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Developement of a Combined Interface and Extended Finite Element
Method to Predict Delamination in Composite Structures

Emmanuel Irizarry Zapata
Master in Science in Mechanical Engineering

University of Puerto Rico at Mayagüez
Dr. Vijay K. Goyal, Faculty Advisor, Mechanical Engineering

(ABSTRACT)

For this work, an user-defined element (UEL) in ABAQUS was developed in conjunction with
a triangular traction separation law, as the Cohesive Zone Model, that combines the Extended
Finite Element and Cohesive Element Methods to predict delamination in bonded cantilever
beams. The UEL was written in FORTRAN to work within the ABAQUS environment. The
major advantage of this approach is that the crack path, or delamination, is efficiently modeled
by combining the best of the two methods. The model matches the experimental data with 1–
7% of difference while matching the exact maximum displacement and capturing the nonlinear
pattern behavior of the load-deflection curve.
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Desarrollo de un Método Combinado de Elementos de Interface y Finitos
para Predecir Delaminación en Estructuras Compuestas

Emmanuel Irizarry Zapata
Maestría en Ciencia en Ingeniería Mecánica
Universidad de Puerto Rico en Mayagüez

Dr. Vijay K. Goyal, Profesor Consejero, Ingeniería Mecánica

(RESUMEN)

En este trabajo, con la intención de modelar delaminación, desarrollamos un elemento definido
por el usuario (UEL) usando el programa ABAQUS donde integramos un modelo de separación
triabgular, como el model de zonas coesivas, que combina el Método de Elementos Finitos
Extendidos y el Método de Elementos Coesivos. El UEL fue desarrollado en FORTRAN
para poder trabajar con ABAQUS. La ventaja sobresaliente de este método es que la se puede
modelar de forma efectiva el paso de propagación de la grieta, o delaminación. Esto se logra
al poder combinar ambos métodos. Nuestro modelo puede predecir la data experimental, con
una differencia porcentual de 1–7% mientras puede capturar el comportamiento no lineal de la
curva de desplazamiento y carga.
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Chapter 1
Preliminary Remarks

Structural integrity is one of the most important aspects of a design process, especially
when a component exhibit a flaw or a crack, in particular to structures with bonded interfaces.
From a design point of view, crack detection and prediction is a critical factor that allows a
designer to prevent a catastrophic failure. For this reason, engineers use modern techniques to
improve the structural integrity and performance of structural components before the manufac-
turing them. The finite element methods have become a powerful method for these purposes.
However the biggest challenges arise when discontinuities (i.e. voids, interfaces, cracks) are
present within a structural component.

Two promising models can address this problem: cohesive element method (CEM) and
the Extended Finite Element Method (XFEM). The Cohesive Zone Model (CZM) provides the
traction-separation law needed for the crack opening. One advantage of CEM is that an there no
need for an initial flaw. These elements do not reflect a visible crack. However, one limitation
of CEM is that failure can only be simulated on the element boundaries. To solve this problem,
the Extended Finite Element Method is used to overcome these difficulties to represent a crack
in the element. XFEM has been used as a key tool to study fractures on structural components
(Mubashar et al. 2014). The present work proposes to develop a hybrid finite element model
using XFEM and CEM combined with Cohesive Zone Models to model delamination.

1.1 Motivation

1.1.1 Current State and Downfalls

There has been an interest in interfacial failure analysis. In fact, the aerospace community
is focused on trying to understand the effects and behavior of cracks at potential locations.
There has been much experimental work proofing the potential of the FEM for to calculate the
crack opening threshold (Pommier et al. 2010; McClung and Newman 1999). Although FEM
becomes the cornerstone in structural failure analysis, it fails to match the experimental data

1
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even with complex mesh refinements and computational cost in large crack problems. The
conventional methods require the user to conform the mesh to the cracked geometry because
the crack tips cause a high-stress concentration, exhibiting large stresses and strains as a crack
tip is approached.

For this reason, the problem will require a mesh refinement in the vicinity of the crack tip
to obtain accurately stresses and strains as shown in Figure1.1. For two-dimensional problems,
it is recommended to use a circular contour around the crack tip typically filled with a quad-
dominated mesh. This technique is available in commercial finite element software such as
ABAQUS R©, but is quite cumbersome and time-consuming due to the need of tediously com-
plicated meshing techniques. The user must keep on track the amount of rings generated at the
crack tip to report accurate quantities.

Figure 1.1: Finite Element crack tip refinement
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1.1.2 The Need for a New Computational Technique

Stress and fracture mechanics based criteria present critical disadvantages (Martins da Silva
and Öchsner 2008), especially for structures with interfacial bonds. Fracture mechanics relies
on an initial crack size but in many applications, intuition can not predict the damage location
point. Mesh dependency can be alleviated by using the proper enrichments to the FE model.
Within the framework of the Extended Finite Element Method, using enrichment functions, it
is possible to represent a crack in a structural component without the need of remeshing. How-
ever, XFEM has its technical challenges to predict interfacial failure. The enrichment functions
are dependent on the type of analysis being executed because there is no general enrichment
function applicable to all problems. On the other hand, Cohesive Elements present a very at-
tractive. It is not necessary to predefine an initial crack unlike classical fracture mechanics
approaches, and the damage takes place without the user intervention. Also, there has been
a good agreement with experimental data for interfacial failure. CEM has been a successful
technique used to predict delamination although discontinuities can only be modeled through
the element boundaries.

The current implementation of cohesive elements in ABAQUS R©has difficulties predicting
the behavior of regions close to the interface. On the other hand, XFEM does not take into
consideration material degradation. Moreover, highly localized stress concentrations and stress
singularities exist in an adhesively bonded interfaces, even a mesh refinement does not provide
a converged solutions (Mubashar et al. 2014). This is the main motivation for a need of
new techniques. Thus, a combined XFEM-cohesive element model is needed to predict crack
growth in the adhesive regions with mesh independence and at the same time predict changes
in strength as the material start to degrade due to excessive loading, which is not possible using
only cohesive elements. A combined model of XFEM and CEM will be attractive since it will
be combining the advantages of both methods while reducing the drawbacks.

1.2 Project Description

1.2.1 Problem Description

Delamination is a major concern for bonded and composite structures. Discontinuities located
at the interface zone of a structural component are difficult to predict. Classical computational
techniques rely on cumbersome and time-consuming procedures.
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A method that combines CEM and XFEM will be the key to addresses some of the nu-
merical disadvantages. In order to provide a solution to this problem, the Double Cantilever
Beam (DCB) as shown in Figure 1.2 is used to validate our implementation in ABAQUS with
a custom UEL and input file.

AdherentAdhesiveP

P

Figure 1.2: Double cantilever beam specimen

This type of joint consist of a composite material bonded by an epoxy adhesive. The DCB
specimen is used to compute the values of GIC for Mode I. The loading history consist of a
predetermined displacement at the ends. The objective is to capture and numerically predict
the load-displacement behavior at the crack opening point and demonstrate the robustnesses
the implementation. Figure 1.3 illustrates the location point at the opening for load P versus
displacement δ data acquisition. When a constant load is applied, the value of δ increases
accordingly.

Figure 1.3: Displacement δ calculation point.
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1.2.2 Assumptions

The following assumptions are made throughout the scope of this work:

1. Linear Elastic Fracture Mechanics (LEFM) approach is assumed.

2. Plane stress condition is assumed. Odi (2004) demonstrated that plane stress condition
applies to relatively thin structures.

3. Substrate experience deformation due to tension. The influence of geometrical effects
such as bond thickness is considered negligible. This condition limits our implementa-
tion to fracture Mode I.

4. Nonuniform shear stress at the overlap ends are ignored. This means that substrates are
assumed to be effectively rigid. Fracture will only occur over a finite zone of the adhesive
layer.

5. Adhesive stresses are assumed to be constant across the adhesive layer.

6. For the FEM simulation adhesive geometry is modeled as linear springs elements.

1.2.3 Overall Goals

The goal of this work is to develop a new interface element in combination with extended finite
element method. The following tasks will be achieved in this work:

1. Study delamination for DCB specimens through computational techniques.

(a) Understand the effects of delamination

(b) Develop new theory using CEM and XFEM to model delamination.

2. Predict delamination on DCB specimens

(a) Construct a parametric input file using ABAQUS syntax.

(b) Implement the new element using a UEL, written in FORTRAN, for the ABAQUS
environment.

3. Validate results using those available for the DCB in the literature.
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The spring-like FE element capable of predicting failure at the material interfaces and crack
growth propagation in Double Cantilever Beams using a combination of CEM and XFEM im-
plemented through ABAQUS and a custom FORTRAN user subroutine (UEL). A customized
FORTRAN environmental file written in PYTHON is provided in Appendix A.

1.2.4 Intellectual Merit

For application in aerospace environments, adhesively bonding composite structures involves
more than just replacing the currently used methods like bolting and/or welding. Although
not all structures are suitable for adhesive bonding, for some structures, consisting of dissim-
ilar materials, adhesive bonding remains an excellent technique. A successful adhesive bond
needs to be tailored to the structures loading conditions. In these sectors, the technology for
design and engineering of durable composite adhesively bonded joints are further advanced,
and its design relies mainly on experimental data. The main disadvantage of composite ad-
hesive bonded joints is the limited knowledge available on the behavior of adhesively bonded
joints applied to aircraft. Some experimental data is available for panels that debonded or
cracked through the adhesive. The industries using these types of structural components will
greatly benefit by using our state-of-the-art computational toolkit that will predict delamination
of these composite-adhesive structures. This new element will efficiently improve information
of the composite adhesive structural performance by integrating innovative finite element tech-
niques, such as the CEM and XFEM, and promising constitutive laws for debonding.

A code that is efficient, reliable, and has a simple fracture algorithm has not been developed
yet using ABAQUS. A code that combines XFEM and CEM will impact the scientific and/or
engineering community, not to mention the major established industries such as aerospace, au-
tomobile, naval, chemical and petroleum companies. This work will enhance the understanding
of bonded structures (adhesively bonded joints) such as the ones presented in Figure 1.4. In the
context of adhesive joints, they offer advantages over traditional mechanical joint techniques
(Pocius 2002).
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Figure 1.4: Joints Configurations

1.2.5 Broader Impacts

The implemented model will provide the basis to understand the weak physical interaction
between metal-polymers and inorganic-polymer interfaces. The industry relies heavily on the
usage of glues, our implementation can be used to simulate delamination.

1. Automotive industry: The application of adhesives and bonded joint in the automo-
bile design improves the vehicle structure’s performance. Some of the benefits are: (i)
increases the stiffness of car body thus improving car’s acoustics, (ii) overcomes durabil-
ity problems by improving long-term durability, (iii) and enables downgauged steel and
multi-material construction (Al, Mg, Composites) thus reducing the mass. Hence, this
work will benefit the automotive industry. Also, our toolkit will fit their needs because it
will interact with ABAQUS software used for the automotive applications.

2. Ship structures: Shipbuilding companies look for light-weight constructions and for
constructions composed of various materials when welding technology reaches its limits.
Some of the benefits are: (i) weight reduction, (ii) larger design space for light weight
ships, (iii) electric and galvanic isolation, which prevents corrosion, (iv) and reduction
of vibrations for high mechanical damping.

3. Construction: Modern light-weight design has revolutionized transportation construc-
tion over recent years. This has been possible due to the intelligent application of modern
bonding technology. This has allowed the bonding of hitherto unrealizable combinations
of materials in transportation construction, for example, the bonding of glass to steel,
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aluminum with magnesium and the bonding of fiber-reinforced composite materials with
metal. The knowledge obtained through this effort guarantees the reliability of adhesive
bonds.

1.3 Approach

1.3.1 Technical Approach

The Figure 1.5 shows the proposed modules and their interactions

Proposal No.  N121-042-0632                                                                                Submitted by: Acts 29: Innovations in Research & Engineering 
Topic No.  N121-042:  High-Fidelity Residual Strength and Life Prediction Tool for Adhesively Bonded Composite Structures 

Proprietary of A29IRE                                                                                                                                                                                        8 

2.4.2 The Proposed Solution Approach 

Figure 4 illustrates the proposed solution approach.  The A29IRE Team will focus in four modules in order to 
achieve the requested computational toolkit.  Each one of the modules is briefly explained here but expanded in 
Section 4.   

 

Figure 4:  Proposed modules and their interactions. 
 

1. MODULE 1: MATERIAL CHARACTERIZATION  
Fatigue failure is very challenging to predict accurately in adhesively bonded joints because of its multi-
component nature, complex stress distributions, and nonlinear material behavior.  In addition, the failure 
may occur in either the adhesive, adherent, or in the interfacial region between the two.  The main causes of 
strength reduction in adhesively bonded joints are: (i) fatigue, caused by cyclic loads exceeding a critical 
stress level, (ii) environmental degradation of adhesive and/or adhesive/adherent interface through 
exposure to elevated temperatures and humidity, (iii) internal stresses resulting from adhesive shrinkage 
and differences in coefficients of thermal expansion between the adherents and adhesive, (iv) creep of 
adhesives at elevated levels of stress, temperature and humidity.  In an adhesively bonded joint subject to 
fatigue and moisture we have a complex system in which we may have multiple changing initiation and 
propagation sites and mechanisms as the dynamic effects of progressive fatigue damage and moisture 

MODULE 5:  
GENERAL TOOLKIT 

 
Develop the toolkit that fully runs in 

ABAQUS and validates other 
specimens 

Known Input Parameters  

No 
MODULE 4:  

VALIDATION 
Compares with 

experimental data? 

MODULE 3:  
FEA: CEM and XFEM 

 
Integrate the model of an elastic 

material 

Yes 

MODULE 2:  
CONSTITUTIVE LAW 

 
 CZM: Traingular Traction-

Separation 

MODULE 1:  
CHOOSE BENCHMARK 

 
Experimental work for validation 

Figure 1.5: Proposed modules and their interactions
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1.3.2 Development of Computational Technique

 

1) FEA Model

2) Model 
Development

3) Abaqus 
Input File

4) Abaqus 
UEL

5) Force 
Displacement 
Compuatation

6) Compare with 
Experimental 

Data

7) End

Figure 1.6: Workflow Development

The Figure 1.6 shows the general steps to accomplish our work. The first step is to define
the boundaries of the model. The defined boundary conditions include the essential bound-
ary conditions (displacements) and natural boundary conditions (tractions). The models are
developed directly in ABAQUS input file in conjunction with the user-defined element (UEL)
subroutine using FORTRAN. The UEL must interact with ABAQUS and the custom input file.
After meshing, the domain consists of a set of enriched elements with additional shape func-
tions that allow the separation and propagation in the event of the presence of a crack. However,
ABAQUS has a limited element library that can be used with XFEM to simulate close to a real
delamination. Thus, it is necessary to use Damage Models to control crack delamination during
the simulation.

The predictive tool consisted of an algorithm programmed using ABAQUS with custom
FORTRAN subroutines. In order to solve the problem, we proposed a combined CEM and
XFEM model, as shown in Figure 1.7. The numbers in circles represent the element number,
and the numbers without it represent the node location using a counterclockwise convention.
Element number 3 and number 4 are the proposed element that connects 2-Dimensional quadri-
lateral elements. Vertical forces are applied at nodes 1 and 2 while node 7 and 8 remain fixed.
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Figure 1.7: Proposed 1D XFEM Element (Element 3 and 4) interaction with 2D Elements

The idea is to implement an interface element with XFEM into ABAQUS using a UEL
subroutine. The cohesive element is used for interfacial fracture while the XFEM is used for
cracks propagating within the bulk interface. In order to validate the models, some published
experimental work by Davies (2002), Robinson and Song (1992), and Song et al. (2008) are
compared with the proposed model. Numerical results are presented for the analyzes of a Com-
posite Double Cantilever Beam Specimen and for a problem involving multiple delamination
for which comparisons are made with experimental results standardized by ASTM according
to Robinson (1992).

1.3.3 Thesis Outline

This chapter is an introductory chapter explaining the problem we plan to solve with its moti-
vations. Chapter 2 provides the literature review showing that this work is not found elsewhere.
Chapter 3 provides the derivation of the element, its implementation, validation, and several
case studies. Lastly, in Chapter 4 we provide the conclusions and various ideas to expand this
work.



Chapter 2
Literature Review

Nowadays, many aerospace engineers are interested in a robust predictive technology for
bonded joint structural interfaces. For over three decades, researchers have been trying to de-
velop tools for fracture analysis of modern structures. Most traditional approaches require tens
of thousands of degrees of freedom and tons of computing time, making the analysis imprac-
tical and/or very expensive (Kaiyuan et al. 2006) mainly due to the requirement of manual or
adaptive mesh refinement. In the last decade, XFEM has become a very promising tool for this
type of problems. The main advantage being that the mesh does not have to conform to the
crack. The limitations of the XFEM can be compensated by combining the Cohesive Element
Methods (CEM) that are also promising (Crocombe et al. 2008) to solve interfacial failure in
adhesively bonded components.

2.1 Fracture Mechanics

The traditional approach for structural design is based on anticipating the applied stress and
comparing the mechanical properties of the selected material. The material is considered for
the application if its strength exceeds the applied stresses, a Factors of Safety is used to ensure
this condition is met. However, fracture mechanics has three important aspects of the structural
design: applied stress, flaw size, and fracture toughness. There are two key approaches to
examine a fracture in the body: energy criteria and fracture toughness approach. Griffith (1921)
was the first who proposed an energy criteria, modified by Irwin (1956).

Griffith (1921) defined the rate of change in potential energy located at the crack area
as Energy Release Rate G. When the material exhibit a flaw (fracture) G becomes Gc, which
represents the critical energy release rate, the responsible to measure fracture toughness. Figure
2.1 shows an infinite plate with a central crack of length 2a subjected to a remote tensile stress
σ with thickness B. Griffith derived a parameter that describes the Energy Release Rate for
this model as:

G =
π aσ2

E
(2.1)

11
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where E is the Young’s Modulus, σ the remotely applied stress, and a the half crack length.
Now, when G=Gc the critical stresses and crack size combine to produce a failure. The critical
energy release rate for this case is described by:

Gc =
πacσ2

f

E
(2.2)

Figure 2.1: Infinite Plate with center crack 2a.

Holding the values of Gc as constant and solving for σ f the failure stress varies with 1√
a .

This criterion is based under the idea that a certain amount of energy Gc must be applied to
create a critical flaw on the material, i.e., to create a new surface dA. The irreversible amount
of energy during the creation of the surface are dA is written as:

dW = Gc dA (2.3)

Equation 2.3 shows that in the case when the necessary amount of energy on a material is
present, then it is sufficient to compensate the energy consumed in the creation of new surfaces
(Pommier et al. 2010). If that energy is available, the direct consequence is crack propagation.



2.1. FRACTURE MECHANICS 13

In other words, a crack is extended by a certain amount δa when the energy invested overcomes
the material resistance to fracture.

The second traditional role of fracture mechanics is a systematic procedure that relies on
calculating the fracture toughness and its growth rate with respect to the crack length. The
classical overall objective is to determine the rate of change of the shape of an existing crack
(Liu and Nairn 1999). The main objective of linear elastic fracture mechanics is to predict the
critical loads that will cause a critical flaw to grow. The LEFM considers three fractures modes
as shown on Figure 2.2: Mode I corresponds to normal opening and is the one emphasize in
this work, Modes II and III are shear and sliding modes respectively. Mode I takes place when
all the forces are perpendicular to the crack and pulling the lips of the specimen in opposite
directions.

Figure 2.2: Fracture Modes I, II, III.

Figure 2.3 shows an element close to the crack tip in a linear elastic material, note that
in-plane stresses are included. The calculation of the stresses, given by Equation 2.4, at this
point A are proportional to a single constant value named KI .

σxx =
KI√
2πr

cos
(

θ

2

)[
1− sin

(
θ

2

)
sin
(

3θ

2

)]
σyy =

KI√
2πr

cos
(

θ

2

)[
1+ sin

(
θ

2

)
sin
(

3θ

2

)]
(2.4)

τxy =
KI√
2πr

cos
(

θ

2

)
sin
(

θ

2

)
cos
(

3θ

2

)

When this value is known, the stress distribution can be obtained. This value is known as
the fracture toughness KI . If one assumes that at a certain amount of combined stresses the
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Figure 2.3: Near crack tip stress

material fails, and then it follows that fracture will occur at a critical fracture toughness KIC.

For the infinite plate illustrated on Figure 2.1 the value of the fracture toughness is given
by:

KI = σ
√

πa . (2.5)

In the vicinity of the crack at point A, the stresses in linear elasticity are singular according to

σ(r,θ) = ∑
A

KA fW
A (θ)rλA (2.6)

The first terms of this expansion correspond to a linear combination of the three possible modes
described by:

σ(r,θ) = ∑
i

Ki
1√
2πr

fi(θ) (2.7)

The stresses tend to infinity when the value of the variable r→ 0. From a design perspective,
fracture toughness argues that a material is capable of withstanding stresses up to a critical point
described by the value KIC. If the value of the fracture toughness is greater than KIC the crack
will propagate rapidly. In metallic materials, the crack propagation speed is close to the speed
of sound. This critical value is an alternative measure of material fracture toughness. When
flaws are present, the fundamental questions are: will the crack propagate under the given
loading and environmental conditions; and, if it does propagate, it is possible to predict at what
rate it propagates and what is the final configuration? Must the part be replaced? In general,
these questions are answered through experiments. However, computational simulations are an
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attractive, cost-effective method that is widely accepted as a key tool (Pommier et al. 2010).

2.1.1 Energy Considerations

Griffith (1921) derived a thermodynamic criterion for fracture by considering the total change
in energy of a cracked domain in terms of the increase in crack length. His model satisfied
certain critical energy criteria rather than a stress-based approach. For a crack domain subjected
to arbitrary loading the first law of thermodynamics states that the change in total energy is
proportional to the amount of performed work and the change of heat content:

d
dt

(Uk +Us +UΓ) =
d
dt

(Q+W )

where Uk is the kinetic energy, Us the total strain energy, UΓ the surface energy, W the external
work, and Q consists of the heat added to the system. For the case of adiabatic quasi-static
system, Q and Uk are equal to zero:

d
dt

(Us +UΓ) =
d
dt

(W ) (2.8)

The Eq. (2.8) can be re-written in terms of the crack half length a, as follows:

∂W
∂a

=
∂Us

∂a
+

∂UΓ

∂a
(2.9)

Equation 2.9 represents the energy balance during crack growth. It states that the work rate
supplied to the continuum by the applied external load is equal to the surface energy dissipated
during crack propagation, UΓ, plus the rate of strain energy, Us, decomposed into elastic Ue

s
and plastic U p

s parts
Us =Ue

s +U p
s (2.10)

Using Variational and Energy Principles Equation 2.9 can be expressed in terms of the Total
Potential Energy, Π:

Π =Ue
s −W (2.11)

−∂Π

∂a
= −∂Ue

s
∂a

+
∂W
∂a

= −∂Ue
s

∂a
+

∂Us

∂a
+

∂UΓ

∂a
(2.12)

=
∂U p

s
∂a

+
∂UΓ

∂a
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Therefore, the amount of energy that is available for the crack growth is compared with the
resistance of the material that must be overcome for crack growth. On the other hand, it also
indicates that the rate of decrease of potential energy during crack growth is equal to the rate
of energy dissipated in plastic deformation and crack growth. However another practical way
to express the crack domain is based on the Maximum Energy Release Rate. Adopting Irwin’s
generalized expression for the energy release rate,

G(θ) =
1
E ′

[
K2

I (θ)+K2
II (θ)

]
(2.13)

The evaluation of G(θ) for kinked crack becomes:

G(θ) =
1

4E ′
g2 (θ)

[(
1+3cos2

θ

)
K2

I

]
+8sinθ cosθKIKII +

(
9−5cos2

θK2
II

)
(2.14)

Moreover, the angle of crack propagation is found by minimizing G(θ):

∂ 2G(θ)

∂θ 2 = 0 (2.15)

Now, satisfying the instability condition,

∂ 2G(θ)

∂θ 2 < 0 (2.16)

Summarizing, the general form of the Equation 2.14 takes the following form,

G(θ) =
1
E ′

[
A11K2

I (θ)+2A12KI (θ)KII (θ)+A22K2
II (θ)

]
(2.17)

where  A11

A12

A22

= g2(θ)

 4−3sin2
θ

−2sin2θ

4+5sin2
θ

 (2.18)

Taking into consideration that the proposed analysis will be restricted to structures with linear
thermoelastic phases and uniform temperature gradients, the full thermal elasticity problem
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can be treated as a superposition of two problems suggested by Liu (2007):

G = G0 +
V ∆T

2

(
2

d (σmα)

dA
+

d (σ rα)

dA

)
+

d
dA

(∫
Sc

T rumdS+
1
2

∫
Sc

T rurdS
)

(2.19)

G0 =
d

dA

1
2

∫
Sc

T 0umdS+
1
2

∫
Sc

T mu0dS+
1
2

∫
Sc

T mumdS

 (2.20)

where T represent the surface tractions and displacements m and r refer to mechanical or
residual stress terms, respectively, and α is the position-sensitive thermal expansion coefficient
of the composite. The first term is the traditional energy release rate while the subsequent terms
are required in many composite fracture problems to account for effects of residual stresses,
traction-loaded cracks, and imperfect interfaces. Liu (2007)’s work describes a new energy
analysis that extends and corrects the results in a previous adhesion study according to Equation
2.21.

G0 =
d

dA

(
1
2

∫
ST

T0 ·um dS− 1
2

∫
Su

Tm ·u0 dS+
1
2

∫
Sc

Tm ·um dS
)

(2.21)

2.1.2 Finite Element Approach

The whole idea behind the FEA is to approximate the solution to a governing differential equa-
tion. There is an enormous range of software focused on solving a broad variety of problems
such as structural mechanics, heat and mass transfer and fluid mechanics, just to name a few.
The FEM effectiveness depends on the material properties of the structure under study. If the
material behavior is linear and some geometrical restrictions are met, the field solution be-
comes straightforward with analytical or traditional computational techniques (Bialstrokecki
et al. 2002). However, when the material and geometric behavior is nonlinear, the solution is
limited, and traditional approaches become even more computationally expensive (Armentani
and Citarella 2006).

There are currently two main approaches: (i) mesh-free methods (Rabczuk and Belytschko
2007), and (ii) those that require discretization but modify the mesh to adapt to the geometry
evolution (Kettil et al. 2007). Adaptive FEM approaches permit completely arbitrary geometry
of both structure and cracks by updating the mesh to conform to the evolving crack geometry.
Simulation of crack growth is more complicated than many other applications of computa-
tional mechanics because the geometry of the structure evolves during the simulation (Maligno
et al. 2010). For this reason, a geometric description of the body that is independent of any
numerical discretization and can be maintained and updated as part of the simulation process



2.2. XFEM APPROACH 18

is preferred. In a non-geometrical approach, the material stiffness is appropriately degraded
locally to mimic the displacement discontinuity created by a crack, while the underlying ge-
ometry and the mesh models are kept unchanged (Malvar and Fourney 1990).

In the classical FEM, it is necessary to refine the mesh near the crack tip and thus remesh-
ing is a must even after crack propagation. However, some of the newer techniques, such as
the XFEM, do not require remeshing to predict crack propagation. In the XFEM, the finite
element formulation is enriched by the crack tip asymptotic displacements and by a Heaviside
function to account for discontinuity in the displacement. Advances in the extended finite el-
ement method (XFEM) (Dolbow et al. 1999) are described in a general sense, as a method of
introducing discontinuities and enrichments within the finite elements. This makes possible to
model problems such as crack growth, dislocations, and shear bands.

In general, a crack can be modeled as a sharp crack or blunted crack. ABAQUS R©offer
several ways to model cracks. The most classical technique is based on conventional FEM. It
requires constructing a mesh that includes the crack itself. The second is based on the XFEM
approach. The XFEM method does not require the mesh to match exactly the crack geometry.
For the sharp crack, the model is performed using a seam geometry (line on a 2D geometry).
For blunted cracks, a finite strain analysis is considered. This approach is characterized by
a non-singular behavior at the crack tip. A crack tip causes stress concentrations, for that
reason, the stress gradients are large as a crack tip is approached. As a consequence, the finite
element mesh must be refined at the vicinity of the crack tip to capture and monitor accurate
stresses. This requirement increases the degrees of freedoms on the model and at the same time
it increases the computation time.

2.2 XFEM Approach

XFEM has been improved during the past two decades to deal with strong and weak disconti-
nuities. The main goal of crack propagation is to determine how will the structure fail. During
the 1980’s the evolution of components and meshing programs allowed a rapid development of
crack propagation models.

2.2.1 Background

The XFEM approximation is an extension of a method that was developed during the 1970’s.
Due to the mathematical singularity present at the crack tip, it was necessary to develop a
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methodology that takes into account the existing limitations. Benzley (1974) introduced the
novel idea of “enrichment elements” applied to near tip field using FEM for static analysis. He
formulated the first two-dimensional “enriched element” and derived a closed form asymptotic
field formulation for crack tip displacements. However, in 1999 for the first time, a practical
enriched finite element for crack propagation was applied and was called XFEM (Mohammadi
2012). Using XFEM, the standard displacement-based functions of FEM approximation are
enriched by additional special functions that are based on the framework of Partition of Unity.

Some advantages of XFEM is that we do not need to conform the finite element mesh to
the internal boundaries. Hence, a single mesh is sufficient to capture the material interfaces
and cracks evolution. The main advantages are that the finite element framework is retained
while using a single-field variational principle. The extended finite element method (XFEM)
was developed by Belytschko and Black (1999) and the method was based on Babuska and
Melenk (1996) to help alleviate the shortcomings of the finite element method. It has been
used to model the propagation of various discontinuities: strong (cracks) and weak (material
interfaces).

The motivation behind XFEM was to keep advantages of mesh-free methods while al-
leviating their negative aspects. One of the first applications was to model a fracture using
discontinuous functions added to standard shape functions. The primary advantage was the no
need to remesh and to be able to keep track of the crack path.

Simulating crack propagation using traditional finite element methods is challenging be-
cause the topology of the domain changes continuously. According to Vigneron et al. (2009),
FEM has evolved to new applications, reducing computational costs due to remeshing proce-
dures in FEM remains a major concern (Logé et al. 2007). In classical FEM, remeshing is done
at each propagation step, making the numerical simulations computationally costly.

Möes (1999) used XFEM to create a technique for simulating crack propagation without
remeshing the domain. In XFEM, if an adequate initial mesh about the crack size is con-
structed, remeshing is not needed for each propagation step. XFEM has also been combined
with other techniques to increase performance and accuracy (Chahine et al. 2011) and has been
used in combination with Level Set methods to track the moving discontinuity sets (Bordas
and Moran 2006). However, the XFEM approach carries its technical challenges (Richardson
et al. 2009). It is important to highlight that current XFEM involves using modern remeshing
techniques to enhance further the solution without affecting the computational cost.

In general, two approaches for structural design and material selection are available. The
first one is based on the approach of material strength. By comparing the anticipated design
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stress-strain with the capabilities of the candidate material, an evaluation is performed if its
strength prevents failure. The second one has three important variables: the applied stress,
flaw size, and fracture toughness. The combinations of the above variables are quantified by
the field of Fracture Mechanics. XFEM is based on the theory of Fracture Mechanics which
analyzes if flaws or defects will grow into large enough cracks to cause the component to fail
catastrophically. Many researchers have used mixed-mode fracture mechanics (Combescure et
al. 2008; GrÃl’goire et al. 2007; Menk and Bordas 2010). However, the main drawback is the
element re-meshing.

2.2.2 Interfacial XFEM Implementations

Xiao and Karihaloo (2014) developed a hybrid crack element (HCE) for the calculation of the
fracture toughness and high-order coefficients of the Williams Expansion. The element was
designed for each crack tip taking into consideration the whole domain and the HCE model
general FE mesh and implemented into a commercial FE package LUSAS. Xiao and Karihaloo
(2014) validated the model using several 2D classical cases. Richardson et al. (2009) presented
a method that simulated a 2D crack propagation that combined the features of XFEM with and
algorithm that cut triangulated domains. His work shows several advantages such as mate-
rial connectivity that are essential for XFEM enrichment functions Ahmed (2009) presented a
coupled XFEM and Level Set methodology to represent in full detail geometrical discontinu-
ities. With this method, he was able to simulate moving interfaces and proposed to use it as a
potential methodology for performing failure analysis. Chessa et al. (2002) presented an en-
riched element method for multidimensional Stefan problems. The enrichment presented was
developed with a discontinuity in the derivative of the temperature normal to the interface. The
method allowed to approximated a phase transformation within an element without the need
of re-mesh accurately. Also, several examples were presented to demonstrate the robustness
of the implementation. Chen et al. (1995) presented a smoothing procedure for XFEM with
the objective to outperform the standard XFEM. His contribution eliminates the need for the
mesh alignment with the crack and the re-meshing technique using Heaviside and asymptotic
crack tip functions. He called the method Edge-based Smoothing, and it relies on generalized
smoothing operation over smoothing domains.
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2.3 Cohesive Zone Model

The current methods adopt a continuum approach to focus on the pre-failure process. With
advances in numerical techniques, as well with computational capacity, we can use material
models to simulate failure progression, Cohesive Zone Model being one of such models (Lu
2012). It is quite challenging to model mesoscale fracture that would take into account micro-
crack initiation to mesocrack propagation. The CZM can do so by modeling transition from
continnua to discontinnua of the material (Park 2007). During the crack growth process, two
new surfaces are created. Before the crack is formed, these two surfaces are held together by
traction within a cohesive zone. The traction varies relative to the displacement of the sur-
faces. A cohesive law describes the phenomena in the cohesive zone in terms of the traction
and the separation of the surfaces during the fracture process. A cohesive law is also denoted
a traction-separation law. The concept to describe the cohesive phenomena before fracture
has been established for almost half a century ago. This model considers the relation between
the traction and separation that are normal to the fracture surfaces, and the unphysical stress
singularity at the crack tip in the traditional linear elastic fracture mechanics is removed. The
cohesive models were later extended to the mode II fracture process, in which the tangential
traction and separation are considered instead. Figure 2.4 illustrates the difference between
adhesive failure and cohesive failure. In general, CZM takes care of the material’s post-failure
behavior.

Cohesive Failure

Adhesive Failure

Figure 2.4: Adhesive and Cohesive Failure

CZM captures failure using computational methods such as Cohesive Element Method
(CEM), Discrete Element Method (DEM), Extended Finite Element Method (XFEM), just to
mention a few (Konuk 2009, 2010). In this work, we emphasize the cohesive law with XFEM
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and CEM to characterize the failure on the adhesive.

We are challenged by current failure prediction techniques to model intra and interlaminar
failure of laminated composites (Charles 2001). In general, the CZM is implemented at the
beginning of the analysis where a traction-separation law (TSL) is set in place (Geubelle 1998;
Camanho (2004); Xu 1994). These methods highly depend on the mesh, altering the structural
stiffness. Some researchers have tried to address this is issue without much success (Geubelle
1998; Song 2006; Blal 2011; Zavattieri 2001). The problem of mesh dependency has been
studied by combining CZM and XFEM (Moës 2002; Dolbow 2001; Melenk 1996 )

The drawback of using merely XFEM is that if the crack takes place at the node, the en-
richment functions fail. CEM on the other hand only works at the nodes. Hence, a combined
approach would allow us to capture the failure at any possible location without the need to
remesh when combined with a CZM.



Chapter 3
ABAQUS UEL Implementation

In this work, we combine the Cohesive Element Method (CEM) and the eXtended Finite
Element Method (XFEM) with Cohesive Zone Model (CZM) to solve the delamination in
composite structures, as explained in Section 1.2. For the XFEM implementation, we use the
enrichment with Heaviside functions and for the CZM, we use the triangular separation law.
For efficient analysis using XFEM, we need an algorithm to detection the enriched nodes or
elements. For the Heaviside enrichments, only the nodes that belong to an element split by a
discontinuity may be used. Alternatively, a boundary zone close to the interface can well work
for particular problems. However, the Heaviside enrichment approach is more convenient for
the problems we are solving in this work.

In a typical finite element method, the geometry of the model is updated if a crack is initi-
ated or an existing crack propagates. In contrast, XFEM required no remeshing when the crack
propagates. In an updated Lagrangian formulation of large deformation analysis, however, the
converged configuration of the model has to be updated by computed nodal displacements.
The same is true the XFEM analysis. Thus, although there is no need for remeshing during a
strong discontinuity, the geometry needs to be updated. In this context, XFEM needs a method
to update and handle changes associated with evolving cracks, and changing their degrees of
freedom while incorporating the CZM at the same time into the UEL.

We will begin by discussing an overview of the steps used to implement the a Triangular
Model into ABAQUS R© using an user-defined-element (UEL). The UEL implementation will
be discussed in the derivation and development section. The Triangular Model will be validated
using experimental data from the literature.

23
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3.1 FEM Element Fomulation

1 21 21 21 21 21 21 21 31 21 21 21 21 21 21 21 2 1 23 41 23 41 21 21 21 21 21 21 21 31 21 21 21 21 21 21 21 2

P

1 2 3

Figure 3.1: 1D Set Spring Elements

In order to provide a better understanding, let us start with a brief overview for the FEM.
Consider the set of spring elements shown in Figure 3.1. Each spring element has a length
of L/3 with an elastic modulus E and cross sectional area A. All other variables are stored
in a single variable called κ . The node one is fixed while the prescribed load P is located at
node four. The numbers in white represent the node numbers, the black numbers represent the
element numbers. The goal is to find the displacements for all nodes

δ =


u1

u2

u3

u4

 (3.1)

The global stiffness of the system using standard FE approach is

KG = κ


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 (3.2)

After the global stiffness for the springs sets is assembled, the linear system of equations can
be written as

KG δ = P (3.3)

where the P represents the external forces applied to the system, δ the unknown displacements
at each node. For our example the Equation 3.3 becomes

κ


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1




u1

u2

u3

u4

=


P1

P2

P3

P4

 (3.4)

After applying the essential and natural boundary conditions the Equation 3.4 and using using
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Gauss elimination solving the equations we find the solution as follows:

δ =


u1

u2

u3

u4

=


0

P/3
2P/3

P

 (3.5)

Now, let P = 30 the displacement vector δ becomes:

δ =


u1 = 0
u2 = 10
u3 = 20
u4 = 30

Units (3.6)
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Figure 3.2: 1D Set Spring Elements Plot using FEM

Figure 3.2 shows, as expected, K is a linear relationship between the load P and the dis-
placement δ according to the relationship given by the Equation 3.3.
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3.2 XFEM Concepts

3.2.1 Level Sets: XFEM

The XFEM is based on the Level Set Method (LSM), a technique used to describe a strong or
weak discontinuity and track its behavior. For our case, we are working with strong discon-
tinuities (a crack). We use a scalar-based function within a surface domain whose zero-level
is considered as a discontinuity. As a consequence, the surface is subdivided into two sub-
domains Γ + and Γ − and depending the location of the discontinuity the Level Set Function is
considered positive or negative. This method has been very attractive because it works wonders
with XFEM, allowing to model the crack growth without remeshing. A level set method is the
set of all points at which the function attains a specified value. This technique is very useful to
represent surfaces in problems where we need to track the interface. In principle, two functions
Φ and Ψ are used to describe the crack location fully. If we set the level set Φ = 0, this will
represent the crack face. The intersection of level sets Ψ = 0 and Φ = 0 denotes the crack
front. The functions are defined by all nodal values, and the spatial variation is determined by
the classical finite element (FE) shape functions. The function values only need to be specified
at the nodes belonging to elements divided by the crack.

• •

• •

1 2

3 4

Φ = 0 Ψ = 0

C0.5

1.5

Figure 3.3: CalculatingSignDistance
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Figure 3.3 shows that the nodal value of the function Φ is the node distance from the crack
face. The function will have a positive value on one side of the crack face, and negative on the
other. The Level Set Functions share a common aspect with FEM; the functions are defined
to finite locations in the domain using φi = φ(xi) and using the standard interpolation element
shape functions they are interpolated to know the desired values at the element interiors by:

φ
h(x) = ∑

i
Ni(x) ·φi (3.7)

The nodal value of the function Ψ is the signed distance of the node from an almost-orthogonal
surface passing through the crack front. The function Ψ has zero value on this surface and is
negative on the side towards the crack. On Table 3.2.1 we can see that for nodes 1 through 4
all signed distances values are related to the reference to the crack front and crack face.

Node Φ Ψ

1 + 0.25 -1.5
2 + 0.25 -1.0
3 - 0.25 -1.5
4 - 0.25 -1.0

Table 3.1: Calculation of Φ and Ψ

The signed distance shown in Figure 3.4 is a level set function that is described by:

φ(x) =± min
∀x∈Γ

‖x− xΓ‖ ,∀x ∈Ω (3.8)

where the sign varies according to the location from positive to negative. The value ‖·‖ repre-
sents the Euclidean Norm that is defined as:

‖z‖=
√

z2
1 + z2

2 + z2
3 + · · ·+ z2

n (3.9)

The crack tip and Heaviside enrichment functions are multiplied by the conventional shape
functions. Hence, the enrichment is local around the crack. The crack is located using the level
set method. Heaviside function accounts for displacements jumps across the crack according
to Equations 3.10.

H(X) =

+1 for (X−X∗) ·n≥ 0

−1 for (X−X∗) ·n < 0
(3.10)
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Figure 3.4: Signed Distance

Now, considering a discontinuity in an arbitrary domain located at a point x in a finite ele-
ment model, the displacements can approximate at the selected point according to Belytschko
and Black (1999) as follows:

uh(x) = uFE +uenr =
n

∑
j=1

N j(x)u j +
m

∑
k=1

Nk(x)ξ (x)ak (3.11)

The term u j denotes the standard degrees of freedom in a classical FEM approach while ak is a
set of degrees of freedom added to the standard finite element model. The value of ξ (x) denote
the enrichment functions (additional functions) affected by the discontinuity. The previous
value can be chosen depending the type of enrichment desired which is dominated by the
type of discontinuity or singularity. For an example, if a crack tip enrichment is desired the
Heavyside function can be used and the formulation becomes:

uh(x) = ∑
I∈N

Ni(x) uI +H(x) aI +
4

∑
α=1

Fα(x) bα
I (3.12)

where H(x) represents the Heaviside function, aI the nodal enrichment of DOF, and the last
term of the function represents the crack tip enrichment.



3.2. XFEM CONCEPTS 29

3.2.2 XFEM Element Formulation

Since XFEM is mesh independent, we used the same discretizized problem from previous
section. However, we are going to apply a strong discontinuity (crack) to the second spring
element. In this context, a Heaviside enrichment function will be applied. The standard dis-
placements are denoted by the variable u. The enrichment is applied to the nodes that belongs
to the element that contains the crack (element 2: nodes 2 and 3) denoted by the dashed line as
seen in Figure 3.5. Therefore, the element two now has four degrees of freedom, two standard
degrees of freedom and two enriched degrees of freedom; the whole structure now hold a total
amount of six degrees of freedom (four standard and two enriched nodes).

1 21 21 21 21 21 21 21 31 21 21 21 21 21 21 21 2 1 23 41 23 41 21 21 21 21 21 21 21 31 21 21 21 21 21 21 21 2

P

1 2 3

Figure 3.5: One-dimensional Set Spring Elements with a crack in the second element

The stiffness matrix for the XFEM element is given by

KXFEM =

[
Kuu Kud

Kdu Kdd

]
(3.13)

each component in the matrix is

Kuu =
∫ L

0
(Bu

std)
T D Bu

std dx

Kud =
∫ L

0
(Bu

std)
T D Bd

enr dx

Kdu =
∫ L

0
(Bd

std)
T D Bu

enr dx

Kdd =
∫ L

0
(Bd

enr)
T D Bd

enr dx

(3.14)
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Element No.1

The enrichment function H(x) = +1 the standard shape functions are develop with the enrich-
ment accordingly

H(X) =

+1 for (X−X∗) ·n≥ 0

−1 for (X−X∗) ·n < 0
(3.15)

Nu
std =

[
1− x

L
x
L

]
Nd

enr = H
[ x

L

]
Bu

std =
[−1

L
1
L

]
(3.16)

Bd
enr = H

[ 1
L

]
Substituting the values of 3.16 into Equation 3.14 we have

Kuu =
∫ L

0
(Bu

std)
T D Bu

std dx =
E A
L

[
1 −1
−1 1

]
Kud =

∫ L

0
(Bu

std)
T D Bd

enr dx =
E A
L

[−1
1

]
Kdu =

∫ L

0
(Bd

std)
T D Bu

enr dx =
E A
L

[−1
1

]
Kdd =

∫ L

0
(Bd

enr)
T D Bd

enr dx =
E A
L

(3.17)

KElement1 =
EA
L

 1 −1 −1
−1 1 1
−1 1 1

 (3.18)
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Enrichment Function for Element No.2

The element number 2 is cut completely by the crack. Here the Heaviside Function is applied
to both nodes with the following enrichment

H(X) =

+1 for (X−X∗) ·n≥ 0

−1 for (X−X∗) ·n < 0
(3.19)

Nu
std =

[
1− x

L
x
L

]
Nd

enr = H
[
1− x

L
x
L

]
Bu

std =
[−1

L
1
L

]
(3.20)

Bd
enr = H

[−1
L

x
L

]

Kuu = EA
∫ L

0
(Bu

std)
T Bu

std dx =
EA
L

[
1 −1
−1 1

]
(3.21)

The discontinuity requires individual integration due to the separation given by the crack. The
integration is performed in the left and in the right of the cut at element 2 by Γ − and Γ +. The
advantage of this partition is that no extra degrees of freedom are added to the model.

Integration on Γ + Is carried out, here the Heavyside function H(x) = +1

K +
uu = EA

∫ 1
2

0
(Bu

std)
T Bd

enr dx =
EA
2L

[
1 −1
−1 1

]
(3.22)

K +
dd = EA

∫ L
2

0
(Bd

enr)
T Bd

enr dx =
EA
2L

[
1 −1
−1 1

]
(3.23)

Integration on Γ− Is carried out, here the Heavyside function H(x) =−1

K −ud = EA
∫ L

L
2

(Bu
std)

T Bd
enr dx =

EA
2L

[
1 −1
−1 1

]
(3.24)
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K −aa = EA
∫ L

L
2

(Bd
enr)

T Bd
enr dx =

EA
2L

[
1 −1
−1 1

]
(3.25)

After independent integration, the results must be combined together

Kud =
EA
2L

[
1−1 −1+1
−1+1 1−1

]
=

EA
2L

[
0 0
0 0

]
(3.26)

Kdd =
EA
2L

[
1+1 −1−1
−1−1 1+1

]
=

EA
L

[
0 0
0 0

]
(3.27)

The user must remember that by symmetry the value Kdu = KT
ud .

The stiffness matrix for element 2 becomes

KElement2 =
EA
L


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (3.28)

Element No. 3

The enrichment type for the last element becomes H(x) =−1

Nu
std =

[
1− x

L
x
L

]
Nd

enr = H
[
1− x

L

]
Bu

std =
[−1

L
1
L

]
(3.29)

Bd
enr = H

[−1
L

]
=
[ x

L

]
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Kuu =
∫ L

0
(Bu

std)
T Bu

std dx =
E A
L

[
1 −1
−1 1

]
Kud =

∫ L

0
(Bu

std)
T Bd

enr dx =
E A
L

[−1
1

]
Kdu =

∫ L

0
(Bd

std)
T Bu

enr dx =
E A
L

[−1
1

]
Kdd =

∫ L

0
(Bd

enr)
T Bd

enr dx =
E A
L

(3.30)

KElement3 =
EA
L

 1 −1 −1
−1 1 1
−1 1 1

 (3.31)

The global stiffness matrix can be assembled together using connectivity numbers and connec-
tivity vectors as

KG =



1 −1 0 0 −1 0
−1 2 −1 0 1 0
0 −1 2 −1 0 −1
0 0 −1 1 0 1
−1 1 0 0 2 −1
0 0 −1 1 −1 2


(3.32)

After applying the boundary conditions we have to solve the following system


2 −1 1 0
−1 2 0 −1
1 0 2 −1
0 −1 −1 2




u2

u3

θ1

θ2

=


0
P
0
−P

 (3.33)
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An the displacements are found as

u1

u2

u3

u4

θ1

θ2


=



0
P
2
P
2
P
−P
2
−P
2


(3.34)

The enriched XFEM with Cohesive behavior can be approximated as

u(x) = Ni(x)ui +H(x)N j(x) θ j (3.35)

The displacements are calculated as

u(x1) = u1 = 0 (3.36)

u(x2) = u2 +H(x2) θ1 =
P
2
− P

2
= 0 (3.37)

u(x3) = u3 +H(x3) θ2 =
P
2
− P

2
= P (3.38)

u(x4) = u3 = P (3.39)

The results of the XFEM approach can be seen on Figure 3.6. The results shows the main
attractive feature of XFEM, a discontinuity located within the element number 2.
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Figure 3.6: 1D Set Spring Elements with Crack at second element using XFEM

3.3 Cohesive Zone Model

3.3.1 Triangular Traction Separation Law

The incorporation of the one-dimensional (1D) element causes a strong discontinuity. The ma-
terial degradation is modeled using a Triangular CZM law. Sometime this law is referred as a
bilinear law. The bilinear cohesive zone law reflects damage in the form of traction separations.
For this reason, a step function is used as the only enrichment function for the stiffness of the
element. In general, the equation can be written as,

However, Equation 3.49 comes from assuming that the material behavior at the discontin-
uous point is from the phenomenological law shown in Figure 3.7. The construction of our
cohesive law is simple but effective. The energy required to cause delamination is shaded in
Figure 3.7 and is defined as follows:

GIC =
1
2

Tult δ (3.40)

where Tult represents the maximum cohesive strength that the material will resist before loosing
its stability and δ = δ f − δ0. The value of GIC refers to delamination energy parameter. This
quantity can be measured experimentally in the laboratory. The parameter Tult is the cohesive
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Figure 3.7: Triangular Traction Separation Law

strength that can be measured in several ways according to ASTM. Initially, there is no loading
applied to the interface, that means a zero separation and a zero traction is applied. If the
spring is stretched, it will achieved a maximum traction Tult , there is a linear behavior between
zero and δ0 with a proportion ok k1. After the maximum traction is attained a separation δ0 is
reached, that means a permanent damage to the spring element. After this point the element
stiffness is going to decay with a stiffness k2 until a maximum allowed spring length is achieved
and rupture takes place. At this point the element release all the energy and it doesn’t exist
anymore. The traction separation law is defined as

T = k1 δ0 (3.41)

The value of k1 is called reduce stiffness but also is known as a penalty stiffness and is equiva-
lent to

k1 =
1
2

Tult (3.42)

This value corresponds to the slope of the triangular region located between 0 and δ0. The
unloading region is characterize by the same behavior but traction becomes is related with the
value (δ f − δ0) which represents the base of the second triangular region. For this particular
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work, the material properties are considered as linear elastic, and the constitutive relationship
is then expressed as

σ = Dε (3.43)

where D represents the elastic modulus tensor, and for a 1D element D = E A. Assuming
small displacements, the stress-strain relationship is given by

ε = ∇
su (3.44)

3.3.2 Exponential Traction Separation Law

The Triangular Law is linear and easy to implement. However, computationally speaking we
have to deal with the discontinuity at δc. One way to overcome this problem is to use softening
laws or an exponential law. Here, we discuss an exponential constitutive laws for single bond
rupture based on interfacial damage mechanics approach (Goyal 2002). Let us assume the two
material points between the upper and lower surfaces, which are coincident when unstrecthed,
are given by a nonlinear spring. Now, the we express the traction-separation law as follows:

T (δ ) = δ
Tc

δc
exp


1−
(

δ

δc

)β

β

 (3.45)

where δ is the opening, Tc the maximum force of the spring that occurs at the critical δc. The
parameter β is a positive real number and defines whether the rupture is brittle or ductile: a
high value models brittle fracture, and a low value models ductile fracture. For our application,
we use a high β to model the adhesive, which acts brittle-like. In this context, we can express
the total energy release rate as follows:

Gc =
∫

∞

0
T (δ )dδ = Tc δc Ψ(β ) (3.46)
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where Ψ(β ) is “correction” factor that takes into account the brittle or ductile nature of the
fracture and it is defined as

Ψ(β ) =

{
β

2−β

β Γ

[
2
β

]
exp
[

1
β

]}
(3.47)

where Γ[z] is the Euler gamma function of argument z. Note that Ψ(β ) does not have an upper
bound but it does have lower bound. We can show that as the material behaves as a perfectly
brittle material (β → ∞) the value leads to 1/2, which leads to

Gc =
∫

∞

0
T (δ )dδ = Tc δc

1
2

(3.48)

The same value obtained for the triangular model! Goyal (2002) showed that using β = 5.2,
we can compare to the triangular model, and it will be the value we use in this work.

3.4 Cohesive Element Method

3.4.1 Cohesive Element

Consider the the same discretization of the previous, however, the element number two as
described by the cohesive spring at the center. The cohesive spring located at the center must
be interpreted as a cohesive force, not a new element. The spring was used for illustration
purposes only.

P

Figure 3.8: 1D Set Spring Elements with Cohesive Crack using XFEM

[ ∫
Ω
(Bu

std)
Tσ D∇s uh∫

Ω
(BT

enr) D ∇s uh +
∫

Γcoh
(Na

enr)
T kU(uh)

]
=

[ ∫
Γ
(Nu

std)
Tt∫

Γ
(Na

enr)
Tt

]
(3.49)
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Element No. 1

The same procedure for XFEM is applied for element one in this section. The local stiffness
matrix remains the same.

Element No. 2

The same procedure for XFEM is applied for element one in this section. The local stiffness
matrix remains the same, but with the inclusion of the cohesive force the element stiffness
matrix becomes

Kelement2 =


EA
L

−EA
L 0 0

−EA
L

EA
L 0 0

0 0 EA
L + k −EA

L + k
0 0 −EA

L + k EA
L + k

 (3.50)

Element No. 3

The same procedure for XFEM is applied for element one in this section. The local stiffness
matrix remains the same.

Simplifying, the global stiffness matrix becomes

KElement3 =



EA
L

−EA
L 0 0 −EA

L 0
−EA

L
2EA

L
−EA

L 0 EA
L 0

0 −EA
L

2EA
L

−EA
L 0 −EA

L
0 0 −EA

L
EA
L 0 EA

L
−EA

L
EA
L 0 0 2EA

L + k −2EA
L + k

0 0 −EA
L

EA
L

−EA
L + k 2EA

L + k





u1

u2

u3

u4

θ1

θ2


=



0
0
0
P
0
0


(3.51)
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The displacements 

u1

u2

u3

u4

θ1

θ2


=



0
4.6667
8.6667

13.3333
−0.6667
−0.6667


(3.52)

For the problem, the displacements can be found if we assume EA
L = 1, k = 3 and P = 4

and applying the boundary conditions we can get the values of the unknowns

u(x1) = u1 = 0 (3.53)

u(x2) = u2 +H(x2) θ1 = 4.6667−0.66667 = 4 (3.54)

u(x3) = u3 +H(x3) θ2 = 8.6667+(−1)(−0.6667) = 9.333 (3.55)

u(x4) = u4 = 13.333 (3.56)

Figure 3.9 shows the discontinuity for cohesive behavior located at center of element 2
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Figure 3.9: Cohesive Element Method



3.4. COHESIVE ELEMENT METHOD 41

1 21 21 21 21 21 21 21 31 21 21 21 21 21 21 21 2 1 23 41 23 41 21 21 21 21 21 21 21 31 21 21 21 21 21 21 21 2

P

1 2 3
a) CEM b) XFEM

Figure 3.10: Combined CE and XFEM

3.4.2 Combined CE and XFEM

Figure 3.10 shows our implementation that combines CE and XFEM together. If the spring
element fails at a node, case a) is activated and cohesive element approach is used. Now, if the
crack cuts within the element, case b) is activated and the XFEM algorithm is used.
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3.5 ABAQUS Capabilities

ABAQUS is a software with several FEA modules well know for its high performance and
quality. It is used for the most challenging simulations among the industry and academic
community. The software features several analysis modules that are divided mainly into two
groups: ABAQUS/Standard and ABAQUS/Explicit.

3.5.1 ABAQUS/Standard and ABAQUS/Explicit

The ABAQUS/Standard analysis is for general purpose as it can be used for a wide spectrum of
problems related to structural/mechanical, thermal, vibration, buckling analyzes, crack prop-
agation and so on. Also, this module is well suited for implicit integration problems such
as static, low-speed dynamic events and steady-state transport analyzes. ABAQUS/Standard
provides an automatic solution incrementation steps. The rate of convergence is monitored to
determine whether appropriate time (load) increments are applied or not and for linear prob-
lems the method is stable when the stiffness [K] is linear. The increment size is increase if
only a few iterations are required, but decreased is convergence is slow. Now, if convergence
cannot be obtained during the analysis, the increment size is decreased automatically, and fur-
ther attempts are made. The implicit procedure of ABAQUS/Standard is cost-effective when
the problem under study can be solve using relatively few load increments. This module uses
Newton’s Method to solve for static equilibrium problems.

The iterations are repeated in each increment until convergence is achieved, which has the
following implications: force equilibrium is achieved at every node, moment equilibrium is
attained at every node, displacements corrections are small compared to incremental displace-
ments. However, the reader must bear in mind that Newton’s Method has a finite radius of
convergence. If a large increment is used, then a solution cannot be obtained because the initial
state lies outside of the radius equilibrium state. Thus, there is a restriction on the increment
size.

On the other hand, ABAQUS/Explicit is designed to simulate short transient dynamic
events such as an automotive crashworthiness or a ballistic impact. This module is charac-
terized for handling non-linear behavior related to slow crushing and contact behavior. Fur-
thermore, the Explicit procedure is well-suited for high-speed (wave propagation) applications.
The explicit procedure performs the analysis using a technique that made use of a large number
of inexpensive, small, time(load) increments.
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3.5.2 Overview of ABAQUS Implementation

Although ABAQUS has become a powerful FE code, the challenge is when it does not have the
module we are looking for. It always seems tempting to develop our own FE code using Object
Oriented Languages such as FORTRAN, C++ and Python. This might solve the problem initially,
but we are challenged when we need to solve complex problems that need complex solvers. Not
to mention that the user will need to implement complex solution schemes at expenses of code
overhead (non-optimized code) for all the FEA basic procedures: pre-processing, processing,
post-processing and data manipulation.

ABAQUS/Standard and ABAQUS/Explicit are contained in a unique environment illus-
trated in Fig. 3.11 called ABAQUS/CAE (ABAQUS Complete Environment). This graphi-
cal ecosystem provides a rich modeling, pre-processing and post-processing analysis product.
ABAQUS/CAE takes advantages of CAD models with advanced meshing techniques, resulting
in a coherent graphical user interface (GUI). ABAQUS/Standard has an interface, is the User
Subroutine UEL, that allows every user the creation of user defined elements. In this work, we
use in ABAQUS/STANDARD /CAE.

Figure 3.11: ABAQUS/CAE Graphical User Interface
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3.6 Implementing the Triangular Element

ABAQUS R© allows advanced tasks such as Users Elements (UEL) that are not available in the
ABAQUS R© default element libraries. ABAQUS/Standard provides all users to use user-defined
subroutines (UEL) to create elements that are not available by default in the element library.
These elements can be used in combination with other ABAQUS elements and can be used for
most of the applications available in ABAQUS /Standard. If the user creates more than one
element using the UEL routine, all element definition must reside on a single subroutine file,
each one with its properties and characteristics. The UEL definition can be used as a traditional
finite element that represent a geometric part of a structure or can be used as an artificial system
that applies forces at one location of a model depending on displacements at some other parts
of the model. This way we can implement the Triangular Element.

3.6.1 Writing a User Element (UEL)

The heading for the UEL in ABAQUS is given by the following heading (in FORTRAN 77):

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,
1 NRHS,NSVARS,PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,
2 A,JTYPE,TIME,DTIME,KSTEP,KINC,JELEM,PARAMS,NDLOAD,
3 JDLTYP,ADLMAG,PREDF,NPREDF,LFLAGS,MLVARX,DDLMAG,
4 MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)

C Must Include the following to communicate with ABAQUS
INCLUDE ’ABA\_PARAM.INC’

C Second part of the subroutine heading
DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),SVARS(*),
1 PROPS(*),ENERGY(7),COORDS(MCRD,NNODE),U(NDOFEL),
2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),
3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*),
4 PREDEF(2,NPREDF,NNODE),LFLAG(4),JPROPS(*)

C From this point goes the user programming

The UEL interface has specific requirements to define the user-defined element to the
model. For an example, in stress analysis the user must include in the code a definition for
stiffness, and in heat transfer the corresponding variable to code for conductivity. ABAQUS
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is responsible for the management of the UEL by calling the routine every time information
about of the user element is needed. Also, ABAQUS provides the values of nodal variables at
the end of the increment: initial coordinates, velocities, total displacements and the values of
solution-dependent state variables at the beginning of the increment. Now, depending on the
usage the routine must define several variables:

1. The contribution of the element to the stiffness matrix or Jacobian.

2. The contribution of the element to the residual vector.

3. The updated values of the solution dependent variables at the end of the increment.

By design, ABAQUS will call the subroutine twice during every iteration and updates all vari-
ables and provides all values to the routine at the correct time. For stress analysis, ABAQUS
will respond to the increment as shown in Fig. 3.12. For step 1, the value of {u}n is extrapo-

Figure 3.12: ABAQUS/Standard Increment Flow

lated from the previous increment. Then, for step 2, it is given a value of {u}n, calculating then



3.6. IMPLEMENTING THE TRIANGULAR ELEMENT 46

the stiffness matrix [K] and the residual vector [R]. Then, ABAQUS will solve for {du}. If
|{R}|< Tolerance the algorithm goes to step 1, else it goes to step 3 which is the next iteration.

Several important parameters must be specified by the user while using creating the sub-
routine. These parameters are used to calculate the stresses and displacement. However, if the
user is interested in other quantities, he has the option available to him. The definable variables
are:

1. COORDS: This is an array in which the user stores the coordinate values of the element
in use.

2. U: This array contains the total values of all variables.

3. PROPS: This can be defined as an array that stores the values of Material Properties or
Geometrical properties.

Now, an important part is defining the stiffness matrix that is given by the required parameter
AMATRX. The residual vector contribution must return to ABAQUS R© into the AMATRX and the
contribution to the right hand side vector RHS.

3.6.2 Stiffness Matrix

A fundamental equilibrium equation can be written as

[K]{U}= {F} (3.57)

where K is the stiffness matrix, U the displacement vector, and F the load vector. When using
the UEL interface, the routine must define K in the global coordinate system. This requirement
involves the usage of the transformation of K from local coordinates (x,y) to global (X ,Y )
coordinates. Using the Eq. 3.57, the residual vector can be rewritten as

[K]{U}−{F}= {R} (3.58)

where {R} is the residual vector. If the equation is solved exactly, the residual vector becomes
zero. However, sometimes round-off errors arise during the solution, or inaccuracies arise due
to the non-linearity nature of the problem. As a consequence, the residual vector cannot always
be zero. ABAQUS convergence criteria is based on the magnitude of that residual, being an
very important definition to be coded. The contribution for the stress problem of the user
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element to the residual vector is calculated as

{R}=− [K]{U} . (3.59)

3.6.3 ABAQUS Input File

In ABAQUS, the user has the option to build a complete Finite Element Model by simply using
a text editor of his preference. This script file is called the input file, and its extension ends
with .inp to be recognized as a valid ABAQUS input command. An example of an input
file can be located at the Appendix B. The Systàmes (2012) and Simulia (2014) include in
detail the meaning and usage of all ABAQUS keywords. Rather than a computer language,
ABAQUS keywords form options blocks or group cards with flags that form a compilation
of statements that form data blocks relevant to the FEM. Every option block is formed at the
beginning of each line with a keyword, and if the block requires additional data input, these
can be written below the keyword line. For example the following part of an input file includes
the information of our current implementation:

*ELEMENT, TYPE=U1001, ELSET=USER
1, 101, 102
2, 102, 103
3, 103, 104

All ABAQUS keywords begin with an asterisk (*), and are followed by the block name. For
this particular example, the block name starts with the keyword ELEMENT which invokes the
creation of an element, a fundamental part in the creation of the mesh. Due to the variety
of elements available, is necessary to specify which type will be used for the model with a
unique name. Our UEL element is identified on the subroutine as TYPE=U1001. The reader
must have in mind that ABAQUS R© does not allow to rename the element as the user wants,
is required that every user element name must start with the letter U followed by a number
that must be less than 9999. The UEL is stored in an element set called ELSET that must
be called USER. This allows better manipulation of the element depending on what is desired
by the user. In the example above, the first element contains the node numbers 101 and 102
and the second element contains the node numbers 102 and 103, this methodology is very
powerful and convenient because the analyst can make references to the RTRUSS set when
defining other option blocks.
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** ******************************
** Begin User Element

** ******************************
*USER ELEMENT, TYPE=U1001, NODES=2, COORDINATES=1,
PROPERTIES=4, VARIABLES=10

Here the degrees of freedom are defined, according to the element formulation and four prop-
erties are defined with six desired variables for the output (e.g. σ11, σ22, σ33, σ12, σ13, U).

When using UEL, ABAQUS R© does not support element visualization. The user is responsi-
ble for the calculation of stresses and other quantities desired. The reason is that ABAQUS R© viewer
is not aware of the element formulation and shape functions. Therefore, this limitation restricts
us to use other external monitoring tools such as MATLAB to investigate and validate the
results at the points of interest.

The force and displacement history are plotted in MATLAB. This quantity is one of the
most important values in experimental work involving DCB because it characterize the bonded
structure and provides information on Mode I, GIC. This test consists of rectangular adherents
bonded along their length with a region free of adhesive extended in some way into the joint.

3.7 Validation

The following example illustrates the use of ABAQUS to predict in a DCB layered specimens.
Cohesive Zone Model combined with XFEM Heaviside functions, a triangular traction sepa-
ration law, and crack initiation was used for this purpose. In order to validate the models, we
plan to use the published experimental work by Davies (2002), Robinson and Song (1992) and
Song et al. Song et al. (2008).

The model with cohesive elements is analyzed in ABAQUS/Standard using the subroutine
UEL and uses a damaged linear elastic constitutive model. The model with CZ criterion and
XFEM is also analyzed to predict debonding for the quasi-static test. Also, a hypothetical
model for a 2D plate is provided. Figure 3.14 is an augmented view of the mesh created for
the DCB models. The first two benchmarks (Davies 2002) share similar geometrical properties
with the exception of the last benchmark (Song et al. 2008).
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Figure 3.13: Finite Element

Figure 3.14: Augmented Finite Element Mesh

3.7.1 Optimal Mesh and Tolerance

Since this work is concentrated on the determination of the load displacement behavior for the
DCB model, similar meshes whee selected for all benchmarks. Figure 3.15 illustrates the best
mesh required for all models. As the amounts of elements is incremented at the bond line, the
optimal mesh appears to converge around 600 elements. The reader must have in mind that all
benchmarks share similar geometrical dimensions, hence the convergence must be almost the
same. It can be seen clearly that the shape for the curves is preserve and the maximum loads
are predicted very close to one another. Since the implemented custom element is a linear
spring-like elements, a better response for convergence can be seen for small deflections as
seen in 3.15(c) in contrast with Figures 3.15(a) and 3.15(b).

The optimal tolerance is performed for the models for the optimum mesh of 600 elements.
As we can see in Figure 3.16 the optimal value of 1× 10−5 is found as the ideal tolerance
number used as parameter to decide when the material is going to present degradation due tu a
maximum traction load. When the critical value of (δ0−δ )≤ 1×10−5 is achieved, the damage
on the model takes place. After that point material degradation is present on the springs until
a displacement failure δ f is obtained. The Figures 3.16(a), 3.16(b) and 3.16(c) reflects no
sensitivity to the selected tolerance for the value of δ selected for our models.
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(a) Convergence Benchmark 1 (b) Convergence Benchmark 2

(c) Convergence Benchmark 3

Figure 3.15: Mesh Convergence.
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(a) Tolerance Benchmark 1 (b) Tolerance Benchmark 2

(c) Tolerance Benchmark 3

Figure 3.16: Optimal Tolerance
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3.7.2 Experimental Setup

 

Specimen 

y 

x 

VCRCrack length 

Time signal Counter

Data acquisition  

Displacement 
signal  LVDT

Load signal Load cell

Displacement controlled drive

Figure 3.17: Experimental Setup picture for DCB by Robinson (1992)

An example of the experimental setup is provided for clarification purposes. The exper-
imental setup shown in Figure 3.17 was performed by Robinson (1992) using a tensile test
machine with a controlled displacement rate. During the experiment the load P and the cross
head displacement δ was recorded by a computer that at the same time records a marking signal
that indicates crack progression through typical increments of 5 mm. A linear variable differ-
ential transformer (LVDT) is located at the tip of the DCB to measure the linear displacement
δ . Also when delamination is propagated, the crack front is monitored using a video camera
and recorded with a VCR. The conventional DCB tests were performed using a load rate of 5
mm/min in order to perform a quasi-static test.
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3.7.3 Benchmark 1: Analytical Solution

Figure 3.18: Double Cantilever Beam Specimen

The material properties for the unidirectional laminate lay-up Benchmark 1 are:

Exx = 126 GPa, Eyy = 7.5 GPa, Gxy = 4.981 GPa, vxx = vyz = vxz = 0.263

Delamination Properties: GIC = 0.281 N/mm, damage initiation stress = 57 MPA. This bench-
mark uses a 2D simplification of the DCB model as shown on Figure 3.18 and the test involves
Mode I Fracture Toughness, built with (+45,−45,0,90)ns plies. This kind of test is the stan-
dard used to measure the values of GIC. The testbed assumes an initial straight crack a0. Based
on Davies (2002), wide edge effects (B) are ignored. For this reason, Davies (2002) deter-
mined that using a simple beam theory is appropriate. From basic mechanics the deflection of
a cantilever beam is given by the simple expression

y =
P

6EI
(−x3 +3L2x−2L3) (3.60)

The deflection at the tip is obtained by letting x = 0 and taking as a positive frame of reference
the vertical direction the equation becomes

y =
PL3

3EI
(3.61)

Now, let y equal to ∆/2 and L equal to the crack length a, this is because the analysis is
applied to one half of the DCB. The reader must take in understand that classical elemental
beam theory does not take into consideration large rotations at the tip of the DCB model. It
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is assumed that all displacements are perfectly oriented towards the vertical direction and the
load is perfectly applied at the free edge end of the DBC. The displacement ∆ due to the two
applied opposite forces at each leg P is given by

∆

2
=

Pa3

3EI
(3.62)

where EI is flexural rigidity and a the crack length. According to Equation 3.62, the work done
can be calculated when the crack extends a finite distance δa.

W = Pδ∆ = P
2Pa2

EI
δa (3.63)

Energy is consumed during this process, and this relates the strain energy release rate GIC. The
crack propagation is achieved if

2Pa2

EI
δa = GIC 2Bδa (3.64)

The material employed is carbon epoxy T800/924 with the properties indicated by Robinson
and Song (1992).
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3.7.4 Benchmark 1: Numerical Simulation
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Figure 3.19: Load P vs. displacement δ - Delamination at Interface for DCB

The material properties for the unidirectional 20 prepeg layers Benchmark 2 are:

E1 = 120GPa, E2 = 7.8GPa, G12 = 3.25GPa, v12 = 0.32

Delamination Properties: GIC = 1200 J/m2, damage initiation stress = 57 MPa. Davis (2002)
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performed numerical simulations and compared the values with experimental data, closed-form
solution, and the LUSAS FEA code, as shown in Figure 3.19. As we can see the experimental
value does not start close to the origin. This is because a data acquisition machine with sensors
has been used. The machine is only aware of the change of the crack length δ , thus an offset is
present. The closed-form solution adopts a conservative change of crack length less than 1 mm
in order to cover the most of the spectrum of the resultant displacement. On the other hand, the
LUSAS code assumes a small δ and achieve a maximum peak close to the analytical solution.
After unloading (after the maximum peak), each plot correlates well with the behavior of the
displacement.
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(a) Double Cantilever Beam Joint
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Figure 3.20: Benchmarks Comparison

Figure 3.20 shows a comparison of Triangular Model to the ones presented by Davies
(2002). Figure 3.20(a) shows the experimental data presented by Davies (2002) and the pro-
posed model. Compared to the closed-form solution, we can observe that our model suffers
a shift on the linear part between 0 and 2 mm. However at the maximum peak, our model
can capture the maximum value of the analytical solution. In contrast, the LUSAS code under
predicts the maximum peak value given by the close form solution. In contrast, the slightly
overpredicts the maximum value but correlates better in comparison with LUSAS code. In
terms of the softening region, implementation shows a maximum difference of 8%.
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Figure 3.21: Error for Benchmark 1
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3.7.5 Benchmark 2: Numerical Simulation Using Loading Blocks

Figure 3.22: Double Cantilever Beam Specimen with loading blocks

The material properties for the unidirectional 20 prepeg layers Benchmark 2 are:

E1 = 120GPa, E2 = 7.8GPa, G12 = 3.25GPa, v12 = 0.32

Figure 3.23 shows the results obtained with the Triagular Model. We plot it against the theo-
retical and experimental values obtained by Davies (2002). This experiment is almost identical
to the previous (Benchmark 1). However, the experimental delamination on the DBC speci-
men was imposed by loading blocks. The reader should take into consideration that including
loading blocks into the simulation reflects a boundary condition that is closer to the real exper-
iment. Large deformations take place during the experiment. The theoretical model achieved
a maximum peak value between 0.001 and 0.02× 10−2 mm, after the peak value the curve
shows a smooth behavior. The experimental data shows a shift approximately by 0.05×10−2

mm if we compared with the theory.

The Triangular Model shows an excellent correlation with the experimental values on the
linear part of the curve. The linear part experiments a 3% of difference compared with the
experimental data. However, the maximum peak values is not achieved by the Triangular
Model, there is a 10% of difference with respect the experimental data from the peak value
to the final resultant displacement. These results indicate that a progressive delamination can
be considered accurate within the linear part of the Reaction vs. Resultant Displacement plot.
Beyond that point, discrepancies exist in the range of 10%−12% of difference, but the shape
of the behavior of the curve is preserved. Since the Triangular Model uses a linear approach
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Figure 3.23: Load P vs. displacement δ - Delamination at Interface for DCB with loading
blocks

that tries to capture a nonlinear behavior, these types of results are expected. However, further
improve will be the basis for future research.
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Figure 3.24: Error for Benchmark 2
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3.7.6 Benchmark 3: Standard DCB using Normal Interfacial Strenght
by Song
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Figure 3.25: Load P vs. displacement δ - Delamination at Interface for DCB with loading
blocks

The material properties of AS4/3501-6 for the DCB with stacking sequence [03] Benchmark
3 are:
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E1 = 148GPa, E2 = 10.50GPa, G12 = 5.61GPa, v12 = 0.27, GIC = 0.08
kJ
m2

The predicted load deflection response is compared with the results of Song et al. (2008)
as shown in Figure 3.25. Unlike the previous two benchmarks, this experiment shows small
displacements history data. For validation purposes, three different curves are compared. The
nominal Strength curve by Song behaves linearly until an approximate value of 1.2 mm is
achieved. At this location, a discontinuous value response is obtained. This model over-
predicts the strength predicted by the analytical solution. As we can appreciate, the numer-
ical prediction by Song does not follow the softening response of the analytical solution when
one Cohesive Zone Element is used. On the other hand the Triangular Model implementation
shows a better response on the linear part and at the softening region. For the implementation
under predicts the maximum peak to the softening region with a maximum difference of 2%
compared to the analytical solution. The predicted load deflection response obtained using the
Triangular Model UEL implementation correlates well with the analytical predictions.
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Figure 3.26: Error for Benchmark 3



Chapter 4
Final Remarks

4.1 Conclusion

In the classical FEM, it is necessary to refine the mesh near the crack tip and thus remeshing
is a must even after crack propagation. We investigated and developed the Irizarry-Goyal
Triangular Mesesodel to predict delamination of the interfacial bonded regions. The model
consisted combining the Cohesive Element and Extended Finite Element Methods while using
a Triangular traction-separation law.

The model was successfully developed an implemented into ABAQUS via UEL subroutine.
The User Element was elaborated using FORTRAN through a customize environment file using
Python.

A triangular phenomenological traction law simulates the adhesive behavior while the
XFEM technique allows to simulate crack propagation. The interface thickness is under consid-
eration in our model because it is known that adhesive thickness can influence the mechanical
properties of the joint. The User Subroutine has been developed within ABAQUS R© to fit the
numerical P−δ curves defining the constitutive law.

The advantage of the current approach is that a crack propagation path is better simulated
due to the discontinuity behavior of the interfacial element when it reaches maximum displace-
ment. In order to verify the performance of the presented combined model, a study of common
lap joints has been conducted. Results show that our model is superior when compared to
others in the literature.
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4.2 Future Work

Most commercial FE software provide interfaces through user subroutines to define material
behavior and specialized user elements. The latter cannot be visualized using Abaqus/Viewer
or Abaqus/CAE. This is a major drawback because the user element topology is hidden inside
the element subroutine, in other words, the software is not aware of what kind of shape func-
tions are being used. Having said that, only elements from the Abaqus element library can be
visualized with the Abaqus/Viewer and Abaqus/CAE.

However, ABAQUS R©provides certain external rules that allows the user to extract infor-
mation from the binary databases generated by the software. Therefore as a future work, UEL
post-processing is an appropriate way to expand this research. On the other hand, fatigue
analysis should be the next step for further development.



Appendix A
ABAQUS R©GFROTRAN Environmental

File

The following code is the ABAQUS environmental file. Every user customization to the
ABAQUS/CAE suite can be include here. This file contains a modification to use the open
source GFORTRAN compiler instead of the required Intel Fortran 10.x.x and Intel Fortran
11.x.x .

############ abaqus_v6.env file ###############

# Modified from standard env file
# Modified by Dr. Vijay Goyal and Emmanuel Irizarry
# Date Modified: August 2015
#
# University of Puerto Rico at Mayaguez
#
# System -Wide Abaqus Environment File
# -------------------------------------
standard_parallel = ALL
mp_mode = MPI
mp_file_system = (DETECT ,DETECT)
mp_num_parallel_ftps = (4, 4)
mp_environment_export = (’MPI_PROPAGATE_TSTP ’,
’ABA_CM_BUFFERING ’,
’ABA_CM_BUFFERING_LIMIT ’,
’ABA_ITERATIVE_SOLVER_VERBOSE ’,
’ABA_DMPSOLVER_BWDPARALLELOFF ’,
’ABA_ELP_SURFACE_SPLIT ’,
’ABA_ELP_SUSPEND ’,
’ABA_HOME ’,
’ABA_MEMORY_MODE ’,
’ABA_MPI_MESSAGE_TRACKING ’,

65
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’ABA_MPI_VERBOSE_LEVEL ’,
’ABA_PATH ’,
’ABAQUS_CSE_RELTIMETOLERANCE ’,
’ABA_RESOURCE_MONITOR ’,
’ABA_RESOURCE_USEMALLINFO ’,
’ABAQUS_LANG ’,
’ABAQUS_CSE_CURRCONFIGMAPPING ’,
’ABAQUS_MPF_DIAGNOSTIC_LEVEL ’,
’ABAQUSLM_LICENSE_FILE ’,
’ABQ_CRTMALLOC ’,
’ABQ_DATACHECK ’,
’ABQ_RECOVER ’,
’ABQ_RESTART ’,
’ABQ_SPLITFILE ’,
’ABQ_XPL_WINDOWDUMP ’,
’ABQ_XPL_PARTITIONSIZE ’,
’ABQLMHANGLIMIT ’,
’ABQLMQUEUE ’,
’ABQLMUSER ’,
’CCI_RENDEZVOUS ’,
’DOMAIN ’,
’DOMAIN_CPUS ’,
’DOUBLE_PRECISION ’,
’FLEXLM_DIAGNOSTICS ’,
’FOR0006 ’,
’FOR0064 ’,
’FOR_IGNORE_EXCEPTIONS ’,
’FOR_DISABLE_DIAGNOSTIC_DISPLAY ’,
’LD_PRELOAD ’,
’MP_NUMBER_OF_THREADS ’,
’MPC_GANG ’,
’MPI_FLAGS ’,
’MPI_FLUSH_FCACHE ’,
’MPI_RDMA_NENVELOPE ’,
’MPI_SOCKBUFSIZE ’,
’MPI_USE_MALLOPT_MMAP_MAX ’,
’MPI_USE_MALLOPT_MMAP_THRESHOLD ’,
’MPI_USE_MALLOPT_SBRK_PROTECTION ’,
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’MPI_WORKDIR ’,
’MPCCI_DEBUG ’,
’MPCCI_CODEID ’,
’MPCCI_JOBID ’,
’MPCCI_NETDEVICE ’,
’MPCCI_TINFO ’,
’MPCCI_SERVER ’,
’MPIEXEC_AFFINITY_TABLE ’,
’ABAQUS_CCI_DEBUG ’,
’NCPUS’,
’OMP_DYNAMIC ’,
’OMP_NUM_THREADS ’,
’OUTDIR ’,
’PAIDUP ’,
’PARALLEL_METHOD ’,
’RAIDEV_NDREG_LAZYMEM ’,
’ABA_SYMBOLIC_GENERALCOLLAPSE ’,
’ABA_SYMBOLIC_GENERAL_MAXCLIQUERANK ’,
’ABA_ADM_MINIMUMINCREASE ’,
’ABA_ADM_MINIMUMDECREASE ’,
’IPATH_NO_CPUAFFINITY ’,
’MALLOC_MMAP_THRESHOLD_ ’,
’ABA_EXT_SIMOUTPUT ’,
’SMA_WS ’,
’SMA_PARENT ’,
’SMA_PLATFORM ’,
’ABA_PRE_DECOMPOSITION ’,
’ACML_FAST_MALLOC ’,
’ACML_FAST_MALLOC_CHUNK_SIZE ’,
’ACML_FAST_MALLOC_MAX_CHUNKS ’,
’ACML_FAST_MALLOC_DEBUG ’,
’MKL_NUM_THREADS ’,
’MKL_DYNAMIC ’)

import driverUtils , os
#-*- mode: python -*-
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##################################################
###########################

# #
# Compile and Link command settings for the Linux 64

Platform #
# ( AMD Opteron / Intel EM64T ) #
# #
##################################################

###########################

import os, re, glob , driverUtils

#MPI implementation handling
mpiCppImpl = ’’
mp_rsh_command = ’ssh␣-n␣-l␣%U␣%H␣%C’
mp_mpi_implementation = PMPI
#mp_mpi_implementation = IMPI #<--- Uncomment this line and

comment above line to switch to IMPI
if mp_mpi_implementation == PMPI:
pmpipath = driverUtils.locateFile(os.environ.get(’ABA_PATH ’,

’’), ’pmpi -9.1.2/ bin’, ’mpirun ’)
mp_mpirun_path = {PMPI: pmpipath}
mpiCppImpl = ’-DABQ_MPI_PMPI ’
if mp_mpi_implementation == IMPI:
impipath = driverUtils.locateFile(os.environ.get(’ABA_PATH ’,

’’), ’impi -4.1.1/ bin’, ’mpiexec.hydra ’)
mp_mpirun_path = {IMPI: impipath}
mpiCppImpl = ’-DABQ_MPI_IMPI ’

#fortCmd = "ifort" # <-- Fortran compiler
fortCmd = "gfortran"
cppCmd = "g++" # <-- C++ compiler

# Avoid signal trapping by the Fortran RTE
os.environ["FOR_IGNORE_EXCEPTIONS"] = "1"
# Disable messages from the Fotran RTE
os.environ["FOR_DISABLE_STACK_TRACE"] = "1"
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# Do not let QLogic InfiniPath driver set processor affinity
.

os.environ["IPATH_NO_CPUAFFINITY"] = "1"

# Add the flag "-free" to the compile_fortran command below
to use free -format FORTRAN 90 syntax.

dirLst = glob.glob(’/usr/bin’)
if dirLst:
dirLst.sort()
ccDefPath = dirLst [-1] + ’/bin’

#compile_fortran = [fortCmd ,’-V’, ’-c’, ’-fPIC’, ’-auto’, ’-
mP2OPT_hpo_vec_divbyzero=F’, ’-extend_source ’, ’-fpp’, ’-
WB’, ’-I%I’]

compile_fortran = (fortCmd + ’␣-c␣-fPIC␣-I%I’)

# Additional command -line options for the Intel C/C++
Compilers:

# ’-cxxlib ’, ’-Kc++eh’, ’-Krtti’, ’-Kc++’, ’-pc64’, ’-
restrict ’, ’-i-dynamic ’,

# ’-we1011 ’, ’-we120 ’, ’-we117’, ’-we556’, ’-we144’, ’-we268
’, ’-we1224 ’, ’-we167 ’, ’-we880’

compile_cpp = [cppCmd ,
’-c’, ’-fPIC’, ’-w’, ’-Wno -deprecated ’, ’-DTYPENAME=typename

’,
’-D_LINUX_SOURCE ’, ’-DABQ_LINUX ’, ’-DABQ_LNX86_64 ’, ’-

DSMA_GNUC ’,
’-DFOR_TRAIL ’, ’-DHAS_BOOL ’, ’-DASSERT_ENABLED ’,
’-D_BSD_TYPES ’, ’-D_BSD_SOURCE ’, ’-D_GNU_SOURCE ’,
’-D_POSIX_SOURCE ’, ’-D_XOPEN_SOURCE_EXTENDED ’, ’-

D_XOPEN_SOURCE ’,
’-DHAVE_OPENGL ’, ’-DHKS_OPEN_GL ’, ’-DGL_GLEXT_PROTOTYPES ’,
’-DMULTI_THREADING_ENABLED ’, ’-D_REENTRANT ’,
’-DABQ_MPI_SUPPORT ’, ’-DBIT64 ’, ’-D_LARGEFILE64_SOURCE ’, ’-

D_FILE_OFFSET_BITS =64’,
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mpiCppImpl ,
# ’-O0’, # <-- Optimization level
# ’-g’, # <-- Debug symbols
’-I%I’]

compile_fmu = [cppCmd ,
’-c’, ’-fPIC’,’-I%I’]

link_fmu = [cppCmd ,
’-fPIC’, ’-shared ’, ’-o’, ’%J’, ’%M’]

#link_sl = [fortCmd ,
# ’-V’,
# ’-cxxlib ’, ’-fPIC’, ’-threads ’, ’-shared ’,
# ’%E’, ’-Wl,-soname ,%U’, ’-o’, ’%U’, ’%F’, ’%A’, ’%L’, ’%B’

, ’-parallel ’,
# ’-Wl,-Bdynamic ’, ’-i-dynamic ’, ’-lifport ’, ’-lifcoremt ’, ’

-lmpi’]

link_sl = (fortCmd +
"␣-gcc -version =%i␣-fPIC␣-shared␣" +
"%E␣-Wl,-soname ,%U␣-o␣%U␣%F␣%A␣%L␣%B␣-Wl,-Bdynamic␣" +
"␣-lifport␣-lifcoremt")

link_exe = [cppCmd ,
’-fPIC’,
’-Wl ,-Bdynamic ’, ’-o’, ’%J’, ’%F’, ’%M’, ’%L’, ’%B’, ’%O’, ’

-lpthread ’, ’-lm’, ’-lifcoremt ’]

# Remove the temporary names from the namespace
del cppCmd
del fortCmd
del mpiCppImpl
if mp_mpi_implementation == PMPI:
del pmpipath
if mp_mpi_implementation == IMPI:
del impipath
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graphicsEnv = driverUtils.locateFile(os.environ[’ABA_PATH ’],
’site’,’graphicsConfig ’,’env’)

if graphicsEnv:
execfile(graphicsEnv)
else:
raise ’Cannot␣find␣the␣graphics␣configuration␣environment␣

file␣(graphicsConfig.env)’

del driverUtils , os , graphicsEnv

del dirLst , ccDefPath

license_server_type=FLEXNET

abaquslm_license_file=""



Appendix B
Input File Example

The following code is an example of an Input file with the requirements parameters to
include a user subroutine with a load parametrization.

*HEADING
BEAM_DIST_LOAD_UEL
*PARAMETER
P =-10.0
*NODE
101, 0., 0.
102, 10., 0.
103, 20., 0.
104, 30., 0.
105, 40., 0.
106, 50., 0.
107, 60., 0.
108, 70., 0.
109, 80., 0.
1010, 90., 0.
1011, 100., 0.
** =============================================
** Begin User Element
** =============================================
*USER ELEMENT, TYPE=U1001, NODES=2, COORDINATES=1,
PROPERTIES=4, VARIABLES=10
** NEXT THE FREE DOF ARE DEFINED (Displacement in Y, Rotation in Z)
2, 6
*ELEMENT, TYPE=U1001, ELSET=USER
2, 102, 103
3, 103, 104
4, 104, 105
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5, 105, 106
6, 106, 107
7, 107, 108
8, 108, 109
9, 109, 1010
10, 1010, 1011
*UEL PROPERTY, ELSET=USER
1E6, 108, -10.0, 0.3
** =============================================
** Begin B21 Element
** =============================================
* ELEMENT, TYPE = B21, ELSET=BEAM
1, 101, 102
*BEAM SECTION, SECTION=RECTANGULAR, ELSET=BEAM, MATERIAL=STEEL
6.0, 6.0
*MATERIAL, NAME=STEEL
*DENSITY
7680.,
*ELASTIC
1E6, 0.3
** ==============================
** Boundary Conditions
** ==============================
*BOUNDARY
101, ENCASTRE
1011, 2
** ==============================
** Loading Condition
** ==============================
*STEP, NAME=STEP-1, PERTURBATION
*STATIC
*CLOAD
101, 2, <P>
102, 2, <P>
103, 2, <P>
104, 2, <P>
105, 2, <P>
106, 2, <P>
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107, 2, <P>
108, 2, <P>
109, 2, <P>
1010, 2, <P>
1011, 2, <P>
*OUTPUT, FIELD, VARIABLE=PRESELECT
*NODE PRINT
RF, COORD
U, COORD
*EL PRINT
S,
*ENDSTEP
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