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ABSTRACT 
 

SOFT CLASSIFICATION OF HYPERSPECTRAL IMAGERY BASED ON LINEAR MIXING 

MODEL AND SUPERVISED FUZZY LOGIC ALGORITHMS 
 

By 

 

Wilma Nydia Pabón Ramírez 

 

August 2008 

 

 
Chair: Miguel Vélez Reyes, Ph.D. 
 

Major Department: Electrical and Computer Engineering  

 
 

Hyperspectral Imagery (HSI) is an important technology used in remote sensing and plays an 

important role in environmental remote sensing because it provides valuable spectral information of the 

objects in the scene. Using the measured spectral signatures, it is possible to discriminate between 

materials in the scene for object detection, recognition or identification. Hyperspectral technologies are of 

great value for environmental applications where it is possible to take advantage of spectral, spatial, and 

radiometric resolutions. A problem for current and proposed spaceborne hyperspectral platforms is their 

low spatial resolution which ranges from 20 to 30m. The key problem with low spatial resolution is 

mixed pixels where the measured spectral signature is a combination of the contributions of the spectral 

signatures of the materials in the field of view in the sensor. In such cases, the high spectral resolution can 

be used to extract information about objects at the subpixel level by their contribution to the measured 

spectral signature. A common technique in HSI analysis is hard classification where each pixel is 

assigned to one and only one specific class. In this research work, we investigated soft classification 

algorithms which can consider the mixed pixel problem for image classification. Soft classifiers assign 

multiple classes to a single pixel using membership functions which weight the membership of the pixel 

into the available classes. As a result, soft classification could be used to develop models and thematic 

maps that are more appropriate for low resolution remote sensing imagery. This thesis presents a 

comparative study of soft classification algorithms based on Linear Mixing Model and supervised Fuzzy 

Logic classification systems as an alternative for hard classification of low spatial resolution HSI. As part 

of the research, we developed a Spectral Soft Classification Tool (SSCT), which should be valuable 

resource for image analysts because it provides soft classification outputs, visualization tools, and 

accuracy assessment to analyze multi/hyperspectral imagery. Remotely sensed data from HYPERION and 

ETM+ (LANDSAT 7) collected over Puerto Rico were used in this study. 
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CLASIFICACIÓN SUAVE DE IMÁGENES HIPERESPECTRALES BASADO EN EL 

MODELO DE MEZCLADO LINEAL Y EN ALGORITMOS SUPERVISADOS DE LÓGICA 

DIFUSA  

 
Por 

 

Wilma Nydia Pabón Ramírez 

 

Agosto 2008 

 
Consejero: Miguel Vélez Reyes, Ph.D. 
 

Departamento: Ingeniería Eléctrica y Computadoras  

 

Las imágenes y sensores hiperespectrales (HSI por sus siglas en inglés) son una tecnología de 

gran valor para la percepción remota ambiental porque proveen valiosa información espectral de los 

objetos en la escena. Utilizando las firmas espectrales medidas, es posible discriminar entre los materiales 

presentes en una escena para aplicaciones de detección, reconocimiento e identificación de objetos. La 

tecnología hiperespectral es relevante para aplicaciones ambientales cuando es posible tomar ventaja de la 

resolución espacial, espectral y radiométrica del sensor. Sin embargo, un problema actual de los sensores 

en plataformas espaciales propuestos y existentes, es su pobre resolución espacial cuyo rango está entre 

20 – 30 metros.  El principal inconveniente de los sensores con una pobre resolución espacial es la 

presencia de pixeles mixtos en la escena donde la firma espectral de estos pixeles es una combinación de 

la contribución de las firmas espectrales de los materiales en el campo de visión del sensor. En estos 

casos, la alta resolución espectral puede ser utilizada para extraer información de los materiales a nivel de 

sub-pixel por su contribución a la firma espectral medida. Una de las técnicas más comunes para el 

análisis de imágenes hiperespectrales es clasificación dura en donde cada pixel en la escena es asignado a 

una y solo una clase. En este trabajo, nosotros investigamos algoritmos de clasificación suave, los cuales 

pueden considerar el problema de pixeles mixtos en la escena como parte del proceso de clasificación. 

Los clasificadores suaves asignan múltiples clases a un pixel utilizando funciones de membrecía las 

cuales determinan el grado de pertenencia que tiene ese pixel asociado a las clases disponibles. Como 

resultado, la clasificación suave puede ser utilizada para desarrollar modelos y mapas temáticos que sean 

más apropiados para imágenes de pobre resolución espacial. Ésta tesis presenta un estudio comparativo de 

algoritmos de clasificación suave basados en el Modelo de Mezclado Lineal (LMM por sus siglas en 

inglés) y sistemas de clasificación supervisada utilizando lógica difusa como alternativa a la clasificación 

dura de imágenes hiperespectrales de pobre resolución espacial. Como parte de la investigación, 

desarrollamos una herramienta de clasificación suave para el análisis de imágenes multi/hiperespectrales 

(“Spectral Soft Classification Tool” (SSCT)),  el cual debe ser un valioso recurso para los analistas de 

imágenes al proveer algoritmos de clasificación suave, herramientas de visualización, y funciones para la 

evaluación del rendimiento de los clasificadores. Datos de percepción remota adquiridos sobre regiones 

de Puerto Rico con los sensores HYPERION y ETM+ (LANDSAT 7) fueron utilizados en este estudio. 
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1 CHAPTER  1 
 

Introduction 
 

 

1.1 Justification 
 

 
Hyperspectral imagery (HSI) is a significant technology used in remote sensing and play an 

important role in the success of image classification because provides valuable spectral information of the 

materials of interest in the scene. Hyperspectral sensors consists of hundred of narrow bands that collects 

electromagnetic energy through the visible, near infrared (NIR), middle wave infrared (MWIR), and long 

wave infrared (LWIR) regions of the electromagnetic spectrum. Using the spectral signatures, it is 

possible to discriminate between materials or identifying objects. Hyperspectral technologies are useful 

for environmental applications when it is possible to take advantage of spectral, spatial, and radiometric 

resolutions. Mixed pixels are a major problem of remote sensed data which is a common scenario when 

spatial resolution of a sensor is low and a combination of materials occupy a single pixel.  Existing and 

proposed hyperspectral sensors on-board satellite platforms such as HYPERION, Environmental 

Mapping and Analysis Program (EnMAP) (Kaufmann et al., 2006), Hyperspectral Environment and 

Resource Observer (HERO) (Hollinger et al., 2006), and Advanced Responsive Tactically Effective 

Military Imaging Spectrometer (ARTEMIS) (Lockwood et al., 2002) have a spatial resolution ranging 

between 20 – 30 m. In addition, the impact of the point spread function (PSF) is an inherent source of 

uncertainty in satellite images because a portion of the signal acquired by the HSI sensors in a single pixel 

comes from surrounding pixels caused by many factors such as the optics of the instruments, the 

detectors, electronics, and atmospheric effects (Huang et al., 2002) (Van Der Meer and Jong 2006).  In 

such cases, the high spectral resolution can be used to identify objects at the subpixel level by their 

contribution to the measured spectral signature. A common technique in HSI analysis is hard 

classification where each pixel is assigned to one specific class (Richards

(Landgrebe 2002)(Landgrebe 2003)(Lu and Weng 2007). The most popular supervised multispectral hard 

classification algorithm is Maximum Likelihood due its robustness and good performance. We think that 

it is necessary to study alternatives to hard classification algorithms which can consider the mixing 
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problem in the image classification because it could be more descriptive of real variation of landscape 

images.  

Soft classification works with the idea of assigning multiple classes to a single pixel. As a result, 

soft-classification could be used to develop models that are more representative of remote sensing 

imagery. This research project was focus on studying soft classification algorithms and in developing an 

end to end soft-classification system which provides to image analysts and decision makers a useful tool 

that combines state of the art soft classification algorithms, visualization tools, accuracy assessment to 

evaluate the performance of soft classifiers, and metrics to measure the strength of the membership 

partition.  

 

1.2 Research Objectives 
 

The main objective of the research work was to study potential soft-classification algorithms for 

hyperspectral imagery in order to generate an end to end soft classification system. More specific 

objectives of the investigation were: 

 

 Study and implement two soft classification approaches based on fuzzy logic, and linear mixing 

model.  

 

 Study methods to evaluate the performance of soft classification algorithms and visualization 

techniques which can provide alternatives to image analysts in the process of analyzing a 

particular scene.  

 

 Comparison of soft classification algorithms developed on imagery of different landscapes, 

spectral resolutions, and with conventional hard classifiers such as Maximum Likelihood. 

 

 Develop a Spectral Soft Classification Tool which will be incorporated into the UPRM 

Hyperspectral Image Analysis Toolbox (HIAT). 

 

 

1.3 Contribution of this Research Work  
 

The main contributions of this work are the integration of different soft-classification 

methodologies, visualization, and assessment tools in the Spectral Soft Classification Tool (SSCT) which 

is an end to end classification system. In the literature review, we have found that existing HSI analysis 
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tools such as ENVI® (ITT Visual Information Solutions 2007), Multispec (Biehl and Landgrebe 2002) 

(Landgrebe and Biehl, Purdue/LARS Multispec 1994-2008), and HIAT (Arzuaga-Cruz et al., 2004) 

(Rosario-Torres et al., 2005) do not provide capability for soft classification of HSI, accuracy assessment 

and visualization techniques as required for remote sensing image analysis. SSCT provides a complete 

and a useful resource that can be used by many image analysts and decision makers for the analysis of 

different landscapes imagery at the subpixel level.  

 

1.4 Thesis Overview 
 

The thesis is organized as follow. In Chapter 2, background and previous work are discussed.  

State of the arts soft classification algorithms proposed to be used in the SSCT such as Supervised Fuzzy 

C-Means (SFCM) (Zhang and Foody 2001) (Bezdek et al., 1984), Fuzzy Supervised Classification 

System (FSCS) (Melgani et al., 2000), Fuzzy Maximum Likelihood (FML) (Wang 1990), and Linear 

Mixing Model (LMM)  (Keshava and Mustard 2002) are discussed  in Chapter 3. Chapter 4 presents the 

proposed Spectral Soft Classification Tool (SSCT) which is an end to end classification system which 

provides visualization tools to analyze soft classification outputs and accuracy assessment to evaluate the 

performance of soft classifiers.  Real multi/hyperspectral imagery collected with sensors onboard satellite 

platforms for land remote sensing applications were used for experimental results described in Chapter 5. 

Chapter 6 presents the conclusions of this research and suggestions for further work. 
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2 CHAPTER  2 
 

Background and Literature Review 
 

 
This chapter presents the general concepts of HSI classification, challenges in terms of spatial 

resolution of current and proposed HSI satellite sensors, and accuracy assessment to evaluate the 

performance of soft classifiers. The soft classification algorithms studied in this research work, Linear 

Mixing Model and Supervised Fuzzy Logic Algorithms, are presented. 

 

2.1 Image Classification System 
 

In past years and decades,  researchers have been working in develop image classification 

algorithms such as supervised and unsupervised methods, parametric and non parametric statistics 

algorithms, per pixel  or object oriented classification, hard and soft classifiers in order to improve 

classification accuracy (Richards 1995)(Landgrebe 2003)(Lu and Weng 2007)(Schowengerdt 2007). 

Image classification outputs or thematic maps are the basis for many environmental and socioeconomic 

applications. The success of image classification could be affected by many factors, such as type of 

remotely sensed data (type of sensors and multi/hyperspectral imagery), complexity of landscapes, and 

classification algorithm approaches.  Figure 1 shows a simple scheme of classification where the sensor 

acquires electromagnetic energy in form of multispectral and/or hyperspectral imagery, a feature 

extraction is used for dimensionality reduction while keeping class separability in the lowest dimensional 

space, and finally an image classification algorithm is applied which produces a thematic map in the case 

of hard classification.  

 

 

Figure 1: A basic classification system for multi/hyperspectral imagery 
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Hard, per-pixel or crisp classification of HSI is the process of producing thematic or classification 

maps which are informational description of a given area where each pixel in the scene is assigned to one 

and only one specific class (Schowengerdt 2007). The image analyst has prior knowledge of the area to be 

analyzed in the supervised hard classification. It allows defining information classes corresponding to 

specific regions of the image and select representative training samples to train the classifier to be used. 

The most popular hard classifier is the Maximum Likelihood (Richards 1995) due its good performance, 

robustness and its availability in almost any image processing and remote sensing software such as 

ENVI®
1
 (ITT Visual Information Solutions 2007), Multispec

2
 (Biehl and Landgrebe 2002)(Landgrebe 

and Biehl 1994-2008), HIAT
3
 (Arzuaga-Cruz et al., 2004)(Rosario-Torres et al., 2005), and others. 

The partial membership of the pixel to multiple classes is not allowed under hard classification 

algorithms. In other words, a pixel is a full member or not of a class. This kind of processing is not the 

best way to work with data acquired at low spatial resolution where a single pixel includes multiple 

objects from different classes. 

 

2.1.1 Hyperspectral Image Classification 

 
 

Hyperspectral Imagery consists of hundreds of narrows bands acquired by satellite or airborne 

sensors at different wavelengths of the electromagnetic spectrum typically from VIS to SWIR as shown in 

Figure 2. One would be expect that the increment in the number of bands would result in an increase in 

the classification accuracy in comparison with multispectral sensors. Conversely, it is possible that 

classification accuracy decrease as the number of features increased. Previous works (Landgrebe 

2002)(Landgrebe 2003) demonstrates that the number of training samples and data dimensionality are 

related. The uses of high dimensional data sets require a large number of training samples which is a 

limitation of remote sensed data. Feature extraction methods reduce high dimensional data without a 

                                                 
1
  Environment for Visualizing Images (ENVI) developed by ITT Visual Information Solutions, formerly Research Systems Inc. 

(RSI) is widely used software for remote sensing and image processing which provides code extensibility through Interactive 

Data Language (IDL). http://www.ittvis.com/envi 
2
 Multispec developed at Purdue University by Dr. David Landgrebe and the Remote Sensing research group in Purdue’s 

Laboratory for Applications of Remote Sensing (LARS) is non commercial software for image processing. Multispec provides 

similar features to ENVI but does not provide feature extensibility. http://cobweb.ecn.purdue.edu/~biehl/MultiSpec  
3
 Hyperspectral Image Analysis Toolbox (HIAT) was developed over the past 8 years by UPRM researchers at the Laboratory 

for Applied Remote Sensing and Image Processing (LARSIP) to analyze multi/hyperspectral imagery. This toolbox runs over 

MATLAB® environment and incorporates the algorithms developed at LARSIP along with standard algorithms for image 

classification similar to those included in other remote sensing tools such as ENVI and Multispec. 

    http://www.censsis.neu.edu/software/hyperspectral/hyperspectral.html  

http://www.ittvis.com/envi
http://cobweb.ecn.purdue.edu/~biehl/MultiSpec
http://www.censsis.neu.edu/software/hyperspectral/hyperspectral.html
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significant loss of information and in some manner can mitigate the Hughes phenomenon (Landgrebe 

2002) (Landgrebe 2003).  

 

 

 

Figure 2:  Concept of hyperspectral imaging spectroscopy  

 

Figure 3 shows nominal sequences of steps for the analysis of HSI in a supervised case which 

consists of a pre-processing of raw data using algorithms to remove atmospheric effects and denoise 

images, selection of informative and spectral classes, feature extraction methods such as Principal 

Components (PCA) (Schowengerdt 2007), Minimum Noise Fraction (MNF) (Schowengerdt 2007), 

Discriminant Analysis (Landgrebe 2003), Band Subset Selection by Singular Value Decomposition 

(Vélez-Reyes and Jiménez-Rodríguez 1998), and others. Classification algorithms are applied to HSI 

when several tests of training samples are done to assure the best representation of informational classes. 

Finally a hard thematic map is obtained and accuracy assessment methods are used to evaluate the 

performance of hard classifiers. A broad outline of the HSI data analysis process is given in (Landgrebe 

2002)(Landgrebe 2003)(Varshney and Arora 2004)(Jiménez-Rodríguez et al., 2007)(Schowengerdt 

2007). 
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Figure 3: Methodology for the Analysis of High Dimensional Data [Adapted from (Landgrebe 2002)] 

 

 

2.2 Spatial Resolution of Hyperspectral Sensors – Satellite Platforms 
 
 

Current and proposed hyperspectral sensors such as HYPERION (Folkman et al., 2001), EnMAP 

(Kaufmann et al., 2006), HERO (Hollinger et al., 2006), and ARTEMIS (Lockwood et al., 2007) have a 

medium or coarse spatial resolution between 20 – 30 m. For instance, HYPERION (Folkman et al., 2001) 

which is an existing satellite hyperspectral sensor, collects 220 unique spectral channels ranging from 

visible portion (0.357 µm)  to the short wave infrared (SWIR) portion (2.576 µm) of the electromagnetic 

(EM) spectrum with a 10 nm bandwidth and 30m of spatial resolution for all bands. On the other hand, 
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EnMAP (Kaufmann et al., 2006), which is a proposed hyperspectral instrument and schedule for launch in 

2011, will collect 218 spectral channels ranging from visible region (0.420 µm) to the SWIR region 

(2.450 µm) of the EM spectrum at a spatial resolution of 30 m. The EnMAP hyperspectral mission will 

focus on current issues related to the land use / land cover, environment, agriculture, water systems, 

geology, and further associated science problems. A medium spatial resolution of imagery acquired by 

satellite platforms generally introduces the major problem of mixing pixels in the scene because 

frequently a pixel is occupied by a collection of materials or constituent spectra commonly known as 

endmembers as shown in Figure 4.  

 

 
 
 

Figure 4: Mixed pixel constituent by three object spectra. 

 

 
Figure 5 illustrates a spatial degradation caused by a low spatial resolution by comparing true 

color composites of the same region acquired with HYPERION (Folkman et al., 2001), a hyperspectral 

sensor with 30m of spatial resolution and IKONOS (Dial et al., 2003), a multispectral sensor with high 

spatial resolution of 1m PAN sharpened.  
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Figure 5:  HYPERION (Folkman et al., 2001) and IKONOS (Dial et al., 2003) True Color Composites of Enrique Reef at La 

Parguera, Lajas PR 

 

 
There are other factors such as Point Spread Function (PSF) which introduce an inherent source 

of uncertainty to low spatial resolution satellite imagery (Van Der Meer and Jong 2006)(Huang, et al. 

2002). Measured and modeled PSF indicates that spectral response acquired by MSI/HSI sensors for a 

pixel have a significant portion which comes from surrounding pixels as can be seen in Figure 6. For 

instance, it has been estimated, for a given pixel, that less than half of the spectral response recorded at 

the Multispectral Scanner (MSS) sensor (first mulstispectral sensor onboard Landsat satellite) which has 

spatial resolution of 79 m was originated by the materials in the pixel itself (Huang et al., 2002) resulting 

in a spectral response which has contributions from neighbors pixels.  Another example is presented in 

(Townshend et al., 2000), where a study based on the estimation of land cover proportions using a linear 

mixing analysis was conducted. In that study, pure pixels which come from data acquired with 

multispectral Thematic Mapper (TM) sensor were degraded to 250 m of spatial resolution in order to 

obtain data comparable with coarse spatial resolution of bands 1-2 of the Moderate Resolution Imaging 

Spectroradiometer (MODIS). The study revealed an increment of approximately 7% in the standard error 

of estimation of the land cover proportions when PSF effects are present (Townshend et al., 2000) (Huang 

et al., 2002).  

The net sensor PSF (1) (Schowengerdt 2007) is a convolution of individual responses from 

instrument optics, image motion, detector which defines the geometrical GIFOV, and electronics. 

Generally, PSF darkens bright objects and brightens dark objects (Huang et al., 2002). 

 

        (1) 

Hyperion Image 
30m Spatial Resolution 

IKONOS PAN Sharpened 
1m Spatial Resolution 
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Figure 6: Spatial PSF response larger than GIFOV [Figure adapted from (Van Der Meer and Jong 2006)] 

 

Mixed pixels also can be generated when Ground-projected Instantaneous Field of View 

(GIFOV) of a given pixel is comprised by boundaries among informational classes as can be seen in 

Figure 7. 

 

 
Figure 7: Mixed pixels caused by boundaries among informational classes in the scene [From Dr. Nicholas Short’s Remote 

Sensing Tutorial] 

 
Conventional image classification algorithms ignore the impact of mixed pixels in the 

classification process resulting in thematic maps which may not be representative of real variation of 

landscape.  
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2.3 Soft Classification 
 

 
Due to the need to find potential subpixel classification algorithms and models to provide a more 

appropriate representation of remote sensing imagery, researchers have been working on the development 

of algorithms that could be capable of managing mixed pixels in a scene, especially when images from 

satellite multi/hyperspectral sensors are used. A class of classification algorithms which deal with the 

mixed pixel problem are Soft Classification algorithms (Foody 1998)(Lu and Weng 2007) (Schowengerdt 

2007) (Varshney and Arora 2004)(Van Der Meer and Jong 2006). Soft Classification allows the 

assignment of one pixel to multiple classes or a partial membership of that pixel using membership 

functions to generate weight fractions or degree of membership in a range from 0 to 1. The membership 

functions of the soft input variables could be obtained from statistical values of band training samples or 

using band indexes such as vegetation indexes, or band ratios to seek separate certain features. Soft 

classifiers estimate the contribution of each class in the pixel. The pixel has no requirement to have 

contribution from all classes. Soft classification algorithms produce membership maps sometimes called 

fraction images as outputs, one for each class, in which pixel value represents the degree of membership 

for that class. Figure 8 shows an instance of 4 pixels mosaic comprised of three land cover classes, urban, 

forest, and grass and how soft and hard classification approaches assign each pixel into the mosaic. As 

can be seen in Figure 8, hard classification ignores the mixing between land cover types assigning each 

pixel to one and only one specific class. On the other hand, soft classification produces for each pixel a 

degree of membership in a range from 0 to 1 associated to urban, forest, and grass informational classes 

per pixel as shown in Figure 8. For instance, the right corner pixel at the bottom of Figure 8 (mosaic) is 

comprised of forest and grass land-cover types. As can be seen in Figure 8, soft classification assigned 

this pixel to forest and grass classes with degree of membership of 0.7 and 0.3, respectively.  

The research was focused on the study of soft classifiers based on Linear Mixing Model (Foody 

and Cox 1994)(Adams 2006) (Keshava 2003)(Keshava and Mustard 2002) and Supervised Fuzzy Logic 

algorithms (Zhang and Foody 2001) (Mendel 1995) (Varshney and Arora 2004)(Wang 1990)(Foody and 

Cox 1994)(Melgani et al., 2000).  However, other possibilities based on neural networks and neuro-fuzzy 

approaches available in the literature are (Foody 1996) (Tsoukalas 1997)(Nauck and Kruse 

1997)(Schouten 1999).  A soft classification algorithm based on spectral-spatial kernels and Support 

Vector Machine (SVM ) to generate the degree of membership associated to each class was proposed in 



 12  

 

(Gu et al., 2007).  An unsupervised soft classification algorithm based on blind source separation using an 

Independent Component Analysis (ICA) was proposed by Du and Chakrarvarty (Du and Chakrarvarty 

2003). 

 

 
 

Figure 8: Hard and soft classification approaches applied to instance of 4 pixels mosaic. 

 
 

2.3.1 Fuzzy Logic 

 
 

A popular approach to derive soft classifiers is Fuzzy Logic (FL). FL extends the conventional 

Boolean logic using the concept of partial truth for those values falling between “0” and “1”, which 

corresponds to a “totally true” and “totally false”, respectively. This method consists of mathematical 

tools, to model approximate reasoning when data is imprecise, uncertain, vague, and incomplete, using 

fuzzy sets. In crisp logic, an element in the universe is defined as a member or not of a given set 

(Tsoukalas 1997). For instance, the membership of a crisp set H can be defined through a membership 

function defined for every element y of the universe as      

 

                                                                    (2) 
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On the other hand, in fuzzy sets members have degree of membership in the set. The membership 

in a set is represented by a number in the range from 0 to 1 (3) (Tsoukalas 1997).  

 

                          (3) 

 
where y is an element of the universe. A sample membership function is shown in Figure 9.  

 A fuzzyfication process is conducted in order to generate a membership values in a range from 0 

to 1 deduced by a membership functions, which define how each pixel (bands) is mapped to a class. 

Membership functions can be determine on the basis of statistical data or through the aid of neural 

networks sometime called neuro-fuzzy classifiers (Tsoukalas 1997)(Nauck and Kruse 1997). Membership 

functions commonly used in engineering applications are presented next and shown in Figure 10. 

 

 
 

Figure 9: Fuzzyfication process using a triangular function 

 

 

Triangular 

 
A triangular membership function G (x) with end points in (a,0) and (c,0) and high points in (b,1), 

it can be defined as follow 

    =                                  (4) 
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Trapezoidal  

 
The trapezoidal membership function T(x) with end points in (a,0) and (d,0) and high points in 

(b,1) and (c,1), it can be defined as follow 

    =                                          (5) 

Sigmoid –Type S 

 
Sigmoid membership function S(x) is given by the following equation  

 

                               (6)  

Gaussian 

 
Gaussian is a widely used membership function on image classification. It can be written as 

follows 

                                                                      (7) 

 
 

where  and  corresponds to mean and standard deviation, respectively. 

 

Typically, these membership functions (for instance G(x), T(x), S(x), and B(x)) are combined with 

mathematical operators such as minimum, maximum, negation which are given by 

 

Minimum 

 

 

Maximum 

 

 

 

Negation 

 

 
 

where K(x) and L(x) are membership functions (Tsoukalas 1997).  

(8) 
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Figure 10: Different types of membership functions 

 

2.3.2 Linear Mixing Model  

 
 

Linear Mixing Model (LMM) (Keshava and Mustard 2002)(Keshava 2003)(Adams 2006) is the 

simplest model and most widely used to conduct spectral unmixing. Unmixing is the process of 

decomposing the measured spectrum of a pixel into a collection of constituent spectra or endmembers, 

and a set of corresponding fractions or abundances, that indicate the proportion of each endmembers in a 

pixel. Endmembers are spectra but normally corresponds to objects or classes in the scene such as water, 

urban, vegetation, etc (Foody and Cox 1994). As we know, when incident solar radiation strikes the 

surface it can intimate with materials that produce multiple bounces like soil, which is a mixture of 

inorganic minerals and organic matter. In those cases, a nonlinear spectral mixing approach would 

produce better results than linear mixing approach.  

Accordingly with LMM (Keshava and Mustard 2002), the measured radiance of a pixel is a linear 

combination of the individual spectra presents in the scene weighted by fractional area coverage, known 

as abundances. LMM can be expressed as follow: 

 

                                                                   (9)  
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 where  corresponds to the observed pixel,  is N x C matrix of endmembers or materials in the scene, 

is a C x 1 fractional abundance vector, and  is the N x 1 additive noise vector. C is the number of 

endmembers and N is the number of pixels in the image. The LMM has to satisfy the following two 

constraints: 

 

  and     

 
 

For hyperspectral or multispectral image, Equation 9 can be written in matrix form as follows 

 

 

                                                                                   (10) 

 

 

where ,  , , , N is 

the number of pixels, and C the number of endmembers.  If the endmember matrix, S, is known, the 

unmixing problems reduces to the abundance estimation problem. 

Figure 11 shows a conceptual diagram of spectral unmixing in order to determine the appropriate 

numbers of endmembers and estimate weights. The first step consists of applying an algorithm to reduce 

the data dimensionality. This is an optional step but it is useful to eliminate redundant data and reduce the 

computational load to subsequent steps. Principal Component Analysis (PCA) (Schowengerdt 2007) and 

Maximum Noise Fraction (MNF) (Schowengerdt 2007) are two widely used methods to reduce 

hyperspectral data. Next, endmember determination consists of finding out which are the distinct spectra 

that constitute the mixed pixel in the scene. Theoretically (Keshava and Mustard 2002) the limit of 

endmembers in a scene is equal to the number of bands plus one,  (where C are the 

endmembers and M the number of bands) but in practice the number of endmembers ranges from three to 

seven depending of the number of bands and spectral variability of scene components (Plaza et al., 2004). 

For supervised soft classification (Foody and Cox 1994), the endmember determination consists of 

finding out nearly pure pixels from the image itself which are representative of information classes. We 
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can compute the root mean square (RMS) error to evaluate the selection of endmembers (Keshava 

2003)(Keshava and Mustard 2002) . 

 

                                                                            (11) 

 
 

where M is the number of bands, and wk is the estimation residual. When we have chosen constituent 

spectra appropriately, the value of the RMS error will be small. Conversely, if we obtain a high RMS 

value, a different set of endmember spectra is needed for the mixing model. The next stage in the LMM 

subpixel classification process is the inversion phase which consists in the estimation of weights or 

fractional abundances of each pixel from its measured spectrum and endmember spectra. The abundance 

estimation (Keshava and Mustard 2002) can be view as a distance minimization problem, where the 

distance between measured spectral and its estimate is minimized as follows:  

 

 

 

 

Subject to  and   or  

 

 
 

where  is a distance function, x  is the observed pixel, S is the endmember matrix, and a is the 

fractional abundance vector. The most common distance function used in literature is the least square 

(LS) (Keshava and Mustard 2002) :  

 

                                                                            (13) 

 
There are software applications such as N-FINDR

4
 (Winter 1999) (Winter 2004), ENVI/IDL® 

(ITT Visual Information Solutions 2007), and others to use for endmember determination and fractional 

abundance estimation. N-FINDR (Winter 1999)(Winter 2004) is a widely used algorithm to find, in an 

automated way, the purest pixels in the image, which corresponds to the endmembers in a particular scene 

without apriori information. 

 

                                                 
4 N-FINDR is software which provides an automated endmember determination and spectral unmixing [33]. 

(12) 
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Figure 11: Conceptual diagram of spectral unmixing [Adapted from (Keshava and Mustard 2002)] 

 

2.3.3 Evaluation of Soft Classifiers Performance 

 
 

Accuracy assessment is a critical component of any image classification process to provide a 

quantitative measure of classifier performance. The confusion or contingency matrix (Landgrebe 2003) 

shown in Figure 12 is used as a common assessment method to evaluate conventional hard classifiers. 

Testing samples selected for the assessment are summarized in the form of a contingency table. The rows 

in the matrix list the classes and indicate how the pixels labeled for each class were assigned by the 

classifier. For an ideal classification, the matrix will only have values on the diagonal and off-diagonal 

values will be zero. Off-diagonal elements represent errors by omission or commission in the confusion 

matrix methodology. Omission errors refer to pixels that belong to a particular class and were erroneously 

assigned to other informational class. Conversely, the commission errors refer to pixels which not belong 

to a particular class and were erroneously assigned to it. The “Producer’s Accuracy” which is equal to 

100% minus the percent of omission error can be found along the right side of the matrix in Figure 12. On 

the other hand, the “User’s Accuracy” or “Reliability Accuracy” which is equal to 100% minus the 

percent of commission error can be found along the bottom of the matrix in Figure 12.  The Overall 

Accuracy, which is calculated by the sum of the samples on the diagonal (pixels correctly classified) 

divided by the total of samples, could be a simple way to assessing the classification output with a single 

number.  

Unmixing  Process 
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m=number of classes 
 

k= class for which is calculated the user’s or producer’s accuracy 

 

                                    

        

 

 

Figure 12: Layout of a confusion error matrix and computation of user’s and producer’s accuracy (Landgrebe 2003) 

 
 

The confusion matrix is not the best way to evaluate the performance of soft classifiers because it 

assumes that classes are mutually exclusive and each observation belongs to a single class. However, 

many researchers evaluate the thematic map produced by a hardening or defuzzyfication process using a 

hard classifier assessment such as confusion error matrix. Other research works propose the use of 

entropy (Foody 1995)(Foody 1996)(Van Der Meer and Jong 2006) to show how is the strength of class 

memberships, a Euclidean Distance (Foody 1996) to estimate the separation of two data sets based on the 

proportion of each class in the pixel, and/or the fuzzy error matrix, which is an extension of the confusion 

matrix using the principles of fuzzy set theory (Binaghi et al., 1999) (Binaghi 2001)(Foody 2002)(Lu and 

Weng 2007)(Varshney and Arora 2004). All those approaches are discussed next. 
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2.3.3.1 Degree of Mixing 

 
The accuracy assessment of soft classification is really difficult because involve the use of a soft 

reference data as Ground Truth which in many cases is not available. The scene complexity also affects 

the performance of soft classifiers. Entropy (Foody 1995)(Foody 1996)(Van Der Meer and Jong 2006), 

and Euclidean Distance (Foody 1996) are described next to describe how strong is the partition of 

membership. 

2.3.3.1.1 Entropy  

 
Entropy is a measure of information and uncertainty widely used in information theory and 

communications and it is defined as follows (Haykin, 2001, p.568). 

“Suppose that a probabilistic experiment involves the observation 

of the output emitted by a discrete source during every unit of 

time (signaling interval). The source output is modeled as a 

discrete random variable, S 

 

 

 

with probabilities 

 

 

 

We assume that the symbols emitted by the source are 

statistically independent. This is called a discrete memoryless 

source, memoryless in terms that the symbol emitted in any time 

is independent of the previous choices. 

 
We define the amount of information gained after observing the 

event , which occurs with probability pk , as the 

logarithmic function, 

 

 

 

        
 
 

The amount of information  produced by the source during an 

arbitrary signaling interval depends on the symbol  emitted by 

the source at that time. Certainly,  is a discrete random 

variable that takes on the values , …,  with 

(14) 

(15) 
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probabilities  respectively. The mean of over the 

source S is given by 

 

 
 

       

 

         =  

 
H(S) is called the entropy of a discrete memoryless source with 

source S. H(S) is a measure of the average information content 

per source symbol”. (Haykin 2001, p.568-569) 

 

 

The degrees of membership produced by soft classifiers are not probabilities but are numbers in a 

range from 0 to 1. We found in the literature that previous works has been trying to related it with entropy 

concept as a measure of the degree of mixing in a particular scene (Van Der Meer and Jong 2006)(Foody 

1996)(Foody 1995). It could be useful when soft ground truth data is not available. The entropy of a pixel 

in a particular scene is given by  

 

 

 
where x(i) refers to the degree of membership derived by a soft classifier associated with class i and m is 

the number of informational classes in a scene.  

Entropy is maximized when the membership space is partitioned evenly between informational 

classes (mixed pixels) and minimized when is allocate to one specific class (pure pixels). An entropy 

image can be useful to show the degree of softness of the classification output. It would expect that highly 

mixed pixels in the scene have high entropy values (Foody 1996) (Foody 1995). Figure
5
 13 shows an 

instance of a synthetic image generated using a gradual mixture of two endmembers which began as pure 

pixels in the corner and continue to reach a mixture of 50% of proportion coverage of the pixel in the 

center. Entropy (17) was computed for this instance and as can be seen in Figure 13b, entropy is higher 

when mixed pixel is present and lower when pure or almost pure pixel is present.  

 

                                                 
5
 Axes of images (figures) in whole document correspond to discrete spatial coordinates. 

(16) 

(17) 
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(a)                                                                                           (b) 

 
Figure 13: (a) Entropy image generated by a mixture of two endmembers (corners were comprised by pure pixels and 50% of 

mixture can be appreciated at the center) (b) Entropy values for along-track transect  

 

 

2.3.3.1.2 Euclidean Distance  

 
One approach to evaluate the performance of a soft classifier when soft ground truth data is 

available is to measure the distance between the degree of membership obtained by a soft classification 

and the soft reference ground truth. There are several ways to determine this distance where Euclidean 

Distance (ED) (Foody 1996) a simple way to do this. ED can estimates the separation of two data sets 

(soft classification and soft reference data) based on the proportion coverage associate to each class in the 

pixel. Lower values of ED can be interpreted as an accurate estimate of degree of membership for all 

defined informational classes. The ED derived for each pixel can be expressed as follow, 

 

 

 

 
where y(i) refers to the proportion coverage of class i into the soft ground truth data data, x(i) is the degree 

of membership derived by a soft classification for class i, and m  is the number of informational classes. 

Figure 14 shows the LMM membership maps obtained using a synthetic image without adding noise 

(Masalmah and Vélez-Reyes 2007) provided by Ronald Lockwood from AFRL. The spectral responses 

(18) 
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shown in Figure 14 were used to mix along the diagonals with different fraction values based on its 

position with respect to the cube corners (pure spectra). Equation 18 (Euclidean Distance) was computed 

for the synthetic image shown in Figure 14 obtaining an average distance value of 0.00021. The minimum 

ED value was 0 and the maximum ED value for this image was 0.0013. This lower average ED value 

(0.00021) can be interpreted as an accurate degree of membership obtained from a soft classification for 

this image shown in Figure 14. As can be seen in Figure 14, the LMM membership values have a good 

correlation with true abundance maps. 

 

 
Figure 14:  Synthetic image, true abundance maps (soft ground truth data), and LMM membership maps. Synthetic Image 

courtesy of Dr. Ronald Lockwood and Lt. Angela Puetz from AFRL 
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2.3.3.2 Fuzzy Error Matrix 

 
Fuzzy error matrix (Binaghi et al., 1999) (Binaghi 2001) which is an extension of the confusion 

error matrix using the principles of fuzzy set theory could be a better alternative to assess the performance 

of soft classifiers when soft ground truth data is available. The reliability of soft reference data is essential 

to avoid under or over estimation of accuracy assessment.   

Table 2 shows a three class one pixel instance of the fuzzy error matrix for the cases of perfect 

matching, underestimation, and overestimation between soft ground truth data and degree of membership 

derived by soft classification. Let Ri and Ci be the soft ground truth data and soft classification output for 

class i, respectively. Ri and Ci can be considered a fuzzy sets in the soft classification context having a 

membership function as follow 

 

 

 

 

where [0,1] denotes the interval of real numbers from 0 to 1.  and  are the degree of 

memberships of the sample element y in class i for the soft ground truth data and classification data. The 

fuzzy error matrix diagonal and off-diagonal values are determined using min operator   

 

 

 

The “Total Grades” row at the bottom of the matrix corresponds to the sum of the soft ground 

truth data for each informational class samples available (see Table 1-2). On the other hand, “Total 

Grades” column at the right side of the matrix corresponds to the sum of the degree of membership for 

each informational class samples available (see Table 1-2). Similar to confusion error matrix method, we 

can obtain the “Producer’s Accuracy” related to omission errors, and the “User Accuracy’s” related to 

errors of commission with computation of fuzzy error matrix. Overall Accuracy can be interpreted as a 

measure of the total match between soft ground truth data and soft classification output and could be a 

simple way to assess soft classifier in a single number. Accurate soft ground truth data is not available in 

much of the cases; as a result computation of fuzzy error matrix is not possible with a hard ground truth 

data where each pixel is allocated to one specific class. For that reason some researchers used hard 

thematic map produced by a hardening process (defuzzyfication) to compute the confusion error matrix. 

(19) 

(20) 
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This approach does not allow partial membership resulting in a loss of information and errors in accuracy 

estimation.  

Table 1 shows the Fuzzy Error Matrix derived from the LMM membership values (soft 

classification outputs (C)) and True Abundances (soft ground truth data (R)) for the testing samples 

shown in Figure 15 of the synthetic image example shown in Figure 14 (Masalmah and Vélez-Reyes 

2007). As can be seen, the overall accuracy of the fuzzy error matrix for this example is 98%. In addition, 

the Producer’s and User’s Accuracy for all classes are above 97%. Accordingly with the fuzzy error 

matrix analysis, this result can be interpreted as an accurate estimation of degree of memberships in terms 

of the soft ground truth data. 

 
Table 1: Fuzzy Error Matrix derived from LMM membership values (C) and True Abundances (R) of synthetic image shown in 

Figure 14 

 

R Endmember1 R Endmember2 R Endmember3 R Endmember4 
Total 

grades (C) 
User's 

Accuracy 

CEndmember1 504.0955 334.3208 342.2735 259.9587 512.6795 98.33% 

C Endmember2 330.4055 460.3736 262.6564 310.9814 466.6507 98.65% 

C Endmember3 342.0213 263.8119 467.8989 316.1223 476.1373 98.27% 

C Endmember4 262.1251 315.1205 320.2766 443.0229 454.5996 97.45% 

Total 
grades (R) 512.6418 472.7633 476.3437 448.251 

  Producer's 
Accuracy 98.33% 97.38% 98.23% 98.83% 

  Overall 
Accuracy 98.19% 

      

 
 

Figure 15: Testing samples (red rectangles) used to compute the Fuzzy Error Matrix of the synthetic image shown in Figure 14  
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Table 2: Three classes – one pixel instance of the fuzzy error matrix for three possible cases: (a) perfect matching,                               

(b) underestimation, and (c) overestimation (Binaghi et al., 1999) (Binaghi 2001) 

 

 

 

 

 

 
 

 

R1 R2 R3

Total 

grades

User's 

Accuracy

C1 0.4 0.4 0.4 0.4 100%

C2 0.5 0.5 0.5 0.5 100%

C3 0.3 0.3 0.3 0.3 100%

Total grades 0.5 0.5 0.5

Producer's 

Accuracy
80% 100% 60%

Overall 

Accuracy
80%

xR1(y)=0.5 xC1(y)=0.4

xR2(y)=0.5 xC2(y)=0.5

xR3(y)=0.5 xC3(y)=0.3

Soft Reference 

Data

Degree of 

Membership

(b) Fuzzy Error Matrix - Underestimation (1 pixel instance)

R1 R2 R3

Total 

grades

User's 

Accuracy

C1 0.5 0.5 0.5 0.7 71%

C2 0.5 0.5 0.5 0.5 100%

C3 0.5 0.5 0.5 0.6 83%

Total grades 0.5 0.5 0.5

Producer's 

Accuracy
100% 100% 100%

Overall 

Accuracy
100%

xR3(y)=0.5 xC3(y)=0.6

(c) Fuzzy Error Matrix - Overestimation (1 pixel instance)

Soft Reference 

Data

Degree of 

Membership

xR1(y)=0.5 xC1(y)=0.7

xR2(y)=0.5 xC2(y)=0.5
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2.3.3.3 Correlation Coefficients 

 
Many researchers measure the linear relation among soft reference data and degree of 

membership derived by a soft classifier using calculation of correlation coefficient   which is 

defined as follow, 

 

 

 
where  is the covariance between two datasets (soft ground truth data and soft classification output) 

and  and   are standard deviation of each dataset, respectively (Foody 1996).  Figure 16 shows a 

scatter plot between degree of membership (x(i)) derived by a LMM soft classifier and soft ground truth 

data (y(i)) of synthetic image example shown in Figure 14.  

 

 
 

Figure 16: Scatterplot of soft reference data (y(i)) and estimated degree of membership values (x(i)) of synthetic image example 

shown in Figure14  

(21) 
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2.4 Existing Remote Sensing and Image Processing Tools 
 

 
There are commercial and non-commercial image processing and remote sensing software such 

as ENVI®(ITT Visual Information Solutions 2007), Multispec©(Biehl and Landgrebe 2002)(Landgrebe 

and Biehl 1994-2008), HIAT (Arzuaga-Cruz et al., 2004)(Rosario-Torres, Arzuaga-Cruz and Vélez-Reyes 

2005), and others which provide valuable tools to image analysts. ENVI® (ITT Visual Information 

Solutions 2007) is user-friendly commercial software to extract information from geospatial imagery 

developed by ITT Visual Information Solutions, which provides code extensibility through Interactive 

Data Language (IDL). Multispec© (Landgrebe and Biehl 1994-2008) (Biehl and Landgrebe 2002) 

developed by Dr. Landgrebe and the Remote Sending research group in Purdue’s Laboratory for Applied 

Remote Sensing (LARS) is the most known non-commercial tool used for hard image classification of 

multi/hyperspectral images. The Hyperspectral Image Analysis Tool (HIAT) (Arzuaga-Cruz et al., 2004) 

(Rosario-Torres et al., 2005) is a MATLAB® toolbox developed by the UPRM researchers at the 

Laboratory for Applied Remote Sensing and Image Processing (LARSIP) over the past 10 years. HIAT 

provides functions to analyze multi/hyperspectral images in terms of hard classification, supervised and 

unsupervised spectral unmixing, feature extraction/band selection and other functionalities. The proposed 

Spectral Soft Classification Tool (SSCT) it will be incorporated to the HIAT. 

We found in the literature non-commercial tools such as PARBAT (Lucieer 2004) and VTBeans
6
 

(Bastin, Fisher and Wood 2002) which were primarily developed to deal with the problem of visualize 

uncertainty of results obtained from soft classification of remote sensed imagery. However, we found that 

existing remote sensing tools do not provide capability for soft classification of HSI, visualization tools, 

and accuracy assessment as an end to end classification system. The proposed SSCT developed as part of 

this research intend to group many efforts of researchers in the area of Soft Classification integrating soft-

classification methodologies based on linear mixing model and fuzzy logic, visualizations tools, and 

accuracy assessment to evaluate the performance of soft classifiers.  

 

 

 

 

                                                 
6
 VTBeans toolkit is not available to download at the website mentioned in (Bastin, Fisher and Wood 2002). 

Accessed June 2008. For that reason, it was not possible to use and explore the VTBeans tool. 
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2.5 Summary 
 

 
This chapter presented background and literature review about conventional and soft 

classification techniques. The accuracy assessment for both hard and soft classification was also 

introduced. In addition, the challenge to extract and process data from current and proposed satellite 

sensors was discussed and how it affects the performance of conventional hard classifiers. 
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3 CHAPTER  3 
 

Supervised Soft-Classification Algorithms 
 

 
This chapter presents the soft-classification algorithms used in the Spectral Soft Classification 

Tool (SSCT). The algorithms were based on Supervised Fuzzy Logic algorithms and Linear Mixing 

Model such as Supervised Fuzzy C-Means (SFCM) (Zhang and Foody 2001) (Bezdek et al., 1984), Fuzzy 

Supervised Classification System (FSCS)(Melgani et al., 2000), Fuzzy Maximum Likelihood (FML) 

(Wang 1990), and Linear Mixing Model (LMM)(Keshava and Mustard 2002) (Keshava and Mustard 

2002)(Rosario-Torres 2004). 

 

3.1 Supervised Soft Classification  
 

 
Figure 17 shows a block diagram of the soft classification scheme for multi/hyperspectral data. 

The best known soft-classification algorithms found in literature are based in fuzzy sets theory such as 

FML, and FCM or SFCM (supervised version of Fuzzy C-Means). FML and FCM are an extension of 

Maximum Likelihood and C-Means hard classification algorithms respectively. In addition, there are a 

variety of soft classifiers based in fuzzy rules such as SFCS. Soft classifiers are basically comprised of 

three steps: (1) softening process (fuzzyfication) which involves the division of the feature space into 

fuzzy subspaces specified by a membership function either Gaussian, Triangular, or Trapezoidal (the 

most commonly used), (2) inference step (classification) which apply fuzzy rules to data and calculate the 

strength or membership proportions of each land cover type per pixel, and, finally, (3) a hardening 

process (defuzzyfication) which produces a hard outcome in the form of a single thematic map (Tso and 

Mather 2001).  

The softening process divides the spectral space into fuzzy subspaces and generates fuzzy rules 

for each fuzzy subspace. The degree of membership for each input pixel is calculated using membership 

functions (see Section 2.3.1). The selection of a membership function and the width of each subspace are 

case dependent (Tso and Mather 2001). For instance, FSCS uses a Gaussian membership function to 

obtain the degree of membership but they introduce a modulated Gaussian distribution for the case of 

classes that have a large extent where it is difficult to decide the degree of membership by spectral regions 
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overlapping (Melgani et al., 2000). A pixel that fall within the overlap regions of membership functions 

necessities the uses of fuzzy rules. Hence, a final solution requires the use of inference and 

defuzzyfication stages.  

 

 

 
 

Figure 17: A general soft classification scheme for multi/hyperspectral imagery 

 

The inference stage computes the degree of membership contributed by fuzzy rules and generates 

the fraction maps for each pre-defined informational class where each pixel value corresponds to the 

weight value of that class associated to the pixel. Finally, a defuzzyfication process is performed to 

convert fuzzy outputs into crisp values. Centroid and Maximum are two commonly techniques used for it 

(Tso and Mather 2001).  The Centroid method calculates the crisp values finding the center of gravity of 

the membership function. On the other hand, in the maximum method, the crisp value is chosen as the 

value where each fuzzy subset has its maximum degree of membership (“truth value”).  In image 

classification, the hardening process is performed to produce a single thematic map which sometimes can 

be preferred by image analysts instead of the fraction maps. 

FSCS (Melgani et al., 2000), FML(Wang 1990), SFCM with Mahalanobis and Euclidean norms 

(Bezdek et al., 1984) (Zhang and Foody 2001), and ML ( Duda et al., 2001) are discussed next. All these 

algorithms are implemented in a supervised mode which requires prior knowledge by the image analyst in 

order to determine the best representation of land cover types in the scene as informational classes. 

Supervised algorithms require an adequate selection of training data which, in some way, could result in 

good or poor performance of the classifier. The training data can be soft or non-soft which is the case of 

FML, and SFCS, respectively.  
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3.1.1 Fuzzy Supervised Classification System (FSCS) 
 

 
(Melgani et al., 2000) proposed an explicit fuzzy supervised classification system using statistical 

values comprised of three step: (1) fuzzyfication process where each pixel per band is transformed into a 

matrix of membership degrees corresponding to the fuzzy inputs of the process using a Gaussian 

membership function, (2) fuzzy classification using a MIN reasoning rule to deduce fuzzy outputs, and 

finally, (3) a defuzzyfication process to generate a single thematic map which can be used to conduct a 

conventional hard accuracy assessment when soft ground truth data is not available. One of the 

advantages of the proposed method of (Melgani et al., 2000) is its simplicity and flexibility in terms of 

inserting and removing bands without further changing modules of the classifier.  Figure 18 shows a 

block diagram describing the FSCS method proposed by (Melgani et al., 2000). Each module of FSCS 

(Melgani et al., 2000) is explained next.  

 

 

 
 

 
Figure 18: Block diagram of Fuzzy Supervised Classification System (FSCS) methodology (Melgani et al., 2000)   
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3.1.1.1 Softening or Fuzzyfication Process 

 

After the selection of training samples, a softening process is performed in order to transform 

each pixel per band into a matrix of membership degrees representing the soft inputs of the process. 

Bands and land cover classes are represented by fuzzy sets and fuzzy subsets, respectively. Each fuzzy 

subset (class j), in a given fuzzy set (band i), is defined by a Gaussian function, . The vector pixel 

Y in the N-dimensional space is defined by 

 

 

 

The membership function of class j in band i is defined by 

 

 

 

where  and   are the mean and standard deviation values of class j in band i, respectively.  

The mean  is the point without any uncertainty about its membership degree and the standard deviation, 

 indicates the width of a fuzzy subset (class j). FSCS (Melgani et al., 2000) approach introduces a 

modulated Gaussian distribution if a priori knowledge of class extent is available. The modulation factor 

calculation takes into consideration the number of pixels in the histogram which corresponds to class 

mean in order to avoid the problem of the a priori knowledge of class extent. The modulation principle is 

useful over large extent classes where membership degree decision is difficult because of spectral regions 

overlapping (Melgani et al., 2000).  

 

The modulated standard deviation can be calculated as follow (Melgani et al., 2000): 

 

 

 

where  is the standard deviation of class j in band i and  is the modulation factor. 

The modulation factor can be calculated as follows (Melgani et al., 2000): 

 

 

 

(22) 

(23) 

(24) 

(25) 
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where  is the extent of class j in band i.  is a constant (Melgani et al., 2000) defined by empirical 

observation as the value which satisfies the condition of not reinforce strong classes or weaken the weak 

classes.  The can be calculated as follow by inspection the histogram to find out the number of 

pixels which corresponds to mean of class j, defined as  (Melgani et al., 2000)  

 

 

 

where M is the number of classes. 

As a result, we get a N x M soft input matrix, S, where N and M are the number of bands and classes, 

respectively. For a pixel Y, the soft input matrix can be written as follow: 

 

 

 

3.1.1.2 Soft Classification  

 

Soft classification (Melgani et al., 2000) consists of analyzing the soft input matrix, S, using a MIN 

reasoning rule which finds out the minimum degree of membership provided by different fuzzy sets 

(bands) for each fuzzy subset (class) per pixel. As a result, we get a primitive fuzzy output vector defined 

as follows (Melgani et al., 2000): 

 

 

 

where M is the number of fuzzy subsets (classes) and    i=1,2,…,N. 

After the MIN reasoning rule was applied to S, a rescaling operation was performed in order to normalize 

the class proportion per pixel deduced from different fuzzy sets. The soft output vector F can be 

expressed as follows (Melgani et al., 2000): 

 

 

 

where  

(26) 

(27) 

(28) 

(29) 

(30) 
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The soft-classification step produces the membership maps for each class taking into 

consideration the degree of membership of each pixel per class.  

 
3.1.1.3 Hardening or Defuzzyfication Process  

 

 

A hardening process is performed using a MAX rule to convert the soft outputs into crisp outputs 

in order to generate a single classification map assigning each pixel to the class with a higher degree of 

membership (Melgani et al., 2000). For instance, pixel Y is assigned to class j if  

 

 

 

 

3.1.2 Fuzzy Maximum Likelihood (FML) 

 
 

A supervised fuzzy-classification system based on statistical parameters known as Fuzzy 

Maximum Likelihood (FML) classifier was proposed by (Wang 1990). The method consists basically in 

the following steps: (1) estimate the fuzzy mean and fuzzy covariance matrix from training data which 

should be a representation of data softness, (2) estimate the membership values associated to each land 

cover type per pixel, and (c) finally a defuzzyfication process is performed in order to generate a single 

thematic map. 

The soft representation of a geographical area is a form of representing the feature space into the 

fuzzy partition where partial membership of pixels in more than one class is allowed. A fuzzy partition of 

the feature space is represented by fuzzy sets (informational classes) on the universe X such that  

 

 
 

 

 

 

 

(31) 

(32) 
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where  is the membership function of fuzzy set j (class j), M is the number of informational classes, 

X  is the whole pixels, and x are pixels (Wang 1990). The M x B fuzzy partition matrix , F, can be written 

as follows (Wang 1990): 

 

 

 
where M and B are the number of classes and pixels, respectively. 

Supervised hard-classification algorithms such as Maximum Likelihood use homogeneous 

training samples to train the classifier (Duda et al., 2001). Conversely, FML approach requires samples 

which take into consideration the mixture of land cover types in the scene (Wang 1990)(Schowengerdt 

2007).  The fuzzy mean, , and fuzzy covariance matrix, , of land cover class j, which is represented as 

a fuzzy set, are needed as statistical parameters to train the FML classifier. The fuzzy mean of class j is 

defined as (Wang 1990) 

 

 

 

where fj(xi) is the membership function of class j, xi  is a sample pixel measurement vector, and g is the 

number of training samples.  

 
The fuzzy covariance matrix of class j can be expressed as 

 

 

 

where fj(xi) is the membership function of class j, xi is a sample pixel measurement vector, g is the 

number of training samples, and   is the fuzzy mean of class j. The fuzzy mean and fuzzy covariance 

matrix are an extension of the conventional mean and covariance matrix. When the membership value of 

(35) 

(34) 

(33) 
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class j,  , is equal to 1 or 0, (34)-(35) become the conventional mean and covariance matrix 

statistics. 

Each fuzzy set is described by its membership function which is based on the multidimensional 

gaussian memberhip function. Fuzzy mean and fuzzy covariance matrix replace the coventional mean and 

covariance matrix in the ML classification algorithm. A membership function of class j can be defined as 

follows (Wang 1990) 

 

 

 
where 

 

 

 
and L is the dimension of data, M is the number of informational classes, and   . The degree of 

membership associated to each land cover class depends on the position of the sample pixel, xi , in the 

feature space. The membership function, , increases exponentially with the decrease of               

. The term   is used as normalizing factor. 

 
In order to obtain a soft training data, an iterative algorithm is used to generate the membership 

values of training data. At the initial stage, membership values are assumed to be either 0 or 1 associated 

to each class which becomes in a conventional mean and covariance matrix according to equation (34) 

and (35). New membership values (36) are calculated from conventional mean and covariance matrix 

which are used to recalculate fuzzy mean and fuzzy covariance matrix until the process reaches stable 

values for both fuzzy means and fuzzy covariance (Wang 1990)(Zhang and Foody 2001).  

As we explained in this section, FML requires the use of soft-training data where apriori 

information of training samples coverage is needed. We proposed the use of the weight fractions obtained 

from a LMM method as the proportion coverage for training samples at initial stage in order to obtain the 

soft-training parameters.  

  

(36) 

(37) 
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3.1.3 Supervised Fuzzy C- Means (SFCM) 

 

 
Fuzzy C – Means (FCM) is a well – known unsupervised sub-pixel classification algorithm 

(Bezdek et al., 1984) in which pixels are initially assigned randomly to clusters. The algorithm iteratively 

reassigns pixels to other clusters in order to minimize the generalized least square error function,  

 

 

 

 

Let  be a sample of C measured observations in a L – dimensional space. A fuzzy 

clustering is represented by a fuzzy set  where M and C are the number of clusters and 

pixels, respectively. b is a weight exponent, , which controls the data softness, increasing b 

tends to increase the degree of softness and vice versa (Zhang and Foody 2001)(Lucieer 2004). When b is 

set to 1, a hard classification is performed in which each pixel is allocated to one specific cluster. There 

are no criteria to select an optimum value of b.  Authors (Bezdek et al., 1984)(Zhang and Foody 

2001)(Lucieer 2004) suggest the use of a value for b in the range from  depending on the 

degree of mixing in the scene. Perhaps, the computation of scene entropy (17) could be useful to set up 

the b parameter.  is a measure of the distance between observed pixel, ,  and the fuzzy cluster 

centers, . The most widely used are Euclidean (39) and Mahalanobis Distances (40). 

 

 
 

 

 

 

where   are the fuzzy cluster centers 

 
  is the membership value of an observed pixel vector  xi associated with cluster j and is computed from 

 

 

 

(38) 

(39) 

(40) 

(41) 
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 has to satisfy the following constraints,  

 

 

 

 

Some applications require supervised methods to analyze remote sensed data. Zhang and Foody 

proposed supervised version of the FCM (Bezdek et al., 1984) algorithm (SFCM) using soft training data 

obtained from fuzzy means (43) and fuzzy covariance matrix (44) as training parameters of the classifier. 

Similarly FML has been derived.  

 

 

 

 

 

 

 
Deer (Deer et al., 1996)(Deer and Eklund 2001) proposed a Supervised Fuzzy Mahalanobis 

classifier which is also a modified version of the FCM algorithm using hard training data. In this case,  

and  are the conventional mean (45) and covariance matrix (46), respectively. 

 

 

 

 

 

 

 
where g is the number of pixel in the training data set for class j. 

 

  

(42) 

(43) 

(44) 

(45) 

(46) 
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3.1.4 Linear Mixing Model (LMM) 
 

 
LMM is also used as a soft classifier in this research work. LMM algorithm was described in 

details in Section 2.3.2. When LMM is used as a supervised soft classifier, it is assumed that the image 

analyst has prior knowledge of the scene and endmembers are determined from training data manually or 

as an average of training data (Foody and Cox 1994). Depending on the complexity of scene to be 

analyzed, a pre-processing step in order to determine a better representation of class endmembers is 

required. Unsupervised methods for unmixing of spectral data are an alternative to finding endmembers 

present in the scene before applying pre-processing techniques. Masalmah (Masalmah and Vélez-Reyes 

2007) suggested the use of the Positive Matrix Factorization algorithms for the extraction of endmembers 

and abundance estimation in an unsupervised mode.  Supervised methods such as Pixel Purity Index (PPI) 

(Boardman 1993)(Boardman et al., 1995), and others are used for this purpose as well (Plaza et al., 2004). 

PPI works over a reduced dimensional data calculating the pixel purity score for each point in the image 

cube by randomly generating L lines in the V-Dimensional Space. All the points are projected onto the 

lines, and the ones falling in the extremes of these lines are counted. The projections are repeated many 

times for random lines and those pixels at a certain cutoff threshold are declared “pure” pixels (Plaza et 

al., 2004). 

 

3.1.5 Maximum Likelihood (ML) Algorithm 
 

 
As part of the research, soft classification algorithms proposed to be included in the SSCT were 

compared with a conventional hard classification algorithm such as Maximum Likelihood (ML). ML is a 

per-pixel algorithm where each pixel is assigned to the class which it has the highest posterior probability 

(47) (Duda et al., 2001) (Richards 1995).  

 

 

 
 

where  is a posterior probability,  is a prior probability which in the case of ML is equal to 

; M is the number of classes.  is a class conditional probability density function (pdf).   

 
ML simplifies to  

(47) 
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choose i  if   , and  j= 1, 2, 3, …, M  

 

If  is a multidimensional Gaussian probability density function 

 

 

 

 
where  and  are the parameters for training the classifier, mean (45) of class i  and covariance (46) of 

class i  with dimension L, respectively. To avoid the computation of the exponential term, equation (49) 

can be reduced by applying a natural logarithm to  which is a monotonically increasing function. 

The discriminat function of   under ML conditions reduces to: 

 

 

 

 
The ML rule can be stated as follows: 

 
   if    , and  j= 1, 2, 3, …, M  

 

 

3.2 Summary 
 

This chapter presented supervised soft classification algorithms based on Linear Mixing Model 

and fuzzy sets theory such as FML and SFCM with a Mahalanobis and Euclidean norms and fuzzy rule 

based algorithm such as FSCS which were included in the Spectral Soft Classification Tool. All those soft 

classification algorithms will be compared with a well known hard classifier, ML, as part of the research 

work.  

 

 

 

  

(49) 

(50) 
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4 CHAPTER  4 
 

 

The Spectral Soft Classification Tool 
 

 
This chapter presents the Spectral Soft Classification Tool (SSCT) which is an end to end 

classification system that provides supervised soft classification algorithms, visualization techniques, and 

accuracy assessment to evaluate the performance of soft classifiers using the fuzzy error matrix and 

conventional hard classification methods and other tools to measure the data softness as well. The SSCT 

will be added to the UPRM Hyperspectral Image Analysis Toolbox (HIAT). The routines developed and 

final integration will be performed by the LARSIP integration team. 

 

4.1 Hyperspectral Image Analysis Toolbox (HIAT) 
 
 

Researchers at the Laboratory for Applied Remote Sensing and Image Processing (LARSIP) have 

been working for the past 10 years on the analysis of multi/hyperspectral imagery being HIAT one of the 

products developed at LARSIP, UPRM. HIAT (Arzuaga-Cruz et al., 2004) (Rosario-Torres et al., 2005) 

is a MATLAB® Toolbox for the multi/hyperspectral image processing which provides hard classification 

and spectral unmixing functions similar to those available in commercial and non-commercial software 

such as ENVI® (ITT Visual Information Solutions 2007) and Multispec© (Biehl and Landgrebe 

2002)(Landgrebe and Biehl 1994-2008). HIAT also includes original contributions in the area of feature 

extraction and bands selection (Vélez-Reyes and Jiménez-Rodríguez 1998). Figure 19 shows the data 

processing schema of the HIAT and proposed modification for soft classification. The green boxes in 

Figure 19 are functions already available at the toolbox. The blue boxes are the SSC modules that will be 

incorporate to HIAT. The LMM, FML, SFCM, and FSCS soft classification algorithms explained in 

Chapter 3 will be included into SSC Soft-Classification module. The approaches discussed in Section 

2.3.3 to evaluate the performance of soft classifiers will be included into SSC Accuracy Assessment 

module. In addition, SSC will provide visualization tools as an aid to interpretation of soft classification 

output. The soft classification, visualization tools, and accuracy assessment modules shown in Figure 19 

are described in Section 4.3 using an Enrique Reef, PR scene as an example to show the SSCT 

functionalities. 

CHAPTER  4 
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Figure 19: HIAT Processing Methodology including the proposed Spectral Soft Classification Tool 

 

 

4.2 The Spectral Soft Classification Tool (SSCT) 
 
 

As part of this work, we have developed an end to end soft classification tool, SSCT, which is 

shown in Figure 20, that will be incorporated into HIAT. SSCT will provide the image analysts a valuable 

tool for the analysis of spectral imagery. The soft-classification system is comprised of 5 steps: (1) pre-

processing to remove atmospheric effects and denoised an image before apply classification algorithms, 

(2) feature extraction to reduce high dimensional data without a significant loss of information, (3)  soft 

classification algorithms which take into consideration the mixing of pixels as part of the classification 
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process producing several fraction maps where each pixel represents the degree of membership of that 

pixel per informational class, (4) accuracy assessment using soft and non-soft ground truth data, and 

finally (5) visualization outputs which can be useful for interpreting the data softness using soft and hard 

outputs. An Enrique Reef at La Parguera, Puerto Rico scene is used next to show the SSCT functions.  

A brief description of SSCT components is given in Table 3. A more detailed description is given 

in Appendix A.  

 
  

 

 
 

 
Figure 20: SSCT as an end-to-end soft classification system 
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Table 3: SSCT – Description of .m file functions 

FUNCTION DESCRIPTION 

  

FracMaps This function generates a RGB composite from three membership maps 

assigned to Red, Green, and Blue channels in order to explore the 

mixing among informational classes. (Visualization Module) 

  

CorrCoefAnalysis This function generates scatter plots between degree of membership 

derived by soft classification algorithms and soft-ground-truth data, and 

computes the correlation coefficient associated to each informational 

class. Soft ground truth data is required. (Assessment Module) 

  

EucDist This function estimates the separation of the degree of membership 

derived by soft classification algorithms and soft reference data based 

on the proportion coverage associated to each class in the pixel. Soft 

ground-truth data is required. (Assessment Module) 

  

 

FEM This function calculates the fuzzy error matrix to evaluate the 

performance of soft classification algorithms using fuzzy sets. Soft 

ground truth data is required. (Assessment Module) 

 

 

Entropy_Img This function generates an entropy image based on the membership 

maps derived by soft classification algorithms. (Assessment & 

Visualization Module) 

 

Rescal This function normalizes the degree of memberships to sum up to one. 

(Complementary function) 

 

Defuzzy This function generates a single classification map derived from 

membership maps produced by soft classification algorithms assigning 

the pixel to the class with the higher degree of membership. 

(Complementary function & Soft Classification Module) 

 

LMMsc This function generates a single classification map derived by LMM 

membership maps based on highest degree of membership. (Soft 

Classification Module) 

 

 

FSCSsc This function generates the FSCS membership maps and a single 

classification map based on highest membership value. (Soft 

Classification Module) 

 

FMLsc FMLsc function generates the FML membership maps and a single 

classification map based on highest degree of membership. At initial 

stage the degree of membership associated to each class is set to 1 or 0 

("pure pixels") in order to obtain the soft training parameters associated 

to each class iteratively. Training samples should be comprised from at 

least two classes. (Soft Classification Module) 
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FML_LMMsc 

 

This function generates the FML membership maps and a single 

classification map based on highest degree of membership. LMM 

abundances are used to as the proportion coverage associated to each 

class in order to generate the soft training parameters. Training samples 

should be comprised from at least two classes. (Soft Classification 

Module) 

 

FML_LMMscInit 

 

This function generates the FML membership maps and a single 

classification map based on highest degree of membership. LMM 

abundances are used as the proportion coverage associated to each class 

in order to determine iteratively the soft training parameters. Training 

samples should be comprised from at least two classes. (Soft 

Classification Module) 

 

 

ThMapThr 

 

This function generates a single classification map with an unclassified 

class using a user defined threshold (between 0.01-0.99). (Visualization 

Module) 

 

 

MemMapBinThr  This function generates binary maps using thresholds at 0.85, 0.7, 0.5, 

and 0.20 to visualize the spatial extent of a particular membership map. 

(Visualization Module) 

 

 

 

 

4.3 Using the SSCT: Enrique Reef, La Parguera, Puerto Rico scene 
 
 

4.3.1 Experimental Set-up 

 

 
Figure 22 shows a subset, 25 x 48 pixels, of Enrique Reef, La Parguera located in the 

Southwestern of Puerto Rico Island used as hyperspectral data input for SSCT experiments. The scene 

was acquired in August 15, 2002 by HYPERION (Folkman et al., 2001), a hyperspectral sensor onboard 

Earth Observing (EO) – 1 satellite. HYPERION (Folkman et al., 2001) collects 220 unique spectral 

channels ranging from 0.4 to 2.5 µm with a 10nm bandwidth and 30m of spatial resolution for all bands 

as described in Table 4. Sea Grass, Mangrove, Sand, Reef Flat, and Deep Water were selected as 

informational classes. IKONOS imagery acquired in 2006 was used to show cover types location across 

Enrique Reef as shown in Figure 21. 
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Table 4: Specifications of HYPERION (EO-1) (Folkman et al., 2001) Hyperspectral sensor  

 

Spectral Range 0.4-2.5 µm 

Swath Width 7.5 km 

Spatial Resolution 30 m 

Spectral Resolution 

         VNIR 

         SWIR 

220 channels 

Bands 8 – 57 

Bands 77 – 224 

Temporal Resolution 200 days 

Radiometric Resolution 12 bits 

 

 

 

4.3.2 Land Cover References 

 
 

We have used hard and soft land cover references available to validate the membership maps and 

classification maps derived by soft classification algorithms included in SSCT. Figure 24 shows a 

classification map of La Parguera, Puerto Rico region generated by the Biogeography Program of the 

National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science, 

which is part of the Center for Coastal Monitoring and Assessment (CCMA)
7
 (Kendall et al., 2001). They 

used aerial photographs of nearshore waters of Puerto Rico acquired in 1999 to study the benthic habitat 

types of the region and ground-truth points distributed across the region to validate the classification 

maps. The overall accuracy of La Parguera region was 93.6% which was estimated with 200 ground truth 

points as shown in Figure 25. A small percentage of submerged vegetation was misclassified as coral reef 

accordingly with (Kendall et al., 2001). 

(Rivera-Borrero and Hunt 2007) has developed a classification map from 1 meter IKONOS PAN 

sharpened imagery shown in Figure 23(a) which was validated in the field with several ground control  

                                                 
7
 http://ccma.nos.noaa.gov/products/biogeography/benthic/welcome.html  Accessed in June 2008. 

http://ccma.nos.noaa.gov/products/biogeography/benthic/welcome.html
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Figure 21: IKONOS true color image of Enrique Reef, La Parguera that shows informational classes selected for SSCT 

experiments 

 

 
 

Figure 22: HYPERON true color image (bands 31-21-11) of Enrique Reef used as Hyperspectral data for SSCT experiments 
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points. The classes are labeled as follow: white for deep water, red for mangrove, green for sea grass, blue 

for sand, and coral color for reef flat region. He also produced a co-registration of both high spatial 

classification map and low spatial imagery from HYPERION as seen in Figure 23 (b). The image co-

registration was performed using a polynomial method of degree two included in ENVI®
8
 (ITT Visual 

Information Solutions 2007). We have used the co-registration product of (Rivera-Borrero and Hunt 

2007) to select the training samples/endmembers of supervised soft classification algorithms. 

We have used soft references for each information class to evaluate the membership outputs 

obtained with SSCT soft classification algorithms. Those soft references come from abundance estimates 

derived from a co-registration of HYPERION imagery and IKONOS classification map (Rivera-Borrero 

and Hunt 2007) as shown in Figure 26 (a) – (e) for sea grass, sand, reef flat, mangrove, and deep water, 

respectively. 

 

 
 

 

 
 

 
Figure 23: (a) IKONOS classification map, (b) Co-registration of IKONOS and HYPERION imagery used as Land Cover 

Reference for Enrique Reef scene (Rivera-Borrero and Hunt 2007). 

                                                 
8
 http://rsinc.com/envi/. Accessed in June 2008.  

(a) 

(b) 

http://rsinc.com/envi/
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Figure 24: Benthic Habitat Map of La Parguera, PR generated in 1999 by CCMA, NOAA (Kendall et al., 2001) 

 

 
Figure 25: Distribution of 200 ground truth points across the study area of La Parguera, PR (Kendall et al., 2001) 

Parguera 
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4.3.3 Pre-Processing 
 

 
The soft-classification algorithms were applied to an atmospherically corrected hyperspectral 

imagery using a dark subtract band minimum algorithm available in ENVI® (ITT Visual Information 

Solutions 2007) in order to eliminate atmospheric effects. “Dark subtract” pixel is a simple method that 

finds out the minimum water pixel value in the infrared bands because in that region of the EM spectrum, 

water absorbs a lot of the incident energy that arrive to surface resulting in approximately all contribution 

from atmosphere (Chavez 1996).   

 

          
(a)                                                                                             (b) 

        
                                          (c)                                                                                               (d) 

 
(e) 

 
Figure 26:  Abundances estimates derived from co-registration of IKONOS and HYPERION Imagery (Rivera-Borrero and Hunt 

2007) 
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Once a simple atmospheric correction was done, principal components analysis (PCA) was used 

to denoise the hyperspectral imagery (Schowengerdt 2007).  

Let be z the principal component transform, 

 

where  is the matrix of right covariance eigenvectors and bias b is set to zero. 

Original data, x, can be expressed as follows 

 

 

where k is the number of principal components which contains the total image variance and p is the 

number of principal components used to generated a restored image using signal components. PCs are 

ordered by decreasing variance such that PC1, is along the axis of maximum variance, PC2 is along the 

second axis of maximum variance, and each succeeding axis has less variance. PCs are also uncorrelated 

 

 

 

 

 

where are the eigenvalues ordered in descending order. 

Generally, any uncorrelated noise appears in the higher order components so that image can be 

restored eliminating those components.  p is determined from equation (54) where  (percentage of 

variability) is usually selected above 95%.  PCA filter 96% was chosen for the experiments shown in this 

chapter. The percentage of total variability is given by, 

 

 

 

A re-constructed image,  can be generated using the linear filter,  

 

(51) 

(52) 

(53) 

(54) 
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where  is a matrix formed by the first p eigenvectors of the covariance matrix, and 

 are the first p principal components. 

A display of  HYPERION raw band 9 image is shown in Figure 27 (a). On the other hand, 

Figures 27 (b) shows an image with 96% PCA filter which improved classification results.  A graph of 

transect line 25 of both raw and denoised data is shown in Figure 27(c). As can be seen in Figure 27, PCA 

filter produced an image enhancement which could results in an improvement of classification accuracy. 

 

 

                  
 

 
                                                                           (c) 

 
Figure 27: HYPERION  (a)  Band 9 raw image, (b) Band 9 - 96% PCA filter image, and (c) Line 25 of a first Enrique Reef, PR 

subset of 41 x 67 scene 

 
 

D
N
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u
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(55) 

(a) (b) 
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4.3.4 Feature Extraction / Band Selection 

 
 

There is a strong relation between number of training samples needed for accurate supervised 

classification and the number of bands which hyperspectral data is comprised (Landgrebe 2003). This is a 

problem in remote sensed data because in majority of cases training samples are limited. Hyperspectral 

data is comprised of correlated bands which in several cases results in redundant information. In addition, 

as the number of spectral channels increase computational cost and complexity increase. For this reason, 

feature extraction techniques are employ to reduce high dimensional data without a significant loss of 

information. Spectral band transformation and band selection such as Principal Components Analysis 

(PCA)(Schowengerdt 2007) and Singular Value Decomposition Subset Selection (SVDSS) (Vélez-Reyes 

and Jiménez-Rodríguez 1998) respectively are used for this purpose.   

 
4.3.4.1 Singular Value Decomposition – Subset Selection (SVDSS) 

 
SVDSS is a dimension reduction method which selects p-bands in an N-bands dimensional space 

in order to minimized loss of information. This method a difference of spectral band transformation 

techniques and it preserves the physical and spectral meaning of data which is an aid for human 

understanding.  

Let be X a matrix representation of a hyperspectral data where columns are arranged by stacking 

the columns of each single-band image.  The SVDSS (Vélez-Reyes and Jiménez-Rodríguez 1998) selects 

the p most independent bands of the hyperspectral image. 

 

 

 

where X1 is an N x p matrix, X2 is an N by N – P matrix, and P is the pivoting matrix of the QR 

factorization (Vélez-Reyes and Jiménez-Rodríguez 1998)(Jiménez-Rodríguez et al., 2007) and p can be 

estimated using the percentage of variability in PCA. X1 contains the selected bands. 

 
4.3.4.2 Feature Extraction/Band Selection for Enrique Reef scene 

 
Soft-classification algorithms were applied to the Enrique Reef, PR scene. SVDSS was used as 

feature extraction method to reduce high-dimensional data from 220 bands to 14 bands which keep the 

99% PCA of total data variability. HYPERION data file is comprised of 242 bands but actually there are 

(56) 
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196 unique channels which have information that can be used to extract spectral information for 

classification purposes. Most of the remaining bands are located into the absorption bands regions. 

 First, a visual inspection was done to remove HYPERION noisy and damaged bands since 

Enrique Reef is significantly small scene. The mean of spectral response of training samples of deep 

water, mangrove, sea grass, reef flat, and sand for the 14 bands selected by SVDSS algorithm is shown in 

Figure 28. Table 5 describes the selected wavelengths and original HYPERION data set band number. 

 

 

 

 
 

Figure 28: Mean training samples spectral response of bands selected by SVDSS 

 
 

4.3.5 Soft Classification 
 

 

 

This section shows membership maps related to pre-defined informational classes of Enrique 

Reef scene obtained with the four soft classification algorithms that were described in Chapter 3.  These 

soft classification algorithms are (1) Supervised Fuzzy C- Means (SFCM), (2) Linear Mixing Model 

(LMM), (3) Fuzzy Maximum Likelihood (FML), and (4) Fuzzy Supervised Classification System 

(FSCS).  

5
2

8
.6

 

Spectral response of bands selected by SVDSS 

4
7

7
.7

 

5
7

9
.5

 

5
8

9
.6

 

7
1

1
.7

 

7
7

2
.8

 

8
3

3
.8

 

9
9

3
.2

 

1
0

5
3

.7
 

1
1

6
4

.7
 

1
1

8
4

.9
 

1
5

7
8

.3
 

1
6

2
8

.8
 

1
6

4
8

.9
 

Wavelengths (nm) 



 56  

 

Table 5: Description of bands selected by SVDSS in terms of wavelengths and original band number in a HYPERION dataset 

 

 

SVDSS 

Band 

Number 

 

Original Band Number 

(HYPERION data file) 

 

 
 

Wavelength (nm) 

1 13 477.69 

2 18 528.57 

3 23 579.45 

4 24 589.62 

5 36 711.72 

6 42 772.78 

7 48 833.83 

8 85 993.17 

9 91 1053.69 

10 102 1164.68 

11 104 1184.87 

12 143 1578.32 

13 148 1628.81 

14 150 1648.90 

 

 

 
Figures 30-34 (a) – (d) show the membership maps outputs corresponding to Sea Grass, Sand, 

Reef Flat, Mangrove, and Deep Water, respectively obtained with soft classification algorithms included 

into SSCT. Figures 30-34 (e) also illustrate the abundance estimates derived from co-registration of 

IKONOS and HYPERION imagery from (Rivera-Borrero and Hunt 2007). Figure 29 (a) shows the 

training samples used for SFCM-Euclidean Norm and FSCS approaches. In the case of FML, and ML 

algorithms, it was necessary to add more samples to estimate the covariance matrix. The training samples 

for FML, and ML are shown in Figure 29 (b). The samples are distributes as follows: white for deep 

water pixels, green for sea grass pixels, blue for sand pixels, red for mangrove pixels, and yellow for reef 

flat pixels. On the other hand, the endmembers selected for LMM approach are shown in Figure 28 which 

was an average of the training samples used for SFCM and FSCS (see Figure 29 (a)). 

Figure 30 (a) – (d) shows the sea-grass membership maps obtained with LMM, SFCM, FML, and 

FSCS approaches. Comparing the membership maps with the sea-grass soft reference (Figure 30 (e)), we 

can see that LMM, SFCM, and FML performed well on identifying the spatial distribution of sea grass. 
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Sea grass is mainly composed of Thalasia testudinum that has a faster change over time.  FSCS identified 

the sea grass region quite well but it had problems to detect the mixture of pixels. In this scene, FSCS is 

working like a hard classifier except for few pixels. This is due to several factors such as the training 

samples since, Enrique Reef being a small scene, it is difficult to use entire pure pixels as training 

samples.  

 

              
(a)                                                                                 (b) 

 

Figure 29: Training samples used for (a) SFCM, and FSCS, (b) FML, and ML 

 

Figure 31 (a) – (d) shows the sand membership maps obtained with LMM, SFCM, FML, and 

FSCS approaches. Comparing the membership maps with the sand soft reference (see Figure 31 (e)), we 

can see that all methods performed well on identifying the spatial distribution of sand. As can be seen in 

FML outputs (see Figure 31 (c)), sands has some contribution in water pixels. This is due to the fact that 

FML required the use of soft parameters to obtain the degree of membership which were determined 

iteratively because we do not have an accurate proportions associated to each material for training pixels. 

FSCS identified the sand region quite well but it had problems to detect the mixture of pixels. 

Figure 32 (a) – (d) shows the reef-flat membership maps obtained with LMM, SFCM, FML, and 

FSCS approaches. Comparing the membership maps with the reef-flat soft reference (see Figure 32 (e)), 

we can see that all methods performed quite well on identifying the spatial distribution of reef-flat. As can 

be seen in the SFCM outputs (see Figure 32 (b)), reef-flat had some contributions in the sea-grass region. 

This is due to the fact that several reef-flat training pixels could be comprised of certain percentage of sea 

grass. The reef-flat region contains a mixture of components such as sand, living and dead coral, and sea 

grass. On the other hand, FSCS identified the reef-flat region quite well but it had problems to detect the 

mixture of pixels. 

Figure 33 (a) – (d) shows the mangrove membership maps obtained with LMM, SFCM, FML, 

and FSCS approaches. Comparing the membership maps with the mangrove soft reference (see Figure 33 
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(e)), we can see that SFCM and LMM methods produced the better membership output estimation. FSCS 

had problems to estimate the mixture of pixels. Due to training samples used, which does not come from 

just pure pixels, it overestimated the mangrove class and reef-flat class was misclassified.  

Figure 34 (a) – (d) shows the deep-water membership maps obtained with LMM, SFCM, FML, 

and FSCS approaches. Comparing the membership maps with the deep-water soft reference (see Figure 

34 (e)), we can see that all methods performed well on identifying the deep water regions. Although FML 

identified deep-water pixels, the proportion associated to this class was lower in comparison with 

remaining methods.  This can be due to soft training parameters required for FML computation. 

As can be seen in Figures 30-34 (a) – (d), LMM and SFCM membership maps had a good 

correlation between all informational classes and soft land references (see Figure 23 and Figures 30-34 

(e)). Based on Enrique Reef results, SFCM seems to take into consideration the mixing of pixels as part 

of the classification process. It could be useful because LMM is a well known method to decompose a 

measured spectrum of a mixed pixel into its constituent spectra but depends on the scene, and methods 

employed to determine the endmembers, it can work well or not. The end-users can take advantage of 

soft-classification algorithms included in SSCT depending on the scene, and application of interest. 

 

 

4.3.5.1 Hardening of Membership Map Outputs 

 

A single thematic map was generated by a hardening process where pixels are assigned to the 

class which obtained the higher degree of membership. The thematic maps associated with LMM, SFCM, 

FSCS, FML, and FML initialized with LMM abundances are shown in Figure 35 (a) – (e). These 

classification maps were compared with Maximum Likelihood hard classification algorithm shown in 

Figure 35 (f). Figure 35 (g) shows a hardening output of soft references maps (see Figure 26 (a) – (e)). A 

second thematic map with 0.55 of threshold where pixels with less than 0.55 of pixel coverage appears as 

black and were assigned to unclassified class is shown in Figure 34 (h). 

Comparing the IKONOS classification map (see Figure 23 (a) – (b)), IKONOS imagery (see 

Figure 21), and a hardened map obtained from soft references (see Figure 35 (g) – (h)), we can see that all 

thematic maps (Figure 35 (a) – (e)) obtained from soft classification provide a better representation of 

Enrique Reef remote sensed data than ML thematic map which produced an overestimation of mangrove  
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(a) 

      
(b) 

     
(c) 

      
(d) 

   (e)  

Figure 30:  Sea Grass membership map using a  0-1 scale (left side) and ranges scale on the right side (0-20%, 21-40%, 41- 60%, 

61-80%, 81-100%) obtained with (a) LMM, (b) SFCM, (c) FML, (d) FSCS, and (e) soft reference derived by co-registration of 

IKONOS and HYPERION imagery (Rivera-Borrero and Hunt 2007) 
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 (a) 

      
 (b) 

       
(c) 

      
 (d) 

(e)  
Figure 31: Sand membership map using a  0-1 scale (left side) and ranges scale on the right side (0-20%, 21-40%, 41- 60%, 61-

80%, 81-100%) obtained with (a) LMM, (b) SFCM, (c) FML, (d) FSCS, and (e) soft reference derived by co-registration of 

IKONOS and HYPERION imagery (Rivera-Borrero and Hunt 2007) 
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 (a) 

     
 (b) 

       
(c) 

      
 (d) 

(e)  
Figure 32: Reef Flat membership map using a  0-1 scale (left side) and ranges scale on the right side (0-20%, 21-40%, 41- 60%, 

61-80%, 81-100%) obtained with (a) LMM, (b) SFCM, (c) FML, (d) FSCS, and (e) soft reference derived by co-registration of 

IKONOS and HYPERION imagery (Rivera-Borrero and Hunt 2007) 
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 (a) 

      
 (b) 

          
(c) 

      
(d) 

  (e)  
Figure 33: Mangrove  membership map using a  0-1 scale (left side) and ranges scale on the right side (0-20%, 21-40%, 41- 60%, 

61-80%, 81-100%) obtained with (a) LMM, (b) SFCM, (c) FML, (d) FSCS, and (e) soft reference derived by co-registration of 

IKONOS and HYPERION imagery (Rivera-Borrero and Hunt 2007) 
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 (a) 

  
 (b) 

     
(c) 

   
 (d) 

(e)  
Figure 34: Deep Water  membership map using a  0-1 scale (left side) and ranges scale on the right side (0-20%, 21-40%, 41- 

60%, 61-80%, 81-100%) obtained with (a) LMM, (b) SFCM, (c) FML, (d) FSCS, and (e) soft reference derived by co-

registration of IKONOS and HYPERION imagery (Rivera-Borrero and Hunt 2007) 
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(a)                                                                                 (b) 

 

 

      
                                     (c)                                                                                   (d) 

 

 

 

     
                                      (e)                                                                                (f) 

 

 

       
                                     (g)                                                                                   (h) 

 

 
Figure 35: Classification maps obtained with (a) LMM, (b) SFCM, (c) FSCS, (d) FML, (e) FML-LMM to initialized, (f) ML,   

(g) hardening of soft references, and (h) threshold of 0.55 was applied to the classification map obtained in (g). 
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class. FSCS also produced an overestimation of mangrove class but obtained good identification of 

remaining informational classes. FML thematic map especially using LMM abundances to initialize the 

algorithm illustrates that FML improves the classification map obtained with the conventional ML 

algorithm for mangrove and sand classes.  

SSCT visualization techniques to explore data softness of membership maps and hard outputs are 

described in next section. 

 

 

4.3.6 Visualization Techniques 
 

 
4.3.6.1 Fractional Maps  

 
RGB composites are a useful tool to generated fractional color maps produced by a combination 

of three land cover membership maps assigned to red, green, and blue channels as shown in Figure 36 

where Reef Flat, Sea Grass, and Sand were assigned to RGB channels (Schowengerdt 2007)(Bastin et al., 

2002). As can be seen in Figure 36, the RGB composite allow us to explore the mixture between 

endmembers that it is not possible with a single thematic map derived by a hard classification.  

 
4.3.6.2 Binary Maps 

 
SSCT also provides binary maps to visualize the spatial extent of a particular land cover 

membership output as shown in Figures 37-39 for the case of Sand, Reef Flat, and Sea Grass, 

respectively. The user sets a threshold, for instance 0.85 and a binary image is generated which it shows 

the spatial extent of pixels with a degree of membership above the threshold. In that case, those pixels 

show a low data softness but depend on the thresholds and the study that users want to investigate it is 

possible to analyze the softness of membership output per land cover types.  As can be seen in Figures 37 

– 39, the user can set several thresholds to explore the softness of pixels associated to that informational 

class. For instance, if a user set thresholds at 0.85, 0.7, 0.5 and 0.2, the SSCT display an output in which 

pixels with degree of membership output from 0.85 to 1, 0.7 to 0.85, 0.5 to 0.7, and 0.2 to 0.5 exhibit 

different colors as can be seen in the right side of Figures 37 – 39.  On the other hand, the left side of 

Figures 37 – 39 show the spatial extent of pixels for varying threshold from 0-1. The visualization of 

transition zones could be a key in the study of climate change of vegetation types or regions where field 
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work expeditions are expensive and could be intrusive on an ecosystem (Lucieer 2006)(Bastin et al., 

2002). 

 

 

 
 

 

 

Figure 36: Fraction color maps derived by a combination of Reef Flat, Sea Grass, and Sand membership maps in the RGB 

channels 

 
 

4.3.6.3 Thematic Map Derived by a User-Defined Threshold 

 
A defuzzyfication or hardening process produce a single thematic map derived from membership 

maps which contain information about the proportions associated to each informational class. For that 

reason, visualization techniques that take advantage of this could be useful to image analysts who 

sometimes prefer to analyze a single classification map instead of several fraction or membership maps. 

We proposed the use of a user-defined threshold because if a pixel has the higher degree of membership 
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of a particular class less than 50% pixel coverage for instance should not be assigned to this land cover 

type in a hardening process. All those pixels which have winning classes with less than 50% of pixel 

coverage were assigned to unclassified label which appear as black in Figure 40 (b). On the other hand, 

Figure 40 (c) illustrates a thematic map where pixels with area coverage less than 0.5 were given similar 

colors of the class which obtained the higher degree of membership. In that case, the image analyst can 

explore data softness by thresholds and labels colors. As can be seen in Figure 40 (b)-(c), unclassified 

pixels are located in the boundaries between classes and regions which have mixtures between classes 

accordingly with co-registration of HYPERION and IKONOS imagery (see Figure 23 (b)). Further SSCT 

outputs for classification maps visualization are shown in Figure 41.  

 

4.3.7 Accuracy Assessment 
 

Accuracy assessment is a key element of any classification system to evaluate the accuracy of 

classification maps and membership outputs. In literature several methods to evaluate the performance of 

soft classifiers in terms of measure the degree of mixing, and fuzzy error matrix which is an extension of 

the conventional hard assessment taking into consideration the weights obtained per informational class. 

Correlation coefficient analysis was also performed to study linear relation between soft reference data 

and weights obtained from soft classification algorithms. All the methods included in the SSCT are 

explained in details in Section 2.3.3. 

 

 
4.3.7.1 Measures of the Degree of Mixing 

 
In Section 2.3.3.1, we discussed different methods that can be used to analyze the soft 

classification outputs in term of how fuzzy data is and to measure the strength of fuzzy partitioning. There 

is no standard to evaluate soft classifiers but the use of several approaches could give us a better idea of 

how accurate is the results obtained from membership outputs and hardened process.  

Figures 42 – 45 show the entropy values of estimated membership outputs obtained with LMM, 

SFCM, FML, and FSCS approaches. We expect that pixels with high degree of mixing should have high 

entropy values. On the other hand, if a pixel is almost pure it should get a low entropy value. Following 

this concept, we can appreciate that LMM and SFCM entropy images in Figures 42 - 43 obtained higher  
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Figure 37: Binary maps of sand LMM abundances derived by user-defined thresholds of 0.85, 0.7, 0.5, and 0.2 
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Figure 38: Binary maps of reef-flat LMM abundances derived by user-defined thresholds of 0.85, 0.7, 0.5, and 0.2 
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Figure 39: Binary maps of sea-grass LMM abundances derived by user-defined thresholds of 0.85, 0.7, 0.5, and 0.2 
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Figure 40: (a) Hardening LMM abundances, (b) with threshold of 0.5 (unclassified class), and (c) with threshold of 0.5 and 

specified by class label which obtained higher degree of membership. 

(a) 

(b) 

(c) 
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Figure 41: Thematic map with threshold (T=0.5). (a) Pixels with T < 0.5 are in red, (b) pixels with T < 0.5 are labeled by the 

class which obtained higher weight. 

 
 

 
entropy values for regions such as sea-grass, reef-flat, and some portion of sand habitats in the benthic 

habitat classification map generated by Biogeography Program of NOAA-CCMA shown in Figure 24 

(Kendall et al., 2001). Conversely, lower entropy values in Figure 42-43 (LMM and SFCM) were 

assigned to continuous sea grass region in the benthic habitat reference map in Figure 24.  

In contrast, Figure 44 shows entropy values for a FSCS approach. It presents a few higher entropy 

values. It has sense in our entropy interpretation because FSCS had problems in detecting mixture of 

(a) 

(b) 
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pixels as can be seen in the membership maps generated by this method in Section 4.3.5 (see Figures 30 – 

34 (d)). Accordingly to results, it is evident that for Enrique Reef scene, FSCS does not provide weight 

fractions associated with each informational class per pixel although it produced a better classification 

map (defuzzyfication step) than ML thematic map. For that reason, entropy images could be a useful tool 

for image analyst in order to analyze membership outputs obtained from soft classification algorithms. 

 

 

 

 

Figure 42: Entropy values derived from estimated LMM abundances 

 

 

 

 
 

 
Figure 43: Entropy values derived from estimated SFCM membership outputs 
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Figure 44: Entropy values derived from estimated FSCS membership outputs 

 

 

 
Figure 45 illustrates an entropy image obtained from FML membership outputs. As can be seen in 

Figure 34 (c), FML had difficulties to estimate weight fractions associated with the deep-water class. As a 

result, degrees of membership obtained were lower. In spite of FML difficulties, Deep Water is still 

distinguishable in comparison with remaining land cover types in the scene. Hence, it is expected that 

water region gets high entropy values as shown in Figure 45.  Sea grass, reef flat, and mangrove pixels 

also obtain high entropy values which are comparable with mixture regions showed in the NOAA Benthic 

classification map in Figure 24.   

 

 

 

 
Figure 45: Entropy values derived from estimated FML membership outputs 
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SSCT provides other methods to measure the degree of mixing from fraction map results such as 

Euclidean Distance (2.3.3.1.3). Table 6 shows Euclidean Distance and entropy computations. As the 

mean entropy value is closer to maximum entropy, it is an indication of high mixing of pixels. On the 

contrary, if the mean entropy value is closer to the minimum entropy, it means that the classifier was 

acted as hard classifier, how was the case of FSCS. A lower mean entropy value can also be produced by 

the analysis of a scene with little mixing. As shown in Table 6, both LMM and SFCM show similar 

degree of mixing as can be seen in entropy images of both methods. Accordingly with entropy results in 

Table 6, FML show a higher mixing of membership outputs due to deep-water estimation difficulty. 

When the soft data reference is available, Euclidean Distance approach can be used. Euclidean Distance 

results for Enrique Reef scene shown in Table 6 were computed using LMM abundances as soft reference 

data. SFCM obtained the lower Euclidean Distance value which means minor difference between SFCM 

estimated membership outputs and LMM membership values.  

 
Table 6: Measures Degree of Mixing for SFCM, FSCS, FML, and LMM 

Classes LMM 

 

SFCM 

 

 

FSCS 

 

FML 

Min Entropy 0 0.0016 0 0.0707 

Max Entropy 0.7305 0.6900 0.6931 0.6980 

Mean  Entropy 0.3830 0.3462 0.0050 0.5476 

Euclidean 

Distance 

Used as Soft 

Reference Data 
0.0158 0.0492 0.0646 

 

 
4.3.7.2 Fuzzy Error Matrix (FEM) 

 
A Fuzzy Error Matrix analysis (see Section 2.3.3.2) (Binaghi et al., 1999) could be a better 

approach instead of conventional hard assessment to evaluate the performance of soft classifiers when 

soft ground truth data is available. FEM is an extension of the confusion error matrix but takes into 

consideration estimated weight fraction to get the producer’s, user’s, and overall accuracies. The quality 

of fractional weights used as soft ground truth data is crucial to compute accuracy percentages that really 

measure the performance of a soft classifier. Therefore, lower overall accuracy does not denote bad 

performance of a soft classifier. Hence, the expertise of an image analyst will be a plus in the analysis and 
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interpretation of results. This could be a reason of why FEM is not used as standard accuracy assessment 

for soft classification.  

 Tables 8 – 11 shows the FEM of SFCM, FML,FML-LMM (LMM abundances used to initialize 

FML algorithm) and FSCS approaches using LMM abundances as soft references data. Testing samples 

used to generate FEM are shown in Figure 48 which were the same as those used for a conventional hard 

assessment. A bar graph of FEM overall accuracies relative to LMM abundances is shown in Figure 49.  

Tables 7 shows a perfect matching among estimated and soft reference which represent an ideal case in 

order to facilitate the interpretation of new measures obtained from SFCM, FML, and FSCS degree of 

memberships. Accordingly with FEM results, SFCM attained the finest performance obtaining 87% of 

overall accuracy relative to LMM abundances.  Examining FML error matrix which obtained overall 

accuracy of 65% relative to LMM abundances, we note that producer’s accuracy for deep-water class is 

43.2%. This indicates an underestimation of degree of memberships for deep-water class as can be seen in 

their membership map in Figure 34 (c) and the entropy image in Figure 45. FML using LMM abundances 

to initialize the FML algorithm obtain a 71% of overall accuracy relative to LMM abundances used as 

soft reference data. It shows an improvement in comparison with FML outputs. On the other hand, FSCS 

user’s accuracy relative to LMM abundances for mangrove class is 58.9% which indicates an 

overestimation of this class as can be appreciated in FSCS membership and thematic maps in Figures 33 

(d) and 35 (c). 

 
Table 7: Fuzzy Error Matrix reference derived by a Perfect Matching of testing samples (ideal case) 

 

 

RDeepWater Rmangrove Rsand RSeaGrass RReefFlat 
Total 

grades 
User's 

Accuracy 

CDeepWater 47.9234 1.2657 3.9842 4.9989 1.7112 47.9234 100.0% 

Cmangrove 1.2657 9.0763 1.0955 1.796 1.7883 9.0763 100.0% 

Csand 3.9842 1.0955 26.9968 3.4309 2.2404 26.9968 100.0% 

CSeaGrass 4.9989 1.796 3.4309 34.4129 3.211 34.4129 100.0% 

CReefFlat 1.7112 1.7883 2.2404 3.211 28.5908 28.5908 100.0% 

Total 
grades 

47.9234 9.0763 26.9968 34.4129 28.5908 

  Producer's 
Accuracy 

100.0% 100.0% 100.0% 100.0% 100.0% 

  Overall 
Accuracy 

100.0% 
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Table 8: Fuzzy Error Matrix derived from SFCM membership values (C) and LMM abundances used as Soft Reference (R) 

 

 

RDeepWater Rmangrove Rsand RSeaGrass RReefFlat 
Total 

grades 
User's 

Accuracy 

CDeepWater 44.3909 1.7085 3.6043 8.4081 1.9723 50.117 88.6% 

Cmangrove 1.298 7.8416 0.8452 1.8201 1.7041 9.7299 80.6% 

Csand 2.4217 0.771 23.1321 2.1354 1.0271 25.8103 89.6% 

CSeaGrass 6.0157 1.6416 4.3233 25.6303 2.8175 29.7794 86.1% 

CReefFlat 2.7136 1.5856 3.4278 4.8943 26.677 31.5638 84.5% 

Total 
grades 

47.9234 9.0763 26.9968 34.4129 28.5908 

  Producer's 
Accuracy 

92.6% 86.4% 85.7% 74.5% 93.3% 

  Overall 
Accuracy 

86.9% 
    

   

 

 
Table 9: Fuzzy Error Matrix derived from FML membership values (C) and LMM abundances used as Soft Reference (R) 

 

 

RDeepWater Rmangrove Rsand RSeaGrass RReefFlat 
Total 

grades 
User's 

Accuracy 

CDeepWater 20.6949 0.3547 1.7796 4.205 0.6915 20.8512 99.3% 

Cmangrove 2.8054 7.8116 2.0047 3.617 7.4001 15.6441 49.9% 

Csand 12.4903 1.4106 20.7128 8.4714 1.6107 32.8278 63.1% 

CSeaGrass 19.2057 2.5465 6.5788 23.4983 2.3443 39.9967 58.8% 

CReefFlat 4.9374 1.9358 7.8078 10.141 23.6336 37.6806 62.7% 

Total 
grades 

47.9234 9.0763 26.9968 34.4129 28.5908 

  Producer's 
Accuracy 

43.2% 86.1% 76.7% 68.3% 82.7% 

  Overall 
Accuracy 

65.5% 
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Table 10: Fuzzy Error Matrix derived from FML-LMM (LMM abundances used to initialize the FML algorithm) membership 

values (C) and LMM abundances used as Soft Reference (R) 

 

 

RDeepWater Rmangrove Rsand RSeaGrass RReefFlat 
Total 

grades 
User's 

Accuracy 

CDeepWater 24.2345 0.3447 1.7751 4.1855 0.6816 24.3795 99.4% 

Cmangrove 2.2937 7.5928 1.992 3.3371 7.566 14.6622 51.8% 

Csand 11.5625 1.831 23.3752 8.0598 1.7188 34.1253 68.5% 

CSeaGrass 16.3717 2.9081 6.2443 25.7575 2.65 39.3612 65.4% 

CReefFlat 5.9635 1.8708 5.9794 8.9857 23.4693 34.4721 68.1% 

Total 
grades 

47.9234 9.0763 26.9968 34.4129 28.5908 

  Producer's 
Accuracy 

50.6% 83.7% 86.6% 74.8% 82.1% 

  Overall 
Accuracy 

71.0% 
    

   

 

Table 11: Fuzzy Error Matrix derived from FSCS membership values (C) and LMM abundances used as Soft Reference (R) 

 

 

RDeepWater Rmangrove Rsand RSeaGrass RReefFlat 
Total 

grades 
User's 

Accuracy 

CDeepWater 43.918 0.1512 1.5541 3.8863 0.4901 50 87.8% 

Cmangrove 0.7958 8.2398 0.4551 1.6579 2.8516 14 58.9% 

Csand 1.8895 0.1776 22.8093 1.6112 0.512 27 84.5% 

CSeaGrass 0.7524 0.2639 1.2107 25.3405 0.4329 28 90.5% 

CReefFlat 0.5677 0.2438 0.9676 1.917 24.3042 28 86.8% 

Total 
grades 

47.9234 9.0763 26.9968 34.4129 28.5908 

  Producer's 
Accuracy 

91.6% 90.8% 84.5% 73.6% 85.0% 

  Overall 
Accuracy 

84.8% 
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Figure 46: Fuzzy Error Matrix overall accuracy of SFCM, FML, FML-LMM, and FSCS approaches 

 

 
4.3.7.3 Linear Relationship among Membership Outputs and Soft Reference Data 

 

SSCT also provides the option to generate a scatter plot comparing estimated degree of 

membership and soft ground truth data in order to measure linear correlation between estimated and 

actual data. Table 12 illustrates the correlation coefficients and Root Mean Square (RMS) error obtained 

for SFCM, FSCS, and FML approaches. LMM abundances were used as soft reference data. The LMM 

abundances and SFCM were found to be strongly and significant correlated by correlation coefficient 

average of 87.4%. Scatter plots for each SFCM land cover composition is shown in Figure 47. Mangrove, 

sand, reef flat, and deep water are strongly correlated obtaining correlation coefficients of 0.93, 0.92, 

0.89, and 0.92 respectively. Examining the RMS error, we can see that SFCM obtained the lower RMS 

error relative to LMM abundances as shown  in Table 12.  Accordingly with results shown in this chapter 

where LMM abundances were used as soft reference data in order to show SSCT Accuracy Assessment 

module functionalities and to compare fuzzy classification methods with a LMM approach, SFCM seems 

that takes into consideration the mixing of pixels as part of the classification process. Therefore, it could 
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produce a decomposition of a pixel into its constituent spectra comparable as LMM can do from fuzzy 

point of view.   

 

 
Table 12: Correlation coefficient (ρXY)  and RMS error of SFCM, FML, and FSCS using LMM abundances as soft reference data 

 

 Correlation Coefficient RMS Error 

Classes  SFCM FML FSCS SFCM FML FSCS 

Deep Water  0.9173 0.9338 0.9112 0.1500 0.1349 0.1552 

Mangrove  0.9324 0.6631 0.5256 0.0317 0.0656 0.0746 

Sand  0.9230 0.5699 0.8586 0.0776 0.1658 0.1034 

Sea Grass  0.7048 0.3619 0.6319 0.1799 0.2363 0.1965 

Reef Flat  0.8905 0.6846 0.8085 0.1001 0.1604 0.1292 

Average   0.8736 0.6427 0.7473 0.1079 0.1526 0.1318 

 

 

 
4.3.7.4 Conventional Hard Assessment 

 

The most widely used method for hard classification assessment is known as Confusion Error 

Matrix (refer to Section 2.3.3). In the majority of cases, image analyst does not have available soft ground 

truth data to perform a fuzzy error matrix. In that case, a conventional hard assessment could be 

conducted to evaluate a thematic map derived from a hardening process although it is not the best way to 

evaluate the performance of soft classifiers. Commonly, testing samples are selected from “pure” or 

almost “pure” pixels because we have to know the label of those pixels in order to relate it to producer’s 

or user’s accuracy in confusion matrix analysis. As a result, we expect that soft and hard classifiers obtain 

a higher overall accuracy as shown in Figure 49 while soft and hard algorithms obtained an overall 

accuracy above 90%. Accordingly with these results, FML obtained the lower accuracy of 89.2% 

inclusive below ML algorithm but if we compare FML and ML classification maps (see Figure 35 (d) and 

(f)) with land cover references (refer to Section 4.3.2), we can see that FML improved classification result 

especially for mangrove and sand classes. FML using LMM abundances to initialize the algorithm 

obtained accuracy of 94% improving FML performance in terms of overall accuracy percentage and   
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Figure 47: Relationships between SFCM and LMM for deep water, mangrove, sand, sea grass, and reef flat informational classes 
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classification maps (see Figure 35 (d)-(e)). Figure 48 (white for deep-water, green for sea-grass, red for 

mangrove, blue for sand, and coral for reef-flat)  shows testing samples selected for a confusion error 

matrix analysis shown in Tables 13-18 for LMM, SFCM, FML,FML-LMM, FSCS, and ML approaches, 

respectively. 

 

 

 

(a)                                                                                                        (b)              
                         

Figure 48: (a) Enrique Reef Testing Samples selected for a hard assessment, (b) Number of samples per informational class 

 
 

 

 
Table 13: Confusion Error Matrix of a LMM thematic map derived by a hardening LMM abundance maps 

 

 Deep Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Deep Water 50 0 0 0 0 100% 

Mangrove 0 9 0 0 0 100% 

Sand 0 0 27 0 0 100% 

Sea Grass 0 2 0 28 0 93.3% 

Reef Flat 0 1 0 0 30 96.8% 

Number of 

Testing 

Samples 

    50     12 27      28    30  

Producer's 

Accuracy 
100% 75% 100% 100% 100% 

Overall Accuracy 98.0%    

 

 

 

Cover Type  
No. of 

Samples 

Deep Water 50 

Mangrove 12 

Sand 27 

Sea Grass 28 

Reef Flat 30 
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Table 14: Confusion Error Matrix of a SFCM thematic map derived by a hardening SFCM membership maps 

 

 Deep Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Deep Water 50 0 0 2 0 96.2% 

Mangrove 0 12 0 0 0 100% 

Sand 0 0 27 0 0 100% 

Sea Grass 0 0 0 28 0 100% 

Reef Flat 0 0 0 0 30 100% 

Number of 

Testing 

Samples 

    50     12 27      28    30  

Producer's 

Accuracy 
100% 100% 100% 93.3% 100% 

Overall Accuracy 98.7%    

 

 

 

 
Table 15: Confusion Error Matrix of a FML thematic map derived by a hardening FML membership maps 

 Deep Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Deep Water 50 0 0 0 0 100% 

Mangrove 0 12 0 0 3 80% 

Sand 0 0 22 3 0 88% 

Sea Grass 0 0 1 20 0 95.2% 

Reef Flat 0 0 4 5 27 75% 

Number of 

Testing 

Samples 

    50     12 27      28    30  

Producer's 

Accuracy 
100% 100% 81.5% 71.4% 90% 

Overall Accuracy 89.2%    

 

 

 

 
 



 84  

 

 

 

Table 16: Confusion Error Matrix of a FML-LMM (LMM abundances used to initialized the FML algorithm) thematic map 

derived by a hardening FML-LMM membership maps 

 

 Deep Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Deep Water 50 0 0 0 0 100% 

Mangrove 0 12 0 0 3 80% 

Sand 0 0 26 2 0 92.9% 

Sea Grass 0 0 1 23 0 95.8% 

Reef Flat 0 0 0 3 27 90% 

Number of 

Testing 

Samples 

    50     12 27      28    30  

Producer's 

Accuracy 
100% 100% 96.3% 82.1% 90% 

 

Overall Accuracy 93.9 %    

 

 
 

 

Table 17: Confusion Error Matrix of a FSCS thematic map derived by a hardening FSCS membership maps 

 Deep Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Deep Water 50 0 0 0 0 100% 

Mangrove 0 12 0 0 2 85.7% 

Sand 0 0 27 0 0 100% 

Sea Grass 0 0 0 28 0 100% 

Reef Flat 0 0 0 0 28 100% 

Number of 

Testing 

Samples 

    50     12 27      28    30  

Producer's 

Accuracy 
100% 100% 100% 100% 93.3% 

 

Overall Accuracy 98.6 %    
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Table 18: Confusion Error Matrix of a ML thematic map  

 Deep Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Deep Water 50 0 0 0 0 100% 

Mangrove 0 12 0 0 7 63.2% 

Sand 0 0 27 0 0 100% 

Sea Grass 0 0 0 27 0 100% 

Reef Flat 0 0 0 1 23 95.8% 

Number of 

Testing 

Samples 

    50     12 27      28    30  

Producer's 

Accuracy 
100% 100% 100% 96.4% 76.7% 

 

Overall Accuracy 94.6 %   

 

 

 

 

 

Figure 49: Confusion error matrix overall accuracy percentage of testing samples of LMM, SFCM, FML, FML-LMM, ML, and 

FSCS approaches 

 

98
98.7

89.2

93.9

98.6

94.6

70

75

80

85

90

95

100

LMM SFCM FML FML-LMM FSCS ML

O
v

er
a

ll
 A

cc
u

ra
cy

 (
%

)

Overall Accuracy of Testing Samples



 86  

 

4.4 Summary 
 

This chapter explained the Spectral Soft Classification Tool (SSCT) functions in term of soft 

classification algorithms (LMM, SFCM-Euclidean norm, FSCS, and FML), visualization techniques for 

membership outputs and thematic maps derived from membership maps, and accuracy assessment to 

evaluate the performance of soft classifiers which can give a better idea of how softness data is when a 

combination of techniques are applied. An Enrique Reef, La Parguera, Puerto Rico scene was used to 

explain the SSCT capabilities. 
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5 CHAPTER  5 
 

Experimental Results using Real Data 
 

  
This chapter presents results of applying the SSCT to an ETM+ image from Lajas, Puerto Rico. 

Membership maps and classification maps derived from a soft classification using LMM, FML, SFCM, 

and FSCS algorithms are studied in this chapter. 

 

5.1 Multispectral Case Study 
 
 

A description of the Enhanced Thematic Mapper (ETM)+
9
 and characteristics of the imagery 

used for experimental results are summarized next. The multispectral imagery was acquired on February 

20, 2002 using an ETM+ on-board Landsat 7.  ETM+ has a spectral resolution of 7 bands from visible to 

the long infrared region of the electromagnetic spectrum and 1 panchromatic band. It has a temporal 

resolution of 16 days and radiometric resolution of 8 bits with a swath width of 185 km. Table 19 

summarizes specifications of the ETM+ sensor. The imagery data was downloaded at no cost from the 

Global Land Cover Facility (GLCF)
10

 at the University of Maryland. A subset of 752 x 212 pixels shown 

in Figure 50 was performed in order to generate a land remote sensed scene around Lajas, PR. A spectral 

subset also was performed to use bands 1 – 5, 7 with a 30m of spatial resolution for classification 

processes. 

Table 19: Specifications of ETM+ sensor on – board Landsat 7 

Band / Channel Region of Electromagnetic 

Spectrum 

Wavelength (λ) - µm Spatial 

Resolution 

(meters) 

Band 1 Visible - Blue 0.45 – 0.52 30m 

Band 2 Visible - Green 0.52 – 0.60 30m 

Band 3 Visible - Red 0.63 – 0.69 30m 

Band 4 Near Infrared (NIR) 0.76 – 0.90 30m 

Band 5 Middle Wave Infrared (MWIR) 1.55 – 1.75 30m 

Band 6 Far Infrared (thermal) 10.40 – 12.50 60m 

Band 7 MWIR 2.08 – 2.3 30m 

Band 8 Panchromatic (PAN) 0.52 - 0.90 15m 

                                                 
9
 Landsat 7 Science Data Users Handbook: http://landsathandbook.gsfc.nasa.gov/handbook.html  

10 GLCF is a center for land cover change research using remotely sensed satellite data.  Through the Earth Science Data 

interface  (ESDI) at GLCF, it is possible to download scenes from different sensors at no cost. 

http://www.landcover.org/index.shtml  

CHAPTER  5 
 

http://landsathandbook.gsfc.nasa.gov/handbook.html
http://www.landcover.org/index.shtml
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(a) (b) 
 

Figure 50: A true color (bands 3-2-1) and color infrared images (bands 4-3-2) of Lajas, PR scene acquired with an ETM+ sensor. 

 

5.1.1 Ground Truth Reference: USDA Puerto Rico Land Cover 1991 
 

 
We have used the USDA PR Land Cover 1991 (Helmer et al., 2002) shown in Figure 51 (a)-(b)   

to select representative training samples of informational classes.  Due to spatial resolution limitation, it is 

not appropriate to use the original land cover types shown in Figure 51 (a) and (d). Figures 51 (b) shows a 

modification of land cover types using only five informational classes: water, urban and barren land, 

forest, pasture, and agriculture. Normalized Difference Vegetation Index (NDVI) (Schowengerdt 2007) 

was computed to compare the membership maps and thematic maps obtained with soft classification 

algorithms for a forest class. NDVI could be useful to evaluate this area taking into consideration the 

difference in years between Land Cover Reference (1991) and multispectral imagery (2002).  
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                    (a)                                        (b)                                                                                        (c) 

 
 

 
                                                                                             

(d) 
 

Figure 51: USDA Puerto Rico Land Cover Reference 1991 (Helmer et al., 2002) (a) Original Thematic Map, and (b) Modified 

thematic map after perform a merge of classes, (c) NDVI of a scene, (d) legend of USDA Land Cover showed in (a) 
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A distribution in terms of number of pixels and approximate area coverage of original land cover 

types present in the Lajas scene and  how those classes were merge into new informational classes is 

described in Table 20.  

 

Table 20: Distribution of original and modified land cover types of the USDA PR Land Cover 1991 (Helmer et al., 2002) 

for classification purposes 

Original land cover types 

in Lajas, PR scene 

(USDA PR Land Cover 1991) 

Num. of 

pixels per 

class 

Percentage 

area 

 coverage 

(%) 

Modified land 

cover types 

Num. of 

pixels per 

class 

Percentage 

area  

coverage 

(%) 

Water 40,187 25.21 Water 40,187 25.21 

Pasture 77,925 48.88  

Agriculture 
 

83,222 
 

52.2 
Agriculture 5,297 3.32 

Lowland dry semi deciduous 

forest 
 

1,014 0.64  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25,850 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16.21 

Lowland dry semi deciduous 

woodland/shrub land 
 

8,336 5.23 

Lowland dry mixed evergreen 

drought-deciduous shrub land 

with succulents 
 

58 0.04 

Lowland dry and moist, mixed 

seasonal evergreen 

sclerophyllous forest 
 

3,566 2.24 

Lowland moist seasonal 

evergreen forest/shrub 

 

10,255 6.43 

Submontane and lower 

montane wet evergreen 

sclerophyllous forest 

 

711 0.45 

Submontane wet evergreen 

forest 

 

552 0.35 

Active sun/shade coffee, 

submontane and lower montane 

wet forest/shrub 

 

271 0.17 

Submontane and lower 

montane wet evergreen 

forest/shrub and 

active/abandoned shade coffee 

 

654 0.41 

Tidally and semi-permanently 

flooded evergreen 

sclerophyllous forest 
 

433 0.27 

 

Urban & Barren 

 

Sand & Rock 

 

9,251 

 

914 

 

5.80 

 

0.57 

 

Urban & 

Barren Land 

 

 

10,165 

 

 

6.38 

 

TOTAL 159,424 100  159,424 100 
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5.1.2 Soft Classification Results 

 
SFCM, FML, LMM, and FSCS algorithms were applied to an atmospherically corrected 

multispectral image using the dark subtract band minimum algorithm available in ENVI® (ITT Visual 

Information Solutions 2007). Figure 52 shows the spectral response of water, urban & barren, forest, 

pasture, agriculture classes selected manually from the image. These endmembers were used to obtain 

LMM-1 membership maps shown in Figure 53. As a comment, LMM-1 refers to LMM using 

endmembers selected manually from the image. A classification map derived from a hardening process of 

LMM-1 membership maps is shown in Figure 54 (a). Figure 54 (b) shows a thematic map with the 

unclassified class which was produced by a threshold of 0.50. The USDA PR Land Cover 1991 is shown 

in Figure 54 (c) in order to compare classification results. 

 

 

 
         

Figure 52: Spectral response of informational classes used to compute LMM-1 

 

Due to the complexity of scene in terms of the number of endmembers that could be 

representative of materials present in the scene based on the USDA Land Cover Reference (Helmer et al., 

2002) shown in Figure 51 (a), and the low spectral resolution of the sensor to discriminate between two 

classes with similar spectral response such as agriculture and pasture cover types, LMM-1 computed 

using PPI (Boardman 1993)(Boardman et al., 1995) or endmembers selected manually from the image is 

not working completely well for water, and pasture classes. An agriculture class is detected in forest 

7 478.7 834.6 661.4 561.0 1650.0 2208.0 

Wavelengths (nm) 
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Figure 53: Membership maps obtained using a LMM-1 (endmembers selected manually from the image) of (a) Water, (b) Urban 

and Barren Land, (c) Forest, (d) Pasture, and (e) Agriculture. A scale based on ranges were used (0-20%, 21-40%, 41-60%, 61-

80%, and 81-100%) 

       
 
Figure 54:  (a) Classification map derived from LMM-1 hardening process, (b) threshold of 0.5 was applied, (c) USDA PR Land 

Cover Reference 1991 (Helmer et al., 2002), and (d) LMM-1 Fractional Map, R-Pasture, G-Forest, B-Agriculture 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) 
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areas according to NDVI output (see Figure 51 (c)). However, comparing NDVI output (see Figure 51 

(c)) and Land Cover Reference (see Figure 54 (c)) the classification map derived from a hardening 

process and shown in Figure 54 (a) seemed to capture this class accurately. The fractional map shown in 

Figure 54 (d) where the degree of memberships from pasture, forest, and agriculture classes were 

assigned to RGB channels respectively gives us an idea of the mixing among these classes especially 

between pasture and agriculture classes. 

The second approach based on Positive Matrix Factorization (PMF) (Masalmah and Vélez-Reyes 

2007) was used in order to determine a better representation of endmembers especially for water, pasture, 

and agriculture classes. A PMF algorithm developed by Masalmah and Vélez-Reyes was applied to land 

remote sensed scene using endmembers selected manually for LMM-1 to initialize the algorithm (refers in 

this work as LMM-2 for differentiation of LMM-1). We found that 5 or 10 iterations performed well to 

refine the spectral response of the endmembers selected manually from the image. If a higher number of 

iterations are used, the algorithm can find new spectral responses that could correspond to other materials 

in the scene which are not necessarily related to the informational classes chosen previously.   Figure 55 

shows spectral response of water, urban & barren, forest, pasture, agriculture classes derived from the 

PMF algorithm.   

 

 
 

 

Figure 55: Spectral response of informational classes used to compute LMM-2 (derived from PMF algorithm (Masalmah and 

Vélez-Reyes 2007)) 

478.7 834.6 661.4 561.0 1650.0 2208.0 

Wavelengths (nm) 
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Figure 56:  Membership maps obtained using a LMM-2 (PMF initialized with endmembers selected manually from the image) of 

(a) Water, (b) Urban and Barren Land, (c) Forest, (d) Pasture, and (e) Agriculture. A scale based on ranges were used (0-20%, 

21-40%, 41-60%, 61-80%, and 81-100%) 

      

Figure 57: (a) Classification map derived from LMM-2 hardening process (b) threshold of 0.5 was applied, (c) USDA PR Land 

Cover Reference 1991 (Helmer et al., 2002), and (d) LMM-2 Fractional Map, R-Pasture, G-Forest, B-Agriculture 

(a) (b) (c) (d) (e) 

(a) (b) 

(a) (b) 

(c) (d) 
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Figure 56 (a) – (e) shows membership maps obtained from a LMM-2. As can be seen in Figure 

56 (a) – (e), membership maps obtained with LMM-2 approach improves the output in comparison with 

LMM-1. Water class is uniformly defined with higher degree of membership for their region. Comparing 

NDVI output (see Figure 51 (c)), we can see that pixels with higher degree of membership for a forest 

class correspond to the pixels which obtained high NDVI values. In addition, agriculture membership 

map shows a reduction in pixels assigned to agriculture which where saturated using LMM-1. However, 

the use of a high spectral resolution sensor in the case of LMM-1 could improve the performance of the 

classifier because it provides a higher discrimination between materials which has similar spectral 

signatures. Figure 57 (d) shows a fractional map where the degree of memberships from pasture, forest, 

and agriculture classes were assigned to RGB channels respectively. The fractional map shown in Figure 

57 (d) shows the mixing among pasture and agriculture classes and between pasture and forest in the 

boundaries or transition zones among these informational classes.  

The classification maps derived from hardening of LMM-2 membership maps including the 

unclassified class are shown in Figures 57 (a)-(b). It performed well in comparison with NDVI output 

(see Figure 51 (c)) and Land Cover Reference Figure 57 (c). The unclassified pixels in Figure 57 (b) are 

located mainly in urban and barren areas which has sense because this class in practical situations is 

comprised by various land cover types.  

Figure 58 shows training samples used to train (a) SFCM and FSCS algorithms.  FML algorithm 

uses mixed pixels as training data.  For that reason, original samples were modified to assure that majority 

of training samples corresponds to a mixture of classes. FML training samples are shown in Figure 58 (b).  

Figure 58 (c) shows testing samples used to compute a confusion error matrix.   

Membership maps obtained with SFCM are shown in Figure 59 (a) – (e). Comparing them with 

NDVI output (see Figure 51 (c)) and land cover reference (see Figure 60 (c)), we can see that SFCM 

performed well in terms to detect the degree of membership per informational class and classification 

map derived from a SFCM hardening process. The agriculture membership map shows slight saturation 

of agriculture area that could be due to the fact of training samples used and the low spectral resolution of 

a ETM+ sensor. The use of a hyperspectral sensor can improve the results for agriculture class because it 

provides high spectral resolution that could be useful for discriminating between materials which have 

similar spectral responses such as agriculture and pasture classes. The fractional map shown in Figure 60 

(d) where the degree of memberships from pasture, forest, and agriculture classes were assigned to RGB 
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channels respectively gives us an idea of the mixing among these informational classes and the slight 

saturation of agriculture class is also appreciated. 

 

          

Figure 58: Training samples of (a) SFCM, and FSCS, (b) FML, and (c) testing samples 

 

 
Figure 61 (a) – (e) shows membership maps obtained with FSCS. As can be seen, FSCS 

performed well in determining the spatial distribution of informational classes but the majority of degrees 

of membership per pixel were allocated in the 81-100% range. In addition, FSCS shows a slight 

saturation of the agriculture class that could be appreciate in the classification map (see Figure 62 (a)) 

derived from a hardening process and in the fractional map derived from degree of memberships from 

pasture, forest, and agriculture shown in Figure 62 (c). This can be improved using a hyperspectral 

imagery which can provide a better discrimination between pasture and agriculture class because of the 

higher spectral resolution. 

(a) (b) (c) 
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Figure 59: Membership maps obtained using a SFCM-Euclidean Norm of (a) Water, (b) Urban and Barren Land, (c) Forest, (d) 

Pasture, and (e) Agriculture. A scale based on ranges were used (0-20%, 21-40%, 41-60%, 61-80%, and 81-100%) 

 
 

Figure 60: (a) Classification map derived from SFCM-Euclidean Norm hardening process (b)  threshold of 0.5 was applied (c) 

USDA PR Land Cover Reference 1991 (Helmer et al., 2002) , and (d) SFCM Fractional Map, R-Pasture, G-Forest, B-Agriculture 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) 
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Figure 61: Membership maps obtained using a FSCS of (a) Water, (b) Urban and Barren Land, (c) Forest, (d) Pasture, and (e) 

Agriculture. A scale based on (0-20%, 21-40%, 41-60%, 61-80%, and 81-100%) ranges were used. 

                     

Figure 62: (a) Classification map derived from FSCS hardening process, and (b) USDA PR Land Cover Reference 1991 (Helmer 

et al., 2002), and (c) FSCS Fractional Map, R-Pasture, G-Forest, B-Agriculture 

(a) (b) (c) (d) (e) 

(b) (a) (c) 
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Figure 63: Membership maps obtained using a FML-initialized with LMM of (a) Water, (b) Urban and Barren Land, (c) Forest, 

(d) Pasture, and (e) Agriculture. A scale based on (0-20%, 21-40%, 41-60%, 61-80%, and 81-100%) ranges were used. 
 

        

Figure 64: (a) Classification map derived from FML-initialized LMM hardening process (b) USDA PR Land Cover Reference 

1991 (Helmer et al., 2002), (c) Maximum Likelihood, (d) FML Fractional Map, R-Pasture, G-Forest, B-Agriculture 

(a) (b) (c) (d) (e) 

(a) 
(b) (c) 

(d) 
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Membership maps obtained with FML are shown in Figure 63 (a) – (e). Using LMM abundances 

at initial stage to obtain soft training data improves significantly the classification map derived by a 

hardening process in comparison with conventional ML thematic map as can be seen in Figures 64 (a) 

(FML) and 64 (c) (ML), respectively.   

As can be seen in the membership maps and thematic maps derived with a LMM-1, LMM-2, 

SFCM, FSCS, and FML (see Figures 53-54, 56-57, 59-64), FML-initialized with LMM abundances, 

LMM-2 and SFCM provides better representation of the multispectral remote sensed scene in terms of 

membership maps and thematic maps accordingly with NDVI outputs (see Figure 51 (c)) and land cover 

reference (see Figure 51 (b)).  LMM-1, and FSCS probably improves their results if a hyperspectral 

imagery is used as can be seen with the Enrique Reef scene studied in Chapter 4. 

The confusion error matrices for LMM-1, LMM-2, SFCM, FSCS, and FML approaches are 

shown in Tables 21-26 respectively. All approaches with the exception of LMM-1 obtained above 90% of 

overall accuracy as we can see in Figure 65. LMM-1 obtained a lower overall accuracy by the low 

spectral resolution of Lajas imagery in comparison of Enrique scene where high spectral resolution 

imagery was used for the same approach. For that reason, classes with similar spectral signatures, such as 

agriculture and pasture, and urban and barren land pixels which typically are a mixture of materials failed 

in determine an accurate proportion associated to specially these classes and then the hardening step does 

not produced good results. This conventional hard assessment is not the best way to evaluate the 

performance of soft classifiers because, as can be seen in classification maps derived from a hardening 

process, soft classification outputs provide a better representation for this low spatial resolution imagery 

than ML accordingly to NDVI output (see Figure 51 (c)) and the land cover reference (see Figure 51 (b)). 

 

5.2 Summary 
 

 
In this chapter, we present experiments using a multispectral imagery of Lajas, PR acquired with 

an ETM+ sensor. Soft classification results in terms of membership maps and classification maps derived 

from a hardening of degree of membership were conducted for the LMM-1 (endmembers selected 

manually from the image), LMM-2 (PMF algorithm initialized with endmembers selected manually from 

the image) (Masalmah and Vélez-Reyes 2007), SFCM, FSCS, and FML (initialized with LMM)  
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Table 21:  Confusion Error Matrix of a LMM-1 thematic map derived by a hardening LMM-1 abundance maps 

 

 Water 
Urban & 

Barren Land 
Forest Pasture Agriculture 

User's 

Accuracy 

Water 1143 98 0 0 0 92.1% 

Urban & 

Barren Land 
0 123 0 0 3 97.6% 

Forest 0 17 799 0 24 95.1% 

Pasture 0 59 0 216 9 76.1% 

Agriculture 0 152 145 447 197 20.9% 

Number of 

Testing 

Samples 

1143 449 944 663 233  

Producer's 

Accuracy 
100% 27.4% 84.6% 32.6% 84.5% 

 

Overall Accuracy 72.2 %    

 

 

 

 
Table 22: Confusion Error Matrix of a LMM-2 thematic map derived by a hardening LMM-2 abundance maps 

 

 Water 
Urban & 

Barren Land 
Forest Pasture Agriculture 

User's 

Accuracy 

Water 1143 1 0 0 6 99.4% 

Urban & 

Barren Land 
0 355 0 2 0 99.4% 

Forest 0 31 944 0 32 93.7% 

Pasture 0 54 0 661 46 86.9% 

Agriculture 0 8 0 0 149 94.9% 

Number of 

Testing 

Samples 

1143 449 944 663 233  

Producer's 

Accuracy 
100% 79.1% 100% 99.7% 64.0% 

Overall Accuracy 94.8 %    

 

 

 

 

(c) 

(c) (d) 
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Table 23: Confusion Error Matrix of a SFCM thematic map derived by a hardening SFCM membership maps 

 

 Water 
Urban & 

Barren Land 
Forest Pasture Agriculture 

User's 

Accuracy 

Water 1143 0 0 0 3 99.7% 

Urban & 

Barren Land 
0 331 0 8 0 97.6% 

Forest 0 4 937 0 120 88.3% 

Pasture 0 42 0 646 2 93.6% 

Agriculture 0 72 7 9 108 55.1% 

Number of 

Testing 

Samples 

1143 449 944 663 233  

Producer's 

Accuracy 
100% 73.7% 99.3% 97.4% 46.4% 

Overall Accuracy 92.2 %  

 

 

 

 
Table 24: Confusion Error Matrix of a FSCS thematic map derived by a hardening FSCS membership maps 

 

 Water 
Urban & 

Barren Land 
Forest Pasture Agriculture 

User's 

Accuracy 

Water 1143 0 0 0 0 100% 

Urban & 

Barren Land 
0 399 0 36 0 91.7% 

Forest 0 0 924 0 25 97.4% 

Pasture 0 17 0 519 0 96.8% 

Agriculture 0 33 20 108 208 56.4% 

Number of 

Testing 

Samples 

1143 449 944 663 233  

Producer's 

Accuracy 
100% 88.9% 97.9% 78.3% 89.3% 

Overall Accuracy 93.0 %  
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Table 25: Confusion Error Matrix of a FML (initialized using LMM) thematic map derived by a hardening FML membership 

maps 

 

 Water 
Urban & 

Barren Land 
Forest Pasture Agriculture 

User's 

Accuracy 

Water 1143 0 0 0 0 100% 

Urban & 

Barren Land 
0 425 0 6 4 97.7% 

Forest 0 1 944 0 20 97.8% 

Pasture 0 23 0 638 2 96.2% 

Agriculture 0 0 0 19 207 91.6% 

Number of 

Testing 

Samples 

1143 449 944 663 233  

Producer's 

Accuracy 
100% 94.7% 100% 96.2% 88.8% 

Overall Accuracy 97.8 %    

 

 
 

Table 26: Confusion Error Matrix of a ML thematic map  

 

 Water Mangrove Sand Sea Grass Reef Flat 
User's 

Accuracy 

Water 1143 0 0 0 0 100% 

Urban & 

Barren Land 
0 929 0 0 2 99.79% 

Forest 0 0 551 19 0 96.67% 

Pasture 0 0 4 420 4 98.13% 

Agriculture 0 15 108 10 227 63.06% 

Number of 

Testing 

Samples 

1143 449 944 663 233  

Producer's 

Accuracy 
100% 98.4% 83.1% 93.5% 97.4% 

Overall Accuracy 95.3 %  
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Figure 65: LMM-1, LMM-2, SFCM, FSCS, FML, and ML overall accuracy percentage of testing samples 

 
 

approaches. A confusion error matrix analysis was used to assess the performance of soft classification 

algorithms due soft ground truth data was not available for this scene. 

Based on the multispectral scene studied in this chapter, LMM-2 approach using the endmembers 

selected manually from the image to initialize the PMF algorithm (Masalmah and Vélez-Reyes 2007) 

improves significantly the membership maps and classification map derived from a hardening process in 

comparison with LMM-1. As we can observe experimentally, the PMF algorithm (Masalmah and Vélez-

Reyes 2007) provides better results than LMM-1 because it refine the endmembers selected manually 

from the image resulting in a better representation of cover types chosen as informational classes. The 

FML approach using LMM abundances to initialize the algorithm also improves significantly the 

classification map derived by a hardening process in comparison with conventional ML thematic map. In 

summary, SFCM, LMM-2, and FML initialized with LMM abundances provides the better representation 

of the multispectral scene in terms of membership maps and classification maps accordingly with NDVI 

output and the USDA PR Land Cover Reference (Helmer et al., 2002). The FSCS and LMM-1 can 

improves their outputs using a hyperspectral sensor which provides a better discrimination between 
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materials that have similar spectral response such as agriculture and pasture classes taking advantage of 

its high spectral resolution.  
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6 CHAPTER   
 

 
 

Conclusions and Future Work 

 

 

6.1 Conclusions 
 

 
In this chapter, we summarize the major results obtained from the investigation. In chapter 1, we 

have presented the motivations for the research, problem statement, and the objectives that we 

accomplished during the research work. Chapter 2 discussed a theoretical background and literature 

review needed to understand the proposed work. Supervised soft classification algorithms studied in the 

research were explained in Chapter 3. As part of the research, we developed an end to end classification 

system called Spectral Soft Classification Tool (SSCT) that will be incorporated to the Hyperspectral 

Image Analysis Toolbox (HIAT) developed over the past eight years by UPRM researchers at the 

Laboratory for Applied Remote Sensing and Image Processing (LARSIP). An Enrique Reef scene at 

Lajas, PR acquired with HYPERION sensor was used to show the SSCT functionalities. Further 

experiments using multispectral data are described in Chapter 5. 

A comparative study of supervised fuzzy logic algorithms and linear mixing model used as soft 

classifiers was performed during this research. The research demonstrates that soft classifiers could be an 

alternative of hard classification of low spatial resolution imagery because they are more appropriate to 

describe and model the real variation of landscape remote sensed images which are imprecise naturally. 

Based on the Lajas scene, Linear Mixing Model (LMM) and Supervised Fuzzy C-Means (SFCM) 

approaches have good correlation among all membership maps and classification maps. The use of LMM 

abundances to initialize the FML algorithm improves significantly the classification derived by a 

hardening process in comparison with the conventional ML thematic map. On the other hand, the use of 

PMF algorithm to refine the endmembers selected manually from the image improves the membership 

maps obtained from LMM-1 using the endmembers selected manually from the image or using the PPI 

method. 

CHAPTER  6 
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Accordingly with Enrique Reef results, we can conclude that LMM and SFCM membership maps 

have a good correlation among all informational classes and soft ground truth data. Fuzzy Supervised 

Classification System (FSCS) had problems to detect the mixtures of pixels although it produced good 

classification maps in comparison with ground truth data available with an exception of mangrove class 

which was overestimated. Fuzzy Maximum Likelihood (FML) using LMM abundances estimates to 

initialize the soft-training data improves the thematic map obtained with a conventional Maximum 

Likelihood algorithm especially for sand and mangrove classes. FML assuming pure training samples to 

initialize the soft training data also improves the hard Maximum Likelihood classification map but FML-

using LMM to initialize soft training data obtained higher overall accuracy percentages in terms of the 

traditional confusion error matrix and fuzzy error matrix. All classification maps derived from soft 

classification algorithms provided a better representation of Enrique Reef scene in comparison with a ML 

thematic map which produced an overestimation of the mangrove and sand classes. 

In addition, a soft classification tool was developed. SSCT intends to group many efforts of 

researchers in the area of soft classification in order to provide a valuable tool to image analysts and end 

users to analyze multi/hyperspectral imagery in terms of fractional maps and thematic maps derived from 

a soft classification algorithms, visualization techniques, and accuracy assessment. 

Actually, we cannot eliminate data softness from end users at all but the use of visualization 

techniques are an aid in the visual interpretation and analysis of soft classification outputs. Fractions maps 

are useful to generate a RGB composite of three membership maps assigning them to red, green, and blue 

channels. It allows us to explore the mixing among classes which is not possible using a single 

classification map derived from a hard classification. Also, binary membership maps provide a tool to 

visualize how the spatial distribution of a particular class is changing through the different thresholding 

set by end users depends on the application of interest. The visualization of thematic maps derived from a 

soft classification is another valuable tool because we can take advantage of information about the 

proportion of pixel coverage obtained with membership maps and it can be used to select a threshold and 

establish an unclassified class to explore the area of mixing among classes assigning a similar color of the 

class which obtained the higher degree of membership. Those classification maps are also helpful because 

they take into consideration the mixed pixels and could be a complement in the analysis of a particular 

scene because sometimes the image analysts prefer to use a single classification map instead of several 

membership maps. 
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We presented the use of entropy images to visualize the areas of significant degree of mixing 

among classes. Entropy is a measure of information that we are trying to use to evaluate degree of mixing 

since the degree of membership obtained from soft classification, although they are not probabilities, they 

are fraction values that ranges from 0 – 1. An entropy computation of an almost pure pixel produces a 

lower value. On the contrary, an entropy computation of a pixel which has a higher degree of mixing 

between classes produces a higher value. Following this concept, entropy images was generated to 

provide an additional tool to evaluate the degree of mixing in a scene.  

The use of a fuzzy error matrix, and Euclidean distance presented in this research to evaluate the 

performance of soft classifiers provides a complement of the conventional accuracy assessment based on 

the confusion error matrix.  We have not found in literature any method that solves the accuracy 

assessment issue of soft classification outputs satisfactorily. However, the uses of several approaches 

could give us a better idea of how accurate is the results obtained from a membership outputs and 

hardening process. 

In summary, soft methods are another way to model low spatial resolution remote sensed data by 

naturally taking into consideration the mixing of pixels as part of the classification process. 

 

6.2 Future Work 
 
 

Soft classification based on Linear Mixing Model and Fuzzy Logic algorithms was addressed 

during the research. As a future work, neural networks and neuro-fuzzy methods can be study in order to 

compare which method could provide better results to model the real variation of landscape remote 

sensed imagery.  The use of Support Vector Machine (SVM) to calculate the degree of membership 

associated to informational classes and composite kernels, which incorporate spatial and spectral 

information was proposed by Gu, Liu, and Zhang . Their study revealed an improvement in classification 

accuracies by the use of composite kernels. 

This research have studied supervised soft classification approach where prior knowledge of 

image analyst is required to determine a good representation of training samples in order to train soft 

classifiers. Unsupervised soft classification could be study in order to also provide an automated tool 

without significant interaction of end users. Unsupervised methods are also useful in supervised case 

study because provide an idea of class patterns that could be used to select training samples and 
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endmembers for a supervised mode. Some initials results based on the Positive Matrix Factorization 

(PMF) (Masalmah and Vélez-Reyes 2007) were discussed in Chapter 5.   

Accuracy assessment of soft classifiers is still a big issue. This research studied methods 

proposed in literature to evaluate the performance of soft classifiers but they are sensitive to the use of a 

higher accurate proportion coverage of each informational class per pixel as a soft ground truth data 

which in practical situations is difficult to obtained. It is needed to conduct further investigation on how 

we can assess soft classifiers taking into consideration the multiclass assignment problem and using soft 

ground truth data. 

Monitoring land cover changes is a key of different applications such as forestry, environment, 

geology, agriculture, and others. It could be useful to study how soft classification can be used to detect 

the transition zones of diverse classes (membership maps) by the use of temporal images and change 

detection algorithms.  

The Spectral Soft Classification Tool functionalities shown in Chapter 4 need to be incorporated 

in HIAT. These functions will complement the existing functions available in HIAT for hard 

classification, supervised and unsupervised spectral unmixing, and other methods to analyze 

hyperspectral images. The work developed, the routines, and final integration will be performed by the 

LARSIP integration team. 
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APPENDICES 
 

 
A. Description of .m functions that will be included into the HIAT (SSCT) by the 

LARSIP integration team 

 

 

A.1 Soft Classification Module 

 

 
Fuzzy Supervised Classification System (FSCS) (Melgani et al., 2000)  

 
[FSCSMemMap,MajVote,MajVoteLabel,ThMap,t]=FSCSsc(XImg,RadRes,ClassName,C1,C2,C3,C4,C5) 

 

Description Input Variables Output Variables 

 

This function generates 

the FSCS membership 

maps and a single 

classification map 

based on highest degree 

of membership. 

 

* This function calls 

“Rescal” and 

“Defuzzy” functions 

into the body of the 

function 

  

 

XImg - Multi/Hyperspectral 

image (row x column x bands) 

 

ClassName - cell array with 

class names 

 

C1 - training samples of class 1 

 

C2 - training samples of class 2 

 

C3 - training samples of class 3 

 

C4 - training samples of class 4 

 

C5 - training samples of class 5 

 

* It is necessary an 

optimization of body function 

to use more than or less than 

5 classes. 

 

FSCSMemMap – 

Membership maps derived by 

FSCS . 

(row x column x classes) 

 

MajVote - higher degree of 

membership for each pixel in 

the scene. (N x 1) 

 

MajVoteLabel - class label 

with the higher degree of 

membership for each pixel in 

the scene.        (N x 1) 

 

ThMap - Classification map 

derived by a FSCS hardening 

step 

 

t – execution time 
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Fuzzy Maximum Likelihood (Wang 1990) 
 

 
[FML_MemMap,ThMap,t]= FMLsc (XImg,ClassName,C1,C2,C3,C4,C5, C1Indx, C2Indx, 

C3Indx,C4Indx,C5Indx) 

 

Description Input Variables Output Variables 

 

This function generates 

the FML membership 

maps and a single 

classification map 

based on highest degree 

of membership. At 

initial stage the degree 

of membership 

associated to each class 

is set at 1 or 0. ("pure 

pixels")  in order to 

obtain the soft training 

parameters associated 

to each class iteratively. 

Training samples 

should be comprised 

from at least two 

classes. 

 

 

 

XImg - Multi/Hyperspectral 

image (row x column x bands) 

 

ClassName - cell array with 

class names 

 

C1 - training samples of class 1 

 

C2 - training samples of class 2 

 

C3 - training samples of class 3 

 

C4 - training samples of class 4 

 

C5 - training samples of class 5 

 

* It is necessary an 

optimization of code function 

to use more than or less than 

5 classes. 

 

FML_MemMap – 

Membership maps derived by 

FML (row x column x 

classes) 

 

ThMap - Classification map 

derived by a FML hardening 

step 

 

t – execution time 
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Fuzzy Maximum Likelihood – using LMM abundances to generate soft training 

parameters 

 
[FML_MemMap,ThMap,t] = FML_LMMsc (LMMMemMap, XImg, ClassName, C1, 

C2,C3, C4, C5,C1Indx, C2Indx, C3Indx,C4Indx,C5Indx) 

 

Description Input Variables Output Variables 

 

This function generates 

the FML membership 

maps and a single 

classification map 

based on highest degree 

of membership. LMM 

abundances are used as 

the proportion coverage 

associated to each class 

in order to generate the 

soft training 

parameters. 

 

 

 

LMMMemMap – Membership 

maps derived by LMM 

 

XImg - Multi/Hyperspectral 

image (row x column x bands) 

 

ClassName - cell array with 

class names 

 

C1 - training samples of class 1 

 

C2 - training samples of class 2 

 

C3 - training samples of class 3 

 

C4 - training samples of class 4 

 

C5 - training samples of class 5 

 

* It is necessary an 

optimization of code function 

to use more than or less than 

5 classes. 

 

FML_MemMap – 

Membership maps derived by 

FML using LMM abundances 

in order to obtain the soft 

training parameters. 

(row x column x classes) 

 

ThMap - Classification map 

derived by a FML hardening 

step 

 

t – execution time 
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Fuzzy Maximum Likelihood – Initialized with LMM abundances 

 

[FML_MemMap,ThMap,t] = FML_LMMscInit  (LMMMemMap, XImg, ClassName, C1, 

C2,C3, C4, C5,C1Indx, C2Indx, C3Indx,C4Indx,C5Indx) 

 

Description Input Variables Output Variables 

 

FML_LMMscInit 

function generates the 

FML membership maps 

and a single 

classification map 

based on highest degree 

of membership. LMM 

abundances are 

used as the proportion 

coverage associated to 

each class in order to 

determine iteratively 

the soft training 

parameters. 

 

 

 

LMMMemMap – Membership 

maps derived by LMM 

 

XImg - Multi/Hyperspectral 

image (row x column x bands) 

 

ClassName - cell array with 

class names 

 

C1 - training samples of class 1 

 

C2 - training samples of class 2 

 

C3 - training samples of class 3 

 

C4 - training samples of class 4 

 

C5 - training samples of class 5 

 

* It is necessary an 

optimization of code function 

to use more than or less than 

5 classes. 

 

FML_MemMap – 

Membership maps derived by 

FML using LMM abundances 

in order to obtain the soft 

training parameters. 

(row x column x classes) 

 

ThMap - Classification map 

derived by a FML hardening 

step 

 

t – execution time 
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Linear Mixing Model - Classification Map  

 
[LMMMemMap, MajVote, MajVoteLabel, ThMap, t] = LMMsc (MemMaps_Img, ClassName) 

 

Description Input Variables Output Variables 

 

This function generates 

a single classification 

map derived by LMM 

membership maps 

based on highest degree 

of membership. 

 

* This function calls 

“Rescal” and 

“Defuzzy” functions 

into the body of the 

function 

 

 

MemMaps_Img - 

membership maps derived by 

Linear Mixing Model 

algorithm  (row x column x 

classes) 

 

ClassName - cell array with 

class names 

 

 

LMMMemMap –degree of 

memberships (0-1) associated 

to each class  

(row x column x classes) 

 

MajVote - higher degree of 

membership for each pixel in 

the scene. (N x 1) 

 

MajVoteLabel - class label 

with the higher degree of 

membership for each pixel in 

the scene. (N x 1) 

 

ThMap - Classification map 

derived by a LMM hardening 

step 

 

t – execution time 

   

 

 

 

A.1.1 Complementary functions 

 

 

Rescaling 

 

[DegMem_NNnom, t] = Rescal (DegMem_NN, number_of_classes) 

 

Description Input Variables Output Variables 

 

This function 

normalizes the degree 

of membership to sum 

up to one.  

 

DegMem_NN - Degree of 

memberships associated to each 

class (N x M) 

N – number of pixels 

M – number of classes. 

 

number_of_classes 

 

 

DegMem_NNnom – degree 

of memberships associated to 

each class (normalize)  

(N x M) 

N – number of pixels 

M – number of classes. 

 

t – execution time 
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Defuzzyfication (Hardening Step) 

 

[DegMem, MajVote, MajVoteLabel, ThMap, t] = Defuzzy (MemMaps_Img, ClassName) 

 

Description Input Variables Output Variables 

 

This function generates 

a single classification 

map derived from 

membership maps 

produced by soft 

classification 

algorithms assigning 

the pixel to the class 

with the higher degree 

of membership.  

 

MemMaps_Img - 

membership maps derived by 

soft classification algorithms 

(row x column x classes) 

 

ClassName - cell array with 

class names 

 

 

DegMem – Degree of 

memberships associated to 

each class (N x M) 

N – number of pixels 

M – number of classes. 

 

MajVote - higher degree of 

membership for each pixel in 

the scene. (N x 1) 

 

MajVoteLabel - class label 

with the higher degree of 

membership for each pixel in 

the scene.        (N x 1) 

 

ThMap - Classification map 

derived by a hardening step 

 

t – execution time 
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A.2 Accuracy Assessment Module 

 

 

Entropy Image 

 
 [Entropy_XImg, Mn_Entropy_X, Mx_Entropy_X, u_Entropy_X, t] = Entropy_Img (MemMaps_Img) 

 

Description Input Variables Output Variables 

 

This function 

generates an entropy 

image based on the 

membership maps 

derived by soft 

classification 

algorithms. 

 

MemMaps_Img - 

membership maps derived by 

soft classification algorithms 

(row x column x classes) 

 

Entropy_XImg – entropy 

image 

 

Mn_Entropy_X -value of 

minimum entropy in whole 

scene 

 

Mx_Entropy_X - value of 

maximum entropy in whole 

scene 

 

u_Entropy_X -  an average 

of entropy values in whole 

image 

 

t – execution time 

   

 

 
  Fuzzy Error Matrix (Binaghi et al., 1999)(Binaghi et al., 2000) 

 

[OA, PA, UA, FEMmatrix, t] = FEM (TestingMemMaps, TestingSoftRef) 

 

Description Input Variables Output Variables 

 

This function 

calculates the fuzzy 

error matrix to 

evaluate the 

performance of soft 

classification 

algorithms using 

fuzzy sets. Soft-

ground-truth data is 

required. 

 

 

TestingMemMaps –testing 

samples selected from 

membership maps derived by 

soft classification algorithms 

 

TestingSoftRef - testing 

samples selected from Soft- 

Ground -Truth 

Data for the same spatial 

coordinate (x,y) of 

TestingMemMaps samples. 

 

 

OA – overall accuracy 
 

PA – producer accuracy 
 

UA – user accuracy 
 

FEMmatrix - Fuzzy Error 

Matrix (n+1) x (n+1) where n 

is the number of classes. (n+1) 

row and column corresponds 

to “Total Grades” for "soft 

reference" (row) and degree of 

membership outputs (column) 

respectively 
 

t – execution time 
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 Euclidean Distance 
 

[EdImg, u_EdVect, t] = EucDist (MemMaps_Img, SoftRef_Img) 
 

Description Input Variables Output Variables 

 

This function estimates 

the separation of the 

degree of membership 

derived by soft 

classification algorithms 

and soft reference data 

based on the proportion 

coverage associated to 

each class in the pixel. 

Soft ground truth data is 

required. 

 

MemMaps_Img - 

membership maps derived by 

soft classification algorithms 

(row x column x classes) 

 

SoftRef_Img – soft 

reference data (row x column 

x classes) 

 

EdImg - Euclidean Distance 

image.  

 

u_EdVect - an average of the 

ED computation per pixel. 

 

t – execution time 

   

 

  

 Correlation Coefficient 
 

[CorrMatrix R, t] = CorrCoefAnalysis (ClassName, MemMaps_Img, SoftRef_Img) 
 

Description Input Variables Output Variables 

 

This function generates 

scatter plots between 

degree of membership 

derived by soft 

classification algorithms 

and soft-ground-truth 

data and compute the 

correlation coefficient 

associated to each 

informational class. 

 

ClassName - cell array with 

class names 

 

MemMaps_Img - 

membership maps derived by 

soft classification algorithms 

(row x column x classes) 

 

SoftRef_Img – soft 

reference data (row x column 

x classes) 

 

CorrMatrix - correlation 

matrix ( between membership 

maps and soft reference data) 

 

R - correlation coefficient 

associated to class 

 

t – execution time 

 

* Scatter plots associated to 

each class  
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A.3 Visualization Module 

 

Fractional Maps 

 

[rgbImg, RedCl, GreenCl, BlueCl, t] = FracMaps (MemMaps_Img, ClassName) 

 

Description Input Variables Output Variables 

 

This function generates 

RGB composite from 

three membership maps 

assigned to Red, Green, 

and Blue channels in 

order to explore the 

mixing among three 

informational classes. 

 

MemMaps_Img - 

membership maps derived by 

soft classification algorithms 

(row x column x classes) 

 

ClassName - cell array with 

class names 

 

 

rgbImg – RGB composite 

derived by three membership 

maps assigned to RGB 

channels 

 

RedCl – class assigned to red 

channel 

 

GreenCl – class assigned to 

green channel 

 

BlueCl-  class assigned to 

blue channel 

 

t – execution time 

   

 
Classification Map with Unclassified Class 

 
[ThMap_UncCl, t] = ThMapThr (MajVote, MajVoteLabel, number_of_rows, number_of_columns, 

number_of_classes, ClassName) 

 

Description Input Variables Output Variables 

 

This function generates 

a single classification 

map with an 

unclassified class using 

a user defined threshold 

(between 0.01-0.99). 

 

MajVote - higher degree of 

membership for each pixel in 

the scene. (N x 1) 

 

MajVoteLabel - class label 

with the higher degree of 

membership for each pixel in 

the scene. (N x 1) 

 

number_of_rows 

 

number_of_columns 

 

number_of_classes 

 

ClassName - cell array with 

class names 

 

 

ThMap_UncCl – 

classification map with 

unclassified class (user 

defined threshold) 

 

 

t – execution time 
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Membership Maps – Binary Thresholds 

 
[MemMapThr85, MemMapThr70, MemMapThr50, MemMapThr20, t] =  MemMapBinThr 

(MemMaps_Img) 
 

Description Input Variables Output Variables 

 

This function generates 

a binary maps using 

thresholds of 0.85, 0.7, 

0.5, and 0.20 to 

visualize the spatial 

extent of a particular 

membership map 

 

 

MemMaps_Img - 

membership maps derived by 

soft classification algorithms 

(row x column x classes) 

 

 

MemMapThr85 – 

Membership binary map 

using a user defined threshold 

of  0.85 

 

MemMapThr70 – 

Membership binary map 

using a user defined 

thresholds of 0.70 and 0.85 

 

MemMapThr50– 

Membership binary map 

using a user defined 

thresholds of 0.50, 0.7, and 

0.85 

 

MemMapThr20 – 

Membership binary map 

using a user defined 

thresholds of 0.2, 0.5, 0.7, 

and 0.85 

 

t – execution time 
   

 
 

 


