THE NOTION OF SEPARATION FOR INTERIOR OPERATORS IN TOPOLOGY

By
Edwin Gonzalo Murcia Rodríguez
A thesis submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in
PURE MATHEMATICS
UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

December, 2010

Approved by:

Julio E. Barety, Ph.D.
Date
Member, Graduate Committee

Luis F. Cáceres Duque, Ph.D.
Date
Member, Graduate Committee

Gabriele Castellini, Ph.D.
President, Graduate Committee

Jaime Seguel, Ph.D.
Date
Representative of Graduate Studies

Silvestre Colón, M.S.
Date
Chairperson of the Department

Abstract of Dissertation Presented to the Graduate School of the University of Puerto Rico in Partial Fulfillment of the Requirements for the Degree of Master of Science
 THE NOTION OF SEPARATION FOR INTERIOR OPERATORS IN TOPOLOGY

By

Edwin Gonzalo Murcia Rodríguez

December 2010

Chair: Gabriele Castellini
Major Department: Mathematical Sciences

A notion of separation with respect to an interior operator in topology is introduced. After concrete examples, some properties of separation are presented. In particular, closure of separation with respect to subspaces and products is proved. This notion of separation with respect to an interior operator gives rise to a Galois connection between the collection of all Topological Spaces and the collection of all Interior Operators in Topology. Characterizations of the fixed points of this Galois connection are given. An equivalent definition of separation is introduced that makes possible a generalization to other categories as well. Examples are provided.

Resumen de Disertación Presentado a Escuela Graduada de la Universidad de Puerto Rico como requisito parcial de los Requerimientos para el grado de Maestría en Ciencias

LA NOCIÓN DE SEPARACIÓN PARA OPERADORES INTERIORES EN TOPOLOGÍA

Por
Edwin Gonzalo Murcia Rodríguez

Diciembre 2010

Consejero: Gabriele Castellini

Departamento: Ciencias Matemáticas

Se introduce una noción de separación con respecto a un operador de interior topológico. Después de proporcionar ejemplos concretos, se presentan algunas propiedades. En particular se demuestra que la separación es cerrada con respecto a subespacios y productos. Esta noción de separación con respecto a un operador de interior da origen a una conexión de Galois entre la colección de Espacios Topológicos y la colección de Operadores de Interior en Topología. Se presentan caracterizaciones de los puntos fijos de esta conexión de Galois. Se introduce una definición equivalente de separación que hace posible una generalización a otras categorías. Se presentan algunos ejemplos.

Copyright © 2010
by
Edwin Gonzalo Murcia Rodríguez

Al Divino Niño Jesús, mi única convicción no racional. Espero que este esfuerzo de mi parte sea digno de Tí.

A mis padres, Gloria Rodríguez y Gonzalo Murcia, y mi hermana, Jennifer Murcia, son mi motivación, el regalo más grande en la vida. Les debo el privilegio de estudiar lo que me hace sentir pleno, y de luchar por lo que aspiro ser. Espero que Dios me permita disfrutar de su compañía por muchos años, y contribuir a su felicidad, como lo han hecho con mi propia felicidad.

A mi familia en Puerto Rico, María del Pilar Orjuela, Leoncio Rodríguez, César Barreto, Hamilton Davis, Juan Romero, Juan Ortiz y Angel Piñero, por su comprensión, por hacerme sentir como en casa, porque siempre puedo contar con ellos, y sobretodo, por fundamentar en mí la creencia que los lazos de hermandad trascienden los lazos de sangre.

A Lizeth Caro, a Alexandra Bernal, a Gabriela Rodríguez y su familia, familia Rodríguez López, y a Midelys Camacho, por su amistad, por su continuo apoyo, por la voz de aliento y su preocupación por la culminación de este trabajo.

Al Dr. Gabriele Castellini por permitirme trabajar con él y tener esta valiosa experiencia de investigación, esta tesis ha sido una gran oportunidad de aprendizaje y ha sido un privilegio compartir ideas con él.

A mis mentores, Vladimir Moreno, Fernando Novoa, Carlos Ruíz, Julio Barety, Luis Cáceres, Juan Romero y Juan Ortiz, que me dieron a conocer el arte que son las matemáticas, la profundidad y belleza de las ideas inmersas en ella.

A mis amigos Jhonatan Zambrano, David Martínez, Gabriel Uribe, William Sarmiento, Roman Kvasov, Jairo Ayala, Filánder Sequeira, Juan Soto, Geisel Alpízar,

Reyes Ortiz, María del Pilar Cosme, Danelys Estades, Adriana Santiago, Víctor Sidorenko, Josué Santos, Ricardo Cruz, José Colón, Luis Valle, Christian Vázquez, Silmarie Torres, Cristina Lugo, Michelle Martínez, Milena Salcedo, Roberto Trespalacios, Ana Bonilla.

ACKNOWLEDGMENTS

Al Doctor Gabriele Castellini por esta oportunidad para trabajar con él, a Leoncio Rodríguez y a Juan Oritz por su valioso aporte en los Ejemplos 46 y 59. A Juan Romero, Filánder Sequeira y Gabriel Uribe por su ayuda para tener la versión final de este documento.

TABLE OF CONTENTS

ABSTRACT ENGLISH ii
ABSTRACT SPANISH iii
ACKNOWLEDGMENTS vii
1 INTRODUCTION 1
2 TOPOLOGY REVIEW 3
3 INTERIOR OPERATORS 18
$4 \quad I$-SEPARATION 30
5 CONCLUSION AND FUTURE WORK 78

CHAPTER 1 INTRODUCTION

In mathematics the first encounter with the Hausdorff separation axiom is in calculus, when it is used to show unique convergence of a sequence, although it is not explicitly mentioned. Then, in the branch of mathematics called Topology, Hausdorff separation is a very important property, that allows to prove many interesting results about compacteness. It is one of the most general separation axioms and at the same time one of the most deep. This work tries to extent this notion to a more abstract context.

It is well known that a topology on a set can be defined using the notion of closure operator, or equivalently, the notion of interior operator. In [1] the notion of closure operator was successfully extended from topology to other categories. But, what would happen if one tries to extend the notion of interior operator? Some results of a first attempt to answer this question can be found in [2]. This thesis is a continuation of the work in [2], and a further attempt to answer the question. Concretely, this thesis studies the Hausdorff separation axiom in the context of interior operators.

Some definitions and results of General Topology that are considered relevant for the thesis are given in Chapter 2. These results can be found in [3], [4], [5] and [6].

The aspects of the Interior Operator Theory that will be used in the main part of the thesis are summarized in Chapter 3. In particular, the notion of I-open set
is fundamental because separation with respect to an interior operator is defined in terms of I-open sets.

Finally the notion of separation with respect to an interior operator on the category Top of topological spaces is defined in Chapter 4. Concrete examples of interior operators and their collections of separated spaces are given. Then, it is proved that the collection of separated spaces is closed under subspaces and products. After that, the collection of Topological Spaces and the collection of Interior Operators on Top are related via a Galois connection. Morever, the interior operator determined by a subcategory of Top is characterized and some categorical properties involved are stated. In the last part of the chapter, a definition and some results that try to generalise the notion of separation to other categories are given.

CHAPTER 2 TOPOLOGY REVIEW

In this chapter a number of definitions and results that will be used throughout this thesis are included.

The category of topological spaces will be denoted by Top. In this category, the objects, are the topological spaces, and the morphisms are the continuous functions between them.

Definition 1. Let X be a topological space.

1. X is an element of $\mathbf{T o p}_{0}$ if for every pair of different elements $x, y \in X$ there is an open set U in X such that $x \in U$ and $y \notin U$, or $y \in U$ and $x \notin U$.
2. X is an element of $\mathbf{T o p}_{1}$ if every finite subset of X is a closed set in X.
3. X satisfies the Hausdorff separation axiom if for every pair of points x, y, with $x \neq y$, there are two open sets in X, U and V, such that $x \in U, y \in V$ and $U \cap V=\emptyset$. In this case, we write $X \in \mathbf{T o p}_{2}$.
4. X is an element of $\mathbf{T o p}_{\mathbf{2} \frac{1}{2}}$, if for every pair of different elements $x, y \in X$ there are two open sets U, V such that $x \in U, y \in V$ and $\bar{U} \cap \bar{V}=\emptyset$.

With the same idea, $\mathbf{T o p}_{\mathbf{i}}$ denotes the category of all the topological spaces which satisfy the separation axiom T_{i}.

The following results present other notions equivalent to the above definition of Hausdorff space. The symbol \triangle_{X} denotes the diagonal of X, i.e., the subset of the cartesian product $X \times X$ that consists of all the ordered pairs having equal first and second coordinates.

Proposition 2. $X \in \mathbf{T o p}_{2}$ (in words, X is a Hausdorff space) if and only if $(X \times X) \backslash \triangle_{X}$ is open in $X \times X$ with the product topology, and consequently \triangle_{X} is closed in $X \times X$.

Proof. The complement of \triangle_{X} with respect to $X \times X$ is denoted by $\complement \triangle_{X}:=$ $(X \times X) \backslash \triangle_{X}$, and a neighborhood of x by U_{x}. Given $x, y \in X$,

$$
x \neq y \quad \text { if and only if } \quad(x, y) \in C \triangle_{X} .
$$

Then

$$
\begin{aligned}
X \in \mathbf{T o p}_{\mathbf{2}} & \Leftrightarrow(\forall x, y \in X)(x \neq y)\left(\exists U_{x}, U_{y}\right), \quad U_{x} \cap U_{y}=\emptyset \\
& \Leftrightarrow(\forall x, y \in X)(x \neq y)\left(\exists U_{x}, U_{y}\right), \quad U_{x} \times U_{y} \subseteq \complement \triangle_{X} \\
& \Leftrightarrow\left(\forall(x, y) \in \complement \triangle_{X}\right)\left(\exists U_{(x, y)} \text { nbhd of }(x, y)\right), U_{(x, y)} \subseteq \complement \triangle_{X} \\
& \Leftrightarrow \complement \triangle_{X} \text { open set in } X \times X \\
& \Leftrightarrow \triangle_{X} \text { closed set in } X \times X
\end{aligned}
$$

Definition 3. If X, Y are sets, and $X \underset{g}{\stackrel{f}{\longrightarrow}} Y$ are functions, the equalizer of f and g is the set

$$
e q u(f, g):=\{x \in X: f(x)=g(x)\} .
$$

Proposition 4. $Y \in \mathbf{T o p}_{2}$ if and only if for every $X \in \mathbf{T o p}$ and for every pair of continuous functions $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y, M \subseteq X$ implies $\bar{M} \subseteq e q u(f, g)$.
Proof. For the "if" part, $Y \in \operatorname{Top}$ and $Y \times Y \underset{\pi_{2}}{\stackrel{\pi_{1}}{\longrightarrow}} Y$ are considered, where π_{1}, π_{2} are the projections on the first and second coordinates, respectively. If it can be shown that the diagonal \triangle_{Y} is a subset of the equalizer of the functions, then the closure of \triangle_{Y} is also a subset of the equalizer. But in this case $\triangle_{Y}=e q u\left(\pi_{1}, \pi_{2}\right)$, so
even more $\overline{\triangle_{Y}} \subseteq e q u\left(\pi_{1}, \pi_{2}\right)$, or equivalently, $\overline{\triangle_{Y}} \subseteq \triangle_{Y}$. Therefore, \triangle_{Y} is a closed set of $Y \times Y$, and $Y \in \mathbf{T o p}_{\mathbf{2}}$.

Now the proof of the "only if" part by contrapositive. It is assumed that $Y \in \mathbf{T o p}$, and that there are $X \in \mathbf{T o p}, X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ continuous functions and a subset M of X such that $M \subseteq e q u(f, g)$ but $\bar{M} \nsubseteq e q u(f, g)$. Let $x \in \bar{M}$ such that $x \notin e q u(f, g)$ so that $f(x) \neq g(x)$. Let $U_{f(x)}, U_{g(x)}$ be neighborhoods of $f(x), g(x)$, respectively. Then $f^{-1}\left(U_{f(x)}\right) \cap g^{-1}\left(U_{g(x)}\right)$ is a neighborhood of x. Since $x \in \bar{M}$,

$$
\left[f^{-1}\left(U_{f(x)}\right) \cap g^{-1}\left(U_{g(x)}\right)\right] \cap M \neq \emptyset
$$

Taking $m \in\left[f^{-1}\left(U_{f(x)}\right) \cap g^{-1}\left(U_{g(x)}\right)\right] \cap M$, then $f(m)=g(m) \in U_{f(x)} \cap U_{g(x)}$, so that $U_{f(x)} \cap U_{g(x)} \neq \emptyset$. Consequently, $Y \notin \mathbf{T o p}_{2}$, since $U_{f(x)}, U_{g(x)}$ were arbitrary neighborhoods of $f(x), g(x)$.

An immediate consequence of the above proposition is the following.
Corollary 5. equ (f, g) is closed in X, for $Y \in \mathbf{T o p}_{\mathbf{2}}$.
Proposition 6. $Y \in \mathbf{T o p}_{\mathbf{2}}$ if and only if for every pair of continuous functions $X \underset{g}{\stackrel{f}{\longrightarrow}} Y$ and for all x in X such that $f(x) \neq g(x)$, there is a neighborhood U_{x} of x in X such that for every $y \in U_{x}, f(y) \neq g(y)$.

Proof. For the "if" part, it is assumed that $Y \in \operatorname{Top}, x, y \in Y$ with $x \neq y$, and $Y \times Y \underset{\pi_{2}}{\stackrel{\pi_{1}}{\longrightarrow}} Y$. Since $(x, y) \in \mathrm{C} \triangle_{Y} \subset Y \times Y, \pi_{1}(x, y)=x \neq y=\pi_{2}(x, y)$. Then by hypothesis, there is a neighborhood $U_{(x, y)}$ of (x, y) in $Y \times Y$ such that for every $(w, z) \in U_{(x, y)}, \pi_{1}(w, z) \neq \pi_{2}(w, z)$. But $\pi_{1}(w, z)=w$ and $\pi_{2}(w, z)=z$, so that for every $(w, z) \in U_{(x, y)}, w \neq z$. Hence $U_{(x, y)} \subseteq \complement \triangle_{Y}$. Since there are U_{x}, U_{y} neighborhoods of x, y in Y such that $U_{x} \times U_{y} \subseteq U_{(x, y)}$, they satisfy $U_{x} \times U_{y} \subseteq \mathrm{C} \triangle_{Y}$, and hence there are U_{x}, U_{y} neighborhoods of x, y in Y such that $U_{x} \cap U_{y}=\emptyset$. Thus $Y \in \mathbf{T o p}_{\mathbf{2}}$.

Now, for the "only if" part, $Y \in \mathbf{T o p}_{\mathbf{2}}, X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ continuous functions, and $x \in X$ such that $f(x) \neq g(x)$ are considered. Therefore there are $U_{f(x)}, U_{g(x)}$
neighborhoods of $f(x), g(x)$ in Y such that $U_{f(x)} \cap U_{g(x)}=\emptyset$. The set $f^{-1}\left(U_{f(x)}\right) \cap$ $g^{-1}\left(U_{g(x)}\right)$ is a neighborhood of x in X, and for every element y in this neighborhood it is true that $y \in f^{-1}\left(U_{f(x)}\right)$, and $y \in g^{-1}\left(U_{g(x)}\right)$. Then $f(y) \in U_{f(x)}$ and $g(y) \in$ $U_{g(x)}$. But since $U_{f(x)}, U_{g(x)}$ are disjoint neighborhoods, $f(y) \neq g(y)$.

Definition 7. If $X, Y \in$ Top and $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ continuous functions the separator set of f and g is defined by

$$
\operatorname{sep}(f, g):=\{x \in X: f(x) \neq g(x)\}
$$

Proposition 8. If $Y \in \mathbf{T o p}_{\mathbf{2}}$ then sep (f, g) is an open set in X.
Proof. Two cases are considered. If $\operatorname{sep}(f, g)=\emptyset$, it is obviously an open set in X. It is assumed then $\operatorname{sep}(f, g) \neq \emptyset$. Taking $x \in \operatorname{sep}(f, g)$ it follows that $f(x) \neq g(x)$, and using the previous proposition, there is U_{x} neighborhood of x such that for every $y \in U_{x}, f(y) \neq g(y)$. So that $U_{x} \subseteq \operatorname{sep}(f, g)$, and therefore $\operatorname{sep}(f, g)$ is open in X.

With these results there is another way to prove
Corollary 9. If $X \in \mathbf{T o p}_{2}$, then \triangle_{X} is closed in $X \times X$.
Proof. Since $\complement \triangle_{X}=\operatorname{sep}\left(\pi_{1}, \pi_{2}\right)$, the previous theorem lets say that $\complement \triangle_{X}$ is an open set in X, and therefore, \triangle_{X} is closed in X.

Definition 10. Let $X, Y \in$ Top and let $q: X \longrightarrow Y$ be a surjective map. q is a quotient map if it satisfies that a subset V of Y is open in Y if and only if $q^{-1}(V)$ is open in X.

Definition 11. Let X be a topological space, N a set and $q: X \longrightarrow N$ a surjective map. Then, there is exactly one topology τ on N such that q is a quotient map relative to $\tau . \tau$ is the quotient topology induced by $q . \tau$ is defined as follows: a subset $U \subseteq N$ is open with respect to τ if and only if $q^{-1}(U)$ is open in X.

Definition 12. Let X be a topological space and \tilde{X} any partition of X. Let q be the map defined by

$$
\left\{\begin{array}{c}
q: X \longrightarrow \tilde{X} \\
q(x):=[x]
\end{array}\right.
$$

where $[x]$ is the unique element of \tilde{X} which contains x. Then \tilde{X} with the quotient topology induced by q is a quotient space of X.

Definition 13. Let X_{1}, X_{2} be arbitrary sets. The set

$$
X_{1}+X_{2}:=\bigcup_{i=1}^{2}\left\{(x, i): x \in X_{i}\right\}
$$

is the disjoint union of X_{1} and X_{2}. If $X_{1}=X_{2}=X$, then $X_{1}+X_{2}=X \times\{1,2\}$.
Definition 14. Let $X_{1}, X_{2} \in$ Top. Let $X_{1}+X_{2}$ be the disjoint union of X_{1} and X_{2}, and let h, k be the functions defined by

$$
\left\{\begin{array} { c }
{ h : X _ { 1 } \longrightarrow X _ { 1 } + X _ { 2 } } \\
{ h (x) : = (x , 1) }
\end{array} , \quad \text { and, } \quad \left\{\begin{array}{c}
k: X_{2} \longrightarrow X_{1}+X_{2} \\
k(x):=(x, 2)
\end{array}\right.\right.
$$

The disjoint union topology on $X_{1}+X_{2}$ is defined as follows: U^{*} subset of $X_{1}+X_{2}$ is open in $X_{1}+X_{2}$ if and only if $h^{-1}\left(U^{*}\right)$ is open in X_{1} and $k^{-1}\left(U^{*}\right)$ is open in X_{2}. Remark. When it is used the notation $X_{1}+X_{2} \in \mathbf{T o p}$, or when $X_{1}+X_{2}$ is written as a member of a subcategory of Top, it is assumed that the disjoint union $X_{1}+X_{2}$ has the disjoint union topology.

Proposition 15. Let X be a topological space with the assumption $X_{1}=X_{2}=X$. If $X \in \mathbf{T o p}_{\mathbf{2}}$, then $X_{1}+X_{2} \in \mathbf{T o p}_{\mathbf{2}}$.

Proof. Let $x^{*}, y^{*} \in X_{1}+X_{2}$, with $x^{*} \neq y^{*}$. Therefore there are $x, y \in X$ and $i, j \in\{1,2\}$ such that $x^{*}=(x, i)$ and $y^{*}=(y, j)$. Two cases are considered.
Case $1 x=y$.
Therefore $i \neq j$. Without loss of generality, it is assumed that $x^{*}=(x, 1)$ and $y^{*}=(x, 2)$. Let U be neighborhood of x in X. Then $U \times\{1\}$ is a neighborhood
of x^{*} in $X_{1}+X_{2}$ since $x^{*}=(x, 1) \in U \times\{1\}, h^{-1}(U \times\{1\})=U$ is an open set in $X_{1}=X$, and $k^{-1}(U \times\{1\})=\emptyset$ is an open set in $X_{2}=X$. Similarly, $U \times\{2\}$ is a neighborhood of y^{*} in $X_{1}+X_{2}$. These neighborhoods satisfy

$$
(U \times\{1\}) \cap(U \times\{2\})=\emptyset .
$$

Case $2 x \neq y$.
Then there are U_{x}, U_{y} neighborhoods of x, y in X, respectively, such that $U_{x} \cap U_{y}=$ Ø. As Case 1, $U_{x} \times\{i\}, U_{y} \times\{j\}$ are neighborhoods of x^{*}, y^{*}, respectively, and satisfy

$$
\left(U_{x} \times\{i\}\right) \cap\left(U_{y} \times\{j\}\right)=\emptyset .
$$

Hence, $X_{1}+X_{2} \in \mathbf{T o p}_{2}$.

Proposition 16. Let X be a topological space, M a subset of X and $X_{1}=X_{2}=X$. Let x^{*} be a point in $X_{1}+X_{2}$, so that there are $x \in X$ and $i \in\{1,2\}$ such that $x^{*}=(x, i)$. With the definition

$$
\left[x^{*}\right]:= \begin{cases}\{(x, i)\}, & x \notin M, \\ \{(x, 1),(x, 2)\}, & x \in M\end{cases}
$$

the set

$$
\left\{\left[x^{*}\right]: x^{*} \in X_{1}+X_{2}\right\}
$$

is a partition of $X_{1}+X_{2}$.
Notation. The partition in the previous definition is denoted as

$$
\left(X_{1}+X_{2}\right) / M:=\bigcup\left\{\left[x^{*}\right]: x^{*} \in X_{1}+X_{2}\right\} .
$$

Remark. When it is used the notation $\left(X_{1}+X_{2}\right) / M \in \operatorname{Top}$, or when $\left(X_{1}+X_{2}\right) / M \in$ Top is written as a member of a subcategory of Top, it is assumed that $\left(X_{1}+X_{2}\right) / M$
has the quotient topology induced by q,

$$
\left\{\begin{aligned}
q: X_{1}+X_{2} & \longrightarrow\left(X_{1}+X_{2}\right) / M \\
q\left(x^{*}\right) & :=\left[x^{*}\right]
\end{aligned}\right.
$$

Proposition 17. Let X be a topological space, $M \subseteq X$, with M closed in X. Let $X_{1}=X_{2}=X$. If $x \in X \backslash M$, there is U_{x} neighborhood of x in X such that for $i \in\{1,2\}, q\left(U_{x} \times\{i\}\right)$ is a neighborhood of $[(x, i)]$ in $\left(X_{1}+X_{2}\right) / M$.

Proof. Since M is a closed set in $X, X \backslash M$ is open in X. Then, there is a neighborhood U_{x} of x in X such that $U_{x} \subseteq X \backslash M$. Clearly $[(x, i)] \in q\left(U_{x} \times\{i\}\right)$, for $i=1,2$. It is claimed that

$$
q^{-1}\left(q\left(U_{x} \times\{i\}\right)\right)=U_{x} \times\{i\}
$$

Let (y, j) be a point in $q^{-1}\left(q\left(U_{x} \times\{i\}\right)\right)$. Then $q(y, j)$ is a point in $q\left(U_{x} \times\{i\}\right)$, so that there is $z \in U_{x}$ such that

$$
q(y, j)=q(z, i)=[(z, i)]
$$

But this means that $[(y, j)]=\{(z, i)\}$, and hence $(y, j)=(z, i)$, so that $(y, j) \in$ $U_{x} \times\{i\}$. Since $U_{x} \times\{i\} \subseteq q^{-1}\left(q\left(U_{x} \times\{i\}\right)\right)$ is always true we obtain equality.

Corollary 18. Let X be a topological space, $M \subseteq X$, with M closed in X. Let $X_{1}=X_{2}=X$. If $x \in X \backslash M$, there is U_{x} neighborhood of x in X such that for $i \in\{1,2\}, q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)$ is a neighborhood of $[(x, i)]$ in $\left(X_{1}+X_{2}\right) / M$.

Proof. By the previous proposition there is U_{x} neighborhood of x in X such that $q\left(U_{x} \times\{1\}\right)$ and $q\left(U_{x} \times\{2\}\right)$ are open sets in $\left(X_{1}+X_{2}\right) / M$. Since $[(x, i)]$ is a point in $q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)$, and

$$
\begin{aligned}
q^{-1}\left(q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)\right) & =q^{-1}\left(q\left(U_{x} \times\{1\}\right) \cup q\left(U_{x} \times\{2\}\right)\right) \\
& =q^{-1}\left(q\left(U_{x} \times\{1\}\right)\right) \cup q^{-1}\left(q\left(U_{x} \times\{2\}\right)\right)
\end{aligned}
$$

the result is true.
Proposition 19. Let X be a topological space and $M \subseteq X$, with M closed in X. Let $X_{1}=X_{2}=X$. Let x be a point of X, and U_{x} a neighborhood of x in X. Then for $i \in\{1,2\}, q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)$ is a neighborhood of $[(x, i)]$ in $\left(X_{1}+X_{2}\right) / M$.

Proof. If $U_{x} \subseteq X \backslash M$, is case of the previous corollary. It is assumed that $U_{x} \cap M \neq \emptyset$.
If

$$
\begin{aligned}
U & :=(X \backslash M) \cap U_{x}, \\
C & :=M \cap U_{x}
\end{aligned}
$$

$U_{x}=U \cup C$. It is clear that U is an open set in X that satisfies $U \subseteq X \backslash M$, and that $[(x, i)]$ is a point in the set $q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)$. It is claimed that

$$
q^{-1}\left(q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)\right)=\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]
$$

and this proves the assertion.
Let (y, j) be a point in $q^{-1}\left(q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)\right)$. Then $q(y, j)$ is a point in $q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)$. But

$$
\begin{aligned}
q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right) & =q([U \times\{1\}] \cup[C \times\{1\}] \cup[U \times\{2\}] \cup[C \times\{2\}]) \\
& =q([U \times\{1\}] \cup[U \times\{2\}]) \cup q([C \times\{1\}] \cup[C \times\{2\}])
\end{aligned}
$$

so that $q(y, j)$ is a point in $q([U \times\{1\}] \cup[U \times\{2\}]) \cup q([C \times\{1\}] \cup[C \times\{2\}])$, and the two image sets are disjoint. Two cases are considered.

Case $1 q(y, j) \in q([U \times\{1\}] \cup[U \times\{2\}])$.
Then, since is case of the previous corollary

$$
\begin{aligned}
(y, j) \in q^{-1}(q([U \times\{1\}] \cup[U \times\{2\}])) & =[U \times\{1\}] \cup[U \times\{2\}] \\
& \subseteq\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]
\end{aligned}
$$

Case $2 q(y, j) \in q([C \times\{1\}] \cup[C \times\{2\}])$.
Then there are $z \in C$ and $k \in\{1,2\}$ such that $q(y, j)=q(z, k)=[(z, k)]$. But then $[(y, j)]=\{(z, 1),(z, 2)\}$, so that $(y, j)=(z, 1)$, or $(y, j)=(z, 2)$. Hence

$$
(y, j) \in[C \times\{1\}] \cup[C \times\{2\}] \subseteq\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]
$$

Since the other inclusion is always true, equality is obtained.
Proposition 20. Let X be a topological space, $M \subseteq X$, with M closed in X. Let $X_{1}=X_{2}=X$. If $X \in \mathbf{T o p}_{\mathbf{2}}$, then $\left(X_{1}+X_{2}\right) / M \in \mathbf{T o p}_{\mathbf{2}}$.

Proof. Let $\left[x^{*}\right] \neq\left[y^{*}\right]$ be points in $\left(X_{1}+X_{2}\right) / M$, with $x^{*}=(x, i), y^{*}=(y, j)$, where $x, y \in X$ and $i, j \in\{1,2\}$. Two cases are considered.

Case $1 x \neq y$.
Then there are U_{x}, U_{y} disjoint neighborhoods of x, y, respectively. Therefore,

$$
\left(U_{x} \times\{1\}\right) \cap\left(U_{y} \times\{1\}\right)=\emptyset
$$

and

$$
\left(U_{x} \times\{2\}\right) \cap\left(U_{y} \times\{2\}\right)=\emptyset
$$

Using these identities,

$$
\left[\left(U_{x} \times\{1\}\right) \cup\left(U_{x} \times\{2\}\right)\right] \cap\left[\left(U_{y} \times\{1\}\right) \cup\left(U_{y} \times\{2\}\right)\right]=\emptyset
$$

But in the proof of Proposition 19 it was shown that

$$
q^{-1}\left(q\left(\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]\right)\right)=\left[U_{x} \times\{1\}\right] \cup\left[U_{x} \times\{2\}\right]
$$

and similarly it is possible to write

$$
q^{-1}\left(q\left(\left[U_{y} \times\{1\}\right] \cup\left[U_{y} \times\{2\}\right]\right)\right)=\left[U_{y} \times\{1\}\right] \cup\left[U_{y} \times\{2\}\right]
$$

Thus,

$$
q^{-1}\left(q\left(\left[\left(U_{x} \times\{1\}\right) \cup\left(U_{x} \times\{2\}\right)\right]\right)\right) \cap q^{-1}\left(q\left(\left[\left(U_{y} \times\{1\}\right) \cup\left(U_{y} \times\{2\}\right)\right]\right)\right)=\emptyset
$$

so that

$$
q^{-1}\left(q\left(\left[\left(U_{x} \times\{1\}\right) \cup\left(U_{x} \times\{2\}\right)\right]\right) \cap q\left(\left[\left(U_{y} \times\{1\}\right) \cup\left(U_{y} \times\{2\}\right)\right]\right)\right)=\emptyset
$$

Since q is surjective,

$$
q\left(\left[\left(U_{x} \times\{1\}\right) \cup\left(U_{x} \times\{2\}\right)\right]\right) \cap q\left(\left[\left(U_{y} \times\{1\}\right) \cup\left(U_{y} \times\{2\}\right)\right]\right)=\emptyset
$$

and from Proposition 19 it has been found $q\left(\left[\left(U_{x} \times\{1\}\right) \cup\left(U_{x} \times\{2\}\right)\right]\right)$ neighborhood of $\left[x^{*}\right]$ that is disjoint from $q\left(\left[\left(U_{y} \times\{1\}\right) \cup\left(U_{y} \times\{2\}\right)\right]\right)$ neighborhood of [$\left.y^{*}\right]$.

Case $2 x=y$.
Then $x \notin M$. Without loss of generality, it is assumed that $x^{*}=(x, 1)$ and $y^{*}=(x, 2)$. There is U_{x} neighborhood of x in X such that $U_{x} \subseteq X \backslash M$. Then

$$
\begin{aligned}
\emptyset & =\left(U_{x} \times\{1\}\right) \cap\left(U_{x} \times\{2\}\right) \\
& =q^{-1}\left(q\left(\left(U_{x} \times\{1\}\right)\right)\right) \cap q^{-1}\left(q\left(\left(U_{x} \times\{2\}\right)\right)\right) \\
& =q^{-1}\left(q\left(\left(U_{x} \times\{1\}\right)\right) \cap q\left(\left(U_{x} \times\{2\}\right)\right)\right),
\end{aligned}
$$

and since q is surjective

$$
\left[q\left(\left(U_{x} \times\{1\}\right)\right)\right] \cap\left[q\left(\left(U_{x} \times\{2\}\right)\right)\right]=\emptyset,
$$

and it has been found $q\left(\left(U_{x} \times\{1\}\right)\right)$ neighborhood of $\left[x^{*}\right]$ that is disjoint of $q\left(\left(U_{x} \times\{2\}\right)\right)$ neighborhood of $\left[y^{*}\right]$.

Proposition 21. Let $X \in \mathbf{T o p}_{\mathbf{2}}, M \subseteq X$, with M closed in X. Then there are $Y \in \mathbf{T o p}_{\mathbf{2}}$ and continuous functions $X \underset{g}{f} Y$ such that $M=e q u(f, g)$.

Proof. Let $X_{1}=X_{2}=X$. Since $X \in \mathbf{T o p}_{\mathbf{2}}$, by the previous proposition $\left(X_{1}+X_{2}\right) / M \in$ $\mathbf{T o p}_{\mathbf{2}}$. From the diagram

$$
X \underset{k}{\stackrel{h}{\longrightarrow}} X_{1}+X_{2} \xrightarrow{q}\left(X_{1}+X_{2}\right) / M
$$

$M=e q u(q \circ h, q \circ k)$, where h and k are as in Definition 14.
Definition 22. Let $X, Y \in$ Top. A function $f: X \longrightarrow Y$ is sequentially continuous if for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, the convergence $x_{n} \longrightarrow x$ in X implies the convergence $f\left(x_{n}\right) \longrightarrow f(x)$ in Y.

Proposition 23. Every continuous function is sequentially continuous.
Proof. Let $f: X \longrightarrow Y$ be a continuous function. Let $x_{n} \longrightarrow x$, and let V be a neighborhood of $f(x)$. Since f is continuous at x, there is a neighborhood U of x such that $f(U) \subseteq V$. Since $x_{n} \longrightarrow x$, exists n_{0} natural number such that for every natural number n with $n \geq n_{0}, x_{n} \in U$. Therefore, this n_{0} satisfies that for every natural number $n \geq n_{0}, f\left(x_{n}\right) \in f(U) \subseteq V$. Hence $f\left(x_{n}\right) \longrightarrow f(x)$.

The following are results related to the notion of connectedness.
Definition 24. Let $X \in$ Top. A separation of X consists of two disjoint open sets U, V such that $X=U \cup V$. If there is not a non-trivial separation of X then X is called a connected space.

Remark. Let U, V be a separation of X. Then U, V are open sets in X, so that $X \backslash U, X \backslash V$ are closed sets in X. But since $X=U \cup V$ and U, V are disjoint, $V=X \backslash U$ and $U=X \backslash V$. Therefore U, V are closed sets in X, and hence U, V are clopen sets in X.

Definition 25. Let $X \in$ Top and $M \subseteq X . M$ is a connected set in X if M is a connected space with the subspace topology.

Definition 26. Let $X \in \mathbf{T o p}$ and $H, K \subseteq X . H$ and K are separated if

$$
\bar{H} \cap K=H \cap \bar{K}=\emptyset
$$

Theorem 27. Let $X \in \operatorname{Top}$ and $H, K, M \subseteq X$, with $M=H \cup K$. Then, H, K are separated if and only if $H \cap K=\emptyset$, and H, K are open sets in M with the subspace topology.

Proof. First, assuming that H, K are separated sets

$$
H \cap K \subseteq \bar{H} \cap K=\emptyset
$$

and thus $H \cap K=\emptyset$. From $H \cap \bar{K}=\emptyset, H \subseteq X \backslash \bar{K}$, that is an open set in X such that

$$
M \cap(X \backslash \bar{K})=(H \cup K) \cap(X \backslash \bar{K})=H \cap(X \backslash \bar{K})=H
$$

therefore H is an open set in M with the subspace topology. Similarly, from $\bar{H} \cap K=$ \emptyset, K is an open set in M with the subspace topology.

Now the assumptions are $H \cap K=\emptyset$, and H, K are open sets in M with the subspace topology. Let U be an open set in X such that $H=M \cap U$. Then $H \subseteq U$ and

$$
K \cap U \subseteq M \cap U=H
$$

but since $H \cap K=\emptyset, K \cap U=\emptyset$. Therefore, U is a neighborhood of every point of H that satisfies

$$
U \cap K=\emptyset
$$

and thus $H \cap \bar{K}=\emptyset$. Similarly, $\bar{H} \cap K=\emptyset$. But then H and K are separated.
A consequence of the previous theorem is the following.
Corollary 28. Let X be a topological space, and $M \subseteq X . M$ is connected if and only if M is not the union of two nonempty separated sets.

Proof. M is connected if and only if M is not the union of two disjoint nonempty open sets in M with the subspace topology. By the previous theorem, M is connected if and only if M is not the union of two nonempty separated sets.

Lemma 29. If H, K are separated sets, and $H^{\prime} \subseteq H$ and $K^{\prime} \subseteq K$, then H^{\prime}, K^{\prime} are separated sets.

Proof. $\overline{H^{\prime}} \cap K^{\prime} \subseteq \bar{H} \cap K=\emptyset$, and, $H^{\prime} \cap \overline{K^{\prime}} \subseteq H \cap \bar{K}=\emptyset$.

Theorem 30. Let $X \in$ Top. Under the assumptions $H, K \subseteq X$ separated sets and $M \subseteq H \cup K$, if M is connected then M lies in either H or K.

Proof. Let M be a connected set having nonempty intersection with H and with K. Therefore, $M=(M \cap H) \cup(M \cap K)$, where $M \cap H, M \cap K$ are nonempty separated sets, by the previous lemma. But this is a contradiction to Corollary 28, so that M lies in H or in K.

Proposition 31. Let $\left\{M_{\alpha}\right\}_{\alpha \in A}$ be a family of connected sets such that $\bigcap_{\alpha \in A} M_{\alpha} \neq \emptyset$. Then, $\bigcup_{\alpha \in A} M_{\alpha}$ is connected.

Proof. Let $x \in \bigcap_{\alpha \in A} M_{\alpha}$. Assuming that $\bigcup_{\alpha \in A} M_{\alpha}=H \cup K$, where H, K are separated sets and that $x \in H$ then, since for every $\alpha \in A$ the set M_{α} is connected, by Theorem $30 M_{\alpha} \subseteq H$, and thus $\bigcup_{\alpha \in A} M_{\alpha} \subseteq H$. Hence, $K=\emptyset$, and $\bigcup_{\alpha \in A} M_{\alpha}$ is a connected set.

Theorem 32. The direct image of a connected space under a continuous function is a connected space.

Proof. Let $X, Y \in \operatorname{Top}$ being X a connected set and let $f: X \longrightarrow Y$ be a continuous function. The function with restricted range

$$
g: X \longrightarrow f(X)
$$

is also continuous. Then, without loss of generality, $f: X \longrightarrow Y$ is assumed continuous and surjective. If Y is not connected, there is V, W a nontrivial separation of Y. But then, $f^{-1}(V)$ and $f^{-1}(W)$ are open sets in X, since f is continuous, also

$$
X=f^{-1}(Y)=f^{-1}(V \cup W)=f^{-1}(V) \cup f^{-1}(W)
$$

and finally

$$
f^{-1}(V) \neq \emptyset \neq f^{-1}(W)
$$

since f is surjective. Hence, $f^{-1}(V), f^{-1}(W)$ are a nontrivial separation of X, in contradiction with the fact that X is connected. So that Y is connected.

Definition 33. Let $X \in \operatorname{Top}$ and $x, y \in X . x$ and y are connected in $X(x \sim y)$ if there is a connected set of X containing them both. This relation between points is an equivalence relation on X, and the equivalence classes are the components of X. Remark.

1. The components are connected subsets of X :

Let $x \in X$. Let C_{x} be the component of x in X. It is claimed that

$$
C_{x}=\bigcup_{y \sim x} C_{(x, y)},
$$

where $C_{(x, y)}$ is a connected set containing x and y. Let $y \in C_{x}$. Then $y \sim x$, and hence there is $C_{(x, y)}$ connected set in X such that $x, y \in C_{(x, y)}$. So that $y \in C_{(x, y)}$, and thus $y \in \bigcup_{y \sim x} C_{(x, y)}$.
The set $\bigcup_{y \sim x} C_{(x, y)}$ is the union of connected sets that have x as a common element. Therefore, $\bigcup_{y \sim x} C_{(x, y)}$ is a connected set that contains x, so that by definition $\bigcup_{y \sim x} C_{(x, y)} \subseteq C_{x}$.
2. The components are maximal connected subsets of X :

Let C be a connected set such that $x \in C$. Since $x \sim x, C \subseteq \bigcup_{y \sim x} C_{(x, y)}=C_{x}$. Therefore, for every connected set in X such that $x \in C, C \subseteq C_{x}$.

Proposition 34. Every clopen is the union of the connected components of its elements.

Proof. Let C be a clopen in X, and let x be a point in C. Let C_{x} be the connected component of x in X. Since $C, X \backslash C$ are a separation of X and C_{x} is a connected set in X, then C_{x} lies in C or C_{x} lies in $X \backslash C$. But $x \in C$, so that $C_{x} \subseteq C$, and since x was arbitrary, $C=\bigcup_{x \in C} C_{x}$.

Proposition 35. The finite product of connected sets is connected.
Proof. Let X, Y be connected spaces. What is going to show is that $X \times Y$ has only one component. Let (x, y) be a fixed point in $X \times Y$, and let (u, v) be an arbitrary point in $X \times Y .(x, y)$ lies in the connected set $\{x\} \times Y$ (this set is connected because is homeomorphic to Y), and (u,v) lies in the connected set $X \times\{v\}$ (this set is connected because is homeomorphic to X). But

$$
(\{x\} \times Y) \cap(X \times\{v\})=\{(x, v)\} \neq \emptyset
$$

then $(\{x\} \times Y) \cup(X \times\{v\})$ is a connected set that contains (x, y) and (u, v). Therefore, for every point (u, v) in $X \times Y,(u, v) \in C_{(x, y)}$, the connected component of (x, y) in $X \times Y$. Hence,

$$
X \times Y=C_{(x, y)}
$$

so that $X \times Y$ is connected.
Definition 36. Let $X \in$ Top. X is totally disconnected if the components are singletons.

Definition 37. Let $X \in$ Top. X is totally separated if for every pair of different points $x, y \in X$, there is a separation U, V of X such that $x \in U$ and $y \in V$.

Remark. In reference [3] one can find examples of spaces that are totally separated but not discrete.

CHAPTER 3 INTERIOR OPERATORS

In this chapter the notion of interior operator is introduced, examples that illustrate this notion are provided and the notion of a set being open with respect to an interior operator, or I-open, is established. Then the closure of the notion of interior operator under arbitrary unions is studied, and finally, the infimum of a family of interior operators is defined.

Definition 38. The indexed family $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ is an interior operator on the category Top, if for every $X \in \mathbf{T o p}, i_{X}$ is a function

$$
\left\{\begin{array}{c}
i_{X}: S(X) \longrightarrow S(X) \\
M \longmapsto i_{X}(M),
\end{array}\right.
$$

where $S(X)$ is the collection of all subclasses of X, ordered by inclusion, and i_{X} satisfies

- Contractibility: For every $M \in S(X), i_{X}(M) \subseteq M$.
- Monotonicity: For every pair $M_{1}, M_{2} \in S(X)$ such that $M_{1} \subseteq M_{2}, i_{X}\left(M_{1}\right) \subseteq$ $i_{X}\left(M_{2}\right)$.
- Continuity: For every $X, Y \in \operatorname{Top}, f: X \longrightarrow Y$ continuous function and $N \in$ $S(Y), f^{-1}\left(i_{Y}(N)\right) \subseteq i_{X}\left(f^{-1}(N)\right)$.

The class of all interior operators on Top is denoted by $I N(T o p)$.
Definition 39. Let $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}, J:=\left(j_{X}\right)_{X \in \text { Top }}$ interior operators on Top. $I \leq J$ if and only if for every $X \in \mathbf{T o p}$, and for every $M \subseteq X$

$$
i_{X}(M) \subseteq j_{X}(M)
$$

Remark. From the definition, \leq is a partial order on $I N($ Top $)$. A fortiori, $(I N(T o p), \leq)$ is a pre-order class (in other words, the relation \leq is reflexive and transitive).

For each one of the following examples, let $X, Y \in \operatorname{Top}, M, M_{1}, M_{2} \in S(X)$ with $M_{1} \subseteq M_{2}, N \in S(Y)$ and let f be a continuous function $f: X \longrightarrow Y$. Example 42 is new; the others can be found in [2].

Example 40. It is defined

$$
k_{X}(M):=\bigcup\{O \subseteq M: O \text { is open in } X\}
$$

This function satisfies the contractibility property, since by definition is a union of subsets of M, so that $k_{X}(M) \subseteq M$. If O is a subset of X with $O \subseteq M_{1}$, then $O \subseteq M_{2}$, and hence

$$
\left\{O \subseteq M_{1}: O \text { is open in } X\right\} \subseteq\left\{O \subseteq M_{2}: O \text { is open in } X\right\}
$$

and thus

$$
\bigcup\left\{O \subseteq M_{1}: O \text { is open in } X\right\} \subseteq \bigcup\left\{O \subseteq M_{2}: O \text { is open in } X\right\}
$$

or equivalently, $k_{X}\left(M_{1}\right) \subseteq k_{X}\left(M_{2}\right)$.
For the continuity, by definition $k_{Y}(N)$ is an open set in Y, so that $f^{-1}\left(k_{Y}(N)\right)$ is an open set in X and since $f^{-1}\left(k_{Y}(N)\right) \subseteq f^{-1}(N)$,

$$
f^{-1}\left(k_{Y}(N)\right) \in\left\{O \subseteq f^{-1}(N): O \text { is open in } X\right\}
$$

and then

$$
f^{-1}\left(k_{Y}(N)\right) \subseteq \bigcup\left\{O \subseteq f^{-1}(N): O \text { is open in } X\right\}
$$

or $f^{-1}\left(k_{Y}(N)\right) \subseteq k_{X}\left(f^{-1}(N)\right)$. Hence, $K:=\left(k_{X}\right)_{X \in \boldsymbol{T o p}}$ is an interior operator on Top. This is the usual interior operator induced by the topology.

Example 41. It is defined

$$
h_{X}(M):=\bigcup\{C \subseteq M: C \text { is closed in } X\} .
$$

By definition, $h_{X}(M) \subseteq M$, since is the union of subsets of M. If C is a subset of X with $C \subseteq M_{1}$, then $C \subseteq M_{2}$, and thus

$$
\left\{C \subseteq M_{1}: C \text { is closed in } X\right\} \subseteq\left\{C \subseteq M_{2}: C \text { is closed in } X\right\}
$$

and then

$$
\bigcup\left\{C \subseteq M_{1}: C \text { is closed in } X\right\} \subseteq \bigcup\left\{C \subseteq M_{2}: C \text { is closed in } X\right\}
$$

or $h_{X}\left(M_{1}\right) \subseteq h_{X}\left(M_{2}\right)$, so that the monotonicity is proved.
For the continuity,

$$
\begin{aligned}
f^{-1}\left(h_{Y}(N)\right) & =f^{-1}(\bigcup\{C \subseteq N: C \text { is closed in } Y\}) \\
& =\bigcup\left\{f^{-1}(C): C \subseteq N, \text { and, } C \text { is closed in } Y\right\} .
\end{aligned}
$$

Since $C \subseteq N, C$ is a closed set in Y and f is continuous, $f^{-1}(C) \subseteq f^{-1}(N)$ and $f^{-1}(C)$ is closed in X, and therefore

$$
\begin{aligned}
f^{-1}\left(h_{Y}(N)\right) & \subseteq \bigcup\left\{f^{-1}(C) \subseteq f^{-1}(N): f^{-1}(C) \text { is closed in } X\right\} \\
& \subseteq \bigcup\left\{C \subseteq f^{-1}(N): C \text { is closed in } X\right\} \\
& =h_{X}\left(f^{-1}(N)\right)
\end{aligned}
$$

Hence, $f^{-1}\left(h_{Y}(N)\right) \subseteq h_{X}\left(f^{-1}(N)\right)$ and $H=\left(h_{X}\right)_{X \in \mathbf{T o p}}$ is an interior operator on Top.

This interior operator can be also expressed as

$$
\tilde{h}_{X}(M):=\{x \in M: \overline{\{x\}} \subseteq M\} .
$$

Let $X \in \mathbf{T o p}$ and $M \in S(X)$. That $\tilde{h}_{X}(M) \subseteq h_{X}(M)$ it is clear, because if $x \in \tilde{h}_{X}(M), \overline{\{x\}}$ is a closed set such that $x \in \overline{\{x\}} \subseteq M$, so that

$$
x \in \bigcup\{C \subseteq M: C \text { is a closed set in } X\}=h_{X}(M)
$$

Now for $h_{X}(M) \subseteq \tilde{h}_{X}(M)$, let $x \in h_{X}(M)$. Then there is a closed set C in X such that $x \in C \subseteq M$. But since C is closed and contains x, then $\overline{\{x\}} \subseteq C \subseteq M$, and thus $x \in \tilde{h}_{X}(M)$.

Example 42. It is defined

$$
b_{X}(M):=\left\{x \in X: \exists U_{x} \text { nbhd of } x \text { such that } U_{x} \cap \overline{\{x\}} \subseteq M\right\}
$$

Clearly, $b_{X}(M) \subseteq M$.
For the monotonicity

$$
\begin{aligned}
b_{X}\left(M_{1}\right) & =\left\{x \in X: \exists U_{x} \text { nbhd of } x \text { such that } U_{x} \cap \overline{\{x\}} \subseteq M_{1} \subseteq M_{2}\right\} \\
& \subseteq\left\{x \in X: \exists U_{x} \text { nbhd of } x \text { such that } U_{x} \cap \overline{\{x\}} \subseteq M_{2}\right\} \\
& =b_{X}\left(M_{2}\right)
\end{aligned}
$$

Finally, for the continuity, take $x \in f^{-1}\left(b_{Y}(N)\right)$. Then, $f(x) \in b_{Y}(N)$, so that there is a neighborhood $V_{f(x)}$ of $f(x)$ such that $V_{f(x)} \cap \overline{\{f(x)\}} \subseteq N$. Therefore

$$
\begin{aligned}
f^{-1}\left(V_{f(x)} \cap \overline{\{f(x)\}}\right) & \subseteq f^{-1}(N) \\
f^{-1}\left(V_{f(x)}\right) \cap f^{-1}(\overline{\{f(x)\}}) & \subseteq f^{-1}(N),
\end{aligned}
$$

where the set $f^{-1}\left(V_{f(x)}\right)$ is a neighborhood of x and the set $f^{-1}(\overline{\{f(x)\}})$ is closed in X and contains x. Hence,

$$
f^{-1}\left(V_{f(x)}\right) \cap \overline{\{x\}} \subseteq f^{-1}\left(V_{f(x)}\right) \cap f^{-1}(\overline{\{f(x)\}}) \subseteq f^{-1}(N)
$$

and consequently $f^{-1}\left(V_{f(x)}\right)$ is a neighborhood of x such that

$$
f^{-1}\left(V_{f(x)}\right) \cap \overline{\{x\}} \subseteq f^{-1}(N)
$$

But this means that $x \in b_{X}\left(f^{-1}(N)\right)$, and then $f^{-1}\left(b_{Y}(N)\right) \subseteq b_{X}\left(f^{-1}(N)\right)$, so that $B:=\left(b_{X}\right)_{X \in \operatorname{Top}}$ is an interior operator on Top.

Example 43. It is defined

$$
\theta_{X}(M):=\left\{x \in M: \exists U_{x} \text { nbhd of } x \text { s.t. } \bar{U}_{x} \subseteq M\right\}
$$

By definition $\theta_{X}(M)$ is a set that consists of elements of M, so that $\theta_{X}(M) \subseteq M$, and the contractibility is proved. For the monotonicity,

$$
\begin{aligned}
\theta_{X}\left(M_{1}\right) & =\left\{x \in M_{1}: \exists U_{x} \text { nbhd of } x \text { s.t. } \bar{U}_{x} \subseteq M_{1} \subseteq M_{2}\right\} \\
& \subseteq\left\{x \in M_{2}: \exists U_{x} \text { nbhd of } x \text { s.t. } \bar{U}_{x} \subseteq M_{2}\right\} \\
& =\theta_{X}\left(M_{2}\right) .
\end{aligned}
$$

For the continuity, let $x \in f^{-1}\left(\theta_{Y}(N)\right)$, so that $f(x) \in \theta_{Y}(N)$. Therefore, there is a neighborhood $V_{f(x)}$ of $f(x)$ such that $\overline{V_{f(x)}} \subseteq N$. But then $f^{-1}\left(V_{f(x)}\right)$ is a neighborhood of x such that

$$
f^{-1}\left(V_{f(x)}\right) \subseteq f^{-1}\left(\overline{V_{f(x)}}\right) \subseteq f^{-1}(N)
$$

and since $f^{-1}\left(\overline{V_{f(x)}}\right)$ is a closed set in $X, \overline{f^{-1}\left(V_{f(x)}\right)} \subseteq f^{-1}(N)$. So $f^{-1}\left(V_{f(x)}\right)$ is a neighborhood of x with

$$
\overline{f^{-1}\left(V_{f(x)}\right)} \subseteq f^{-1}(N)
$$

and this means that $x \in \theta_{X}\left(f^{-1}(N)\right)$. It was proved $f^{-1}\left(\theta_{Y}(N)\right) \subseteq \theta_{X}\left(f^{-1}(N)\right)$, and thus $\Theta=\left(\theta_{X}\right)_{X \in \text { Top }}$ is an interior operator on Top.
Example 44. It is defined

$$
l_{X}(M):=\left\{x \in X: C_{x} \subseteq M\right\},
$$

where C_{x} is the connected component of x in X.
For the contractibility, if $x \in l_{X}(M)$, then $x \in C_{x} \subseteq M$, and $l_{X}(M)$ consists of elements of M, so that $l_{X}(M) \subseteq M$.

For the monotonicity,

$$
\begin{aligned}
l_{X}\left(M_{1}\right) & =\left\{x \in X: C_{x} \subseteq M_{1} \subseteq M_{2}\right\} \\
& \subseteq\left\{x \in X: C_{x} \subseteq M_{2}\right\} \\
& =l_{X}\left(M_{2}\right) .
\end{aligned}
$$

For the continuity, what is going to be proved is that

$$
x \notin l_{X}\left(f^{-1}(N)\right) \Rightarrow x \notin f^{-1}\left(l_{Y}(N)\right) .
$$

Let x be an element in X such that $x \notin l_{X}\left(f^{-1}(N)\right)$. Then $C_{x} \nsubseteq f^{-1}(N)$, where C_{x} is the connected component of x in X. In terms of the direct images across f

$$
f\left(C_{x}\right) \nsubseteq f\left(f^{-1}(N)\right),
$$

because if it is assumed that

$$
f\left(C_{x}\right) \subseteq f\left(f^{-1}(N)\right)
$$

this implies that

$$
C_{x} \subseteq f^{-1}\left(f\left(C_{x}\right)\right) \subseteq f^{-1}\left(f\left(f^{-1}(N)\right)\right)=f^{-1}(N),
$$

so that $C_{x} \subseteq f^{-1}(N)$, that is a contradicction. Therefore

$$
f\left(C_{x}\right) \nsubseteq f\left(f^{-1}(N)\right) \subseteq N
$$

and hence $f\left(C_{x}\right) \nsubseteq N$. But $f\left(C_{x}\right)$ is the image of a connected set across a continuous function. Then $f\left(C_{x}\right)$ is a connected set that contains $f(x)$, so that $f\left(C_{x}\right) \subseteq C_{f(x)}$, the connected component of $f(x)$ in Y, and $C_{f(x)} \nsubseteq N$ is concluded. But the
last relation means that $f(x) \notin l_{Y}(N)$, or equivalently, $x \notin f^{-1}\left(l_{Y}(N)\right)$. Hence, $L:=\left(l_{X}\right)_{X \in \mathbf{T o p}}$ is an interior operator on Top.

Example 45. It is defined

$$
t_{X}(M):=\left\{x \in M: x_{n} \longrightarrow x \text { implies } x_{n} \in M \text { eventually }\right\}
$$

and $x_{n} \in M$ eventually means that there is a natural number $n_{\left(x_{n}\right)}$ such that for every natural number n with $n \geq n_{\left(x_{n}\right)}, x_{n} \in M$.

By definition, $t_{X}(M)$ consists of elements of M, so that $t_{X}(M) \subseteq M$ and the contractibility property is verified.

For the monotonicity,

$$
\begin{aligned}
t_{X}\left(M_{1}\right) & =\left\{x \in M_{1}: x_{n} \longrightarrow x \text { implies } x_{n} \in M_{1} \subseteq M_{2} \text { eventually }\right\} \\
& \subseteq\left\{x \in M_{2}: x_{n} \longrightarrow x \text { implies } x_{n} \in M_{2} \text { eventually }\right\} \\
& =t_{X}\left(M_{2}\right)
\end{aligned}
$$

and then $t_{X}\left(M_{1}\right) \subseteq t_{X}\left(M_{2}\right)$.
For the continuity, let $x \in f^{-1}\left(t_{Y}(N)\right)$. What is want to be proved is that

$$
x \in t_{X}\left(f^{-1}(N)\right),
$$

so let $x_{n} \longrightarrow x$. Since $f(x) \in t_{Y}(N)$ and f is sequentially continuous (to see a proof of the fact that a continuous function is sequentially continuous, see Proposition 23), $f\left(x_{n}\right) \longrightarrow f(x)$. Therefore, there exists a natural number $n_{\left(x_{n}\right)}$ such that for every natural number $n \geq n_{\left(x_{n}\right)}, f\left(x_{n}\right) \in N$. But then there is a natural number $n_{\left(x_{n}\right)}$ such that for every natural number $n \geq n_{\left(x_{n}\right)}$,

$$
x_{n} \in f^{-1}(N) .
$$

But this means that $x \in t_{X}\left(f^{-1}(N)\right)$. Hence,

$$
f^{-1}\left(t_{Y}(N)\right) \subseteq t_{X}\left(f^{-1}(N)\right),
$$

and thus $T:=\left(t_{X}\right)_{X \in \mathbf{T o p}}$ is an interior operator on Top.
Example 46. It is defined

$$
q_{X}(M):=\bigcup\{C \subseteq M: C \text { is clopen in } X\}
$$

By definition, $q_{X}(M)$ is a union of subsets of M, and thus is a subset of M. So the contractibility is verified.

For the monotonicity, if C is a subset of X that is a subset of M_{1}, then it is also a subset of M_{2}. Therefore

$$
\left\{C \subseteq M_{1}: C \text { is clopen in } X\right\} \subseteq\left\{C \subseteq M_{2}: C \text { is clopen in } X\right\}
$$

and then

$$
\bigcup\left\{C \subseteq M_{1}: C \text { is clopen in } X\right\} \subseteq \bigcup\left\{C \subseteq M_{2}: C \text { is clopen in } X\right\}
$$

that is,

$$
q_{X}\left(M_{1}\right) \subseteq q_{X}\left(M_{2}\right) .
$$

For the continuity,

$$
\begin{aligned}
f^{-1}\left(q_{Y}(N)\right) & =f^{-1}(\bigcup\{C \subseteq N: C \text { is clopen in } Y\}) \\
& =\bigcup\left\{f^{-1}(C): C \subseteq N, \text { and, } C \text { is clopen in } Y\right\} .
\end{aligned}
$$

Since $C \subseteq N, C$ is a clopen in Y and f is continuous, $f^{-1}(C) \subseteq f^{-1}(N)$ and $f^{-1}(C)$ is clopen in X, and then

$$
\begin{aligned}
f^{-1}\left(q_{Y}(N)\right) & \subseteq \bigcup\left\{f^{-1}(C) \subseteq f^{-1}(N): f^{-1}(C) \text { is clopen in } X\right\} \\
& \subseteq \bigcup\left\{C \subseteq f^{-1}(N): C \text { is clopen in } X\right\} \\
& =q_{X}\left(f^{-1}(N)\right)
\end{aligned}
$$

Thus $f^{-1}\left(q_{Y}(N)\right) \subseteq q_{X}\left(f^{-1}(N)\right)$, and $Q:=\left(q_{X}\right)_{X \in \boldsymbol{T o p}}$ is an interior operator on Top.

Definition 47. Let $I:=\left(i_{X}\right)_{X \in \operatorname{Top}}$ be an interior operator on Top. Let $X \in$ Top and $M \subseteq X . M$ is I-open in X if and only if $i_{X}(M)=M$.

Remark. Since in the previous definition I is an interior operator, by the contractibility property, $i_{X}(M) \subseteq M$. Therefore, M is I-open in X if and only if $M \subseteq i_{X}(M)$. Proposition 48. Let $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ be an interior operator on Top. Let $X, Y \in$ Top, $N \subseteq Y$ and let $f: X \longrightarrow Y$ be a continuous function. If N is I-open in Y, then $f^{-1}(N)$ is I-open in X.

Proof. If N is I-open in $Y, N \subseteq i_{Y}(N)$, and hence

$$
f^{-1}(N) \subseteq f^{-1}\left(i_{Y}(N)\right) \subseteq i_{X}\left(f^{-1}(N)\right)
$$

where the last containment follows from the continuity property of I. Thus

$$
f^{-1}(N) \subseteq i_{X}\left(f^{-1}(N)\right)
$$

and $f^{-1}(N)$ is I-open in X.
Proposition 49. Let $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ be an interior operator on Top. Let $X \in$ Top and consider the indexed family $\left\{M_{\alpha}\right\}_{\alpha \in A} \subseteq S(X)$. If M_{α} is I-open in X for each $\alpha \in A$, then $\bigcup_{\alpha \in A} M_{\alpha}$ is I-open in X.

Proof. It is true that

$$
\bigcup_{\alpha \in A} M_{\alpha} \subseteq \bigcup_{\alpha \in A} i_{X}\left(M_{\alpha}\right) \subseteq \bigcup_{\alpha \in A} i_{X}\left(\bigcup_{\beta \in A} M_{\beta}\right)=i_{X}\left(\bigcup_{\beta \in A} M_{\beta}\right)
$$

where the first containment holds because for every $\alpha \in A M_{\alpha}$ is I-open, and the second containment it is true because the monotonicity property of I. Therefore

$$
\bigcup_{\alpha \in A} M_{\alpha} \subseteq i_{X}\left(\bigcup_{\alpha \in A} M_{\alpha}\right)
$$

and thus $\bigcup_{\alpha \in A} M_{\alpha}$ is I-open in X.
Proposition 50. Let $\left\{I_{k}\right\}_{k \in K}$ be an indexed family of interior operators on Top, with $I_{k}:=\left(\left(i_{k}\right)_{X}\right)_{X \in \text { Top }}$. It is defined $\bigwedge_{k \in K} I_{k}:=\left(\left(i_{\wedge I_{k}}\right)_{X}\right)_{X \in \text { Top }}$, where if $X \in$ Top and $M \subseteq X$,

$$
\left(i_{\wedge I_{k}}\right)_{X}(M):=\bigcap_{k \in K}\left(i_{k}\right)_{X}(M) .
$$

Then $\bigwedge_{k \in K} I_{k}$ is an interior operator on Top, and is the infimum of the indexed family $\left\{I_{k}\right\}_{k \in K}$.

Proof. Let X be a topological space, and $M \subseteq X$. Then

$$
\left(i_{\wedge I_{k}}\right)_{X}(M) \subseteq \bigcap_{k \in K}\left(i_{k}\right)_{X}(M) \subseteq \bigcap_{k \in K} M \subseteq M,
$$

where the second containment it is true by the contractibility property of I_{k}, for every $k \in K$. Thus

$$
\left(i_{\wedge I_{k}}\right)_{X}(M) \subseteq M
$$

Now let $M_{1}, M_{2} \subseteq X$, with $M_{1} \subseteq M_{2}$. Then

$$
\left(i_{\wedge I_{k}}\right)_{X}\left(M_{1}\right) \subseteq \bigcap_{k \in K}\left(i_{k}\right)_{X}\left(M_{1}\right) \subseteq \bigcap_{k \in K}\left(i_{k}\right)_{X}\left(M_{2}\right)=\left(i_{\wedge I_{k}}\right)_{X}\left(M_{2}\right),
$$

where the second containment holds by the monotonicity of I_{k}, for every $k \in K$. Then

$$
\left(i_{\wedge I_{k}}\right)_{X}\left(M_{1}\right) \subseteq\left(i_{\wedge I_{k}}\right)_{X}\left(M_{2}\right) \text { if } M_{1} \subseteq M_{2}
$$

For the continuity property, let $Y \in \mathbf{T o p}, N \subseteq Y$ and let $f: X \longrightarrow Y$ be a continuous function. Then

$$
\begin{aligned}
f^{-1}\left(\left(i_{\wedge I_{k}}\right)_{Y}(N)\right) & =f^{-1}\left(\bigcap_{k \in K}\left(i_{k}\right)_{Y}(N)\right) \\
& =\bigcap_{k \in K} f^{-1}\left(\left(i_{k}\right)_{Y}(N)\right) \\
& \subseteq \bigcap_{k \in K}\left(i_{k}\right)_{X}\left(f^{-1}(N)\right) \\
& =\left(i_{\wedge I_{k}}\right)_{X}\left(f^{-1}(N)\right),
\end{aligned}
$$

where the containment is consequence of the continuity property of I_{k}, for every $k \in K$. Hence

$$
f^{-1}\left(\left(i_{\wedge I_{k}}\right)_{Y}(N)\right) \subseteq\left(i_{\wedge I_{k}}\right)_{X}\left(f^{-1}(N)\right),
$$

and consequently $\bigwedge_{k \in K} I_{k}:=\left(\left(i_{\wedge I_{k}}\right)_{X}\right)_{X \in \text { Top }}$ is an interior operator on Top.
Now what is going to be showed is that $\bigwedge_{k \in K} I_{k}$ is the infimum of the indexed family $\left\{I_{k}\right\}_{k \in K}$. Let $X \in \operatorname{Top}$ and $M \subseteq X$. In the first place, for every $k \in K$

$$
\left(i_{\wedge I_{k}}\right)_{X}(M)=\bigcap_{k \in K}\left(i_{k}\right)_{X}(M) \subseteq\left(i_{k}\right)_{X}(M),
$$

therefore, for every $k \in K$

$$
\left(i_{\wedge I_{k}}\right)_{X}(M) \subseteq\left(i_{k}\right)_{X}(M),
$$

so that for every $k \in K$,

$$
\bigwedge_{k \in K} I_{k} \leq I_{k}
$$

and hence $\bigwedge_{k \in K} I_{k}$ is a lower bound for the indexed family $\left\{I_{k}\right\}_{k \in K}$.
Assuming that $J:=\left(j_{X}\right)_{X \in \mathbf{T o p}}$ is an interior operator on Top, and that is a lower bound for $\left\{I_{k}\right\}_{k \in K}$, for every $k \in K$ it is true that

$$
J \leq I_{k} .
$$

If X is a topological space, and $M \subseteq X$, then for every $k \in K$

$$
j_{X}(M) \subseteq\left(i_{k}\right)_{X}(M),
$$

and hence

$$
j_{X}(M) \subseteq \bigcap_{k \in K}\left(i_{k}\right)_{X}(M)
$$

But then

$$
j_{X}(M) \subseteq\left(i_{\wedge I_{k}}\right)_{X}(M),
$$

so that $J \leq \bigwedge_{k \in K} I_{k}$. It means that $\bigwedge_{k \in K} I_{k}$ is the greatest lower bound, the infimum, of the indexed family $\left\{I_{k}\right\}_{k \in K}$.

CHAPTER 4 I-SEPARATION

For an interior operator I, the notion of I-separation in the category Top is introduced. As it will be see, it is a modification of a characterization of the notion of Hausdorff Topological Space. It is recalled from Chapter 2 that the separator of two functions $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ is the set

$$
\operatorname{sep}(f, g)=\{x \in X: f(x) \neq g(x)\}
$$

and that a subset M of a topological space X is open with respect to the interior topological operator $I=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ (or I-open) if $i_{X}(M)=M$.
Definition 51. Let I be an interior operator on the category Top. $Y \in \operatorname{Top}$ is I separated if and only if for every $X \in$ Top and for every pair of continuous functions $X \underset{g}{f} Y, \operatorname{sep}(f, g)$ is I-open.
Corollary 52. Y is I-separated if and only if $\complement \triangle_{Y}$ is I-open.
Proof. The "only if" part follows from $\complement \triangle_{Y}=\operatorname{sep}\left(\pi_{1}, \pi_{2}\right)$, where

$$
\pi_{1}, \pi_{2}: Y \times Y \longrightarrow Y
$$

are the projection functions.

For the "if" part, let $X \in \mathbf{T o p}$ and the continuous functions $X \underset{g}{\stackrel{f}{\longrightarrow}} Y$. The following diagram is commutative,

where $\langle f, g\rangle$ is the continuous function defined by

$$
\left\{\begin{array}{c}
\langle f, g\rangle: X \longrightarrow Y \times Y \\
\langle f, g\rangle(x):=(f(x), g(x))
\end{array}\right.
$$

It is enough to prove that $\operatorname{sep}(f, g)=\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right)$, since by hypothesis, $\complement \triangle_{Y}$ is I-open, and the function $\langle f, g\rangle$ is continuous, in which case $\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right)$ is I-open. So let $s \in X$,

$$
\begin{aligned}
s \in \operatorname{sep}(f, g) & \Leftrightarrow f(s) \neq g(s) \\
& \Leftrightarrow(f(s), g(s)) \in \operatorname{sep}\left(\pi_{1}, \pi_{2}\right)=\complement \triangle_{Y} \\
& \Leftrightarrow\langle f, g\rangle(s) \in \complement \triangle_{Y} \\
& \Leftrightarrow s \in\langle f, g\rangle^{-1}\left(\mathrm{C} \triangle_{Y}\right)
\end{aligned}
$$

Hence, $\operatorname{sep}(f, g)$ is I-open.
For each one of the following examples, let $X \in \operatorname{Top}$ and $M \subseteq X$. Since the examples are from the category Top, it is assumed that if $A \subseteq X$, С A denote the complement of A in the set X, as is usual in Set Theory.

Example 53. It is considered the interior operator K of Example 40 defined by

$$
k_{X}(M):=\bigcup\{O \subseteq M: O \text { is open in } X\}
$$

Let $S(K)$ be the collection of objects of Top that are K-separated. Note that $X \in S(K)$ iff

$$
\mathrm{C} \triangle_{X} \subseteq k_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)=\bigcup\left\{O \subseteq \mathrm{C} \triangle_{X}: O \text { is open in } X \times X\right\} .
$$

It is claimed that $S(K)=\mathbf{T o p}_{\mathbf{2}}$; the equality of these classes is a consequence of the equivalences

$$
\begin{aligned}
X \in S(K) & \Leftrightarrow \complement \triangle_{X} \subseteq k_{X^{2}}\left(\complement \triangle_{X}\right) \\
& \Leftrightarrow \complement \triangle_{X}=k_{X^{2}}\left(\complement \triangle_{X}\right) \\
& \Leftrightarrow \complement \triangle_{X} \text { is open in } X \times X \\
& \Leftrightarrow \triangle_{X} \text { is closed in } X \times X \\
& \Leftrightarrow X \in \mathbf{T o p}_{2} .
\end{aligned}
$$

Here it had been used the fact that $k_{X^{2}}\left(\mathrm{C} \triangle_{X}\right) \subseteq \complement \triangle_{X}$ by definition of interior operator.

Example 54. It is considered the interior operator H of Example 41 defined by

$$
h_{X}(M):=\bigcup\{C \subseteq M: C \text { is closed in } X\}=\{x \in M: \overline{\{x\}} \subseteq M\}
$$

Let $S(H)$ be the collection of objects of Top that are H-separated. $X \in S(H)$ iff

$$
\begin{aligned}
\mathrm{C} \triangle_{X} \subseteq h_{X^{2}}\left(\mathrm{C} \triangle_{X}\right) & =\bigcup\left\{C \subseteq \mathrm{C} \triangle_{X}: C \text { is closed in } X \times X\right\} \\
& =\left\{(x, y) \in \mathrm{C} \triangle_{X}: \overline{\{(x, y)\}} \subseteq \complement \triangle_{X}\right\} .
\end{aligned}
$$

It is claimed that $S(H)=\mathbf{T o p}_{\mathbf{1}}$.
a. $\boldsymbol{T o p} \boldsymbol{p}_{\mathbf{1}} \subseteq \boldsymbol{S}(\boldsymbol{H})$ Let $X \in \boldsymbol{T o p}_{\mathbf{1}}$ and $(x, y) \in \mathrm{C} \triangle_{X}$. Then

$$
\overline{\{(x, y)\}}=\overline{\{x\}} \times \overline{\{y\}}=\{x\} \times\{y\}=\{(x, y)\} \subseteq \mathrm{C} \triangle_{X},
$$

that means that $(x, y) \in h_{X^{2}}\left(\complement \triangle_{X}\right)$. Therefore $\complement \triangle_{X} \subseteq h_{X^{2}}\left(\complement \triangle_{X}\right)$, and thus $X \in S(H)$.
b. $\boldsymbol{S}(\boldsymbol{H}) \subseteq \boldsymbol{T o p}_{\boldsymbol{1}}$ This is going to be proved by the contrapositive. Let $X \notin \boldsymbol{T o p}_{\boldsymbol{1}}$. Let $x, y \in X$ such that $x \neq y$ and $y \in \overline{\{x\}}$. Thence

$$
(y, y) \in \overline{\{x\}} \times \overline{\{y\}}=\overline{\{(x, y)\}}
$$

But then $\overline{\{(x, y)\}} \cap \triangle_{X} \neq \emptyset$, so there exists a pair $(x, y) \in \complement \triangle_{X}$ such that $\overline{\{(x, y)\}} \nsubseteq$ $\mathrm{C} \triangle_{X}$, or that is the same, $(x, y) \notin h_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$. Therefore $\complement \triangle_{X} \nsubseteq h_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$ and thus $X \notin S(H)$.

Example 55. Let B be the interior operator of Example 42 defined by

$$
b_{X}(M):=\left\{x \in X: \exists U_{x} \text { nbhd of } x \text { s.t. } U_{x} \cap \overline{\{x\}} \subseteq M\right\} .
$$

Let $S(B)$ be the collection of objects of Top that are B-separated. $X \in S(B)$ iff $\complement \triangle_{X} \subseteq b_{X^{2}}\left(\complement \triangle_{X}\right)$, where

$$
b_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)=\left\{(x, y) \in X \times X: \exists U_{(x, y)} \text { nbhd of }(x, y) \text { s.t. } U_{(x, y)} \cap \overline{\{(x, y)\}} \subseteq \mathrm{C} \triangle_{X}\right\} .
$$

It is claimed that $S(B)=\mathbf{T o p}_{\mathbf{0}}$.
a. $\boldsymbol{T o p} \boldsymbol{p}_{\mathbf{0}} \subseteq \boldsymbol{S}(\boldsymbol{B})$ Let $X \in \boldsymbol{T o p}_{\boldsymbol{0}}$ and $(x, y) \in \complement \triangle_{X}$. Since $x \neq y$, there is an open neighborhood U_{x} of x such that $y \notin U_{x}$, or, there is an open neighborhood U_{y} of y such that $x \notin U_{y}$. If $y \notin U_{x}$, then $\overline{\{y\}} \subseteq \complement U_{x}$, because U_{x} is an open set in X. So another way to say that $X \in \mathbf{T o p}_{\mathbf{0}}$ is that for x, y

$$
\exists U_{x} \text { nbhd of } x \text { s.t. } \overline{\{y\}} \cap U_{x}=\emptyset \text {, or, } \exists U_{y} \text { nbhd of } y \text { s.t. } \overline{\{x\}} \cap U_{y}=\emptyset .
$$

In any case, there are neighborhoods U_{x}, U_{y} of x, y, respectively, that satisfy

$$
\left(\overline{\{x\}} \cap U_{y}\right) \cap\left(\overline{\{y\}} \cap U_{x}\right)=\emptyset
$$

so that

$$
\begin{aligned}
& \left(U_{x} \cap \overline{\{x\}}\right) \cap\left(U_{y} \cap \overline{\{y\}}\right)=\emptyset \\
& \left(U_{x} \cap \overline{\{x\}}\right) \times\left(U_{y} \cap \overline{\{y\}}\right) \subseteq \mathrm{C} \triangle_{X} \\
& \left(U_{x} \times U_{y}\right) \cap(\overline{\{x\}} \times \overline{\{y\}})
\end{aligned} \subseteq \mathrm{C} \triangle_{X} .
$$

Hence there is a neighborhood $U_{x} \times U_{y}$ of (x, y) such that

$$
\left(U_{x} \times U_{y}\right) \cap \overline{\{(x, y)\}} \subseteq \subset \triangle_{X},
$$

so that $(x, y) \in b_{X^{2}}\left(\complement \triangle_{X}\right)$. Consequently $\complement \triangle_{X} \subseteq b_{X^{2}}\left(\complement \triangle_{X}\right)$, and then $X \in$ $S(B)$.
b. $\boldsymbol{S}(\boldsymbol{B}) \subseteq \boldsymbol{T o p}_{\mathbf{0}}$ Let $X \in S(B)$ and $x, y \in X$ with $x \neq y$. Thus $(x, y) \in \complement \triangle_{X}=$ $b_{X^{2}}\left(\complement \triangle_{X}\right)$, and hence there exists $U_{(x, y)}$ neighborhood of (x, y) such that

$$
U_{(x, y)} \cap \overline{\{(x, y)\}} \subseteq \mathrm{C} \triangle_{X} .
$$

Let U_{x}, U_{y} neighborhoods of x, y, respectively, such that $U_{x} \times U_{y} \subseteq U_{(x, y)}$. Since $\left[\left(U_{x} \times U_{y}\right) \cap(\overline{\{x\}} \times \overline{\{y\}})\right] \subseteq U_{(x, y)} \cap \overline{\{(x, y)\}} \subseteq \mathrm{C} \triangle_{X}$, then

$$
\begin{aligned}
& \left(U_{x} \times U_{y}\right) \cap(\overline{\{x\}} \times \overline{\{y\}}) \subseteq \mathrm{C} \triangle_{X} \\
& \left(U_{x} \cap \overline{\{x\}}\right) \times\left(U_{y} \cap \overline{\{y\}}\right) \subseteq \complement \triangle_{X} \\
& \left(U_{x} \cap \overline{\{x\}}\right) \cap\left(U_{y} \cap \overline{\{y\}}\right)=\emptyset
\end{aligned}
$$

and thus $y \notin U_{x} \cap \overline{\{x\}}$. There are two posibilities:
Case $1 y \notin U_{x}$. Then there is a neighborhood U_{x} of x such that $y \notin U_{x}$, and thus $X \in \mathbf{T o p}_{\mathbf{0}}$.

Case $2 y \in U_{x}$. Then, since $y \notin U_{x} \cap \overline{\{x\}}, y \notin\{x\}$. But this implies that there is a neighborhood U_{y} of y such that $U_{y} \cap\{x\}=\emptyset$; in other words, there is a neighborhood U_{y} of y such that $x \notin U_{y}$. Hence $X \in \mathbf{T o p}_{\boldsymbol{0}}$.

Example 56. It is considered the interior operator Θ of Example 43 defined by

$$
\theta_{X}(M):=\left\{x \in M: \exists U_{x} \text { nbhd of } x \text { s.t. } \bar{U}_{x} \subseteq M\right\} .
$$

Let $S(\Theta)$ be the collection of objects of Top that are Θ-separated. $X \in S(\Theta)$ iff
$\complement \triangle_{X} \subseteq \theta_{X^{2}}\left(\complement \triangle_{X}\right)=\left\{(x, y) \in \complement \triangle_{X}: \exists U_{(x, y)}\right.$ nbhd of (x, y) s.t. $\left.\bar{U}_{(x, y)} \subseteq \complement \triangle_{X}\right\}$.

It is claimed that $S(\Theta)=\mathbf{T o p}_{2 \frac{1}{2}}=\mathbf{U r y}$.
a. $\boldsymbol{T o p}_{2 \frac{1}{2}} \subseteq \boldsymbol{S}(\Theta)$ Let $X \in \boldsymbol{T o p}_{2 \frac{1}{2}}$ and $(x, y) \in \complement \triangle_{X}$. Since $x \neq y$, there are neighborhoods U_{x}, U_{y} of x, y, respectively, such that $\bar{U}_{x} \cap \bar{U}_{y}=\emptyset$, or equivalently, $\bar{U}_{x} \times \bar{U}_{y} \subseteq \complement \triangle_{X}$. Therefore $U_{x} \times U_{y}$ is a neighborhood of (x, y) that satisfies

$$
\overline{U_{x} \times U_{y}}=\bar{U}_{x} \times \bar{U}_{y} \subseteq C \triangle_{X}
$$

so that $(x, y) \in \theta_{X^{2}}\left(\complement \triangle_{X}\right)$ and hence $\complement \triangle_{X} \subseteq \theta_{X^{2}}\left(\complement \triangle_{X}\right)$. Consequently, $X \in$ $S(\Theta)$.
b. $\boldsymbol{S}(\boldsymbol{\Theta}) \subseteq \boldsymbol{T} \boldsymbol{O} \boldsymbol{P}_{\mathbf{2} \frac{1}{2}}$ Let $X \in S(\Theta)$ and $x, y \in X$ with $x \neq y$. Since $(x, y) \in \complement \triangle_{X}=$ $\theta_{X^{2}}\left(\complement \triangle_{X}\right)$, there is $U_{(x, y)}$ such that $\bar{U}_{(x, y)} \subseteq \complement \triangle_{X}$. Let U_{x}, U_{y} neighborhoods of x, y, respectively, with $U_{x} \times U_{y} \subseteq U_{(x, y)}$. Therefore

$$
\overline{U_{x}} \times \overline{U_{y}}=\overline{U_{x} \times U_{y}} \subseteq \bar{U}_{(x, y)} \subseteq \mathrm{C} \triangle_{X},
$$

so that $\overline{U_{x}} \times \overline{U_{y}} \subseteq \complement \triangle_{X}$. Thus U_{x}, U_{y} are neighborhoods of x, y such that $\bar{U}_{x} \cap \bar{U}_{y}=$ \emptyset, and hence $X \in \boldsymbol{T o p}_{\mathbf{2} \frac{1}{2}}$.
Example 57. Given $x \in X, C_{x}$ denotes the connected component of x in X. It is recalled the interior operator of Example 44 defined by

$$
l_{X}(M):=\left\{x \in X: C_{x} \subseteq M\right\} .
$$

Let $S(L)$ be the collection of objects of Top that are L-separated. $X \in S(L)$ iff

$$
\mathrm{C} \triangle_{X} \subseteq l_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)=\left\{(x, y) \in X \times X: C_{(x, y)} \subseteq \mathrm{C} \triangle_{X}\right\},
$$

where $C_{(x, y)}$ is the connected component of (x, y) in $X \times X$. It is claimed that $S(L)=$ Tot.Disc., the collection of all the topological spaces that are totally disconnected, that is, the collection of all the topological spaces whose connected components are singletons.
a. Tot.Disc. $\subseteq \boldsymbol{S}(\boldsymbol{L})$ Let $X \in$ Tot.Disc. and $(x, y) \in \mathbb{C} \triangle_{X}$. Then, $X \times X \in$ Tot.Disc. and thus $C_{(x, y)}=\{(x, y)\} \subseteq C \triangle_{X}$. So that $(x, y) \in l_{X^{2}}\left(\complement \triangle_{X}\right)$, and hence $\mathrm{C} \triangle_{X} \subseteq l_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$; therefore $X \in S(L)$.
b. $\boldsymbol{S}(\boldsymbol{L}) \subseteq$ Tot.Disc. Thi is going to be proved by the contrapositive. Let $X \notin$ Tot.Disc.; let $x, y \in X$ such that $x \neq y$ and $y \in C_{x}$. Since the cartesian product of two connected sets is connected,

$$
(x, y) \in C_{x} \times C_{x} \subseteq C_{(x, y)}
$$

But then $(x, x) \in C_{(x, y)}$, so that $C_{(x, y)} \cap \triangle_{X} \neq \emptyset$. Therefore it has been found an ordered pair $(x, y) \in \mathrm{C} \triangle_{X}$ such that $C_{(x, y)} \nsubseteq \mathrm{C} \triangle_{X}$. Hence $(x, y) \notin l_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$ and thus $\complement \triangle_{X} \nsubseteq l_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$, so that $X \notin S(L)$.
Example 58. It is considered the interior operator T of Example 45 defined by

$$
t_{X}(M):=\left\{x \in M: x_{n} \longrightarrow x \text { implies } x_{n} \in M \text { eventually }\right\}
$$

where $x_{n} \in M$ eventually means that there is a natural number $n_{\left(x_{n}\right)}$ such that for every natural number n with $n \geq n_{\left(x_{n}\right)}, x_{n} \in M$.

Let $S(T)$ be the collection of objects of Top that are T-separated. $X \in S(T)$ iff $\complement \triangle_{X} \subseteq t_{X^{2}}\left(\complement \triangle_{X}\right)$, where
$t_{X^{2}}\left(\complement \triangle_{X}\right)=\left\{(x, y) \in \complement \triangle_{X}:\left(x_{n}, y_{n}\right) \longrightarrow(x, y)\right.$ implies $\left(x_{n}, y_{n}\right) \in \complement \triangle_{X}$ eventually $\}$.

It is claimed that $S(T)=$ UniqueConv., the subclass of objects in Top for which every sequence converges at most to one point.
a. UniqueConv. $\subseteq \boldsymbol{S}(\boldsymbol{T})$ This is going to be proved by the contrapositive. Let $X \notin S(T)$. Then there is an ordered pair $(x, y) \in \complement \triangle_{X}$ such that $(x, y) \notin$ $t_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$. By definition this means that there is a sequence $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ such that $\left(x_{n}, y_{n}\right) \longrightarrow(x, y)$ but such that for every $k \in \mathbb{N}$ there is $n_{k} \in \mathbb{N}$ with $n_{k} \geq k$ that satisfies $\left(x_{n_{k}}, y_{n_{k}}\right) \notin \complement \triangle_{X}$, or what is the same, satisfies $\left(x_{n_{k}}, y_{n_{k}}\right) \in \triangle_{X}$. In few words this property says that the sequence $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ is frequently in \triangle_{X}, and then for $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}} x_{n}=y_{n}$ frequently. Since $\left(x_{n}, y_{n}\right) \longrightarrow(x, y), x_{n} \longrightarrow x$ and $y_{n} \longrightarrow y$. But $x_{n}=y_{n}$ frequently, so that there is $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ common subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ that satisfies

$$
x_{n_{k}} \longrightarrow x \quad \text { and } \quad x_{n_{k}} \longrightarrow y .
$$

It had been showed a sequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ in X such that

$$
x_{n_{k}} \longrightarrow x, \quad x_{n_{k}} \longrightarrow y \quad \text { and } \quad x \neq y .
$$

Hence $X \notin$ UniqueConv.
b. $\boldsymbol{S}(\boldsymbol{T}) \subseteq$ UniqueConv. Again by contrapositive. Let $X \notin$ UniqueConv. So there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X such that $x_{n} \longrightarrow x$ and $x_{n} \longrightarrow y$, where $x, y \in X$ and $x \neq y$. Therefore $\left(x_{n}, x_{n}\right) \longrightarrow(x, y)$. But for every $n \in \mathbb{N}$,

$$
\left(x_{n}, x_{n}\right) \in \triangle_{X},
$$

or equivalently for every $n \in \mathbb{N}$,

$$
\left(x_{n}, x_{n}\right) \notin \mathrm{C} \triangle_{X}
$$

Hence there is $(x, y) \in \complement \triangle_{X}$ such that for this ordered pair

$$
\left(x_{n}, x_{n}\right) \longrightarrow(x, y) \quad \text { and } \quad\left(x_{n}, x_{n}\right) \notin \mathrm{C} \triangle_{X}, \text { for every } n \in \mathbb{N} .
$$

It has been found an ordered pair $(x, y) \in \mathrm{C} \triangle_{X}$ such that $(x, y) \notin t_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$, so that $X \notin S(T)$.

Example 59. Let Q be the interior operator of Example 46 defined by

$$
q_{X}(M):=\bigcup\{C \subseteq M: C \text { is clopen in } X\}
$$

Let $S(Q)$ be the collection of all objects of Top that are Q-separated. Note that $X \in S(Q)$ iff

$$
\mathrm{C} \triangle_{X} \subseteq q_{X^{2}}\left(\complement \triangle_{X}\right)=\bigcup\left\{C \subseteq \complement \triangle_{X}: C \text { is clopen in } X \times X\right\} .
$$

It is claimed that

$$
\text { Tot.Sep. } \subseteq S(Q) \subseteq \text { Tot.Disc. } \cap \boldsymbol{T o p}_{2 \frac{1}{2}}
$$

where Tot.Sep. is the collection of all the topological spaces that are totally separated, and Tot.Disc. is the collection of all the topological spaces that are totally disconnected (Cf. Chapter 2).

To see that Tot.Sep. $\subseteq S(Q)$, let $X \in$ Tot.Sep. and let (x, y) be a point in $\complement \triangle_{X}$. Then, $x, y \in X$, with $x \neq y$. There is a separation C_{x}, C_{y} of X such that $x \in C_{x}$ and $y \in C_{y}$. But then

$$
(x, y) \in C_{x} \times C_{y} \subseteq \mathrm{C} \triangle_{X},
$$

where $C_{x} \times C_{y}$ is a clopen in $X \times X$, since C_{x}, C_{y} are clopen in X. Then there is a clopen $C_{x} \times C_{y}$ in $X \times X$ such that

$$
(x, y) \in C_{x} \times C_{y} \subseteq \mathrm{C} \triangle_{X}
$$

so that $(x, y) \in q_{X^{2}}\left(C \triangle_{X}\right)$, and thus $X \in S(Q)$.
Now that $S(Q) \subseteq$ Tot.Disc. is going to be showed by contrapositive. Let $X \notin$ Tot.Disc. Then, there exist $x, y \in X, x \neq y$, such that $\{x, y\} \subseteq C_{x}$, the connected
component of x in X. Therefore, the connected set $C_{x} \times C_{x}$ satisfies

$$
(x, y) \in C_{x} \times C_{x} \subseteq C_{(x, y)},
$$

where $C_{(x, y)}$ is the connected component of (x, y) in $X \times X$. But this implies that for every C clopen in $X \times X$ such that $(x, y) \in C$,

$$
C_{x} \times C_{x} \subseteq C_{(x, y)} \subseteq C,
$$

or equivalently, for every C clopen in $X \times X$ such that $(x, y) \in C, C \nsubseteq \mathrm{C} \triangle_{X}$. But this means that $(x, y) \notin q_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$, hence $\mathrm{C} \triangle_{X} \nsubseteq q_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$, and thus $X \notin S(Q)$. To see that $S(Q) \subseteq \boldsymbol{T o p}_{2 \frac{1}{2}}$, let $X \in S(Q)$ and let x, y be points in X with $x \neq y$. Hence

$$
(x, y) \in \complement \triangle_{X} \subseteq q_{X^{2}}\left(\mathrm{C} \triangle_{X}\right) .
$$

Therefore, there is C clopen in $X \times X$ such that

$$
(x, y) \in C \subseteq C \triangle_{X} .
$$

Since C is open in $X \times X$, there are U_{x}, U_{y} neighborhoods of x, y, respectively, such that

$$
(x, y) \in U_{x} \times U_{y} \subseteq C \subseteq \mathrm{C} \triangle_{X}
$$

Since C is closed in $X \times X$,

$$
(x, y) \in \overline{U_{x}} \times \overline{U_{y}}=\overline{U_{x} \times U_{y}} \subseteq C \subseteq \mathbb{C} \triangle_{X} .
$$

Hence, there are U_{x}, U_{y} neighborhoods of x, y, respectively, such that

$$
(x, y) \in \overline{U_{x}} \times \overline{U_{y}} \subseteq \mathrm{C} \triangle_{X}
$$

or equivalently, there are U_{x}, U_{y} neighborhoods of x, y, respectively, such that

$$
\overline{U_{x}} \cap \overline{U_{y}}=\emptyset .
$$

Thus, $X \in \mathbf{T o p}_{2 \frac{1}{2}}$.

A function $f: X \longrightarrow Y$ is injective, or a monomorphism, if and only if for $x, y \in X, f(x)=f(y)$ implies $x=y$.

Equivalently, f is a monomorphism if for any diagram of the form

$$
Z \xrightarrow[k]{\stackrel{h}{\Longrightarrow}} X \xrightarrow{f} Y,
$$

$f \circ h=f \circ k$ implies $h=k$.
The next step is to introduce a notion related to the one of monomorphism.
Definition 60. Let $\left\{Y_{\lambda}\right\}_{\lambda \in \Lambda}$ be an indexed family of sets and let X be a set. The indexed family of functions $\left(X \xrightarrow{f_{\lambda}} Y_{\lambda}\right)_{\lambda \in \Lambda}$ is called a source. $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ is a monosource if and only if given $x, y \in X$ the equalities $f_{\lambda}(x)=f_{\lambda}(y)$ for every $\lambda \in \Lambda$ imply $x=y$.

Equivalently, $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ is a monosource if for any diagram of the form

$$
Z \underset{k}{\stackrel{h}{\longrightarrow}} X \xrightarrow{f_{\lambda}} Y_{\lambda},
$$

it is true that $f_{\lambda} \circ h=f_{\lambda} \circ k$ for every $\lambda \in \Lambda$ implies $h=k$.
It is easy to see that every monomorphism is a monosource. The importance of the concept of monosource in this context is that topological products and subspaces can be seen as special case of monosources. Given X a set, $M \subseteq X$ and an indexed family of sets $\left\{Y_{\lambda}\right\}_{\lambda \in \Lambda}$, the projection functions

$$
\prod_{\lambda \in \Lambda} Y_{\lambda} \xrightarrow{\pi_{\lambda}} Y_{\lambda}
$$

and the inclusion

$$
M \stackrel{\iota}{\longrightarrow} X
$$

are monosources.

The following proposition relates monosources and the objects that are separated with respect to an interior operator in Top. It is recalled from Chapter 2 that the objects of Top are the topological spaces and the morphisms, the continuous functions between topological spaces. Given an interior operator I on Top, $S e p(I)$ denotes the subcategory of the objects that are separated with respect to I.

Proposition 61. $S e p(I)$ is closed under monosources.
Proof. Let $\left(X \xrightarrow{f_{\lambda}} Y_{\lambda}\right)_{\lambda \in \Lambda}$ be a monosource, with $Y_{\lambda} \in \operatorname{Sep}(I)$, for every $\lambda \in \Lambda$. What is going to be proved is that $X \in \operatorname{Sep}(I)$. Let $Z \in \operatorname{Top}$ and let f, g be continuous functions as in the following diagram

$$
\operatorname{sep}(f, g) \longrightarrow Z \underset{g}{\stackrel{f}{\longrightarrow}} X \xrightarrow{f_{\lambda}} Y_{\lambda} .
$$

It is claimed that $\operatorname{sep}(f, g)=\bigcup_{\lambda \in \Lambda} \operatorname{sep}\left(f_{\lambda} \circ f, f_{\lambda} \circ g\right)$. If $x \in \operatorname{sep}(f, g), f(x) \neq$ $g(x)$. Since $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ is a monosource, there is an index $\lambda_{0} \in \Lambda$ such that $f_{\lambda_{0}}(f(x)) \neq$ $f_{\lambda_{0}}(g(x))$, so that

$$
x \in \operatorname{sep}\left(f_{\lambda_{0}} \circ f, f_{\lambda_{0}} \circ g\right) \subseteq \bigcup_{\lambda \in \Lambda} \operatorname{sep}\left(f_{\lambda} \circ f, f_{\lambda} \circ g\right)
$$

Now let $x \in \bigcup_{\lambda \in \Lambda} \operatorname{sep}\left(f_{\lambda} \circ f, f_{\lambda} \circ g\right)$. There is an index $\lambda_{0} \in \Lambda$ such that $x \in$ $\operatorname{sep}\left(f_{\lambda_{0}} \circ f, f_{\lambda_{0}} \circ g\right)$, and therefore $\left(f_{\lambda_{0}} \circ f\right)(x) \neq\left(f_{\lambda_{0}} \circ g\right)(x)$. But then $f_{\lambda_{0}}(f(x)) \neq$ $f_{\lambda_{0}}(g(x))$, and since $f_{\lambda_{0}}$ is a function, $f(x) \neq g(x)$, so that $x \in \operatorname{sep}(f, g)$. Hence, $\operatorname{sep}(f, g)$ is I-open as a union of I-open subsets. Then $X \in \operatorname{Sep}(I)$.

The following corollary is fundamental in the theory of I-separation.
Corollary 62. The product of I-separated spaces is I-separated. A subspace of an I-separated space is I-separated.

Proof. The inclusion function and the projection functions are monosources. Then the previous proposition is applied.

From now on $I N(\mathbf{T o p})$ denotes the class of all interior operators on Top ordered as in Definition 39, and $S(\mathbf{T o p})$ denotes the collection of all subclasses of Top, ordered by inclusion. A function is defined by

$$
\left\{\begin{aligned}
& S: I N(\mathbf{T o p}) S(\mathbf{T o p}) \\
& S(I):=\{X \in \mathbf{T o p}: X \text { is } I \text {-separated }\}
\end{aligned}\right.
$$

Proposition 63. S preserves infima.
Proof. Let $\left\{I_{k}\right\}_{k \in K}$ be a family of interior operators in Top. The statement of the proposition is that

$$
S\left(\bigwedge_{k \in K} I_{k}\right)=\bigcap_{k \in K} S\left(I_{k}\right) .
$$

By definition of infimum, for every $k \in K, \bigwedge_{k \in K} I_{k} \leq I_{k}$. If it is showed that S is order preserving half of the work is done because in that case, for each $k \in K$

$$
S\left(\bigwedge_{k \in K} I_{k}\right) \subseteq S\left(I_{k}\right)
$$

and therefore

$$
S\left(\bigwedge_{k \in K} I_{k}\right) \subseteq \bigcap_{k \in K} S\left(I_{k}\right)
$$

So it is proceeded to prove that S is order preserving. Let $I, J \in I N(\mathbf{T o p})$, with

$$
I:=\left(i_{X}\right)_{X \in \operatorname{Top}}, \quad J:=\left(j_{X}\right)_{X \in \mathbf{T o p}}
$$

If $X \in S(I)$ and $I \leq J$,

$$
\mathrm{C} \triangle_{X} \subseteq i_{X^{2}}\left(\mathrm{C} \triangle_{X}\right) \subseteq j_{X^{2}}\left(\mathrm{C} \triangle_{X}\right),
$$

and hence $\complement \triangle_{X} \subseteq j_{X^{2}}\left(\complement \triangle_{X}\right)$, so that $X \in S(J)$. Thus $S(I) \subseteq S(J)$ if $I \leq J$, and S is order preserving.

Now let $X \in \bigcap_{k \in K} S\left(I_{k}\right)$. Then for every $k \in K, X \in S\left(I_{k}\right)$. If $I_{k}:=$ $\left(\left(i_{k}\right)_{X}\right)_{X \in \mathbf{T o p}}$, then the above can be written as $\complement \triangle_{X} \subseteq\left(i_{k}\right)_{X^{2}}\left(\mathrm{C} \triangle_{X}\right)$, for each
$k \in K$, so that

$$
\complement \triangle_{X} \subseteq \bigcap_{k \in K}\left(i_{k}\right)_{X^{2}}\left(\complement \triangle_{X}\right)
$$

It had been defined

$$
\bigwedge_{k \in K} I_{k}:=\left(\left(i_{\wedge I_{k}}\right)_{X}\right)_{X \in \mathbf{T o p}}
$$

where

$$
\left(i_{\wedge I_{k}}\right)_{X}(M):=\bigcap_{k \in K}\left(i_{k}\right)_{X}(M),
$$

for $M \subseteq X$ (this was proved in [2], Prop. 3.6). Consequently,

$$
\left(i_{\wedge I_{k}}\right)_{X^{2}}\left(\complement \triangle_{X}\right)=\bigcap_{k \in K}\left(i_{k}\right)_{X^{2}}\left(\complement \triangle_{X}\right),
$$

and therefore

$$
\mathrm{C} \triangle_{X} \subseteq\left(i_{\wedge I_{k}}\right)_{X^{2}}\left(\mathrm{C} \triangle_{X}\right),
$$

so that $X \in S\left(\bigwedge_{k \in K} I_{k}\right)$, and thus

$$
\bigcap_{k \in K} S\left(I_{k}\right) \subseteq S\left(\bigwedge_{k \in K} I_{k}\right)
$$

The concept of Galois connection is recalled from [1].
Definition 64. For pre-ordered classes $\mathcal{X}=(\mathbf{X}, \leq)$ and $\mathcal{Y}=(\mathbf{Y}, \leq)$ a Galois connection $\mathcal{X} \underset{g}{\stackrel{f}{\rightleftarrows}} \mathcal{Y}$ consists of order preserving functions f and g that satisfy $x \leq g(f(x))$ for every $x \in \mathbf{X}$ and $f(g(y)) \leq y$ for every $y \in \mathbf{Y}$.

Remark. If $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ are such that $f(x)=y$ and $g(y)=x$, then x and y are said to be corresponding fixed points of the Galois connection $(\mathcal{X}, f, g, \mathcal{Y})$.

The following result that will be very important in the context of the theory is recalled from [1].

Proposition 65. Let \mathcal{X} and \mathcal{Y} be two pre-ordered classes and assume that infima exist in \mathcal{Y}. Let $\mathcal{Y} \xrightarrow{g} \mathcal{X}$ be a function that preserves infima. Define $\mathcal{X} \xrightarrow{f} \mathcal{Y}$ as
follows: for every $x \in \mathcal{X}$,

$$
f(x)=\bigwedge\{y \in \mathcal{Y}: g(y) \geq x\}
$$

Then, $\mathcal{X} \underset{g}{\stackrel{f}{\rightleftarrows}} \mathcal{Y}$ is a Galois connection.
The following is recalled

1. $I N($ Top $)$ is the class of all interior operators in Top. Let $I, J \in I N($ Top $)$, with

$$
I:=\left(i_{X}\right)_{X \in \operatorname{Top}}, \quad J:=\left(j_{X}\right)_{X \in \operatorname{Top}} .
$$

With the relation $I \leq J$ if and only if for every $X \in \operatorname{Top}$ and for every $M \subseteq X$, $i_{X}(M) \subseteq j_{X}(M), I N(\mathbf{T o p})$ is a pre-ordered class, in which infima exist:

Let $\left\{I_{k}\right\}_{k \in K}$ an indexed family of interior operators in Top. Then the infimum of this family is $\bigwedge_{k \in K} I_{k}$, the interior operator that is known.
2. $S(\mathbf{T o p})$ denotes the collection of all subclasses of Top, ordered by inclusion.
3. From Proposition 63 is known that the function

$$
I N(\text { Top }) \xrightarrow{S} S(\text { Top })
$$

preserves infima.
Therefore, using Proposition 65, the function defined by

$$
\left\{\begin{aligned}
T: S(\mathbf{T o p}) & I N(\text { Top }) \\
T(\mathcal{A}) & :=\bigwedge\{I \in I N(\mathbf{T o p}): \mathcal{A} \subseteq S(I)\}
\end{aligned}\right.
$$

completes the Galois connection

$$
S(\text { Top }) \underset{S}{\stackrel{T}{\rightleftarrows}} I N(\text { Top }) .
$$

From now on, unless otherwise stated, the notation

$$
X \underset{g}{\stackrel{f}{\Longrightarrow}} Y
$$

will mean that $X, Y \in \operatorname{Top}$ and that f, g are continuous functions from X to Y. It is remembered that the separator of f and g is the set

$$
\operatorname{sep}(f, g):=\{x \in X: f(x) \neq g(x)\}
$$

Definition 66 (Irregular interior operator). Let $\mathcal{A} \in S(\mathbf{T o p}), X \in \operatorname{Top}$ and $M \subseteq$ X. It is defined

$$
I_{\mathcal{A}}:=\left(\left(i_{\mathcal{A}}\right)_{X}\right)_{X \in \mathbf{T o p}},
$$

where

Proposition 67. $I_{\mathcal{A}}$ is an interior operator on Top.
Proof. It is clear that $I_{\mathcal{A}}$ satisfies the contractibility property, since if $X \in$ Top and $M \subseteq X$, by definition $\left(i_{\mathcal{A}}\right)_{X}(M) \subseteq M$. To show the monotonicity property, let $M_{1} \subseteq M_{2}$. Then

$$
\left\{\operatorname{sep}(f, g) \subseteq M_{1}: X \underset{g}{\stackrel{f}{\Longrightarrow}} Y ; Y \in \mathcal{A}\right\} \subseteq\left\{\operatorname{sep}(f, g) \subseteq M_{2}: X \underset{g}{\underset{\Longrightarrow}{\Longrightarrow}} Y ; Y \in \mathcal{A}\right\},
$$

so that $\left(i_{\mathcal{A}}\right)_{X}\left(M_{1}\right) \subseteq\left(i_{\mathcal{A}}\right)_{X}\left(M_{2}\right)$. For the continuity property, let $X, Y \in \mathbf{T o p}$, $N \subseteq Y$ and $f: X \longrightarrow Y$ a continuous function.

Then

$$
\begin{aligned}
f^{-1}\left(\left(i_{\mathcal{A}}\right)_{Y}(N)\right) & =f^{-1}(\bigcup\{\operatorname{sep}(g, h) \subseteq N: Y \underset{h}{\stackrel{g}{\Longrightarrow}} Z ; Z \in \mathcal{A}\}) \\
& =\bigcup\left\{f^{-1}(\operatorname{sep}(g, h)) \subseteq f^{-1}(N): Y \underset{h}{g} Z ; Z \in \mathcal{A}\right\}
\end{aligned}
$$

but $f^{-1}(\operatorname{sep}(g, h))=\operatorname{sep}(g \circ f, h \circ f)$, because

$$
\begin{aligned}
x \in f^{-1}(\operatorname{sep}(g, h)) & \Leftrightarrow f(x) \in \operatorname{sep}(g, h) \\
& \Leftrightarrow g(f(x)) \neq h(f(x)) \\
& \Leftrightarrow(g \circ f)(x) \neq(h \circ f)(x) \\
& \Leftrightarrow x \in \operatorname{sep}(g \circ f, h \circ f),
\end{aligned}
$$

so that

$$
\begin{aligned}
f^{-1}\left(\left(i_{\mathcal{A}}\right)_{Y}(N)\right) & =\bigcup\left\{\operatorname{sep}(g \circ f, h \circ f) \subseteq f^{-1}(N): Y \underset{h}{\stackrel{g}{\Longrightarrow}} Z ; Z \in \mathcal{A}\right\} \\
& \subseteq \bigcup\left\{\operatorname{sep}(k, l) \subseteq f^{-1}(N): X \underset{l}{\rightleftarrows} Z ; Z \in \mathcal{A}\right\} \\
& =\left(i_{\mathcal{A}}\right)_{X}\left(f^{-1}(N)\right)
\end{aligned}
$$

Hence, $I_{\mathcal{A}} \in I N($ Top $)$.
Lemma 68. If $X \in \mathcal{A}$, then X is $I_{\mathcal{A}}$-separated.

Proof.

Since $\complement \triangle_{X}=\operatorname{sep}\left(\pi_{1}, \pi_{2}\right) \subseteq\left(i_{\mathcal{A}}\right)_{X^{2}}\left(\complement \triangle_{X}\right)$, then $\complement \triangle_{X}$ is $I_{\mathcal{A}^{-}}$-open.
It is remembered that $S(\mathbf{T o p}) \underset{S}{\stackrel{T}{\rightleftarrows}} I N(\mathbf{T o p})$ is a Galois connection, where

$$
T(\mathcal{A})=\bigwedge\{I \in I N(\mathbf{T o p}): \mathcal{A} \subseteq S(I)\}
$$

But by the previous lemma, $I_{\mathcal{A}} \in\{I \in I N(\mathbf{T o p}): \mathcal{A} \subseteq S(I)\}$, so that $T(\mathcal{A}) \leq I_{\mathcal{A}}$. Now, is it the case that $I_{\mathcal{A}} \leq T(\mathcal{A})$?

Proposition 69. Denote

$$
T(\mathcal{A}):=\left(t(\mathcal{A})_{X}\right)_{X \in \mathbf{T o p}}
$$

Then a characterization for $T(\mathcal{A})$ is

$$
t(\mathcal{A})_{X}(M)=\bigcup\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\Longrightarrow}} Y ; Y \in \mathcal{A}\} .
$$

Proof. What is need to be proved is that $I_{\mathcal{A}} \leq T(\mathcal{A})$. Since $S($ Top $) \underset{S}{\stackrel{T}{\rightleftarrows}} I N($ Top $)$ is a Galois connection, $\mathcal{A} \subseteq S(T(\mathcal{A}))$, so that for every $Y \in \mathcal{A}, Y$ is $T(\mathcal{A})$-separated. Let $Y \in \mathcal{A}$, and let $X \in \operatorname{Top}, M \subseteq X$ and $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ with $\operatorname{sep}(f, g) \subseteq M$. A new function is defined by

$$
\left\{\begin{aligned}
\langle f, g\rangle: X & \longrightarrow \\
& \langle f, g\rangle(x):=(f(x), g(x)) .
\end{aligned}\right.
$$

Then $\langle f, g\rangle$ is a continuous function. Using the continuity of the interior operator $T(\mathcal{A})$,

$$
\langle f, g\rangle^{-1}\left(t(\mathcal{A})_{Y^{2}}\left(\complement \triangle_{Y}\right)\right) \subseteq t(\mathcal{A})_{X}\left(\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right)\right)
$$

and since Y is $T(\mathcal{A})$-separated, this yields

$$
\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right) \subseteq t(\mathcal{A})_{X}\left(\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right)\right)
$$

But

$$
\begin{aligned}
x \in\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right) & \Leftrightarrow\langle f, g\rangle(x) \in \complement \triangle_{Y} \\
& \Leftrightarrow(f(x), g(x)) \in \complement \triangle_{Y} \\
& \Leftrightarrow f(x) \neq g(x) \\
& \Leftrightarrow x \in \operatorname{sep}(f, g)
\end{aligned}
$$

hence $\langle f, g\rangle^{-1}\left(\complement \triangle_{Y}\right)=\operatorname{sep}(f, g)$. Therefore using this, the fact that $\operatorname{sep}(f, g) \subseteq M$ and the monotonicity of $T(\mathcal{A})$

$$
\operatorname{sep}(f, g) \subseteq t(\mathcal{A})_{X}(\operatorname{sep}(f, g)) \subseteq t(\mathcal{A})_{X}(M)
$$

But Y, f and g were arbitrary, so that for every $Y \in \mathcal{A}$ and for every pair of continuous functions $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ such that $\operatorname{sep}(f, g) \subseteq M, \operatorname{sep}(f, g) \subseteq t(\mathcal{A})_{X}(M)$, so that

$$
\bigcup\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\Longrightarrow}} Y ; Y \in \mathcal{A}\} \subseteq t(\mathcal{A})_{X}(M),
$$

therefore $\left(i_{\mathcal{A}}\right)_{X}(M) \subseteq t(\mathcal{A})_{X}(M)$, and thus $I_{\mathcal{A}} \leq T(\mathcal{A})$.
Example 70. Let $\mathcal{A}=$ Ind, where Ind is the subcategory with objects all indiscrete topological spaces. The interior operator $T_{\text {Ind }}=\left(t(\mathbf{I n d})_{X}\right)_{X \in \mathbf{T o p}}$ is going to be studied, where if $X \in \operatorname{Top}$ and $M \subseteq X$,

$$
t(\mathbf{I n d})_{X}(M)=\bigcup\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\longrightarrow}} Y ; Y \in \text { Ind }\}
$$

Let $Y=\left\{y_{1}, y_{2}\right\}$ be a set with the indiscrete topology, and let f, g be functions defined by

$$
\left\{\begin{array}{rl}
f: X & Y \\
& f(x):=y_{1},
\end{array}\right.
$$

and by

$$
\left\{\begin{array}{l}
g: X \longrightarrow Y \\
g(x):= \begin{cases}y_{2}, & \text { if } x \in M \\
y_{1}, & \text { if } x \notin M\end{cases}
\end{array}\right.
$$

Since $Y \in \operatorname{Ind}, f$ and g are continuous functions, such that $\operatorname{sep}(f, g)=M$. Thus $t(\mathbf{I n d})_{X}(M)=M$. Consequently for every $M \subseteq X, M$ is $T_{\text {Ind }}$-open, and therefore, X is $T_{\text {Ind }}$-discrete.

Example 71. Let $\mathcal{A}=\mathbf{T o p}_{\mathbf{1}}$. It is wanted an explicit form of the operator $T_{\mathbf{T o p}_{1}}=$ $\left(t\left(\mathbf{T o p}_{\mathbf{1}}\right)_{X}\right)_{X \in \mathbf{T o p}}$, where if $X \in \mathbf{T o p}$ and $M \subseteq X$,

$$
t\left(\mathbf{T o p}_{\mathbf{1}}\right)_{X}(M)=\bigcup\left\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\longrightarrow}} Y ; Y \in \mathbf{T o p}_{1}\right\}
$$

A partition of $X \in$ Top is called a closed partition if its members are closed sets in X. Consider the collection

$$
\mathscr{C}(X):=\{\mathcal{C}: \mathcal{C} \text { is a closed partition of } X\} .
$$

$\mathscr{C}(X) \neq \emptyset$, since $\{X\} \in \mathscr{C}(X)$. Let $\mathcal{C}_{1}, \mathcal{C}_{2} \in \mathscr{C}(X)$. A relation on $\mathscr{C}(X)$ is defined by

$$
\mathcal{C}_{1} \leq \mathcal{C}_{2} \text { iff }\left(\forall C_{1} \in \mathcal{C}_{1}\right)\left(\forall C_{2} \in \mathcal{C}_{2}\right), C_{2} \subseteq C_{1} \text {, or, } C_{1} \cap C_{2}=\emptyset
$$

It is claimed that \leq is an order relation, and therefore, $(\mathscr{C}(X), \leq)$ is a poset.
To prove this, let $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3} \in \mathscr{C}(X)$. The reflexivity is clear, because every pair of different elements in a closed partition are disjoint. For the antisymmetry, it is assumed that $\mathcal{C}_{1} \leq \mathcal{C}_{2}$ and $\mathcal{C}_{2} \leq \mathcal{C}_{1}$. Let $C_{1} \in \mathcal{C}_{1}$. Since C_{1} is a nonempty subset
of X and \mathcal{C}_{2} is a partition of X, there is $C_{2} \in \mathcal{C}_{2}$ such that $C_{1} \cap C_{2} \neq \emptyset$. Then by hypothesis $C_{1} \subseteq C_{2}$ and $C_{2} \subseteq C_{1}$, and thus $C_{2}=C_{1}$. So every element in \mathcal{C}_{1} is an element in \mathcal{C}_{2}. Hence, $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}$. Using the same argument the second relation, $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}$, it is true, so that $\mathcal{C}_{1}=\mathcal{C}_{2}$. For the transitivity, it is assumed that $\mathcal{C}_{1} \leq \mathcal{C}_{2}$ and $\mathcal{C}_{2} \leq \mathcal{C}_{3}$. Let $C_{1} \in \mathcal{C}_{1}$ and $C_{3} \in \mathcal{C}_{3}$ such that $C_{1} \cap C_{3} \neq \emptyset$. Since \mathcal{C}_{2} is a partition, let $C_{2} \in \mathcal{C}_{2}$ such that $C_{2} \cap C_{3} \neq \emptyset$. Then by hypothesis $C_{3} \subseteq C_{2}$, and this implies $C_{2} \cap C_{1} \neq \emptyset$, and using the other part of the hypothesis, $C_{2} \subseteq C_{1}$. Hence, $C_{3} \subseteq C_{1}$, and thus $\mathcal{C}_{1} \leq \mathcal{C}_{3}$.

Let $x \in X$ an arbitrary element. For every $\mathcal{C} \in \mathscr{C}(X) C_{\mathcal{C}}(x)$ denotes the element of \mathcal{C} such that $x \in C_{\mathcal{C}}(x)$. Therefore, $x \in \cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}}(x)$, and since x is arbitrary,

$$
X \subseteq \bigcup\left\{\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}}:(\forall \mathcal{C} \in \mathscr{C}(X)), C_{\mathcal{C}} \in \mathcal{C}\right\}
$$

Taking two nonempty different elements of the collection

$$
\left\{\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}}:(\forall \mathcal{C} \in \mathscr{C}(X)), C_{\mathcal{C}} \in \mathcal{C}\right\}
$$

there are two indexed families $\left\{C_{\mathcal{C}}\right\}_{\mathcal{C} \in \mathscr{C}(X)},\left\{D_{\mathcal{C}}\right\}_{\mathcal{C} \in \mathscr{C}(X)}$ such that these elements can be wrtten as $\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}}$ and $\cap_{\mathcal{C} \in \mathscr{C}(X)} D_{\mathcal{C}}$, and
a. For every $\mathcal{C} \in \mathscr{C}(X), C_{\mathcal{C}}, D_{\mathcal{C}} \in \mathcal{C}$.
b. $\quad \cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}} \neq \emptyset \neq \cap_{\mathcal{C} \in \mathscr{C}(X)} D_{\mathcal{C}}$.

With the assumption $\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}} \nsubseteq \cap_{\mathcal{C} \in \mathscr{C}(X)} D_{\mathcal{C}}$ let $x \in \cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}}$ with $x \notin \cap_{\mathcal{C} \in \mathscr{C}(X)} D_{\mathcal{C}}$. Then there is $\mathcal{C}_{0} \in \mathscr{C}(X)$ such that $x \notin D_{\mathcal{C}_{0}}$. Obviously, $x \in C_{\mathcal{C}_{0}}$. Therefore,

$$
\left(\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}}\right) \cap\left(\cap_{\mathcal{C} \in \mathscr{C}(X)} D_{\mathcal{C}}\right)=\cap_{\mathcal{C} \in \mathscr{C}(X)}\left(C_{\mathcal{C}} \cap D_{\mathcal{C}}\right) \subseteq C_{\mathcal{C}_{0}} \cap D_{\mathcal{C}_{0}}=\emptyset
$$

so that different elements of the collection are disjoint. Thus the collection

$$
\left\{\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}} \neq \emptyset:(\forall \mathcal{C} \in \mathscr{C}(X)), C_{\mathcal{C}} \in \mathcal{C}\right\}
$$

is a partition of X. Even more, is a closed partition, since every collection \mathcal{C} is a closed partition, and the intersections of elements of these collections are in fact arbitrary intersections of closed sets in X. It means that

$$
\left\{\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}} \neq \emptyset:(\forall \mathcal{C} \in \mathscr{C}(X)), C_{\mathcal{C}} \in \mathcal{C}\right\} \in \mathscr{C}(X)
$$

and for every closed partition \mathcal{D},

$$
\mathcal{D} \leq\left\{\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}} \neq \emptyset:(\forall \mathcal{C} \in \mathscr{C}(X)), C_{\mathcal{C}} \in \mathcal{C}\right\}
$$

so that $\left\{\cap_{\mathcal{C} \in \mathscr{C}(X)} C_{\mathcal{C}} \neq \emptyset:(\forall \mathcal{C} \in \mathscr{C}(X)), C_{\mathcal{C}} \in \mathcal{C}\right\}$ is the maximal element of $\mathscr{C}(X)$.

Let \mathcal{C} be the maximal closed partition of X. It is claimed that

$$
t\left(\operatorname{Top}_{\mathbf{1}}\right)_{X}(M)=\bigcup\{C \subseteq M: C \in \mathcal{C}\}
$$

Two cases are considered.
Case 1 For every $C \in \mathcal{C}, C \nsubseteq M$.
In this case,

$$
\{C \subseteq M: C \in \mathcal{C}\}=\emptyset
$$

Let $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ such that $Y \in \mathbf{T o p}_{\mathbf{1}}$ and $\operatorname{sep}(f, g) \neq \emptyset$; let $x \in \operatorname{sep}(f, g)$. Then $f(x) \neq g(x)$. Since $Y \in \mathbf{T o p}_{\mathbf{1}}$, the singletons $\{f(x)\}$ and $\{g(x)\}$ are closed sets. Therefore, the collections

$$
\left\{f^{-1}(\{y\}): y \in f(X)\right\} \quad \text { and } \quad\left\{g^{-1}(\{y\}): y \in g(X)\right\}
$$

are closed partitions of X, that give origin to the closed partition

$$
\left\{f^{-1}\left(\left\{y_{1}\right\}\right) \cap g^{-1}\left(\left\{y_{2}\right\}\right):\left(y_{1}, y_{2}\right) \in f(X) \times g(X)\right\}
$$

The set $f^{-1}(\{f(x)\}) \cap g^{-1}(\{g(x)\})$ is a member of the previous partition, so that exists $C \in \mathcal{C}$ such that

$$
C \subseteq f^{-1}(\{f(x)\}) \cap g^{-1}(\{g(x)\}) \subseteq \operatorname{sep}(f, g)
$$

Since $C \nsubseteq M, \operatorname{sep}(f, g) \nsubseteq M$. Thus

$$
\left\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\Longrightarrow}} Y ; Y \in \mathbf{T o p}_{1}\right\}=\emptyset
$$

and in this case,

$$
t\left(\mathbf{T o p}_{1}\right)_{X}(M)=\emptyset=\bigcup\{C \subseteq M: C \in \mathcal{C}\}
$$

Case 2 There exists $C \in \mathcal{C}$ such that $C \subseteq M$.
Let $x \in t\left(\mathbf{T o p}_{\mathbf{1}}\right)_{X}(M)$. Then there exist $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$, with $Y \in \mathbf{T o p}_{\mathbf{1}}$ and $x \in$ sep $(f, g) \subseteq M$. Hence, $f(x) \neq g(x)$. Following the same reasoning that in case 1, the set $f^{-1}(\{f(x)\}) \cap g^{-1}(\{g(x)\})$ is an element of a closed partition. Hence, there is $C_{x} \in \mathcal{C}$ such that

$$
C_{x} \subseteq f^{-1}(\{f(x)\}) \cap g^{-1}(\{g(x)\}) \subseteq \operatorname{sep}(f, g) \subseteq M
$$

so that there is $C_{x} \in \mathcal{C}$ such that $x \in C_{x} \subseteq M$. Thus $x \in \bigcup\{C \subseteq M: C \in \mathcal{C}\}$, and then

$$
t\left(\mathbf{T o p}_{\mathbf{1}}\right)_{X}(M) \subseteq \bigcup\{C \subseteq M: C \in \mathcal{C}\}
$$

To prove the other part, for every $C \in \mathcal{C}$ it is chosen a unique element of C denoted by $x(C)$. Let $C_{0}, C_{1} \in \mathcal{C}$ such that $C_{0} \subseteq M$ and $C_{1} \neq C_{0} . X_{c f}$ denotes the set X with the cofinite topology. The cofinite topology on X is the collection that consists of \emptyset and every subset of X whose complement is a finite set. Two new
functions are defined,

$$
\left\{\begin{aligned}
f: X & X_{c f} \\
f(x) & :=x(C), \quad \text { if } x \in C,
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
& g: X \longrightarrow X_{c f} \\
& g(x):= \begin{cases}f(x), & \text { if } x \notin C_{0} \\
x\left(C_{1}\right), & \text { if } x \in C_{0}\end{cases}
\end{aligned}\right.
$$

Then f and g are continuous functions, such that $\operatorname{sep}(f, g)=C_{0}$, and hence

$$
\{C \subseteq M: C \in \mathcal{C}\} \subseteq\left\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\longrightarrow}} Y ; Y \in \mathbf{T o p}_{\mathbf{1}}\right\}
$$

so that

$$
\bigcup\{C \subseteq M: C \in \mathcal{C}\} \subseteq t\left(\mathbf{T o p}_{\mathbf{1}}\right)_{X}(M)
$$

In particular, for $X \in \mathbf{T o p}_{\mathbf{1}}$ and $M \subseteq X, t\left(\mathbf{T o p}_{1}\right)_{X}(M)=M$.
Example 72. Let $\mathcal{A}=\mathbf{T o p}_{2}$. In this case, the operator is
$T_{\mathbf{T o p}_{2}}=\left(t\left(\mathbf{T o p}_{2}\right)_{X}\right)_{X \in \mathbf{T o p}}$, where if $X \in \mathbf{T o p}$ and $M \subseteq X$,

$$
t\left(\mathbf{T o p}_{\mathbf{2}}\right)_{X}(M)=\bigcup\left\{\operatorname{sep}(f, g) \subseteq M: X \underset{g}{\stackrel{f}{\longrightarrow}} Y ; Y \in \mathbf{T o p}_{\mathbf{2}}\right\} .
$$

An explicit description of this operator when $X \in \mathbf{T o p}_{\mathbf{2}}$ is going to be showed. First it is assumed that M is open in X. Therefore, $\subset M$ is a closed set in X, and by Proposition 21 there are $Y \in \mathbf{T o p}_{\mathbf{2}}$ and continuous functions $X \underset{g}{\stackrel{f}{\Longrightarrow}} Y$ such that $\complement M=e q u(f, g)$. But then $M=\operatorname{sep}(f, g)$, so that $t\left(\mathbf{T o p}_{\mathbf{2}}\right)_{X}(M)=M$, and M is I-open. Now let $M \subseteq X$ arbitrary but nonempty. Let f, g be continuous functions $X \underset{g}{f} Y$ such that $\operatorname{sep}(f, g) \subseteq M$. By Proposition 8 , sep (f, g) is open in X, thus sep $(f, g) \subseteq M^{\circ}$, and then $t\left(\mathbf{T o p}_{\mathbf{2}}\right)_{X}(M) \subseteq M^{\circ}$. On the other hand, if $U \neq \emptyset$ is an open subset of X with $U \subseteq M$, then $U=\operatorname{sep}(f, g) \subseteq M, U \subseteq t\left(\mathbf{T o p}_{\mathbf{2}}\right)_{X}(M)$ and hence $M^{\circ} \subseteq t\left(\mathbf{T o p}_{\mathbf{2}}\right)_{X}(M)$. It is concluded that if M is an arbitrary nonempty
subset of $X, t\left(\mathbf{T o p}_{\mathbf{2}}\right)_{X}(M)=M^{\circ}$, that is, $T_{\mathbf{T o p}_{2}}$ coincides with the classical interior operator K on $\mathbf{T o p}_{\mathbf{2}}$.

Now a result that will be useful for the next part is stated.
Proposition 73. Let \mathcal{A} be a subcategory of Top that is closed under products. Let $X \in \operatorname{Top}, M \subseteq X$, and let Λ be a set of indexes. For every $\lambda \in \Lambda$ consider $X \xrightarrow[g_{\lambda}]{f_{\lambda}} A_{\lambda}$, where $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ is an indexed family of topological spaces in \mathcal{A}, and $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda},\left\{g_{\lambda}\right\}_{\lambda \in \Lambda}$ are indexed families of continuous functions. Then

$$
\bigcup_{\lambda \in \Lambda} \operatorname{sep}\left(f_{\lambda}, g_{\lambda}\right)=\operatorname{sep}\left(\left\langle f_{\lambda}\right\rangle,\left\langle g_{\lambda}\right\rangle\right)
$$

where

$$
\left\{\begin{aligned}
& X \stackrel{\left\langle f_{\lambda}\right\rangle}{\left\langle g_{\lambda}\right\rangle} \\
&\left\langle f_{\lambda \in \Lambda} A_{\lambda}\right. \\
&\langle(x):=\left(f_{\lambda}(x)\right)_{\lambda \in \Lambda} \\
&\left\langle g_{\lambda}\right\rangle(x):=\left(g_{\lambda}(x)\right)_{\lambda \in \Lambda} .
\end{aligned}\right.
$$

Proof. The following is a commutative diagram

where π_{λ} is the λ-projection. Consequently,

$$
\begin{aligned}
x \in \bigcup_{\lambda \in \Lambda} \operatorname{sep}\left(f_{\lambda}, g_{\lambda}\right) & \Leftrightarrow\left(\exists \lambda_{0}\right), x \in \operatorname{sep}\left(f_{\lambda_{0}}, g_{\lambda_{0}}\right) \\
& \Leftrightarrow\left(\exists \lambda_{0}\right), f_{\lambda_{0}}(x) \neq g_{\lambda_{0}}(x) \\
& \Leftrightarrow\left(f_{\lambda}(x)\right)_{\lambda \in \Lambda} \neq\left(g_{\lambda}(x)\right)_{\lambda \in \Lambda} \\
& \Leftrightarrow\left\langle f_{\lambda}\right\rangle(x) \neq\left\langle g_{\lambda}\right\rangle(x) \\
& \Leftrightarrow x \in \operatorname{sep}\left(\left\langle f_{\lambda}\right\rangle,\left\langle g_{\lambda}\right\rangle\right) .
\end{aligned}
$$

Some classical notions of Category Theory that will be useful in this context. All of them can be found in [1]. The work in this part uses the assumptions made in [1] for a category \mathcal{X}. In particular, it is assumed that every subcategory of \mathcal{X} is full and isomorphism-closed.

Definition 74. A subcategory of \mathcal{X} is full if the morphisms in the category are exactly those morphims in \mathcal{X} with both domain and codomain in the subcategory.

Definition 75. A subcategory of \mathcal{X} is isomorphism-closed if given that an object belongs to the subcategory, then so does any other object isomorphic to it.

Definition 76. A morphism $X \xrightarrow{f} Y$ is called an isomorphism if there exists a morphism $Y \xrightarrow{g} X$ such that $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$.

Definition 77. A morphism $X \xrightarrow{e} E$ is called an epimorphism if whenever f, g : $E \longrightarrow Y$ are morphisms in \mathcal{X} such that $f \circ e=g \circ e$, then $f=g$.

Definition 78.

a. A family of morphisms with common codomain $\left(X_{\lambda} \xrightarrow{f_{\lambda}} Y\right)_{\lambda \in \Lambda}$, indexed by a class Λ, is called a sink.
b. A $\operatorname{sink}\left(X_{\lambda} \xrightarrow{f_{\lambda}} Y\right)_{\lambda \in \Lambda}$ is called an episink if for every pair of morphisms h, k : $Y \longrightarrow Z, h \circ f_{\lambda}=k \circ f_{\lambda}$, for every $\lambda \in \Lambda$ implies $h=k$.

Definition 79. An episink $\left(X_{\lambda} \xrightarrow{e_{\lambda}} E\right)_{\lambda \in \Lambda}$ is called extremal if whenever it factors through a $\operatorname{sink}\left(X_{\lambda} \xrightarrow{f_{\lambda}} X\right)_{\lambda \in \Lambda}$ and a monomorphism $X \xrightarrow{m} E$, that is $e_{\lambda}=f_{\lambda} \circ m$, for each $\lambda \in \Lambda$, then m must be an isomorphism. If $|\Lambda|=1$, then we speak of an extremal epimorphism.

Definition 80. A subcategory \mathcal{A} of \mathcal{X} is called a reflective subcategory of \mathcal{X} if for every $X \in \mathcal{X}$ there is a morphism $X \xrightarrow{r_{X}} r X$ with $r X \in \mathcal{A}$ such that, for every morphism $X \xrightarrow{f} Y$ with $Y \in \mathcal{A}$, there is a unique morphism $r X \xrightarrow{g} Y$ that makes the following diagram commute:

The morphism $X \xrightarrow{r_{X}} r X$ is called the \mathcal{A}-reflection of X.
Remark. If for every $X \in \mathcal{X}$, the reflection is required to belong to a given class of morphisms \mathcal{E}, then it is called an \mathcal{E}-reflective subcategory.

In [1] it is made explicit that "under certain assumptions on \mathcal{X} and \mathcal{E}, for any full subcategory \mathcal{A} of \mathcal{X}, there exists a smallest \mathcal{E}-reflective subcategory of \mathcal{X} containing \mathcal{A}. This subcategory is the intersection of all \mathcal{E}-reflective subcategories of \mathcal{X} containing \mathcal{A} and it is called the \mathcal{E}-reflective hull of \mathcal{A} in \mathcal{X}."

The following proposition is also from [1].
Proposition 81. Let \mathcal{X} be an (extremal epi, monosource)-category and let $\mathcal{A} \subseteq \mathcal{X}$. Then the following are equivalent:
(a) \mathcal{A} is extremal epi-reflective in \mathcal{X};
(b) \mathcal{A} is closed under the formation of monosources.

From Category Theory is known that Top is an (extremal epi, monosource)category, and subspaces and products are monosources in Top. Take a subcategory
\mathcal{A} of Top. From the Galois connection

$$
S(\text { Top }) \underset{S}{\stackrel{T}{\rightleftarrows}} I N(\text { Top }),
$$

starting with \mathcal{A}, applying T and then S, the subcategory $S(T(\mathcal{A})$) of $T(\mathcal{A})$ separated spaces is obtained. This subcategory is closed under products and subspaces as proved in Corollary 62, and by the Galois connection

$$
\mathcal{A} \subseteq S(T(\mathcal{A})) .
$$

By Propositions 61 and $81 S(T(\mathcal{A}))$ is extremal epi-reflective in Top.
Now a characterization of $\operatorname{Sep}(T(\mathcal{A}))$ is given. Since $\operatorname{Sep}(T(\mathcal{A}))$ is reflective, without loss of generality it is assumed that \mathcal{A} is reflective.

Proposition 82. Let \mathcal{A} be a reflective subcategory of \mathcal{X}. Take $X, Y \in \mathcal{X}$. Let $X \xrightarrow{r_{X}} r X, Y \xrightarrow{r_{Y}} r Y$ be the \mathcal{A}-reflections of X, Y, respectively. Then for every morphism $X \xrightarrow{f} Y$ there is a unique morphism $r X \xrightarrow{r(f)} r Y$ that makes the following diagram commute:

Furthermore, if f is an isomorphism then $r(f)$ is an isomorphism.
Proof. From the following diagram

$X \xrightarrow{r_{Y} \circ f} r Y$ is a morphism with $r Y \in \mathcal{A}$. Since the morphism $X \xrightarrow{r_{X}} r X$ is the \mathcal{A}-reflection of X, there is a unique morphism $r X \xrightarrow{r(f)} r Y$ such that the following diagram commutes:

But this means that the diagram

commutes.
Now it is assumed that f is an isomorphism. From the diagram

follows the commutative diagram

but the following diagram is also commutative

Since $X \xrightarrow{r_{X}} r X$ is the \mathcal{A}-reflection of X, uniqueness of the morphism that completes the diagram yields

$$
r\left(f^{-1}\right) \circ r(f)=i d_{r_{X}} .
$$

Similarly, it can be showed that

$$
r(f) \circ r\left(f^{-1}\right)=i d_{r_{Y}} .
$$

Therefore, $r(f)$ is an isomorphism.
Proposition 83. Reflective categories are closed under products.
Proof. Let \mathcal{A} be a reflective subcategory of \mathcal{X}, and let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be an indexed family of objects in \mathcal{A}. Then the following is a commutative diagram

where for every $\lambda \in \Lambda, f_{\lambda}$ is the unique morphism determinated by the reflection

$$
\prod A_{\lambda} \xrightarrow{r_{\Pi A_{\lambda}}} r\left(\prod A_{\lambda}\right),
$$

and f is induced by the family of morphisms

$$
\left(r\left(\prod A_{\lambda}\right) \xrightarrow{f_{\lambda}} A_{\lambda}\right)_{\lambda \in \Lambda} .
$$

From the diagram, for every $\lambda \in \Lambda$

$$
\pi_{\lambda} \circ f \circ r_{\Pi A_{\lambda}}=f_{\lambda} \circ r_{\Pi A_{\lambda}}=\pi_{\lambda}=\pi_{\lambda} \circ i d_{\Pi A_{\lambda}}
$$

and since $\left(\Pi A_{\lambda} \xrightarrow{\pi_{\lambda}} A_{\lambda}\right)_{\lambda \in \Lambda}$ is a monosource,

$$
f_{\lambda} \circ r_{\Pi A_{\lambda}}=i d_{\Pi A_{\lambda}} .
$$

Now,

$$
\begin{aligned}
\left(r_{\Pi A_{\lambda}} \circ f\right) \circ r_{\Pi A_{\lambda}} & =r_{\Pi A_{\lambda}} \circ\left(f \circ r_{\Pi A_{\lambda}}\right) \\
& =r_{\Pi A_{\lambda}} \circ i d_{\Pi A_{\lambda}} \\
& =i d_{\Pi A_{\lambda}} .
\end{aligned}
$$

A consequence is the commutative diagram

but also the following is a commutative diagram

Hence from uniqueness

$$
r_{\Pi A_{\lambda}} \circ f=i d_{r\left(\Pi A_{\lambda}\right)} .
$$

Therefore $\prod A_{\lambda}$ and $r\left(\prod A_{\lambda}\right)$ are isomorphic. Since \mathcal{A} is isomorphism-closed and $r\left(\Pi A_{\lambda}\right) \in \mathcal{A}, \Pi A_{\lambda} \in \mathcal{A}$.

Definition 84. Let \mathcal{A} be reflective in Top. The class $\operatorname{Mono}(\mathcal{A})$ is defined as $\operatorname{Mono}(\mathcal{A}):=\left\{X \in \operatorname{Top}:\right.$ the \mathcal{A}-reflection $r_{X}: X \longrightarrow r X$ is a monomorphism $\}$. Remark. For \mathcal{A} reflective subcategory, if $A \in \mathcal{A}$ then $A \xrightarrow{r_{A}} r A$ is an isomorphism and consequently a monomorphism. This implies that $\mathcal{A} \subseteq \operatorname{Mono}(\mathcal{A})$.

Proposition 85. Let \mathcal{A} be reflective in Top. Then $X \in \operatorname{Top}$ belongs to Mono (\mathcal{A}) if and only if $\complement \triangle_{X}$ is $I_{\mathcal{A}}$-open (equivalently X is $I_{\mathcal{A}}$-separated).

Proof. First the "only if" part. Let $X \in \operatorname{Mono}(\mathcal{A})$, i.e. the \mathcal{A}-reflection $X \xrightarrow{r_{X}} r X$ is a monomorphism. The following diagram is considered

$$
X \times X \underset{\pi_{2}}{\stackrel{\pi_{1}}{\longrightarrow}} X \xrightarrow{r_{X}} r X .
$$

If $(x, y) \in \operatorname{sep}\left(r_{X} \circ \pi_{1}, r_{X} \circ \pi_{2}\right)$, then

$$
\begin{aligned}
\left(r_{X} \circ \pi_{1}\right)(x, y) & \neq\left(r_{X} \circ \pi_{2}\right)(x, y) \\
r_{X}\left(\pi_{1}(x, y)\right) & \neq r_{X}\left(\pi_{2}(x, y)\right) \\
r_{X}(x) & \neq r_{X}(y)
\end{aligned}
$$

and since r_{X} is a function, $x \neq y$ and thus $(x, y) \in \complement \triangle_{X}$. Now if $(x, y) \in \complement \triangle_{X}$, $x \neq y$, from the fact that r_{X} is a monomorphism,

$$
\begin{gathered}
r_{X}(x) \neq r_{X}(y) \\
r_{X}\left(\pi_{1}(x, y)\right) \neq r_{X}\left(\pi_{2}(x, y)\right) \\
\left(r_{X} \circ \pi_{1}\right)(x, y) \neq\left(r_{X} \circ \pi_{2}\right)(x, y),
\end{gathered}
$$

and thus $(x, y) \in \operatorname{sep}\left(r_{X} \circ \pi_{1}, r_{X} \circ \pi_{2}\right)$. Therefore, from the diagram, $\complement \triangle_{X}=$ $\operatorname{sep}\left(r_{X} \circ \pi_{1}, r_{X} \circ \pi_{2}\right)$. Since

$$
\left(i_{\mathcal{A}}\right)_{X}\left(\mathrm{C} \triangle_{X}\right)=\bigcup\left\{\operatorname{sep}(f, g) \subseteq \mathrm{C} \triangle_{X}: X \underset{g}{\stackrel{f}{\Longrightarrow}} Y ; Y \in \mathcal{A}\right\},
$$

then

$$
\left(i_{\mathcal{A}}\right)_{X}\left(\complement \triangle_{X}\right)=\operatorname{sep}\left(r_{X} \circ \pi_{1}, r_{X} \circ \pi_{2}\right)=\complement \triangle_{X},
$$

so that $\complement \triangle_{X}$ is $I_{\mathcal{A}}$-open (equivalently X is $I_{\mathcal{A}}$-separated).
For the "if" part, it is assumed that X is $I_{\mathcal{A}^{-}}$-separated, that is, $\mathrm{C} \triangle_{X}$ is $I_{\mathcal{A}^{-}}$ open. What it is going to be proved is that $X \xrightarrow{r_{X}} r X$ is a monomorphism (that is injective). Let $x, y \in X$ such that $r_{X}(x)=r_{X}(y)$. For convenience $T=\{t\}$ is considered and functions $T \underset{k}{\stackrel{h}{\Longrightarrow}} X$ such that $h(t)=x$ and $k(t)=y$. The following diagram is considered

By Proposition 82 this is a commutative diagram. Since π_{X} is an isomorphism, also by Proposition $82 r\left(\pi_{X}\right)$ is an isomorphism. Then

$$
\begin{aligned}
r\left(\pi_{X}\right)\left(r_{T \times X}(t, h(t))\right) & =r_{X}\left(\pi_{X}(t, h(t))\right) \\
& =r_{X}(h(t)) \\
& =r_{X}(x) \\
& =r_{X}(y) \\
& =r_{X}(k(t)) \\
& =r_{X}\left(\pi_{X}(t, k(t))\right) \\
& =r\left(\pi_{X}\right)\left(r_{T \times X}(t, k(t))\right)
\end{aligned}
$$

Since $r\left(\pi_{X}\right)$ is an isomorphism then

$$
r_{T \times X}(t, h(t))=r_{T \times X}(t, k(t)) .
$$

Since reflective subcategories are closed under products (Proposition 83), from Proposition $73, \mathrm{C} \triangle_{X}=\operatorname{sep}(f, g)$, where $X \times X \underset{g}{\underset{ }{f}} A$, with $A \in \mathcal{A}$ and f, g continuous functions. Also $\triangle_{X}=e q u(f, g)$. Now the commutative diagram induced by the \mathcal{A} reflection is

Then

$$
\begin{aligned}
f(h(t), k(t)) & =f\left(h \times i d_{X}(t, k(t))\right) \\
& =f_{h}\left(r_{T \times X}(t, k(t))\right) \\
& =f_{h}\left(r_{T \times X}(t, h(t))\right) \\
& =f\left(h \times i d_{X}(t, h(t))\right) \\
& =f(h(t), h(t)) \\
& =g(h(t), h(t))
\end{aligned}
$$

where the last equation holds because $\triangle_{X}=e q u(f, g)$. Then

$$
\begin{aligned}
f(h(t), k(t)) & =g(h(t), h(t)) \\
& =g\left(h \times i d_{X}(t, h(t))\right) \\
& =g_{h}\left(r_{T \times X}(t, h(t))\right) \\
& =g_{h}\left(r_{T \times X}(t, k(t))\right) \\
& =g\left(h \times i d_{X}(t, k(t))\right) \\
& =g(h(t), k(t)),
\end{aligned}
$$

so that

$$
f(h(t), k(t))=g(h(t), k(t)) .
$$

This implies that $(h(t), k(t)) \in e q u(f, g)=\triangle_{X}$. Therefore

$$
x=h(t)=k(t)=y,
$$

that is r_{X} is injective.

It is observed that in the category Top of topological spaces for a subcategory $\mathcal{A} \subseteq \operatorname{Top}, \operatorname{Mono}(\mathcal{A})$ is the extremal epireflective hull of \mathcal{A} (cf. [1]). The subcategories $\mathbf{T o p}_{\mathbf{0}}, \mathbf{T o p}_{\mathbf{1}}, \mathbf{T o p}_{\mathbf{2}}$ and $\mathbf{T o p}_{\mathbf{2} \frac{1}{2}}$ are all extremal epireflective and as a consequence of Proposition 85, they are fixed points of the Galois connection

$$
S(\text { Top }) \underset{S}{\stackrel{T}{\rightleftarrows}} I N(\text { Top }) .
$$

Now an alternative definition of I-separation is given. The reason for this new definition is the following. The notion of I-separation given in Definition 51 has proved itself very successful in the category of Topological Spaces but it is not suitable for a generalization to an arbitrary category. For instance in the category Grp of Groups and homomorphisms, given two homomorphisms f, g, sep (f, g) fails to be a subgroup. As a consequence a new definition of I-separation is going to be introduced that in the category Top is equivalent to the previous definition and that has potential for a generalization to an arbitrary category.

Definition 86. Let $X \in$ Top and let $I:=\left(i_{X}\right)_{X \in \boldsymbol{T o p}}$ be an interior operator on Top. X is I-separated if the set

$$
\bigcup\left\{M \subset X \times X: M \cap \triangle_{X}=\emptyset\right\}
$$

is I-open.

In the context of the category Top it is true that

$$
\complement_{X} \triangle_{X}=\bigcup\left\{M \subset X \times X: M \cap \triangle_{X}=\emptyset\right\}
$$

and consequently from Corollary 52 this definition is equivalent to Definition 51. Notation. The suggestive notation is going to be used

$$
\mathrm{C} \triangle_{X}:=\bigcup\left\{M \subset X \times X: M \cap \triangle_{X}=\emptyset\right\}
$$

for the subset of $X \times X$ of the previous definition. Using this symbol, X is I separated if $\mathrm{C} \triangle_{X}$ is I-open, or equivalently if

$$
\mathrm{C} \triangle_{X} \subseteq i_{X^{2}}\left(\mathrm{C} \triangle_{X}\right) .
$$

It is said "suggestive" because in the context of Set Theory, this is not just notation, but an identity, if $\mathrm{C} \triangle_{X}$ denotes the complement of \triangle_{X} in the set $X \times X$; in symbols $\complement_{X^{2}} \triangle_{X}$. Now, this is true in the context of the category Top, but we want to generalize the notion to others categories.

It has been seen that I-separated objects are closed under the formation of products and subspaces (Cf. Corollary 62). However the proof used there cannot be generalised to an arbitrary category. Therefore some proofs of those results are presented here that it is believed are susceptible of generalization to an arbitrary category.

Theorem 87. The notion of I-separated is closed under the formation of subspaces. Let $X \in$ Top, $Y \subseteq X$ and $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ an interior operator on Top. If X is I-separated, then Y is I-separated.

Proof. It is remembered that

$$
\complement \triangle_{X}:=\bigcup\left\{M \subset X \times X: M \cap \triangle_{X}=\emptyset\right\},
$$

and

$$
\complement \triangle_{Y}:=\bigcup\left\{N \subset Y \times Y: N \cap \triangle_{Y}=\emptyset\right\} .
$$

First consider the collections of sets

$$
\mathcal{A}:=\left\{M \cap(Y \times Y): M \subset X \times X \text { and } M \cap \triangle_{X}=\emptyset\right\},
$$

and

$$
\mathcal{B}:=\left\{N \subset Y \times Y: N \cap \triangle_{Y}=\emptyset\right\} .
$$

It is claimed that they are the same.
a. $\mathcal{A} \subseteq \mathcal{B}$ An element of \mathcal{A} is of the form $M \cap(Y \times Y)$, where $M \subseteq X \times X$ and $M \cap \triangle_{X}=\emptyset$. Then $M \cap(Y \times Y) \subset Y \times Y$, and

$$
\begin{aligned}
(M \cap(Y \times Y)) \cap \triangle_{Y} & =M \cap\left((Y \times Y) \cap \triangle_{Y}\right) \\
& =M \cap \triangle_{Y} \\
& \subseteq M \cap \triangle_{X} \\
& =\emptyset
\end{aligned}
$$

so that $(M \cap(Y \times Y)) \cap \triangle_{Y}=\emptyset$ and hence $M \cap(Y \times Y) \in \mathcal{B}$.
b. $\mathcal{B} \subseteq \mathcal{A}$ The useful fact to prove this is

$$
\triangle_{Y}=(Y \times Y) \cap \triangle_{X}
$$

Consider $N \in \mathcal{B}$. Then $N \subset Y \times Y \subseteq X \times X$. Furthermore,

$$
\begin{aligned}
N \cap \triangle_{X} & =(N \cap(Y \times Y)) \cap \triangle_{X} \\
& =N \cap\left((Y \times Y) \cap \triangle_{X}\right) \\
& =N \cap \triangle_{Y} \\
& =\emptyset .
\end{aligned}
$$

Hence, $N=N \cap(Y \times Y) \in \mathcal{A}$.

Since these two collections are the same,

$$
\begin{aligned}
\bigcup\left\{N \subset Y \times Y: N \cap \triangle_{Y}=\emptyset\right\} & =\bigcup\left\{M \cap Y \times Y: M \subset X \times X \text { and } M \cap \triangle_{X}=\emptyset\right\} \\
& =\left(\bigcup\left\{M \subset X \times X: M \cap \triangle_{X}=\emptyset\right\}\right) \cap(Y \times Y),
\end{aligned}
$$

or by using the equivalent notation,

$$
\complement \triangle_{Y}=\complement \triangle_{X} \cap(Y \times Y)
$$

On the other hand, the inclusion map $\iota: Y \times Y \hookrightarrow X \times X$ is a continuous function, so that using the facts that I is an interior operator on Top

$$
\iota^{-1}\left(i_{X^{2}}\left(\complement \triangle_{X}\right)\right) \subseteq i_{Y^{2}}\left(\iota^{-1}\left(\complement \triangle_{X}\right)\right)
$$

and that X is I-separated,

$$
\iota^{-1}\left(\complement \triangle_{X}\right) \subseteq i_{Y^{2}}\left(\iota^{-1}\left(\complement \triangle_{X}\right)\right)
$$

But $\iota^{-1}\left(\mathrm{C} \triangle_{X}\right)=\complement \triangle_{X} \cap(Y \times Y)$, so that

$$
\mathrm{C} \triangle_{X} \cap(Y \times Y) \subseteq i_{Y^{2}}\left(\mathrm{C} \triangle_{X} \cap(Y \times Y)\right)
$$

or equivalently,

$$
\mathrm{C} \triangle_{Y} \subseteq i_{Y^{2}}\left(\mathrm{C} \triangle_{Y}\right)
$$

Hence Y is I-separated.
Remark. In the previous theorem the identity

$$
\complement \triangle_{Y}=\complement \triangle_{X} \cap(Y \times Y) .
$$

was obtained. If it is translated to the language of Set Theory, with the symbol $\complement \triangle_{Y}$ meaning the complement with respect to the set $Y \times Y$ of the subset \triangle_{Y}, the right identity

$$
\complement_{Y^{2}} \triangle_{Y}=\complement_{X^{2}} \triangle_{X} \cap(Y \times Y)
$$

is obtained.
Theorem 88. The notion of I-separated is closed under finite products. Let $X, Y \in$ Top and let $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ be an interior operator on Top. If X, Y are I-separated, then $X \times Y$ is I-separated.

Proof. First let X, Y be sets. A map is defined by

$$
\left\{\begin{array}{c}
\phi:(X \times Y) \times(X \times Y) \longrightarrow(X \times X) \times(Y \times Y) \\
\phi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) .
\end{array}\right.
$$

It is easy verify that ϕ is a bijective function. But since $X, Y \in \operatorname{Top}, \phi$ is a homeomorphism. A basis element of $(X \times X) \times(Y \times Y)$ is of the form $\left(U_{1} \times U_{2}\right) \times$ $\left(V_{1} \times V_{2}\right)$, where U_{1}, U_{2} are open sets in X and V_{1}, V_{2} are open sets in Y. Now

$$
\phi^{-1}\left(\left(U_{1} \times U_{2}\right) \times\left(V_{1} \times V_{2}\right)\right)=\left(U_{1} \times V_{1}\right) \times\left(U_{2} \times V_{2}\right)
$$

is a basis element in $(X \times Y) \times(X \times Y)$, and thus an open set in $(X \times Y) \times$ $(X \times Y)$. Hence ϕ is continuous. Similarly, using the fact that every basis element in $(X \times Y) \times(X \times Y)$ is of the form

$$
\left(U_{1} \times V_{1}\right) \times\left(U_{2} \times V_{2}\right),
$$

with $U_{1}, U_{2}, V_{1}, V_{2}$ as before, it can be proved that ϕ^{-1} is continuous.
Another important remark that it is easy to verify is

$$
\phi\left(\triangle_{X \times Y}\right)=\triangle_{X} \times \triangle_{Y}
$$

and this lets to claim that

$$
\phi\left(\complement \triangle_{X \times Y}\right)=\left[\complement \triangle_{X} \times(Y \times Y)\right] \cup\left[(X \times X) \times \complement \triangle_{Y}\right],
$$

where

$$
\complement \triangle_{X \times Y}=\bigcup\left\{M \subset(X \times Y) \times(X \times Y): M \cap \triangle_{X \times Y}=\emptyset\right\}
$$

In fact,

$$
\begin{aligned}
\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in \phi\left(\complement \triangle_{X \times Y}\right) & \Leftrightarrow\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in \complement \triangle_{X \times Y} \\
& \Leftrightarrow\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \notin \triangle_{X \times Y} \\
& \Leftrightarrow\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \notin \phi\left(\triangle_{X \times Y}\right) \\
\Leftrightarrow & \left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \notin \triangle_{X} \times \triangle_{Y} \\
\Leftrightarrow & \left(x_{1}, x_{2}\right) \notin \triangle_{X}, \text { or, }\left(y_{1}, y_{2}\right) \notin \triangle_{Y} \\
\Leftrightarrow & \left(x_{1}, x_{2}\right) \in \mathrm{C} \triangle_{X}, \text { or, }\left(y_{1}, y_{2}\right) \in \complement \triangle_{Y} \\
\Leftrightarrow & \left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in \complement \triangle_{X} \times(Y \times Y), \text { or, } \\
& \quad\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in(X \times X) \times \complement \triangle_{Y} \\
\Leftrightarrow & \left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in \\
& \quad\left[\complement \triangle_{X} \times(Y \times Y)\right] \cup\left[(X \times X) \times \complement \triangle_{Y}\right] .
\end{aligned}
$$

Since the projections

$$
\pi_{1}:(X \times X) \times(Y \times Y) \longrightarrow X \times X
$$

and

$$
\pi_{2}:(X \times X) \times(Y \times Y) \longrightarrow Y \times Y
$$

are continuous, and ϕ is a homeomorphism,

$$
\pi_{1} \circ \phi:(X \times Y) \times(X \times Y) \longrightarrow X \times X
$$

and

$$
\pi_{2} \circ \phi:(X \times Y) \times(X \times Y) \longrightarrow Y \times Y
$$

are continuous functions. By the continuity property of I,

$$
\left(\pi_{1} \circ \phi\right)^{-1}\left(i_{X^{2}}\left(\complement \triangle_{X}\right)\right) \subseteq i_{(X \times Y)^{2}}\left(\left(\pi_{1} \circ \phi\right)^{-1}\left(\complement \triangle_{X}\right)\right),
$$

and given that X is I-separated,

$$
\phi^{-1}\left(\pi_{1}^{-1}\left(\mathrm{C} \triangle_{X}\right)\right) \subseteq i_{(X \times Y)^{2}}\left(\phi^{-1}\left(\pi_{1}^{-1}\left(\complement \triangle_{X}\right)\right)\right) .
$$

But $\pi_{1}^{-1}\left(\mathrm{C} \triangle_{X}\right)=\mathrm{C} \triangle_{X} \times(Y \times Y)$, so that

$$
\phi^{-1}\left(\mathrm{C} \triangle_{X} \times(Y \times Y)\right) \subseteq i_{(X \times Y)^{2}}\left(\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right)\right),
$$

and using the monotonicity of I,

$$
\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right) \subseteq i_{(X \times Y)^{2}}\left(\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right) \cup \phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right)\right) .
$$

Similarly, from

$$
\left(\pi_{2} \circ \phi\right)^{-1}\left(i_{Y^{2}}\left(\complement \triangle_{Y}\right)\right) \subseteq i_{(X \times Y)^{2}}\left(\left(\pi_{2} \circ \phi\right)^{-1}\left(\complement \triangle_{Y}\right)\right)
$$

follows that

$$
\phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right) \subseteq i_{(X \times Y)^{2}}\left(\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right) \cup \phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right)\right) .
$$

Joining (\star) and ($(\star$) together,

$$
\begin{aligned}
\phi^{-1}\left(\mathrm{C} \triangle_{X} \times(Y \times Y)\right) & \cup \phi^{-1}\left((X \times X) \times \mathrm{C} \triangle_{Y}\right) \subseteq \\
& i_{(X \times Y)^{2}}\left(\phi^{-1}\left(\mathrm{C} \triangle_{X} \times(Y \times Y)\right) \cup \phi^{-1}\left((X \times X) \times \mathrm{C} \triangle_{Y}\right)\right) . \quad(\star \star \star)
\end{aligned}
$$

The identity

$$
\phi\left(\complement \triangle_{X \times Y}\right)=\left(\complement \triangle_{X} \times(Y \times Y)\right) \cup\left((X \times X) \times \complement \triangle_{Y}\right)
$$

is equivalent to

$$
\complement \triangle_{X \times Y}=\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right) \cup \phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right),
$$

so ($\star \star \star$) says that

$$
\mathrm{C} \triangle_{X \times Y} \subseteq i_{(X \times Y)^{2}}\left(\mathrm{C} \triangle_{X \times Y}\right) .
$$

Hence, $X \times Y$ is I-separated.
Remark.

1. $M \subset(X \times X) \times(Y \times Y)$ is assumed. Then it is false that

$$
M \cap\left(\triangle_{X} \times \triangle_{Y}\right)=\emptyset \quad \Rightarrow \quad \pi_{1}(M) \cap \triangle_{X}=\emptyset \quad \text { or } \quad \pi_{2}(M) \cap \triangle_{Y}=\emptyset
$$

where

$$
\pi_{1}:(X \times X) \times(Y \times Y) \longrightarrow X \times X
$$

and

$$
\pi_{2}:(X \times X) \times(Y \times Y) \longrightarrow Y \times Y
$$

The following set is considered

$$
M:=\left\{\left((x, x),\left(y_{1}, y_{2}\right)\right),\left(\left(x_{1}, x_{2}\right),(y, y)\right)\right\}
$$

where $x, x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ and $y, y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$. Therefore $\pi_{1}(M)=\left\{(x, x),\left(x_{1}, x_{2}\right)\right\}$, so that $\pi_{1}(M) \cap \triangle_{X}=\{(x, x)\}$, and $\pi_{2}(M)=$ $\left\{\left(y_{1}, y_{2}\right),(y, y)\right\}$, so that $\pi_{2}(M) \cap \triangle_{Y}=\{(y, y)\}$. Consequently a set M has been found such that $M \cap\left(\triangle_{X} \times \triangle_{Y}\right)=\emptyset$ but $\pi_{1}(M) \cap \triangle_{X} \neq \emptyset$ and $\pi_{2}(M) \cap \triangle_{Y} \neq \emptyset$.
2. Let X, Y be sets, $A \subseteq X$ and $B \subseteq Y$. In Set Theory, the identity

$$
\complement_{X \times Y} A \times B=\left(\complement_{X} A \times(Y \times Y)\right) \cup\left((X \times X) \times \complement_{Y} A\right) .
$$

is true. In the previous theorem, this identity could have been used to obtain

$$
\complement_{X^{2} \times Y^{2}} \triangle_{X} \times \triangle_{Y}=\left(\complement_{X^{2}} \triangle_{X} \times(Y \times Y)\right) \cup\left((X \times X) \times \complement_{Y^{2}} \triangle_{Y}\right)
$$

Also, in the same theorem the identity

$$
\phi\left(\complement \triangle_{X \times Y}\right)=\left[\complement \triangle_{X} \times(Y \times Y)\right] \cup\left[(X \times X) \times \complement \triangle_{Y}\right]
$$

was found. Now the question is, how can the set $\phi\left(\complement \triangle_{X \times Y}\right)$ can be interpreted in terms of the set $\complement_{X^{2} \times Y^{2}} \triangle_{X} \times \triangle_{Y}$? It is true that

$$
\begin{aligned}
\phi\left(\complement \triangle_{X \times Y}\right) & =\phi\left(\bigcup\left\{M \subset(X \times Y) \times(X \times Y): M \cap \triangle_{X \times Y}=\emptyset\right\}\right) \\
& =\bigcup\left\{\phi(M): M \subset(X \times Y) \times(X \times Y) \text { and } M \cap \triangle_{X \times Y}=\emptyset\right\}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left\{\phi(M): M \subset(X \times Y) \times(X \times Y) \text { and } M \cap \triangle_{X \times Y}=\emptyset\right\}= \\
& \qquad\left\{N \subseteq(X \times X) \times(Y \times Y): N \cap \triangle_{X} \times \triangle_{Y}=\emptyset\right\}
\end{aligned}
$$

since ϕ is bijective, $\phi((X \times Y) \times(X \times Y))=(X \times X) \times(Y \times Y)$ and $\phi\left(\triangle_{X \times Y}\right)=$ $\triangle_{X} \times \triangle_{Y}$. Therefore

$$
\phi\left(\complement \triangle_{X \times Y}\right)=\bigcup\left\{N \subseteq(X \times X) \times(Y \times Y): N \cap \triangle_{X} \times \triangle_{Y}=\emptyset\right\}
$$

so that if the notation is used.

$$
\mathrm{C} \triangle_{X} \times \triangle_{Y}:=\bigcup\left\{N \subseteq(X \times X) \times(Y \times Y): N \cap \triangle_{X} \times \triangle_{Y}=\emptyset\right\}
$$

the "identity" follows

$$
\phi\left(\complement \triangle_{X \times Y}\right)=\complement \triangle_{X} \times \triangle_{Y} .
$$

3. The previous theorem can be ended using a lightly different argument. The relations

$$
\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right) \subseteq i_{(X \times Y)^{2}}\left(\phi^{-1}\left(\complement \triangle_{X} \times(Y \times Y)\right)\right)
$$

and

$$
\phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right) \subseteq i_{(X \times Y)^{2}}\left(\phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right)\right),
$$

have been found, from which can be said that $\phi^{-1}\left(C \triangle_{X} \times(Y \times Y)\right)$ and $\phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right)$ are I-open sets in $(X \times Y) \times(X \times Y)$. But the union of
I-open sets is an I-open set, so that

$$
\mathrm{C} \triangle_{X \times Y}=\phi^{-1}\left(\mathrm{C} \triangle_{X} \times(Y \times Y)\right) \cup \phi^{-1}\left((X \times X) \times \complement \triangle_{Y}\right)
$$

is I-open in $(X \times Y) \times(X \times Y)$, and thus $X \times Y$ is I-separated.
Now the question is, what happens with arbitrary products of I-separated spaces? Although the previous theorem deals with the finite case, the central idea works for the general case.

Theorem 89. The notion of I-separated is closed under arbitrary products. Let Λ be an index set, $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ an indexed family of spaces in Top and $I:=\left(i_{X}\right)_{X \in \mathbf{T o p}}$ an interior operator on Top. If $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ is an indexed family of I-separated spaces, then $\prod_{\lambda \in \Lambda} X_{\lambda}$ is I-separated.

Proof. The following function is defined as follows

$$
\left\{\begin{aligned}
\phi & : \prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow \prod_{\lambda \in \Lambda}\left(X_{\lambda} \times X_{\lambda}\right) \\
& \phi\left(\left(\left(x_{\lambda}\right)_{\lambda \in \Lambda},\left(y_{\lambda}\right)_{\lambda \in \Lambda}\right)\right):=\left(\left(x_{\lambda}, x_{\lambda}\right)\right)_{\lambda \in \Lambda} .
\end{aligned}\right.
$$

Then ϕ is a bijective function. Since $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ is an indexed family of topological spaces, ϕ is a homeomorphism. It is enough to take a subbasis element of $\prod_{\lambda \in \Lambda}\left(X_{\lambda} \times X_{\lambda}\right)$ of the form

$$
\pi_{\mu}^{-1}\left(U_{\mu} \times V_{\mu}\right),
$$

with $\mu \in \Lambda$, and U_{μ}, V_{μ} are open sets in X_{μ}. Then,

$$
\begin{aligned}
\phi^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu} \times V_{\mu}\right)\right) & =\phi^{-1}\left(\prod_{\lambda \in \Lambda}\left(W_{\lambda} \times G_{\lambda}\right)\right) \\
& =\prod_{\lambda \in \Lambda} W_{\lambda} \times \prod_{\lambda \in \Lambda} G_{\lambda},
\end{aligned}
$$

where

$$
W_{\lambda}:=\left\{\begin{array}{ll}
U_{\mu}, & \text { if } \lambda=\mu \\
X_{\lambda}, & \text { if } \lambda \neq \mu
\end{array}, \quad G_{\lambda}:=\left\{\begin{array}{ll}
V_{\mu}, & \text { if } \lambda=\mu \\
X_{\lambda}, & \text { if } \lambda \neq \mu
\end{array} .\right.\right.
$$

But $\prod_{\lambda \in \Lambda} W_{\lambda}, \prod_{\lambda \in \Lambda} G_{\lambda}$ are basis elements in $\prod_{\lambda \in \Lambda} X_{\lambda}$, so that $\phi^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu} \times V_{\mu}\right)\right)$ is an open set in $\prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda}$ and hence ϕ is continuous. To see that ϕ^{-1} is continuous, the concrete type of subbasis element of $\prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda}$ of the form $\pi_{1}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)$ [or the form $\pi_{2}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)$] is considered, where $\mu \in \Lambda, U_{\mu}$ is an open set in X_{μ}, and $\pi_{1}: \prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow \prod_{\lambda \in \Lambda} X_{\lambda}$ is the projection on the first coordinate $\left[\pi_{2}: \prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow \prod_{\lambda \in \Lambda} X_{\lambda}\right.$ is the projection on the second coordinate, respectively]. Since

$$
\begin{gathered}
\pi_{1}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)=\prod_{\lambda \in \Lambda} V_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda} \\
{\left[\pi_{2}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)=\prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} V_{\lambda}, \text { respectively }\right]}
\end{gathered}
$$

where

$$
V_{\lambda}:= \begin{cases}U_{\mu}, & \text { if } \lambda=\mu \\ X_{\lambda}, & \text { if } \lambda \neq \mu\end{cases}
$$

follows that

$$
\begin{aligned}
\left(\phi^{-1}\right)^{-1}\left(\pi_{1}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)\right) & =\phi\left(\pi_{1}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)\right) \\
& =\prod_{\lambda \in \Lambda}\left(V_{\lambda} \times X_{\lambda}\right) \\
{\left[\left(\phi^{-1}\right)^{-1}\left(\pi_{2}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)\right)\right.} & =\phi\left(\pi_{2}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)\right) \\
& \left.=\prod_{\lambda \in \Lambda}\left(X_{\lambda} \times V_{\lambda}\right), \text { resp. }\right]
\end{aligned}
$$

with

$$
V_{\lambda} \times X_{\lambda}=\left\{\begin{array} { l l }
{ U _ { \mu } \times X _ { \mu } , } & { \text { if } \lambda = \mu } \\
{ X _ { \lambda } \times X _ { \lambda } , } & { \text { if } \lambda \neq \mu }
\end{array} \quad \left[X_{\lambda} \times V_{\lambda}=\left\{\begin{array}{ll}
X_{\mu} \times U_{\mu}, & \text { if } \lambda=\mu \\
X_{\lambda} \times X_{\lambda}, & \text { if } \lambda \neq \mu
\end{array}, \text { resp. }\right]\right.\right.
$$

Therefore $\left(\phi^{-1}\right)^{-1}\left(\pi_{1}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)\right)\left[\left(\phi^{-1}\right)^{-1}\left(\pi_{2}^{-1}\left(\pi_{\mu}^{-1}\left(U_{\mu}\right)\right)\right)\right.$, resp.] is an open set in $\prod_{\lambda \in \Lambda} X_{\lambda} \times X_{\lambda}$, and thus ϕ^{-1} is continuous.

For the following argument the notation that is going to be used is

$$
\begin{aligned}
\triangle_{\Pi} & :=\triangle_{\Pi_{\lambda \in \Lambda} X_{\lambda}} \\
\triangle_{\lambda} & :=\triangle_{X_{\lambda}},
\end{aligned}
$$

the identity

$$
\phi\left(\triangle_{\Pi}\right)=\prod_{\lambda \in \Lambda} \triangle_{\lambda},
$$

and the set

$$
C \triangle_{\Pi}=\bigcup\left\{M \subset\left(\prod_{\lambda \in \Lambda} X_{\lambda}\right) \times\left(\prod_{\lambda \in \Lambda} X_{\lambda}\right): M \cap \triangle_{\Pi}=\emptyset\right\} .
$$

Note that

$$
\begin{aligned}
\left(\left(x_{\lambda}, y_{\lambda}\right)\right)_{\lambda \in \Lambda} \in \phi\left(\mathrm{C} \triangle_{\Pi}\right) & \Leftrightarrow\left(\left(x_{\lambda}\right)_{\lambda \in \Lambda},\left(y_{\lambda}\right)_{\lambda \in \Lambda}\right) \in \mathrm{C} \triangle_{\Pi} \\
& \Leftrightarrow\left(\left(x_{\lambda}\right)_{\lambda \in \Lambda},\left(y_{\lambda}\right)_{\lambda \in \Lambda}\right) \notin \triangle_{\Pi} \\
\Leftrightarrow & \left(\left(x_{\lambda}, y_{\lambda}\right)\right)_{\lambda \in \Lambda} \notin \phi\left(\triangle_{\Pi}\right) \\
& \Leftrightarrow\left(\left(x_{\lambda}, y_{\lambda}\right)\right)_{\lambda \in \Lambda} \notin \prod_{\lambda \in \Lambda} \triangle_{\lambda} \\
\Leftrightarrow & (\exists \mu \in \Lambda),\left(x_{\mu}, y_{\mu}\right) \notin \triangle_{\mu} \\
\Leftrightarrow & (\exists \mu \in \Lambda),\left(x_{\mu}, y_{\mu}\right) \in \complement \triangle_{\mu} \\
\Leftrightarrow & (\exists \mu \in \Lambda),\left(\left(x_{\lambda}, y_{\lambda}\right)\right)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} C_{\lambda}(\mu), \\
& \text { where } C_{\lambda}(\mu):=\left\{\begin{array}{l}
C \triangle_{\mu}, \\
X_{\lambda} \times X_{\lambda}, \quad \text { if } \lambda \neq \mu
\end{array}\right. \\
\Leftrightarrow & \left(\left(x_{\lambda}, y_{\lambda}\right)\right)_{\lambda \in \Lambda} \in \bigcup_{\mu \in \Lambda} \prod_{\lambda \in \Lambda} C_{\lambda}(\mu) .
\end{aligned}
$$

Hence,

$$
\phi\left(\complement \triangle_{\Pi}\right)=\bigcup_{\mu \in \Lambda} \prod_{\lambda \in \Lambda} C_{\lambda}(\mu),
$$

with

$$
C_{\lambda}(\mu)= \begin{cases}C \triangle_{\mu}, & \text { if } \lambda=\mu \\ X_{\lambda} \times X_{\lambda}, & \text { if } \lambda \neq \mu\end{cases}
$$

Since $\phi: \prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow \prod_{\lambda \in \Lambda} X_{\lambda} \times X_{\lambda}$ is a homeomorphism, and for every $\mu \in \Lambda$ the projection

$$
\pi_{\mu}: \prod_{\lambda \in \Lambda}\left(X_{\lambda} \times X_{\lambda}\right) \longrightarrow X_{\mu} \times X_{\mu}
$$

is continuous, for each $\mu \in \Lambda$ the composition

$$
\pi_{\mu} \circ \phi: \prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow X_{\mu} \times X_{\mu}
$$

is a continuous function. Denote by $i_{\Pi^{2}}$ the interior operator working on the topological space $\prod_{\lambda \in \Lambda} X_{\lambda} \times \prod_{\lambda \in \Lambda} X_{\lambda}$; in symbols

$$
i_{\Pi^{2}}:=i_{\left(\Pi_{\lambda \in \Lambda} X_{\lambda}\right)^{2} .} .
$$

Now, fixing $\mu \in \Lambda$ and using the continuity of the interior operator I,

$$
\left(\pi_{\mu} \circ \phi\right)^{-1}\left(i_{\mu}\left(\complement \triangle_{\mu}\right)\right) \subseteq i_{\Pi^{2}}\left(\left(\pi_{\mu} \circ \phi\right)^{-1}\left(\complement \triangle_{\mu}\right)\right),
$$

and since X_{μ} is I-open,

$$
\phi^{-1}\left(\pi_{\mu}^{-1}\left(\mathrm{C} \triangle_{\mu}\right)\right) \subseteq i_{\Pi^{2}}\left(\phi^{-1}\left(\pi_{\mu}^{-1}\left(\complement \triangle_{\mu}\right)\right)\right) .
$$

Taking into account the definition of $C_{\lambda}(\mu)$ it can written that $\pi_{\mu}^{-1}\left(\complement \triangle_{\mu}\right)=\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)$, so that

$$
\phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right) \subseteq i_{\Pi^{2}}\left(\phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right)\right)
$$

and by the monotonicity property of I,

$$
\phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right) \subseteq i_{\Pi^{2}}\left(\bigcup_{\mu \in \Lambda} \phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right)\right)
$$

But μ was fixed, and the previous relation holds for arbitrary $\mu \in \Lambda$, so that

$$
(\forall \mu \in \Lambda), \quad \phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right) \subseteq i_{\Pi^{2}}\left(\bigcup_{\mu \in \Lambda} \phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right)\right)
$$

and therefore

$$
\bigcup_{\mu \in \Lambda} \phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right) \subseteq i_{\Pi^{2}}\left(\bigcup_{\mu \in \Lambda} \phi^{-1}\left(\prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right)\right)
$$

or that it is the same

$$
\phi^{-1}\left(\bigcup_{\mu \in \Lambda} \prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right) \subseteq i_{\Pi^{2}}\left(\phi^{-1}\left(\bigcup_{\mu \in \Lambda} \prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right)\right)
$$

But it was obtained that

$$
\phi\left(\complement \triangle_{\Pi}\right)=\bigcup_{\mu \in \Lambda} \prod_{\lambda \in \Lambda} C_{\lambda}(\mu)
$$

or equivalently

$$
\complement \triangle_{\Pi}=\phi^{-1}\left(\bigcup_{\mu \in \Lambda} \prod_{\lambda \in \Lambda} C_{\lambda}(\mu)\right),
$$

and using this identity in (\star),

$$
\mathrm{C} \triangle_{\Pi} \subseteq i_{\Pi^{2}}\left(\mathrm{C} \triangle_{\Pi}\right)
$$

so that $\prod_{\lambda \in \Lambda} X_{\lambda}$ is I-separated.
It is concluded by observing that the proofs in Theorems 87,88 and 89 are of categorical nature and consequently, they can be generalized to an arbitrary category.

CHAPTER 5 CONCLUSION AND FUTURE WORK

A notion of separation with respect to an interior operator on Top was introduced and it was proved that it is closed with respect to subspaces and products, as the classical interior operator induced by the topology.

For every subcategory \mathcal{A} of Top, the existence of an interior operator which makes all the spaces in \mathcal{A} separated is guaranteed by a Galois connection between the collection of all Topological Spaces and the collection of all Interior Operators on Top.

There are concrete examples of interior operators with known collections of separated spaces. These examples provide an appropiate motivation for the notion of separation with respect to an interior operator on Top.

A definition that is equivalent to the notion of separation with respect to an interior operator on Top is given. Its purpose is to generalise the notion of separation to other categories of non-topological nature, since the first definition of separation is not susceptible to do it. There are results that prove that this new definition is closed with respect to subspaces and products.

A first step toward the extension to other categories consists in studying the modified notion of separation with respect to an interior operator and test it in other categories, in particular in Algebra. Another open problem is to obtain an explicit characterization of $\operatorname{Sep}(Q)$, the interior operator considered in Example 46 and Example 59.

REFERENCE LIST

[1] G. Castellini. Categorical Closure Operators. Birkhäuser Boston, first edition, 2003.
[2] G. Castellini; J. Ramos. Interior operators and topological connectedness. Quaestiones Mathematicae, 33:290-304, 2010.
[3] L. Steen and J. Seebach Jr. Counterexamples in Topology. Holt, Rinehart and Winston, Inc., first edition, 1970.
[4] J. Munkres. Topología. Prentice Hall, second edition, 2002.
[5] I. James. Topological and Uniform Spaces. Springer, first edition, 1987.
[6] E. Moise. Geometric Topology in Dimensions 2 and 3. Springer, first edition, 1977.

THE NOTION OF SEPARATION FOR INTERIOR OPERATORS IN TOPOLOGY

Edwin Gonzalo Murcia Rodríguez
edwingonzalo.murcia@upr.edu
Department of Mathematical Sciences
Chair: Gabriele Castellini
Degree: Master of Science
Graduation Date: December 2010
In the branch of mathematics called Topology there is a notion of separation. Many relevant ideas are related to this notion. This thesis introduces a definition of separation with respect to an interior operator in Topology, and studies a way to generalise it in order to deal with separation in other branchs of mathematics, like Algebra. After giving some concrete examples that show that the modified notion is useful, a mathematical treatment is done to obtain some properties. In the last part of the work, a modification of the notion of separation is done that promises to be more convenient for the initial purpose of generalization.

