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In recent years, vector-borne diseases are taking serious attention from re-

searchers and health specialist across the world. The emergence of vector-borne

diseases, such as Chikungunya and Zika, coupled with outbreaks of both diseases

in the Americas are of great interest to the scientific community since there is still

very much to learn about their transmission, risks and effects.

The Zika virus (ZIKV) is primarily transmitted by infected females Aedes ae-

gypti mosquitoes, but there is also confirmed evidence that it can be transmitted

directly (human to human) by sexual contacts and from mother to fetus. The appar-

ent effects in the neurological system through the Guillain-Barré syndrome and the

neonate microcephaly are of great concern. In Puerto Rico, 66% of the confirmed

cases were females, and since the Zika disease is usually asymptomatic, pregnant

women may not even know that they have the virus. At the end of December 2016,

the Puerto Rico Department of Health estimated 37,500 cases.

In this work, we focus on the 2015-2016 Zika virus (ZIKV) outbreak in Puerto

Rico and use the data of confirmed Zika cases by laboratory obtained from the weekly
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reports published by the Puerto Rico Department of Health. To analyze the behavior

of the Zika virus in Puerto Rico, a mathematical model that takes into account

vector and sexual transmission is considered. Using the data and the epidemic

model, the initial exponential growth rate of the epidemic is estimated, (defined

as the force of infection), by different statistical methods, in order to estimate the

basic reproductive number (R0) of the Zika epidemic in Puerto Rico. In addition,

the Ordinary Least Squares (OLS) and Generalized Least Squares (GLS) methods

were considered to minimize the point-by-point distances between the predicted data

by the mathematical model and the observed data for the Zika epidemic in Puerto

Rico. The optimization procedure was performed to estimate the transmission rates

βh and κ (that are unknown) in order to estimate and generate a distribution for

R0, using the parameters from the model through a sampling process.

Keywords: Zika virus, estimation, data analysis, statistical methods, Zika epidemic

model, basic reproductive number, force of infection, sexual transmission, Bayesian

inference, Negative Binomial distribution
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En la actualidad, las enfermedades transmitidas por vectores están tomando

mucha atención por parte de los investigadores y especialistas de la salud, de dis-

tintas partes del mundo. Enfermedades emergentes como Chikungunya y Zika, y

situaciones donde ambos virus circulan al mismo tiempo, en las Américas, son de

gran interés para la comunidad cient́ıfica, dado que aún hay mucho por aprender

acerca de la transmisión, riesgos y efectos.

El virus del Zika (ZIKV) es transmitido principalmente, por la picada de un

mosquito hembra, del tipo Aedes Aegypti, pero existe evidencia que confirma que el

virus también puede ser transmitido de forma directa, es decir, de humano a humano,

como por ejemplo, por transmisión sexual o de la madre al feto, en caso de un

embarazo. Los efectos aparentes en el sistema neurológico por medio del Śındrome

de Guillain-Barré y la Microcefalia en los bebés, causa mucha preocupación. En

Puerto Rico, durante la epidemia del 2016, 66% de los casos confirmados fueron

féminas, y debido a que el virus del Zika es usualmente asintomático, las mujeres

embarazadas podŕıan tener el virus, sin estar conscientes de que lo tienen. A finales
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de diciembre 2016, el Departamento de Salud de Puerto Rico estimó una incidencia

acumulada aproximada de 37,500 casos.

En este trabajo, nos enfocamos en el brote de Zika ocurrido entre 2015 y 2016,

en Puerto Rico, utilizando los datos obtenidos de los reportes del Departamento

de Salud de Puerto Rico. Para analizar el comportamiento del virus del Zika en

Puerto Rico, se considera un modelo matemático que toma en cuenta la transmisión

vectorial y de forma directa (sexual). Utilizando los datos y el modelo de la epidemia,

la tasa de crecimiento exponencial inicial de la epidemia (definida como la fuerza de

infección) es estimada por diversos métodos estad́ısticos, con el propósito de estimar

el número reproductivo básico, R0, para la epidemia 2015-2016 del Zika en Puerto

Rico. En adición, para minimizar las distancias punto-a-punto, entre los valores que

predice el modelo matemático y los datos observados para la epidemia de Zika en

Puerto Rico, los métodos de Mı́nimos Cuadrados Ordinarios y Mı́nimos Cuadrados

Generalizados fueron considerados. Este procedimiento de optimización permitirá

obtener estimados para las tasas de transmisión βh y κ (que son desconocidas) con

el propósito de estimar y generar una distribución de R0, utilizando los parámetros

del modelo, a través de un proceso de muestreo.

Palabras claves: Virus del Zika, estimación, análisis de datos, métodos estad́ısticos,

modelo de epidemia del Zika, número reproductivo básico, fuerza de infección, trans-

misión sexual, inferencia Bayesiana, distribución Negativa Binomial
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CHAPTER 1

INTRODUCTION

The Zika virus is a vector-borne disease which is caused primarily by the bite of

an infected female Aedes Aegypti mosquito. The first case was identified in Uganda,

Africa, in 1947, when a group of scientists were conducting routine surveillance for

yellow fever, in a sentinel rhesus monkey. Years later, in 1952, the first Zika case

in humans was confirmed, also in Uganda [77]. According to the World Health

Organization [77], outbreaks of Zika virus disease have been recorded in Africa, the

Americas, Asia and the Pacific.

Figure 1–1, shows the Zika virus spread around the world, starting from Africa

and moving to U.S., the U.K., Denmark and recently to Germany. The first large

outbreak of disease caused by Zika infection, according to the Worlf Health Orga-

nization [77], was reported from the Island of Yap in 2007, where the 73% of the

total population got the virus. Some recent Zika outbreaks are presented in Table

1–1, while Figure 1–2 shows the affected areas before 2015 and during the 2015-2016

Zika epidemics worldwide.

Year Region Cumulative Incidence Population

2013-2014 French Polynesia 30,000 277 thousands
2015 Barranquilla, Colombia 65,750 1.2 million

2015-2016 Puerto Rico 37,500 3.7 million

Table 1–1: Recent Zika virus outbreaks

To understand how Zika is spreading around the world, Lancaster University

and the World Health Organization (WHO) [79] created a map illustrating the flow
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of the Zika infections. As we know, the first case of Zika virus in humans was

identified in Uganda, Africa, in 1952, marked as 1 in Figure 1–1. Years later, a

human case was detected in Nigeria, Africa (2 in Figure 1–1). In 1966, a first case

was confirmed in South East Asia, and in the late 1970s it was documented in

Pakistan, India, Malaysia and Indonesia (3 in Figure 1–1). The first official Zika

epidemic was on the isolated island of Yap, Micronesia, in 2007 (4 in Figure 1–1),

affecting 73% of the total population. The Zika virus hit French Polynesia in 2013,

with a huge outbreak (5 in Figure 1–1) and later in 2014, Zika arrived in northern

Brazil (6 in Figure 1–1).

It spread slowly through Brazil for around a year, before the WHO reported

the first outbreak outside of Colombia in October 2015. Other countries then fol-

lowed quickly, with transmission reported in Colombia, Suriname, El Salvador, and

Guatemala. The disease spread to Mexico for the first time (raising concerns in the

U.S.) as well as to Paraguay, Venezuela and Panama. In 2015, Honduras, Puerto

Rico, French Guyana and Martinique, all in the Caribbean, had cases. Cases have

also been confirmed in Guyana, Barbados, Ecuador, Bolivia, Haiti and the Do-

minican Republic. Some cases have been reported locally in the U.S., the U.K.,

Denmark and recently in Germany (7 in Figure 1–1). Lancaster University and

WHO (which gave us a brief historical background about the spreading of the Zika

virus) concluded that the Zika virus has circumnavigated the globe and then it could

legitimately be described as a pandemic.

Zika virus is primarly transmitted to people through the bite of a female in-

fected mosquito, but direct transmission of the virus is also possible, for example,

by sexual transmission. Scientists from the Centers for Disease Control and Pre-

vention (CDC) have concluded that Zika virus is a cause of Microcephaly and other

severe fetal brain defects [10]. Links to other neurological complications are also

being investigated by the World Health Organization [77] and other health agencies.
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Figure 1–1: How the Zika virus spread around the world. The image was obtained
from WHO and Lancaster University. [79]

Figure 1–2: Zika: Affected areas before 2015 (orange) and affected areas between
2015 and 2016 (red). The Zika outbreak in Puerto Rico is marked in red, because it
happened during 2015-2016. The image was obtained from the Diagram Collection:
World Map Of Zika Cases. [73]

Figure 1–3 provides an illustration of the transmission cycle for the Zika infection,

where vector transmission is from vector to human and from human to vector; and

the sexual transmission is from human to human.

The main objective of this research is to estimate the basic reproductive number

(R0) of the Zika virus outbreak in Puerto Rico from November 2015 to December

2016 using weekly incidence data. The basic reproductive number is defined by An-

derson and May [2] as the average number of secondary infections that results when
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Figure 1–3: The infection cycle and effects.

a single infectious individual is introduced into an entirely susceptible population.

Since vector as well as sexual transmission of the Zika virus will be considered, R0

might help to determine the amount of effort needed to avoid or eliminate a Zika

epidemic.

In order to achieve this goal, a mathematical model describing the transmission

dynamics of Zika need to be build or adopt. Since the Zika virus can be transmitted

through vectors as well as directly from human to human, a mathematical model

that includes this two mechanism of transmission will be used. With a mathematical

model of ordinary differential equations and a statistical model to account for the

number of Zika cases per week (weekly incidence), the following contributions will

be attained:

1. An estimate of the initial exponential growth rate (ρ) and the basic reproductive

number (R0), with different statistical methods. So far we understand that this

would be the first estimate of R0 for the Zika 2015-2016 epidemic in Puerto Rico,

as the Zika virus is an emergent disease on the island. A posterior distribution for

ρ and R0 will also be provided.

2. An estimate of the reporting rate (r), due to asymptomatic cases and individuals

that do not seek medical care, using a Bayesian approach.
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3. The Ordinary Least Squares (OLS) and Generalized Least Squares (GLS) meth-

ods were considered to minimize the point-by-point distances between the predicted

data by the mathematical model and the observed data for the Zika epidemic in

Puerto Rico. The optimization procedure was performed to estimate the trans-

mission rates βh and κ (that are unknown) in order to estimate and generate a

distribution for R0, using the parameters from the model through a sampling pro-

cess.

1.1 Main objective

Estimate the basic reproductive number (R0) of the Zika virus outbreak in Puerto

Rico from November 2015 to December 2016 using weekly incidence data.

1.2 Specific objectives

To achieve the main goal of this work, we established some specifics objectives:

1. Identify an epidemiological model of ordinary differential equations that represent

the Zika dynamics in Puerto Rico, to determine an adequate expression of the basic

reproductive number (R0), with and without the exponential growth rate.

2. Obtain (by approximation) the dataset of the weekly incidence from the public

report provided by the Puerto Rico Department of Health, by using a Plot Digitizer

to extract the data.

3. Determine the exponential phase of the incidence curve of the Zika epidemic and

estimate the initial exponential growth rate, ρ, by several methods, such as:

• Visual method

– Linear regression to the logarithm of the cumulative incidence

– Bayesian approach

• Favier et al.’s method (see [27])

• Chowell et al.’s method (see [15])
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4. Estimate the reporting rate of the Zika cases in Puerto Rico due to the asymp-

tomatic cases and due to the people that do not seek medical assistance.

5. Estimate the transmission rates βh and κ, in the mathematical model, that provide

the best fitted curve to the observed data, through an optimization process.

6. Establish a comparison of our estimates of the initial exponential growth rate

(ρ), basic reproductive number (R0) and reporting rate (r) from Puerto Rico Zika

outbreak with other results presented in the literature for Zika epidemics around

the world.



CHAPTER 2

MATHEMATICAL MODEL AND DERIVATION

OF THE BASIC REPRODUCTIVE NUMBER

2.1 Mathematical models of infectious diseases

Through the years, from the Paleolithic era to the present, mathematical models

has been used in order to explain several phenomena that occur in our universe. Most

of the processes that occur in our environment are dynamical processes, which are

time dependent or change depending on time.

A question of concern is: Which mathematical tools can be employed to study

public health phenomena, such as infectious disease? Carl Boyer, on his book “A

History of Mathematics” [6], indicated that “modeling is a tool that is responsible

for representing or simulating real-life situations, using mathematical equations, to

determine or predict behavior”. A mathematical model allows us to simplify the

study of a dynamic phenomenon, since most of the situations involve non-linear

behavior, something that, without modeling, could be difficult to analyze.

According to Anderson and May (in epidemiological context) [2], mathematical

models have been, and still are, a very important tool that helps us to understand

this area. Moreover, is the principal tool in order to study the behavior of an

epidemic. The goal of a mathematical model of an infectious disease is to identify

the causes of the outbreaks, the spread and the behavior of the disease, and most

importantly, how to control it.

In this work, a mathematical model consisting of a system of ordinary differ-

ential equations will be used to study the spread of the Zika virus in Puerto Rico,

7
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that is by estimating the basic reproductive number of the outbreak from confirmed

by laboratory weekly cases. The interest of this work is on the number of infected

individuals, taking into account the mechanism of how the individual got the virus

(vector vs. sexual transmission). Since the transmission of the Zika follows a process

in order to produce the infection, the entire population needs to be separated into

compartments that usually describe the infectious state. One of the first and famous

model of vector-borne disease is the Ross-MacDonald model (1957) [2]. This model

was employed to study malaria transmission in Africa. The model is given by the

following system:

Y ′ = abI
H − Y
H

− εY,

I ′ = ac(V − I)
Y

V
− δI

(2.1)

where the total mosquito (V ) and human population sizes (H) are constant. We have

that mosquitoes can be susceptible or infectious (I), humans are either susceptible

or infectious (Y ), there are no incubation periods, a is the mosquito biting rate,

b is the mosquito to human transmission probability per bite, c is the human to

mosquito transmission probability per bite , ε is the human recovery rate and δ is

the mosquito death rate.

As indicated early, the main objective of this work is to estimate the basic

reproductive number, R0, for the 2015-2016 Zika outbreak in Puerto Rico, but we

need to learn details about this epidemiological measure, for example, how it is

defined, how to calculate it, what kind of data is needed, and more important,

what can be concluded from it. The basic reproductive number of a infectious

disease, denoted by R0, is the average number of secondary infectious that result if

a single infectious individual is introduced into an entirely susceptible population

[2, 7, 12, 13, 23, 25, 27, 30, 39, 40, 64, 65, 67, 72, 74].
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Ross (1911) defined R0, for System 2.1, as the product of the basic reproductive

number of humans infected by a mosquito and the basic reproductive number of

mosquitoes infected from a person, that is,

R0 = RHV
0 RV H

0 . (2.2)

Typically, if R0 < 1 every infected individual can produce on average less than

one new infected individual, and it is possible to predict that the infection will

disappear from the population. On the contrary, if R0 > 1, then the infection is

able to invade the susceptible population and the disease can persist and increase.

The analysis of this threshold is important and useful aspect in studying a disease

because it allows to decide which control action (how and when to apply them)

would be most effective in reducing R0 below one [2] [7].

2.2 Epidemics modeling of vector borne infectious diseases

Between 2013 and 2014, more than 30,000 cases of Zika virus disease were esti-

mated in French Polynesia. This outbreak is known as the second largest outbreak

on worldwide history, while the 2007 Zika outbreak in Yap Island is known as the

largest because 73% of the total population got infected [77]. Kucharski et al. [40]

use a mathematical model of vector-borne infections to examine the transmission

dynamics on the six archipelagos of French Polynesia. In Kucharski’s model, both

people and mosquitoes were modeled using a susceptible-exposed-infectious-removed

(SEIR) framework. This model incorporated delays as a result of the intrinsic (hu-

man) and extrinsic (vector) incubation periods.
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The complete model is given by:

dSH/dt = −βHSHIV ,

dEH/dt = βHS
HIV − αHEH ,

dIH/dt = αHE
H − γIH ,

dRH/dt = γIH ,

dC/dt = αHE
H ,

dSV /dt = δ − βV SV
IH

N
− δSV ,

dEV /dt = βV S
V I

H

N
− (δ + αV )EV ,

and

dIV /dt = αVE
V − δIV .

(2.3)

In the model, SH represents the number of susceptible people, EH is the number

of people currently in their incubation period, IH is the number of infectious people,

RH is the number of people that have recovered, C denotes the cumulative number

of people infected, and N is the human population size, all at time t. Similarly, SV

represents the proportion of mosquitoes currently susceptible, EV the proportion in

their incubation period, and IV the proportion of mosquitoes currently infectious,

all of them at time t. Since the mean human lifespan is much longer than the out-

break duration, they omitted human births and deaths. Through the mathematical

analysis, Kucharski et al. [40] derived the basic reproductive number for the Zika

epidemic, defined as the product of the average number of mosquitoes infected by

the typical infectious human, and vice versa, or,

R0 =
βV
γ
· αV
δ + αV

βH
δ
, (2.4)

similar to the R0 in Ross model.
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This model only includes one mechanism of transmission, and is because by

the date of publication, the sexual transmission was not yet discovered or consid-

ered for Zika virus outbreaks. Even though the model does not include the sexual

transmission from human to human, the analysis of the basic reproductive number

and the statistical process provided information about Zika dynamics. The median

estimates of R0 ranged between 2.6 and 4.8. Kucharski et al. [40] also studied the

problem of the under-reporting number of cases caused by the asymptomatic indi-

viduals (mostly), and in addition, showed a demographic model that will provide

the potential of the Zika virus to cause future outbreaks.

Gao et al. [30] studied a mathematical model for Zika virus transmission that

included mosquito-borne and sexual transmission as the two mechanism of infec-

tion. The difference between Gao’s and Kucharski’s model are the mechanisms of

transmission and the stratification of the human population. As we specified before,

the Zika virus can be asymptomatic and because of this, is very uncertain to iden-

tify the exact number of infected individuals. Gao et al. [30] presented a model in

which the human population is divided into six classes: susceptible (Sh(t)), exposed

(Eh(t)), symptomatically infected (Ih1(t)), convalescent (Ih2(t)), asymptomatically

infected (Ah(t)), and recovered (Rh(t)), all at times t > 0. In Puerto Rico, we know

there is a problem with the reporting rate because of the asymptomatic cases. Even

when Gao et al. [30] estimated R0 = 2.055 (95% CI: 0.52-6.30) for the Zika epi-

demic in Brazil, Colombia and El Salvador (together), by taking into account the

asymptomatic and symptomatic individuals as two classes of infected inndividuals,

they did not provided information on how they obtained the data about the asymp-

tomatic cases neither if they had the numbers of asymptomatic cases or if they were

assumed. For this reason, in our work we will not analyzed a model similar to the

one proposed by Gao et al. [30], because we cannot identified the weekly number of

infected individuals that were asymptomatic in the epidemic.
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Favier et al. [27], constructed a mathematical model for dengue fever disease

(a vector-borne disease) of the type SI for the human and mosquito population.

Their work rely on a statistical analysis and different methods to calculate the ba-

sic reproductive number, by using early epidemic curves for vector-borne diseases.

Their emphasis was on the estimation of the initial exponential growth rate of the

epidemic. As they specified on the article, the methods were: (1) a direct estima-

tion of R0 from the definition: the evaluation of the number of hosts potentially

infected by one single infectious case, (2) the correspondence between R0 and the

final prevalence (better known as the final size relation), (3) transmission chains,

and (4) an estimate of R0 from the slope of the initial exponential growth of the

cumulative number of cases, called the force of infection. The work on this thesis

will consider the last method provided by Favier et al. [27], which used the initial

exponential growth of the epidemic (ρ) as a way to estimate the basic reproductive

number (R0). This consideration is very important in our work because it has the

advantage of relaying on the available data, which in our case is the weekly incidence

and weekly cumulative incidence of the 2015-2016 Zika epidemic in Puerto Rico (see

next chapter for more details) [27].

We also reviewed the work of Brauer et al. [7], where models with and without

sexual transmission for the study of the dynamics of Zika virus were proposed. The

work of Brauer et al. [7] is divided into three parts which we discuss in the next

section.

2.3 Expression of R0 using parameters in the model

From Chapter 1, we learned that the Zika virus has two mechanism of transmis-

sion, vectorial throught mosquitoes and directly throught sexual contacts. In order

to select an appropriate mathematical model to estimate the basic reproductive

number R0 for the ZIKV epidemic in Puerto Rico, we need to adopt a model that

includes both mechanism of transmission. In the next subsections, we will discuss in
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details the work of Brauer et al. [7], the work that was the first mathematical model

that described Zika virus dynamics, including vector as well as sexual transmission

of the virus.

2.3.1 Vector transmission only

For a vector-borne disease, the model explained by Brauer et al. includes com-

partments corresponding to susceptible, exposed, infected and recovered humans,

and susceptible, exposed, and infected mosquitoes, known as the SEIR/SEI model.

By definition, the transmission rates, βh and βv, is the product of the number of

mosquitoes bites per unit of time, times the probability of infection given the contact

(bite) between the human and the mosquito. Because the probability is unknown,

this parameter is very difficult to estimate. Therefore, instead of using the trans-

mission rates, an expression for the basic reproductive number that depend on the

initial exponential growth rate, ρ , of the epidemic, will be used [7] [72]. In order to

obtain an expression of R0 in terms of ρ, Brauer et al. [7], used a linearization of the

system around the disease-free equilibrium (DFE) and then solve a characteristic

equation for the initial exponential growth rate ρ.

The dynamics of the epidemic considering only vector transmission starts in a

population of Nh(t) humans and Nv(t) adult female mosquitoes, at time t, where

the susceptible adult female mosquitoes at time t, Sv(t), upon biting an infectious

human, incubate the virus for an average period of time, 1/αv, and then progresses to

the infectious compartment at time t, Iv(t). The mosquitoes die after an average of

1/δ days. The transmission rate from an infectious human to a susceptible mosquito

is βv, which is the transmission rate given that the contact between the infectious

human and the susceptible mosquito is effective.

On the other hand, the susceptible humans at time t, Sh(t), can be infected

by being bitten by an infectious female mosquitoes or through direct contact with
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another infected human (for instance, by sexual contact). In this case, the human

incubates the virus for an average period of time, 1/αh days, before becoming in-

fectious at time t, Ih(t). After an average of 1/γ days, the human then recovers

progressing to the immune compartment at time t, Rh(t). This dynamics is well

explained in [7].

The model presented in [7] is described by the seventh coupled, nonlinear ordi-

nary differential equations given in System 2.5. The population state variables and

parameters are presented in Tables 2–1 and 2–2, respectively.

S ′h = −βhSh
Iv
Nv

,

E ′h = βhSh
Iv
Nv

− αhEh,

I ′h = αhEh − γIh,

R′h = γIh,

S ′v = −βvSv
Ih
Nh

+ δNv − δSv,

E ′v = βvSv
Ih
Nh

− (δ + αv)Ev,

and

I ′v = αvEv − δIv,

(2.5)

where Nh = Sh +Eh + Ih +Rh and Nv = Sv +Ev + Iv are the human and mosquito

population sizes, respectively.

Population Definition

Sh(t) Number of susceptible humans
Eh(t) Number of infected humans who are not yet infectious (exposed)
Ih(t) Number of infectious humans
Rh(t) Number of recovered humans
Sv(t) Number of susceptible mosquitoes
Ev(t) Number of infected mosquitoes who are not yet infectious (exposed)
Iv(t) Number of infectious mosquitoes

Table 2–1: Description of the human and mosquito populations state variables, all
at times t.
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Parameter Definition Units

1/αv Extrinsic incubation period (mosquitoes) Time
1/αh Intrinsic incubation period (humans) Time
1/γ Human infectious period Time
1/δ Mosquito lifespan Time
βh Vector to Human transmission rate Dimensionless
βv Human to Vector transmission rate Dimensionless

Table 2–2: Description of the parameters in the model.

The basic reproductive number was heuristically obtained from the equations.

As Brauer et al. explained in [7], there are two stages of the infection process.

First, the infected human infects mosquitoes, at a rate βv
Nh

Nv
over an average time

1/γ. This produces βv
Nh

Nvγ
infected mosquitoes, of whom a fraction αv

αv+δ
proceed to

become infectious. The second stage is that the infected mosquitoes infect humans at

a rate βh
Nv

Nh
for an average time 1/δ, producing βh

Nv

Nhδ
infected humans per mosquito.

The net result of these two stages is

(
βv

Nh

Nvγ

)(
αv

αv + δ

)(
βh

Nv

Nhδ

)
= βvβh

αv
δγ(αv + δ)

infected humans. Therefore,

R0 =

(
βv
γ

)(
αv

αv + δ

)(
βh
δ

)
. (2.6)

By using the Next Generation Matrix process, discussed in [74], the same ex-

pression for R0 can also be obtained.
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2.3.2 Sexual transmission only

The model of an infectious disease with sexual transmission only can be defined as

S ′h = −κSh
Ih
Nh

,

E ′h = κSh
Ih
Nh

− αhEh,

I ′h = αhEh − γIh,

and

R′h = γIh,

(2.7)

where Nh = Sh + Eh + Ih +Rh is the human population size.

If there is sexual transmission, the basic reproductive number is independent of

the host-vector interaction [7]. In this case, the interaction produces κ cases in an

average time of 1/γ days. Therefore,

R0 =
κ

γ
. (2.8)

2.3.3 Vector and sexual transmission

The model in this subsection will be similar to the model discussed in the first

subsection, System 2.5. Brauer et al. [7] add the term κSh
Ih
Nh

into the second

and third differential equation, where κ is the transmission rate from human to

human. Figure 2–1 shows a flowchart for the mathematical model with sexual and

vector transmission. Brauer et al. presented this model (System 2.9 below) as the

first mathematical model to study the dynamics of a Zika virus epidemic. The

population state variables remains as stated, but the table of parameters includes

now the sexual transmission rate, from human to human (see Table 2–3).
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Figure 2–1: Compartmental flowchart of the vector and sexual transmission model
of Brauer et al. [7]. Red lines indicate the transmission terms between an infected
moquito (Iv) with a susceptible human (Sh) or between an infected human (Ih) with
a susceptible mosquito (Sv).

S ′h = −βhSh
Iv
Nv

− κSh
Ih
Nh

,

E ′h = βhSh
Iv
Nv

+ κSh
Ih
Nh

− αhEh,

I ′h = αhEh − γIh,

R′h = γIh,

S ′v = −βvSv
Ih
Nh

+ δNv − δSv,

E ′v = βvSv
Ih
Nh

− (δ + αv)Ev,

and

I ′v = αvEv − δIv,

(2.9)

where Nh = Sh +Eh + Ih +Rh and Nv = Sv +Ev + Iv are the human and mosquito

population sizes, respectively.

Due to the consideration of the vector and sexual transmission, there are three

transmission rates that are difficult to estimate. Brauer et al. [7] performed the same
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Parameter Definition Units

1/αv Extrinsic incubation period (mosquitoes) Time
1/αh Intrinsic incubation period (humans) Time
1/γ Human infectious period Time
1/δ Mosquito lifespan Time
βh Vector to Human transmission rate Dimensionless
βv Human to Vector transmission rate Dimensionless
κ Human to Human transmission rate Dimensionless

Table 2–3: Description of the parameters in the Zika model. Since our data were
extracted from a weekly report, we take time in weeks.

analysis as before, a linearization of the system around the disease-free equilibrium

(DFE).

For the model in System 2.9, Brauer et al. [7] determined that the basic repro-

ductive number is given by

R0 = R0vector +R0sex

= βvβh
αv

δγ(αv + δ)
+
κ

γ
,

(2.10)

where it is resulted from the Next Generation Matrix, proposed by Van den Driessche

and Watmough in [74].

2.4 Expression of R0 using the initial exponential growth rate (ρ)

In most cases, some parameters from the mathematical model are unknown,

leading to take a different approach to compute R0. In this case, the notion of

an exponential growth will be consider in order to encounter an expression for the

basic reproductive number that does not depend of the unknown parameters, which

in this case are the transmission rates of the epidemic. This section will explained

the linearization of a mathematical model to compute R0.
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2.4.1 Vector transmission only

Using the mathematical model in System 2.5 (presented in [7]), a linearization

procedure around the disease-free equilibrium (DFE) will be employ, where Sh = Nh,

Eh = Ih = 0, Sv = Nv and Ev = Iv = 0 will be explained. For the process, Brauer et

al. [7] assume that y = Nh−Sh and z = Nv−Sv, in order to obtain the linearization.

y = Nh − Sh −→ Sh = Nh − y

−→ S ′h = −y′

−→ y′ = −S ′h
and

z = Nv − Sv −→ Sv = Nv − z

−→ S ′v = −z′

−→ z′ = −S ′v

Therefore, the System 2.5 can be written in the form calculated by Brauer et

al. on their article (see System 2.11). Notice that the equation of the evolution

of the recovered humans, Rh(t), decouples from the system, as it is determined by

computing the population value of the infected human equation [67].

y′ = βhNh
Iv
Nv

,

E ′h = βhSh
Iv
Nv

− αhEh,

I ′h = αhEh − γIh,

z′ = βvNv
Ih
Nh

− δz,

E ′v = βvSv
Ih
Nh

− (δ + αv)Ev,

and

I ′v = αvEv − δIv.

(2.11)
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The characteristic equation of the System 2.11 is

det



λ 0 0 0 0 βh
Nh

Nv

0 −(λ+ αh) 0 0 0 βh
Nh

Nv

0 αh −(λ+ γ) 0 0 0

0 0 βv
Nv

Nh
−(λ+ δ) 0 0

0 0 βv
Nv

Nh
0 −(λ+ δ + αv) 0

0 0 0 0 αv −(λ+ δ)


= 0

Then, reducing the characteristic equation Columns 1 and 4,

λ(λ+ δ) · det



−(λ+ αh) 0 0 βh
Nh

Nv

αh −(λ+ γ) 0 0

0 βv
Nv

Nh
−(λ+ δ + αv) 0

0 0 αv −(λ+ δ)


= 0

The initial exponential growth rate, ρ, is the largest root of the following fourth

degree polynomial (see details in [7])

g(λ) = (λ+ αh)(λ+ γ)(λ+ δ + αv)(λ+ δ)− βhβvαhαv. (2.12)

From Brauer et al. [7], Equation 2.12 has a unique positive root when g(λ) = 0

and this is the initial exponential growth rate. The initial exponential growth rate

may be measured experimentally, and if the measured value is ρ, then from Equation

2.12 it is obtained:

(λ+ αh)(λ+ γ)(λ+ δ + αv)(λ+ δ) = βhβvαhαv = R0αhδγ(δ + αv). (2.13)

Therefore,

R̂0 =
(ρ+ αh)(ρ+ γ)(ρ+ δ)(ρ+ δ + αv)

γαhδ(δ + αv)
. (2.14)

Notice that R̂0 does not depend on βh and βv, the transmission rates.
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2.4.2 Sexual transmission only

By using the same technique, a linearization around the disease-free equilibrium

(DFE) will be perform, where Sh = Nh, Eh = Ih = 0, and taking y = Nh−Sh. With

this information, the System 2.7 can be written as a system of three differential

equations, that is

y′ = κIh,

E ′h = κIh − αhEh,

and

I ′h = αhEh − γIh.

(2.15)

For this system, the characteristic equation is given by

det


−λ 0 κ

0 −(λ+ αh) κ

0 κ −(λ+ γ)

 = 0.

Reducing the equation, we have then

λ · det

 −(λ+ αh) κ

κ −(λ+ γ)

 = 0.

Therefore, by the same assumption about the initial exponential growth rate,

ραhκ− ρ(ρ+ αh)(ρ+ γ) = 0. (2.16)

Leaving the parameter κ in one side of the equation and dividing by γ, we obtain

that

κ

γ
=

(ρ+ αh)(ρ+ γ)

αhγ
. (2.17)
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By using the Equation 2.8, we finally obtain that the basic reproductive number,

for a model with only sexual transmission, in term of ρ, is

R̂0 =
(ρ+ αh)(ρ+ γ)

αhγ
. (2.18)

2.4.3 Vector and sexual transmission

After the linearization of the System 2.9 around the disease-free equilibrium

(DFE), Brauer et al. obtained the following equation:

(λ+αh)(λ+ γ)(λ+ δ)(λ+ δ+αv)−καh(λ+ δ)(λ+ δ+αv)− βhβvαhαv = 0 (2.19)

Since the initial exponential growth rate, ρ, is the largest root of the previous

equation [7],

(ρ+αh)(ρ+ γ)(ρ+ δ)(ρ+ δ+αv)− καh(ρ+ δ)(ρ+ δ+αv)− βhβvαhαv = 0 (2.20)

Equation 2.10 can be written as

βhβvαhαv = δγαh(δ + αv)R0 − κδαh(δ + αv) (2.21)

Finally, by replacing Equation 2.21 into Equation 2.20, the following expression

for the estimation of R0 is obtained:

R̂0 = R0sex +

[
(ρ+ αh)(ρ+ γ)

γαh
−R0sex

]
(ρ+ δ)(ρ+ δ + αv)

δ(δ + αv)
. (2.22)
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All the expressions for the basic reproductive number (2.14, 2.18, and 2.22)

makes sense because if it is assume, for instance, that ρ = 0, all of them will

be equal to 1, which is the appropriate threshold behavior. In [72], Towers et al.

used Equation 2.22, to estimate R0 for the Zika epidemic occurred in Barranquilla,

Colombia. For this outbreak, they estimated R0 to be 3.8 [2.4, 5.6] with ρ = 0.076

days−1 (or 0.532 weeks−1).

In order to study the 2015-2016 Zika virus outbreak in Puerto Rico, we adopt the

mathematical model defined by Brauer et al. [7], which is the System 2.9. This model

is the only one we found that includes the two types of transmission (vector and

sexual), that incorporates the initial exponential growth rate (ρ) into the expression

for the basic reproductive number (R0). To estimate R0, the expression obtained by

Towers et al. [72] is also used (Equation 2.22). It is important to understand that

Equation 2.22 requires the estimation of the initial exponential growth rate (ρ), or

the force of infection as defined by Favier et al. [27].



CHAPTER 3

STATISTICAL METHODS

3.1 Derivation of the initial exponential growth rate (ρ)

The expression for the basic reproductive number, Equation 2.22, requires the

estimation of the initial exponential growth rate (ρ), or the force of infection as

defined by Favier et al. [27]. Questions that resulted in the process of this research

were: Is the initial exponential growth rate equivalent to the force of infection? and

if this relationship holds, how can the force of infection be defined?

When an epidemic occurs (typically if R0 > 1), the observed data from the

epidemic, in particular, the increase in the incidence, have an exponential form,

during its initial phase. This suggest that we can model the initial phase of an

epidemic as

y(t) = y0e
ρt, (3.1)

where ρ is the initial exponential growth rate and y(0) = y0 is the initial condition

of the epidemic, which means, that y0 is the initial number of infected individuals

(incidence at time zero). If we think, for example, in the ZIKV epidemic, assuming

that X is a continuous random variable representing the time of exposure of an

individual in the population, with probability density function (p.d.f.), f(t), and

cumulative distribution function (c.d.f.),

F (t) = P (X < t), (3.2)

24
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giving the probability of acquiring the Zika virus at time t, then

S(t) = P (X ≥ t) = 1− F (t) =

∫ ∞
t

f(x)dx, (3.3)

gives the probability of being susceptible to the ZIKV at time t [62]. In this case,

S(t) is called the survival function. We can describe the random variable X by using

the hazard function, that is

ρ(t) = lim
dt→0

Prob(t ≤ X ≤ t+ dt | X ≥ t)

dt
. (3.4)

By following the procedure in [34, 62], Equation 3.4 simplifies to

ρ(t) =
f(t)

S(t)
. (3.5)

Integrating from 0 to t, and assuming that all the people has survived at time zero,

(S(0) = 1), we have that

S(t) = exp

(
−
∫ t

0

ρ(x)dx

)
. (3.6)

At the beginning of the exponential behaviour, a constant risk of infection over time

can be assumed [2], then ∫ t

0

ρ(x)dx =

∫ t

0

ρ · dx

= [ρx]t0

= ρ[t− 0]

= ρt.

(3.7)

Therefore,

S(t) = exp(−ρt), (3.8)

where ρ is called the force of infection, or infection hazard. In [34], if t is the time of

exposure of the population, the expected proportion of the initial population that
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still susceptible at time t, will have decayed away exponentially according to Equa-

tion 3.8. In this case, exp(−ρt) can be define as the probability that a susceptible

individual becomes infected. This background of the survival function gives us the

reason to state that the force of infection is equivalent to the initial exponential

growth rate, because the force of infection shows similar characteristics, that we

can identify from Equation 3.1. With this thought in mind, we can now proceed to

discuss the different statistical methods we have considered in order to identify the

exponential phase and how to estimate the initial exponential growth.

3.2 Determining the exponential phase and estimate of ρ

Before estimating ρ, we need to identify what is called the exponential phase.

The exponential phase is a J shaped growth curve that represent the increase of

the number of reported cases over time, until the maximum number of cases is

observed. This phase will end before the curve start rapidly decreasing. Our work

will consider several methods to identify the exponential phase of the 2015-2016 Zika

virus epidemic in Puerto Rico.

3.2.1 Visual method (VM) for exponential phase

In general, if a incidence curve of an epidemic is considered (see Figure 3–

1 for instance), an exponential form of this curve can be noticed. To determine

the exponential phase of the epidemic, the maximum number of cases need to be

identified, which in this case correspond to the time 400, where 1200 cases were

observed. Therefore, the exponential phase will be the region from time 0 to 400,

marked with a double arrow (purple) in Figure 3–2, while the exponential growth

is the green arrow. The orange line represents what it is known, in most cases,

by tpeak, which is the time where the maximum number of cases is observed. To

estimate the initial exponential growth rate, two statistical methods will be used.

First, a linear regression to the logarithm of the cumulative incidence curve will be
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employ considering exponential phase. Second, a Bayesian approach will be perform

taking into consideration the exponential phase and the distribution associated to

the observed data.

Figure 3–1: Example of a incidence curve of an epidemic.

Figure 3–2: Example of a incidence curve of an epidemic with the exponential growth
and phase.
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3.2.2 Favier et al.’s method

The work of Favier et al. [27] evaluated a method of deriving the basic re-

productive number (R0) for vector-borne diseases from the early epidemic curves,

in particular, for vector-borne diseases with incubations in the vectors and in the

hosts. A statistical model will be applied to several dengue epidemics in different

climatic regions of Brazil. In order to estimate R0, the force of infection (initial

exponential growth rate) was linked to the expression of R0.

According to Favier et al., the first step was estimating the force of infection.

The method suggest that the mean number of new cases by unit of time (the day or

the week for instance) needs to be plotted against the cumulative number of cases.

The phase of exponential growth of the cumulative number of cases will be evidenced

by a linear growth of the curve and the slope correspond to the force of infection.

An estimation of the force of infection is computed by a least-square linear fit of

this linear phase. For this, they determined when the exponential phase ends, that

is when the curvature of the curve overtakes the stochastic noise around the initial

linear trend.

To obtain the exponential phase and the estimation of the force of infection,

Favier et al. proceeds with the following steps in accordance with Figure 3–3:

1. The number of cases declared daily is plotted against the total number of hosts

ever infected.

2. Linear fits are performed, each time using one more data point.

3. The evolution of the goodness-of-fit of these linear regressions and of the slope of

the fitted line will be plotted simultaneously. The slope will be the estimation of the

force of infection. In the beginning of process, the slopes fluctuates greatly. In an

intermediate phase, it oscillates around a stationary value, and finally, it decreases

slowly. The best estimation of the force of infection lies in the intermediate phase

and the cut-off of the initial linear phase should lie inside of that phase (or region).
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4. They warned that choosing the minimal goodness-of-fit as a cut-off is not satisfac-

tory, as it lies in the third phase and therefore leads to an underestimation of the

force of infection.

5. The best estimation of the force of infection will lie in the second phase. To obtain

the estimate of the force of infection, the 80th percentile of the slopes left to the

minimum goodness-of-fit.

Figure 3–3: Favier et al.’s methodology. Figure obtained from [27]

This statistical method will be use to obtain the exponential phase and the

estimation of the initial exponential growth rate (ρ) for the 2015-2016 Zika epidemic

in Puerto Rico.
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3.2.3 Chowell et al.’s method

The third method we considered to determine the exponential phase and the

estimation of ρ is proposed by Chowell et al., in [15]. They analyzed the spread

pattern of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily

hospitalizations. They also estimated the reproduction number based on the growth

rate of the exponential pandemic phase. We will use the procedure they performed

in order to determine the initial exponential phase of the Zika outbreak in Puerto

Rico.

In the early stages of an epidemic, when the effect of increasing incidence on the

depletion of susceptibles is small, the growth of the epidemic is exponential in nature,

with rate ρ [2, 27]. For the procedure, they assumed the classical SEIR (susceptible-

exposed-infectious-recovered) transmission model, where the reproduction number

(R0) is determined from

R0 =

(
1 +

ρ

γ

)(
1 +

ρ

κ

)
, (3.9)

where 1/γ and 1/κ are the latent and infectious periods, respectively.

In general, the standard deviation width of an epidemic curve consisting of N

incidence measurements, ydataj , at ti different time points (j = 1, . . . , N) is given by

σt =

√√√√∑N
j=1(tj − t̄)2ydataj∑N

j=1 y
data
j

, (3.10)

where

t̄ =

∑N
j=1 tjy

data
j∑N

j=1 y
data
j

. (3.11)

Chowell et al. suggest that the exponential rise portion of a epidemic curve will

be identified as the incidence data points at the beginning of the epidemic that are

sufficiently many standard deviations away from the time of peak incidence (denoted

by tpeak).
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The exponential rise region is thus the region where

tj < (tpeak − f · σt). (3.12)

In order to determine the optimal cut off value, denoted by f , Chowell et al.

performed exponential rise fits to simulated data incidence curves from an SEIR

(susceptible-exposed-infectious-recovered) model. Therefore, they choose the value

of f that provides unbiased estimates of the true exponential rise. They found that

f = 1. For further details about how the optimal value of f was obtained, see the

suplementary material of reference [15].

The initial exponential growth rate, ρ, can be estimated from the exponential

growth phase of the pandemic, using a Poisson Maximum Likelihood Method, which

is explained in the supplementary document of [15]. Instead of using a Maximum

Likelihood Method, a Bayesian approach will be used as indicated in [12–15, 40].

3.3 Inverse Problem Estimation

A mathematical model of nonlineal differential equations involves a vector of

parameters and initial conditions that allow us to explain (or simulate) the phe-

nomenon under study. If all the parameters and initial conditions associated with

mathematical model are known, then the procedure would be to assign these values

to the model and solve the system of differential equations in order to obtain the

numerical solutions. However, in real situations, there are parameters associated to

the model that are unknown. In this case, is necessary to estimate those parame-

ters or the unknown initial conditions using an available data, leading to an inverse

problem or to estimate the parameters in the model [4, 16]. In order to estimate the

parameters, we need the following components: a mathematical model, a statistical

model, a data set (observed data) and the optimization method [4].

In this section, the Ordinary Least Squares (OLS) and Generalized Least Squares

(GLS) methods will be explained, which were methods implemented to perform the
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optimization process of the parameters in the mathematical model. For an extensive

discussion on linear and generealized linear models and least squares, see [1], [60],

and [37]. For a discussion of inverse problems in epidemiological models see [4], [16],

and [31].

3.3.1 Ordinary Least Squares (OLS) method

Let consider a system of nonlinear ordinary differential equations (in our case,

System 2.9) given by

d~z

dt
= ~g(t, ~z(t), ~θ), (3.13)

where ~θ is the vector of parameters to be estimated and the observational process

is given by

~y(t) = C~z(t; ~θ). (3.14)

A discrete process of the data can be assumed in which N longitudinal obser-

vations are obtained as follows

~y(tj) = C~z(tj; ~θ), j = 1, . . . , N, (3.15)

where C is a m × n matrix that depends on the observed data. In the matrix,

m represent the types of data and n represent the number of state variables in

the model. For our case, m = 1, because we only have one type of data, which

correspond to the weekly incidence for the ZIKV epidemic in Puerto Rico and the

model proposed by Brauer et al. have n = 7 state variables.

In general, the data {yj} is not exactly ~y(tj), j = 1, . . . , N , because by the

characteristic of the problem may produce errors between the observed data and

the predicted data by the mathematical model.

The statistical model, for the case of the Ordinary Least Squares (OLS) method,

is given by

~Yj = ~f(tj; ~θ0) + ~εj, j = 1, . . . , N, (3.16)
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where ~f(tj; ~θ) = C~z(tj; ~θ) for j = 1, . . . , N , will represent the numerical solutions

that can be computed from the mathematical model, at time tj, under the unknown

vector of parameters, ~θ0. In the statistical model, the vector ~θ0 is considered as

the parameters that produced the observed data ~Yj for j = 1, . . . , N . In addition,

the terms ~εj are independent random variables that represent the point-by-point

distances between the predicted data from the mathematical model and the observed

data. This distances can be defined as errors.

Since this point-by-point distances are unknown, it is assumed that εj can be

generated from a probability distribution with mean E(~εj) = 0 and variance given

by

V0 = V ar(~εj) = diag(σ2
0,1, σ

2
0,2, . . . , σ

2
0,m)m×m,

where σ2
0,i are the unknown variances for each type of data, for i = 1, . . . ,m. It can

be drawn that ~Yj is a random variable with E(~Yj) = ~f(tj; ~θ0) and

V ar(~Yj) = diag(σ2
0,1, σ

2
0,2, . . . , σ

2
0,m)m×m,

because ~Yj depends on ~εj, which is a random variable.

Given a set of observations ~Y = (~Y1, ~Y2, . . . , ~YN), the main idea of the OLS

method, is to achieve good estimates by finding the minimizer ~θOLS of the function

JOLS(~θ) =
N∑
j=1

[
~Yj − ~f(tj; ~θ)

]T
V −1

0

[
~Yj − ~f(tj; ~θ)

]
, (3.17)

where ~Yj − ~f(tj; ~θ) = ~εj for j = 1, . . . , N . By doing the appropriate matrix mul-

tiplication on the right side of Equation 3.17, the minimizer ~θOLS, is now given

by

~θOLS(~Y ) = arg min
~θ∈Θ

N∑
j=1

[ m∑
i=1

1

σ2
0,i

(
Yj(tj)− fi(tj; ~θ)

)2]
. (3.18)
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If {~yj}Nj=1 is a the realization of the random process
{
~Yj

}N
j=1

, and solving for

Equation 3.18, we can find the OLS estimate, θ̂OLS, for ~θOLS, given by

θ̂OLS = arg min
~θ∈Θ

N∑
j=1

[ m∑
i=1

1

σ2
0,i

(
yi(tj)− fi(tj; ~θ)

)2]
, (3.19)

By definition of the variance, we can write V0 as

V0 = diag E
( 1

N

N∑
j=1

[
~Yj − ~f(tj; ~θ0)

]
·
[
~Yj − ~f(tj; ~θ0)

]T)
m×m

. (3.20)

For the estimation of θ̂OLS, the matrix V0 (which is unknown) is needed, and

for the estimate of V0, the parameter ~θ0, which is also unknown, are necessary. In

this case, for the computation of ~θ0 and V0, can be use

~θOLS ≈ arg min
~θ∈Θ

N∑
j=1

[ m∑
i=1

1

σ2
0,i

(
yi(tj)− fi(tj; ~θ)

)2]
and

V0 ≈ V̂ = diag
( 1

N − p

N∑
j=1

[
yi(tj)− f(tj; ~θ0)

]
·
[
yi(tj)− f(tj; ~θ0)

]T)
m×m

,

where p is the number of parameters to be optimize and the approximation for V0

is an unbiased estimator. According to Agresti [1] and Cowan [20], when the N

increase, the vector ~θOLS follow an asymptotic property:

θOLS ∼ N(~θ0,Σ
N
0 ), (3.21)

where ΣN
0 is the covariance matrix, which it can be approximated as

ΣN
0 ≈

(
N∑
i=1

χTi (~θ0)V −1
0 χi(~θ0)

)−1

p×p

, (3.22)

where χj(~θ0) is the sensitivity matrix defined as
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χj(~θ) =


∂f1(tj ;~θ)

∂θ1

∂f1(tj ;~θ)

∂θ2
· · · ∂f1(tj ;~θ)

∂θp

...
...

...

∂fm(tj ;~θ)

∂θ1

∂fm(tj ;~θ)

∂θ2
· · · ∂fm(tj ;~θ)

∂θp


m×p

, (3.23)

where j = 1, 2, . . . , N . The sensitivity matrix will describe the variance of the

parameters from the model (p is the number of parameters). Finally, by using the

approximation of V0 and ~θOLS that

θOLS ∼ N(~θ0,Σ
N
0 ) ≈ N(θ̂OLS, Σ̂

N
0 ),

where

Σ̂N
0 =

(
N∑
i=1

χTi (θ̂OLS)V̂ −1χi(θ̂OLS)

)−1

p×p

, (3.24)

and V is the approximation of V0. It is possible to approximate the covariance

matrix as

Σ̂N
0 ≈

(
XT (θ̂OLS)V̂ −1X(θ̂OLS)

)−1

p×p

, (3.25)

where the X(~θ) is a N × p matrix given by

Xi(θ̂) =


∂fi(t1;~θ)
∂θ1

∂fi(t1;~θ)
∂θ2

· · · ∂fi(t1;~θ)
∂θp

...
...

...

∂fi(tN ;~θ)
∂θ1

∂fi(tN ;~θ)
∂θ2

· · · ∂fi(tN ;~θ)
∂θp

 .

As a last procedure, the computation of the standard error for the k-th element

of θ̂OLS can be calculated by the squared root of the (k, k) position of the matrix

ΣN
0 , which is given by

SEk(θ̂OLS) ≈
√

Σ̂k,k(θ̂OLS). (3.26)
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3.3.2 Generalized Least Squares (GLS) method

The OLS method provided in previous section assumed that the variances asso-

ciated with the epidemic observations were longitudinally constant and not depen-

dent on the values of the observations. According to Khan et al. [38], this may not

be a realistic assumption especially if the epidemic data is influenced by a source of

non-constant systematic error such as under-reporting.

It can be assumed that the mathematical model (System 2.9), together with a

particular choice of parameters (θ0) and initial conditions, describes the epidemic

process, but the N observations ~Yj are affected by random deviations from the

process. Therefore, it is assumed that

~Yj = F (tj; ~θ0) + F (tj; ~θ0)ω · ~εj, j = 1, . . . , N, (3.27)

where

F (tj; ~θ0) = diag
(
f1(tj; ~θ0), f2(tj; ~θ0), . . . , fm(tj; ~θ0)

)
.

In our case, since m = 1, then F (tj; ~θ0) = f(tj; ~θ0), which represent the weekly

incidence that can be computed from the solution of the mathematical model, at

time tj, under the unknown vector of parameters, θ0. The errors are assumed to

be independent and identically distributed (i.i.d.) random variables with zero mean

(E(~εj) = 0), representing the deviation of the model predictions from the observed

data, and variance

V0 = V ar(~εj) = diag
(
σ2

0,1, σ
2
0,2, . . . , σ

2
0,N

)
,

where σ2
0,j, for j = 1, 2, . . . , N , are unknown.
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According to these assumptions, the observation mean is equal to model pre-

diction,

E(Ŷj) =



f1(tj; ~θ0)

f2(tj; ~θ0)

...

fm(tj; ~θ0)


m×1

,

while the variance in the observations is a function of the time point, denoted as

V ar(Ŷj) = diag
(
σ2

0,1f1(tj; ~θ), σ
2
0,2f2(tj; ~θ), . . . , σ

2
0,mfm(tj; ~θ)

)
m×m

.

As defined by Cintron et al. in [16], the GLS estimator for a set of observations

~Y = (~Y1, ~Y2, . . . , ~YN) is the solution of the normal equations

N∑
j=1

Wj ·
[
~Yj − f(tj; ~θ)

]T
∇~θf(tj; ~θ) = 0, (3.28)

where the Wj are a set of non-negative weights, assuming m = 1, defined as

Wj =
1

f(tj; ~θ0)2ω
. (3.29)

According to Banks et al. [4], if we assume ω = 1 in Equation 3.29, we have

that the weights are taken to be inversely proportional to the square of the predicted

incidence. On the other hand, if ω = 1
2

then the weights are proportional to the

reciprocal of the predicted incidence. The assumption of ω = 0 leads to the standard

Ordinary Least Squares (OLS) approach as described in previous section.

The rest of the analysis about the GLS method is similar to the method outlined

in the previous section. For more details, we refer the reader to the work presented

by Cintron et al. in [16], Khan et al. [38] and Banks et al. [4].
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3.4 Markov Chain Monte Carlo (MCMC) method

During the twentyfirst century, the use of Markov chain Monte Carlo (MCMC)

method has grown dramatically [75]. This method is useful for estimating pos-

terior distributions under a Bayesian approach. It is a computer-driven sampling

method that allows to characterize a distribution without knowing a precise infor-

mation about the parameter or measure that we intend to estimate. A particular

charactiristic of the MCMC process is that it can be used to draw samples from

distributions even when all that is known about the distribution is how to calculate

the density for various samples [18, 29].

In this project, the MCMC procedure is considered to generate a probability

distribution for the initial exponential growth rate (ρ) and reporting rate (r) of the

2015-2016 Zika epidemic in Puerto Rico. In addition, a Monte Carlo simulation will

also be used such that a sampling from random parameter distributions can produce

a probability distribution for the basic reproductive number (R0) of the epidemic.

In order to understand the process involved in the MCMC method, we have to

analyze two properties: Monte Carlo and Markov chain. According to Gamerman

and Lopes [29] and Ravenzwaaij et al. [75], the “Monte Carlo” is the process of

estimating the properties of a distribution by inspecting random samples from other

distributions. The advantage of the Monte Carlo method is to calculate the mean of a

large sample of values, and this can be much easier than calculating the mean directly

from the distribution equations. This advantage is most marked when random

samples are easy to draw, and when the distribution equations are hard to work

with in other ways [75].

In the other hand, the Markov chain property of MCMC have the idea that the

random samples that are being generated are coming from sequential processes. By

definition, each random sample is used as a stepping to the next random sample,

and this notion created the chain. According to references [18, 29, 75],a special
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characteristic of the chain is that, while each new sample depends on the one before

it, new samples do not depend on any samples before the previous one, and this is

the Markov property.

MCMC is a useful statistical tool in Bayesian inference because of the focus

on posterior distributions [20]. Sometimes, the posterior distribution of a particular

event (or process) is hard to find, and here is when the MCMC is helpful. MCMC

can allow the user to approximate aspects of posterior distributions that cannot be

directly calculated [18, 29, 75].

Bayesian inference uses the information provided by the observed data about

a set of parameters, formally the likelihood, to update the prior state of beliefs

about the set of parameters. The prior state of beliefs should be a guess probability

distribution, according to previous research about possible values or characteristic

of the set of parameters. Formally, the Bayesian inference is linked to the Bayes

rule, which is defined ([20, 51, 62]) as

p(θ|Y ) ∝ p(Y |θ) · p(θ) (3.30)

where θ indicates the set of parameters of interest and Y indicates the observed

data, p(θ|Y ) indicates the posterior distribution or the probability of θ given the

data, p(Y |θ) indicates the likelihood or the probability of the data given the set of

parameters θ, and p(θ) indicates the prior or the a-priori probability of the set of

parameters θ.

The general idea about Bayesian inference is when an analytical expression for

the likelihood is available, it can be combined with the prior information to derive

a posterior distribution analytically [20, 51, 62]. However, if there is not access

to an analytical expression, in Bayesian inference, this problem can be solved by

implementing a MCMC procedure. We can draw a sequence of samples from the

posterior and then examining their mean, range, and other statistical measures.
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Some applications of the MCMC method are: Bayesian model comparison, memory

retention, signal detection theory, extrasensory proccesing trees, risk taking, and

primate decision making [75].

3.4.1 RJAGS Package: Bayesian graphical models using MCMC

In this work, a MCMC procedure (Bayesian approach) will be employ on several

statistical analysis, for example, to estimate the initial exponential growth rate (ρ),

the basic reproductive number (R0) and the reporting rate (r) for the 2015-2016

Zika epidemic in Puerto Rico.

For the simulations through this approach, the R language and environment

for statistical computation and graphics will be use with the “rjags” package. This

package was created by Plummer et al. [56] in 2016, such that the package provides

an interface from R to the JAGS library for Bayesian data analysis. JAGS, defined

as “Just Another Gibbs Sampler” uses MCMC to generate a sequence of dependent

samples from the posterior distribution of the parameters. A previous work pre-

sented by Martyn Plummer in 2013 as also considered, where a JAGS manual helps

the users to understand the basics of modelling with JAGS [54].

It is important to mention that JAGS is a clone of “Bayesian analysis Using

Gibbs Sampling (BUGS)”. According to Casella and George [9], in BUGS and

JAGS, a Gibbs Sampler is used, which is a technique for generating random variables

from a marginal distribution indirectly, without having to calculate the density.

In general, Plummer et al. [56] indicates that the analysis using the “rjags”

package proceeds with the following steps:

1. Define the model using the BUGS language in a separate file.

2. Read in the model file using the jags.model function. This creates an object of

class “jags”.
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3. Update the model using the update method for “jags” objects. This constitutes a

burn-in period.

4. Extract samples from the model object using the coda.samples function. This

creates an object of class “mcmc.list” which can be used to summarize the posterior

distribution. The “coda” package also provides convergence diagnostics to check

that the output is valid for analysis.

For further details, see the R news from 2006 [55], where Plummer and Murell

created a compendium of articles dedicated to Bayesian inference and MCMC sim-

ulation.

3.5 Negative Binomial (NB) distribution

The data used in this work will be linked to the NB distribution in order to

perform some of the statistical analysis such as the estimation of the reporting rate

(r) and initial exponential growth rate (ρ), through a Bayesian approach.

Let {yj} be the weekly incidence data of a Zika epidemic, for j = 1, . . . , N , that

follows a Negative Binomial distribution, with an over-dispersion parameter, φ, and

probability parameter, 0 ≤ p ≤ 1, then

P (yj | φ, p) =
Γ(yj + φ)

yj! · Γ(φ)
pφ(1− p)yj . (3.31)

Assuming that the over-dispersion parameter, φ, is the same for every yj, then the

expected value of each yj is:

E[yj] =
φ(1− p)

p
−→ p =

φ

φ+ E[yj]
. (3.32)

Finally, using y(t) = y0e
ρt and Equation 3.32, the Negative Binomial distribution

(NBD) is written as

P (yj | φ, ρ) =
Γ(yj + φ)

yj! · Γ(φ)

(
φ

φ+ y0eρt

)φ(
y0e

ρt

φ+ y0eρt

)yj
, (3.33)
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where the vector of parameters is given by (φ, ρ)T . If φ→∞, the Negative Binomial

process approaches a Poisson process [62].



CHAPTER 4

ESTIMATION OF R0 THROUGH THE INITIAL

EXPONENTIAL GROWTH RATE

The basic reproductive number (R0) is a threshold condition used to measure

the transmission potential of a disease and it is defined by Anderson and May, in

[2], as the average number of secondary individuals infected by one primary case

in a complete susceptible population. According to Rothman et al. [65], R0 can

be thought as the number of secondary infections produced by a typical case of an

infection in a population that is totally susceptible. It is important to note that R0

is a dimensionless number and not a rate. In general,

R0 ∝
infection

contact
· contact
time

· time

infection
, (4.1)

or

R0 = τ · c̄ · d, (4.2)

where τ is the transmissibility (for example, the probability of infection given con-

tact between a susceptible and infected individual), c̄ is the average rate of contact

between susceptible and infected individuals, and d is the duration of infectiousness

[65]. In terms of vector-borne diseases, the transmission can be given from a vector

to a human when an infected vector is placed into a entirely susceptible human

population, or from a human to a vector, otherwise. We always can identify the R0

of a disease as the product of the R0’s of every way of transmission, depending on

the disease [2, 65].

43
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The basic reproductive number is affected by several factors, such that the rate

of contacts in the host population, the probability of infection being transmitted

during contact, the duration of infectiousness, among others, depending on the dis-

ease and the analysis. Remember that, in general, if R0 > 1, a chain reaction starts,

allowing that the infection invade the susceptible population, leading to a possible

large outbreak, while R0 < 1 means that the disease will produce less than one new

infected individual on average, leading the disease to its disappearance from the

population.

In Subsection 2.3.3, a mathematical model, established by Brauer et al. [7], was

chosen to model the behaviour of Zika virus epidemic in Puerto Rico. For ZIKV,

Towers et al. [72] derived an expression (Equation 2.22) for the basic reproductive

number (R0), depending on the initial exponential growth rate (ρ) of the epidemic,

which is given by

R̂0 = R0sex +

[
(ρ+ αh)(ρ+ γ)

γαh
−R0sex

]
(ρ+ δ)(ρ+ δ + αv)

δ(δ + αv)
. (4.3)

To estimate the probability distribution for R0, a ten thousand Monte Carlo

Iterations [50] will be perform, given the probability distributions of the parameters

in the model (αh, αv, γ, δ), and a probability distribution for ρ and R0sex. For these

parameters, the serial interval for the Zika virus was considered. Towers et al. [72],

stated the serial interval of the Zika virus as the sum of the incubation periods plus

the mean of the infectious periods [69], which is provided by:

T =
1

αh
+

1

αv
+

1

2δ
+

1

2γ
. (4.4)

For the simulations of this work, the time serial interval of 10 to 23 days (or

10/7 to 23/7 weeks, in our case) was used, in accordance to Majumder et al. [46].

From Equation 4.3, it can be noticed that the expression for R0 depends on

different parameters (see Table 2–3 for more details). To estimate R0, distributions
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to those parameters needs to be assigned, taking into account the values from the

literature [12, 13, 15, 24, 27, 30, 40, 67, 72, 76], with an exception of R0sex and ρ.

Currently, there are no estimates of R0sex in the literature. According to Towers et

al. [72], we can assume lack of sustained ZIKV (Zika virus) transmission in areas

free of the Aedes Aegypti vector, then 0 < R0sex < 1. This means that, with only

direct transmission through sexual contact between humans, the epidemic cannot

persist in the population. In this case, we can assume that R0sex ∼ Unif(0, 1).

The other unknown parameter is the initial exponential growth rate, ρ. This

parameter can be estimated from the incidence data and it allows to disregard the

need of values for the transmission rates, βh, βv, and κ, which depends on the

number of infected female mosquitoes bites and the probability of infection given

the contact between the human and the mosquito, which are difficult to estimate. If

the estimation of ρ cames from a Bayesian approach, then the posterior distribution

can be taken as the probability distribution for the Monte Carlo iterations. On the

other hand, for Non-Bayesian approach, the statistical analysis used will not produce

a probability distribution, but it will estimate a single value (point estimate). In

this case, Towers et al. [72] mentioned that it is recommended assign in a normal

distribution around the point estimate, using the standard deviation that resulted

from the estimation.

The probability distributions for αh, αv, γ, and δ were derived from the ranges

that we found on the literature for these epidemiological quantities, by assuming a

Uniform probability distribution over the range. Mahumder et al. [46] estimate the

intrinsic latent period (1/αh) to be in the range 3-12 days, the human infectious

period (1/γ) to be in the range 3-5 days and the extrinsic latent period (1/αv) to

be in the range 4-6 days. On the other hand, Chowell et al. [12, 14] estimated

the average mosquito lifespan (1/δ) to be in the range 6-15 days and Kucharski et
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al. [40] estimated 1/αh ∈ [2, 7] days, 1/γ ∈ [3, 7] days, 1/αv ∈ [10, 15] days, and

1/δ ∈ [10, 20] days.

Table 4–1 shows the probability distributions (in weeks) that were used to

estimate R0 using Monte Carlo simulations, with Equation 4.3. Since the values for

the parameters are measured in days, and our time unit is in weeks, an adequate

conversion was made.

Parameter Probability Distribution Reference

1/αh Unif(2
7
,12

7
) weeks [46] [40]

1/αv Unif(4
7
,15

7
) weeks [46] [40]

1/γ Unif(3
7
,7
7
) weeks [46] [40]

1/δ Unif(6
7
,20

7
) weeks [12] [14] [40]

R0sex Unif(0,1) [72]

1
αh

+ 1
αv

+ 1
2δ

+ 1
2γ

10
7

to 23
7

weeks [46]

ρ N(ρ̂ , ŝ) or Posterior distribution [72]

Table 4–1: Probability distributions for the parameters in the expression of R0

(Equation 2.22).

The simulation consist of sampling (ten thousand iterations) from the proba-

bility distributions of every parameters in Table 4–1, taking into consideration the

time serial interval for the ZIKV, in order to produce a probability distribution for

the basic reproductive number, by using Equation 4.3.

The data set used in this research will be shown as well as the estimation of

the basic reproductive number though the initial exponential growth rate. The

discussion will be presented in two categories, Non-Bayesian and Bayesian, in order

to distinguish between the implementation of the statistical methods presented in

Section 3.2. Before we present the results of ρ and R0, we will start this chapter by
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providing information about the available data for the 2015-2016 Zika epidemic in

Puerto Rico.

4.1 Data set: 2015-2016 Zika epidemic in Puerto Rico

The data used in this work, consist of the weekly number of cases (incidence)

of the Zika virus. The weekly incidence was extracted from the weekly reports

published online [57] by the Puerto Rico Department of Health (PRDH) using a

Plot Digitizer [61]. Since the PRDH did not provided the data set for the Zika cases

per week and only shared weekly reports with graphs, we used the plot digitizer to

extract the data from the graphs, at the same time that a new report was published.

This technique of extraction of raw data is very useful for the exploration of patterns

in a data and to simulate certain phenomena, if the raw data was not accesable, as

in our case. The extraction process was performed using a package in R Project [70].

In Figure 4–1, it can be observed the weekly incidence curve (yellow line) presented

in the last public report provided by the PRDH. In addition, the same graph shows

the weekly incidence for the Chikungunya and Dengue virus, during the same period

of time. The number of cases for those viruses are relatively small in comparison

with the weekly cases reported for the Zika virus.

At the end of 2016, almost 37,500 people got infected, from which 66% of the

cases were females. After the extraction process, with the Plot Digitizer, our data

set consist of 58 observations, from November 2015 to December 2016. The weekly

incidence curve, and cumulative incidence curve that were obtained, are presented

in Figure 4–2 (a) and (b), respectively.
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Figure 4–1: Screenshot: Weekly incidence curve from the last public report of 2016,
by the Puerto Rico Department of Health (PRDH)[57].

Figure 4–2: (a) Weekly incidence curve after the extraction process with the Plot
Digitizer. (b) Weekly cumulative incidence curve using our data set.
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Several statistical models can be used to represent the number of infected in-

dividuals with the Zika virus, but the Poisson distribution and Negative Binomial

distribution are the most common in Epidemiology. In the analysis of infectious

diseases, according to Bettencourt and Ribeiro [5], there are many scenarios where

the use of a Poisson process is adequate as well as the Negative Binomial distribu-

tion. Bettencourt and Ribeiro [5] compared these two statistical models in order to

provide guidelines for others researchers, about which distribution is more adequate,

depending on the problem that you are facing. If the data shows that the mean and

variance are the same, then the Poisson distribution is recommended to model the

number of infected individuals. Otherwise, if the variance is bigger than the mean,

this create an over-dispersion in the data and is better to use the Negative Binomial

distribution.

This comparative is explained in details by Bettencourt and Ribeiro, in the sup-

plementary material of [5]. From [43], we have learned that the Negative Binomial

distribution has many applications, such as the analysis of parasite loads, species

occurrence, parasitoid attacks, abundance samples, spatial clustering of populations

and among others. Lloyd-Smith [43] has explained the importance of running sta-

tistical tests to be sure about what kind of data one is working with.

In recent works [40, 67, 72], we noticed the constant use of the Negative Binomial

distribution as the statistical model not only to account for the number of new

infected individuals (incidence), but also to estimate the initial exponential growth

rate (ρ) of the epidemic and consequently, to estimate the basic reproductive number

(R0), through Equation 2.22. Details about this, in our case, will be provided in

Chapter 5.
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4.1.1 Statistical test: Goodness of fit

Following the advise of Lloyd-Smith [43], we performed a statistical test in order

to decide if the data set we extracted from the weekly report, published by the Puerto

Rico Department of Health, follows a Poisson distribution or a Negative Binomial

distribution. We decided to implement a Goodness of fit test to the observed data

(~Yj for j = 1, 2, . . . , 58), which is the weekly incidence data for the 2015-2016 Zika

virus epidemic in Puerto Rico, as plotted in Figure 4–2.

According to [20, 51, 62], we can use a Goodness-of-fit criteria to select the best

distribution of a data set between a variety of models that we assume could fit the

data. Using the function gofstat(), from the R package “fitdistrplus” [22], we run

the R code assuming that our data can possible follow a Poisson distribution or a

Negative Binomial distribution. The R output is presented in Figure 4–3.

Figure 4–3: R output of the Goodness-of-fit criteria between a Poisson distribution
versus a Negative Binomial distribution.

To understand the results, we studied the meaning behind the Akaike’s Informa-

tion Criteria (AIC) and Bayesian Information Criteria (BIC). For that, we consulted

the references [51, 62], that define AIC as “an estimate of a constant plus the relative

distance between the unknown true likelihood function of the data and the fitted

likelihood function of the model”, so that a lower AIC means a model is considered

to be closer to the truth. On the other hand, BIC is “an estimate of a function of

the posterior probability of a model being true, under a certain Bayesian setup”, so

that a lower BIC means that a model is considered to be more likely to be the true

model. Based on the values for AIC and BIC (see Figure 4–3), the test indicate



51

that our data can be better describe as a Negative Binomial (NB) distribution than

a Poisson distribution. For details about the probability density function of the NB

distribution, see Section 3.5. Now, let start with the estimation of R0 through the

estimate of ρ.

4.2 Estimation of R0 from a Non-Bayesian approach

4.2.1 VM for exponential phase and Linear Regression (LR) for ρ

Previously, in Section 3.2.1, we mentioned that the exponential phase of a epi-

demic is a J shaped growth curve that represent the increase of the number of

reported cases over time, until the maximum number of cases is observed. Then,

the phase will end before the curve start rapidly decreasing. In our case, according

to the graph of the weekly incidence data, presented in Figure 4–2(a) visually, there

are three possible endpoints of the initial exponential phase, identified as the epi-

demiological weeks 32, 35, and 39. These three epidemiological weeks are marked

as blue, green, and red, respectively, in Figure 4–4.

Figure 4–4: Possible endpoints of the exponential phase, visually taken.

Then, we used the cumulative incidence curve presented in Figure 4–2(b), to

estimate the initial exponential growth rate, ρ. For this, we use the logarithm of the
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cumulative incidence to make the data looks linear and to estimate the slope of the

linear regression equation. A useful way to think about the cumulative incidence

(incidence proportion) is that it can be asssociated with a probability of developing a

disease, or getting an infection, over a given period of time; as such, it is an estimate

of risk [2].

Our results consist of three estimates of ρ, one for each endpoint of the expo-

nential phase. The estimate of ρ is the slope of the linear regression equation. This

value is provided by the second coefficient of the summary function after we run the

linear regression in R version 3.3.1, with the function lm(X2 ∼ X1), where X2 is the

vector with the logarithm of the cumulative incidence and X1 is the vector of time

(epidemiological weeks).

Through the method discussed in this subsection, we found that the estimate

for the initial exponential growth rate is ρ̂ = 0.26 weeks−1 [0.23, 0.29] 95% confidence

interval (CI) if week 32 is the end of the exponential rise. If we choose the time

where the maximum number of cases occurs, as the end of the exponential phase

(week 39), then ρ̂ = 0.24 weeks−1 [0.24, 0.26] within a 95% CI.

If we observe Table 4–2 and Figure 4–5, the estimates of ρ are approximated

to each other, no matter what epidemiological week is selected as the exponential

end phase. Moreover, we can notice that the estimates are decreasing as the times

increase. This behavior was pointed out in their work by Favier et al.. A summary

of the results from this method are provided in Table 4–2, showing the estimates

and the corresponding 95% confidence interval of the estimation, and Figure 4–5,

with the output graph from the analysis in R.
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Week ρ̂ (weeks−1) 95%CI

32 0.26 [0.23, 0.29]
35 0.25 [0.23, 0.28]
39 0.24 [0.22, 0.26]

Table 4–2: Estimates of the initial exponential growth rate at week 32, 35, and 39,
respectively.

In this scenario, a Normal distribution around the point estimate of ρ was used,

and the standard deviation was obtained from the summary of the corresponding

linear regression. The standard deviation are 0.0137, 0.0118, and 0.0099, for the

exponential phase ending at week 32, 35, and 39, respectively. In addition, for

R0sex, a Uniform distribution from 0 to 1 was assumed, as defined in [72]. After

the Monte Carlo Iterations, the probability distribution of R0 is presented in Figure

4–6, which is represented by a right-skewed distribution. For the estimated value of

the basic reproductive number, we choose the mean of the probability distribution.

Therefore, for a ZIKV epidemic in Puerto Rico with an exponential phase ending

in the epidemiological week 32, we estimated the basic reproductive number to

be R̄0 = 1.80 [1.40, 2.38] 95% credible region (CR). If the exponential phase ends

at week 39, then R̄0 = 1.72 [1.72, 2.23] 95% CR. For more information about the

resulted mean estimates and probability distributions, see Table 4–3 and Figure 4–6,

respectively.

Week R̄0 95%CR

32 1.80 [1.40, 2.38]
35 1.76 [1.38, 2.31]
39 1.72 [1.36, 2.23]

Table 4–3: Mean estimates of the basic reproductive number (R0) at week 32, 35,
and 39, respectively, by using the Visual method: Linear regression to the logarithm
of the cumulative incidence data.

Since the estimated values of R̂0 are bigger than one, we can certainly confirm

that a Zika virus epidemic occurred in Puerto Rico, no matter when the exponential
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Figure 4–5: Estimates of the initial exponential growth rate by using linear regression
to the logarithm of the cumulative incidence, to week 32, 35, and 39, respectively.
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phase ended. The R0 for the 2013-2014 ZIKV outbreak in French Polynesia was

estimated by Kucharski et al. [40] to be between 2.6 to 4.8, resulting in a statistical

agreement with the estimate of the R0 obtained by Towers et al. [72], R0 = 3.8. In

addition, Gao et al. [30] estimated R0 for the ZIKV epidemic from Colombia, Brazil

and El Salvador, to be 2.055 [0.523, 6.300].
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Figure 4–6: Probability distribution of the basic reproductive number (R0) for ZIKV
outbreak in Puerto Rico, if we use linear regression to the logarithm of the cumulative
incidence, to week 32, 35, and 39, respectively.
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4.2.2 Favier et al.’s method for exponential phase and ρ

For this method, the weekly incidence data against the weekly cumulative in-

cidence is used. Favier et al.’s method [27], which is explained in Subsection 3.2.2,

finds the point where the exponential phase ends, and at the same time, obtain an

estimate for the initial exponential growth rate, ρ. However, Favier et al. used the

term “force of infection” as an equivalent to the initial exponential growth rate of

the epidemic. They performed linear fits, each time using one more data point and

plotting the evolution of the goodness-of-fit of the corresponding linear regressions.

Once we performed the analysis suggested by Favier et al., in [27], with our data

set, we obtained the set of graphs in Figure 4–7.

Figure 4–7: (a) Weekly incidence data against the cumulative incidence data of
Zika epidemic; (b) Evolution of the goodness-of-fit. We used the R-Squared value,
to measure the goodness-of-fit of the linear regression; (c) Evolution of the slopes,
which are the estimates of the force of infection.
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Favier et al.’s method suggests that choosing the end point given by the maxi-

mum goodness-of-fit (we took into consideration the R-Squared value) as an indica-

tor of the end of the exponential phase of the epidemic is not adequate, because it

can produce an underestimation of the force of infection (ρ). For instance, see week

40 (vertical dashed line) on the graph, in Figure 4–7(c), in which the estimate will

be relatively small. In the same graph, we can observe that in the beginning of the

evolution of the slopes, the graph stops fluctuating greatly at the 31st epidemiologi-

cal week, where it oscillates around a value (vertical solid line). The best estimation

of the force of infection comes from the slope of the linear regression equation that

lies between the two regression lines (Figure 4–7(a)). Favier et al. [27] suggest to

consider the 80th percentile of the slopes to the left of the maximum R-Squared

value (Figures 4–7(b) and 4–7(c)), to find a good estimate of ρ. With this infor-

mation, week 40 cannot be the end of the exponential rise, neither week 31 since

in that week the fluctuations stops. We determined, by using the method of Favier

et al. [27], that the estimates of initial exponential growth rate corresponds to an

estimate between the epidemiological weeks 33 and 34. From the same calculation

we did before, using the R Project [70], we determined that the estimates of initial

exponential growth rate is ρ̂ = 0.29 weeks−1 [0.27, 0.35] 95% CI, corresponding to

an estimate between the epidemiological weeks 33 and 34.

Endpoint ρ̄ (weeks−1) 95% CI

Between 33 and 34 0.29 [0.27, 0.35]

Table 4–4: Estimate of the initial exponential growth rate from Favier et al.’s
method.

In this method, we found that the end of the exponential phase lies between

the epidemiological week 33 and 34 with an estimate of ρ̂ = 0.29. After the Monte

Carlo iterations, we have that R̄0 = 1.91 with [1.45, 2.60] 95% CR. The probability

distribution is in Figure 4–8, showing the same shape as before.
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Figure 4–8: Probability distribution of the basic reproductive number (R0) if we use
the method defined by Favier et al. [27] to estimate ρ.

4.3 Estimation of R0 from a Bayesian approach

4.3.1 VM for exponential phase and MCMC for ρ

In this method, we will mix two ideas: (1) The use of the Negative Binomial

distribution, and (2) a Bayesian approach, in order to estimate the initial exponential

growth rate (ρ) of the ZIKV epidemic in Puerto Rico. We take a close attention

to Kucharski et al.’s work in [40], where a Markov Chain Monte Carlo (MCMC)

simulation was performed to calculate the reporting rate (r). Here we used their idea

of MCMC, to obtain a posterior distribution of ρ for the Zika epidemic in Puerto

Rico. In Subsection 4.1.1, we showed that our data seems to follows a Negative

Binomial distribution and the definition of this probability distribution is given by

P (yi | φ, ρ) =
Γ(yi + φ)

yi! · Γ(φ)

(
φ

φ+ y0eρt

)φ(
y0e

ρt

φ+ y0eρt

)yi
, (4.5)

where ρ is the initial exponential growth rate and φ the over-dispersion parame-

ter. To implement this Bayesian approach, we considered Equation 4.5 and prior

distributions for ρ and φ. From the results in [7], also for ZIKV, we can assume a

Uniform(0, 1) distribution as a prior for the initial exponential growth rate (ρ). For
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the over-dispersion parameter (φ), we choose a Uniform(0, 100) prior distribution,

instead of a Uniform(0,∞). The reason of our selection is because of the imple-

mentation procedure of the MCMC in the statistical software R (the next paragraph

will address this). Given that the prior distributions for parameters have been as-

sessed, the next procedure is to combine the likelihood function with priors to make

a Bayesian inference. This allows us to simulate via Markov Chain Monte Carlo

(MCMC) [18, 50, 56], to obtain a posterior distribution of ρ. For purpose of the

simulation, we run 8 replicates of 25,000 iterations, each one with a burn-in period

of 5,000 iterations, using the package “rjags” [56] in the statistical program R. The

MCMC simulation provides a posterior distribution of ρ and φ, by using the current

information about the parameters that comes from the literature.

In order to perform the MCMC procedure in the statistical software R, all the

prior distributions in model (jags model) need to be proper distributions [56]. By

definition, an unnormalized density, f(θ), is proper if
∫
f(θ)dθ <∞, and otherwise

it is improper [18]. In addition, the references [18, 50] indicate the following Theo-

rem: “If the prior is proper and the data is discrete, then the posterior is proper.”

Since our prior distributions for ρ and φ, and the data used satisfy the hypothesis

of the theorem, we can conclude that the posterior distribution will be a proper

distribution.

The results of this method is a posterior distribution for the initial exponen-

tial growth rate (ρ) and over-dispersion parameter (φ), corresponding to the three

possible endpoints of the exponential phase (weeks 32, 35, and 39, respectively).

In Figure 4–9, we can observe the updated information (posterior distribution) of

the initial exponential growth rate, which is approximately normally distributed.

Figure 4–9 can be described as the histogram of every possible estimated value for

the parameter and its frequencies, according to the iterations performed in order to

update the information about the vector of parameters.
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For the estimation of ρ, we selected the mean of the posterior distribution of ρ.

In the case of a exponential phase ending at week 32, we estimated ρ̄ = 0.24 weeks−1

[0.23, 0.26] with a 95% credible region (CR), or ρ̄ = 0.23 weeks−1 [0.22, 0.24] with a

95% credible region (CR) if the exponential rise ends at the epidemiological week 39.

See Table 4–5 for further information about the estimated values of this approach.

Week ρ̄ (weeks−1) 95% Credible Region

32 0.24 [0.23, 0.26]
35 0.24 [0.23, 0.25]
39 0.23 [0.22, 0.24]

Table 4–5: Mean estimate of the initial exponential growth rate at week 32, 35, and
39, respectively.

Figure 4–9: Posterior distributions for the initial exponential growth rate.
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For this method, the estimates for the basic reproductive number are R̄0 = 1.72

[1.37, 2.23] 95% CR, R̄0 = 1.70 [1.35, 2.20] 95% CR, and R̄0 = 1.67 [1.34, 2.15] 95%

CR, corresponding to an exponential phase ending at the epidemiological weeks 32,

35, and 39, respectively. Again, the probability distribution of the basic reproductive

number, given in Figure 4–10, shows a right-skewed distribution.

Week R̄0 95%CR

32 1.72 [1.36, 2.23]
35 1.70 [1.35, 2.19]
39 1.67 [1.34, 2.14]

Table 4–6: Mean estimates of the basic reproductive number (R0) at week 32, 35,
and 39, respectively, by using a Bayesian approach to estimate ρ.
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Figure 4–10: Probability distribution of the basic reproductive number (R0) for
ZIKV outbreak in Puerto Rico, through the Visual Method using a Bayesian ap-
proach.
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4.3.2 Chowell et al.’s method for exponential phase and MCMC for ρ

The exponential growth rate, ρ, can be estimated from the exponential growth

phase of the pandemic, using a Poisson Maximum Likelihood Method, which is

explained in the supplementary document of [15]. Instead of using a Maximum

Likelihood Method, we use a Bayesian approach with the Negative Binomial distri-

bution as indicated in [12–15, 40]. In this case, Chowell et al.’s method will give us

an specific week to where the exponential phase ends.

If ydataj are the weekly incidence of the Zika epidemic in Puerto Rico, at tj time

points, where j = 1, ..., 58, the standard deviation width of the epidemic curve is

given by

σt =

√√√√∑58
j=1(tj − t̄)2ydataj∑58

j=1 y
data
j

, (4.6)

where

t̄ =

∑58
j=1 tjy

data
j∑58

j=1 y
data
j

. (4.7)

The exponential rise portion of the epidemic curve consist of incidence data

points at the beginning of the epidemic that are sufficiently many standards devia-

tions away from the time of peak incidence (denoted by tpeak) [15]. The exponential

rise is thus the region where

tj < (tpeak − f · σt). (4.8)

According to Zika weekly incidence data, the tpeak occur in the epidemiological

week 39. Thus, by using R, an estimate of the values from Equation 4.6 and Equation

4.7 can be calculated. We only need to identify the value of f that provides unbiased

estimates of the true exponential rise. As Chowell et al. found on their work, we

also determined that f ≥ 1, which means, that the exponential phase of the Zika

epidemic in Puerto Rico, consist of data points that are one standard deviation away

from the epidemic peak. We also run the mathematical model, System 2.9, to ensure
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that the process coincide with the results from our data set. From the calculations

with Equation 4.8, assuming f = 1, we found that the exponential phase ends in

the epidemiological week 31.

From Chowell et al.’s method and the MCMC process, we found that the es-

timate of the initial exponential growth rate is given by the mean of the posterior

distribution, presented in Figure 4–11, while Table 4–7 shows the estimate of ρ and

the 95% CR. We determined that ρ̄ = 0.24 weeks−1 [0.23, 0.26] 95% CR. The esti-

mate for the basic reproductive number is R̄0 = 1.73 with [1.37, 2.24] 95% CR. The

probability distribution for R0 is in Figure 4–12.

Figure 4–11: Posterior distribution for the initial exponential growth rate at week
31, by using Chowell et al.’s method.

Time peak Endpoint ρ̄ (weeks−1) 95% CR

39 31 0.24 [0.23, 0.26]

Table 4–7: Mean estimate of the initial exponential growth rate at week 31 by using
a Bayesian approach.
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Figure 4–12: Probability distribution of the basic reproductive number (R0), using
Chowell et al.’s method.

4.4 Discussion

The purpose of this chapter was on the estimation of the basic reproductive

number (R0) taking into consideration the initial exponential growth rate of the

2015-2016 Zika epidemic in Puerto Rico, where two different approaches were taken:

Non-Bayesian and Bayesian. Figure 4–13 shows a summary of the estimates for

the exponential growth rate (ρ) according to the methods discussed in this chapter,

while Figure 4–14 shows a summary of the estimates for basic reproductive number,

based on the initial exponential growth rate of the 2015-2016 ZIKV epidemic in

Puerto Rico.

Figure 4–13: Summary of the estimates for the exponential growth rate.



67

Figure 4–14: Summary of the estimates for basic reproductive number (R0).

At this point, we noticed that the estimates from the Visual Method provides

similar estimates for each endpoint of the exponential phase. However, the method

defined by Favier et al. is the method that estimated the highest value for the initial

exponential growth rate and R0. In addition, the estimates of ρ, from Chowell et

al.’s method, seems to be similar to the estimates from Visual Method, especially if

the exponential phase ends in week 35 or 39.

The estimates obtained in this chapter, for the basic reproductive number,

ranged from 1.67 to 1.91, where the maximum estimated value is provided by the

Favier et al.’s method, while the minimum is provided by the Visual method when

a Bayesian approach was applied to the exponential phase ending in the epidemio-

logical week 39.

Since the Zika virus is an emergent disease in Puerto Rico, our estimates of

ρ, as we know, can be the first estimate of the basic reproductive number of the

ZIKV epidemic in Puerto Rico. Because of few studies about the ZIKV during the

time of this work, the Bayesian approach seems to be the best scheme to follow

because it enables the researcher to update their belief about the parameters in the

mathematical model, by using the available data provided by the health agencies.



CHAPTER 5

ESTIMATION OF R0 THROUGH THE

INVERSE PROBLEM ESTIMATION

In this chapter, the scenario of the under-reporting problem and estimate of the

appropriate reporting rate, r, for the 2015-2016 ZIKV epidemic in Puerto Rico, will

be discuss before the estimation of R0 through the the inverse problem estimation.

The Zika virus is mostly asymptomatic, and according to the World Health

Organization [77], the symptoms are typically mild even upon clinical presentation,

with a very similar diagnosis to that of Dengue and Chikungunya virus. The ZIKV

is not only transmitted by mosquitoes but also from human to human, for example:

through sexual transmission, blood transfusion and mother-to-fetus. In Chapter 1,

we briefly discussed the concern about the connection between the Zika virus with

the increased risk of the Guillan-Barré syndrome and neonate Microcephaly [26],

and in addition, in most of the cases, pregnant women may not even know that they

have the virus. On the other hand, since the symptoms of the ZIKV are mild, some

people prefer not to seek medical assistance.

According to the discussion from previous paragraph, about asymptomatic cases

and infected people that are not seeking medical assistance, we can conclude that

our Zika weekly incidence data may just be a fraction of the true number of infected

people in Puerto Rico. Fauci and Morens [26] confirmed that there exist a high rate

of asymptomatic infection. An estimated 80% of persons infected with Zika virus

are asymptomatic [24, 48, 53]. In the work of Kucharski et al. [40], the number of

infected individuals who reported their symptoms is estimated to be in the range

68



69

of 7% and 17% of the total number infected by the virus. This situation about non

counted cases is called the under-reporting problem.

We considered previous results about reporting rates, in particular the works

by Kucharski et al. [40] and Shutt et al. [67], to use a Bayesian approach, in order

to estimate the reporting rate, r. As we discussed in Subsection 4.1.1, our weekly

incidence data follows a Negative Binomial distribution. Since the reporting rate

(r) of the incidence data represent a fraction of the true incidence data (that is

reported by health organizations), we can rewrite Equation 4.5 for the probability

distribution as follow:

P (yj | φ, ρ) =
Γ(yj + φ)

yj! · Γ(φ)

(
φ

φ+ r · y0eρt

)φ(
r · y0e

ρt

φ+ r · y0eρt

)yj
, (5.1)

where yj is the observed data (Zika weekly incidence data at time i), ρ the initial

exponential growth rate, φ the over dispersion parameter, r represent the reporting

rate, and y0 is the number of cases reported at time t = 0.

After running the mathematical model in System 2.9 and the resulted simu-

lated incidence is plotted against the Zika weekly incidence data from Puerto Rico,

we obtained the graph presented in Figure 5–1. It can be observe that the Zika

weekly incidence data (black dots) is a small fraction of the predicted curve by the

model (red line). The model in System 2.9 was performed by considering the total

population of Puerto Rico (3.7 million [19]) as the initial condition (S0) of the sus-

ceptible population (Sh). Since at the beginning of an infection, no one is already

recovered, the initial number of recovered human is set to zero at time t = 0 (or

Rh(0) = 0). On the other hand, Ih(0) will be the initial number of infected people.

We assumed Ih(0) = 1, which is, according to the data, the first human case detected

in November 2015. For the compartment for mosquitoes population, we assumed a

total of 8.3 million susceptible mosquitoes (which is approximately 2.24 mosquitoes
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per human [67]) and 2.24 infected mosquitoes, at time t = 0. Therefore, to run the

mathematical model, we used the vector of initial conditions that are given by:

[Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0)] = [3699999, 0, 1, 0, 8287997.76, 0, 2.24],

(5.2)

where Sh(0)+Eh(0)+Ih(0)+Rh(0) = 3700000 and Sv(0)+Ev(0)+Iv(0) = 8288000.

On the other hand, for the parameters in the model, we used the mean value of

the probability distributions and results provided by Kucharski et al. in [40]. Table

5–1 shows the mean value of the probability distributions for the transmission rates,

incubation periods, infectious period, and mosquito lifespan, in which Kucharski et

al. assigned a Gamma distribution according to their literature review. First, the

mean value of the probability distribution defined by Kucharski et al. will be use to

run the mathematical model and to estimate the parameters. Later in this chapter,

a discussion about the probability distributions of each parameter will be presented.

For the human-to-human transmission rate (κ), we assumed a value according to the

work presented by Towers et al. [72], in which a transmission rate between humans

correspond to a low value in comparison with βv and βh.

Parameter Baseline (weeks−1) [40, 72] Range (weeks−1) [40, 72]
αv 0.67 [0.58 - 3.50]
αh 1.19 [0.47 - 1.75]
γ 1.40 [1.00 - 2.33]
δ 0.90 [0.35 - 1.17]
βv 1.45 [0.70 - 14.00]
βh 4.85 [0.70 - 16.80]
κ 0.39 [0.007 - 0.70]

Table 5–1: Chosen values for the vector of parameters, to run the mathematical
model in System 2.9.

The vector of parameters we used, in weeks−1, to run the model, is given by:

[αv, αh, γ, δ, βv, βh, κ] = [0.67, 1.19, 1.40, 0.90, 1.45, 4.85, 0.39] (5.3)
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Figure 5–1: The red line represent the time series for the weekly incidence as cal-
culated by the mathematical model in System 2.9 and the black dots are the Zika
weekly incidence reported by Puerto Rico Department of Health (our data set).

The intention with this chapter is to calculate the reporting rate in order to

obtain a better fit of the mathematical model incidence curve to the available data.

The analysis on this chapter is divided in three sections. First, a Markov Chain

Monte Carlo (MCMC) simulation will be perform to generate a posterior distribution

of the reporting rate, knowing that the Zika weekly incidence data follows a Negative

Binomial distribution, as described in Subsection 4.1.1. In the second section, we

will estimate the transmission rates βh and κ, from the mathematical model (System

2.9), that provide the best fit of the simulated data to the observed data (ZIKV

weekly incidence in Puerto Rico), by performing an optimization process.
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Finally, a sampling process will be use to generate a probability distribution for

the basic reproductive number, by using the expression for R0 given by

R0 = R0vector +R0sex

= βvβh
αv

δγ(αv + δ)
+
κ

γ
,

(5.4)

where the parameters are presented in Table 5–1.

5.1 Estimation of the Reporting Rate

A Markov Chain Monte Carlo (MCMC) simulation to obtain the posterior

distribution of the reporting rate, r, according to Kucharski et al. [40], we can

assume a Unif(0,1) distribution as a prior for r. Since the reporting rate can be

interpreted as a ratio between the observed data (Zika weekly incidence data) and

the predicted incidence data (from System 2.9), then the estimate of r will range

between 0 and 1. From Figure 5–1, we can observe that the weekly incidence values

in our data set are lower than the predicted values. For the MCMC simulation, we

run 8 replicates of 25000 iterations, each one with a burn-in period of 5,000 iterations

by using “rjags” package [56] from the statistical software R [70]. The results of this

process are presented in Figure 5–2, which is an output from the statistical software

R [70] and the posterior distribution for the reporting rate is in Figure 5–3.

From the output in Figure 5–2, we can conclude that the weekly incidence data

for the ZIKV epidemic in Puerto Rico represent approximately 2% [1.7%, 2.3%] of

the true incidence data set from the simulation of the mathematical model. Now,

by taking 0.02 times the predicted data and plotting it against the observed data

(our data set), we obtained the graph presented in Figure 5–4. The estimated value

for the reporting rate can be extracted from the posterior distribution, presented in

Figure 5–3, by taking the mean of the histogram. The mean correspond to the value

r = 0.02.
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Figure 5–2: Output from the statistical software R showing the mean estimate of
the reporting rate for the Zika weekly incidence data from Puerto Rico.

A simple way to approximate the reporting rate (or confirmed ratio as defined by

Towers et al. [71]) is by taking the sum of the observed data (Zika weekly incidence

data in Puerto Rico) and divide it by the sum of the predicted incidence data. We

know, from Section 4.1, that in Puerto Rico we had a total of 37,500 infected people

(with ZIKV) at the end of 2016, while the predicted incidence curve indicates a total

of 3,313,279 infected people. Then, by computing the division between 37,500 and

3,313,279, we obtained 0.011 as a point estimate for the reporting rate or confirmed

ratio. This latest computation help us to support the procedure performed by the

MCMC simulation, even when the curves shows a gap between them. It is important

to remark that multiply the estimated reporting rate by the predicted incidence data

is not an optimization process and it does not achieve any fitted curve.

It is important to mention that the current section is yet under study , and

therefore, needs a more deeper analysis. In consequent, the fitting procedure will be

performed using the partial results of the reporting rate.
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Figure 5–3: Posterior distribution of the reporting rate.

Figure 5–4: Incidence curves after we adjust using the estimate of the reporting rate
(2%). Red line is the adjusted simulated data and the black dots are the observed
data from Puerto Rico.
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5.2 Fitting the parameters of an SEIR/SEI model to the ZIKV data

In this section, we cover the estimation of the transmission rates βh and κ,

by using the observed data and a predicted data that will be produced from the

mathematical model (System 2.9). Since our data set, as presented in Section 4.1,

correspond to weekly incidence, the predicted data also needs to be the same type of

data. In order to obtain the predicted weekly incidence data, from the mathematical

model in System 2.9, f(tj; ~θ) (note that these predictions depend on the model

parameters and initial conditions), we needed to add a new ordinary differential

equation that help us to keep the count of the weekly cumulative incidence for the

ZIKV epidemic in Puerto Rico, and eventually to compute f(tj; ~θ).

The new ordinary differential equation is given by

dC

dt
= αhEh(t), (5.5)

which it was added only as part of the simulation in the statistical software R [70],

but is not part of the mathametical model as defined by Brauer et al. [7]. Therefore,

the predicted values can be computed by the difference between the cumulative

incidence in week j and the cumulative incidence at week j − 1,

f(tj; ~θ) = C(j)− C(j − 1). (5.6)

In most of the cases, the Ordinary Least Squares (OLS) scheme is employed

assuming that the variances associated with the epidemic observations were longi-

tudinally constant and not dependent on the values of the observations [38]. Also,

according to Khan et al. [38], it is known that the assumption of constant variance

may not be realistic, because the epidemic data could be influenced by a particular

event, such an under-reporting process as described in [38].
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In our case, we have the under-reporting problem that it is affecting the count

of infected people with the Zika virus, leading us to choose the Generalized Least

Squares (GLS) method as the optimization process, to estimate κ and βh, and reject

the implementation of the OLS method. Later in this section, a residual analysis

from both methods (OLS and GLS) will be presented, to confirm our choice. For

information about OLS and GLS methods, see Chapter 3.

According to Banks et al. [4] and Cintron et al. [16], the implementation of the

GLS method requires the definition of a weight that will be included as part of the

minimization process. In order to estimate the parameters through this method, we

need to minimize the square of the point-by-point distances between the predicted

values and the observed data.

As defined by Cintron et al. in [16] (see Chapter 3), the GLS estimator for a

set of observations ~Y = (~Y1, ~Y2, . . . , ~YN) is the solution of the normal equations

N∑
j=1

Wj ·
[
~Yj − f(tj; ~θ)

]T
∇~θf(tj; ~θ) = 0, (5.7)

where the Wj defined for our optimization process are a set of non-negative weights

(assuming ω = 1/2 in Equation 3.29), are given by:

Wj =
1

f(tj; ~θ)
. (5.8)

As part of the optimization process, we need to define the vector of fixed pa-

rameters, which is given by

[αv, αh, γ, δ, βv] = [0.67, 1.19, 1.40, 0.90, 1.45], (5.9)

the vector of parameters to optimize, given by

θ = [βh, κ]T , (5.10)
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and the vector of initial conditions, given by

[Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0)] = [3699999, 0, 1, 0, 8287997.76, 0, 2.24].

(5.11)

Since the observation process is affected by the under-reporting problem, the

GLS method will be considered as the first attempt to estimate the parameters in

θ, we performed the GLS method, by using the same vector of initial conditions as

presented in Equation 5.11, but we noticed that our estimates did not converge to

a reasonable values according to the literature, and shows some biological disagree-

ments, for example, negative values for the parameters or estimates out of range.

This results comes when we tried to optimize the vector of parameters θ = (βh, κ)T .

After several subsequent tries in the optimization, we finally noticed that the prob-

lem was in the initial number of susceptible human. This problem was pointed by

Shutt et al. [67], when they said that simulations performed by using the entire

country population as the number of initially susceptible humans mischaracterized

the disease dynamics, leading to over estimates in the final size of an epidemic. We

compared our graphs to those presented in their work, and they obtained similar

graphs to our plot in Figure 5–1, where the observed values are lower than the pre-

dicted values by the model. We tried to truncate the observed data, to change the

baseline for the parameters to optimize, shifted the initial conditions, and even con-

sidering those scenarios, always obtained estimates that are not reasonable according

to the epidemiological interpretation.

The next attempt was to reduce the initial susceptible population by taking the

product of our estimate of the reporting rate (r̂ = 0.02) with the total population of

Puerto Rico (3.7 million), obtaining 74,000 people. After running the optimization

process, we solved the problem about negative estimates and we fix the problem

of estimates out of range, but the fitted curve was not explaining the dynamics

adequately.
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Following the idea presented by Shutt et al. in [67], they suggest to estimate

the number of people that is needed to be in Sh(0) such that the convergence oc-

curs without any biological (or mathematical) disagreements. They assumed that

Dengue and Zika occur in the same areas, sharing a common vector and with similar

asymptomatic rates. This assumption lead them to the calculation of a reasonable

population value rather than fitting the initial susceptible population to the data as

a parameter. They calculated the at-risk population size per country for a Zika out-

break based on historical data for dengue, but we addressed this issue in a different

way. In the work presented by Cintron et al. [16], they performed a statistical anal-

ysis (OLS and GLS method) that includes the initial susceptible population (Sh(0))

as another parameter to optimize, but here in this work, a similar approach to those

presented by Cintron et al. [16] was employed, to estimate the transmission rates

βh and κ. The most intrigue questions about this optimization process was: Why

we did not get reasonable estimates by using the total population of Puerto Rico as

the initial susceptible population? What is the biological explanation for this? Or

there is a mathematical problem involved here? and why we cannot achieve a good

fitted curve?

The solution of this analysis (the optimization process) took us some time to

solve. Since the optimization achieve convergence with a low value for Sh(0), but we

do not know how low this value needs to be, we prefer to define a new parameter, ψ,

which will allow us to measure the proportion of people that needed to be included

in the model to obtain the best fitted curve. But, this new parameter need to be

linked with the mathematical model in a biological sense.

In a work presented by Shresta et al. [66] in November 2017, they suggest that

the reason that some people infected with Zika do not come down with the disease is

due to prior exposure to Dengue. According to Lalita et al. [59], the ZIKV shares a

high degree of sequence and structural homology compared with other flaviviruses,
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including Dengue virus (DENV), resulting in immunological cross-reactivity. This

might be the answer to explain why the susceptible population cannot be equal

to the Puerto Rico total population. According to the Center of Disease Control

(CDC), Puerto Rico has faced various epidemic dengue activities since 1963 [11],

and in accordance with Shresta et al. [66], the prior exposure to Dengue would

reduce the number of people that are vulnerable (or not immune) to the Zika virus,

allowing us to select a lower value for the initial condition Sh(0).

In addition to the work presented by Shresta et al. [66], we also reviewed other

articles that widely discuss about the cross-reactivity between Dengue and Zika, and

some studies about the development of a vaccine that will target both viruses, ZIKV

and DENV. See references [17, 32, 52, 58, 59, 63, 66] for further information.

After considering this new information, we made a few changes. Now, for the

optimization process, the vector of parameters is given by:

θ = [βh, κ, ψ]T , (5.12)

and the vector of initial conditions will be similar to those in Equation 5.11, but

now we have that the susceptible compartments will be given by

Sh(0) = 3700000 · ψ

Sv(0) = 2.24 · Sh(0)

(5.13)

where ψ is parameter to optimize, and it will be in charge of measuring the propor-

tion of people that are not immune, which is, the people that did not had a previous

exposure to either of both viruses, ZIKV and DENV.
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The optimization process was implemented by using a direct search method, in

our case, we decided to choose the Nelder-Mead simplex algorithm, as recommended

by Cintron et al. [16]. We used the function optim() in R and the argument

“method” was defined to be the Nelder-Mead algorithm.

The baseline and estimates for each parameters in θ are presented in Table

5–2. The implementation of the GLS method in R, through the optim() function,

gives the option to obtain the information of the Hessian matrix. Since we are

performing a minimization process, then the covariance matrix of the estimates

will be approximate (asymptotically) to the inverse of the Hessian matrix [1]. The

standard errors are the square roots of the diagonal elements of the covariance

matrix. To compute the confidence intervals for the estimates, θ̂GLS, the normal

confidence intervals (Wald confidence intervals) will be use, that are based on the

asymptotic normality of the parameter estimators [1].

The 95% confidence interval for θ̂GLS is given by

θ̂GLS ± Z0.975 · ŜE(θ̂GLS)

After the iterations were completed, we found that the GLS estimates for the

transmission rates, in weeks−1, are β̂h = 2.85 [2.65, 3.04] 95% CI, κ̂ = 0.63 [0.53, 0.73]

95% CI and the proportion of non-immune population was estimated to be ψ̂ =

0.0140 [0.0138, 0.0142] 95% CI.

Parameter Baseline [67, 72] θ̂GLS Standard Error
βh 4.85 2.85 0.0984
κ 0.39 0.63 0.0479
ψ 1 0.0140 0.0001

Table 5–2: GLS estimates of the transmission rates (weeks−1) and the proportion
of non-immune population, from the mathematical model with vector and sexual
transmission.
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According to Table 5–2, ψ̂ = 0.0140, therefore, by using Equation 5.13, we

estimated that

Ŝh(0) = 3700000 · 0.0140 = 51800

and

Ŝv(0) = 2.24 · 51800 = 116032.

Then, the vector of initial conditions is given by

[Ŝh(0), Eh(0), Ih(0), Rh(0), Ŝv(0), Ev(0), Iv(0)] = [51799, 0, 1, 0, 116029.8, 0, 2.24]. (5.14)

The mathematical model (System 2.9) will be run again, by using the GLS

estimates, θ̂GLS, provided in Table 5–2, with the rest of parameters in Equation

5.9. Since the third parameter in θ̂GLS correspond to the proportion of non-immune

population, these value will cause an effect in the vector of initial conditions, allowing

to estimate a value for Sh(0).

Finally, we have all of the necessary tools to produce the best fitted curve to

the observed data. In Figure 5–5, you will observe the predicted weekly incidence

curve that best fit the observed data, through the Generalized Least Squares (GLS)

method as an optimization process, for the unknown parameters in the mathematical

model (βh, κ).

In addition, a residuals analysis was performed to ensure that the selection

of the GLS method is appropriate. Figure 5–6 shows the residuals obtained from

the OLS method while Figure 5–7 presents the residuals through the GLS method.

According to Agresti [1], if the residuals plot shows a random pattern, it suggests

that the model fits the data well. On the other hand, if a non-random pattern

is evident in the residuals, then the model fits the data poorly. In this case, the

residuals from the OLS method displays a non-random structure, indicating that

OLS method is not the correct model to explain the data. From this analysis, we

support the choice we made about GLS method as the optimization procedure.
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Figure 5–5: The red line indicate the best fitted curve, while the black dots represents
the observed data (weekly incidence data) for 2015-2016 Zika epidemic in Puerto
Rico.

The next step is to use the GLS estimates, θ̂GLS, provided in Table 5–2, with

the rest of parameters in Equation 5.9, to compute the basic reproductive number

(R0) for the 2015-2016 ZIKV epidemic in Puerto Rico, by using Equation 2.10. We

found that

R0 = R0vector +R0sex

= 1.40 + 0.45

= 1.85,

(5.15)

which is similar to those estimates of R0 from previous chapter. According 5.15, we

can support that the Zika virus will not produce an epidemic if the only transmission

is from human to human, and this is because R0sex < 1. On the other hand, if the

only transmission is through the vector, an epidemic will occur because we found

that R0vector > 1. In general, we can say that in average, one infected individual

can produce an approximate of two more infected people.
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Figure 5–6: Residual plots for the Zika incidence data through the OLS method.
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Figure 5–7: Residual plots for the Zika incidence data through the GLS method.
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5.3 Estimation of R0

The last analysis of this work is a sampling process, to generate a probability

distribution of the basic reproductive number (R0), by using distributions of the

parameters in the mathematical model, which is a similar procedure as presented in

Chapter 5. From the work of Kucharski et al. [40], Shutt et al. [67], and Towers

et al. [72], three scenarios for the probability distributions of the parameters can

be extracted. First, a Uniform distribution is used taking into consideration the

range of values of each parameter. In the second scenario, a Gamma distribution is

generated, also by considering the range of values of the parameters. Finally, a Log-

Normal distribution is selected, where the mean is the logarithm of the baseline value

presented in Table 5–1. In the three scenarios, the transmission rates have a Normal

distribution, where GLS estimates of βh and κ are the means of the distributions

and we used their respective standard errors for the standard deviations. For the

probability distribution of βv, the baseline vale is chosen, from Table 5–1, as the mean

and a standard deviation of 0.1, defined accordingly to the other resulted standard

error from the GLS method. A summary for the three scenarios are presented in

Figure 5–8.

The sampling process need to obey the constraint that the serial interval derived

from the sampled parameters had to be within the observed serial interval of 10 to

23 days, or 10/7 to 23/7 weeks, in our case [46]. After the 10,000 iterations, the

probability distribution of R0model for each scenario are presented in Figure 5–9,

where the mean, median, and credible interval are computed.

If the descriptive statistics included in Figure 5–9 is observed, we can conclude

that the scenario A and B throw similar results, but are quite far from the estimated

values from previous chapter. From this two scenarios, the resulted estimates for

the basic reproductive number are R̄0 = 2.67 [1.09, 6.28] and R̄0 = 2.67 [1.02,

5.86], respectively. The last scenario results on a estimate of R̄0 = 1.85 [1.51, 2.23],
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which is similar with the results of previous chapter. It is clear that these scheme

of plugging and playing with the parameters distribution needs to be considered in

a more deeper analysis, but it will be leave as a future work.
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Figure 5–8: Probability distribution for the parameters in the mathematical model
from System 2.9. Three different scenarios for the simulation were considered (A, B
and C).
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Figure 5–9: Probability distribution of the basic reproductive number (R0model).
The distributions comes from the sampling process, following the three parameter
scenarios from Figure 5–8. In these scenarios (A, B and C), the transmission rates
follows a Normal distribution, while the parameters αv, δ and γ follows different
distributions: (A) Uniform distribution, (B) Gamma distribution, and (C) Log-
Normal distribution.



CHAPTER 6

CONCLUSION AND FUTURE WORK

Every time that an infectious disease is impacting a population, several analysis

need to be performed in order to understand the behavior of the disease, so we

can be able to control it and eventually, eradicate it from the population. One

of those analysis is the estimation of the basic reproductive number (R0), which

is used to measure the transmission potential of a disease, properly defined as the

average number of secondary infections produced by a typical case of an infection

in a population that is totally susceptible [65].

The mission of this work was on the estimation of the basic reproduction number

(R0) by various methods including the initial exponential growth rate (ρ), consid-

ering the Zika outbreak occurred in Puerto Rico from November 2015 to December

2016. Since the Zika virus was an emergent disease in the island, our estimates, as we

know, are the first estimates of this epidemiological parameters. In order to obtain

the estimates of ρ and R0, a mathematical model of ordinary differential equations

was adopted, provided by Brauer et al. [7] and the expression for R0 comes from

the analysis of Towers et al. [72]. The principal contribution of this work is the

estimate of the initial exponential growth rate and the basic reproductive number

through a Bayesian approach, for the Zika outbreak in Puerto Rico, assuming that

the weekly incidence data follows a Negative Binomial distribution.

From the different analysis in this work, a summary of the estimates are pre-

sented in Table 6–1, according to the methods covered. In addition, we have proved

89



90

that our data set represent only the 2% of the true incidence data, by analyzing the

reporting rate, also through a Bayesian approach.

According to the statistical methods that we employed to estimate ρ and R0,

the method stablished by Favier et al. [27] is recommended to select the exponential

phase of a epidemic, while the Bayesian approach leads to a more precised estimation

of ρ. The estimates for the initial exponential growth rate ranged from 0.23 to 0.29

(see Chapter 4). For the 2015 Zika oubtreak in Barranquilla, Colombia, Towers et

al. [72] estimated ρ to be 0.071 [0.055,0.089] days−1 (or 0.497 weeks−1). In the

2013-14 Zika oubtreak ocurred in French Polynesia, Kucharski et al. [40] estimated

this parameter to be around the values 0.075 and 0.20 weeks−1 (see [40] to know the

estimates for each region of French Polynesia).

The estimates for the basic reproductive number ranged from 1.67 to 1.91,

considering an expression for R0 in terms of ρ, where the discussion of each procedure

are presented in Chapter 4. The estimates of R0 through a Inverse Problem ranged

between 1.51 and 2.23, which is the scenario where a Log-Normal distribution was

assigned to αv, δ and γ, and a Normal distribution for βh, βv and κ. The Zika

outbreak in Colombia was estimated to be 3.8 [2.4, 5.6] 95% CI, while the median

estimates from the regions in French Polynesia ranged from 2.6 to 4.8.

For future works, it will be appropriate to re-estimate the values of the initial

exponential growth rate (ρ) and the basic reproductive number (R0), by using a real

weekly incidence data, which are the data from Puerto Rico Department of Health,

instead of using approximations as we used on this work. Since the scenario of a

cross-reactivity (or cross-protection) between the Dengue and Zika virus is something

that has been in study recently, a deeper analysis of a mathematical model that

includes this information is highly recommended. Therefore, a new computation of

the R0 will be necessary, considering real data and a more complete dynamic model
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about the Zika virus in Puerto Rico or other populations, where Zika and Dengue

were circulating simultaneously.
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Figure 6–1: A summary of the resulted estimates from this work. The rows identified
by Visual, Favier, and Chowell were the methods used for the estimation of R0,
with and without the initial exponential growth rate (ρ). In the Inverse Problem
Estimation, the estimates of R0 comes from the sampling process, following the
three parameter scenarios from Figure 5–8. In these scenarios (A, B and C), the
transmission rates follows a Normal distribution, while the parameters αv, δ and γ
follows different distributions: (A) Uniform distribution, (B) Gamma distribution,
and (C) Log-Normal distribution.
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