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ABSTRACT

Multispectral Image Restoration

By

Elsie V. Morales Irizarry

    In this project, we implemented iterative algorithms for deblurring multispectral images. 

Deblurring was performed in a per channel basis. The algorithms were applied to LANDSAT-4 

imagery of Puerto Rico. Deblurring methods resulted in sharpening of spatial features particu-

larly in the infrared channels. Effects on classification were studied an it is shown that  deblurring 

allowed correct classification of small spatial features lost due to sensor and atmospheric blur-

ring.
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RESUMEN

Restauración de Imágenes Multiespectrales

Por

Elsie V. Morales Irizarry

    En este proyecto, implementamos algoritmos iterativos para reconstrucción de imágenes. La 

correción de imágenes se llevó a cabo pixel a pixel. Estos algoritmos fueron aplicados imagines 

de LANDSAT-4 del area sur de Puerto Rico. Los métodos usados dieron como resultado cambios 

de las características espaciales, especialmente en las canales infrarojos. Los efectos en clasifica-

ciones tambien fueron estudiados, y  se probó que la corrección de imágenes permitió classifica-

ciones correctas en caracteristicas u objetos pequeños que antes de la correción no se podian no-

tar debido a la distorción causada por el sensor y la atmósfera.
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1 Introduction

     Remote sensing has been used for years, in astronomy, medicine, and in earth observations, 

just to mention a few applications. Multispectral imaging (MSI) consist  of several channels of 

data, some of them with three to seven channels, with high spatial resolution. There are some ad-

vantages that characterize this technology for remote sensing. However, multispectral remote 

sensing images suffer from degradation, caused by the optics of the sensor, the platform motion, 

the detector, and the electronics of the sensor. 

     Spectral and spatial restoration are used to reveal information that is present but hidden in the 

data due to sensor degradation. Deconvolution is a useful technique to restore blurred images. 

There are many deconvolution methods, the one proposed by Jansson in [10] has been proven to 

be very effective. Other methods, also described in [10], include maximum likelihood, maximum 

entropy, and the alternating projection methods have also achieved certain success [16]. All these 

methods do require the knowledge of the instrument point spread function (PSF). 
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     This work aims at implementing algorithms for multispectral image restoration and study the 

effects of deblurring in classification performance. We will also compare atmospherically cor-

rected and non-corrected images before and after the restoration process to further study the ef-

fect of this combination of processing operations in classification performance.

1.1 Problem Statement

     Multispectral Imaging (MSI) is used for object detection and environmental monitoring. MSI 

data consist of several spectral channels of data, some of them with three to seven channels, with 

varying spatial resolution. No matter which sensors we are using, the images are degraded since 

they  have been affected by the atmosphere and the sensor, among other factors, resulting in pro-

ducing as a result blurred images. Figure 1.1 illustrates how the radiation is distributed once it 

enters the atmosphere. Once the solar radiation enters the atmosphere it is reflected, transmitted, 

absorbed and emitted by the atmosphere itself and all the objects found in its path. For example, 

radiation can be reflected by aerosols and clouds; also, it can be absorbed by the earth surface, 

water bodies, and vegetation, just  to mention a few. Then this radiation is emitted or reflected 

back to the atmosphere and collected by the sensor. The radiation collected by  the sensor and all 

the contributions of the sensor cause blurred images. Some of the sources of degradation, besides 

the atmosphere, can be the sensor optics, the electronics, the motion of the sensor platform, and 

the motion of the target.
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Image acquisition

Absorbed

Transmitted Emitted

Reflected

Figure 1.1 Radiation distribution once entered the atmosphere.

    One of the consequences of degradation is that the pixels of the collected image are not pure, it 

has contributions of the pixels around it, causing blurred images. To solve this problem, an in-

verse procedure is used to recover original image from the degraded measurement. In this work, 

we implement restoration algorithms to restore blurred multispectral images.

1.2 Objectives

     The main objective is to implement restoration algorithms for multispectral imagery and to 

study the effect of restoration in classification accuracy. Other objectives were:

• Create and develop a software application for multispectral image restoration.

• Study restoration and classification performance with and without atmospheric corrections.

1.3 Report Outline

    This project report is organized as follow. In Chapter 2, we present the background and litera-

ture review for this project, a description of MSI data, the PSF, and of image restoration methods 

is also given. Chapter 3 is the application and performance analysis of the restoration algorithm 

3



to real data. Experimental results are discussed. In Chapter 4, we present experimental results 

studying the effects of restoration in image classification. Chapter 5 contains conclusions and 

recommendations for future work.
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2 Background and Literature Review
     The image restoration problem is treated and solutions are presented to remove the degrada-

tions caused by  the PSF of the sensor on multispectral images. In almost all the cases, an inverse 

procedure is used to recover an estimate of the original image from degraded measurements. An 

iterative restoration method derived through the Bayes theorem for conditional probabilities is 

presented. 

2.1 Literature Review

     “Digital image restoration is a field of engineering that studies methods used to recover an 

original scene from degraded observations” [1]. Digital image restoration has been used for 

years; based on the literature it began with the efforts of scientists from United States and the 

Soviet Union in the 1950s and 1960s [1]. In these programs, the scientists were taking photo-

graphs of the Earth and the solar system, but these images were subject to many  degradations. 

Restoration at  the time was highly  expensive. Scientists began to look for less expensive meth-
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ods to perform image restoration. Image degradation is also a problem that can be found in many 

areas, such as television, astronomy, optics, and medicine. Image restoration techniques have 

wide application. 

     The most common forms of degradation found in the literature are blur and noise. Figure 2.1 

shows the original image (a), a blurred plus white gaussian noise (b) and a motion blurred (c) 

image. An inverse procedure is used to try to recover the original image from the degraded 

measurement. Some of the sources of degradations can be the sensor optics and its electronics, 

the motion of the sensor platform when, and the motion of the target.

  (a)

 (b)   (c)

Figure 2.1 Original image (a), a blurred plus white gaussian noise (b) and a motion blurred (c) image.
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Figure 2.2 Spatial PSF response larger than GIFOV. (Figure adapted form [6]).

     The recorded signal of each pixel of a satellite image has information from the pixels around 

it as described by the PSF of the sensor system [9]. Figure 2.2 illustrate the area on the ground 

that contributes to the obtained signal. Also, Huang et al, found in [9]  that the impact of the PSF 

not only depends on it, but also depends on the spatial variability  of the input  pattern. Results 

from [9] show that generally, the PSF brightened dark objects and darkened bright object.

     It was found in [9] and [17] that the classification error of the classifier decreased after the 

restoration method and by  deriving estimates for pixels twice their dimensional pixels size. Deg-

radations or neighboring pixels contributions to the pixel under study can be ignored only when 

the pixel size is small relative to the area of land cover [17]. 

     In [7] and [19], the process of restoring multichannel or multispectral image by  using the 

Wiener Filter was presented. Galatsanos et al., in [7] used spatial and spectral correlation in order 

to correct for image degradation. It was found in [19]  by Wu  et al., that the process of image 

restoration is useful in increasing the accuracy of spectral unmixing. They used simulated data in 
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order to convolve this image with an original TM  image. The description of the construction and 

properties of a two-dimensional random field, in this case with independent Poisson processes 

can be found in [15]. 

     Four different iterative methods for spectral restoration: the Van Crittert, Jansson, Gold’s and 

Lucy-Richardson method where described in [18]. They analyzed simulated and real data from 

AVIRIS NW Indian Pines Hyperspectral Image and found that all the methods gave similar re-

sults but the Jansson method was the best giving higher classification accuracy. 

2.2 Multispectral Imagery (MSI)

      Remote Sensing collection systems records electromagnetic (EM) radiation which may  be 

solar reflected or thermal energy emitted by an object. This collection of EM  radiation is subject 

to the amount of radiation that exits through the atmosphere or the atmospheric windows. EM 

radiation transmission is affected by the atmospheric attenuation. The latter is the effect that 

show the ability of the atmosphere to reflect, absorb or scatter energy  because of particulate mat-

ter, aerosols and water vapor found in the atmosphere. Atmospheric windows are those areas of 

the atmosphere that allow for transmission of the EM  radiation. Figure 2.4 illustrate the atmos-

pheric windows. 

     Multispectral imagery has been used for years in so many areas; military, medicine, land use/

land cover, astronomy, among others. MSI was developed as a result  of the operational success 

of Color Infrared (CIR) imagery used in the 1960’s. These kind of imagery was used to distin-

guish artificial features, such as camouflage, from a background of natural vegetation [21]. The 

first satellite that used MSI for land remote sensing was the Earth Resources Technology 

Satellite-A (ERTS-S), later renamed as Landsat 1. Six additional Landsat satellites have been 
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launched; Landsat 1, 2, 3 and 4 are no longer operating, Landsat 6 failed achieving orbit and 

Landsat 5 and 7 are still operating. Landsat 7 has the Enhanced Thematic Mapper Plus (ETM+) 

which produces data in six spectral bands with a spatial resolution of 30 m, also has one pan-

chromatic band with 15 m spatial resolution, and a long wave infrared band with 60 m spatial 

resolution. 

Table 2.1 MSI Spatial Resolution (in meters).

Satellite Spectral Bands (µm) and 

Spatial Resolution

Satellite Spatial Resolution

Landsat ETM+ Vis. 0.45 - 0.52: 30 m
Vis. 0.52 - 0.60: 30 m
Vis. 0.63 - 0.69: 30 m
NIR 0.76 - 0.90: 30 m
NIR 1.55 - 1.75: 30 m

Thermal 10.40 - 12.50: 120 m
MIR 2.08 - 2.35: 30 m

AVHRR Vis. 0.58 - 0.68: 1000 m
NIR 0.72 - 1.10: 1000 m 

Thermal IR 3.55 - 3.93: 1000 m
Thermal IR 10.50 - 11.50: 1000 m 
Thermal IR 11.50 - 12.50: 1000 m

SPOT 4 Vis. 0.50 - 0.59: 20 m
Vis. 0.61 - 0.68: 20 m
Vis. 0.79 - 0.89: 20 m
MIR 1.58 - 1.75: 20 m
PAN 0.51 - 0.73: 10 m

IKONOS Vis. 0.45 - 0.53: 4 m
Vis. 0.52 - 0.61: 4 m
Vis. 0.64 - 0.72: 4 m 
NIR 0.77 - 0.88: 4 m
PAN 0.45 - 0.90: 1 m

    There are other MSI satellites, such as “SPOT” (Satellite Pour L’Observation de la Terre), 

AVHRR, and IKONOS among others. Table 2.1 lists spatial resolutions of some land sensorsi.

    MSI capture images in the visible spectrum, Near IR and the thermal infrared regions of the 

electromagnetic spectrum, see Figure 2.3. Numeric values or brightness values (also known as 

digital numbers (DN)) are recorded for the identification of brightness associated with light re-

flected from different material in each spectral band [21]. If the objective is to discriminate be

9
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Figure 2.3  Electromagnetic Spectrum

Figure 2.4 Atmospheric Windows.

tween various material on an image, it is necessary to chose the appropriate bands across the 

spectrum.

2.3 Spatial Restoration

     Image degradation is a problem that can be found in so many  areas, such as television, as-

tronomy, optics, and medicine, just to mention a few. Figure 2.5 shows a block diagram repre-

senting the image acquisition restoration process, where f(x,y) represents the input image, h(x,y) 

is the sensor spatial weighting function, g(x,y) is the degraded image and 

€ 

ˆ f (x, y)  represents the 

restored image. There are many sources of degradations but the most common are blur and noise. 

10



Reconstruction 
Processor

€ 

ˆ f (x, y)

€ 

g(x, y)

€ 

f (x,y)

€ 

h(x, y)

Measurment Process Spatial Restoration

Figure 2.5 Multispectral image acquisition model.

     In the following sections, we will describe the PSF as a spatial responsivity of the sensor and 

some iterative methods used for image restoration.

2.3.1 Sensor Point Spread Function (PSF)

In the spatial domain, the sensor modifies the properties of a scene in two ways. First as 

blurring the image due to the optics, the electronics of the sensor and the detector contributions; 

the second way  is by distorting the geometry of the scene [16]. These distortions occur on a 

small spatial scale, small details are blurred compared with larger details or features on the im-

age.  This blurring is a result of the net sensor Point Spread Function (PSFnet). Figure 2.6 illus-

trates the effects of the PSF on a point source image.   

Figure 2.6 Effects of the PSF on a point source image. (Adapted from [20]).

Several components characterize the PSFnet. The first component is the blurring induced 

by the optical PSF. The second component is the image motion PSF, which is introduced when 

11



the image is being formed by the optics on the detectors. The detectors also introduce blurring 

due to the detector PSF. The last component is the blurring induced by the electronics PSF. 

In [16] the optical PSF is defined as the spatial energy distribution in the image of a point 

source. The image energy  is spread over a small area in the focal plane. The resulting optical PSF 

given in a laboratory  is called the Airy  Pattern, which is a bright central disk surrounded by con-

centric rings with decreasing brightness (Figure 2.7). The optical PSF is given by the following 

equation [16]

                                                  

€ 

PSF(r') = 2 J1(r')
r'

 

  
 

  

2

                                                        (1) 

where J1 is the Bessel function of the first kind and the normalized radius is given by 

                                

€ 

r'= πD
λf

r =
πr
λN                                                            (2)

Figure 2.7 Airy Pattern and its radial profile. (Adapted from [16]).

     Blurring is also caused by image motion, occurs when the image moves across the detectors 

during the integration time for a pixel signal. Image motion is modeled by a square pulse PSF in 

one direction (Figure 2.8); the latter is defined for whiskbroom and pushbroom scanners as fol-

lows

12



                                       

€ 

whiskbroom scanner:PSFIM (x,y) = rect(x / s)                                      (3)

                                       

€ 

pushbroom scanner:PSFIM (x,y) = rect(y / s)                                        (4) 

where s is the spatial smear of the image in the focal plane, s is given by

                              

€ 

whiskbroom scanner: s = scan velocity × integration time                              (5)

                          

€ 

pushbroom scanner: s = platform velocity × integration time                            (6)

These equations describe the image motion PSF. Figure 2.8 shows a diagram of image motion 

during scan.

image motion 
during scan

scan

t = 0

€ 

t = w / vscan

Figure 2.8 Image motion during scan. (Adapted from [16]).

     The third component of the net PSF is the detector PSF (Figure 2.9), which is given by

                                                    

€ 

PSFdet (x,y) = rect(x /w)rect(y /w) .                                         (7)

13



    The last response that compose the net PSF is the electronics PSF. When the signal is been 

scanned and read from the detectors the electronics PSF operate in the temporal domain of the 

signal.

     The net sensor PSF is the convolution of the individual responses and the equation is given by

                                            

€ 

PSFnet (x,y) = PSFopt ∗PSFdet ∗PSFIM ∗PSFel .                                  (8) 

The net sensor PSF generally, is wider than the ground instantaneous field of view (GIFOV)

cross-track

in-track

detector PSF

Figure 2.9 Detector PSF. (Adapted from [16]).

because of these individual responses described above. In many cases, the net PSF is separable in 

the cross-track and in-track directions as follows

                                                      

€ 

PSFnet (x,y) = PSFi(x)PSFc (y)  .                                              (9)   

The degraded image in the spatial domain is modeled as a convolution between the original im-

age and the imaging PSF (9).
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€ 

g x,y( ) = PSFnet * f x,y( ) + n x,y( )                                       (10) 

where g(x,y) is the degraded image, f(x,y) is the original image, and n(x,y) is the additive noise. 

For now, we will assume n(x,y) = 0, then we have for a linear imaging system,

              

                                              

€ 

g x,y( ) = h x,y( )* f x,y( )                                             (11) 

where h(x,y) is the PSF of the sensor. 

We can also express the latter equation (11) as a matrix, g = Hf + n, where H is the ma-

trix for the PSF and f is the matrix of the original image, if n = 0, then

                                                              g = Hf.                                                               (12)

2.4 Image Restoration Algorithms

    In this project we aim to minimize the effects of the PSF on the image (12).

                                                               

€ 

ˆ f = argminf Hf − g                                                       (13)

There are different types of restoration methods found in the literature, these are divided in direct 

and iterative algorithms. The Wiener filter is a direct method for image reconstruction, this filter 

aims to minimize the mean square error (MSE) between the estimated and the original image. 

The MSE is given by 

                                                                  

€ 

e2 = E f − ˆ f ( )
2{ }                                                         (14) 

where E{•} is the expected value of the argument [2]. For more information on Wiener filter see 

[2]. In the following sections, we describe some iterative methods used for image restoration. 
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2.4.1 Van Cittert Method

     This method is considered one of the earliest and simplest methods for image restoration. For 

a general discrete system it is given by,

                                                           

€ 

ˆ f k+1 = ˆ f k + µ g −Hˆ f k( )                                                        (15)

 where k represents the iteration number, µ is a relaxation factor, 

€ 

ˆ f k  is the estimated image at the 

k-th iteration, g is the degraded image and H is the blurring operator [18]. H must satisfy a di-

agonal dominance condition, in order to converge. This condition is given by

                                                                    

€ 

H ii > H ij
j≠ i

N−1

∑
.                                                             (16)    

2.4.2 Gold Method

     This iterative method can be obtain from the Van Cittert method by letting the relaxation fac-

tor equal to the following equation:

                                                                   

€ 

µ i =
fi
k

Hf k( )i
.
                                                              (17)

     If we substitute µ in (15) we have

                                                                 

€ 

ˆ f i
k+1 =

g
Hˆ f k( )i

ˆ f i
k

                                                           (18)

where 

€ 

Hˆ f k( )i  is the i-th component of the vector 

€ 

Hˆ f k .
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2.4.3 Lucy-Richardson Algorithm

     The Lucy-Richardson algorithm is an iterative method for recovering an image that has been 

blurred by a known PSF. This iterative method is derived through the  Bayes theorem for condi-

tional probabilities and is given by

                                                                   

€ 

ˆ f k = ˆ f k
g

ˆ f k * h
× h

 

 
 

 

 
                                                    (19)

where x denotes correlation, * denotes convolution and 

€ 

ˆ f k  is the estimate of the original image  

at step k of the iterations[23]. The Lucy-Richardson algorithm converges to the maximum likeli-

hood solution for Poisson noise statistics. Moreover; if the SNR is too low it amplifies the noise. 

We will use this method for image reconstruction. 

2.4 Conclusions

     In this Chapter, background information and literature review were presented. In addition, 

description and examples of blurred images were shown. The PSF for a remote sensing system 

was presented and a summary of restoration algorithm is given.
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3  Experimental Results: Restored Im-
ages

In this chapter, application of the restoration algorithm applied to LANDSAT-4 imagery 

is presented. Analysis of three restored images are shown; a restored image compare with the 

original image, a restored image with atmospheric corrections after the application of the restora-

tion algorithm and an atmospherically corrected image restored with the Lucy-Richardson algo-

rithm. 

3.1 Methodology

     Application of the Lucy-Richardson restoration method to simulated and real data. Analyze 

the results obtained, and compare the restored image with the original image in order to see the 

spatial differences, then compute classification accuracies statistics before and after the restora-

tion process (Described in Chapter 4). MATLAB® and ENVI® were used for this purpose. Fig-

ure 3.1 shows a chart of the processing stages applied to the LANDSAT-4 imagery. 
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Figure 3.1. Block diagram of the methodology for the analysis of real data.

     In order to have a simulated image, we used DIRSIG to simulate a simple image based on a 

scene from Rochester, NY (43º N, 78º W) taken on June 14, 2005 at 2:00 p.m.. The simulation 

used a fixed/static platform over the scene and it  was pointing at nadir. Figure 3.2(a) shows the 

simulated image without any degradation. Then, in MATLAB®, a Gaussian filter with a 5x5 

window and standard deviation equal to one was applied to the image. The latter creates a 

blurred image (Figure 3.2(b)). Figure 3.2(c) shows the restored image, after we applied a Wiener 

filter. It can be notice that  the restored image still have some blur, in this project we aim to elimi-

nate as much as degradation caused by PSF as we can in order to have a more accurate classifica-

tion process.  

     For the real data analysis we used an image acquired by the Landsat TM 4 sensor on  January 

20, 1999 over the southern region of Puerto Rico, we used the region of the Guayanilla bay 
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 (a)   (b)   (c)

Figure 3.2. DIRSIG simulated Image, (a). Blurred image with a Gaussian filter, (b); and restored image, using a 
Wiener filter, (c).

(18.1ºN, 66.2ºW). The image file includes seven bands, but for our analysis we chose the first 

five bands and band 7. In the following sections, results from real data are shown.

3.2 Image Restoration Routine Description

      The code used was organized in two stages. In stage 1 the PSF matrix is computed and 

the restoration method is applied to obtain the restored image. A header file is generated for fu-

ture analysis in ENVI®. The second stage, is for results analysis. It calculates the differences of 

the images obtained in stage 1. Also, in stage 2, mean and standard deviation values of the differ-

ence between images, scatterplots comparing the different bands are produced. Figure 3.3 pre-

sents a flow chart of the routine with the stages. It begin by loading the blurred image acquired 

by LANDSAT TM 4. Compute the PSF matrix using parameters from the literature [13].

    The PSF of LANDSAT TM 4 is a separable PSF.  The along-track and cross-track follow a 

normal gaussian shape. The cross-track (PSF(x)) and in-track (PSF(y)) PSF are described by 

                                                            

€ 

PSF(x) =
1
2πσ x

e
x 2

2σ x
2

                                                       (1)
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€ 

PSF(y) =
1
2πσ y

e
y 2

2σ y
2

  .                                                    (2)

     The values for sigma give the Effective Instantaneous Field of View (EIFOV) of the sensor.  

For the first four bands of LANDSAT TM  4, the EIFOVs are 35.9 m and 32.1 m, cross-track and 

along-track directions, respectively [12]. For bands 5 and 7 the EIFOVs are, 35.7 m and 33.3 m 

cross-track and along-track, respectively [12]. Table 3.1 shows the EIFOV values for LANDSAT 

TM 4. 

Load Original Image

Compute PSF Matrix

Save Re-
stored Image and 

Header File

Apply Restoration 
Method

Load Images

Compute Difference

Plots per bands

Plot Scatterplots

Stage 1 Stage 2

Figure 3.3 Image Restoration Routine.

Table 3.1 Landsat TM 4 EIFOV values at Nadir. EIFOV values adapted from [13].

Landsat - 4 
Spectral Bands

FOV [m] EIFOV [m]

cross-track (x-dir) along-track (y-dir) 

1, 2, 3, 4 30 35.9 32.1

5, 7 30 35.7 33.3

6 120 141.1 123.9

21



 3.3 Restored Image Without Atmospheric Corrections Results

     For this project, we used an image from LANDSAT TM 4 to perform the restoration process.  

Figure 3.5 show examples of the iterations results for band 5 in grayscale. We found that the 

third iteration show very  good results, in further iterations the algorithm diverges and the details 

are lost. We found that  in grayscale (band 5) the changes are more notable than in RGB (bands 3, 

2, 1). Figure 3.6 shows the results without atmospheric corrections of the original and restored 

images in RGB, CIR (bands 4, 3, 2), and from band 1-5 in grayscale, we also show the difference 

between these images with a color bar in percent of reflectance that goes from black to white 

meaning, zero to some changes. 

    If we compare these images (Figure 3.6) in large scale, we can see that the color on the RGB 

are enhanced to brighter colors. The mountains, their shadows and urban areas are much defined 

than in the original image; even the clouds and their shadows are brighter. If we see the grayscale 

image, the details are also enhanced. The borders are more defined in the restored image than in 

the original, giving us an idea of where start or ends a region. For example; the areas that looks 

like agriculture lands can be defined easily in the restored image. Other features, are the coastal 

border and some water bodies on land, the urban regions, and the ridges of the mountains.  
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3rd iteration (a) 

5th iteration (b)

10th iteration (c)

Figure 3.5 Iterations results for band 5: 3rd iteration (a), 5th iteration(b), and 10th iteration (c) 
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Band 1  (a) Band 1  (b) (c) 

Band 2  (d) Band 2  (e) (f)  

Band 3  (g) Band 3  (h) (i)  

Band 4  (j) Band 4  (k) (l)
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 Band 5  (m)  Band 5  (n) (o)  

Band  7  (p) Band  7  (q)  (r)    

 (s)    (t) 

 (u)  (v)

Figure 3.6 Original (a, d, g, j, m, p) and restored (b, e, h, k, n, q) images in grayscale. Difference of the images (c, f, 
i l ,o r). Original (s) and Restored (t) image in RGB. Original (u) and Restored (v) image in CIR.
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    The point spread function is usually evaluated and studied by  using point sources of light, we 

cropped some regions from the original and restored images that looks like a point; and other 

small areas showing borders and lines. In figure 3.7, we illustrate these areas from the image 

where the PSF correction was more notable. We chose keys around the coast, and two different 

areas from the coast in order to show the results of the restoration process. It is clear that the 

shape or geometry of the object is more defined in the restored image. It was found that, the 

darker pixels are brighter and the brighter pixels are darker. This changes can be seen on the 

RGB images.

    Image restoration changes, can also be appreciated on the spectral profiles. Figure 3.8 illus-

trate plots with the spectral reflectance profiles before and after the restoration. These are charac-

teristic profiles of some features of the image, such as, water, urban areas, pasture and agriculture 

fields (“Pasture”), and lowland dry semideciduous forest “(Forest”). An average profile along the 

bands was used to draw the plots; ENVI® was used to obtain these results. Reflectance is a ratio 

of reflected flux from a certain surface to reflected flux from a Lambertian surface. In other 

words, is the measure of the portion of light that reflects from an object.

     In these plots, we can see the spectral separability, for example, water and the other three sig-

natures are very close in the original image plot, but are very separated in the restored one. The 

water is not a good reflector, because of that we are having small reflectance values. Other, char-

acteristics of these spectral profiles are the initial values of the curves. For example, the urban 

feature have reflectance values of about 0.22 and 0.27 for the original and restored image, re-

spectively. This is a result of the PSF restoration process, the image become brighter.
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  (a)

 (b)  (c)  

(d)  (e)    

(f)  (g)

Figure 3.7 Regions of the image where the PSF correction were more notable (a). Original (b, d, f), restored (c, e, g).
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Figure 3.8 Spectral profiles for original (a); and restored (b).

     In Section 3.2, we described the two stages for the algorithm used to restore images; in the 

second stage, the main objective is to develop quantitative evaluations of the restored images ob-

tained in order to compare the changes due to the restoration process. 

      In order to measure the performance of the restoration method, we quantify the impact of the 

PSF by  calculating the mean, standard deviation and correlation coefficient of the difference be-

tween the two images, original and restored. In Table 3.2 we show the results for these calcula-

tions and the correlation coefficient between the bands of both images, original and restored. 
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Table 3.2 Mean, standard deviation and correlation coefficient in percent of reflectance for the original image.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Mean 0.7344 0.8817 1.2401 4.0357 2.7563 1.9062

Standard 
deviation

3.2865 2.1964 1.6751 4.2623 2.4862 1.3678

Correlation 
coefficient

0.9849 0.9847 0.9845 0.9938 0.9926 0.9891

     Once we have the differences between the images, we developed scatterplots comparing the 

same bands from the two images (for example, band 1 of the original image and band 1 of the 

restored image). Figure 3.9 show the reflectance values (%) of the original and restored. With 

these scatterplots, we show the expected results when a restoration algorithm is applied to an im-

age, the dark pixels were brighter and bright pixels were less bright  when compared to the pixels 

of the original image.

    The last step of the second stage of the algorithm is dedicated to plot the bands of the images 

and compare the changes due to the PSF corrections. Figure 3.10 show plots of the changes in 

reflectance values of the bands from the original and restored images. In these plots we aim to 

show the enhancement due to the PSF restoration, the red plot is for the reflectance values of the 

restored image and the blue plot is for the original image. In all bands the reflectance raised 

about 4%, meaning that the image is brighter after the restoration.

    In the following sections we show results of images atmospherically corrected before and after 

the restoration process.
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  (a)

 (b)

 (c)

Figure 3.9 Scatterplots per bands, bands 1 and 2 (a), bands 3 and 4 (b), and bands 5 and 7 (c).
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(a) 

(b) 

(c)

Figure 3.10 Plots of percent of reflectance per bands, bands 1 and 2 (a),  bands 3 and 4 (b),  and bands 5 and 6 (c), 
from original and restored images.
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3.4 Restored Image, With Atmospheric Correction Results

     In this section, we present results of the restored image, with atmospheric corrections. In this 

work, we also aim to study  the effects caused by  an atmospheric correction method on the image 

and on the classification (See Chapter 4), before and after the restoration process. We used the 

original and restored images from the latter section and applied the dark-object method for at-

mospheric correction. This method is one of the oldest and simplest methods for this purpose. It 

consist of subtract the image pixel value of each band by its minimum value. These pixels have 

negligible surface reflectance values, usually called “dark-objects”. The procedure described by 

[12] to correct for atmosphere in TM imagery is as follows:

• Identify dark pixels in the middle-IR (band 7, around 2.1µm) by using a low-threshold 

reflectance value. 

• Calculate surface reflectance values of bands 1 (blue) and 3 (red) using the following 

equations [12]:

                                                           

€ 

ρred = 0.5ρ2.1
ρblue = 0.25ρ2.1                                                    (7)

• Determine the optical depths of bands 1 and 3.

• Determine the optical depths of other bands.

• By using a moving-window interpolation technique, estimate the spatial distribution of 

the optical depth.

32



     In order to use the method described, the image data was changed to reflectance values. We  

used ENVI® to get these results. Our purpose is to show results from PSF restoration, in this 

section we will compare the restored images with the original image from Section 3.3. 

     Band 1  (a) Band 1  (b) (c) 

Band 2  (d) Band 2  (e) (f) 

Band 3  (g) Band 3  (h) (i) 

Band 4  (j) Band 4  (k) (l)
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 Band 5  (m) Band 5  (n) (o)

Band 7  (p) Band 7  (q) (r) 

 (s)   (t) 

 (u)  (v)

Figure 3.11 Original (a, d, g, j, m, p) and restored (b, e, h, k, n, q) images in grayscale. Difference of the images (c, f, 
i, l, o, r). Original (s) and Restored (t) image in RGB. Original (u) and Restored (v) image in CIR.

34



     Figure 3.11 show the results with atmospheric corrections of the restored image, band 1-5 and 

7 in grayscale with their respective difference figures, RGB and CIR images are presented. If we 

compare these images, we can see that the borders are better defined in the restored image. For 

example; the areas that looks like agriculture lands can be defined easily in the restored image. 

Other enhanced features, are the coastal border and some water bodies on land, the urban re-

gions, and the ridges of the mountains. In the RGB image, the colors are brighter as seen in the 

results from section 3.4. The geometry of the objects in the image are defined and restored. Visu-

ally the image is more clear, the mountains, their shadows and urban areas are much defined than 

in the original image.   

   In figure 3.12, we show areas from the original and restored images where the differences were 

remarkable. We chose a small key located at the southern region of the image, and two different 

areas from the coast in order to show the image enhancement resulting from the restoration proc-

ess. It is clear that the shape of the object is more defined in the restored image and it can be seen 

by the black pixels around the white pixels. Figure 3.12b shows the key, in the restored image, 

we can better define the  structure of this piece of land in the ocean. The center is brighter and 

consist of four white pixels and not just two as shown in the original image.

    The spatial restoration process changes the image as a whole, there are changes in the spatial 

and in the spectral domain. We have shown changes in the spatial domain, in Figure 3.13 we 

show results of the changes in the spectral domain. Figure 3.13 shows plots with the spectral pro-

files before and after restoration. These are characteristic profiles of some features of the image, 

such as, water, urban areas, pasture and agriculture fields (“Pasture”), and lowland dry semide-

ciduous forest (“Forest”). An average profile along the bands was used to draw the plots; ENVI®
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  (a)

 (b)  (c)   

 (d)  (e)    

 (f)  (g)

Figure 3.12 Regions of the image where the PSF correction were more notable. Original (b, d, f), restored (c, e, g).
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Figure 3.13 Spectral profiles for original (a); and restored (b).

was used to obtain these results. Both plots shows spectral reflectance values. These spectral re-

flectance profiles are unique and different for each feature in an image. We can notice from the 

latter figure that the reflectance values are higher for the restored image, this can be a result of 

the removal of the atmospheric effects. For example, the water is not a good reflector, that is why 

the values from the y-axis are the smallest of them all. Another important changes are the fea-

tures separation and their maximum values, for example, the pasture maximum values are about 
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0.26 and 0.35 for the original and restored images, respectively. These are some of the changes 

due to image restoration and atmospheric correction in the spectral domain. 

     Back in the spatial domain, in Table 3.3, we show the results obtained for the mean and stan-

dard deviation of the difference per band between the original and restored images. Also, in the 

table the correlation coefficient between the bands of both images, original and restored.

Table 3.3 Mean, standard deviation and correlation coefficient in percent of reflectance for the restored image with 
atmospheric correction.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Mean 2.747 2.213 1.9041 3.6523 1.7726 0.51643

Standard 
deviation

0.07344 0.8817 1.2401 4.0357 2.7563 1.9062

Correlation 
coefficient

0.9849 0.9847 0.9845 0.9938 0.9926 0.9891

     Once we have the differences between the images, we developed scatterplots comparing the 

same bands from the two images (original and restored) as we did in the previous section. Figure 

3.14 show the scatterplots comparing the reflectance percentages of the bands from the original 

and restored images. 

   Some of the alterations that  suffers a restored image can be seen on the pixel reflectance val-

ues. Figure 3.15 show plots of the changes in the pixel reflectance values of the bands from the 

original and restored images. In these plots, we aim to show the enhancement due to the PSF res-

toration, the red plot is for the reflectance values of the restored image and the blue plot is for the 

original image. In all the bands the values increased, meaning that the image is brighter after the 

restoration.
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  (a) 

 (b)

 (c)

Figure 3.14 Scatterplots per bands, bands 1 and 2 (a), bands 3 and 4 (b) and bands 5 and 7 (c).
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    (a) 

(b) 

(c)

Figure 3.15 Plots of percent of reflectance per bands, bands 1 and 2 (a), bands 3 and 4 (b), and bands 5 and 6 (c), 
from original and restored images.
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3.5 Atmospheric Corrected Original and Restored Images Results

    In this section we present results for atmospheric corrected original and restored images. We 

applied the dark-object method for atmospheric correction to the original image from Section 

3.3, then we applied the restoration algorithm. Figure 3.16 shows the results of the restored im-

age, it shows band 1-5 and 7 in grayscale and a figure with the difference of these images (Figure 

3.16a-r). Figure 3.16s-t show the RGB image. If we compare these images, we can see that the 

borders are more defined in the restored image. Details in the original image looks larger than in 

the restored image, this is due to the blurring. This effect  give the impression of a larger objects 

because of the spread light around it. For example, the keys at the lower right hand corner of the 

image look larger compared with the restored image, the area agricultural fields can be defined 

easily in the restored image. Other features, are the coastal border and some water bodies on 

land, and the urban regions. In the RGB image, the colors are brighter as in the previous sections.  

Visually the image is more pure, the mountains, their shadows and urban areas are much defined 

than in the original image.  

  In Figure 3.17, we show areas from the original and restored images where the restoration im-

provements were remarkable. We chose the same areas as in the previous section; a small key 

located at the southern region of the image, and two different areas from the coast. It is clear that 

the shape of the object is better defined in the restored image and it can be seen by  the difference 

in color tones of the grayscale pixels, from gray to white, and dark gray to black . Figure 3.17b is 

from a water body at the coast in the upper region of the image. The borders are brighter, and the 

lower edge is clear compared to the original image.
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Band 1  (a) Band 1  (b) (c) 

Band 2  (d) Band 2  (e) (f)  

Band 3  (g) Band 3  (h) (i) 

Band 4  (j) Band 4  (k) (l) 

Band 5  (m) Band 5  (n) (o) 
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Figure 3.16 Original (a, d, g, j, m, p) and restored (b, e, h, k, n, q) images in grayscale. Difference of the images (c, f, 
i, l,o, r). Original (s) and Restored (t) image in RGB. Original (u) and Restored (v) image in CIR.
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  (a)

 (b)  (c)   

 (d)  (e)    

 (f)  (g)

Figure 3.17 Regions of the image where the PSF correction were more notable (a). Original (b, d, f), restored (c, e, 
g).
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    When the image restoration algorithm is applied, changes in the spatial and in the spectral do-

main occur. We have shown changes in the spatial domain, in the previous figures. In the follow-

ing figures, we show results of the changes in the spectral domain. In the Figure 3.18, we show 

plots with the spectral reflectance values before and after the restoration process. These curves 

are unique spectral reflectance profiles of some features of the image, such as, water, urban ar-

eas, pasture and agriculture fields (“Pasture”), and lowland dry semideciduous 
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Figure 3.18 Spectral profiles for original (a); and restored (b).
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forest (“Forest”). We can notice from the latter figure that the reflectance values are higher for 

the restored image, this can be a result of the removal of the atmospheric effects. For example, 

the water is not a good reflector, that is why the values from the y-axis are the smallest of them 

all. Another important  changes are the signature separation and their maximum values, for ex-

ample, the urban maximum values are about  0.225 and 0.3 for the original and restored images, 

respectively. These are some of the changes due to the restoration after the atmospheric correc-

tion in the spectral domain.

    Returning to the spatial domain, in Table 3.4, we show the results obtained for the mean and 

standard deviation of the difference per band between the original and restored images. We also 

include the correlation coefficient between the bands of both images, original and restored.

    After having the differences between the images bands, we developed scatterplots comparing 

the same bands from the two images (original and restored). Figure 3.19 show the scatterplots 

per band of both images.

Table 3.4 Mean, standard deviation and correlation coefficient in percent of reflectance for the atmospheric 
corrected-restored image. 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Mean 1.91124 1.0642 0.96692 4.4494 2.7041 1.6049

Standard 
deviation

0.73442 0.88199 1.2394 4.0287 2.7449 1.9158

Correlation 
coefficient

0.9825 0.9829 0.9826 0.9938 0.9926 0.9891
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 (a)  

 (b) 

 (c)

Figure 3.19 Scatterplots per bands, bands 1 and 2 (a), bands 3 and 4 (b) and bands 5 and 7 (c).

47



    (a) 

(b) 

(c)

Figure 3.20 Plots of percent of reflectance per bands, bands 1 and 2 (a),  bands 3 and 4 (b),  and bands 5 and 6 (c), 
from original and restored images.
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     Some of the alterations that suffers a restored image can be seen on the pixel reflectance val-

ues. Figure 3.20 show plots of the changes in the pixel reflectance values of the bands from the 

original and restored images. In these plots, we show the enhancement due to the PSF restora-

tion, the red plot is for the reflectance values of the restored image and the blue plot is for the 

original image. In all the bands the values increase, meaning that the image is brighter after the 

restoration. 

3.6 Effects of Stopping Criteria when Using the Iterative Method

 When an iterative method is used to restore images it is necessary to know when to stop the 

iteration process. We showed in the previous sections results from the third iteration, in this sec-

tion we will show images from the fifth and tenth iteration in order to illustrate the effect of di-

vergence beyond the third iteration. 

 We used the image without atmospheric corrections to obtain the figures for the bands in 

grayscale, RGB and CIR. Figure 3.21 shows the results of the original and restored images in 

RGB, CIR (bands 4, 3, 2), and from band 1-5 in grayscale for the fifth and the tenth iterations. It 

can be seen that the method diverges in higher iterations. For visual purposes, the third iteration 

is better because features such as the coastal lines, urban areas among other features are more 

geometrically defined. If we compare the figures for both iterations (second and third columns 

from Figure 3.21) we can notice that the second columns have better visual results than the third 

column.

      In order to measure the performance of the restoration method, we quantify  the impact 

of the PSF by calculating the mean, standard deviation and correlation coefficient of the differ-
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ence between the two images, original and restored. In Table 3.5, we show the results for these 

calculations original and restored with 5 iterations and 10 iterations. As we found for the third 

iteration, the band four have the higher statistics, meaning that in this band occurred more 

changes compared with the other bands. Regardless of the divergence introduced, we are still 

having darker pixel where lighter pixel were at the original image, and vice-versa. 

     Once we have the differences between the images, we developed scatterplots comparing 

the same bands from the two images. Figure 3.22 show the reflectance values (%) of the original 

and restored and the scatterplots for both iterations, 5 and 10. With these scatterplots, we show 

the expected results when a restoration algorithm is applied to an image, the dark pixels were 

brighter and bright pixels were less bright when compared to the pixels of the original image. As 

we discussed in the previous sections, the highlighting changes occurred on the bands 4 and 5. 

We can see these changes in Figure 3.22(c) and (d) where the plots opens at the center, scattering 

more point out of the y=x line; if we compare these with Figure 3.22(a) and (b), the points are 

closer to the line y=x, the similar results were obtained for the third iteration. Also, was found 

that the image become brighter as we advance in iterations.
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Figure 3.21 Original (a, d, g, j, m, p) and restored (b, e,  h, k, n, q) images in grayscale for the fifth iteration. For the 
tenth iteration (c, f, i l, o, r) are the resulting images. Original (s), Restored with 5 iterations (t),  and Restored with 
10 iterations (u) images in RGB. Original (v),  Restored with 5 iterations (w), and Restored with 10 iterations (x) 
images in CIR.
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Table 3.5 Mean, standard deviation and correlation coefficient in percent of reflectance for the difference between 
images.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

5 iter 10 
iter

5 iter 10 
iter

5 iter 10 
iter

5 iter 10 
iter

5 iter 10 
iter

5 iter 10 
iter

Mean 3.287 3.287 2.196 2.197 1.675 1.675 4.262 4.262 2.486 2.486 1.368 1.368

Standard 
deviation

0.96 1.593 1.15 1.883 1.63 2.627 4.95 7.43 3.43 5.043 2.47 3.86

Correlation 
coefficient

0.96 0.856 0.959 0.859 0.957 0.861 0.978 0.921 0.974 0.918 0.964 0.885

    The last step of the second stage of the algorithm is dedicated to plot the bands of the images 

and compare the changes due to the PSF corrections. Figure 3.23 and Figure 3.24 show plots of 

the changes in reflectance values of the bands from the original and restored images from two 

different transect in the image. Figure 3.23 show the results for the along-track transect, and Fig-

ure 3.24 show the plots for the cross-track transect. In these plots we aim to show the enhance-

ment due to the PSF restoration. In each figure we are comparing the results for the image with 5 

(left column) and 10 (right  column) iterations. As we discussed earlier, the image with 10 itera-

tions is brighter than the image with 5 iterations, for example looking at Figure 3.23(c) and (d) 

we can see that the mayor peaks overpasses the 50% for the image with 10 iterations. Similar 

results are shown in Figure 3.24. 
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  (a)  (b) 

 (c)  (d) 

 (e)  (f)

Figure 3.22 Scatterplots per bands, for 5 iterations, bands 1 and 2 (a),  bands 3 and 4 (c), bands 5 and 7 (e), and for 
10 iterations, bands 1 and 2 (b) , bands 3 and 4 (d), and bands 5 and 7 (f).
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 (a)  (b)

(c)  (d) 

(e)  (f)

 (g)

Figure 3.23 Plots of percent of reflectance per bands, for along-track transect of the image with 5 iterations; bands 1 
and 2 (a),  bands 3 and 4 (c), and bands 5 and 6 (e). Image with 10 iterations, bands 1 and 2 (b), bands 3 and 4 (d), 
and bands 5 and 6 (f), from original and restored images. Image with the transect used (g).
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  (a)  (b)

(c)  (d) 

(e)  (f)

 (g)

Figure 3.24 Plots of percent of reflectance per bands, for cross-track transect of the image with 5 iterations; bands 1 
and 2 (a),  bands 3 and 4 (c), and bands 5 and 6 (e). Image with 10 iterations, bands 1 and 2 (b), bands 3 and 4 (d), 
and bands 5 and 6 (f), from original and restored images. Image with the transect used (g).
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3.7 Conclusions

     In this chapter we presented results of three images, a restored image, a restored image with 

atmospheric corrections and an image with atmospheric correction before the restoration algo-

rithm. We showed spectral reflectance profiles of different features found in the image, such as, 

water, pasture, urban areas and thick vegetation or forested areas. In the last section presented we 

showed results from two iterations, 5th and 10th. As we expected, the reflectance values for the 

restored images are higher than the original images, and the restored images are enhanced to 

brighter colors, or higher percentages of reflectance. This imply that  the restoration process was 

successfully applied.

     In the next chapter we will show the results obtained from the classifications before and after 

the restoration process. We aim to show the differences caused by the PSF on the images under 

study, when a classification process is applied.
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4 Experimental Results: Effects on 
Classifications

     In this chapter, the effects of deblurring on classification performance are studied. The three 

images presented in Chapter 3 were classified. Results and conclusions are presented in the fol-

lowing sections.

4.1 Description of Classification Process

      Classification is defined as the process of assigning labels to objects, features, or area in the 

image under study  [2]. First, we detect the presence or absence of a feature, then we recognize 

the feature in the image in order to assign a class to it. Finally, we identify the objects, features or 

areas in an image that can be place in a very specific class. 

58



     
FIG. 2. Map of Puerto Rico natural vegetation and land cover.
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Figure 4.1  Puerto Rico Natural Vegetation and Land Cover, 1991-1992. 

We chose six classes based on our knowledge and the descriptions found on the “Puerto Rico 

Natural Vegetation and Land Cover, 1991-1992” classification map from the International Insti-

tute of Tropical Forestry from the USDA Forest Service, San Juan, Puerto Rico. Figure 4.1 illus-

trates the class map.  The classes are:

•  Water: This class includes the sea and some water bodies inland.

• Urban and barren: Includes urban areas found inland and in the coastal regions. Also this class 
includes barren soils across the image.

• Seasonally flooded forest: This class is used to separate mangroves found in the coast from the 
lowland dry semideciduous forest.
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(a)

(b)

(c)

Figure 4.2 Landsat image compared to IKONOS images, urban, barren and agriculture class (a), mangrove, barren, 
lowland semideciduous forest and water (b), and urban and inland water classes (c).

• Lowland dry  semideciduous forest: This class is the one that includes all the thick vegetation 
found in the image, excluding the mangroves from the coast.

• Agriculture: As its name describe, this class is the one that includes all the agriculture fields in 
this image.

• Pasture: This class is used to separate fields of agriculture from those fields that  just have grass 
or pasture.

    Based on the description of these features, we performed a classifications in the three images 

described before. Figure 4.2 illustrate the LANDSAT TM  4 image with areas of the image under 

study taken from an PAN sharpened image acquired by IKONOS. This image is not necessary 

acquired on the same date as the Landsat TM 4 image, having this in mind is good to mention 

that the specified areas are not exactly  in the same conditions. For example, the agriculture, pas-

ture, seasonally flooded forest and other features may vary from image to image.
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    ENVI® environment was used to perform the classification process, first we chose the region 

of interest, then we calculate the classes separability  in order to know if the classes are well as-

signed and do not merge with other classes. Once we have done the latter, we used the Maximum 

Likelihood (ML) classifier to obtain our results.

   The ML method is based on the assumption that the frequency distribution of the class can be 

approximated by the multivariate normal probability  distribution as follows [19],

                                        

€ 

P x( ) = 2π−0.5p |Si |
−0.5 exp −0.5 x −ηi( )TSi−1 x −ηi( )[ ]                               (1)

The latter equation implies that the probability of pixel vector x of  p  elements is a member of 

class i. Where S  is the sample variance-covariance matrix of class i.  After some manipulation in 

(1), we get the following discriminant function.

                                                   

€ 

gi x( ) = − x −ηi( )T Si−1 x −ηi( )( ) − ln |Si |                                       (2)

The ML classifier is then 

€ 

x ∈ Ci  if gi(x) > gj(x) for all i ≠ j.

Table 4.1 Testing/training samples used for the classification of the restored image.

Class Testing (pixels) Training (pixels)

Water 941 702

Agriculture 311 247

Urban and Barren 106 85

Seasonally flooded forest 301 144

Lowland dry forest 1,219 706

Pasture 143 84

Total 3,021 1,969
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 (a)  

Water
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Agriculture

Seasonally
flooded forest  (b)

 (c)  (d)

Figure 4.3 Thematic map for the image without atmospheric corrections. Image with ROIs (a), color map of classes 
(b), original (c) and restored (d) thematic maps.

4.2 Restored Image Classification

     In this section, we show the classification  results obtained for the restored image. Figure 4.3 

show the results comparing the original and the restored images, it  also shows, the image with 

the regions of interest (ROIs) used for the classification. Table 4.1 presents the number of testing/

training samples used for each class.           

    We chose 1,969 pixels out of 61,250, which is the size of the image, as training samples to 

perform the supervised classification. For the original image, was found that 1,958 of 1,969 pix-
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els were classified correctly giving as a result an overall accuracy of 93.44%. In Table 4.2, we 

present the confusion matrix for this image. Here we will see the pixels that were correctly clas-

sified and those that were classified under other classes. For example, 4 pixels from the pasture 

class were classified as agriculture (2) and as urban and barren (2), resulting in 80 pixels cor-

rectly classified as pasture. For the restored image, was found that 1,943 of 1,969 pixels were 

classified correctly giving as a result an overall accuracy of 98.68%. In Table 4.3, we present the 

confusion matrix for this image.

   If we look Figure 4.3, we can notice some changes in the classification products, for example 

in the peninsula we can see that  the classifier improve significantly. Pixels that were not classi-

fied on the original image, now are classified on the restored image. Figure 4.4 shows a cropped 

image from a lagoon located at the north side of the peninsula compared with an IKONOS im-

age. Looking at the latter image, we can recognize some water pixels (black pixels) that were not

Table 4.2 Confusion matrix for the original image without atmospheric correction.

Class Water Agriculture Urban and 
Barren

Seasonally 
flooded forest

Lowland dry 
forest

Pasture

Water 702 0 0 0 0 0

Agriculture 0 244 0 0 1 2

Urban and 
Barren

0 0 83 0 0 2

Seasonally 
flooded forest

0 0 0 144 0 0

Lowland dry 
forest

0 1 0 0 705 0

Pasture 0 2 2 0 0 80

Total 702 247 85 144 706 84
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Table 4.3 Confusion matrix for the  restored image without atmospheric correction.

Class Water Agriculture Urban and 
Barren

Seasonally 
flooded forest

Lowland dry 
forest

Pasture

Water 702 0 0 0 0 0

Agriculture 0 237 0 0 5 2

Urban and 
Barren

0 0 81 0 1 2

Seasonally 
flooded forest

0 0 0 144 1 0

Lowland dry 
forest

0 7 0 0 699 0

Pasture 0 3 4 0 0 80

Total 702 247 85 144 706 84

found in the original image. This shows that the restoration method can retrieve features lost be-

cause of degradation since now the spatial features in the image are more defined, like edges,  

borders among other characteristics. Another region of interest is shown on Figure 4.5, here we 

show another lagoon. Once again we include an IKONOS image in order to show that in this 

area exist the presence of water.

    In the following sections, we will show the results obtained for the restored image with atmos-

pheric correction and the restored image with the atmospheric correction before the restoration 

process. Results are similar to these presented in this section, having this in mind we will show 

just the classification images and some comments explaining the results.
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 (a)  (b)

 (c)  (d)           
Figure 4.4 Original (a), Restored (b), difference between images (c) and IKONOS image.

4.3 Restored Image with Atmospheric Corrections Classification

     The classification products obtained for the restored image with atmospheric correction after 

the restoration process are similar to those shown in the previous section. In this image, we ap-

plied the dark subtraction method for atmospheric correction described in Section 3.4. All pixels 

in the image are the same correction. Knowing this we will expect the same classification results 

as for the image without atmospheric correction. 
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  (a)  (b) 

 (c) (d)
Figure 4.5 Original (a), Restored (b), difference between images (c) and IKONOS image.

    Figure 4.5 show the thematic map for this image. If we compare Figure 4.5 with Figure 4.2 we 

will notice that are the same figures or at least have the same features. Maybe is not that clear, 

but in Table 4.4 and Table 4.5 we show the confusion matrix obtained for the original and re-

stored image, respectively. We used the same ROIs as testing/training samples that we used for 

the image described Section 4.2. The overall accuracy for the original and restored image are,  

93.44% and 98.68%. respectively, the same as the percents obtained for the image without at-

mospheric correction.
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Figure 4.5 Thematic map for the image with atmospheric correction. Image with ROIs (a), color map of classes (b), 
original (c) and restored (d) thematic maps.

4.4 Atmospheric Corrected-Restored Image Classification

     In this section, results for the image with atmospheric corrections before the restoration proc-

ess are presented. In Section 3.5, we described the process to obtain this image, we correct for 

the  atmosphere with the dark subtract method, then we applied the restoration algorithm. As 

mentioned in the previous section, a uniform correction do not affect  the classification results. 

Once again, we have the same results as in section 4.2. Refer to this section to see the classifica-

tion products.
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Table 4.4 Confusion matrix for the original image with atmospheric correction.

Class Water Agriculture Urban and 
Barren

Seasonally 
flooded forest

Lowland dry 
forest

Pasture

Water 702 0 0 0 0 0

Agriculture 0 244 0 0 1 2

Urban and 
Barren

0 0 83 0 0 2

Seasonally 
flooded forest

0 0 0 144 0 0

Lowland dry 
forest

0 1 0 0 705 0

Pasture 0 2 2 0 0 80

Total 702 247 85 144 706 84

Table 4.5 Confusion matrix for the restored image with atmospheric correction.

Class Water Agriculture Urban and 
Barren

Seasonally 
flooded forest

Lowland dry 
forest

Pasture

Water 702 0 0 0 0 0

Agriculture 0 237 0 0 5 2

Urban and 
Barren

0 0 81 0 1 2

Seasonally 
flooded forest

0 0 0 144 1 0

Lowland dry 
forest

0 7 0 0 699 0

Pasture 0 3 4 0 0 80

Total 702 247 85 144 706 84

4.5 Effects on Classification of Stopping Criteria 

 In this section, we will show classification results for those images presented in Section 

3.6. These images are examples of what happens if an iterative method is not stopped at the right 

point. The images presented are not very  clear for the human eye, but when they are classified 

everything is different. Figure 4.6 shows the classification results for images with 5 and 10 itera-

tions, compared with the original image. 
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 (a)  (b)

 (c)  (d)

Figure 4.6 Thematic map for the images with 5 and 10 iterations. Thematic map of the original (a), 3 iterations (b), 5 
iterations (c) and 10 iterations (d) images.

 If we look closer at these images, we can notice that the classification is good in the 3rd 

iteration but improve significantly in the 5th iteration and in the 10th iterations, because features 

such as small water bodies, urban areas and coastal lines are better defined, but in the tenth itera-

tion divergence introduces features that are not present in the previous iterations. Divergence in-

troduces parallel lines or curves around the features (coastal line, urban areas, agriculture re-

gions, etc). Figure 4.7 and 4.8 show highlighting changes in these classifications.
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 (a)  (b)

 (c)  (d)
Figure 4.7 Zoom of the thematic map for the images with 3, 5 and 10 iterations. Original (a), 3 iterations (b), 5 itera-
tions (c) and 10 iterations (d) images.

    We chose 1,969 pixels out of 61,250, which is the size of the image, as training samples to 

perform the supervised classification. For the original image, it was found that 1,958 of 1,969 

pixels were classified correctly giving as a result  an overall accuracy  of 93.44%. For the 5 itera-

tion and 10 iterations images were found that the overall accuracy was 97.10 % and 91.98%, re-

spectively. In Table 4.6 and Table 4.7, we present the confusion matrix for the 5th and 10th itera-

tions images. In these tables we can see the pixels well classified and the ones classified under
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  (a)  (b)

 (c)  (d)
Figure 4.8 Zoom of the thematic map for the images with 3, 5 and 10 iterations. Original (a), 3 iterations (b), 5 itera-
tions (c) and 10 iterations (d) images. 

other classes, for example, in Table 4.6 we chose 702 pixels as training samples for Water and 

702 were classified as Water. In the other hand, we chose 247 pixels for Agriculture, 229 were 

classified as Agriculture, but 18 were classified as Lowland dry  forest (15 pixels) and Pasture (3 

pixels). In Table 4.7 we also chose 702 pixels as training samples for Water, but 698 were classi-

fied as Water, and 4 as Urban and Barren (3 pixels) and Seasonally flooded forest (1 pixel). For 

Agriculture, 192 were well classified, but 55 pixels were classified under the following classes: 

Urban and Barren (2), Seasonally flooded forest (3), Lowland dry forest (27) and Pasture (23). 
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This classification results can be caused by the divergence introduced when the algorithm is not 

stopped at the right point. For further results refer to these tables.

Table 4.6 Confusion matrix for the  restored image with 5 iterations.

Class Water Agriculture Urban and 
Barren

Seasonally 
flooded forest

Lowland dry 
forest

Pasture

Water 702 0 0 0 0 0

Agriculture 0 229 2 1 19 6

Urban and 
Barren

0 0 80 0 2 0

Seasonally 
flooded forest

0 0 0 143 2 0

Lowland dry 
forest

0 15 1 0 679 0

Pasture 0 3 2 0 4 79

Total 702 247 85 144 706 85

Table 4.7 Confusion matrix for the  restored image with 10 iterations.

Class Water Agriculture Urban and 
Barren

Seasonally 
flooded forest

Lowland dry 
forest

Pasture

Water 698 0 0 0 0 0

Agriculture 0 192 2 2 51 6

Urban and 
Barren

3 2 78 0 0 0

Seasonally 
flooded forest

1 3 0 138 19 0

Lowland dry 
forest

0 27 1 4 627 1

Pasture 0 23 4 0 9 78

Total 702 247 85 144 706 85

4.6 Conclusions

     Results of supervised classification of the three images were presented. Classification im-

provements were obtained on the restored images as expected. Also, we found that the dark sub-
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traction method did not changed. The overall accuracy percent for the original and restored im-

age are 99.44% and 98.68%, respectively. Higher accuracy  percentages were expected for the 

restored image, but due to the conditions of small ROIs, these were lower. In the other hand, the 

distribution or classification of small spatial features improved significantly, nevertheless these 

percentages were lower. Areas where some features were not classified on the original image, 

were classified on the restored image (Figures 4.3 and 4.4). We also presented classification re-

sults for the image with 5 and 10 iterations. For these images we used the same ROIs as for the 

previous images. Best results were obtained with further iterations (5 and 10), once again the 

overall accuracies were lower but when zoomed the images the features were well classified, 

based on the map class used as ground truth information.
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5 CONCLUSIONS AND FUTURE 

WORK

5.1 Summary

     The main objective of this project was to implement restoration algorithms for multispectral 

imagery and to study the effect of restoration in classification accuracy. Other objectives were to 

create and develop a software application for multispectral image restoration and study restora-

tion and classification performance with and without atmospheric corrections. We studied three 

images derived from the Landsat 4 image from a region located at the south of Puerto Rico 

(18.1ºN, 66.2ºW), an image with an without atmospheric correction after the restoration process 

and an image with atmospheric correction before the restoration process algorithm. In this pro-

ject, we used the Lucy-Richardson reconstruction algorithm to correct for the PSF and the dark 

subtraction method for the atmospheric correction. Once we applied the restoration algorithm we 

classified the images to study the effects in each image. 
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5.2 Conclusions

     The blurring caused by  instrument collection system characterized by its PSF affects the qual-

ity  of satellite image and its use for land cover characterization. The acquired image is distorted 

by the PSF and atmospheric contributions that produces distorted images.  The use of the   Lucy-

Richardson method for multispectral image restoration revealed the expected results, to have a 

brighter image, and improve classification products revealing small spatial features hidden by the 

blur.     

  The image was enhanced significantly after the restoration process, refer to Figures 3.6, 3.11, 

and 3.16 to see the results. On Figures 3.8, 3.13, and 3.18 we showed spectral reflectance pro-

files of five features from the image. The spectral reflectance profiles, also, showed remarkable 

changes on the three images. The features were shifted to higher reflectance values on the re-

stored image. Scatterplots were developed in order to see the changes in brightness before and 

after the restoration process, it was found that after the restoration process pixels that were 

brighter became darker and darker pixels became brighter, as expected (See Figures 3.10, 3.14, 

and 3.19). Also, we plotted the reflectance percentages per bands to see this brightness changes 

(Figures 3.11, 3.15, and 3.20).  Means and standard deviations of the differences between the 

“original” and restored images were calculated, and found that bands 4 and 5 were the bands 

with more enhancement than the other four bands (bands 1,2,3, and 7) with standard deviations 

of approximately 3% and 4% for the three images. 

     Supervised classification was performed on the three images, and similar results were found. 

We chose six classes to perform classification, water, lowland dry semideciduous forest, season-

ally flooded forest, urban and barred, agriculture, and pasture. The image was basically  com-
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posed of these six features. We classified the three images, the “original” and the restored, and 

we found that the changes were significant. Spatial features that were not correctly  classified on 

the original image were correctly  classified on the restored image, refer to Figures 4.3 and 4.4 to 

see the results. The overall accuracy  percent for the original and restored image are 99.44% and 

98.68%, respectively. We found that the dark pixels atmospheric correction method does not af-

fect the classification process, because the method applied a uniform correction to the image. 

However, the dark pixel method does affect the restoration process, it  was found that gives better 

results when the atmospheric correction is applied after the restoration process.

     We found that the application of a restoration algorithm to multispectral images is very impor-

tant as a pre-processing technique because the restored image revealed features that  were not 

clear in the raw image. We also found, that the classification process improved significantly after 

the restoration algorithm was applied. Furthermore we found that the atmospheric correction was 

not necessary to fulfill the main objective of this project.

5.3 Future Work

     In this project, we presented results of multispectral image restoration only for a Landsat 4 

image, this let to future work in the following topics to be studied:

• More experimentation with images with ground truth for validation of the restoration algo-

rithms. In addition to this, work with other multispectral sensors and compare results.

• More experimentation with non-uniform atmospheric correction methods, before and after the 

restoration process.
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• Perform the same methodology used in this project on hyperspectral imagery. Repeat the proc-

ess combining spatial and spectral domain restoration.
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Appendix A
MATLAB Algorithm for the image without atmospheric corrections

% This algorithm opens a Landsat TM 4 image by using "multibandread", show the 
% image per band. Then it calculates the PSF matrix to use it with
% Lucy-Richarson algorithm in order to restore the image.
 
 
clear all, clc;
for j = 1:4
    
    band(j) = j;
    SI = multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/NAC6 original Re-
flectance',[250 245 6], 'float32',0,'bsq','ieee-be');
    
 
%     figure
%     imshow(SI(:,:,band(j)),[]);    % especifico el numero de bandas q quiero mostrar. Cuando quiero usar 
solo una banda
%     str = sprintf('%s %d', 'Guanica, band', band(j));
%     title(str);
%     %saveas(gcf,str,'jpg');
 
% ======================================================================
% Sigma values for bands 1 thru 4:
% ======================================================================
    sigmax = 35.9;
    sigmay = 32.1;
 
    delta = 30;       %Landsat spatial resolution in [m]
 
    Cx = 1./(sqrt((2*pi*sigmax^2)));
    fx1 =(delta/2)*Cx*exp(-2/(2*(sigmax/delta)^2));
    fx2 = (delta)*Cx*exp(-1/(2*(sigmax/delta)^2));
    fx3 = fx2;
    fx4 = fx2;
    fx5 = fx1; 
   
    Cy = 1./(sqrt((2*pi*sigmay^2)));
    fy1 =(delta/2)*Cy*exp(-2/(2*(sigmay/delta)^2));
    fy2 = (delta)*Cy*exp(-1/(2*(sigmay/delta)^2));
    fy3 = fy2;
    fy4 = fy2;
    fy5 = fy1;
 
 
% ======================================================================
% Generating the five vectors with the values for sigma.
% ======================================================================
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    PSFx1 = [fx1 fx2 fx3 fx4 fx5];
 
    PSFy1 = [fy1 fy2 fy3 fy4 fy5]';
 
% ======================================================================
% Creating the Transfer function for the PSF. Lo hago y*x para que genere
% la matriz que quiero.
% ======================================================================
 
    PSF1 = PSFy1*PSFx1;
 
    Blurred  = SI(:,:,band(j));           % Defining the SI image as the blurred data. In this case is the Landsat 
image.
    %figure, imshow(Blurred(:,:,band(j)),[]);
 
% ======================================================================
% Image restoration using Richard-Lucy  
% Running Lucy-Richardson algorithm with 1 to 3 iterations.
% ======================================================================
 
    RLucy = zeros([size(Blurred), 3]); 
    for i = 1:3
        iter(i) = i;
        RLucy(:,:,i) = deconvlucy(Blurred, PSF1, iter(i));
%         str = sprintf('%s %d', 'Restored Image, (band ',band(j),') with Lucy-Richardson,', iter(i), ' itera-
tions');
%         figure; imshow(RLucy(:,:,i), []); title(str)
%         saveas(gcf,str,'jpg')
    end
 
% ======================================================================
% Guardando la imagen usando multibandwrite, me va a generar una imagen de 3 bandas, 
% donde estas bandas son las 3 iteraciones de Lucy-Richardson.
% ====================================================================== 
 
        filename = sprintf('%s%d%s','Restored NAC6 Band', band(j), '.img');
        multibandwrite(RLucy, filename, 'bsq');
 
        outstr      =   sprintf('ENVI\ndescription = {Imported by HIAT}\nsamples = %s\nlines = %s\nbands = 
%s\nheader offset = %s\ndata type = %s\ninterleave = %s\n byte order = %s\n' , '245', '250', '3', '0', '5', 
'bsq', '1');
        filename    = sprintf('%s%s',filename, '.hdr');
        fid         =   fopen(filename,'w');
        fwrite(fid,outstr, 'char');
        fclose(fid);
 
end
 
% ********************************************************************************** 
% This part of the algorithm is for band 5. 
% The values for sigmax and sigmay are different from the bands 1-4. 
% ********************************************************************************** 
 
for k = 5:6
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   band(k) = k;
 
% ======================================================================
% Sigma values for band 5 and 7:
% ======================================================================
 
sigmax = 35.7;      %one sigma in [m], crosstrack.
sigmay = 33.3;      %one sigma in [m], alongtrack.
  
delta = 30;       %Landsat spatial resolution in [m]
 
Cx = 1./(sqrt((2*pi*sigmax^2)));
fx1 =(delta/2)*Cx*exp(-2/(2*(sigmax/delta)^2));
fx2 = (delta)*Cx*exp(-1/(2*(sigmax/delta)^2));
fx3 = fx2;
fx4 = fx2;
fx5 = fx1; 
   
Cy = 1./(sqrt((2*pi*sigmay^2)));
fy1 =(delta/2)*Cy*exp(-2/(2*(sigmay/delta)^2));
fy2 = (delta)*Cy*exp(-1/(2*(sigmay/delta)^2));
fy3 = fy2;
fy4 = fy2;
fy5 = fy1;
  
% ======================================================================
% Generating the five vectors with the values for sigma.
% ======================================================================
 
PSFx1 = [fx1 fx2 fx3 fx4 fx5];
 
PSFy1 = [fy1 fy2 fy3 fy4 fy5]';
 
% ======================================================================
% Creating the Transfer function for the PSF. Lo hago y*x para que genere
% la matriz que quiero.
% ======================================================================
 
PSF1 = PSFy1*PSFx1;
 
Blurred  = SI(:,:,band(k));           % Defining the SI image as the blurred data. In this case is the Landsat 
image.
%figure, imshow(Blurred(:,:,band),[]);
 
 
% ======================================================================
% Image restoration using Richard-Lucy  
% Running Lucy-Richardson algorithm with 1 to 3 iterations.
% ======================================================================
 
    RLucy = zeros([size(Blurred), 3]); 
        for i = 1:3
            iter(i) = i;
            RLucy(:,:,i) = deconvlucy(Blurred, PSF1, iter(i));
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%           str = sprintf('%s %d', 'Restored Image, (band ',band,') with Lucy-Richardson,', iter(i), ' itera-
tions');
%           figure; imshow(RLucy(:,:,i), []); title(str)
%           saveas(gcf,str,'jpg')
 
        end
 
% ======================================================================
% Guardando la imagen usando multibandwrite, me va a generar una imagen de 10 bandas, 
% donde estas bandas son las 3 iteraciones de Lucy-Richardson.
% ======================================================================
 
filename = sprintf('%s%d%s','Restored NAC6 band', band(k), '.img');
multibandwrite(RLucy, filename, 'bsq');
 
outstr      =   sprintf('ENVI\ndescription = { Imported by HIAT}\nsamples = %s\nlines = %s\nbands = 
%s\nheader offset = %s\ndata type = %s\ninterleave = %s\n byte order = %s\n' , ...
                '245', '250', '3', '0', '5', 'bsq', '1');
filename    = sprintf('%s%s',filename, '.hdr');
fid         =   fopen(filename,'w');
fwrite(fid,outstr, 'char');
fclose(fid);
 
end
% ======================================================================
% Abrir la imagen corregida y la original con las seis bandas.
% ======================================================================
 
NOAtmCorr = multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/NAC6 origi-
nal Reflectance',[250 245 6],...
    'float32',0,'bsq','ieee-be');
 
RLUCY = multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/NAC6 restored 
Reflectance',[250 245 6],...
    'float32',0,'bsq','ieee-be');
    
 
% ======================================================================
% Crear las bandas en vectores para hacer los scatterplots.
% ======================================================================
 
bandOriginal = zeros(250,245,6);
bandRestored = zeros(250,245,6);
std_dev_Band = zeros(6,1);
mean_Band = zeros(6,1);
    
for m = 1:6              %Total number of bands is 6.
   
   bandOriginal(:,:,m) = NOAtmCorr(:,:,m)*100;    
   bandRestored(:,:,m) = RLUCY(:,:,m)*100;
 
   err = reshape((bandOriginal(:,:,m)-bandRestored(:,:,m)),250*245,1); 
   std_dev_Band(m) = std(err);
   mean_Band(m) = mean(err);
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   figure; imshow(NOAtmCorr(:,:,m),[]), colorbar
    str = sprintf('%s %d', 'AtmCorr Original band',m);
    title(str);
    saveas(gcf,str,'jpg')
    
    figure; imshow(RLUCY(:,:,m),[]), colorbar
    str = sprintf('%s %d', 'AtmCorr Restored band',m);
    title(str);
    saveas(gcf,str,'jpg') 
 
    % ======================================================================
    % Diferencia entre imagenes original y corregida por la atmosfera
    % ======================================================================
 
    Difference = RLUCY - NOAtmCorr;
    %figure
    %plot(Difference(1,:,1))
 
    figure
    imshow(Difference(:,:,l),[]), colorbar
    str = sprintf('%s %d', 'Difference between restored and original image, band', l);
    title(str);
    saveas(gcf,str,'jpg')            
    %figure
    %imshow(Difference(:,:),[]), colorbar             %Grafica las cinco bandas en una figura.
    %str = sprintf('%s %d', 'Difference between restored and original images');
    %title(str); 
    %saveas(gcf,str,'jpg')
 
 
end
 
% ======================================================================
% Sacatterplots entres las bandas de las imagenes original y restaurada.
% ======================================================================
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,1),245*250,1),reshape(bandRestored(:,:,1),245*250,1)),
str = ('Scatterplot of bands 1; Original and Restored ');
title(str)
ylabel('Band 1: Restored (%)'), xlabel('Band 1: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,2),245*250,1),reshape(bandRestored(:,:,2),245*250,1)),
str = ('Scatterplot of bands 2; Original and Restored ');
title(str)
ylabel('Band 2: Restored (%)'), xlabel('Band 2: Original (%)')
saveas(gcf,'Scatterplot of bands 1, 2 ; Original and Restored','jpg')
 
figure
subplot(2,1,1)
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scatter(reshape(bandOriginal(:,:,3),245*250,1),reshape(bandRestored(:,:,3),245*250,1)),str = ('Scatterplot  
of bands 3; Original and Restored ');
title(str)
ylabel('Band 3: Restored (%)'), xlabel('Band 3: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,4),245*250,1),reshape(bandRestored(:,:,4),245*250,1)),str = ('Scatterplot  
of bands 4; Original and Restored ');
title(str)
ylabel('Band 4: Restored (%)'), xlabel('Band 4: Original (%)')
saveas(gcf,'Scatterplot of bands 3, 4 ; Original and Restored','jpg')
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,5),245*250,1),reshape(bandRestored(:,:,5),245*250,1)),
str = ('Scatterplot of bands 5; Original and Restored ');
title(str)
ylabel('Band 5: Restored (%)'), xlabel('Band 5: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,6),245*250,1),reshape(bandRestored(:,:,6),245*250,1)),
str = ('Scatterplot of bands 7; Original and Restored ');
title(str)
ylabel('Band 7: Restored (%)'), xlabel('Band 7: Original (%)')
saveas(gcf,'Scatterplot of band 5 and 7 ; Original and Restored','jpg')
 
% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
% Plots of the bands from the original and restored images.
% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

figure
subplot(2,1,1);
plot(bandOriginal(161,:,1)), xlabel('Pixel Number Band 1'), ylabel('Reflectance [%]')
title('Reflectance [%]plot for band 1')
hold on
plot(bandRestored(161,:,1),'r'), xlabel('Pixel Number band 1'), ylabel('Reflectance [%]')
legend('Before Restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,2)), xlabel('Pixel Number band 2'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 2')
hold on
plot(bandRestored(161,:,2),'r'), xlabel('Pixel Number band 2'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance  plots band 1 and 2','jpg')
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,3)), xlabel('Pixel Number band 3'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 3')
hold on
plot(bandRestored(161,:,3),'r'), xlabel('Pixel Number band 3'), ylabel('Reflectance [%]')
legend('Before restoration','After Restoration')
subplot(2,1,2);
plot(bandOriginal(161,:,4)), xlabel('Pixel Number band 4'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 4')
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hold on
plot(bandRestored(161,:,4),'r'), xlabel('Pixel Number band 4'), ylabel('Reflectance [%]')
%legend('Before Restoration','After Restoration','Location','EastOutside')
hold off
saveas(gcf,'Reflectance plots band 3 and 4','jpg')
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,5)), xlabel('Pixel Number band 5'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 5 of Original image.')
hold on
plot(bandRestored(161,:,5),'r'), xlabel('Pixel Number band 5'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 5 of Restored image.')
legend('Before Restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,6)), xlabel('Pixel Number band 7'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 7')
hold on
plot(bandRestored(161,:,6),'r'), xlabel('Pixel Number band 7'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance  plots band 5 and 7','jpg')
 
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
% Termina el codigo para trabajar con la imagen original y restaurada sin Atm Corr.
% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
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Appendix B
MATLAB Algorithm for the image with atmospheric corrections

% This code open the Restored w/AtmCorr image to calculate the difference 
% between images (restored and original) in order to plot it. Also, plot 
% scatterplots comparing same band from different images.
 
% ======================================================================
% Abrir la imagen corregida y la original con las cinco bandas.
% ======================================================================
 
wAtmCorr = multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/wAtmCorr 6R 
Original',[250 245 6], 'float32',0,'bsq','ieee-be');
 
wAtmCorrRestored = 
multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/wAtmCorr 6R Restored',[250 
245 6], 'float32',0,'bsq','ieee-be');
    
% ======================================================================
% Crear las bandas en vectores para hacer los scatterplots.
% ======================================================================
 
bandOriginal = zeros(250,245,6);
bandRestored = zeros(250,245,6);
std_dev_Band = zeros(6,1);
mean_Band = zeros(6,1);
 
for l = 1:6         %Total number of bands is 5.
       
   bandOriginal(:,:,l) = wAtmCorr(:,:,m)*100;    
   bandRestored(:,:,l) = wAtmCorrRestored(:,:,m)*100;

   err = reshape((bandOriginal(:,:,m)-bandRestored(:,:,m)),250*245,1); 
   std_dev_Band(m) = std(err);
   mean_Band(m) = mean(err);
      
    figure; imshow(wAtmCorr(:,:,l),[]), colorbar
    str = sprintf('%s %d', 'AtmCorr Original band',l);
    title(str);
    saveas(gcf,str,'jpg')
    
    figure; imshow(wAtmCorrRestored(:,:,l),[]), colorbar
    str = sprintf('%s %d', 'AtmCorr Restored band',l);
    title(str);
    saveas(gcf,str,'jpg')  
    
    % ======================================================================
    % Diferencia entre imagenes original y corregida por la atmosfera
    % ======================================================================
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    Difference = wAtmCorrRestored - wAtmCorr;
    %figure
    %plot(Difference(1,:,1))
 
    figure
    imshow(Difference(:,:,l),[]), colorbar
    str = sprintf('%s %d', 'Difference between restored and original image, band', l);
    title(str);
    saveas(gcf,str,'jpg')         
 
end
 
 
% ======================================================================
% Sacatterplots entres las bandas de las imagenes original y restaurada.
% ======================================================================
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,1),245*250,1),reshape(bandRestored(:,:,1),245*250,1)),
str = ('Scatterplot of bands 1; Original and Restored ');
title(str)
ylabel('Band 1: Restored (%)'), xlabel('Band 1: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,2),245*250,1),reshape(bandRestored(:,:,2),245*250,1)),
str = ('Scatterplot of bands 2; Original and Restored ');
title(str)
ylabel('Band 2: Restored (%)'), xlabel('Band 2: Original (%)')
saveas(gcf,'Scatterplot of bands 1, 2 ; Original and Restored','jpg')
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,3),245*250,1),reshape(bandRestored(:,:,3),245*250,1)),str = ('Scatterplot  
of bands 3; Original and Restored ');
title(str)
ylabel('Band 3: Restored (%)'), xlabel('Band 3: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,4),245*250,1),reshape(bandRestored(:,:,4),245*250,1)),str = ('Scatterplot  
of bands 4; Original and Restored ');
title(str)
ylabel('Band 4: Restored (%)'), xlabel('Band 4: Original (%)')
saveas(gcf,'Scatterplot of bands 3, 4 ; Original and Restored','jpg')
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,5),245*250,1),reshape(bandRestored(:,:,5),245*250,1)),
str = ('Scatterplot of bands 5; Original and Restored ');
title(str)
ylabel('Band 5: Restored (%)'), xlabel('Band 5: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,6),245*250,1),reshape(bandRestored(:,:,6),245*250,1)),
str = ('Scatterplot of bands 7; Original and Restored ');
title(str)
ylabel('Band 7: Restored (%)'), xlabel('Band 7: Original (%)')
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saveas(gcf,'Scatterplot of band 5 and 7 ; Original and Restored','jpg')
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
% Plots of the bands from the original and restored images.
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

figure
subplot(2,1,1);
plot(bandOriginal(161,:,1)), xlabel('Pixel Number Band 1'), ylabel('Reflectance [%]')
title('Reflectance plot for band 1')
hold on
plot(bandRestored(161,:,1),'r'), xlabel('Pixel Number band 1'), ylabel('Reflectance [%]')
legend('Before restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,2)), xlabel('Pixel Number band 2'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 2')
hold on
plot(bandRestored(161,:,2),'r'), xlabel('Pixel Number band 2'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance  plots band 1 and 2','jpg')
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,3)), xlabel('Pixel Number band 3'), ylabel('Reflectance [%]')
title('Reflectance  plot for band 3')
hold on
plot(bandRestored(161,:,3),'r'), xlabel('Pixel Number band 3'), ylabel('Reflectance [%]')
legend('Before restoration','After Restoration')
subplot(2,1,2);
plot(bandOriginal(161,:,4)), xlabel('Pixel Number band 4'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 4')
hold on
plot(bandRestored(161,:,4),'r'), xlabel('Pixel Number band 4'), ylabel('Reflectance [%]')
%legend('Before restoration','After Restoration','Location','EastOutside')
hold off
saveas(gcf,'Reflectance [%] plots band 3 and 4','jpg')
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,5)), xlabel('Pixel Number band 5'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 5 of Original image.')
hold on
plot(bandRestored(161,:,5),'r'), xlabel('Pixel Number band 5'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 5 of Restored image.')
legend('Before restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,6)), xlabel('Pixel Number band 7'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 7')
hold on
plot(bandRestored(161,:,6),'r'), xlabel('Pixel Number band 7'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance [%] plots band 5 and 7','jpg')
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Appendix C
MATLAB Algorithm for the image with atmospheric corrections before restoration

% This algorithm opens a Landsat TM 4 image by using "multibandread", show the 
% image per band. Then it calculates the PSF matrix to use it with
% Lucy-Richarson algorithm in order to restore the image.
 
clear all, clc;
 
SI = multibandread('/Applications/MATLAB71/AtmCorr 6R Original',[250 245 6],...
    'float32',0,'bsq','ieee-be');
 
for j = 1:4
    band(j) = j;
 
%     figure
%     imshow(SI(:,:,5),[]);    % especifico el numero de bandas q quiero mostrar. Cuando quiero usar solo 
una banda
%     str = sprintf('%s %d', 'Guanica, band', band(j));
%     title(str);
    %saveas(gcf,str,'jpg');
 
% 
===========================================================================
=
% If I want to show the image in RGB I used this portion of algorithm.
% 
===========================================================================
=
 
%SI = multibandread('/Applications/MATLAB71/PR_Landsat-7_S_12_13_05.htm',[843 883 5],...
%'uint8=>uint8',0,'bsq','ieee-le',{'Band','Direct',[3 2 1]});
%figure,imshow(SI)
 
% ======================================================================
% Sigma values for bands 1 thru 4:
% ======================================================================
    sigmax = 35.9;
    sigmay = 32.1;
 
    delta = 30;       %Landsat spatial resolution in [m]
 
    Cx = 1./(sqrt((2*pi*sigmax^2)));
    fx1 =(delta/2)*Cx*exp(-2/(2*(sigmax/delta)^2));
    fx2 = (delta)*Cx*exp(-1/(2*(sigmax/delta)^2));
    fx3 = fx2;
    fx4 = fx2;
    fx5 = fx1; 
   
    Cy = 1./(sqrt((2*pi*sigmay^2)));
    fy1 =(delta/2)*Cy*exp(-2/(2*(sigmay/delta)^2));
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    fy2 = (delta)*Cy*exp(-1/(2*(sigmay/delta)^2));
    fy3 = fy2;
    fy4 = fy2;
    fy5 = fy1;
 
% ======================================================================
% Generating the five vectors with the values for sigma.
% ======================================================================
 
    PSFx1 = [fx1 fx2 fx3 fx4 fx5];
 
    PSFy1 = [fy1 fy2 fy3 fy4 fy5]';
 
% ======================================================================
% Creating the Transfer function for the PSF. Lo hago y*x para que genere
% la matriz que quiero.
% ======================================================================
 
    PSF1 = PSFy1*PSFx1;
 
    Blurred  = SI(:,:,band(j));           % Defining the SI image as the blurred data. In this case is the Landsat 
image.
    %figure, imshow(Blurred(:,:,band(j)),[]);
 
 
% ======================================================================
% Image restoration using Richard-Lucy  
% Running Lucy-Richardson algorithm with 1 to 3 iterations.
% ======================================================================
 
    RLucy = zeros([size(Blurred), 3]); 
    for i = 1:3
        iter(i) = i;
        RLucy(:,:,i) = deconvlucy(Blurred, PSF1, iter(i));
%         str = sprintf('%s %d', 'Restored Image, (band ',band(j),') with Lucy-Richardson,', iter(i), ' itera-
tions');
%         figure; imshow(RLucy(:,:,i), []); title(str)
%         saveas(gcf,str,'jpg')
    end
 
% ======================================================================
% Guardando la imagen usando multibandwrite, me va a generar una imagen de 3 bandas, 
% donde estas bandas son las 3 iteraciones de Lucy-Richardson.
% ====================================================================== 
        filename = sprintf('%s%d%s','Atm Corr 6R Restored Band', band(j), '.img');
        multibandwrite(RLucy, filename, 'bsq');
 
        outstr      =   sprintf('ENVI\ndescription = {Imported by HIAT}\nsamples = %s\nlines = %s\nbands = 
%s\nheader offset = %s\ndata type = %s\ninterleave = %s\n byte order = %s\n' , ...
                '245', '250', '3', '0', '5', 'bsq', '1');
        filename    = sprintf('%s%s',filename, '.hdr');
        fid         =   fopen(filename,'w');
        fwrite(fid,outstr, 'char');
        fclose(fid);
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end
 
% 
************************************************************************************ 
%
% This part of the algorithm is for band 5. 
% The values for sigmax and sigmay are different from the bands 1-4. 
% 
************************************************************************************ 
%
 
for k = 5:6
    band(k) = k;
    
    %SI = multibandread('/Applications/MATLAB71/Atm Corr Original',[250 245 5],...
    %'uint8',0,'bsq','ieee-le');
%     figure
%     imshow(SI(:,:,5),[]);    % especifico el numero de bandas q quiero mostrar. Cuando quiero usar solo 
una banda
%     str = sprintf('%s %d', 'Guanica, band', band(k));
%     title(str);
   
% saveas(gcf,str,'jpg');
 
 
% ======================================================================
% Sigma values for band 5 thru 7:
% ======================================================================
 
sigmax = 35.7;      %one sigma in [m], crosstrack.
sigmay = 33.3;      %one sigma in [m], alongtrack.
 
 
delta = 30;       %Landsat spatial resolution in [m]
 
Cx = 1./(sqrt((2*pi*sigmax^2)));
fx1 =(delta/2)*Cx*exp(-2/(2*(sigmax/delta)^2));
fx2 = (delta)*Cx*exp(-1/(2*(sigmax/delta)^2));
fx3 = fx2;
fx4 = fx2;
fx5 = fx1; 
   
Cy = 1./(sqrt((2*pi*sigmay^2)));
fy1 =(delta/2)*Cy*exp(-2/(2*(sigmay/delta)^2));
fy2 = (delta)*Cy*exp(-1/(2*(sigmay/delta)^2));
fy3 = fy2;
fy4 = fy2;
fy5 = fy1; 
 
% ======================================================================
% Generating the five vectors with the values for sigma.
% ======================================================================
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PSFx1 = [fx1 fx2 fx3 fx4 fx5];
 
PSFy1 = [fy1 fy2 fy3 fy4 fy5]';
 
 
% ======================================================================
% Creating the Transfer function for the PSF. Lo hago y*x para que genere
% la matriz que quiero.
% ======================================================================
 
PSF1 = PSFy1*PSFx1;
 
Blurred  = SI(:,:,band(k));           % Defining the SI image as the blurred data. In this case is the Landsat 
image.
%figure, imshow(Blurred(:,:,band),[]);
 
 
% ======================================================================
% Image restoration using Richard-Lucy  
% Running Lucy-Richardson algorithm with 1 to 3 iterations.
% ======================================================================
 
    RLucy = zeros([size(Blurred), 3]); 
    for i = 1:3
        iter(i) = i;
        RLucy(:,:,i) = deconvlucy(Blurred, PSF1, iter(i));
%       str = sprintf('%s %d', 'Restored Image, (band ',band,') with Lucy-Richardson,', iter(i), ' iterations');
%       figure; imshow(RLucy(:,:,i), []); title(str)
%       saveas(gcf,str,'jpg')
 
    end
 
% ======================================================================
% Guardando la imagen usando multibandwrite, me va a generar una imagen de 10 bandas, 
% donde estas bandas son las 3 iteraciones de Lucy-Richardson.
% ======================================================================
 
filename = sprintf('%s%d%s','Atm Corr 6R Restored Band', band(k), '.img');
multibandwrite(RLucy, filename, 'bsq');
 
outstr      =   sprintf('ENVI\ndescription = { Imported by HIAT}\nsamples = %s\nlines = %s\nbands = 
%s\nheader offset = %s\ndata type = %s\ninterleave = %s\n byte order = %s\n' , ...
                '245', '250', '3', '0', '5', 'bsq', '1');
filename    = sprintf('%s%s',filename, '.hdr');
fid         =   fopen(filename,'w');
fwrite(fid,outstr, 'char');
fclose(fid);
 
end
% ======================================================================
% Abrir la imagen corregida y la original con las cinco bandas.
% ======================================================================
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AtmCorr = multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/AtmCorr 6R 
Original',[250 245 6],...
    'float32',0,'bsq','ieee-le');
 
 
AtmCorrRestored = multibandread('/users/carlosemoralesarroyo/Desktop/Veronica/MATLAB71/AtmCorr 
6R Restored',[250 245 6],...
    'double',0,'bsq','ieee-be');
    
% ======================================================================
% Crear las bandas en vectores para hacer los scatterplots.
% ======================================================================
bandOriginal = zeros(250,245,6);
bandRestored = zeros(250,245,6);
std_dev_Band = zeros(6,1);
mean_Band = zeros(6,1);
 
for m = 1:6                         %Total number of bands is 5. 
   
    bandOriginal(:,:,m) = AtmCorr(:,:,m)*100;    
    bandRestored(:,:,m) = AtmCorrRestored(:,:,m)*100;
 
    err = reshape((bandRestored(:,:,m)-bandOriginal(:,:,m)),250*245,1); 
    std_dev_Band(m) = std(err);
    mean_Band(m) = mean(err);
 
    
     figure; imshow(bandOriginal(:,:,m),[]), colorbar
    str = sprintf('%s %d', 'AtmCorr Original band',m);
    title(str);
    saveas(gcf,str,'jpg')
    
    figure; imshow(bandRestored(:,:,m),[]), colorbar
    str = sprintf('%s %d', 'AtmCorr Restored band',m);
    title(str);
    saveas(gcf,str,'jpg')  
    
 
    % ======================================================================
    % Diferencia entre imagenes original y corregida por la atmosfera
    % ======================================================================
 
    Difference = (AtmCorrRestored - AtmCorr)*100;
    %figure
    %plot(Difference(1,:,1))
 
    figure
    imshow(Difference(:,:,m),[]), colorbar
    str = sprintf('%s %d', 'Difference between restored and original image, band',m);
    title(str);
    saveas(gcf,str,'jpg')            
    
 
end
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% ======================================================================
% Sacatterplots entres las bandas de las imagenes original y restaurada.
% ======================================================================
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,1),245*250,1),reshape(bandRestored(:,:,1),245*250,1)),
str = ('Scatterplot of bands 1; Original and Restored ');
title(str)
ylabel('Band 1: Restored (%)'), xlabel('Band 1: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,2),245*250,1),reshape(bandRestored(:,:,2),245*250,1)),
str = ('Scatterplot of bands 2; Original and Restored ');
title(str)
ylabel('Band 2: Restored (%)'), xlabel('Band 2: Original (%)')
saveas(gcf,'Scatterplot of bands 1, 2 ; Original and Restored','jpg')
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,3),245*250,1),reshape(bandRestored(:,:,3),245*250,1)),str = ('Scatterplot  
of bands 3; Original and Restored ');
title(str)
ylabel('Band 3: Restored (%)'), xlabel('Band 3: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,4),245*250,1),reshape(bandRestored(:,:,4),245*250,1)),str = ('Scatterplot  
of bands 4; Original and Restored ');
title(str)
ylabel('Band 4: Restored (%)'), xlabel('Band 4: Original (%)')
saveas(gcf,'Scatterplot of bands 3, 4 ; Original and Restored','jpg')
 
figure
subplot(2,1,1)
scatter(reshape(bandOriginal(:,:,5),245*250,1),reshape(bandRestored(:,:,5),245*250,1)),
str = ('Scatterplot of bands 5; Original and Restored ');
title(str)
ylabel('Band 5: Restored (%)'), xlabel('Band 5: Original (%)')
subplot(2,1,2)
scatter(reshape(bandOriginal(:,:,6),245*250,1),reshape(bandRestored(:,:,6),245*250,1)),
str = ('Scatterplot of bands 7; Original and Restored ');
title(str)
ylabel('Band 7: Restored (%)'), xlabel('Band 7: Original (%)')
saveas(gcf,'Scatterplot of band 5 and 7 ; Original and Restored','jpg')
 
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
% Plots of the bands from the original and restored images.
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,1)), xlabel('Pixel Number Band 1'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 1')
hold on
plot(bandRestored(161,:,1),'r'), xlabel('Pixel Number band 1'), ylabel('Reflectance [%]')
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legend('Before restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,2)), xlabel('Pixel Number band 2'), ylabel('Reflectance [%] ')
title('Reflectance [%]plot for band 2')
hold on
plot(bandRestored(161,:,2),'r'), xlabel('Pixel Number band 2'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance [%] plots band 1 and 2','jpg')
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,3)), xlabel('Pixel Number band 3'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 3')
hold on
plot(bandRestored(161,:,3),'r'), xlabel('Pixel Number band 3'), ylabel('Reflectance [%]')
legend('Before restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,4)), xlabel('Pixel Number band 4'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 4')
hold on
plot(bandRestored(161,:,4),'r'), xlabel('Pixel Number band 4'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance [%] plots band 3 and 4','jpg')
 
figure
subplot(2,1,1);
plot(bandOriginal(161,:,5)), xlabel('Pixel Number band 5'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 5 of Original image.')
hold on
plot(bandRestored(161,:,5),'r'), xlabel('Pixel Number band 5'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 5 of Restored image.')
legend('Before restoration','After Restoration')
hold off
subplot(2,1,2);
plot(bandOriginal(161,:,6)), xlabel('Pixel Number band 7'), ylabel('Reflectance [%]')
title('Reflectance [%] plot for band 7')
hold on
plot(bandRestored(161,:,6),'r'), xlabel('Pixel Number band 7'), ylabel('Reflectance [%]')
hold off
saveas(gcf,'Reflectance [%] plots band 5 and 7','jpg')
 
 
% #######################################################################
% Termina el codigo para trabajar con la imagen corregida por atmosfera.
% #######################################################################
 
 
 
 

96


