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ABSTRACT 
 

A series of cruises were carried out in Mayagüez Bay from January, 1997, to January, 2004, with 

the purpose of studying phytoplankton dynamics, optically active water components and 

ultimately developing bio-optical algorithms for the estimation of chlorophyll a  (Chl a). Fourth 

derivative spectroscopic analyses were applied to phytoplankton absorption spectra in order to 

determine phytoplankton pigments that could be identified as chemotaxonomic markers and to 

quantify Chl a. The spectral maxima found in the fourth derivative spectra were associated with 

chlorophylls a, c and carotenoid pigments, probably fucoxanthin. Good correlation was found 

between in situ Chl a concentration and the fourth derivative peaks associated to photosynthetic 

pigments. These results suggest that diatoms are the dominant phytoplankton group in Mayagüez 

Bay. Surface Rrs spectra were modeled with Hydrolight using a four component case 2 model 

with in situ data for input.  The moderate agreement of the model for some of the data was 

attributed to the error associated with using TSS as a proxy for mineral concentrations. The 

effect of the bio-optical components concentration on the Rrs curve was then evaluated using 

Hydrolight. It was determined that for the range of Chl a values normally observed in Mayaguez 

Bay (0.1 to 1 µg l-1), mineral values over 5 mg l-1 were sufficient to mask the Chl a signal. These 

results were used to tentatively set a TSS threshold of 5 mg l-1 over which Chl a concentrations 

cannot be derived from the Rrs spectra. Three empirical algorithms were developed for 

Mayagüez Bay. When tested with a data set different that the one used for their development, the 

fourth order polynomial and the red band ratio algorithms produced a 120.15 and 79.00 mean 

percent error in Chl a estimation respectively. The quasi-analytical algorithm (QAA) from Lee et 

al. (2002) was also evaluated with Mayagüez Bay data. The QAA performed poorly when the 

derived inherent optical properties were compared to measured data. The poor performance of 

the QAA was attributed to its inadequacy in the modeling of the spectral particle backscattering 

coefficients for Mayagüez Bay. 
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RESUMEN 
 
Una serie de cruceros se llevaron a cabo en la Bahía de Mayagüez desde enero de 1997 hasta 

enero de 2004 con el propósito de estudiar la dinámica de fitoplancton, los componentes 

ópticamente activos y finalmente desarrollar algoritmos bio-ópticos para estimar clorofila a (Chl 

a). Análisis espectroscópico de cuarta derivada fueron aplicados a los espectros de absorción de 

fitoplancton para determinar pigmentos  fitoplanctónicos que pudiesen ser identificados como 

marcadores quimiotaxonómicos. Los máximos espectrales encontrados en las curvas de cuarta 

derivada fueron asociados con clorofila a, c y pigmentos carotenoides, probablemente 

fucoxantina. Se encontró una buena correlación entre la concentración de Chl a  in situ y los 

máximos de cuarta derivada asociados con pigmentos fotosintéticos. Estos resultados sugieren 

que las diatomeas son el grupo fitoplanctónico dominante en la Bahía de Mayagüez. Espectros 

de superficie de Rrs fueron modelados con Hydrolight usando un modelo caso 2 de cuatro 

componentes con datos in situ como insumo. El ajuste moderado del modelo para algunos de los 

datos fue atribuido al error asociado con usar TSS como estimador de concentración de 

minerales. El efecto de estos componentes en la curva de reflectancia fue evaluado usando 

Hydrolight. Se determinó que para el intervalo de valores de Chl a observados normalmente en 

la Bahía de Mayagüez (0.1 to 1 µg l-1),  concentraciones de minerales mayores de 5 mg l-1 fueron 

suficientes para enmascarar la señal de Chl a. Estos resultados fueron usados para fijar un umbral 

de TSS de 5 mg l-1 sobre el cual la señal de Chl a no se puede extraer de la curva de Rrs. Tres 

algoritmos empíricos fueron desarrollados con los datos de la Bahía de Mayagüez. Dos de ellos 

produjeron un por ciento de error promedio de 120.15 y 79.00 respectivamente.  El algoritmo 

cuasi-analítico (QAA) de Lee et al. (2002) también fue evaluado con datos de Mayagüez. El 

algoritmo QAA se desempeñó pobremente cuando las propiedades ópticas derivadas fueron 

comparadas con las medidas de campo. El pobre desempeño del QAA se atribuyó  a su 

incapacidad para modelar los coeficientes espectrales de retrodispersión de partículas en la Bahía 

de Mayagüez. 
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INTRODUCTION 
 
 Coastal zones are important boundaries between land masses and the oceans (Oubelkheir 

et al., 2006). Although coastal waters only constitute 7% of the global ocean, they account for 

about 20% of the world’s annual primary productivity (Wollast, 1998). Quantitative assessment 

of the primary production and its role in the global carbon cycle is a critical environmental issue. 

This knowledge is necessary to calculate new primary production, to derive the effect of 

biological processes on the partial pressure of CO2 and therefore to understand how 

phytoplankton carbon fixation affects the net CO2 flux across the air-sea interface (Gross et al., 

2000).  

Furthermore, roughly 50% to 60% of the Earth’s human population lives within 60 km of 

the coast (Hinrichsen, 1998).  Consequently coastal areas are more immediately affected by 

anthropogenic activities than any other part of the ocean. Coastal ecosystems are very dynamic 

and complex and the effect of land-sea boundaries on circulation, river runoff, tidal currents and 

human activities such as industrialization and agriculture all contribute to this intricacy (Millero, 

2006). The effects of these factors on the coastal ocean are not always clear but inland and 

coastal waters are more prone to eutrophication as the result of human activities. The need for 

research and monitoring of the coastal zones is evident if proper management of this valuable 

resource is the goal. 

Due to the importance of coastal areas in understanding the ocean as a whole, great effort 

is being put in their study. Traditional monitoring such as oceanographic cruises and moorings 

are an important part of this effort but have several shortcomings, the principal being their 

limited area of coverage.  Ocean color remote sensing has demonstrated a great potential for 

studying coastal ecosystems. In this technique, the remote sensing reflectance [Rrs(λ)], an 

apparent optical property (AOP) is used to quantify the ocean color. Ocean color depends on the 

geometry of the light field and on the inherent optical properties (IOPs) of the body of water 

(Kirk, 1994). The IOPs are defined by the optically active constituents of the body of water that 

absorb and scatter light, mainly the water itself, inorganic and organic suspended particles, 

colored dissolved organic matter (CDOM) and phytoplankton (Ruddick et al., 2001; Oubelkheir 

et al., 2006). The rationale behind ocean color remote sensing is that changes in the 
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characteristics of the optically active constituents of the water body affect IOPs and ultimately 

AOPs. As a result, AOPs such as water leaving radiance [Lw (λ)] and Rrs(λ), provide important 

information about the composition of a water mass. In order for ocean color remote sensing to be 

effective, quantitative relationships between the optically active constituents of interest, the IOPs 

and the AOPs must be acquired.  

Morel and Prieur (1977) classified the global ocean in two optical types, Case I and Case 

II waters. Case I waters are those in which the optical properties are dominated by 

phytoplankton. In Case II waters, others substances that do not co-vary with phytoplankton 

pigments dominate the optical properties. Such substances are CDOM, suspended sediments, 

bacteria and detritus (Carder et al., 1999).  

Of the various hydrologic parameters which can be measured using ocean color remote 

sensing, one of the more important is chlorophyll-a (Chl a). Chlorophyll a is a photosynthetic 

pigment present in most groups of phytoplankton (Kirk, 1994).  Taking advantage of this 

characteristic, Chl a is generally used as an index of phytoplankton biomass (Falkowski et al., 

1998). Since Chl a is the main photosynthetic pigment, it has also been used extensively as a 

proxy of primary production (Gross et al., 2000; Chami and Robilliard, 2002). Chl a absorbs 

strongly in the blue (~443 nm) and the red part (~670 nm) of the visible spectrum, reflecting and 

transmitting green light (~555 nm) (Kirk, 1994). This spectral signature is the basis for optical 

remote sensing of Chl a and most bio-optical algorithms exploit this phenomenon in one way or 

another. 

A great deal of effort has been made to accurately measure Chl a in the ocean. Several 

algorithms have been successfully developed to assess Chl a concentration in Case I waters with 

an acceptable level of error (less than 35% mean percent error). However, no satisfactory 

algorithm has been developed for Case II waters (Ruddick et al., 2001). For example for the 

Coastal Zone Color Scanner (CZCS), Gordon et al. (1983) reported ± 40% of error in Chl a 

retrieval for Case I waters.  In contrast up to 133% of error in Chl a estimation was reported for 

the same data set in Case II waters. Due to the important contribution of Case II waters to global 

phytoplankton biomass, and the implication on the Earth’s carbon budget, the development of 

accurate algorithms for Chl a retrieval in coastal waters is a top priority for the remote sensing 

community. 
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There are various approaches for the remote sensing of Chl-a concentration in the ocean. 

Empirical and semi-analytical algorithms have been proposed and employed with a varying 

degree of success. A more recent procedure involves the use of Neural Network Techniques 

(NNT) for Chl a retrieval. Other methods have been suggested for Chl a estimation but they have 

not been widely implemented at this time. 

Empirical algorithms use statistically derived relationships between AOPs and Chl a. The 

most common type of empirical algorithm is the band ratio algorithm. These algorithms usually 

use ratios of bands in the blue and green regions of the visible spectrum to estimate Chl a 

concentration by means of a polynomial regression. The majority of band ratio algorithms use 

ratios of Rrs (443)/Rrs (555) and Rrs (490)/Rrs (555) as established in Gross et al., (2000). These 

algorithms are widely used because their ease of computation, allowing fast processing of 

remotely sensed data sets. However, noise due to CDOM and detritus absorption in the 400 – 

500 nm region of the spectrum is very high in Case II waters. A novel approach for 

implementing band ratio algorithms in turbid waters is the use of selected red and near infrared 

bands. This technique circumvents the problem of non algal absorption by CDOM and detritus in 

the blue region of the spectrum (Ruddick et al., 2001). The rationale of this type of band ratio 

algorithm is to exploit the 670 nm Chl a absorption feature. Despite the theoretical plausibility of 

this approach, it also has several limitations, one of them being the applicability of such 

algorithms to humid geographical regions where the atmosphere absorbs most of the infrared 

radiation. The biggest shortcoming of empirical algorithms as a whole is that their 

implementation is normally limited to the waters in which they were developed (Salinas et al., 

2007).  

Semi-analytical (SA) algorithms are derived from solutions to the radiative transfer 

theory. This makes them inherently more accurate than empirical algorithms (Lee et al., 2002). 

SA algorithms are dependent on the precise knowledge of the absorption and scattering profiles 

of the different water constituents. They do not retrieve biogeochemical parameters directly but 

fortunately these can be modeled from the IOPs once they are known. However, semi-analytical 

models need to be coupled to an appropriate optimization method in order to retrieve IOPs from 

AOPs. This can be complicated and time consuming, especially for large data sets such as 

satellite images. Hence empirical algorithms are almost always preferred for these purposes.  

Most semi-analytical and quasi-analytical algorithms use empirical methods to estimate the 
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spectral shape of the IOPs. This method has been shown to be inadequate for turbid coastal 

waters due to the optical complexity of these systems (Chang et al., 2006). Another drawback of 

semi-analytical algorithms is that multiple combinations of IOPs could result in identical 

reflectance values. This problem is referred to as the ambiguity of the ocean color inversion 

(Sydor et al., 2004). The error ascribed to this ambiguity is especially large in highly absorbing 

water masses (Defoin-Platel and Chami, 2007).  

Recently, neural networks have been used to retrieve ocean composition variables from 

remotely sensed data. Neural networks provide a family of functions that can approximate a wide 

range of nonlinear continuous functions (Gross et al., 2000). There are several types of neural 

networks, each performing better for particular applications. For the bio-optical remote sensing 

of Chl a, multi-layered perceptrons and genetic programming algorithms are being actively 

researched.  The accuracy of these techniques has been reported as low as < 33% for Case II 

waters (Chami and Robilliard, 2002). Their main drawback is that the calculations are complex 

and require lots of computational resources. 

In practice, the ideal ocean color algorithm is the one capable of estimating Chl a 

concentrations accurately in a wide variety of ocean conditions. Generally sampling waters with 

a wide range of bio-optical parameters in order to develop such algorithms requires plenty of 

resources and logistics. Coastal and inland waters are convenient for bio-optical studies for a 

number of reasons. They provide accessible areas where to collect data and offer a diverse array 

of bio-optical conditions in relatively small geographical areas.  

Western Puerto Rico offers a convenient location for the development of coastal ocean 

color algorithms. In particular, Mayagüez Bay is well suited for this purpose. Mayagüez Bay is a 

semi-enclosed bay, located on latitude 18° 12.00’, longitude 67° 10.00’.  It has an extension of 

about 47 km2 out of a total of 100 km2 if the entire Mayaguez - Añasco Bay complex is 

considered (Ludeña, 2007). Mayagüez Bay is subjected to a diversity of biogeophysical features 

that result in a complex bio-optical environment. 

Mayagüez Bay has a relatively narrow shelf and is deeper on the northern part and 

becomes shallower to the south. Its outer boundary have some coral reefs reportedly with less 

than 10% of living coral cover (Morelock et al., 2001). The sparse coral cover is attributed to 

high nutrient input and suspended sediment precipitation on the reef (Morelock et al., 2001). 
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The Mayagüez-Añasco basin receives an average annual precipitation of approximately 

220 cm (Pérez et al., 2005). Most of this rain falls during the island rainy season, which extends 

roughly from August to November. The rainy season is characterized by high river discharge and 

associated terrigenous input (Gilbes et al., 1996). During the dry season, changes in local wind 

patterns produce a high energy environment in the bay. The increase in wave activity encourages 

heavy sediment resuspension during most of the dry season (Miller et al., 1994). The sediment 

resuspension is particularly evident on the southern part of the bay. This event has been 

associated with high backscattering and CDOM absorption values in the shallower regions of the 

bay during the winter months (Gilbes, personal communication). 

Three major rivers (Añasco, Yagüez and Guanajibo Rivers) discharge in the bay, 

supplying a large load of suspended sediments and dissolved organic matter which explain, in 

part, the optical variability of the bay (Rosado-Torres, 2000; Rodríguez, 2004). Smaller water 

bodies and tributaries also discharge sporadically into the bay. The high river discharge during 

the rainy season, and the associated reduction in salinity, has been implicated with biological 

succession of cyanobacterial and fungal populations (Ruiz-Suárez, 2004; Ludeña, 2007).  

Añasco River is the largest of the three and the longest river in Puerto Rico (PUTPR, 

2006). Although intensively used for agriculture in the past, nowadays the most part of the river 

basin is heavily populated. The absence of tree cover in much of the river basin promotes erosion 

and supplies large loads of inorganic particles in the rainy season.  The mean annual discharge 

for Añasco River, considered from March 1963 to October 2002 was 9.1 m3/s (Warne et al., 

2005). 

Yagüez River originates in the mountains east of Mayagüez and crosses the city from east 

to west. This river is probably the one more directly influenced by anthropogenic activities due 

to large part of its basin being in the urban area of Mayagüez. Due to the lack of an USGS gauge 

station in this river, no river discharge data are available. 

Guanajibo River discharges in the south margin of Mayagüez Bay and is the smallest in 

caudal of the three rivers (PUTPR, 2006). Its basin was historically devoted to sugar cane 

cultivation but has not been used for this purpose for more than a decade. During the dry season, 

Guanajibo River has little discharge values but during the wet season, its discharge becomes as 

large as Añasco River (Rosado-Torres, 2000). The mean annual discharge of this river for the 

period between January 1973 and October 2000 was 5.5 m3/s (Warne et al., 2005). 

5 



 

Beside the rivers, various other water bodies discharge in Mayagüez Bay, especially 

during events of high precipitation. Some of these are Caño La Boquilla, Quebrada Majagual and 

Caño Corazones. Although these are small compared to the principal rivers, they are surrounded 

by mangrove stands and their waters are very rich in CDOM. The extent of the impact of these 

smaller water bodies on the bio-optical properties of Mayagüez Bay is unknown. 

The shoreline of Mayagüez Bay is heavily populated and some portions are 

industrialized. The Puerto Rico Waters Authority discharges effluent from a secondary sewage 

treatment plant in the bay through a T-shaped diffuser tube located between the Añasco River 

and the Mayagüez Port (Alfaro, 2002; Ruiz-Suárez, 2004). The tuna processing industry used to 

release by-products of their manufacturing operations in the bay, but this practice ceased several 

years ago and most of the tuna packaging operation has moved elsewhere (Gilbes et al., 1996; 

Alfaro, 2002). 

The complex ecosystem that Mayagüez Bay represents provides a variety of optical 

provinces in a relatively small area (Rosado-Torres, 2000). This makes Mayagüez Bay an ideal 

laboratory for the development of coastal ocean color algorithms. 
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OBJECTIVES 
 
 The general objective of this work is to develop a set of ocean color algorithms capable 

of accurately estimating Chl a in the regional area of Mayagüez Bay. The acceptable error 

proposed for this set of algorithms is equal or less than 35%.  This level of error is the one 

reported in literature for Case I waters. The specific objectives are the following: 

1. To study phytoplankton dynamics and seasonality in Mayagüez Bay 

2. To assess the effect of the various components of coastal sea water (CDOM, minerals and 

phytoplankton) typically found in Mayagüez Bay on the remote sensing reflectance 

curve. 

3. To assess the performance of several ocean color algorithms for Mayagüez Bay. 

4. To develop a regional set of algorithms to estimate Chl a in turbid coastal areas using 

several approaches. 

5. To validate the bio-optical algorithms developed in the bay with coastal data of western 

Puerto Rico. 
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Hyperspectral Derivative Analysis of Phytoplankton Dynamics and 
Seasonality in Mayagüez Bay 

 
Introduction 

Although variations in the optical properties of ocean water are almost exclusively 

attributed to absorption by a single pigment in phytoplankton, Chlorophyll a, the process is far 

more complex (Bigidare et al., 1989). Accessory pigments play an important role in the optical 

characteristics of most natural waters, especially in the 460 – 640 nm spectral region. In addition, 

certain accessory pigments are found exclusively in certain phytoplankton groups (Millie et al., 

1995; Suzuki et al., 1997) and could be used as markers, in order to optically study 

phytoplankton seasonality in natural waters. Accessory pigments usually used as 

chemotaxonomic markers are fucoxanthin in diatoms, prymnesiophytes, raphidophytes and 

chrysophytes (Wright and Jeffrey, 1987; Ansotegui et al., 2001) and peridinin  in dinoflagellates 

(Wright and Jeffrey, 1987; Suzuki et al., 1997) among others. In many studies dealing with 

estuaries, where pigment composition has been analyzed by HPLC, fucoxanthin has generally 

been found the dominant auxiliary pigment and can be attributed to diatoms as revealed by the 

microscopic examination of samples (Laza-Martínez, 2007). However, other classes of 

phytoplankton containing fucoxanthin have been occasionally observed in estuarine waters and 

may cause blooms in some instances.   

The study of phytoplankton dynamics is essential for the understanding of the trophic 

levels and their influence in the bio-optical properties of aquatic ecosystems (Ludeña, 2007; 

Tapia-Larios, 2007). Traditional methods for the study of phytoplankton population dynamics 

include plankton net trawls and microscopic examinations of the samples. More modern methods 

include molecular biology assays for phytoplankton group discrimination (Lee-Borges, 2003). 

Both methods have their drawbacks, the first being tedious and time consuming and the second 

being work intensive. Another problem is that certain phytoplankton groups are not easily 

collected in plankton trawls (e.g. crytophyceans). A novel approach for studying phytoplankton 

dynamics is fourth derivative spectroscopy.  

Derivative spectroscopy is a powerful tool that is commonly used in the analyses of 

hyperspectral remote sensing data (Louchard et al., 2002). Spectral derivative analysis has been 

applied successfully to optical data as a mean to produce wave crests at wavelengths where 
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shoulders and peaks occur in spectroscopy curves (Millie at al., 1995). These wave crests, when 

derivative analysis is applied to phytoplankton absorption curves, correspond to the absorption 

peaks of accessory pigments. The advantages of this method over solvent extraction and HPLC 

are that natural samples are processed rapidly with a high degree of precision, no extraction of 

pigments is needed, several pigments are determined at the same time, and errors due to pigment 

loss in extraction methods are minimized (Faust and Norris, 1985).  

 Although second derivative spectroscopic analysis is the more commonly used method, 

fourth derivative analysis has several advantages. In fourth derivative analysis, a maximum in 

the original spectrum corresponds with a maximum in the fourth derivative, instead of a 

minimum as in the second derivative. The fourth derivative is also more selective to narrow 

bands than the second derivative (Lange and Balny, 2002). 

 The main objective of this work, is to obtain some insight about phytoplankton dynamics 

and seasonality in Mayagüez Bay using hyperspectral derivative analyses of the Chlorophyll a 

mass-specific phytoplankton absorption coefficients (aφ*(λ)) curves measured during a series of 

cruises spanning from February, 1997, to January, 1998. This information may compare with 

taxonomical findings by other researchers (Lee-Borges, 2003; Ludeña, 2007; Tapia-Larios, 

2007) and help choose spectral regions for Chl a estimation where interference by accessory 

pigments is minimal. 

A secondary objective is to assess the feasibility of quantifying Chl a retained in glass 

fiber filters using spectral fourth derivative analysis of the aφ(λ) curves. If a strong correlation 

between the fourth derivative of aφ(λ) and Chl a concentration is found, fluorometric 

measurements of the pigments extracted would be unnecessary, implicating savings in 

processing time and money.  

This study will also evaluate the efficiency of the hot methanol extraction method first 

proposed by Kishino et al. (1985) in sediment rich environments. The methanol extraction 

method is widely used for the measurement of particle absorption and related optical quantities. 

However, not many works have assessed the efficacy of the procedure, especially in waters with 

high content of suspended clay. Clays are known to adsorb organic matter and other electrically 

charged particles (Tietjen et al., 2005). Chlorophylls are known to be polar molecules (Campbell 

et al., 2008) and adsorption to clay surfaces during extraction could be possible, resulting in the 
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underestimation of the chlorophyll measured in the methanol extract. This occurrence would 

adversely affect the chlorophyll values used for algorithm development. 
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Materials and Methods 
Field Work 

Water samples were collected in a series of cruises carried out monthly from February, 

1997, to January, 1998 in Mayagüez Bay. Water samples and ancillary data were taken from six 

oceanographic stations strategically located across the bay (Figure 1). Of the six stations 

sampled, the data of three of them were used for the derivative analysis. The stations selected 

were Oceánica, an offshore station, Añasco, located close to the Añasco River mouth and 

Rodríguez, a station located close to the Rodríguez Reef. These stations were selected because 

they represent three distinct environments (offshore, river mouth and reef) in the bay and are 

well spaced from each other. The remaining stations were located next to anthropogenic 

pollution sources that were not operating after 1998 (Atuneras) or very close to sewage 

discharges (Acueductos) and are not representative of the rest of the bay. 

 

Laboratory Work and Data Analysis 

Water samples were transported in an ice chest to the laboratory and filtered using the 

filter pad technique proposed by Mitchell and Kieffer (1984).  The samples were collected on 25 

mm Whatman GF/F filters.  These filters were kept at 0°C until absorption measurements were 

done.  The absorption spectra between 375 and 800 nm was measured using a GER 1500 

portable spectroradiometer attached to a Li-Cor integrating sphere by a fiber optic cable.  A 

blank filter was made by filtering a volume of 200 ml of distilled water.  The absorption of the 

blank was also measured and the difference between the sample and the blank spectra was taken 

as the particulate absorption spectrum (ap). Following this measure, hot methanol was passed 

through the filter (Kishino et al., 1985), and the measurement procedure repeated. These spectra 

were taken as absorption by non-methanol extractable detrital matter (ad).  The difference 

between ap and ad represents the phytoplankton absorption (aφ).  This value, divided by the Chl a 

concentration corresponds to the Chlorophyll-a specific absorption coefficient (aφ*).  All spectra 

were normalized to zero absorbance at 750 nm and corrected for path length amplification using 

the β factor from Bricaud and Stramski (1990).  Chl a concentration extracted in methanol was 

measured with a Turner Designs Model 10-AU fluorometer using the method developed by 

Welschmeyer (1994). This procedure provides the capacity of measuring the Chl a concentration  
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Figure 1. Oceanographic stations occupied during the 1997 – 1998 series of cruises. 
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directly, without acidification of the sample.  The fluorometer was calibrated regularly using Chl 

a from the alga Anacystis nidulans. 

 The fourth derivative of the aφ*(λ) and the ad(λ) curves was calculated by applying a 41 

point fourth degree polynomial smoothing and then differentiating using the Savitzky-Golay 

method (Savitzky and Golay, 1964). The polynomial smoothing was applied because 

differentiation tends to amplify the effects of high frequency noise in the spectra (Aguirre-

Gómez et al., 2001). The procedure was carried out using Microcal Origin 7.0 Scientific 

Analysis Software. Peaks in the fourth derivative curves were selected using the peak finder tool 

found in Origin 7.0. 

 Derivative peaks positions were compared to data published (Bigidare et al., 1988; Millie 

et al., 1995; Aguirre-Gómez et al., 2001; Louchard et al., 2002) on natural populations of 

phytoplankton and to HPLC of pigments standards.  When analyzing absorption curves using the 

fourth derivative procedure, positive peaks represent accessory pigment absorption maxima. 
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Results 
The aφ* curves from the three stations considered have the typical spectral shape and 

magnitude of curves reported in the literature (Bricaud and Stramski, 1990; Lee and Carder, 

2004). The most notable features are the Chl a absorption peaks at 439 and 674 nm respectively 

(Figure 2). Shoulders and bumps in the curves, corresponding to phytoplankton accessory 

pigments, are evident, but are not easy to identify and absorption peaks cannot be isolated. 

The fourth derivative analysis enhance and amplify the absorption peaks in the aφ* 

curves. The most obvious peaks were those corresponding to Chl a, found at 440 and 675 nm. A 

number of peaks were found, namely at 468, 492, 546, 589 and 639 nm. According to Bigidare 

(1989) and Millie at al. (1995) those peaks correspond to Chlorophyll c and 

fucoxanthin/carotenoids. The aφ* curves and their fourth derivatives of the Oceánica, Añasco and 

Rodríguez stations for the 1997-1998 data set are shown in Figure 2.  

 Figures 3, 4 and 5 presents aφ* curves and their fourth derivatives for March, July and 

November of 1997, respectively. The fourth derivative analysis of Mayagüez Bay revealed 

similar accessory pigment peaks through the year. However, the peaks at 546 and 591 nm were 

more pronounced in November, suggesting an abundance of phytoplankton groups containing 

carotenoids or fucoxanthin pigments (Millie et al., 1995; Louchard et al., 2002). In addition, 

Añasco Station in March 1997 shows different peaks that the rest of the curves, namely at 530, 

550 and 580 nm.  

The Pearson’s correlation coefficient (r) between the aφ(λ) fourth derivative and Chl a 

concentration was calculated for each nanometer of the spectral range from 400 to 700 nm. The 

intention was to determine if the fourth derivative is useful for the Chl a concentration estimation 

of filter retained particles. Strong correlations were found between these parameters at several 

wavelengths, Figure 6 shows the results of the correlation analysis. Notice that the highest 

coefficient was found at 667 nm (r = 0.93). A linear regression between the fourth derivative of 

aφ(675 nm) and Chl a yielded a high regression coefficient (r of 0.93, Fig. 7). Figure 8 presents 

the results of the fourth derivative of ad(λ) of the Oceánica, Añasco and Rodríguez stations for 

the 1997 – 1998 data set. Positive peaks were found at 430, 475, 540, 620 and 670 consistent 

with the presence of Chl a, Chl c and carotenoid pigments in the filter after the hot methanol 

extraction. These findings suggest an incomplete removal of the photosynthetic pigments by the 

procedure. 
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Figure 2. Spectral specific phytoplankton absorption (aφ*(λ)) and their fourth derivatives for 
Oceánica, Añasco and Rodríguez stations in Mayagüez Bay, March 1997 to January 1998. 
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Figure 3. Spectral specific phytoplankton absorption (aφ*(λ)) and their fourth derivatives for 
Oceánica (S1), Añasco (S4) and Rodríguez (S6) stations for March, 1997 
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Figure 4. Spectral specific phytoplankton absorption (aφ*(λ)) and their fourth derivatives for 
Oceánica (S1), Añasco (S4) and Rodríguez (S6) stations for July, 1997. 
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Figure 5. Spectral specific phytoplankton absorption (aφ*(λ)) and their fourth derivatives for 
Oceánica (S1), Añasco (S4) and Rodríguez (S6) stations for November, 1997. 
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Figure 6. Results from the spectral correlation coefficient (r) analysis between Chl a 
concentration and the aφ(λ) 4th derivative for the March 1997 to January 1998 data set (n = 28).  
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Figure 7. Results from the linear regression analysis between Chl a concentration and the 4th 
derivative of aφ(675 nm) for the March 1997 to January 1998 data set (n = 28).  
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Figure 8. Spectral detritus absorption (ad(λ)) and their fourth derivatives for Oceánica, Añasco 
and Rodríguez Stations, March 1997 to January 1998. 
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Discussion 
 The spectral shape and magnitude of the phytoplankton absorption curve reflects the 

pigment composition and concentration found in the natural assemblage from where the sample 

was collected (Lee-Borges, 2003). Each species has its unique pigment signature and therefore 

contributes to the shape of the absorption spectrum.  

The accessory chlorophylls and carotenoid pigments have their absorption peaks in the 

450 – 550 nm region (Lee-Borges, 2003). Since Chl a is the most abundant pigment found in 

phytoplankton and its absorption maxima are around the 440 and 670 nm wavelengths, the 

accessory pigments absorption peaks are relatively easy to identify in the 450 - 550 nm spectral 

region with fourth derivative analysis.  

 Several works have identified the position of the absorption peaks of phytoplankton 

pigments either with fourth derivative analysis, HPLC or a combination of these tools. Bigidare 

et al. (1989) reported absorption peaks for Chlorophyll a at 675 nm and Chlorophyll c at 467 nm. 

Absorptions peaks at 438 and 677 nm were reported for Chlorophyll a and at 466, 589 and 639 

nm for Chlorophyll c by Millie et al. (1995). Carotenoids, especially fucoxanthin, diadinoxanthin 

and β-carotene, have peaks reported at 495 and in the case of fucoxanthin, at 550 – 555 nm 

(Millie et al., 1995: Louchard et al., 2002). 

 Based on the literature, the peaks found at Mayagüez Bay with the fourth derivative 

analysis are consistent of Chlorophyll a (439 and 674 nm), Chlorophyll c (468, 589 and 636 nm) 

and carotenoid pigments, probably fucoxanthin (492 and 546 nm). It is recommended for future 

studies of the phytoplankton dynamics of Mayagüez Bay that HPLC analysis of the accessory 

pigments is performed in order to validate these results. 

 Chlorophyll a is the principal photosynthetic pigment of phytoplankton and is common to 

all species (Kirk, 1994). Chlorophyll c is a very common photosynthetic pigment, found in 

diatoms, dinoflagellates and other groups. Fucoxanthin and diadinoxanthin in the other hand are 

carotenoid pigments found in diatoms, prymnesiophytes, raphidophytes and chrysophytes (Hsiu-

Ping et al., 2002). The absorption peaks identified in Mayaguez Bay are consistent with the 

dominance of these groups in the phytoplankton community. 

 Ludeña (2007) found that diatoms dominated the phytoplankton community in Mayagüez 

Bay especially in the stations closer to the rivers. Her work was based on microscopic and 

molecular identification of phytoplankton groups. These findings agree with the results of the 
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aφ(λ) fourth derivative analysis and suggest that fourth derivative analysis may be an efficient 

tool for the monitoring of chemotaxonomic markers in phytoplankton assemblages.  

Some minor variations in the magnitude of the fourth derivative peaks and the 

appearance of new peaks, especially in Station 4 during March, 1997, suggest that there might be 

occurring minor seasonal changes in phytoplankton species composition, especially at the river 

mouths of the bay.  Ludeña (2007) found that diatom abundance was especially high in the 

proximity of river mouths. In general, the fourth derivative analysis suggests that the relative 

composition of the phytoplankton community is very stable throughout the year.  

 Bigidare et al. (1989) reported a good correlation (r = 0.89) between the fourth derivative 

of aφ(λ) at 467, 650 and 675 nm and Chl a concentration in the Sargasso Sea. The spectral 

correlation analysis between the fourth derivative of aφ(λ) and Chl a verifies their results. High 

correlation coefficients were also found for all the wavelengths associated with carotenoid 

accessory pigments. This suggests the possibility that the concentration of these pigments co-

vary with Chl a in the Mayagüez Bay.  Ludeña (2007) reported a strong correlation between Chl 

a concentration and diatom abundance in Mayagüez Bay. Tapia-Larios (2007) found, with the 

aid of microscopic techniques, that diatoms were the dominant taxonomic group in Mayagüez 

Bay both in the dry and the rainy season.  Since diatoms possess all the photosynthetic pigments 

identified in this study, this hypothesis is worth investigating in more detail. In summary, the 

fourth derivative of aφ(λ)  appears to be a valuable alternative method for the quantification of 

Chl a in Mayagüez Bay. Considering the ease of performing the fourth derivative analysis, the 

routine validation of Chl a concentrations obtained by fluorometric analysis is suggested. 

 A fourth derivative analysis of the ad(λ) curves detected peaks consistent with the 

presence of Chl a, Chl c and possibly carotenoid pigments (Figure 8). These findings suggest 

that the methanol extraction was not complete and that some pigments were retained in the filter. 

The presence of high concentrations of iron rich red clays in some stations, especially during the 

rainy season, may in part explain the incomplete extraction. The chlorophylls and some 

carotenoid pigments (e.g. fucoxanthin) are polar molecules which may be attracted to the 

electrically charged surface of the red clays and thus remained in the filter after the extraction. 

Activated red clays are used in vegetable oil manufacture to adsorb chlorophyll and other 

pigments in order to produce clearer oil (Güler and Tunc, 1992; Adhikari et al., 1997). 

Theoretically, the pigments responsible for the aφ(λ) curve are not recovered entirely in the 
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methanol extraction process and the Chl a concentration underestimated as a result. The loss of 

Chl a would be proportional to the inorganic sediment content of the sample. Since this value is 

assumed to vary from sample to sample, the loss of Chl a would not be uniform across the data 

set and consequently a low correlation was found. This possible source of error should be 

explored in more detail as it affects the accuracy of Chl a measurements made using the hot 

methanol extraction procedure. 

The results obtained support that diatoms are the dominant phytoplankton group in 

Mayagüez Bay. It is also evident that phytoplankton communities are stable through the year, 

with the offshore stations showing the most variability during the dry season. Fourth derivative 

analysis appears to be an efficient tool for the estimation of Chl a concentration of phytoplankton 

retained on filters and very useful for the monitoring of phytoplankton dynamics using 

chemotaxonomic marker pigments.  
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Hydrolight Simulations: The Effect of Optically Active Constituents 

on the Remote Sensing Reflectance Curve 
Introduction 

Coastal waters are characterized by their bio-optical complexity. While in oceanic waters, 

phytoplankton and the water itself define the bio-optical properties, in coastal waters both 

CDOM and detritus contribute a significant portion to the ocean color.  The fact that CDOM and 

detritus does not co-vary with phytoplankton pigments in case-2 waters makes the estimation of 

pigment concentration from ocean color challenging. 

 Although the nature of the optically active components of coastal waters is well known 

(Kirk, 1994; D’Sa and Miller, 2005), most works trying to understand the interactions between 

the optical constituents of case-2 waters and the remote sensing reflectance focus on in vitro 

experiments (e.g. Karabulut and Ceylan, 2005). While these experiments provide valuable 

insight into the bio-optical interactions in case-2 waters, most results are limited to the specific 

constituents used in the experimental setup and hence are limited to the specific geographic 

regions where those particular components occur. Another drawback of in vitro experiments is 

that because of the large quantity of materials necessary in order to recreate the artificial 

conditions to be measured, most experiments only report limited concentrations of one or two 

optical constituents (e.g. chlorophyll or total suspended solids).  

Another alternative to the in vitro approach is to use numerical models in order to study 

the remote sensing reflectance curves resulting from different concentrations of optically active 

substances. If the concentration values of optically active constituents are selected using the 

known variability of those components in the natural water body of interest, then a large 

synthetic data set representative of the water body could be produced. Such a data set could be 

used to better understand the interactions between chlorophyll, CDOM and minerals in the study 

area. 

Hydrolight is a commercial software package created by Curtis D. Mobley that uses 

numerical models to compute the radiance distributions and derived quantities for natural waters 

(Mobley and Sundman, 2001). The model provides solutions to the time-independent radiative 

transfer equation to obtain the radiance distribution within and leaving plane-parallel water 

bodies. Hydrolight uses as input the absorbing and scattering properties of the water body, the 
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nature of the wind-blown sea-surface, the sun and sky incident radiation on the water body and 

the nature of the bottom of the water column (Mobley and Sundman, 2001). The output is 

arranged in order to simplify analysis using spreadsheet and graphical software. 

Hydrolight has been widely used by the bio-optical community for different purposes 

from simulating the optical properties of natural water bodies (Albert and Mobley, 2003) to 

creating synthetic data sets in order to validate ocean color algorithms (Lee et al., 2007).  

The aim of this chapter is to validate Hydrolight 4.2 as a tool for modeling Rrs curves 

under the conditions found in Mayagüez Bay and to generate a data set of Rrs curves 

representing the various permutations of concentrations of chlorophyll, CDOM and minerals 

found in Mayagüez Bay. This information should help to understand the relative contribution of 

each constituent to the bio-optics of Mayagüez Bay and serve as a guide for the development of 

novel methodologies for the estimation of Chl a in coastal waters. 

26 



 

Materials and Methods 
 Field Work 

Oceanographic cruises were undertaken in Mayagüez Bay from February, 1997, to 

January, 2004. The cruises differed in the sampling design, sampling frequency and data 

collected. Chl a and radiometric quantities were measured in the majority of the cases and form 

the basis of the data set. The study design and samples collected are described below.  

 The data collection began with monthly cruises carried out from February, 1997, to 

January, 1998. Six oceanographic stations were sampled each month, selected because of their 

proximity to nutrient sources or critical habitats of the bay. The stations considered where 

Añasco, close to the Añasco River mouth, Oceánica, 4 miles offshore, Acueductos, near the 

Mayagüez municipal sewage plant diffuser tubes, Atuneras, near the tuna processing plants, 

Manchas, near the Manchas reef, and Rodríguez, close to the Rodríguez reef (Figure 9).  Table 1 

presents a summary of the stations and their geographic location. Water samples for absorption 

measurements, downwelling irradiance, water radiance, sky radiance and ancillary data were 

collected at each station. 

Another oceanographic cruise was performed in July, 1998. The same stations described 

above were sampled. A data set similar to the one described above was collected at each station 

during this cruise. 

An additional set of two cruises to Mayagüez Bay were completed in October 1999. The 

cruises consisted of a total of eleven stations aligned to the Yagüez River and Guanajibo River 

mouths (Figure 10). Water samples, radiance, irradiance, and ancillary data were collected in the 

cruises. Geographic coordinates for the October, 1999, stations are presented in Table 2. 

The remaining part of the data set consists of a total of seven cruises conducted from 

April, 2001, to January, 2004, at irregular intervals. Each cruise comprised twenty four stations 

divided among six transects, covering the majority of Mayagüez Bay (Figure 11). The 

geographic location for each station is presented in Table 3. Stations were located one kilometer 

apart.  In twelve of the stations water samples, radiometric measurements, and ancillary data 

were collected. In the remaining twelve stations, profiling instruments were deployed and the 

data collected are not being considered in this work. 
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Figure 9.  Oceanographic stations occupied during the 1997 – 1998 series of cruises. 
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Station Longitude
(°W) 

Latitude
(°N) 

Depth 
(m) 

Oceánica -67.233 18.200 > 500 
Manchas -67.183 18.217 120 
Atuneras -67.167 18.217 10 
Añasco -67.183 18.250 5 
Acueductos -67.183 18.233 11 
Rodríguez -67.200 18.183 8.5 

 

Table 1. Geographical coordinates for the 1997 – 1998 Mayagüez Bay cruises. 
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Figure 10.  Oceanographic stations sampled in the October 1999 cruise to Mayagüez Bay. 
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Station Longitude
(°W) 

Latitude
(°N) 

Depth 
(m) 

S1 -67.216 18.204 38.7 
S2 -67.208 18.209 19.3 
S3 -67.189 18.177 4.6 
S4 -67.185 18.168 4.6 
S5 -67.198 18.175 3.6 
S6 -67.187 18.168 5.9 
S7 -67.228 18.212 153 
S8 -67.209 18.213 52 
S9 -67.188 18.211 17 
S10 -67.162 18.206 5 
S11 -67.170 18.219 9 

 

Table 2. Geographic coordinates for the stations sampled in the October 1999 cruise. 
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Figure 11. Oceanographic stations sampled during the 2001 – 2004 series of cruises. 
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Station Longitude
(°W) 

Latitude
(°N) 

Depth 
(m) 

S1 -67.200 18.267 5 
S4 -67.253 18.267 >500 
S5 -67.190 18.240 11 
S7 -67.242 18.240 120 
S9 -67.169 18.219 10 
S11 -67.204 18.219 46 
S13 -67.163 18.203 5.5 
S15 -67.199 18.203 8 
S17 -67.180 18.189 5.5 
S19 -67.215 18.189 8.5 
S21 -67.185 18.171 5 
S23 -67.219 18.171 9 

 

 

 

Table 3. Geographical coordinates of the 2001 – 2004 oceanographic stations sampled in 
Mayagüez Bay. 
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Laboratory work 

Chl a was measured using a modification of the method proposed by Kishino et al. 

(1985). From each sample, two 200 ml replicates were filtered using 25 mm German GF/F glass 

fiber filters (0.7 µm nominal pore size) under low vacuum. The filters were placed in 15 ml 

centrifuge tubes and 10 ml of HPLC grade methanol was added to each tube. The centrifuge 

tubes were then covered with aluminum foil and refrigerated at 5°C for 24 hours.  

After the extraction was performed, the concentration of Ch a was measured using the 

fluorometric technique proposed by Welschmayer (1994). Chlorophyll a concentration was 

measured directly using either a Turner 10-AU or a Turner Model TD-700 fluorometer. Both 

instruments were modified with optical filters that allowed direct measurement of Chl a, without 

acidification. The instruments were calibrated regularly with Chl a dilutions prepared from 

Anacystis nidulans Chl a standards obtained commercially. 

Total suspended sediment concentrations were analyzed using a modification of the 

Standard Methods for the Examination of Water and Wastewater protocol 2540D. GF/F filters 

were dried in a laboratory oven at 60°C for 24 hours. The filters were removed from the oven 

one at a time and placed to cool in a dessicator for 3 minutes. After the cooling period, the filters 

were placed on the filtration funnel and a known volume of each sample was filtered. Once the 

filtration was complete, the funnel was rinsed two times with 10 ml of distilled water. Two 

replicates were obtained from each sample using the procedure described above. After the 

filtration process was finished, the filters were placed in aluminum plates and placed in an oven 

to dry for 24 hours at 60°C. After the drying was over, the filters were placed for 3 minutes in a 

dessicator and then weighted using a calibrated analytical balance. The TSS concentration was 

then calculated and reported in mg l-1. 

CDOM analysis was performed taking care that all sampling and analysis materials were 

clean and free from organic matter. Glass bottles, GF/F filters and the glass filtering rig were 

combusted in a muffle furnace at 300°C for at least 6 hours. All materials were cleaned with 1M 

HCl and 1 M NaOH and rinsed liberally with distilled water.  

The CDOM samples were taken in 250 ml amber glass bottles and refrigerated at 5°C 

until analyzed. The water samples were filtered using GF/F filters and a glass funnel coupled 

with a glass filtration flask. The filtrate was then analyzed using a dual beam Pelkin Elmer 

Lambda 18 spectrophotometer using 10 cm quartz cells. A baseline correction was performed 
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and a distilled water blank was measured before analyzing the actual samples. Refer to Bricaud 

et al. (1981) for a more comprehensive description of this method. 

 

 Hydrolight Simulations 

 The effect of the optically active substances present in coastal waters on the Rrs curves 

was accomplished using the commercial software package called Hydrolight, version 4.2. This 

software is a collection of FORTRAN subroutines that provides numerical solution to the 

radiative transfer equations for natural water bodies (Mobley and Sundman, 2001).  

The approach used in this work consisted of two parts. First, the Rrs curves produced by 

Hydrolight 4.2 using measured parameters as input were compared with Rrs curves measured in 

situ in order to validate Hydrolight 4.2 in Mayagüez Bay. Second, simulations were made using a 

four parameter optical model developed for case-2 waters. The parameters used in the model 

were selected from the observed range of those parameters in Mayagüez Bay. 

For the validation of Hydrolight 4.2 in Mayagüez Bay, a total of two cruises were 

randomly selected from the 2001 – 2004 data. This data set was selected because most of the 

necessary parameters for the Hydrolight 4.2 simulations were measured during that period. The 

data set was divided between dry and rainy season (Gilbes et al., 1996; Rosado-Torres, 2000) 

and a cruise was randomly selected from each season. A total of six stations from each cruise, 

three inshore and three offshore were taken into account for the validation. The stations are 

evenly spaced through Mayagüez Bay and aligned with the major rivers in order to maximize the 

optical variability of the data set.  

A four component model for case-2 waters was used in Hydrolight in order to model the 

Rrs curve for all 12 stations considered. The components considered in the model are water, 

chlorophyll bearing particles, colored dissolved organic matter (CDOM), and minerals.  

The optical properties of pure water were taken from Smith and Baker (1981) and Pope 

and Fry (1997). There is no need to specify the water concentration for the model. The 

chlorophyll a concentration was specified to be constant with respect to depth. Chlorophyll 

bearing particles absorption was modeled using the following equation from Prieur and 

Sathyentranath (1981): 
65.0* )(06.0)( Caa c λλ =  
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where ac* = specific absorption coefficient of chlorophyll bearing particles and C = chlorophyll 

concentration. 

Chlorophyll bearing particles scattering was modeled using a power law with Loisel-Morel near 

surface parameters (Loisel and Morel, 1998): 
m

nxbb ⎟
⎠
⎞

⎜
⎝
⎛=
λ
λλ 0

0)(  

where b0 = 0.407, x = chlorophyll concentration, λ0 = 660, n = 0.795 and m = 1. 

The CDOM absorption was assumed to be constant with depth at the reference 

wavelength. This simplification was made because no CDOM profiles were available. The 

wavelength dependence of the CDOM absorption was modeled using the following equation 

(Mobley, 1994): 

( )[ ]00 exp)(*)(* λλγλλ −−= aa  

where a*( λ0) = 1,  λ0 = 440 and γ = spectral slope from 412 to 440 nm. CDOM is assumed to be 

non scattering. 

Minerals were also specified as constant with respect to depth as no profiles were taken 

for this study. Since inorganic mineral concentrations were not measured directly, the total 

suspended sediments concentrations (TSS) were used as a proxy. The specific absorption and 

scattering coefficients where taken from the values published for red clays by Ahn (1990). The 

average mineral particles phase function, bb/b, was supplied by the Hydrolight database.  

The different sources of inelastic scattering such as chlorophyll fluorescence, CDOM 

fluorescence and Raman scattering where included in the Hydrolight runs. The simulations 

included wavelengths from 400 to 700 nm uniformly spaced every 3 nm. In addition, geographic 

coordinates, wind speed, cloud cover and GMT time were included in each simulation. The 

direct and diffuse components of the irradiance were calculated using the RADTRAN model. 

The angular pattern of the sky radiance was calculated from a subroutine named hcnrad, supplied 

by Hydrolight. The water column was assumed to be infinitely deep, and the radiometric 

quantities were calculated for surface only.  

The in situ Rrs curves were calculated using the following equation (Lee et al., 1997): 
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where Lo is the water radiance measured at a 45o angle to the water, Ls is the sky radiance 

measured at a 45o angle to the sky and f is Fresnel’s number, the percent of sky radiance 

reflected back to the atmosphere.  Fresnel’s number has a value of 0.028 at a 45o angle. 

The goodness of fit between modeled and measured Rrs curves was estimated using both 

the root mean squared error (RMSE) in sr-1 and the Willmott’s Index of Agreement, d (Legates 

and McCabe, 1999). The calculations were performed using Microsoft Excel. 

The second part of this exercise consists of creating a database of Rrs curves for 

Mayagüez Bay.  This was accomplished generating Rrs curves by varying the optically active 

constituents of the water column using Hydrolight 4.2. The components considered in the study 

are the three components whose concentrations can be defined in the Hydrolight four component 

case-2 model. These are chlorophyll bearing particles, CDOM and inorganic minerals. Each 

component was assigned five different concentrations, using published values (Rosado-Torres, 

2000) as a guide, with the intention of covering the variability range observed in Mayagüez Bay 

for each component. Each combination of parameters was used to produce a single Rrs curve, 

representing the Rrs curve expected to be observed at the bay for that particular combination of 

parameters. The combinations produced a total of 125 Rrs curves. Table 4 gives a summary of 

the values assigned to each component during the simulations.  

The various parameters used in the Hydrolight 4.2 simulations were identical to the ones 

explained in the preceding section. Date, time, geographic location, wind speed and cloud cover 

remained constant for all the Hydrolight runs in order to generate a data set where only the 

optically active constituents of the water column varied, The optical properties of red clays 

supplied with the software were used when defining the specific absorption and scattering 

coefficients of mineral particles. The ancillary parameters were selected in order to minimize 

noise cause by surface condition and cloud cover. The optical properties of red clay minerals 

were used in the simulations. Table 5 gives a summary of the different parameters used in the 

exercise. The Rrs curves produced by Hydrolight were plotted using Origin 6.0 Scientific 

Analysis Software (Microcal Inc.). 
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Optically Active Component Concentration Values Assigned 

Chlorophyll Bearing 

Particles 
0.1, 0.5, 1, 5 and 10 µg/l 

CDOM 0.05, 0.1, 0.15, 0.25 and 0.5 m-1 

Minerals 1, 5, 10, 25, and 50 mg/l 

 

Table 4. Summary of the concentration values assigned to each model component for the 
Hydrolight simulations. 
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Parameter Value 

Date July 1, 2001 

Time 12:00 PM 

Latitude 18.17° 

Longitude -67.18° 

Cloud Cover 0% 

Wind Speed 0 m/s 

Mineral Type Red Clay 

 

Table 5. Summary of the ancillary data used for the Hydrolight simulations. 
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Results 
Descriptive Statistics 

Descriptive statistics for the Chl a and TSS values measured in Mayagüez Bay are shown 

in Table 6. The mean Chl a concentration for the complete data set was 0.65 µg/l (0.56, 0.76 

µg/l). The majority of the samples (54.93%, n=78) had Chl a concentrations less than 0.65 µg/l. 

The smallest Chl a concentration measured in this data set was 0.09 µg/l for S7 in October, 2003. 

The largest Chl a concentration recorded during this study was 11.75 µg/l for S10 in October, 

1999.  

The mean TSS concentration for the Mayagüez Bay data set was 8.15 mg/l (7.10, 9.35 

mg/l). In the case of TSS, 52.63% of the samples (n=50) have a TSS value greater than the mean. 

Station 21 had the largest concentrations of TSS measured during this study, 50.34 mg/l in 

October, 2003, followed by a value of 38.30 mg/l for February, 2002. 

Figure 12 shows the variability observed in Rrs measurements for the Mayagüez Bay data 

set. Note that a variety of spectral shapes can be identified, suggesting a diverse set of bio-optical 

properties for Mayagüez Bay.  The highest Rrs value recorded during this study was 0.11 sr-1 at 

579 nm for Manchas Station in August, 1997. Averaging all Rrs curves results in Figure 13. The 

mean Rrs increases with wavelength from 400 nm. The curve features a peak approximately at 

550 nm and then decreases sharply up to 600 nm and then shows a gradual decrease up to 700 

nm. 

CDOM absorption (ag) variability can be appreciated in Figure 14. CDOM absorption 

coefficients ranged from 0.02 m-1 to 0.65 m-1 at 443 nm. The CDOM absorption curves show the 

typical exponential shape. Station 10 in October, 1999 had the highest absorption coefficients 

measured for the data set, with an ag of 0.65 m-1 at 443 nm. The mean and 95% confidence 

intervals results for ag(λ) are shown in Figure 15. CDOM absorption at 443 nm has a mean value 

of 0.087 m-1 with 95% confidence intervals of (0.075, 0.10 m-1). Note the presence of an atypical 

hump on the mean CDOM absorption curve around 550 nm. 

The results of correlation analysis between several optically active water components are 

shown in Table 7. Weak positive correlations were found between TSS and Rrs 555 (r = 0.63) 

and Rrs 670 (r = 0.62). A strong correlation was found between Chl a and ag 443 (r = 0.83).  
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Parameter Count (n) Mean 
Standard 

Deviation (s) 

Confidence 

Interval (95%) 

Chl a (µg/l) 142 0.65 2.46 (0.56, 0.76) 

TSS (mg/l) 95 8.15 1.98 (7.10, 9.35) 

 

Table 6.  Descriptive statistics for Chl a and TSS values measured in Mayagüez Bay. 
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Figure 12.  Complete set of Rrs curves calculated for Mayagüez Bay (n = 142).  
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Figure 13.  Mean and 95% confidence intervals (CI) of the Rrs curves for Mayaguez Bay (n = 
142). 
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Figure 14.  CDOM absorption curves variability for Mayagüez Bay. 
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Figure 15.  Mean and 95% confidence intervals (CI) for the CDOM curves (n = 84) measured in 
Mayagüez Bay. 
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Parameters n Pearson’s Correlation Coefficient 
(r) 

TSS vs. Chl a 95 0.37 
TSS vs. Rrs 412 95 -0.14 
TSS vs. Rrs 443 95 0.10 
TSS vs. Rrs 555 95 0.63 
TSS vs. Rrs 670 95 0.62 
Chl a vs. Rrs 412 146 -0.06 
Chl a vs. Rrs 443 146 0.01 
Chl a vs. Rrs 555 146 0.25 
Chl a vs. Rrs 670 146 0.31 
Chl a vs. ag 412 84 0.83 
TSS vs. ag 412 78 0.19 

 

 

 

Table 7.  Pearson’s Correlation Coefficients (r) for various combinations of optically active 
components measured in Mayagüez Bay. 
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Hydrolight Validation 

A reasonably good agreement was found between the measured Rrs curves and those 

modeled by Hydrolight 4.2 for October 2001. Root mean square error (RMSE) values where 

generally low (RMSE < 0.009) and Pearson correlation coefficients ranging from weak (r = 

0.433) to very strong (r = 0.99) were obtained for all stations. Willmott’s Index of Agreement (d) 

was greater than 0.526 for all stations. The Hydrolight fit was especially good from 400 to 500 

nm for stations S1, S13, S21 and S23. This fact is important because most band ratio algorithms 

use wavelengths in this range for Chl a estimation. The results of the October 2001 Hydrolight 

simulations are shown in Figure 16. 

Results for the February 2003 simulations are shown in Figure 17. Although the model fit 

estimators are somewhat lower than the ones for October 2001 (0.383 ≤ d ≤ 0.821), spectral 

shapes generally agree. A closer examination reveals departure from the measured Rrs curves 

mostly in the red portion of the visible spectrum. 

A comparison between the October 2001 (rainy season) and February 2003 (dry season) 

simulations revealed that model fit estimators tended to be lower for the dry season. Note that 

TSS concentrations where used in place of inorganic mineral concentrations for the Hydrolight 

simulations because of the lack of mineral data during this study. 

Hydrolight Simulations 

 Figure 18 shows the results for the Hydrolight simulation with CDOM absorption of 0.05 

m-1. As the mineral concentrations approaches 5 mg/l the Rrs curves become much closer, most 

notably when Chl a = 0.1 to 1 µg/l. At higher mineral concentrations (mineral concentration > 25 

mg/l), it becomes almost impossible to differentiate among Rrs curves based on their Chl a 

concentration. 

 The same phenomenon is observed at higher CDOM absorption values (0.10, 0.15, 0.25 

and 0.50 m-1) as shown in Figures 19, 20, 21, and 22. It is evident that when mineral 

concentration is greater than 5 mg/l, both CDOM absorption and Chl a concentration have 

moderate effect on the spectral shape and the magnitude of the Rrs curve.  

 An interesting feature of the Rrs curves measured in situ in Mayagüez Bay is that the 

reflectance values are not close to zero near 700 nm. This phenomenon was also observed in Rrs 

data modeled with Hydrolight 4.2. As the inorganic minerals concentration increases, the Rrs 

curve moves away from the abscissa in the red region of the visible spectrum. 
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Figure 16. October 2001 Hydrolight Rrs (0+, λ) validation results for selected stations in 
Mayagüez Bay. 
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Figure 17. February 2003 Hydrolight Rrs (0+, λ) validation results for selected stations in 
Mayagüez Bay. 
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Figure 18.   Rrs curves modeled by Hydrolight when CDOM absorption was set at 0.05 m-1 at 
443 nm. The graphs represent 1, 5, 10, 25 and 50 mg/l of red clay minerals. 
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Figure 19.   Rrs curves modeled by Hydrolight when CDOM absorption was set at 0.10 m-1 at 
443 nm. The graphs represent 1, 5, 10, 25 and 50 mg/l of red clay minerals. 
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Figure 20.   Rrs curves modeled by Hydrolight when CDOM absorption was set at 0.15 m-1 at 
443 nm. The graphs represent 1, 5, 10, 25 and 50 mg/l of red clay minerals. 
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Figure 21.   Rrs curves modeled by Hydrolight when CDOM absorption was set at 0.25 m-1 at 
443 nm. The graphs represent 1, 5, 10, 25 and 50 mg/l of red clay minerals. 
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Figure 22.   Rrs curves modeled by Hydrolight when CDOM absorption was set at 0.50 m-1 at 
443 nm. The graphs represent 1, 5, 10, 25 and 50 mg/l of red clay minerals. 
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Discussion 

Bio-optical Description 

In order to understand the bio-optical relationships in Mayagüez Bay, a look into the 

variability of the optical constituents is warranted. As it is shown in this and previous works 

(Gilbes et al., 1996; Rosado-Torres, 2000; Lee-Borges, 2003; Ludeña, 2007), Mayagüez Bay 

have the characteristics of a mesotrophic coastal bay. 

 Chl a concentrations in Mayagüez Bay are within the values reported for coastal and 

inland waters around the world.  Bowers et al. (2004) reported Chl a values ranging from 0.73 to 

9.9 µ l-1 in the Conwy Estuary, North Wales. Chl a concentrations from 0.4 to 3.8 mg m-3 were 

measured in the Gulf of Lions in the Mediterranean Sea by Ouillon and Petrenko (2005). A Chl a 

concentration range of 0.5 to 2.1 µg/l was reported for coastal waters of the northern Adriatic 

Sea by Zibordi et al. (2004). Chang et al. (2006) reported Chl a values ranging from 0.26 to 4.52 

mg m-3 for the waters of the Santa Barbara Channel in the South California Bight. 

TSS concentrations were also similar to those reported by other researchers in coastal 

systems. Mean concentrations of 12.55 mg l-1 were reported for the waters of the Conwy Estuary 

in North Wales by Bowers et al. (2004). Their TSS concentrations ranged from 4.4 to 57.0      

mg l-1. These values are in good agreement with the TSS concentrations measured in this study. 

TSS concentrations varying from 0.3 to 326.2 g m-3 were reported by Ouberkheir et al. (2006) for 

the Fitzroy Estuary-Keppel Bay system. Zibordi et al. (2004) reported TSS concentrations from 

0.76 to 1.75 mg l-1. Their range of TSS is much lower than that observed in Mayagüez Bay and 

reveals the great range of variability of this parameter among global coastal waters. 

The Rrs curves measured in Mayagüez Bay are an assortment of those found in both 

oceanic and coastal waters. These findings were expected because of the large optical variability 

that characterizes the bay (Rosado-Torres, 2000). The mean Rrs curve shows low reflection in 

the blue wavelengths, high reflectance in the green wavelengths and relatively high reflectance in 

the red wavelengths. This result suggests that in average, the bay is dominated by high CDOM 

absorption, high Chl a concentrations and abnormally high reflection in the red, probably caused 

by the high concentrations of red clays found in the bay. These results are in good agreement 

with the variability of these parameters as reported in previous studies of Mayagüez Bay (Gilbes 

et al.,1994; Rosado-Torres, 2000; Lee-Borges, 2003 and Ludeña, 2007). 
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The range of ag values measured in Mayagüez Bay is large compared to most data 

published for coastal waters. For example, Kirk (1994) published ag data at 440 nm for various 

natural waters including oceanic, coastal and inland waters. Of all the measurements reported, 

only the Marseilles drainage outfall (0.07 to 0.65 m-1) and the River Rhone mouth (0.09 to 0.57 

m-1) showed a range of ag values similar to Mayagüez Bay. D’Sa et al. (2006) reported ag 443 

values from 0.073 to 0.277 m-1 for the Mississippi River Mouth before and after a cold front.  

The large range of ag observed is a function of the optical complexity of the bay. Del 

Castillo (2005) points out that in river dominated coastal environments; CDOM is a mixture of 

compounds of terrestrial and marine origins. Not only chemical composition varies between 

CDOM end-members from these sources, but also dilution with sea water affects the CDOM 

optical properties in estuarine waters. The formation of strong gradients in the chemical and 

optical properties of CDOM is the result of this process. Since in a relatively short distance (~ 4 

km) there is a transition from river mouths to oceanic waters, large variability in ag is expected in 

Mayagüez Bay. The occurrence of a hump around 550 nm in the mean CDOM curve may be 

explained by the contamination of CDOM samples by mineral particles. Bowers and Binding 

(2006) reported similar humps present in their mineral absorption data. They also noted that such 

feature never occurs in CDOM absorption curves. 

The weak correlations found between TSS and Rrs 555 and Rrs 670 may be explained if 

we examine the TSS composition of Mayagüez Bay. Although the chemical nature of the TSS 

has not been studied yet in the bay, there is indirect evidence that red clay minerals comprise a 

large proportion of the TSS, especially during the rainy season. The evidence will be discussed 

in detail later in this section. Since red clay minerals reflect strongly in the green and red portions 

of the visible spectrum, their concentration may explain the correlation values found.  

The strong correlation between Chl a and ag 443 is probably caused by the seasonality of 

the bay in terms of river discharge. The peak of the rainy season in western Puerto Rico is in 

October (Gilbes et al., 1996; Rosado-Torres, 2000). October is also the month when higher Chl a 

values have been measured in the bay (Gilbes et al., 1996; Rosado-Torres, 2000). It has been 

proposed by Gilbes et al.(1996) and Rosado-Torres (2000) that the input of nutrients resulting 

from the increase in river discharge is responsible for the high Chl a concentrations measured in 

the bay during the rainy season. High river discharge could also explain high CDOM 
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concentrations in Mayagüez Bay and the resulting large ag values measured during the rainy 

season (Gilbes, unpublished data).  

CDOM and Chl a concentrations do not co-vary in most coastal environments (Muller-

Karger et al., 2005; D’Sa and Miller, 2005). This seems not to be the case in Mayagüez. This 

attribute of Mayagüez Bay is worth examining because of its implications in the estimation of 

Chl a using remote sensing. Empirical algorithms typically rely on at least a band in the blue 

region of the Rrs curve for Chl a estimation (Ruddick et al., 2001). Also, CDOM from terrestrial 

sources tends to absorb more at longer wavelengths (Del Castillo, 2005). Thus empirical 

algorithms, even the maximum ratio algorithms, should be negatively impacted by high ag 

values. A study of the CDOM dynamics in relation to the bio-optics of Mayagüez Bay is needed. 

 

Hydrolight Validation 

 At first glance Hydrolight 4.2 is moderately capable of modeling the Rrs curve in 

Mayagüez Bay. A closer inspection reveals that the apparently limited predictive power of 

Hydrolight is probably more related to the nature of the data. 

 Although TSS concentrations were customarily measured for the stations considered in 

the simulations, Hydrolight routines use inorganic mineral concentrations for the bio-optical 

modeling. TSS is composed of both organic (detrital) and inorganic components. The temporal 

and spatial variability of these fractions is not known for Mayagüez Bay. Since red clays are the 

major mineral component of the suspended sediments and rivers are probably the main sources 

of red clays, it is plausible that during the rainy season red clays comprise a much larger fraction 

of the TSS, especially at inshore stations close to the river mouths. This hypothesis may explain 

why in situ and modeled Rrs data do not agree very well in the red portion of the spectrum in 

some stations. Although this assumption is supported by the modeled data, experimental data is 

needed in order to validate the suggestion. 

 To better illustrate the hypothesis suggested above, an iterative manipulation of the TSS 

values was performed for one of the stations where the modeled and measured Rrs curves 

deviated in the red part of the spectrum. Figure 23 shows the results of the Hydrolight Rrs 

modeling for station 13 on February, 2003, using TSS as equivalent of mineral concentration 

(TSS = Mineral concentration = 12.7 mg l-1) and iteratively adjusting mineral concentration to 2 

mg l-1. Notice that Wilmott’s Index of Agreement (d) increases from 0.57 to 0.95 indicating a  
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Figure 23. Model fit when TSS was used to estimate mineral concentration (upper graph) and 
when mineral concentration was iteratively adjusted to 2 mg l-1. The increase in Willmott’s Index 
of Agreement suggests that the mineral fraction of the TSS was small (about 16%) for this 
particular sample. 
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much better fit. Iterative manipulations of all the stations where the Rrs curve was overestimated 

in the red by the Hydrolight modeling yielded similar results.  

A similar approach was undertaken with CDOM absorption. Although the CDOM 

absorption was carefully measured during this study, it is well documented that the sampling and 

quantifying process is prone to contamination (Del Castillo, 2005). Figure 24 shows the model 

results when CDOM concentration was iteratively decreased. Although the fit in the blue spectral 

region improves, Willmott’s Index of Agreement improves only slightly.  

These results suggest that although a small overestimation in CDOM absorption may be 

occurring, the largest impediment for improving the Hydrolight modeling of the Rrs curves for 

Mayagüez Bay is the lack of mineral concentration data. It is suggested that this parameter 

should be included in any future study of the bio-optics of the bay.  

In conclusion, Hydrolight 4.2 is an excellent tool for modeling the bio-optical properties 

of coastal waters. A suggested future application of the Hydrolight software is the creation of a 

comprehensive virtual data set of bio-optical data based on the bio-optics of Mayagüez Bay. 

Such data set would prove invaluable for the development of neural network algorithms 

requiring huge data sets for their training and validation. It could, in theory, also be used for the 

development of look-up table algorithm that relates reflectance values at several wavelengths 

with optically active constituents. 

This task will require the optical characterization of the inorganic minerals present in the 

bay. It is also important to understand the temporal and spatial optical variability of the inorganic 

suspended particles for the area. It is also suggested that future data sets take into account the 

three unknown components used for Hydrolight’s bio-optical modeling of case-2 waters (Chl a 

bearing particles, CDOM and Minerals) in terms of supplying the software with the most in situ 

data possible in order to minimize the modeling of each component, especially if profiles of 

AOPs or IOPs are needed.  

 

Hydrolight Simulations 
It has been reported that in some coastal waters, CDOM absorption is the dominating optical 

feature (Hochman et al., 1994; Carder et al., 1989). Hydrolight simulations suggest that red clay 

minerals are the single most important optically active seawater constituent in Mayagüez Bay. It 

is clearly shown in the Hydrolight simulations that at all CDOM absorption levels considered, 
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Figure 24. The effect of decreasing CDOM absorption on the Hydrolight modeling of the Rrs 

curve. Note that decreasing CDOM absorption from 0.1 m-1 to 0.05 m-1 improves de Wilmott’s 

Index of Agreement only slightly. 
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there is a loss of dependence between Rrs and Chl a when mineral concentrations are greater 

than 5 mg l-1 and Chl a concentration is relatively low (0.10 to 1.0 µgl-1). 

This finding is very important and explains, in part, the poor performance of bio-optical 

algorithms for the estimation of Chl a in this region. Mayagüez Bay exhibits low Chl a 

concentrations (mean = 0.65 µg l-1) and high TSS concentrations (mean = 8.15 mg l-1) for most 

of the year. The reasons for the high TSS values found in Mayagüez Bay are thought to be the 

extremely high load of terrigenous sediments deposited in the bay during the rainy season and 

wave induced sediment resuspension during the dry season (Gilbes, personal communication). 

Based on the Hydrolight simulations, it may not be possible to estimate Chl a using Rrs at least 

in some stations during certain times of the year. To be able to establish a threshold value of 

inorganic suspended minerals that permits remote sensed estimations of Chl a, more information 

is required about mineral dynamics in Mayagüez Bay.  Since suspended sediments are known to 

be present at high concentrations both during the dry season (wave induced resuspension) and 

the rainy season (river discharge), there is not a simple way to predict when or where to apply 

ocean color algorithms in Mayagüez Bay. 

A practical application of the Hydrolight simulation data is the fragmentation of the 

Mayagüez Bay data set in two sub-sets. Since the data set in this study does not include mineral 

concentration, and TSS may include a large fraction of inorganic particles, especially, but not 

limited to, inshore stations during the rainy season, it was decided to use TSS = 5 mg l-1 as an 

arbitrary cut-off point for the data set. This assumption assures that the Rrs data used for 

algorithm development is dependent of Chl a concentration. 

The importance of suspended inorganic particles is widely recognized in the bio-optical 

literature (Babin and Stramski, 2004). It is known that mineral particles are highly efficient 

scatterers (Bowers and Binding, 2006) and it has been demonstrated that iron rich minerals 

exhibit strong absorption in the blue-green spectral region (400 – 500 nm: Babin and Stramski, 

2004). Thus, mineral particles, especially red clays have a profound effect in seawater IOP’s and 

hence in the AOP’s.  In order to better understand the bio-optics of Mayagüez Bay, a deeper look 

into the mineral suspended particles is suggested. 
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Ocean Color Algorithms Performance Assessment and Development 

in Mayagüez Bay 
Introduction 

 One of the main goals of ocean color remote sensing is the estimation of Chlorophyll a 

(Chl a).  Accurate estimates of Chl a are of utmost importance for a better understanding of 

global, regional and local oceanographic processes. They could also be used to predict human 

impact on environmental and climate change and for the implementation of wise stewardship and 

management policies (Linton and Warner, 2003). 

 Most algorithms designed to estimate Chl a from remote sensing reflectance data fall in 

one of three categories: empirical, semi-analytic and neural network algorithms. Each of these 

approaches has its own advantages and disadvantages and examples abound in the literature. 

 Empirical ocean color algorithms, also known as band ratio algorithms, use statistically 

derived relationships between Rrs and Chl a concentration (O’Reilly et al., 1998). These types of 

algorithms are characterized for a lack of understanding of the underlying scientific theories that 

govern the relationships. Band ratio algorithms have been used extensively, especially in case-1 

waters were their percent accuracy is about 30% (Gordon and Morel, 1983). In case-2 waters, 

they tend to overestimate Chl a by a far larger percentage (Carder et al., 1991). The ease of 

calculation of the Chl a products when using band ratio algorithms and their reliability in case-1 

waters make this class of algorithms the most used in ocean color remote sensing.  

 Semi-analytical algorithms are partially based on mathematical solutions to the radiative 

transfer equation (Carder et al., 1999; Lee et al., 2002). This approach usually yields a better 

estimate of Chl a, especially in case-1 waters, at the expense of computational resources. Recent 

literature suggests that inversion algorithms do not perform that well in case-2 waters because 

their mathematical foundation is not well posed. Semi-analytical algorithms are based in the 

relationship Rrs = Q(bb/a). It has been suggested that infinite combinations of bb and a could 

produce exactly the same Rrs curve, and the possibility of that occurring is especially high in 

case-2 waters where CDOM and suspended sediments are found in high concentrations and does 

not co-vary with Chl a.  In addition, semi-analytical algorithm must be optimized in order to 

accurately derive the inherent optical properties from the apparent optical properties. This 

optimization has to be done in a regional basis. Moreover; extensive computational resources are 
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needed in order to apply semi-analytical algorithms to large remote sensed data sets such as 

ocean color sensor images.  

 Artificial neural network (ANN) algorithms are a relatively new approach to ocean color 

estimation. ANN algorithms are widely used as continuous models to fit highly non-linear 

transfer functions and for inverting noisy data sets (Schiller and Doerffer, 1998, Gross et al., 

2000). ANN algorithms are complex, stable, and adaptative approximators, capable of 

minimizing the effects of measurement errors if properly trained (Gross et al., 2000). They are 

usually better than empirical or semi-analytical algorithms at estimating Chl a from marine 

reflectance if properly trained (Gross et al., 2000). One of the drawbacks of ANN algorithms is 

the difficulty of acquiring the large data sets (pairs of Rrs measurements and Chl a 

concentration) needed to properly educate the neural networks. This drawback is usually 

overcome by creating synthetic data sets.  It is fundamental to incorporate the type of noise 

expected to be found in the waters where the ANN is to be applied because they do not cope well 

with noise that they were not trained with (Gross et al., 2000). 

 Although many different versions of all major classes of ocean color algorithms have 

been published, the bio-optics community still has not reached consensus about what type of 

algorithm performs best in case-2 waters. Many researchers feel that the quest for a universal 

ocean color algorithm is futile and that the best approach is to develop site-specific algorithms.  

The aim of this part is to assess the performance of several empirical and a quasi-analytical 

algorithm for the estimation of Chl a from Rrs in Mayagüez Bay. Due to the lack of sufficient, 

appropriate, in situ data, an ANN algorithm will not be considered.  
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Materials and Methods 
Field Work 

 Several oceanographic cruises were carried out in Mayagüez Bay from February 1997 to 

January 2004. Water samples for Chl a and Rrs (λ) measurements were taken in all the cruises 

described hereafter. 

The first series of cruises extended from February 1997 to January 1998 and consisted of 

a total of 6 oceanographic stations sampled on a monthly basis. The stations were selected taking 

into account the impact of the rivers and known sources of industrial and municipal effluents. 

Figure 25 shows the location and name of the stations. A more detailed description of the 

stations included in that series of cruises can be found in the first chapter of this document or in 

Rosado-Torres (2000).  

Two additional cruises took place in October 1999. These two cruises sampled two 

transects, each of them aligned to the Guanajibo River and Yagüez River mouths respectively. A 

total of 11 eleven stations were occupied during the cruises. The sampling layout is shown in 

Figure 26. The October 1999 cruises are described in more detail in the first chapter of this 

document or in Rosado-Torres (2000). 

A series of seven cruises were carried out in April 2001, October 2001, February 2002, 

August 2002, February 2003, October 2003 and January 2004. A total of 6 transects were 

sampled in each of those cruises, each transect comprised of four oceanographic stations. The 

stations where 1 km apart, the first station from each transect located as near as possible from the 

shore, limited by the bathymetry of the bay.  During these cruises full water sampling and bio-

optics measurements were only collected in selected stations, whereas a bio-optical package cast 

and Rrs (λ) measurements were taken in all stations (Figure 27). 

Rrs(λ) was calculated following the methodology described in Rosado-Torres (2000). 

Water radiance, Lo(λ), sky radiance, Ls(λ), and the above surface downwelling irradiance, 

Ed(0+, λ) were measured using a GER 1500 field spectroradiometer. Lo(λ) was measured 

pointing the GER 1500 to the water surface in a 45° angle. The Ls(λ) was measured aiming the 

instrument 45° into the sky. In both cases, the measurements were taken with an azimuth 90° 

from the solar plane in order to minimize the sun glint. The Ed(0+, λ) was measured fitting the  

GER 1500 with a cosine collector and aiming the instrument at the zenith. The Rrs(λ) was then  
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Figure 25. A map showing the sampling pattern for the 1997-98 time series. 
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Figure 26. A map showing the sampling pattern for the October 1999 cruises.  
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Figure 27. Sampling pattern used in the April 2001 to January 2004 cruises. Only the stations 
where full water sampling was done are presented. 
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calculated using the following equation: 
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where f is Fresnel’s number, the percent of sky radiance reflected back to the atmosphere. 

Fresnel’s number has a value of 0.028 at a 45° angle. The Rrs curves were corrected for residual 

sky radiance by subtracting the Rrs value at 950 nm. If that value was found to be negative, the 

minimum Rrs value from the spectral range from 750 to 950 nm was then subtracted from each 

curve. 

Samples were collected for Chl a and total suspended sediments (TSS) using either a 

horizontal sampling bottle or taken from the water surface directly in 1 liter dark Nalgene 

sampling bottles. The samples were refrigerated immediately and transported to the laboratory. 

 

Laboratory work 

For the 1997 – 1999 cruises, Chl a concentration was measured using a modification of 

the filter pad technique (Mitchell and Kiefer, 1984). The samples were filtered thru GF/F filters 

using a 200ml plastic filtration funnel connected to a Gast vacuum pump. The pigments were 

immediately extracted from the filters using the hot methanol extraction method proposed by 

Kishino et al. (1985). This method was used because particle, detritus and phytoplankton 

absorption were also being measured at the time.  

For the rest of the cruises, Chl a was measured using the following methodology. Once 

the samples were filtered as above, replicate filters where placed in disposable plastic 15 ml 

centrifuge tubes, filled with 10ml of HPLC grade methanol and refrigerated for 24 hours at 5°C. 

Once the extraction was done, the Chl a concentration was measured in a calibrated Turner 

10AU field fluorometer using the method proposed by Welschmeyer (1994). 

In order to divide the data set according to a threshold value of mineral concentration, 

TSS data were collected. TSS was measured by filtering a known volume of water thru 0.45 µm 

Millipore membrane filters that were previously dried in an oven at 60°C for at least 24 hours 

and weighted using a Mettler analytical balance. The filters were dried again at 60°C for 24 

hours and placed in a glass dessicator for cooling prior to weighing. The difference in weight for 

each filter (mg) was divided for the volume of water filtered (l) and the TSS concentration 

obtained in mg/l. 
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Data Analysis 

 The agreement between in situ Chl a and 14 empirical band ratio algorithms was 

estimated. The algorithms considered were CalCOFI P, CalCOFI C (Mitchell and Kahru, 1998), 

Morel 2, Morel 4 (Morel, 1988), OC1a, OC1b, OC1c, OC1d, OC2, OC2 v2, OC2c, OC2 v-4, 

OC4 v4 and OC3M (O’Reilly et al., 1998; O’Reilly et al., 2000). For this section, the Mayagüez 

Bay data set was considered both as a whole and for the data points where TSS < 5 mg/l. The 

reason was to evaluate the effect of high TSS values on algorithm performance. The algorithms 

were evaluated by calculating Root Mean Squared Error (RMSE) and Mean Percent Error 

(MPE). The MPE was calculated using the following formula: 

∑
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n
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estimatedmeasured

Chla
ChlaChla

n
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100  

Where Chla measured is the in situ Chl a concentration, and Chla estimated is the Chl a value obtained 

with a particular algorithm.  

The calculations were done in MS Excel and the graphics were produced by Microcal Origin 6.0.  

 The performance of the Quasi-Analytical Algorithm (Lee et al., 2002; Lee et al., 2007) in 

Mayagüez Bay was also assessed. In this case, only data points with TSS ≤ 5 mg/l were 

considered. The following procedure was applied to the Rrs curves in order to estimate Chl a. 

First, the in situ Rrs (λ, 0+) was converted in rrs (λ, 0-) using the following equation (Lee et al., 

2002): 
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Then, u (λ) was calculated using the following relationship (Lee at al. 2002): 
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Where g0 = 0.0895, g1 = 0.1247 for coastal waters. 

The next step was to calculate total absorption at 640 nm, [a(640)]. This was achieved using the 

following relationship (Lee et al., 2002):  
1.1
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The particle backscattering at 640 nm [bbp (640] was calculated as follows (Lee et al., 2002): 
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The particle backscattering curve was then modeled with the following power law relationship 

(Lee et al., 2002): 
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Where Υ was calculated from (Lee et al., 2002): 
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The total spectral absorption, a(λ) was then calculated from the following equation (Lee et al., 

2002): 
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The a(λ) must be partitioned into adg(λ) and aφ(λ) for Chl a calculation. The partition was 

accomplished with the following pair of equations (Lee et al., 2002): 
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The ag(λ) spectral slope from 440 to 410 nm, (S(440-410)) was averaged for the TSS ≤ 5 mg/l 

data set. 

The ratios above where then used to calculate the CDOM absorption at 440 nm as follows (Lee 

et al., 2002): 
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The ag (λ) was the modeled using ag (440) as reference, with the following relationship (Lee et 

al., 2002): 
)440()440()( −−= λλ S

gg eaa  
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The phytoplankton absorption was then obtained subtracting the CDOM absorption, ag (λ) and 

the water absorption, aw(λ) from the total absorption, a(λ) as shown in the next equation (Lee et 

al., 2002):  

)()()()( λλλλφ wg aaaa −−=  

The aw(λ) values were taken from Pope and Fry (1997) and the water backscattering coefficients 

were taken from Smith and Baker (1981) wherever they where used. 

The Chl a concentration was finally estimated using the relationship proposed by Carder et al. 

(2003): 

( ) 03.1)675(8.56 φaaChl =  

71 



 

Results 
Empirical algorithms 

 A summary of the performance of the empirical algorithms considered for the complete 

data set is shown in Table 8. The RMSE ranged from 2.49 µg l-1 for Morel 2 to 21.46 µg l-1 for 

Morel 4. The MPE varied from 298.28 % for OC2 v2 to 2096.52 % for Morel 4. In general, all 

empirical algorithms tended to overestimate Chl a in Mayagüez Bay. The performance of each 

algorithm can be better appreciated in Figures 28, 29, 30 and 31. 

 The empirical algorithms were also assessed for the samples where the TSS 

concentrations were less than 5mg/l. The RMSE ranged from 0.71 µg l-1 for OC2 v2 to          

5.26 µg l-1 for Morel 4. The MPE varied from 142.99 % for OC2 to 1249.07 % for Morel 4. 

There was an overall reduction of roughly a factor of 3 for RMSE and a factor of 2 for MPE for 

all the algorithms evaluated. The results of the algorithms performance are shown in Table 9.  

The fit of estimated Chl a versus measured Chl a for each empirical algorithm is shown in 

Figures 32, 33, 34 and 35.  

Based on the empirical algorithms performance results mentioned above, two band 

algorithms were developed for the TSS < 5mg/l data set. The first was based on the OC1d/OC2 

family of algorithms and consisted of a third order polynomial regression. The second algorithm 

was based on the OC4 v4 algorithm and consisted of a fourth order polynomial regression. These 

algorithms were selected because they were among the best performers of all empirical 

algorithms tested in the case of OC1d/OC2, and because the most recent empirical algorithms in 

use by NASA (OC4 v4 and OC3M) are based on fourth order polynomials. 

The cubic fitting of log (Chl a) versus log (Rrs 490/Rrs 455) is shown in Figure 36. Note 

that the R2 for the model is 0.26. The high variability of the data points is typical when empirical 

ocean color algorithms are applied to coastal data. The performance of the cubic polynomial fit is 

shown in Figure 37.  The RMSE and MPE are much lower than the tested empirical algorithms 

in the preceding section. The fourth order polynomial fit for the TSS < 5 mg/l data set is shown 

in Figure 38. The R2 = 0.33 for the model, increasing slightly from the cubic polynomial fit. This 

was possibly the result of the capacity of higher order polynomials to better adjust to a complex 

non-linear curve.
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Algorithm RMSE 

Mean Percent Error 

(%) 

CalCOFI P 4.40 459.80 

CalCOFI C 7.48 578.59 

Morel 2 2.49 440.29 

Morel 4 21.46 2096.52 

OC1a 3.64 379.92 

OC1b 3.30 359.33 

OC1c 5.78 473.96 

OC1d 5.60 424.90 

OC2 5.88 430.21 

OC2 v2 2.90 298.28 

OC2c 7.88 518.05 

OC2 v4 3.38 331.70 

OC4 v4 3.08 329.21 

OC3 M 4.06 355.35 

 

Table 8.   Chl a estimated by published empirical algorithms versus Chl a measured in situ in 
Mayaguez Bay. These results comprise the Mayagüez Bay data set of Rrs and Chl a 
measurements collected for this work. 
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Figure 28. Chl a estimated by CalCOFI P, CalCOFI C, Morel 2 and Morel 4 empirical 
algorithms versus measured Chl a for the Mayagüez Bay data set (RMSE in µg l-1).  
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Figure 29. Chl a estimated by OC1a, OC1b, OC1c and OC1d empirical algorithms versus 
measured Chl a for the Mayagüez Bay data set (RMSE in µg l-1). 
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Figure 30. Chl a estimated by OC2, OC2C, OC2 v2 and OC2 v4 empirical algorithms versus 
measured Chl a for the Mayagüez Bay data set (RMSE in µg l-1). 
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Figure 31. Chl a estimated by OC4v4 and OC3M empirical algorithms versus measured Chl a 
for the Mayagüez Bay data set (RMSE in µg l-1). 
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Algorithm RMSE 

Mean Percent Error 

(%) 

CalCOFI P 1.08 250.05 

CalCOFI C 1.05 232.41 

Morel 2 1.58 458.20 

Morel 4 5.26 1249.07 

OC1a 0.89 199.81 

OC1b 0.87 198.79 

OC1c 0.89 191.53 

OC1d 0.77 153.68 

OC2 0.74 142.99 

OC2 v2 0.71 158.96 

OC2c 0.78 187.75 

OC2 v4 0.75 170.20 

OC4 v4 0.81 174.06 

OC3 M 0.72 155.66 

 

Table 9. Chl a estimated by published empirical algorithms versus Chl a measured in situ in 
Mayaguez Bay. These results comprise the subset of Rrs and Chl a measurements where the TSS 
where less than 5 mg/l.
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Figure 32. Chl a estimated by CalCOFI P, CalCOFI C, Morel 2 and Morel 4 empirical 
algorithms versus measured Chl a for the data subset TSS < 5 mg/l (RMSE in µg l-1). 
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Figure 33. Chl a estimated by OC1a, OC1b, OC1c and OC1d empirical algorithms versus 
measured Chl a for the data subset TSS < 5 mg/l (RMSE in µg l-1). 
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Figure 34. Chl a estimated by OC2, OC2 v2, OC2c and OC2 v4 empirical algorithms versus 
measured Chl a for the data subset TSS < 5 mg/l (RMSE in µg l-1). 
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Figure 35. Chl a estimated by OC4 v4, and OC3M empirical algorithms versus measured Chl a 
for the data subset TSS < 5 mg/l (RMSE in µg l-1). 
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Figure 36.  Third order polynomial curve fitting of the log (Chl a) versus log (Rrs 490/Rrs 455). 
The regression equation is log(Chl a) = -0.20873 – 4.42094 log(Rrs 490/ Rrs 455) + 31.06408 
log(Rrs 490/ Rrs 455)2  – 55.85561 log(Rrs 490/ Rrs 455)3. 
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Figure 37. Performance of the cubic fit algorithm developed with the TSS < 5 mg/l data set. 
Note that RMSE was reduced to 0.49 µg l-1 and MPE was reduced to 56.79% in comparison with 
the previously tested algorithms. 
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The fourth order polynomial fit of log (Chl a) vs. log (Rrs 490/Rrs 555) resulted in an R2 

of 0.33 (Figure 38). This was an improvement over the cubic model but still considered a low R2. 

The regression performance was slightly better. The RMSE was reduced to 0.46 µg l-1 and the 

MPE was reduced to 56.15% (Figure 39). A modified form of the fourth order polynomial is 

used by NASA in their latest empirical chlorophyll algorithms (e.g. OC3M). 

The third approach for the development of an empirical algorithm for the estimation of 

Chl a in Mayagüez Bay was to use a Rrs 670/Rrs 680 ratio as suggested by Szekielda et al. 

(2003). In this case, a linear regression between log(Chl a) and log(Rrs 670/Rrs 680) was used. 

The R2 for the regression had a value of 0.34 (Figure 40). This R2 value is similar to that found 

for the fourth order polynomial algorithm. The performance of this algorithm is shown in Figure 

41. Note that RMSE and MPE are slightly higher to those found with the fourth order 

polynomial algorithm. 

 The performance of the three algorithms developed were tested using an alternate set of 

Chl a and Rrs measurements collected in Mayaguez Bay from 2004 to 2006. This data set was 

limited to data where TSS concentration was less than 5 mg/l. The results are shown in Figure 

42. Both the fourth order polynomial and the 670/680 red ratio algorithms performed better than 

the traditional blue/green ratio band algorithms tested (MPE of 79.00% and 120.15% 

respectively). The cubic algorithm overestimated Chl a by a vast margin (MPE = 8231.80%) for 

this data set.
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Figure 38.  Fourth order polynomial curve fitting of the log (Chl a) versus log (Rrs 490/Rrs 
455). The regression equation is log(Chl a) = -0.20417 + 0.35685 log(Rrs 490/ Rrs 455) – 
37.96301 log(Rrs 490/ Rrs 455)2  + 229.97611 log(Rrs 490/ Rrs 455)3 - 349.91736 log(Rrs 490/ 
Rrs 455)4. 
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Figure 39. Performance of the fourth order polynomial fit algorithm developed with the TSS < 5 
mg/l data set. RMSE was reduced to 0.46 µg l-1 and MPE was reduced to 56.15% in comparison 
with the previously tested algorithms. 
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Figure 40. Results of the linear regression between log(Chl a) and log(Rrs 670/Rrs 680). The 
regression equation was log(Chl a) = -0.18934 – 8.24863 log(Rrs 670/Rrs 680). 
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Figure 41. Performance of the Rrs 670/Rrs 680 band ratio algorithm for the TSS < 5 mg/l data 
set. RMSE and MPE are slightly higher than that those obtained with the cubic and fourth order 
polynomial fits.  
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Figure 42. Performance of the cubic, fourth order polynomial and 670/680 (red) ratio 
algorithms assessed with 2004-2006 Mayagüez Bay data (TSS<5mg/l). The red ratio algorithm 
performed best with this particular data set. 
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Quasi-analytical algorithm 
 
 In order to optimize the quasi-analytical algorithm for implementation in Mayagüez Bay 

both the adg(410/440) and the aφ(410/440) was calculated from the measured data. The results of 

the calculation of the adg(410/440) for quasi-analytical algorithm (Lee et al., 2002) are shown in 

Figure 43. Data from July 1998 and October 1999 was used in the calculation (n = 17). The mean 

and 95% confidence intervals for the adg (410/440) were 1.30 ± 0.02. The mean spectral slope 

from 412 to 440 of the adg curves (Sdg) was found to be 8.90 x 10-3. This value was used for the 

derivation of adg(λ) from a(λ). 

The aφ(410/440) was calculated from data that spanned from June, 1997, to October, 

1999 (n=57). The mean and 95% confidence intervals for the aφ(410/440) were 0.74 ± 0.04. Two 

distinct groups of points were identified from the plot. A group of 8 points, corresponding to the 

Acueductos and Manchas stations, had values around 0.40 while the rest of the data points were 

located around 0.80. Removing those data points from the analysis yields a mean of 0.80 ± 0.01. 

These results are shown in Figure 44. 

Spectral particle backscattering coefficients [bbp(λ)] obtained from the QAA are presented 

in Figure 45. The phase function and the magnitude of the bbp(λ) curves are in good agreement 

with those published in the literature (Bricaud et al., 1981; Lee et al., 1996). 

 Spectral total absorption coefficients [a(λ)], produced by Lee’s QAA for the TSS < 5 

mg/l are shown in Figure 46. When compared with the examples of a(λ) cuves presented in 

Figure 2 of Lee et al. (2002), the spectral shape agrees in the range of 400 to 600 nm. From 600 

to 650 nm, a characteristic trough and noise is evident in the results derived from Mayagüez Bay 

Rrs spectra.  

 The combined detritus-CDOM spectral absorption [adg(λ)] curves derived from the QAA 

are in good agreement with those published by Lee et al. (2002). The curves showed the typical 

exponential shape and their values where within the expected for the bay (Figure 47). 

 The phytoplankton spectral absorption [aφ(λ)] coefficients are shown in Figure 48. Note 

the absence of an absorption peak near 440 nm and the noise in the 600 to 700 nm region. The 

QAA derived aφ(λ) curves do not represent the typical curves measured from Mayagüez Bay 

from in situ samples (Rosado-Torres, 2001) and those reported in the literature (Kirk, 1994).  
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Figure 43. Results of the adg(410/440) for the July 1998 and October 1999 data (n=17).  
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Figure 44. Results for the aφ(410/440) calculations for Mayaguez Bay data from June, 1997 to 
October, 1998. Note that the data points form two distinct groups. The points with values around 
0.40 are from Acueductos and Manchas stations. 

93 



 

 

 

 

 
Figure 45. Spectral particle backscattering coefficients [bbp(λ)] obtained from the QAA for the 
TSS < 5 mg/l data set in Mayagüez Bay. 
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Figure 46. Spectral total absorption coefficients [a(λ)], produced by Lee’s QAA for the TSS < 5 
mg/l data set in Mayagüez Bay. Note the noise apparent in the a(λ) curves from 600 to 700 nm. 
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Figure 47. Spectral combined detritus and CDOM absorption curves [adg(λ)] obtained from the 
QAA for the TSS < 5 mg/l data set in Mayagüez Bay. 
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Figure 48. Spectral phytoplankton absorption coefficients [aφ (λ)] obtained from the QAA for the 
TSS < 5 mg/l data set in Mayagüez Bay. 
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Due to the fact that all of the aφ(λ) curves derived from the QAA had abnormal spectral 

shapes and approximately half of aφ(675) values obtained were negative, Chl a values were not 

calculated. An attempt to calculate Chl a using some of the curves that had positive aφ(675) 

resulted in extremely high concentrations, well out of the range observed in Mayagüez Bay. 
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Discussion 
Empirical algorithms 

 Algorithm performance in Mayagüez Bay is strongly affected by the spatial and temporal 

variability of bio-optical properties in the area (Rosado-Torres, 2000). The Mayagüez Bay data 

set includes both case 1 and case 2 stations and the seasonality of precipitation peaks in Western 

Puerto Rico makes it difficult to clearly distinguish among those groups through the year. Due to 

the strong variability in bio-optical parameters observed in the bay, it is almost certain that most 

ocean color algorithms tested in this work were developed in waters with less dispersion in the 

band ratios considered. 

 Mayagüez Bay is characterized by low Chl a concentrations and moderate to high TSS 

and CDOM concentrations. This is a worst case scenario for the remote estimation of Chl a since 

the signal is comparatively small in relation to the noise.  

Of all the optically active constituents present in Mayagüez Bay, the inorganic suspended 

sediments seem to be the dominant optical parameter as suggested by the Hydrolight simulations. 

Mineral particles have been suggested to be the most significant optical component on energetic 

shelves and estuaries (Wosniak and Stramski, 2004; Bowers and Binding, 2006).  

The effect of mineral particles on the Rrs curve can be relentless. Wosniak and Stramski 

(2004) reported that mineral concentrations in the order of 100 g m-3 modify the reflectance 

spectra in such manner that the standard remote sensing algorithms are rendered useless. 

Moreover, they found that even low and medium concentrations of the order of 0.1 g m-3 to 1 g 

m-3 should be considered a potential source of significant error in the chlorophyll estimation. For 

comparison, the mean TSS concentration measured in the bay in this study was 8.15 mg l -1 

while the mean Chl a value was 0.65 µg l-1. The dominance of inorganic mineral particles in the 

bio-optics of Mayagüez Bay is supported by the fact that the mean bbp ratio calculated for both 

the rainy and dry season is ~ 0.025 (Rodríguez, unpublished data). Even in the offshore stations 

the bbp ratio was found to be greater that 0.10. In phytoplankton dominated waters this ratio is in 

the range of 0.004 to 0.006 (Kirk, 1994). 

This observation is supported by the fact that applying the empirical algorithms to the 

TSS < 5 mg/l decreased the mean percent error in half for most algorithms.  It is well known that 

suspended particles and dissolved substances associated with river plumes have a strong 

influence in the reflectance ratios used for Chl a estimation (Ouillon and Petrenko, 2005). An 
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example of this phenomenon is that reflectance near the 550 nm band is used to quantify 

suspended particles in moderately turbid waters (Ahn et al., 2001). This problem may be 

especially important in waters with high mineral and low Chl a concentrations such as Mayagüez 

Bay. 

When the complete data set was considered, the empirical algorithms tended to 

overestimate Chl a. Similar findings has been reported in other coastal studies. Dareckia and 

Stramski (2004) reported a systematic and large overestimation of chlorophyll products for the 

MODIS and SeaWiFS algorithms for the coastal waters of the Baltic Sea. 

It is important to note that the three regression curves fitted to the TSS < 5 mg/l data set 

resulted in an R2 of approximately 0.30. The low R2 suggest that about 70% of the variability 

between the Rrs ratios and Chl a values was unaccounted for. This result could be explained by 

the presence of optically active substances other than Chl a influencing the Rrs band ratios in 

Mayagüez Bay. For example, Wosniak and Stramski (2004) reported that a mineral 

concentration as low as 0.1 g m-3 has the potential of causing overestimation of 100% in waters 

with Chl a concentration of 0.5 mg m-3 or less. 

  Of the three algorithms developed in this study, the red ratio algorithm [Rrs (670/680)] 

produced the lowest MPE values (79.0 %) when challenged with a new data set. The magnitude 

of this error is still considerable but when compared with the values obtained with the published 

algorithms considered in this work (142.99 to 1249.07 % error), it shows a vast improvement in 

performance. Taking into account that the largest errors in Chl a prediction are found in waters 

where Chl a concentration values are below 10 mg m-3 (Dall’Olmo and Gitelson, 2005) and that 

mineral particles are still a source of error even in concentrations below 5 mg l-1, the red ratio 

approach is worth investigating in more detail.  

In order to implement these bio-optical algorithms, the data set must be limited to water 

parcels with low concentrations of suspended minerals. Minerals, especially the red clays found 

in Mayagüez Bay, are highly efficient scattering red light (Wosniak and Stramski, 2004), thus 

negatively affecting Rrs band ratios in the red part of the visible spectrum. Based on the results 

obtained in this work, it is strongly suggested to study in detail the absorption and scattering 

properties of mineral particles found in Mayagüez Bay. Only by a meticulous analysis of the 

optical properties and their variability will be possible to use optical algorithms for an accurate 

estimation of Chl a. 
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Quasi-analytical algorithm 

 Semi-analytical algorithms can be applied to a variety of water types and generally offer 

much better retrieval accuracy than empirical algorithms (Lee et al., 2002). However, their 

performance is dependent on accurate spectral models of each optical constituent present in the 

water (Lee et al., 2002). This implies that semi-analytical algorithms perform better in water 

types with bio-optical properties similar to the data set used for their development. D’Sa et al. 

(2006) suggested the complexity of using semi-analytical algorithms in river-dominated coastal 

waters due to short term and seasonal variability in the bio-optical properties. It has been 

reported that semi-analytical algorithms do not perform adequately in some coastal waters 

(Chang et al., 2006). Their poor performance has been attributed primarily to inadequacy in 

modeling the spectral shape of the IOPs in complex turbid environments. 

  Lee et al. (2002) suggested that in order to improve the QAA performance a fine tuning 

with regional parameters must be done. In the case of Mayagüez Bay, the QAA did not perform 

satisfactorily even after the adg(410/440), the aφ(410/440) and the Sdg where optimized with in 

situ data. This fact implies that in its present form, the model itself may be inadequate for 

retrieving the IOPs of Mayagüez Bay. 

 It is recommended in Lee et al. (2002) to shift the reference wavelength to longer 

wavelengths (from 550 nm to 640 nm) near river plumes. The reason for the shift in reference 

wavelength is because pure water absorption is still dominant at longer wavelengths. However, 

red clays scatter light very efficiently at those wavelengths and possibly dominate the Rrs(λ) at 

longer wavelengths in water bodies with high concentrations of these minerals (Wosniak and 

Stramski, 2004). Indirect evidence of this happening in Mayagüez Bay is apparent by studying 

both the measured and modeled Rrs(λ) from the bay. Although in most waters Rrs values 

approach zero near the red/near infrared portion of the spectrum (Kirk, 1994), in Mayagüez Bay 

the corrected Rrs curves are seldom near zero at these wavelengths.  

 A case study may be used to better understand the performance of the QAA in Mayagüez 

Bay. A sample from Rodríguez station taken in July 1998 cruise to Mayagüez Bay was used for 

this purpose. Figure 49 presents the a(λ) curves obtained with the QAA for Rodríguez station 

using the two different reference wavelengths (555 and 640 nm) described in Lee et al. (2002). 

Note that the spectral shape of both curves was identical. This exercise was repeated with the rest 
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Figure 49. Spectral total absorption curves for Rodríguez station (July, 1998) obtained with the 
QAA using two different reference wavelengths (555 and 640 nm) as described in Lee et al. 
(2002). Note that the spectral shape of both curves is identical. 
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of the samples in the TSS < 5 mg l-1 data set with similar results. The modifications to the QAA 

suggested in Lee et al. (2007) were also tested but the results were still very similar. 

The abnormal shape and noise in the QAA derived a(λ) observed in the red part of the spectrum 

was a typical finding in the data set studied. The presence of these features in the QAA derived 

a(λ) curves suggests that the Rrs(λ) is been affected by a reflecting component in the 600 to 650 

nm spectral range. This spectral range agrees with the inorganic sediment peak in reflectance 

found by Gin et al. (2003). Since the adg(λ) and the aφ(λ) are derived from a(λ), it was expected 

that the modeling error would be transferred to these curves. The QAA derived adg(λ) 

overestimates the measured adg(λ) about 50% at 412 nm (Figure 50). 

The aφ(λ) derived from the QAA overestimated absorption near the blue and produced an 

abnormal curve with a displaced absorption peak in the red and negative values near 550 nm and 

from 640 nm toward the red end of the visible spectrum when compared to the aφ(λ) measured in 

situ (Figure 51). Since the aφ(675) value was negative, Chl a could not be retrieved. 

The main reason for the poor performance of the QAA algorithm in Mayagüez Bay 

appears to be its failure in modeling the bbp(λ) curve. This step is of first order of importance in 

the derivation of the optical properties from the QAA (Lee et al., 2002). When the derived bbp (λ) 

curves are compared with measured bbp (λ) curves, a large discrepancy in spectral shape is noted 

(Figure 52). The characteristic phase function of the bbp(λ) measured in Mayagüez Bay is very 

similar to those reported by other investigators (Whitmire, 2008). Since the a(λ) is function of 

the bbp(λ) it is crucial to accurately model the bbp(λ)  phase function before attempting to retrieve 

total absorption from the Rrs curve using the QAA.  

Although semi-analytical algorithms offer an improvement over empirical algorithms in 

determining biogeochemical quantities in many waters, there are still some problems associated 

with their implementation. Defoin-Platel and Chami (2007) pointed out that the major difficulty 

related to the inversion of ocean color was the non uniqueness or ambiguity of the problem. 

These investigators argued that most semi-analytical algorithms are based on the following 

relationship: 

a
bRrs b=  

where bb is the total backscattering coefficient and a is the total absorption coefficient. Because 

of the mathematical nature of the relationship, many different combinations of bb and a could 

theoretically produce similar Rrs values. They found a rate of ambiguity of around 90% for 
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Figure 50. Comparison of spectral adg curves derived from the QAA (Lee et al., 2002) and 
measured in situ for Rodríguez station in July, 1998.  
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Figure 51. Comparison of spectral aφ curves derived from the QAA (Lee et al., 2002) and 
measured in situ for Rodríguez station in July, 1998.  
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Figure 52. A comparison of bbp(λ) curves measured in Mayagüez Bay in August, 2002 with bbp(λ) 
curves derived from the QAA (Lee et al., 2002).  
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simulated coastal data. Furthermore, they found that the error in the estimation of total 

absorption was highest when reflectance in the blue was weak. This is typically the case in case-

2 waters.  The semi-analytical algorithms are based on three important assumptions (Wang et al., 

2005). First, the relationship between Rrs, bb and a is known. Second, the absorption and 

backscattering coefficients are known. Third, the spectral shapes of the absorption and 

backscattering coefficients are known. Of these three assumptions, the third is the more critical 

in terms of applicability of a semi-analytical model to regional waters. It appears that the 

assumptions of the QAA do not hold in waters with high concentration of inorganic particles and 

low Chl a concentrations such as Mayagüez Bay. Lumping inorganic minerals with CDOM and 

detritus as a single optical constituent may not necessarily be correct as these parameters have 

different optical properties (Wosniak and Stramski, 2004).  

It is necessary to better understand the importance of mineral particles in the bio-optics of 

Mayagüez Bay in order to perform the inversion of IOPs from Rrs accurately. Inversion 

algorithms, as the empirical algorithms, ultimately depend on the signal (phytoplankton) to noise 

(all the other optical components) ratio present in the Rrs curve. 
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CONCLUSION 

The underlying causes of the optical variability observed in Mayagüez Bay are thought to 

be: a) the coastal nature of the area, b) the abundance of rivers and smaller water bodies 

discharging into the bay, c) the industrialized and agricultural nature of Mayagüez city, and d) 

the seasonal changes in precipitation and wave action observed in the region. This work provides 

direct and indirect evidence supporting the variable bio-optical nature of the bay and confirms 

the bio-optical complexity of Mayagüez Bay reported in previous works.  

Mayagüez Bay appears to be relatively stable in terms of phytoplankton dynamics. The 

fourth derivative analyses of aφ*(λ) spectra suggest that diatoms are the dominant group in the 

local waters.  This information is not only relevant from an ecological viewpoint, but must be 

taken into account when selecting Rrs bands for the retrieval of ocean color products. Another 

important finding was indirect evidence of the presence of photosynthetic pigments signatures in 

the ad(λ) spectra. Since the hot methanol extraction method is used for in situ measurement of 

Chl a concentration, this finding suggests an important source of error that should be 

investigated in more detail. 

Despite our best efforts, remote sensing of chlorophyll a remains a challenging endeavor 

in Mayagüez Bay. Hydrolight simulations suggest that inorganic suspended sediments play a 

very important role in defining the bio-optics of Mayagüez Bay. An important contribution of 

this work is suggesting the notion of a preliminary mineral threshold value in Mayagüez Bay 

over which the Chl a concentration cannot be estimated from the Rrs curve. The chemical nature, 

optical properties, spatial and temporal variability of mineral particles needs to be studied in 

order to ascertain a more precise threshold value.  

The standard ocean color algorithms evaluated in this work performed poorly in 

Mayagüez Bay. Empirical algorithms tend to overestimate Chl a concentration, especially in 

stations with higher suspended sediment values. The QAA derivation of the IOPs was inadequate 

also, failing to model the spectral shape of bbp (λ) and a(λ). This is not to say that the QAA is not 

capable of Chl a estimation in the coastal waters of Mayagüez, but it points out the fact that the 

local bio-optical relationships must be studied in more detail and the development of a regional 

version of the QAA is needed.  

Limiting the application of ocean color algorithms to waters with mineral concentrations 

under the suggested threshold value is an essential element of any strategy for the remote sensing 
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of Chl a in Mayagüez Bay and similar environments. The development of regional algorithms, 

fine tuning of existing algorithms designed for coastal waters and the use of novel algorithms are 

all recommended for minimizing error in remotely sensed Chl a estimates.  

Two approaches are suggested for future studies attempting to quantify Chl a 

concentration using remote sensing reflectance. Both of these strategies rely on the use of 

Hydrolight as a research tool. The first approach is to create an extensive lookup table with a 

Hydrolight generated Rrs database using field measurements collected in Mayagüez Bay. The 

data must be collected keeping in mind the requirements of Hydrolight in order to minimize the 

use of models when defining the optical characteristics of each optically active constituent. The 

data set must include above surface Rrs measurements, in water radiometric data, chlorophyll 

mass specific absorption and scattering coefficients, chlorophyll bearing particles scattering 

phase functions, chlorophyll concentration profiles, CDOM concentration profiles, mineral 

concentration profiles and minerals mass specific absorption and scattering data. Other ancillary 

data should be collected as needed. The above surface Rrs database generated by Hydrolight 

could then be used for the construction of a lookup table. The concept is that by measuring some 

carefully selected bands, CDOM absorption and chlorophyll and mineral concentrations can be 

retrieved.  

The second approach is to use Hydrolight to create a large (n > 1000) synthetic data set 

that could be used for the design and training of artificial neural networks. The neural network 

algorithms are capable of modeling complex non linear relationships more precisely than the 

standard algorithms used for ocean color remote sensing. Because neural networks are sensitive 

to noise not encountered during their training, the variability of the extensive data set described 

above should be examined and incorporated into the database. 

This hypothesis that minerals dominate the Rrs signal when present in high enough 

concentration should be tested. If experimental data support the hypothesis, a threshold 

concentration must be established. If mineral concentrations are known precisely, it is possible to 

apply masks to remote sensing data when the noise produced by mineral particles makes the 

retrieval of the chlorophyll signal difficult. From the remote sensing viewpoint this could be 

accomplished by applying an algorithm capable of accurately estimating mineral concentrations 

before applying the Chl a algorithms to the reflectance data. Once the relationship between TSS 

and inorganic suspended sediments for Mayagüez Bay is known, one of the various TSS 
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algorithms being developed at the Geological and Environmental Remote Sensing Laboratory at 

UPR-Mayagüez could be used for such purpose. 

 

 

110 



 

LITERATURE CITED 
 
Adhikari, C., A. Proctor and G. D. Blyholder (1997). "An Infrared Spectroscopy Study of Lipid 

Adsorption from Hexane onto an Acid-Activated Bleaching Clay." Journal Americal Oil 
Chemists' Society 74(10): 1265 - 1268. 

Aguirre-Goméz, R., A. R. Weeks and S. R. Boxall (2001). "The identification of phytoplankton 
pigments from absorption spectra." International Journal of Remote Sensing 22(2 & 3): 
315 - 338. 

Ahn, Y.-H. (1990). Proprietes optiques des particules biologiques et minerales presentes dans 
l'ocean; Application: Inversion de la reflectance [Optical properties of biogenous and 
numerical particles in the ocean : application: inversion of reflectance]. Universite Pierre 
et Marie Curie. Ph.D. Thesis. 214p. 

Ahn, Y. H., J. E. Moon and S. Gallegos (2001). "Development of Suspended Particulate Matter 
Algorithms for Ocean Color Remote Sensing." Korean Journal of Remote Sensing 17(4): 
285 - 295. 

Albert, A. and C. D. Mobley (2003). "An analytical model for subsurface irradiance and remote 
sensing reflectance in deep and shallow case-2 waters." Optics Express 11(22): 2873 - 
2890. 

Alfaro, M. (2002). Oceanographic features and zooplankton community structure at Mayagüez 
Bay, Puerto Rico. University of Puerto Rico at Mayagüez. Department of Marine 
Sciences. Ph. D. Thesis. 151p. 

Ansotegui, A., J. M. Trigueros and E. Orive (2001). "The use of pigment signatures to assess 
phytoplankton assemblage structure in estuarine waters." Estuarine, Coastal and Shelf 
Science 52: 689 – 703. 

Babin, M. and D. Stramski (2004). "Variations in the mass-specific absorption coefficient of 
mineral particles suspended in water." Limnology and Oceanography 49(3): 756 - 767. 

Bigidare, R. R., J. H. Morrow and D. A. Kiefer (1989). "Derivative analysis of spectral 
absorption by photosynthetic pigments in the western Sargasso Sea." Journal of Marine 
Research 47: 323 - 341. 

Bowers, D. G. and C. E. Binding (2006). "The optical properties of mineral suspended particles: 
a review and synthesis." Estuarine, Coastal and Shelf Science 67(2006): 219 - 230. 

Bowers, D. G., D. Evans, D. N. Thomas, K. Ellis and P. J. le B. Williams (2004). "Interpreting 
the colour of an estuary." Estuarine, Coastal and Shelf Science 59(2004): 13 - 20. 

Bricaud, A., A. Morel and L. Prieur (1981). "Absorption by dissolved organic matter of the sea 
(yellow substance) in UV and visible domains." Limnology and Oceanography 26: 43 - 
53. 

Bricaud, A. and D. Stramski (1990). "Spectral absorption coefficients of living phytoplankton 
and nonalgal biogenous matter: A comparison between the Peru upwelling and the 
Sargasso Sea." Limnology and Oceanography 35(3): 562 - 582. 

Campbell, N. A., J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasswerman, P. V. Minorski and R. 
B. Jackson (2008). Biology. San Francisco, CA, Pearson. 

Carder, K. L., F. R. Chen, Z. Lee, S. K. Hawes and J. P. Cannizzaro (2003). Algorithm 
Theoretical Basis Document 19 - Case 2 Chlorophyll a. MODIS Ocean Science Team 
Algorithm Theoretical Basis Document: 65p. 

Carder, K. L., F. R. Chen, Z. Lee, S. K. Hawes and D. Kamykowski (1999). "Semianalytic 
Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption 

111 



 

with bio-optical domains based on nitrate-depletion temperatures." Journal of 
Geophysical Research 104(C3): 5403 – 5421. 

Carder, K. L., S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward and B. G. Mitchell (1991). 
"Reflectance model for quantifying chlorophyll a in the presence of productivity 
degradation products." Journal of Geophysical Research 96: 20,599 – 20,611. 

Carder, K. L., R. G. Steward, G. Harvey and P. Ortner (1989). "Marine humic and fulvic acids: 
Their effects on remote sensing of ocean chlorophyll." Limnology and Oceanography 
34(1): 68 - 81. 

Chami, M. and D. Robilliard (2002). "Inversion of oceanic constituents in case I and case II 
waters with genetic programming algorithms." Applied Optics 41(30): 6260 - 6275. 

Chang, G. C., A. H. Barnard, S. McLean, P. J. Egli, C. Moore, J. R. V. Zaneveld, T. D. Dickey 
and A. Hanson (2006). "In situ optical variability and relationships in the Santa Barbara 
Channel: implications for remote sensing." Applied Optics 45(15): 3593 - 3604. 

Dall'Olmo, G. and A. A. Gitelson (2005). "Effect of bio-optical parameter variability on the 
remote estimation of chlorophyll-a concentration in turbid productive waters: 
experimental results." Applied Optics 44(3): 412 - 422. 

Dareckia, M. and D. Stramski (2004). "An evaluation of MODIS and SeaWiFS bio-optical 
algorithms in the Baltic Sea." Remote Sensing of Environment 89: 326 - 350. 

Defoin-Platel, M. and M. Chami (2007). "How ambiguous is the inverse problem of ocean color 
in coastal waters?" Journal of Geophysical Research 112(C03004): 16 pp. 

Del Castillo, C. (2005). Remote sensing of organic matter in coastal waters. Remote sensing of 
coastal aquatic environments: technologies, techniques and applications. R. L. Miller, et 
al. Dordrecht, Springer: 157 - 180. 

D'Sa, E. J. and R. L. Miller (2005). Bio-optical properties of coastal waters. Remote sensing of 
coastal aquatic environments: technologies, techniques and applications. R. L. Miller, et 
al. Dordrecht, Springer: 129 - 155. 

D'Sa, E. J., R. L. Miller and C. Del Castillo (2006). "Bio-optical properties and ocean color 
algorithms for coastal waters influenced by the Mississippi River during a cold front." 
Applied Optics 45(28): 7410 - 7428. 

Falkowski, P. G., R. T. Barber and V. Smetacek (1998). "Biogeochemical controls and feedbacks 
on ocean primary production." Science 281: 200 - 206. 

Faust, M. A. and K. H. Norris (1985). "In vivo spectrophotometric analysis of photosynthetic 
pigments in natural populations of phytoplankton." Limnology and Oceanography 30(6): 
1316 -1322. 

Gilbes, F., J. M. López and P. M. Yoshioka (1996). "Spatial and temporal variations of 
phytoplankton chlorophyll a and suspended particulate matter in Mayagüez Bay, Puerto 
Rico." Journal of Plankton Research 18(1): 29 - 43. 

Gin, K. Y.-H., S. T. Koh and I.-I. Lin (2003). "Spectral irradiance profiles of suspended marine 
clay for the estimation of suspended sediment concentration in tropical waters." 
International Journal of Remote Sensing 24(16): 3235 - 3245. 

Gordon, H. R., D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans and W. W. Broenkow 
(1983). "Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison 
of ship determinations and CZCS estimates." Applied Optics 22(1): 20 - 36. 

Gordon, H. R. and A. Morel (1983). Remote Assessment of Ocean Color for Interpretation of 
Satellite Visible Imagery: A Review. New York, Springer-Verlag. 

112 



 

Gross, L., S. Thiria, R. Frouin and B. Greg Mitchell (2000). "Artificial neural networks for 
modeling the transfer function between marine reflectance and phytoplankton pigment 
concentration." Journal of Geophysical Research 105(C2): 3483 - 3495. 

Güller, C. and F. Tunc (1992). "Chlorophyll Adsorption on Acid-Activated Clay." Journal 
Americal Oil Chemists' Society 69(9): 948 - 950. 

Hinrichsen, D. (1998). Coastal Waters of the World: Trends,Threats, and Strategies. Washington, 
D.C., Island Press. 

Hochman, H. T., F. E. Muller-Karger and J. J. Walsh (1994). "Interpretation of the coastal zone 
color scanner signature of the Orinoco River plume." Journal of Geophysical Research 
99: 7443 - 7455. 

Hsiu-Ping, L., G. Gwo-Ching and H. Tung-Ming (2002). "Phytoplankton pigment analysis by 
HPLC and its application in algal community investigations." Botanical Bulletin of 
Academia Sinica 43: 283 - 290. 

Karabulut, M. and N. Ceylan (2005). "The spectral reflectance responses of water with different 
levels of suspended sediment in the presence of algae." Turkish Journal of Engineering 
and Environmental Science 29: 351 - 360. 

Kirk, J. T. O. (1994). Light & Photosynthesis in Aquatic Ecosystems. Cambridge, Great Britain, 
Cambridge University Press. 

Kishino, M., N. Okami and S. Ichimura (1985). "Estimation of the spectral absorption 
coefficients of phytoplankton in the sea." Bulletin of Marine Science 37(634 - 642). 

Lange, R. and C. Balny (2002). "UV-visible derivative spectroscopy under high pressure." 
Biochimica et Biophysica Acta 1595: 80 - 93. 

Laza-Martínez, A., S. Seaone, M. Zapata and E. Orive (2007). "Phytoplankton pigment patterns 
in a temperate estuary: from unialgal cultures to natural assemblages." Journal of 
Plankton Research 29(11): 913 - 929. 

Lee, Z. and K. L. Carder (2004). "Absorption spectrum of phytoplankton pigments derived from 
hyperspectral remote-sensing reflectance." Remote Sensing of Environment 89: 361 - 
368. 

Lee, Z., K. L. Carder and R. A. Arnone (2002). "Deriving inherent optical properties from water 
color: a multiband quasi-analytical algorithm for optically deep waters." Applied Optics 
41(27): 5755 - 5772. 

Lee, Z., K. L. Carder, R. G. Steward, T. G. Peacock, C. Davis and J. L. Mueller (1996). Remote-
sensing reflectance and inherent optical properties of oceanic waters derived from above-
water measurements. Ocean Optics XIII. 

Lee, Z., K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis and J. L. Mueller (1997). 
Remote sensing reflectance and inherent optical properties of oceanic waters derived 
from above-water measurements. Ocean Optics XIII, Halifax, Nova Scotia, Canada. 

Lee, Z., A. Weidemann, J. Kindle, R. Arnone, K. L. Carder and C. Davis (2007). "Euphotic zone 
depth: Its derivation and implication to ocean-color remote sensing." Journal of 
Geophysical Research 112(C03009): 11 pp. 

Lee, Z., A. Weidemann, J. Kindle, R. A. Arnone, K. L. Carder and C. Davis (2007). "Euphotic 
zone depth: Its derivation and implication to ocean-color remote sensing." Journal of 
Geophysical Research 112(C03009): 11 pp. 

Lee-Borges, J. (2003). Contribution of picoplankton to phytoplankton dynamics and bio-optics 
of the eastern Caribbean Sea. University of Puerto Rico at Mayagüez. Department of 
Marine Sciences. Ph. D. Thesis. 133p. 

113 



 

Legates, D. R. and G. J. McCabe (1999). "Evaluating the use of "goodness of fit" measures in 
hydrologic and hydroclimatic model validation." Water Resources Research 35: 233 - 
241. 

Linton, D. M. and G. F. Warner (2003). "Biological indicators in the Caribbean coastal zone and 
their role in integrated coastal management." Ocean & Coastal Management 46: 261 - 
276. 

Loisel, H. and A. Morel (1998). "Light scattering and chlorophyll concentration in case 1 waters: 
A reexamination." Limnology and Oceanography 43(5): 847 - 858. 

Louchard, E. M., R. P. Reid, C. F. Stephens, C. O. Davis, R. A. Leathers, T. V. Downes and R. 
Maffione (2002). "Derivative analysis of absorption features in hyperspectral remote 
sensing data of carbonate sediments." Optics Express 10(26): 1573 - 1584. 

Ludeña, Y. (2007). Cianobacterias en la Bahía de Mayagüez: abundancia,distribución y su 
relación con las propiedades bio-ópticas. University of Puerto Rico at Mayagüez. 
Department of Biology. M.S. Thesis. 120p. 

Miller, R. L., J. F. Cruise and J. M. López (1994). "Monitoring suspended sediment particulate 
matter in Puerto Rico: field measurements and remote sensing." Water Resources 
Bulletin 30(2): 271 - 282. 

Millero, F. J. (2006). Chemical Oceanography. Miami, Fl, CRC Press. 
Millie, D. F., G. J. Kirkpatrick and B. T. Vinyard (1995). "Relating photosynthetic pigments and 

in vivo optical density spectra to irradiance for the Florida red-tide dinoflagellate 
Gymnodinium breve." Marine Ecology Progress Series 120: 65 - 75. 

Mitchell, B. G. and M. Kahru (1998). SeaWiFS algorithms developed with CalCOFI bio-optical 
data. CalCOFI Report. 

Mitchell, B. G. and D. A. Kiefer (1984). Determination of absorption and fluorescence excitation 
spectra of phytoplankton. Berlin, Springer-Verlag. 

Mobley, C. D. (1994). Light and water: radiative transfer in natural waters. San Diego, Academic 
Press. 

Mobley, C. D. and L. K. Sundman (2001). Hydrolight 4.2 User's Guide. Redmond, WA, Sequoia 
Scienrific Inc.: 88p. 

Morel, A. (1988). "Optical modeling of the upper ocean in relation to its biogenous matter 
content (Case 1 water)." Journal of Geophysical Research 93(10): 749 - 768. 

Morel, A. and L. Prieur (1977). "Analysis of variations in ocean color." Limnology and 
Oceanography 22(4): 709 -722. 

Morelock, J., W. R. Ramírez, A. W. Bruckner and M. Carlo (2001). "Status of coral reefs in 
southwest Puerto Rico." Caribbean Journal of Science Special Publication V. 4. 

Muller-Karger, F. E., C. Hu, S. Andréfouet, R. Varela and R. Thunell (2005). The color of the 
coastal ocean and applications in the solution of research and management problems. 
Remote sensing of coastal aquatic environments: technologies, techniques and 
applications. R. L. Miller, et al. Netherlands, Springer: 101 - 127. 

O'Reilly, J. E. and Coauthors (2000). SeaWiFS Postlaunch Calibration and Validation Analyses. 
NASA Tech. Memo. 2000-206892. S. B. Hooker, et al. NASA Goddard Space Flight 
Center: 49p. 

O'Reilly, J. E., S. Maritorena, B. G. Mitchell, K. L. Siegel, S. A. Garver, M. Kahru and C. 
McClain (1998). "Ocean color chlorophyll algorithms for SeaWiFS." Journal of 
Geophysical Research 103(11): 24937 - 24953. 

114 



 

Oubelkheir, K., L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke and P. 
Daniel (2006). "Using inherent optical properties to investigate biogeochemical dynamics 
in a tropical macrotidal coastal system." Journal of Geophysical Research 111(C07021): 
15p. 

Ouillon, S. and A. A. Petrenko (2005). "Above-water measurements of reflectance and 
chlorophyll-a algorithms in the Gulf of Lyons, NW Mediterranean sea." Optics Express 
13(7): 2531 - 2548. 

Pérez, L. R., G. Suárez, D. Sotomayor and G. Martínez (2005). Hydrologic analysis for nutrient 
and sediment loading determinations. Proceedings of the third conference on watershed 
management to meet water quality standards and emerging TMDL (Total Maximum 
Daily Load), Atlanta, Georgia. 

Pope, R. M. and E. S. Fry (1997). "Absorption spectrum (380-700 nm) of pure water. II. 
Integrating cavity measurements." Applied Optics 36: 8710 - 8723. 

Prieur, L. and S. Sathyentranath (1981). "An optical classification of coastal and oceanic waters 
based on the specific spectral absorption curves of phytoplankton pigments, dissolved 
organic matter, and other particulate material." Limnology and Oceanography 26(4): 671 
- 689. 

PUTPR (2006). Plan de uso de terreno de Puerto Rico -Perfil regional, Región Oeste. San Juan, 
PR 

Rodríguez, I. E. (2004). Characterization of temporal and stratigraphic changes in texture, 
composition, nutrients, and organic content of bottom sediments in the Mayagüez Bay, 
Puerto Rico. University of Puerto Rico at Mayagüez. Department of Geology. M.S. 
Thesis. 82p. 

Rosado-Torres, M. A. (2000). Variability in the bio-optical properties of Mayagüez Bay. 
University of Puerto Rico at Mayagüez. Department of Marine Sciences. M.S. Thesis. 
61p. 

Ruddick, K. G., H. J. Gons, M. Rijkerboer and G. Tilstone (2001). "Optical remote sensing of 
chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal 
error properties." Applied Optics 40(21): 3575 - 3584. 

Ruiz-Suárez, J. Y. (2004). Arenicolous filamentous fungi in Mayagüez Bay shoreline, western 
Puerto Rico. University of Puerto Rico at Mayagüez. Department of Biology. M.S. 
Thesis. 58 p. 

Salinas, S. V., C. W. Chang and S. C. Liew (2007). "Multiparameter retrieval of water optical 
properties from above-water remote-sensing reflectance using the simulated annealing 
algorithm." Applied Optics 46(14): 2727 - 2742. 

Savitzky, A. and M. J. E. Golay (1964). "Smoothing and differentiation of data by simplified 
least squares procedures." Analytical Chemistry 36: 1627 - 1639. 

Schiller, H. and R. Doerffer (1998). "Neural network fofr emulation of an inverse model-
operational derivation of case II properties from MERIS data." International Journal of 
Remote Sensing 20: 1735 - 1746. 

Smith, R. C. and K. A. Baker (1981). "Optical properties of the clearest natural waters (200–800 
nm)." Applied Optics 20: 177 - 184. 

Suzuki, K., N. Handa, H. Kiyosawa and J. Ishizaka (1997). "Temporal and spatial distribution of 
phytoplankton pigments in the central Pacific Ocean along 175°E during the boreal 
summers of 1992 and 1993." Journal of Oceanography 53: 386 - 393. 

115 



 

116 

Sydor, M., R. W. Gould, R. A. Arnone, V. I. Haltrin and W. Goode (2004). "Uniqueness in 
remote sensing of the inherent optical properties of ocean water." Applied Optics 43(10): 
2156 - 2161. 

Szekielda, K.-H., C. Gobler, B. Gross, F. Moshary and S. Ahmed (2003). "Spectral reflectance 
measurements of estuarine waters." Ocean Dynamics 53(98 - 102). 

 
Tapia-Larios, C. (2007). Variación espacial y temporal del fitoplancton en la Bahía de 

Mayagüez, Puerto Rico. UPR-Mayagüez. Department of Biology. M.S. Thesis. 143 p. 
Tietjen, T., A. V. Vahatalo and R. G. Wetzel (2005). "Effects of clay turbidity on dissolved 

organic carbon and bacterial production." Aquatic Science 67: 51-60. 
Wang, P., E. S. Boss and C. Roesler (2005). "Uncertainties of inherent optical properties 

obtained from semianalytical inversions of ocean color." Applied Optics 44(19): 4074 - 
4085. 

Warne, A. G., R. M. T. Webb and M. C. Larsen (2005). Water, sediment, and nutrient discharge 
characteristics of rivers in Puerto Rico, and their potential influence on coral reefs. 
Scientific Investigations Report 2005-5206, U.S. Geological Survey: 58 pp. 

Welschmeyer, N. A. (1994). "Fluorometric analysis of chlorophyll a in the presence of 
chlorophyll b and pheopigments." Limnology and Oceanography 39(8): 1985 - 1992. 

Whitmire, A. L. (2008). The Spectral Backscattering Properties of Marine Particles. Oregon 
State University. Ph. D. Thesis. 136. 

Wollast, R. (1998). Evaluation and comparison of the global carbon cycle in the coastal zone and 
in the open ocean. The sea: Ideas and observations on progress in the study of the seas. 
Hoboken, N. J., John Wiley. 10: 213 - 252. 

Wozniak, S. B. and D. Stramski (2004). "Modeling the optical properties of mineral particles 
suspended in seawater and their influence on ocean reflectance and chlorophyll 
estimation from remote sensing algorithms." Applied Optics 43(17): 3489 - 3503. 

Wright, S. W. and S. W. Jeffrey (1987). "Fucoxanthin pigment markers of marine phytoplankton 
analysed by HPLC and HPTLC." Marine Ecology Progress Series 38: 259 - 266. 

Zibordi, G., F. Mélin, S. B. Hooker, D. D’Alimonte and B. Holben (2004). "An autonomous 
above-water system for the validation of ocean color radiance data." IEEE Transactions 
on Geoscience and Remote Sensing 42(2): 401 - 415. 

 
 

 
 

 


	INTRODUCTION
	OBJECTIVES
	Hyperspectral Derivative Analysis of Phytoplankton Dynamics and Seasonality in Mayagüez Bay

