be 

set to a fix value. Pretending to solve such a system may be difficult but worth 

trying from the academic point of view.   

• The complexity of the research discussed in the previous point may be 

reduced by fixing the yield and the testing process time, but allowing the 

throughput to be variable within a range. This research is of less complexity 

than the previous one but still of practical value as well as an opportunity for 

integrating mathematical programming with the corresponding optimization 

algorithms employed by Microsoft Excel Solver.    

Finally, the above research opportunities are motivated by the practical 

application that they have in the industry and the academic interest in simulation 

optimization.     
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APPENDIX A. Summary Previous Project 

As mentioned in section 1.1, this project is a continuation of a previous project 

that was developed as part of the requirements for a computer simulation course towards 

the Master degree in Engineering. This section is a summary of the previous project and 

includes some elements of the conceptual model, data gathering and analysis, simulation 

language coding, verification and validation of the model, trial and error runs, and 

conclusions and recommendations.  The simulation software used for coding the model 

and for performing the simulation statistical analysis was ARENA/SIMAN. 

The definition of the problem, the description of the system, the objectives and 

the graphical display of the system were already discussed in Chapter I of this document. 

A.1.  Conceptual Model Formulation  

The following are the assumptions of the model: 

• The inter-arrival time follows an exponential distribution and the arrival rate 

will depend upon the restrictions on the up-time for the equipment, the 

personnel utilization and the work-in process inventory.    

• The batch size is of one entity and the first entity is created at time zero. 

• The buffers have no capacity since in the real system the units are moved to 

the floor if necessary.   

• Reworking units is considered an external event since it is done in the 

assembly area which is not in the scope of this project. 

• There are two shifts of eight hours each. All employees take the breaks at the 

same time. Lunch time is for 30 minutes and there are 10 minutes break 

during the morning and the afternoon. 

• There is no capacity lost due to machine breakages or stoppages. Downtime is 

being indirectly considered with the maximum up-time specified for each 

machine. 
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• The testing personnel have been trained to perform all the functions of the 

cell. 

• The final inspector has been trained to perform all of the operations of the 

final inspection area. The assembler has not been trained to perform the final 

inspection. 

• The testing personnel are independent resources; they do not help or assist 

each other. 

The following are the definitions of the elements, attributes and types of events of 

the simulation model: 

• Dynamic entity – the new product being manufactured at the assembly line. 

• Static entities – dielectric machine, testing machines #1, testing machine #2, 

draw out machine, testing personnel #1, testing personnel #2, assembly 

personnel, final inspector, packing personnel #1, packing personnel #2 and 

dummy operators used for animation purposes. 

• Attributes – the arrival time of the products into the system. 

• External events – the arrival of the product into the system and the rework. 

• Internal events – completion of the service or operation at each working 

station (dielectric, testing, adjustment, inspection I, draw out, final inspection 

and packing). 

The following is a list of the state variables of the model with the description of 

the state: 

• State of the dielectric testing machine (0 for busy and 1 for not busy). 

• State of the testing machine #1 (0 for busy and 1 for not busy). 

• State of the testing machine #2 (0 for busy and 1 for not busy). 

• State of the draw out machine (0 for busy and 1 for not busy). 

• State of the testing personnel #1 (0 for busy and 1 for not busy). 

• State of the testing personnel #2 (0 for busy and 1 for not busy). 

• State of the assembly personnel (0 for busy and 1 for not busy). 
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• State of the final inspector (0 for busy and 1 for not busy). 

• State of the packing personnel #1 (0 for busy and 1 for not busy). 

• State of the packing personnel #2 (0 for busy and 1 for not busy). 

• Buffer size for entities waiting at the dielectric station (0, 1, 2, ∞). 

• Buffer size for entities waiting for available testing personnel to perform the 

dielectric test (0, 1). 

• Buffer size for entities waiting at the testing station #1 (0, 1, 2, ∞). 

• Buffer size for entities waiting at the testing station #2 (0, 1, 2, ∞). 

• Buffer size for entities waiting for an available testing personnel to load the 

testing machine #1 (0, 1). 

• Buffer size for entities waiting for an available testing personnel to load the 

testing machine #2 (0, 1). 

• Buffer size for entities waiting for an available testing personnel to unload the 

testing machine #1 (0, 1). 

• Buffer size for entities waiting for an available testing personnel to unload the 

testing machine #2 (0, 1). 

• Buffer size for entities waiting for adjustment at testing station #1 (0, 1, 2, ∞). 

• Buffer size for entities waiting for adjustment at testing station #2 (0, 1, 2, ∞). 

• Buffer size for entities waiting for inspection I (0, 1, 2, ∞). 

• Buffer size for entities waiting for the draw out test (0, 1, 2, ∞). 

• Buffer size for entities waiting for the final inspection (0, 1, 2, ∞). 

• Buffer size for entities waiting for the packing process (0, 1, 2, ∞). 

A.2.  Data Gathering and Analysis 

The new product is considered a custom made product since the customer can 

select the desired configuration from a set of alternatives in which thousands of 

combinations can be done. This was the major challenge in regards to the data gathering 

and analysis since it was almost impossible and unpractical to simulate all possible 

combinations. A data record sheet that considered all sources of variation or 

characteristics of the product was then developed and provided to the employees in the 
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area. The method was to analyze the data first by not considering any source of variation, 

and then to filter the data using the different characteristics of the product in order to 

adjust to a particular probability distribution if needed. The objective was to determine 

the minimum number of different characteristics to be simulated. For our benefit, we 

were able to explain the variability of each process by adjusting to a theoretical 

probability distribution without having to filter by the different characteristics or source 

of variation.  

A.3.   Verification of the Simulation Model 

The model was coded following the concept of sub-models and using counters at 

the beginning and at the end of each sub-model in order to facilitate the verification of the 

model. The element “TRACE”14  was also used as well as the animation feature of 

ARENA as part of the verification process.   

A.4.  Validation of the Simulation Model 

The simulation model was validated to have an assurance that its behavior was in 

accordance to the actual results of the real system. The following are the steps followed 

during the validation process: 

• The steady state was determined. 

• The minimum number of runs or replicates was also determined. 

• The validation methods of continuity, degenerate and absurd conditions were 

followed. 

• A validation run was then performed by setting the parameters of the model to 

the actual conditions of the real system. The results were compared to the data 

provided by the management of the company. 

                                                 
14 TRACE - is a feature of the simulation language SIMAN used to verify in detail the movement of entities through 
the system in order to identify situations wherein the entity flow is incorrect and/or the function performed at a specific 
block is incorrect.  
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Finally, the results from the validation run and from each of the validation 

methods were discussed with the management in order to gain their confidence with the 

model.  

A.5.   Trial and Error Experimental Run 

The experimental phase followed a trial and error approach in which the main 

objective was to increase the production while restrictions on the uptime of the testing 

machines, utilization of personnel and work-in process inventory were maintained within 

target. The method was to increase the arrival rate until any of the restrictions was not 

satisfied. The following is a summary of each experimental run: 

• Run #1 – This is the validation run. It was concluded that the yield have a 

major impact on the throughput and that a third shift was necessary. 

• Runs #2 and #3 – These runs were done changing the acceptance rate or yield, 

and by adding a third shift. The draw out area became the bottleneck as yield 

was increased. It was observed that the utilization of personnel between the 

testing and the draw out areas was not balanced.   

• Run #4 – This run was done balancing the work load by moving out the 

Inspection I from the draw out area into the testing area, and by setting up the 

yield to 80%. A throughput of 1500 units per month was achieved for the first 

time. It was also observed that the up-time for the dielectric test was low, 

suggesting no need for investment in this equipment.  

• Runs #5 and #6 – The parameters were fixed to the same conditions of run #4 

with the exception of the acceptance rate which was increased to 90% and 

95%. Throughput increased by 200 units as compared to run #4 and it was 

concluded that only one packer was needed to achieve 1500 units per month. 

A.6.    Conclusions and Recommendations 

It was concluded that the yield was a critical parameter and that improving the 

acceptance rate was necessary in order to minimize the investment. It was also concluded 

that a third shift was necessary as well as balancing the work load between the testing 
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area and the draw out area. Based on the 1500 units per month achieved during the 

experimental runs, the following recommendations were given in order to achieve 3000 

units: 

• Testing area – 1 dielectric test machine, 4 testing machines and 4 testing 

personnel. 

• Draw out area – 2 draw out testing machines, 2 assembly operators and 2 

final inspectors. 

• Packing area – 2 packing personnel. 
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APPENDIX B. SIMAN Codes 

Model: 
0$            CREATE,1:expo(14.3,10):MARK(tiempodellegada):NEXT(33$);  Arrival of units into the system. 
 
33$          COUNT:breakerstotalesgenerados,1;     Counts units that arrived into the 
system. 
1$            ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema+1; Increase WIP by one unit. 
133$        ASSIGN:picture=producto;                                                   For animation purposes. 
 
70$          STATION,entrada;                                               For animation purposes. 
4$            ROUTE: .1,estaciondielectrico;                                Unit is moved to the dielectric test 
area. 
 
 
5$            STATION,estaciondielectrico;       Dielectric station 
2$            QUEUE,filadielectrico;                                        Buffer for dielectric test. 
91$          SEIZE,1,Other:maquinadielectrico,1:NEXT(92$);                       Seizes dielectric machine. 
 
92$          QUEUE,filadielectricodisponible;                              Waiting time when dielectric machine 
is available but testing personnel is not. 
90$          SELECT,CYC:3$:93$;                                                   Select the testing personnel who is 
available. 
3$            SEIZE,3,Other:tester1,1:NEXT(136$);                                  Seizes testing personnel #1. 
 
136$        SEIZE,1,Other:testerdielectdummy1,1:NEXT(6$);                       For animation purposes 
 
6$            DELAY:1.06+logn(.423,.266,1),,Other:NEXT(8$);                Dielectric process time. 
 
8$            RELEASE:maquinadielectrico,1;                                  Releases dielectric machine. 
73$          COUNT:#bkrspordielectrico,1;                                    Counts the number of units that tested 
at the dielectric area. 
7$            BRANCH,1,yielddielectric:With,.99,11$,Yes:Else,9$,Yes;                    Simulates the rejection/acceptance of 
units at the dielectric test. 
11$          ROUTE:.1,estaciontesting1;                                     Accepted units are moved to the 
testing area. 
 
9$            COUNT:rechazadasendielectrico,1;                             Counts the number of units rejected at 
the dielectric area. 
34$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Discounts WIP by one unit. 
156$        RELEASE:testerdielectdummy1,1:tester1,1;                                           Releases testing personnel. 
10$          DISPOSE:No; 
 
93$          SEIZE,3,Other:tester2,1:NEXT(137$);                                   Seizes the testing personnel #2. 
 
137$        SEIZE,1,Other:testerdielectdummy2,1:NEXT(94$);                       For animation purposes. 
 
94$          DELAY:1.06+logn(.423,.266,1),,Other:NEXT(96$);                Dielectric process time. 
 
96$          RELEASE:maquinadielectrico,1;                                   Releases dielectric machine. 
101$        COUNT:#bkrspordielectrico,1;                                   Counts the number of units that tested 
at the dielectric area. 
95$          BRANCH,1,yielddielectric:With,.99,99$,Yes:Else,97$,Yes;                   Simulates the rejection/acceptance of 
units at the dielectric test. 
99$          ROUTE:.1,estaciontesting2;                                     Accepted units are moved to the 
testing area. 
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97$          COUNT:rechazadasendielectrico,1;                              Counts the number of units rejected 
at the dielectric area. 
100$        ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Discounts WIP by one unit. 
157$        RELEASE:testerdielectdummy2,1:tester2,1;                                             Releases testing personnel. 
98$          DISPOSE:No; 
 
 
14$          STATION,estaciontesting2; 
153$        RELEASE:testerdielectdummy2,1:tester2,1;                                             Releases of testing personnel once 
the unit has been moved to the testing area. 
12$          QUEUE,filatesting2;                                             Buffer for testing machine #2. 
13$          SEIZE,1,Other:maquinatest2,1:NEXT(89$);                               Seizes testing machine #2 if 
available. 
 
89$          QUEUE,filamaqtestdisponible2;                                     Waiting time if testing personnel is 
not available. 
88$          SEIZE,1,Other:tester2,1:NEXT(141$);                                   Seizes testing personnel if available. 
 
141$        SEIZE,1,Other:testertestdummy2,1:NEXT(15$);                         For animation purposes. 
 
15$          DELAY:1+logn(0.334,0.231,2),,Other:NEXT(142$);               Loading time for the testing machine. 
 
142$        RELEASE:testertestdummy2,1;                                      For animation purposes. 
17$          RELEASE:tester2,1;                                                Releases testing personnel. 
74$          COUNT:#bkrsporcargatest2,1;                                     Counts how many units were loaded 
into the testing machine. 
21$          DELAY:3+52*beta(2.93,4.65,3),,Other:NEXT(75$);                 Testing process time. 
 
75$          COUNT: #bkrsportest2,1;                                          Counts how many units were tested. 
22$          QUEUE,filabloqueotest2;                                         Waiting time when the testing 
machine can not be unloaded because there is no testing personnel available. 
23$          SEIZE,1,Other:tester2,1:NEXT(143$);                                     Seizes testing personnel if available. 
 
143$        SEIZE,1,Other:testertestdummy2,1:NEXT(24$);                            For animation purposes. 
 
24$          DELAY:1.05+weib(.17,2.03,4),,Other:NEXT(25$);                   Unloading process time of the 
testing machine. 
 
25$          RELEASE:maquinatest2,1;                                            Releases testing machine. 
76$          COUNT:#bkrspordescargatest2,1;                                   Counts how many units were 
unloaded from the testing machine. 
16$          BRANCH,1,yieldtesting:With,.726,20$,Yes:Else,18$,Yes;                        Accepts/rejects units at the testing 
station. 
20$          ROUTE:.1,estacionajuste2;           Units are moved to the adjustment 
area. 
 
18$          COUNT:rechazadasentesting2,1;                                     Counts how many units were 
rejected at testing. 
36$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1;    Discounts WIP by one unit. 
159$        RELEASE:testertestdummy2,1:tester2,1;                                                  Releases testing personnel. 
19$          DISPOSE:No; 
 
28$          STATION,estacionajuste2; 
155$        RELEASE:testertestdummy2,1:tester2,1;                                                      Releases the testing personnel 
once the units have been moved to the adjustment area. 
26$          QUEUE,filaajuste2;                                                  Buffer for the adjusting process. 
27$          SEIZE,2,Other:tester2,1:NEXT(135$);                                       Seizes testing personnel. 
 
135$        SEIZE,1,Other:ajustedummy2,1:NEXT(29$);                                   For animation purposes. 
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29$          DELAY:1.03+logn(0.369,0.202,5),,Other:NEXT(165$);            Adjusting process time. 
 
165$        ASSIGN:test=2;                                                  Attribute to identify the testing 
personnel doing the job for a particular unit. 
77$          COUNT:#bkrsporajuste2,1; 
30$          BRANCH,1,yieldajuste:With,1.0,69$,Yes:Else,31$,Yes;                         Accepts/rejects units at the 
adjustment process. 
69$          COUNT:#breakersportest2,1;                                     Counts how many units passed the 
adjustment process. 
47$          ROUTE:.1,estacioninspeccion1;                                  Units are moved to the inspection 
area. 
 
31$          COUNT:rechazadasenajuste2,1;                                  Counts how many units were rejected 
at the adjustment process. 
35$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Decreases WIP by one unit. 
166$        RELEASE:ajustedummy2,1:tester2,1;                                             Releases testing personnel. 
32$          DISPOSE:No; 
 
 
39$          STATION,estacioninspeccion1; 
162$        BRANCH,1:If,test.eq.1,163$,Yes:Else,164$,Yes;                                    Decides on releasing the appropriate 
testing personnel. 
163$        RELEASE:ajustedummy1,1:tester1,1;                                                      Releases testing personnel #1. 
37$          QUEUE,filainspeccion1;                                                                           Buffer for inspection I. 
45$          SELECT,POR:38$:46$;                                                                            Decides whether to seize the 
assembler or the final inspector. 
38$          SEIZE,2,Other:assembler,1:NEXT(167$);                                               Seizes the assembler, which ha a 
higher priority. 
 
167$        ASSIGN:test=1;                                                                                        Attribute to identify the personnel 
selected. 
144$        SEIZE,1,Other:assemdummyinsp1,1:NEXT(40$);                                  For animation purposes. 
 
40$          DELAY:tria(5.5,10.5,18.5,6),,Other:NEXT(72$);                                   Inspection I process time. 
 
72$          COUNT:#bkrsporinsp1,1;                                                                        Counts how many units were 
inspected. 
41$          BRANCH,1,yieldinspectionI:With,.975,44$,Yes:Else,42$,Yes;             Accepts/Rejects units at the inspection 
I area. 
44$          ROUTE:.1,estaciondrawout;                                                                    Units are moved to the draw out area. 
 
42$          COUNT:rechazadaseninsp1,1;                                                                 Counts how many units were rejected 
at the draw out area. 
60$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1;Decreases WIP by  one unit. 
168$        BRANCH,1:If,test.eq.1,169$,Yes:Else,170$,Yes;                                   defines who did the inspection I for a 
particular unit. 
169$        RELEASE:assemdummyinsp1,1:assembler,1;                                        Releases assembler. 
43$          DISPOSE:No; 
 
170$        RELEASE:fininspdummyinsp1,1:finalinspector,1:NEXT(43$);            Releases final inspector. 
 
46$          SEIZE,3,Other:finalinspector,1:NEXT(178$);                                        Seizes the final inspector, which ha a 
lower priority. 
 
178$        ASSIGN:test=2;                                                                                       Attribute to identify the personnel 
selected. 
145$        SEIZE,1,Other:fininspdummyinsp1,1:NEXT(48$);                                For animation purposes. 
 
48$          DELAY:tria(5.5,10.5,18.5,6),,Other:NEXT(72$);                                  Inspection I process time. 
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164$        RELEASE:ajustedummy2,1:tester2,1:NEXT(37$);                              Releases testing personnel #2. 
 
 
50$          STATION,estaciondrawout; 
171$        BRANCH,1:If,test.eq.1,172$,Yes:Else,173$,Yes;                                Selects the personnel who did the 
inspection I. 
172$        RELEASE:assemdummyinsp1,1:assembler,1;                                      Releases the assembler. 
49$          QUEUE,filadrawout;                                                        Buffer for draw out test. 
79$          SEIZE,2,Other:maquinadrawout,1:NEXT(80$);                                   Seizes draw out machine. 
 
80$          QUEUE,filadrawoutdisponible;                                  Waiting time if the assembler or final 
inspector are not available. 
59$          SELECT,POR:54$:57$;                                                 Defines who will perform the draw out 
test. 
54$          SEIZE,1,Other:assembler,1:NEXT(179$);                              Seizes the assembler. 
 
179$        ASSIGN:test=1;                                               Identify the personnel who was 
selected to perform the draw out test. 
146$        SEIZE,1,Other:assemdummydwout1,1:NEXT(55$);                       For animation purposes. 
 
55$          DELAY:7.5+weib(8.6,2.32,7),,Other:NEXT(186$);              Draw out processing time. 
 
186$        RELEASE:maquinadrawout,1;                                    Releases the draw out machine. 
71$          COUNT:#bkrspordrawout,1;                                    Counts how many units passed through 
draw out. 
51$          BRANCH,1,yielddrawout:With,.961,53$,Yes:Else,52$,Yes;               Accepts/rejects units at the draw out 
area. 
53$          ROUTE:.1,estacioninspeccionfinal;                                 Units are moved to final inspection. 
 
52$          COUNT:rechazadasendrawout,1;                               Counts how many units were rejected 
at the draw out area. 
56$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Decreases WIP by one unit. 
175$        BRANCH,1:If,test.eq.1,176$,Yes:Else,177$,Yes;                                 Selects the employee who performed 
the draw out test for a particular unit. 
176$        RELEASE:assemdummydwout1,1:assembler,1;                                   Releases the assembler. 
174$        DISPOSE:No; 
 
177$        RELEASE:fininspdummydwout1,1:finalinspector,1:NEXT(174$);      Releases the final inspector. 
 
57$          SEIZE,2,Other:finalinspector,1:NEXT(180$);                        Seizes the final inspector. 
 
180$        ASSIGN:test=2;                                               Identify the personnel who was 
selected to perform the draw out test. 
147$        SEIZE,1,Other:fininspdummydwout1,1:NEXT(58$);                     For animation purposes. 
 
58$          DELAY:7.5+weib(8.6,2.32,7),,Other:NEXT(186$);              Draw out processing time. 
 
173$        RELEASE:fininspdummyinsp1,1:finalinspector,1:NEXT(49$);          Releases the final inspector. 
 
62$          STATION,estacioninspeccionfinal; 
181$        BRANCH,1:If,test.eq.1,182$,Yes:Else,183$,Yes;                                Selects whoever performed the draw 
out test for a particular unit. 
182$        RELEASE:assemdummydwout1,1:assembler,1;                                  Releases the assembler. 
61$          QUEUE,filainspeccionfinal;                   Buffer for final inspection. 
66$          SEIZE,1,Other:finalinspector,1:NEXT(148$);                        Seizes the final inspector. 
 
148$        SEIZE,1,Other:fininspdummyinspfin1,1:NEXT(67$);                   For animation purposes. 
 
67$          DELAY:3.5+expo(3.27,8),,Other:NEXT(78$);                   Final inspection processing time. 
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78$          COUNT:#bkrsporinspfinal,1;                                  Counts how many units passed through 
final inspection. 
63$          BRANCH,1,yieldfinalinspection:With,.948,86$,Yes:Else,64$,Yes;     Accepts/Inspects units at final 
inspection area. 
86$          ROUTE:.1,estacionempaque;     Units are moved to packing. 
 
64$          COUNT:rechazadaseninspfinal,1;                             counts how many units were rejected at 
the final inspection area. 
68$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Decreases WIP by one unit. 
184$        RELEASE:fininspdummyinspfin1,1:finalinspector,1;                           Releases the final inspector. 
65$          DISPOSE:No; 
 
183$        RELEASE:fininspdummydwout1,1:finalinspector,1:NEXT(61$);        Releases the final inspector. 
 
81$          STATION,estacionempaque; 
185$        RELEASE:fininspdummyinspfin1,1:finalinspector,1:NEXT(149$);     Releases final inspector once the unit 
is moved into the packing area. 
 
 
; 
; 
;     Model statements for module:  Seize 1 
; 
149$        QUEUE,filaempaque; 
187$        SEIZE,1,Other:SELECT(empaque,CYC,),1:NEXT(192$); 
 
192$        ASSIGN:j=j; 
189$        DELAY:0.000,,Other:NEXT(82$); 
 
82$          DELAY:8+9*beta(1.15,.554,9),,Other:NEXT(151$);             Packing processing time. 
 
 
; 
; 
;     Model statements for module:  Release 1 
; 
151$        TRACE,-1,"-Releasing resources\n":; 
193$        RELEASE:SELECT(empaque,LAST),1:NEXT(83$); 
 
83$          ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; decreases WIP by one unit. 
84$          TALLY:tiempoenelsistema,tnow-tiempodellegada,1;            Calculates the cycle time for each unit. 
87$          COUNT:bkrsembarcados,1;                                     Counts How many units were packed 
(Throughput) 
85$          DISPOSE:No; 
 
 
104$        STATION,estaciontesting1; 
152$        RELEASE:testerdielectdummy1,1:tester1,1;                                         Releases of testing personnel once the 
unit has been moved to the testing area. 
102$        QUEUE,filatesting1;                                         Buffer for testing machine #1. 
103$        SEIZE,1,Other:maquinatest1,1:NEXT(121$);                          Seizes testing machine #1 if available. 
 
121$        QUEUE,filamaqtestdisponible1;                              Waiting time if testing personnel is not 
available. 
120$        SEIZE,1,Other:tester1,1:NEXT(138$);                                Seizes testing personnel if available. 
 
138$        SEIZE,1,Other:testertestdummy1,1:NEXT(105$);                      For animation purposes. 
 
105$        DELAY:1+logn(0.334,0.231,2),,Other:NEXT(139$);            Loading time for the testing machine. 
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139$        RELEASE:testertestdummy1,1;                                  For animation purposes. 
107$        RELEASE:tester1,1;                                            Releases testing personnel. 
117$        COUNT:#bkrsporcargatest1,1;                                 Counts how many units were loaded 
into the testing machine. 
111$        DELAY:3+52*beta(2.93,4.65,3),,Other:NEXT(118$);           Testing process time. 
 
118$        COUNT:#bkrsportest1,1;                                      Counts how many units were tested. 
112$        QUEUE,filabloqueotest1;                                     Waiting time when the testing machine 
can not be unloaded because there is no testing personnel available. 
113$        SEIZE,1,Other:tester1,1:NEXT(140$);                                Seizes testing personnel if available. 
 
140$        SEIZE,1,Other:testertestdummy1,1:NEXT(114$);                      For animation purposes. 
 
114$        DELAY:1.05+weib(.17,2.03,4),,Other:NEXT(115$);            Unloading process time of the testing 
machine. 
 
115$        RELEASE:maquinatest1,1;                                      Releases testing machine. 
119$        COUNT:#bkrspordescargatest1,1;                             Counts how many units were unloaded 
from the testing machine. 
106$        BRANCH,1,yieldtesting:With,.726,110$,Yes:Else,108$,Yes;              Accepts/rejects units at the testing 
station. 
110$        ROUTE:.1,estacionajuste1;                                   Units are moved to the adjustment area. 
 
108$        COUNT:rechazadasentesting1,1;                              Counts how many units were rejected 
at testing. 
116$        ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Discounts WIP by one unit. 
158$        RELEASE:testertestdummy1,1:tester1,1;                                          Releases testing personnel. 
109$        DISPOSE:No; 
 
124$        STATION,estacionajuste1; 
154$        RELEASE:testertestdummy1,1:tester1,1;                                          Releases the testing personnel once the 
units have been moved to the adjustment area. 
122$        QUEUE,filaajuste1;                                          Buffer for the adjusting process. 
123$        SEIZE,2,Other:tester1,1:NEXT(134$);                                Seizes testing personnel. 
 
134$        SEIZE,1,Other:ajustedummy1,1:NEXT(125$);                          For animation purposes. 
 
125$        DELAY:1.03+logn(0.369,0.202,5),,Other:NEXT(160$);         Adjusting process time. 
 
160$        ASSIGN:test=1;                                               Attribute to identify the testing 
personnel doing the job for a particular unit. 
132$        COUNT:#bkrsporajuste1,1; 
126$        BRANCH,1,yieldajuste:With,1.0,131$,Yes:Else,127$,Yes;                 Accepts/rejects units at the adjustment 
process. 
131$        COUNT:#breakersportest1,1;                                  Counts how many units passed the 
adjustment process. 
130$        ROUTE:.1,estacioninspeccion1;                               Units are moved to the inspection area. 
 
127$        COUNT:rechazadasenajuste1,1;                               Counts how many units were rejected 
at the adjustment process. 
129$        ASSIGN:#breakerspromedioensistema=#breakerspromedioensistema-1; Decreases WIP by one unit. 
161$        RELEASE:ajustedummy1,1:tester1,1;                                          Releases testing personnel. 
128$        DISPOSE:No; 
 
 
Experiment: 
PROJECT,      "Actual System - Validation Run","Roberto L. Seijo Vidal",03/11/2004,No,No,No,No,No,No,No,No; 
 
ATTRIBUTES:   test: 
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              tiempodellegada; 
 
VARIABLES:    #breakerspromedioensistema,CLEAR(System),CATEGORY("None-None"); 
 
SEEDS:        yieldinspectionI,456789,No: 
              yielddielectric,123456,No: 
              yieldfinalinspection,678912,No: 
              yieldajuste,345678,No: 
              yieldtesting,234567,No: 
              yielddrawout,567891,No; 
 
QUEUES:       filamaqtestdisponible1,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filamaqtestdisponible2,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filadrawout,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filatesting1,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filatesting2,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filadielectricodisponible,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filadrawoutdisponible,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filainspeccionfinal,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filabloqueotest1,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filabloqueotest2,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filadielectrico,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filainspeccion1,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filaempaque,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filaajuste1,FirstInFirstOut,,AUTOSTATS(Yes,,): 
              filaajuste2,FirstInFirstOut,,AUTOSTATS(Yes,,); 
 
PICTURES:     producto; 
 
RESOURCES:    testerdielectdummy1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              testerdielectdummy2,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              maquinatest1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              maquinatest2,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              maquinadrawout,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              maquinadielectrico,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              fininspdummydwout1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              assembler,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              assemdummyinsp1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              ajustedummy1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              ajustedummy2,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              tester1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              tester2,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              fininspdummyinsp1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              fininspdummyinspfin1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              testertestdummy1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              testertestdummy2,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              finalinspector,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              assemdummydwout1,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(Yes,,): 
              empacador1: 
              empacador2; 
 
STATIONS:     estacioninspeccion1: 
              estacioninspeccionfinal: 
              entrada: 
              estacionajuste1: 
              estacionajuste2: 
              estacionempaque: 
              estaciondrawout: 
              estaciondielectrico: 
              estaciontesting1: 
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              estaciontesting2; 
 
COUNTERS:     1,breakerstotalesgenerados,,Replicate: 
              2,#bkrspordielectrico,,Replicate: 
              3,#bkrsportest1,,Replicate: 
              4,#bkrsporcargatest1,,Replicate: 
              5,#bkrspordescargatest1,,Replicate: 
              6,#breakersportest1,,Replicate: 
              7,#bkrsporajuste1,,Replicate: 
              8,#bkrsportest2,,Replicate: 
              9,#bkrsporcargatest2,,Replicate: 
              10,#bkrspordescargatest2,,Replicate: 
              11,#breakersportest2,,Replicate: 
              12,#bkrsporajuste2,,Replicate: 
              13,#bkrsporinsp1,,Replicate: 
              14,#bkrspordrawout,,Replicate: 
              15,#bkrsporinspfinal,,Replicate: 
              16,bkrsembarcados,,Replicate: 
              17,rechazadasendielectrico,,Replicate: 
              18,rechazadasentesting1,,Replicate: 
              19,rechazadasenajuste1,,Replicate: 
              20,rechazadasentesting2,,Replicate: 
              21,rechazadasenajuste2,,Replicate: 
              22,rechazadaseninsp1,,Replicate: 
              23,rechazadasendrawout,,Replicate: 
              24,rechazadaseninspfinal,,Replicate; 
 
TALLIES:      tiempoenelsistema,"tsisindi1.dat"; 
 
DSTATS:       1,#breakerspromedioensistema,Avg.Units in System: 
              2,nq(filadielectrico),Fila Dielectrico: 
              3,nq(filadielectricodisponible),Fila Dielectrico.Disp.: 
              4,nq(filatesting1),Fila Testing1: 
              5,nq(filamaqtestdisponible1),Fila Maq.Test1 Disp.: 
              6,nq(filabloqueotest1),Fila Maq.Test1 Bloq.: 
              7,nq(filaajuste1),Fila Ajuste1: 
              8,nq(filatesting2),Fila Testing2: 
              9,nq(filamaqtestdisponible2),Fila Maq.Test2 Disp.: 
              10,nq(filabloqueotest2),Fila Maq.Test2 Bloq.: 
              11,nq(filaajuste2),Fila Ajuste2: 
              12,nq(filainspeccion1),Fila Insp.I: 
              13,nq(filadrawout),Fila D.O.: 
              14,nq(filadrawoutdisponible),Fila D.O.Disp.: 
              15,nq(filainspeccionfinal),Fila Insp.Final: 
              16,NQ(filaempaque),Fila Empaque: 
              17,nr(maquinadielectrico),% Util.Maq.Dielectrico: 
              18,nr(maquinatest1),% Util.Maq.Test1: 
              19,nr(maquinatest2),% Util.Maq.Test2: 
              20,nr(tester1),% Util.Tester1: 
              21,nr(tester2),% Util.Tester2: 
              22,nr(maquinadrawout),% Util.Maq.D.O.: 
              23,nr(assembler),% Util.Assembler: 
              24,nr(finalinspector),% Util.Final Insp.: 
              25,(nr(empacador1)+nr(empacador2))/2,% Util. Packers; 
 
OUTPUTS:      1,nc(breakerstotalesgenerados): 
              2,nc(#bkrspordielectrico): 
              3,nc(#bkrsportest1): 
              4,nc(#bkrsporcargatest1): 
              5,nc(#breakersportest1): 



 

 

213

              6,nc(#bkrspordescargatest1): 
              7,nc(#bkrsporajuste1): 
              8,nc(#bkrsportest2): 
              9,nc(#bkrsporcargatest2): 
              10,nc(#breakersportest2): 
              11,nc(#bkrspordescargatest2): 
              12,nc(#bkrsporajuste2): 
              13,nc(rechazadasendielectrico): 
              14,nc(rechazadasentesting1): 
              15,nc(rechazadasenajuste1): 
              16,nc(rechazadasentesting2): 
              17,nc(rechazadasenajuste2): 
              18,davg(% Util.Maq.Dielectrico),"Up-time Dielectric machine 1.dat": 
              19,davg(% Util.Maq.Test1),"%Up-time Tester machine #1 1.dat": 
              20,davg(% Util.Maq.Test2),"%Up-time Tester machine #2 1.dat": 
              21,davg(% Util.Tester1),"%Util.testing personnel #1 1.dat": 
              22,davg(% Util.Tester2),"%Util.testing personnel #2 1.dat": 
              23,davg(Fila Dielectrico): 
              24,davg(Fila Dielectrico.Disp.): 
              25,davg(Fila Testing1): 
              26,davg(Fila Maq.Test1 Disp.): 
              27,davg(Fila Maq.Test1 Bloq.): 
              28,davg(Fila Ajuste1): 
              29,davg(Fila Testing2): 
              30,davg(Fila Maq.Test2 Disp.): 
              31,davg(Fila Maq.Test2 Bloq.): 
              32,davg(Fila Ajuste2): 
              33,nc(#bkrsporinsp1): 
              34,nc(#bkrspordrawout): 
              35,nc(#bkrsporinspfinal): 
              36,nc(rechazadaseninsp1): 
              37,nc(rechazadasendrawout): 
              38,nc(rechazadaseninspfinal): 
              39,davg(% Util.Maq.D.O.),"%Up-time Draw Out machine 1.dat": 
              40,davg(% Util.Assembler),"%Util.assembler 1.dat": 
              41,davg(% Util.Final Insp.),"%Util.Final Inspector 1.dat": 
              42,davg(Fila Insp.I): 
              43,davg(Fila D.O.): 
              44,davg(Fila D.O.Disp.): 
              45,davg(Fila Insp.Final): 
              46,nc(bkrsembarcados),"Throughput1.dat": 
              47,davg(% Util. Packers),"%Util.packers 1.dat": 
              48,davg(Fila Empaque): 
              49,davg(Avg.Units in System),"WIP1.dat": 
              50,tavg(tiempoenelsistema),"Avg.processing time1.dat"; 
 
REPLICATE,    100,0.0,19320,Yes,Yes,920,,,24.0,Minutes,No,No; 
 
SETS:         empaque,empacador1,empacador2; 
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APPENDIX C. Verification warm-up period – Input parameters 
 

 Actual System vs. Warm-up Validation  
      
 Actual System: Warm-up after 920 minutes  
 Warm-Up Validation: Warm-up after 9,200 minutes  
     

Testing Area Actual System Warm-up Validation 

Inter-arrival time (Mins.) Expo (14.3) Expo (14.3) 

Qty. Dielectric testing machines 1 1 

Qty. testing personnel - Tester #1 1 1 

Qty. testing personnel - Tester #2 1 1 

Qty. testing machines - Tester #1 1 1 

Qty. testing machines - Tester #2 1 1 

Tester#1 processing time  3+52*Beta(2.93,4.65) 3+52*Beta(2.93,4.65) 

Tester #2 processing time  3+52*Beta(2.93,4.65) 3+52*Beta(2.93,4.65) 

Yield % - Tester #1 72.6 72.6 

Yield % - Tester #2 72.6 72.6 

Draw Out Area Actual System Warm-up Validation 

Qty. Assy. personnel 1 1 

Qty. Final Insp. personnel 1 1 

Qty. Draw Out testing machines 1 1 

Packing Area Actual System Warm-up Validation 

Si
m

ul
at
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n 

Pa
ra

m
et
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s 

Qty. packing personnel 2 2 
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APPENDIX D. 28-2 Fractional Factorial Design with Center Point 

—————   3/25/2004 11:50:00 AM   ————————————————————  
 
 
 
 
* NOTE * The number of centerpoints specified is doubled for each categorical 
         factor. For Q categorical factors, the result is 2**Q times as many 
         centerpoints. 
 
Results for: Worksheet 7 
  
Fractional Factorial Design  
 
Factors:   8   Base Design:         8, 64   Resolution:    V 
Runs:     74   Replicates:              1   Fraction:    1/4 
Blocks:    1   Center pts (total):     10 
 
 
Design Generators: G = ABCD, H = ABEF 
 
 
Alias Structure (up to order 4) 
 
I 
 
A + BCDG + BEFH 
B + ACDG + AEFH 
C + ABDG 
D + ABCG 
E + ABFH 
F + ABEH 
G + ABCD 
H + ABEF 
AB + CDG + EFH 
AC + BDG 
AD + BCG 
AE + BFH 
AF + BEH 
AG + BCD 
AH + BEF 
BC + ADG 
BD + ACG 
BE + AFH 
BF + AEH 
BG + ACD 
BH + AEF 
CD + ABG + EFGH 
CE + DFGH 
CF + DEGH 
CG + ABD + DEFH 
CH + DEFG 
DE + CFGH 
DF + CEGH 
DG + ABC + CEFH 
DH + CEFG 
EF + ABH + CDGH 
EG + CDFH 
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EH + ABF + CDFG 
FG + CDEH 
FH + ABE + CDEG 
GH + CDEF 
ACE + BCFH + BDEG 
ACF + BCEH + BDFG 
ACH + BCEF + BDGH 
ADE + BCEG + BDFH 
ADF + BCFG + BDEH 
ADH + BCGH + BDEF 
AEG + BCDE + BFGH 
AFG + BCDF + BEGH 
AGH + BCDH + BEFG 
BCE + ACFH + ADEG 
BCF + ACEH + ADFG 
BCH + ACEF + ADGH 
BDE + ACEG + ADFH 
BDF + ACFG + ADEH 
BDH + ACGH + ADEF 
BEG + ACDE + AFGH 
BFG + ACDF + AEGH 
BGH + ACDH + AEFG 
CDE + FGH + ABEG 
CDF + EGH + ABFG 
CDH + EFG + ABGH 
CEF + DGH + ABCH 
CEG + DFH + ABDE 
CEH + DFG + ABCF 
CFG + DEH + ABDF 
CFH + DEG + ABCE 
CGH + DEF + ABDH 
 
 
Design Table (randomized) 
 
Run  A  B  C  D  E  F  G  H 
  1  -  +  +  +  -  -  -  - 
  2  +  +  +  -  +  +  -  + 
  3  -  -  +  -  +  -  -  - 
  4  -  -  -  -  +  -  +  - 
  5  +  +  +  +  -  -  +  + 
  6  -  +  +  +  -  +  -  + 
  7  +  +  -  +  -  +  -  - 
  8  +  +  -  +  +  +  -  + 
  9  +  -  -  +  +  -  +  + 
 10  +  -  +  +  -  +  -  + 
 11  -  +  +  -  -  +  +  + 
 12  -  -  +  -  +  +  -  + 
 13  -  +  +  +  +  +  -  - 
 14  0  0  0  0  0  0  0  + 
 15  -  -  +  +  +  +  +  + 
 16  -  +  +  +  +  -  -  + 
 17  -  +  -  -  -  -  -  - 
 18  -  -  +  -  -  +  -  - 
 19  -  +  +  -  +  +  +  - 
 20  0  0  0  0  0  0  0  - 
 21  -  +  -  +  +  -  +  + 
 22  +  +  -  -  +  -  +  - 
 23  +  +  +  +  +  -  +  - 
 24  +  +  -  -  -  +  +  - 
 25  +  -  +  -  +  -  +  + 
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 26  +  +  -  +  -  -  -  + 
 27  0  0  0  0  0  0  0  + 
 28  +  +  +  +  -  +  +  - 
 29  +  +  -  -  -  -  +  + 
 30  -  +  -  +  +  +  +  - 
 31  -  -  -  -  -  +  +  - 
 32  0  0  0  0  0  0  0  - 
 33  +  -  +  -  +  +  +  - 
 34  +  +  -  -  +  +  +  + 
 35  +  +  +  -  -  -  -  + 
 36  0  0  0  0  0  0  0  + 
 37  +  -  +  -  -  +  +  + 
 38  0  0  0  0  0  0  0  - 
 39  +  -  +  +  +  -  -  + 
 40  -  -  +  +  -  -  +  + 
 41  0  0  0  0  0  0  0  - 
 42  0  0  0  0  0  0  0  - 
 43  -  +  -  -  -  +  -  + 
 44  +  -  -  -  +  -  -  + 
 45  -  -  -  +  +  -  -  - 
 46  -  +  -  +  -  -  +  - 
 47  -  -  -  +  -  -  -  + 
 48  -  +  +  -  -  -  +  - 
 49  +  -  +  +  -  -  -  - 
 50  +  +  +  +  +  +  +  + 
 51  +  -  -  +  -  +  +  + 
 52  +  -  -  -  -  +  -  + 
 53  +  +  -  +  +  -  -  - 
 54  -  -  -  -  -  -  +  + 
 55  0  0  0  0  0  0  0  + 
 56  0  0  0  0  0  0  0  + 
 57  -  -  -  -  +  +  +  + 
 58  +  -  +  -  -  -  +  - 
 59  -  +  -  -  +  +  -  - 
 60  -  +  -  -  +  -  -  + 
 61  +  -  -  +  +  +  +  - 
 62  -  -  -  +  -  +  -  - 
 63  +  -  -  +  -  -  +  - 
 64  -  +  -  +  -  +  +  + 
 65  +  -  -  -  -  -  -  - 
 66  -  -  +  +  +  -  +  - 
 67  +  -  +  +  +  +  -  - 
 68  +  +  +  -  -  +  -  - 
 69  +  -  -  -  +  +  -  - 
 70  -  -  -  +  +  +  -  + 
 71  -  +  +  -  +  -  +  + 
 72  +  +  +  -  +  -  -  - 
 73  -  -  +  +  -  +  +  - 
 74  -  -  +  -  -  -  -  + 
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APPENDIX E. 23 Factorial Design 

Full Factorial Design  
 
Factors:   3   Base Design:         3, 8 
Runs:     24   Replicates:             3 
Blocks:    3   Center pts (total):     0 
 
 
Block Generators:  replicates 
 
 
All terms are free from aliasing. 
 
 
 
 
Design Table (randomized) 
 
Run  Block  A  B  C 
  1      2  -  +  + 
  2      2  -  +  - 
  3      2  -  -  - 
  4      2  -  -  + 
  5      2  +  -  + 
  6      2  +  +  - 
  7      2  +  +  + 
  8      2  +  -  - 
  9      3  -  -  + 
 10      3  +  -  - 
 11      3  -  +  + 
 12      3  +  -  + 
 13      3  -  +  - 
 14      3  +  +  - 
 15      3  +  +  + 
 16      3  -  -  - 
 17      1  -  +  + 
 18      1  +  -  - 
 19      1  +  +  + 
 20      1  +  -  + 
 21      1  -  +  - 
 22      1  -  -  + 
 23      1  -  -  - 
 24      1  +  +  - 
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APPENDIX F. Central Composite Factorial Design 

Welcome to Minitab, press F1 for help. 
  
Central Composite Design  
 
Factors:       3     Replicates:     2 
Base runs:    20     Total runs:    40 
Base blocks:   1     Total blocks:   2 
 
Two-level factorial: Full factorial 
 
Cube points:             16 
Center points in cube:   12 
Axial points:            12 
Center points in axial:   0 
 
Alpha: 1.68179 
 
 
Design Table (randomized) 
 
Run  Blk         A         B         C 
  1    2   0.00000   0.00000   0.00000 
  2    2   1.00000   1.00000   1.00000 
  3    2  -1.00000   1.00000  -1.00000 
  4    2   1.00000  -1.00000   1.00000 
  5    2  -1.00000   1.00000   1.00000 
  6    2   1.00000  -1.00000  -1.00000 
  7    2   1.68179   0.00000   0.00000 
  8    2   0.00000   0.00000   1.68179 
  9    2   0.00000   0.00000   0.00000 
 10    2   0.00000   1.68179   0.00000 
 11    2   0.00000   0.00000   0.00000 
 12    2  -1.00000  -1.00000  -1.00000 
 13    2   0.00000  -1.68179   0.00000 
 14    2   0.00000   0.00000   0.00000 
 15    2   0.00000   0.00000   0.00000 
 16    2   0.00000   0.00000   0.00000 
 17    2   1.00000   1.00000  -1.00000 
 18    2   0.00000   0.00000  -1.68179 
 19    2  -1.68179   0.00000   0.00000 
 20    2  -1.00000  -1.00000   1.00000 
 21    1   1.00000  -1.00000   1.00000 
 22    1   0.00000   0.00000   0.00000 
 23    1  -1.00000  -1.00000  -1.00000 
 24    1   1.68179   0.00000   0.00000 
 25    1  -1.00000   1.00000  -1.00000 
 26    1   0.00000   1.68179   0.00000 
 27    1   0.00000   0.00000   0.00000 
 28    1  -1.00000   1.00000   1.00000 
 29    1   0.00000   0.00000   1.68179 
 30    1   0.00000  -1.68179   0.00000 
 31    1  -1.00000  -1.00000   1.00000 
 32    1   0.00000   0.00000   0.00000 
 33    1   0.00000   0.00000   0.00000 
 34    1   1.00000   1.00000  -1.00000 
 35    1   1.00000   1.00000   1.00000 
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 36    1   0.00000   0.00000   0.00000 
 37    1   0.00000   0.00000   0.00000 
 38    1   1.00000  -1.00000  -1.00000 
 39    1   0.00000   0.00000  -1.68179 
 40    1  -1.68179   0.00000   0.00000 
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APPENDIX G. Visual Basic Program – Optimization Tool 

Option Explicit 'This is just for specifying that all variables must de defined 
 
 
Private Sub cmbCases_Click() 
'Purpose: 
'This subroutine will allow us to select the appropriate case considering values of two 
variables 
'Variables 
 
'Variable definition ---------------------------------------- 
 
'Variable Yield 
Dim y As Double 
 
'Variable Testing Process Time 
Dim tpt As Double 
 
'Upper and lower limits for Yield 
Dim uly As Double 
Dim lly As Double 
 
'Upper and lower limits for Testing Process Time 
Dim ultpt As Double 
Dim lltpt As Double 
 
'Variable that will evaluate user’s choice 
Dim choice As Integer 
     
'Variable definition ends ---------------------------------- 
   
   
'Variables take value from cells 
y = Cells(5, 2) 
tpt = Cells(7, 2) 
MsgBox "You have selected this values: y = " & y & "  and tpt =  " & tpt, vbInformation, 
"Variables values" 
 
 
'Bounds for variables are defined (for 3 testing machines) 
 
'Yield 
lly = 0.85 
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uly = 0.9 
 
'Testing Process Time 
lltpt = 0.7 
ultpt = 0.75 
     
 
'Compare the values of the variables to the range------------------ 
If y >= lly And y <= uly And tpt >= lltpt And tpt <= ultpt Then 
    choice = 3 
Else 
     
    'Bounds for variables are defined (for 4 testing machines) 
     
    'Yield 
    lly = 0.8 
    uly = 0.9 
     
    'Testing Process Time 
    lltpt = 0.7 
    ultpt = 1 
 
    'Compare the values of the variables to the range------------------ 
 
    If y >= lly And y <= uly And tpt >= lltpt And tpt <= ultpt Then 
        choice = 4 
    Else 
 
        'Bounds for variables are defined (for 5 testing machines) 
 
        'Yield 
        lly = 0.726 
        uly = 0.9 
 
        'Testing Process Time 
        lltpt = 0.7 
        ultpt = 1 
     
        'Compare the values of the variables to the range------------------ 
        If y >= lly And y <= uly And tpt >= lltpt And tpt <= ultpt Then 
            choice = 5 
        Else 
 
            'Data entry error------------------------------ 
            choice = 0 
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        End If 
    End If 
End If 
 
'Compare the values of the variables to the range ENDS--------------- 
 
Sheets("3 Testing Machines").Cells(5, 7) = y 
Sheets("3 Testing Machines").Cells(7, 7) = tpt 
Sheets("4 Testing Machines").Cells(5, 7) = y 
Sheets("4 Testing Machines").Cells(7, 7) = tpt 
Sheets("5 Testing Machines").Cells(5, 7) = y 
Sheets("5 Testing Machines").Cells(7, 7) = tpt 
 
 
'Selection of alternative of problem------------------------------------ 
 
If choice <> 0 Then 
    Select Case choice 
 
        Case 3 
            Sheets("3 Testing Machines").Select 
            MsgBox "You selected case for 3 Testing Machines", vbInformation, "Case 
selected" 
             
        Case 4 
            Sheets("4 Testing Machines").Select 
            MsgBox "You selected case for 4 Testing Machines", vbInformation, "Case 
selected" 
            
        Case 5 
            Sheets("5 Testing Machines").Select 
            MsgBox "You selected case for 5 Testing Machines", vbInformation, "Case 
selected" 
            
    End Select 
Else 
    MsgBox "You did not provide a valid value, try again", vbCritical, "You did not 
provide a valid value" 
End If 
 
'Selection of alternative of problem ENDS--------------------------------- 
 
 
End Sub 




