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ABSTRACT

This dissertation is focused on understanding the absorption and scattering effects of
solid materials in the near infrared (NIR) spectral region and their impact on the prediction
errors observed in NIR calibration models developed using partial least squares (PLS)
regressions. Four different studies were performed using three experimental settings with

four levels of heterogeneity of the materials.

The first study consisted in the use of polypropylene films varying the number of layers
stacked together which provided a system with reduced heterogeneity. NIR spectra were
acquired using two experimental setups with the integrating sphere module of a Fourier
transform NIR (FT-NIR) spectrometer. The depth of penetration of the radiation into the
polymer layers was estimated using the O-H stretching mode related to first and second
overtones of talc, which ranged from 2.95 to 3.12 mm. PLS models were developed using 30
film layers and bias values were not significantly different from zero at the 95% confidence
level. Seven spectral regions were evaluated using different spectral preprocessing, the
results showed that optical sampling is unbiased and there is an absence of systematic error
by the NIR method. A calibration model using 50 film layers was also evaluated and it
presented high statistical errors and bias due the depth of penetration of NIR radiation (optical
sampling). This study highlights the lack of systematic error in the NIR method as long as

the calibration is representative of the variation to be modelled by PLS regression.

A second study was performed using two polymer films (polypropylene and
polyethylene) with similar thickness to vary the heterogeneity of the samples and to evaluate
the prediction errors observed in PLS models due to light scattering. Two FT-NIR were used

to acquire the spectra of the samples. The spectra from the first instrument was used to



develop the calibration models. NIR spectra from both instruments obtained on three days
chosen at random order were used as prediction set to evaluate the linearity and
reproducibility of the calibration model. Calibration models were developed based on
polyethylene percent content varying the placement and composition below the infinite depth
of the radiation. The results based on ANOVA of the predictions shown that PLS models
using second derivative as preprocessing in the spectral region of 6500 — 5000 cm provided
low residual values with no statistical differences on both instruments. This study provides a
straightforward and economic analytical method to test the linearity and reproducibility of

two FT-NIR instruments using low heterogeneous polymer films.

The third study was developed for real time determination of drug concentration,
powder density, and porosity of powder blends at low active pharmaceutical ingredient (API)
concentration (3.00 %w/w) within a feed frame. The feed frame provides the most
representative stage for measurement of API before the final process. However, changes in
the materials’ physical properties (e.g. powder density, particle size, flowability, and
cohesivity) have a significant effect on NIR spectra. Therefore, this represents a challenge in
the development of the calibration model. NIR calibration models using second derivative as
spectral preprocessing explained the changes in API concentration, bulk density, and porosity

of the powder blends with low error and bias values.

The fourth study shows an applied case in a commercial manufacturing plant in Puerto
Rico. Tablets with a combination medicine with two APIs at low concentration were
analyzed by PLS regression models for real time release testing (RTRt) in a continuous
manufacturing (CM) process. This study provides a better understanding of changes in the

manufacturing process and their impact in the predictions of NIR calibration, furthermore,



the evaluation serves for the improvement of control strategies in the manufacturing of a drug

product.



RESUMEN

Esta disertacion estd enfocada en la comprension de los efectos de absorcion y
dispersion de materiales sdlidos en la region espectral de infrarrojo cercano y su impacto en
los errores de prediccion observados en modelos de calibracion de infrarrojo cercano
desarrollados usando regresion de minimos cuadrados parciales. Cuatro estudios diferentes
fueron realizados usando tres montajes experimentales con cuatro niveles de heterogeneidad

de los materiales.

El primer estudio consistid en el uso de peliculas de polipropileno variando el nimero
de capas apiladas juntas lo cual proporciond un sistema con heterogeneidad reducida. Los
espectros de infrarrojo cercano fueron adquiridos usando dos montajes experimentales con
el médulo de esfera integradora de un espectrémetro de infrarrojo cercano con transformada
de Fourier. La profundidad de penetracion de la radiacion dentro de las capas de polimeros
fue estimada usando el modo de estiramiento O-H relacionado al primer y segundo sobretono
de talco, la cual varié en un rango de 2.95 a 3.12 mm. Modelos de minimos cuadrados
parciales fueron desarrollados usando 30 capas de peliculas y los valores de sesgo no fueron
significativamente diferentes de cero al 95% de nivel de confianza. Siete regiones espectrales
fueron evaluadas usando diferentes preprocesamientos espectrales, los resultados mostraron
que el muestreo Optico es sin sesgo y hay una ausencia de error sistematico por el método de
infrarrojo cercano. Un modelo de calibracion utilizando 50 capas de peliculas fue también
evaluado y presentd altos errores estadisticos y sesgo debido a la penetracion de la radiacion
de infrarrojo cercano (muestreo optico). Este estudio destaca la falta de error sistematico en
el método de infrarrojo cercano siempre y cuando la calibracion es representativa de la

variacion que va a ser modelada por la regresion de minimos cuadrados parciales.
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Un segundo estudio fue realizado usando dos filmes poliméricos (polipropileno y
polietileno) con espesor similar para variar la heterogeneidad de las muestras y evaluar los
errores de prediccion observados en regresion de minimos cuadrados parciales debido a la
dispersion de la luz. Dos espectrometros de infrarrojo cercano con transformada de Fourier
fueron usados para adquirir los espectros de las muestras. Los espectros del primer
instrumento fueron usados para desarrollar los modelos de calibraciéon. Espectros de
infrarrojo cercano de ambos instrumentos obtenidos en tres dias escogidos en orden aleatorio
fueron usados como set de prediccion para evaluar la linealidad y reproducibilidad del
modelo de calibracion. Los modelos de calibracion fueron desarrollados basados en el
contenido porcentual de polietileno variando la posicién y composicion por debajo de la
penetracion infinita de la radiacion. Los resultados basados en ANOVA de las predicciones
muestran que los modelos de regresion de minimos cuadrados parciales usando segunda
derivada como pretratamiento en la region espectral de 6500 — 5000 cm™ provey6 bajos
valores de residuales sin diferencia estadistica en ambos instrumentos. Este estudio provee
un método analitico econémico y sencillo para probar la linealidad y reproducibilidad de dos
espectrometros de infrarrojo cercano con transformada de Fourier usando filmes poliméricos

con baja heterogeneidad.

El tercer estudio fue desarrollado para la determinacion de concentracion de droga en
tiempo real, densidad de polvo y la porosidad de mezclas en polvo a baja concentracion del
ingrediente activo farmaceéutico (3.00 %w/w) dentro de un marco de alimentacion. EI marco
de alimentacion proporciona la etapa mas representativa para la medicion de ingrediente
activo farmaceutico antes del proceso final. Sin embargo, cambios en propiedades fisicas de

los materiales debido al proceso (densidad de polvo, tamafio de particula, fluidez, y
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cohesividad) tienen un efecto significativo en los espectros de infrarrojo cercano. Por lo tanto,
esto representa un reto en el desarrollo del modelo de calibracion. Modelos de calibracion de
infrarrojo cercano usando segunda derivada como preprocesamiento espectral explicaron
cambios en ingrediente activo farmacéutico, densidad aparente y porosidad de las mezclas

en polvo con bajos valores de error y sesgo.

El cuarto estudio muestra un caso aplicado en una planta de manufactura comercial en
Puerto Rico. Tabletas con una combinacion de medicinas de dos ingredientes activos
farmacéuticos a baja concentracion fueron analizados por modelos de regresién de minimos
cuadrados parciales para las pruebas de liberacion en tiempo real in un proceso de
manufactura continua. Este estudio proporciona un mejor entendimiento de los cambios en
los procesos de manufactura y su impacto en las predicciones de calibraciones de infrarrojo
cercano, y la evaluacién sirve para el mejoramiento de estrategias de control en la

manufactura de un producto de droga.
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CHAPTER 1: INTRODUCTION

1.1. MOTIVATION AND JUSTIFICATION

Near infrared (NIR) spectroscopy is considered one of the most suitable and fast
method for sensing of organic materials in areas such as pharmaceutical manufacturing,
agricultural science, medical diagnostics, material science, astronomical spectroscopy,
among others, because it is a non-destructive technigue. In NIR spectroscopy most of the
absorption phenomenon involves vibrations from the stretching and bending of hydrogen
atoms associated with carbon, nitrogen, and oxygen atoms. The progress in NIR spectroscopy
is due to the fast evolution of instrumentation for diffuse reflectance and its combination with
chemometric methods. However, there are factors that have an impact in NIR calibrations as
sources of error and need to be minimized by the experimental method. The knowledge of
the sources of error in a NIR calibration and how they can be controlled (or minimized) is
important to facilitate the evaluation of the materials’ properties, processing, or analytical

method without undesired disturbances that affect the analysis.

The purpose of this research is the evaluation of prediction errors in near infrared (NIR)
calibration models by performing three studies using solid materials with different
heterogeneity. CHAPTER 1 presents a brief introduction of NIR spectroscopy and the
chemometric methods used in this dissertation. For a detailed explanation of the terms, the

reader is cited to the specific references.

Chapter 2 shows the first study which consisted in the use of a low heterogeneous
material. A polymer film provided a system with reduced heterogeneity to evaluate the

impact on prediction errors in partial least squares (PLS) models due to absorption and



scattering effects, spectral preprocessing, and number of calibration and validation samples.
This evaluation serves to understand NIR calibration models without errors due to

heterogeneity of the sample and to estimate the minimal error of the NIR method.

Chapter 3 shows a variation of the first chapter using two different polymer materials
(polypropylene and polyethylene) with similar thickness to evaluate the prediction errors due
to light scattering into the samples. Two FT-NIR instruments were used to acquire the spectra
using mix of polymer films below the infinite depth to avoid sampling errors due the depth
of penetration of the NIR radiation. Linearity and reproducibility on both FT-NIR
instruments were tested by analyzing the PLS predictions of samples acquired at three
random days. This study provides a straightforward and economic analytical method to test
the linearity and reproducibility of two FT-NIR instruments using low heterogeneous

polymer films.

Chapter 4 describes a NIR method for real time prediction of powder blends at low
concentration of active pharmaceutical ingredient (API) 3.00% w/w, within a feed frame
which it is the most representative stage for measurement of API before the final process.
This concentration level is challenging for the NIR method; however, is not impossible as
long as the heterogeneity of the materials, and the manufacturing process does not present
the major source of prediction errors. This study provides a method for evaluation of critical
properties within the feed frame such as tablet mass, hardness and dissolution in batch and

continuous manufacturing processes.

Chapter 5 shows an applied case for tablets with a combination medicine of two APIs
at low concentration within a commercial manufacturing plant in Puerto Rico for real time

release testing (RTRt) in a continuous manufacturing (CM) process where the heterogeneity
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is critical for sensing of the materials. The development of the method follows the technical
requirements of United States Food and Drug Administration (US-FDA), the guidelines of
the International Conference on Harmonisation (ICH). This study provides a better
understanding of changes in manufacturing process and the impact in the predictions of the
NIR calibration. Also, this evaluation serves for the improvement of control strategies in the

manufacturing of a drug product.

1.2. FUNDAMENTAL BACKGROUND

2.3.1. Near infrared spectroscopy

This dissertation presents several applications of near infrared (NIR) spectroscopy to
understand the interaction of the radiation with heterogeneous materials and their effects in
the errors observed in chemometrics models. NIR spectroscopy methods have gained the
interest of many areas for real time analysis of materials. Research in areas such as chemical
composition and production of foods and fibers in agriculture (Batten, 1998), quality control
for cosmetic preparations (Blanco, Alcala, Planells, & Mulero, 2007), non-invasive medical
devices for research and clinical studies of biological tissue (Torricelli et al., 2014),
pharmaceutical industry for manufacturing of drug products (Vargas et al., 2018), prediction
of polymer composition (Furukawa, Watari, Siesler, & Ozaki, 2003; Rohe, Becker, Koélle,
Eisenreich, & Eyerer, 1999; Sulub & DeRudder, 2013), among others have done a gradual
substitution of conservative analytical techniques such as Gas Chromatography (GC), High
Performance Liquid Chromatography (HPLC), Mass Spectrometry (MS), Nuclear magnetic

resonance (NMR), and Ultraviolet and visible (UV-Vis) absorption spectroscopy. An



increasing demand of NIR spectroscopy methods has been seen because this is a non-
destructive technique, it is also environmentally compatible because it does not generate
waste, and with respect to conservative techniques it is a non-time-consuming method, in

other words, a real-time in situ technique (Siesler, 2007).

Despite the potential of NIR spectroscopy, there are some chief disadvantages that
make the technique complex. The disadvantages are instrumentation response, dependence
of the calibration method, NIR spectral data preprocessing, sampling procedures, high
sensitivity to environmental conditions and low sensitivity to minor constituents, and the
physics of diffuse reflectance (Norris, 1989). However, the development of the NIR
instrumentation and the combination with chemometrics make possible the use of NIR

spectroscopy methodologies for fast analysis of materials.

This chapter will briefly review basic concepts of Near Infrared Spectroscopy and
chemometrics. However, the references to scientific articles and books related to the topics

will be addressed for a deep understanding.

1.2.2. Basic principles of molecular vibrations

The near infrared (NIR) region is complementary to the fundamental vibrations
observed in Mid infrared (MIR) and Raman. Table 1 shows a short comparative summary
between NIR, MIR, and Raman. For more detailed information the reader is referred to the
following literature (D. J. Dahm & Dahm, 2001; Miller, 2001; Norris, 1989; Siesler, 2007,

Workman & Weyer, 2012). The three techniques are different in several aspects; however,



their basic principle is the same: the signals observed in Raman, MIR, and NIR are a result

of the molecular vibrations due to the interaction of radiation with the molecules.

Table 1. Principles of Raman, MIR, and NIR spectroscopy. From (Siesler, 2007).

Raman Mid infrared Near infrared
Fundamental vibrations Fundamental vibrations Overtones and combinations
4000 — 50 cm 4000 — 200 cm* 14000 — 4000 cm'?
Scattering technique Absorption techniques
Source: Sources:
Monochromatic radiation (Dispersed) Polychromatic radiation
Laser VIS-NIR Globar tungsten
Polarizability Dipole moment Anharmonicity
Polar, mz « my
Hzmor‘c‘:‘f'gar . Pogfo C-H/O-H/N-H
9 &= 9 &= m2: H; mi: C, O, N.

The vibrational energy is calculated using the harmonic oscillator model by the view
of oscillation of atoms in a molecule attached by a bond like a spring following the equation
(1-1):

h |k
E=— |- (1-1)
2wl U
Where E: is the energy of the molecular vibration, h: is Planck’s constant, and p is the

reduced mass given by the equation (1-2):

mim,

h=— (1-2)

m1+m2

mz: the mass of atom 1, and m»: the mass of the atom 2.
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Equations 1 and 2 shows that energy of molecular vibrations is very sensitive to the

structure, and this is the wide application of MIR in structure elucidation.

The potential energy of the vibrating system (V) at any given time is a quadratic
function of the displacement of the atoms involved in the vibration following Hooke’s law,

which is shown in Figure 1 and given by the equation (1-3):

V= %kx2 = %k(r - 1,)? (1-3)

Where V: is the potential energy of the vibrating system, k: is the force constant of the
bond (also named restoring force), x: represents the displacement of the atoms from the
equilibrium position (displacement coordinate), r: is the internuclear distance during the

vibration, and re: is the equilibrium internuclear distance.

From equation 1 and 3, the vibrational frequency of the system (vo) is given by the

equation (1-4):

v-l k 1-4
0= 5n P (1-4)
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Figure 1. Representation of the harmonic oscillator model. Potential energy (V) vs internuclear
distance during the vibration. From (Miller, 2001).

The vibrational energy has discrete values that are calculated by a quantum mechanical

treatment by the Schrodinger equation, and these values are given by the equation (1-5):
1
E =hvo(n + E) (1-5)

Where h is Planck’s constant, vo is the vibrational frequency defined in equation 4, and

n is the vibrational quantum number that can only have integer values (0, 1, 2, 3, ...).

Diatomic molecules are useful to demonstrate and explain the concept of vibrational

energy; however, real molecules have more than two atoms and their vibrations are more



complex. Furthermore, NIR vibrational spectroscopy relies on nonidealities of the harmonic
oscillator (Miller, 2001). The potential energy curve for NIR vibrations follow an asymmetric

Morse function represented in Figure 2.
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Figure 2. Representation of the anharmonic oscillator model. Potential energy (V) vs internuclear

distance during vibration. From (Miller, 2001).

The existence of NIR vibrational spectroscopy relies on two main deviations of the

harmonic oscillator model:

1. Mechanical anharmonicity: most of the real molecules present anharmonic vibrations

rather than harmonic.



2. Electrical anharmonicity: the dipole moment for a couple of atoms in a molecule, is

not exactly a function of interatomic distance.

For in depth reading of this subject these authors have extensive review: (D. J. Dahm
& Dahm, 2001; Norris, 1989; Siesler, 2007). From Figure 2, there are three important points

to mention that are consequence of anharmonicity and make NIR spectroscopy possible:

1. Overtones: these molecular vibrations are a result of the transition from a vibration
number higher than one, for example n=0 to n=2, 3, ..., and so on.

2. Combinations: this mode of vibration involves two or more different vibrations from
absorption of a single photon; they must have the same symmetry and must involve
the same functional group.

3. The separation levels of the transitions are not equally separate, as the harmonic

oscillator.

The frequency of the overtone vibrations is approximately equal to integer numbers of
the fundamental vibrations. The combination bands are approximately the sum of frequencies
that makes the combination. Figure 3 shows an example of two fundamental vibrations for
a methylene (-CH>-) group, their overtone frequencies, and the combination band. As show
in figure 3, the frequency of the overtones are integer values of the fundamental vibrations.
However, the frequency value is smaller because the anharmonicity and the point three (3)

mentioned before.



The methylene (-CH,-) group

I5" Qvertone sym. Stretch
2nd Qvertone sym. Stretch

(5740 cm'! theory)
(8610 cm™! theory)

Two vibrations - same symmetry:

(2870 cm™)
(1460 cm™)
(4310 cm'! theory)

Symmetry stretch
Bending
Combination band

The vibrations must involve the same
functional group and have the same
symmetry.

/

CH Symmetric stretch CH, Bending
(2870 cm™?)

(1460 cm™)

.o" ..‘
it

Figure 3. Representation of two fundamental vibrations of methylene group. Geometry
representation, frequency, overtones, and combination bands. From (Miller, 2001).

1.2.3. NIR spectral acquisition

Near infrared spectroscopy is a technique with a wide usage in several analytical areas

because it is a non-destructive, fast and it is sensitive to chemical and physical variation in

the sample. However, due to sensitivity to physical changes it is necessary to use a correct

sensor that can detect the desired variation to analyze without loss of information or

undesired disturbances. Figure 4 shows four of the most used setups for sample measurement

in NIR spectroscopy. The first setup (Figure 4a) is for measurement in liquid samples in

transmission mode; in this mode is used approximately 1 — 2 mL of the sample in a cell. The

second setup (Figure 4b) is the mode of diffuse reflectance using the solid probe for solids.

The third setup (Figure 4c) is the mode of diffuse reflectance using the integrating sphere

module for solids. The fourth setup (Figure 4c) is the transmission mode for solids such as

tablets.
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Transmission in liquids

)

Diffuse reflectance, solid probe

Figure 4. Representation of four used sample measurements in NIR spectroscopy. a) Transmission
in liquids. b) Diffuse reflectance using a NIR probe. ¢) Diffuse reflectance using a integrating sphere
module. d) Transmission in solids. Instrument images from Bruker optics.

1.2.4. Multivariate data analysis

Multivariate data analysis was used in all studies described in this dissertation. In this
section the basic concepts of multivariate data analysis in the chemometrics field with NIR
spectroscopy are addressed. For a comprehensive explanation of the topics, the reader is cited
to the following references: (Beebe, Pell, & Seasholtz, 1998; Kim H Esbensen, Guyot,
Westad, & Houmoller, 2002; Mark & Workman Jr, 2010; Nas, Isaksson, Fearn, & Davies,

2002).

Most of the data from science is multivariate and depends on several variables.
Calibration is a mathematical model to relate an instrument response as output from a
property of a sample (Beebe et al., 1998), If the instrument response used for construction
of the calibration is only one per each property of the sample, the calibration is univariate.

However, there are many cases where the combination of multiple instrument responses with

11



the property of the sample provide better results; this is a multivariate calibration (Nees et al.,

2002).

The use of multivariate analysis with statistical and mathematical procedures to extract
information of chemical (or physical) data to solve problems that are not easily resolved with
univariate analysis, lead to the creation of Chemometrics (Kim H Esbensen et al., 2002; Nas
et al., 2002). Some of the most used methods of multivariate calibration are Principal
Component Analysis (PCA) and Partial Least Squares (PLS). However, multivariate data can
be complex; this is because the response of the instrument depends not only in the property
of the sample to be modelled but also the noise part that is “everything else” (contributions
from other components, instrumental noise, analytical errors (Kim H Esbensen et al., 2002).
There are a diverse number of factors that can produce an unknown source of variation,
Figure 5 shows some of the most common variations in NIR spectral data. There are additive
effects that cause a baseline variation in the spectra; multiplicative effects that cause
variations in the intensity of the spectral bands; and combinations of additive and
multiplicative effects is the most common variation observed because they are presented
randomly in the data (Kohler, Zimonja, Segtnan, & Martens, 2009). The instrument variation
in spectral acquisition is another source of variation that affects the data. Sideways shifts
affect the peak position of the instrument response of the sample. Random noise
heteroscedasticity, i.e. high instrument response (e.g. high absorbance) tend to have high
uncertainty that small instrument response. Response curvature depends on the concentration
of the sample, if the concentration is high, the detector will be saturated and it will not be

possible to observe a correct band intensity (Kohler et al., 2009).
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Figure 5. Representation of the most common variations in NIR spectra. a) Additive effects, b)
multiplicative effects, ¢) combination of additive and multiplicative effects, d) sideways shift, e)
random noise, and f) response curvature. From (Kohler et al., 2009).

NIR spectra provides information on the chemical composition of the samples and
physical properties; however, there are diverse sources of irrelevant information of the
spectra that affect the data analysis (Norris, 1989). Prior to data analysis it is necessary to
remove or reduce irrelevant source of information, this is the data preprocessing step. This
need has been called one of the six habits of the chemometrician (Beebe et al., 1998). Some
of the basic data preprocessing methods are smoothing, Standard Normal Variate (SNV),

derivatives, and a combination of these methods.

1.2.4.1.  Savitzky-Golay smoothing

Savitzky-Golay smoothing method was used in this research to reduce noise by

applying a moving polynomial function to the data. This function is created using a specific
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number of points (this number of points must be odd and >5) and creating a sub-model that
smoothes the original data. This preprocessing does not remove baseline or spectral slope in

the spectra (Savitzky & Golay, 1964).

1.2.4.2.  Standard normal variate

The preprocessing standard normal variate (SNV) was applied to raw spectra acquired
in the studies of this dissertation to normalize the set of spectra. This preprocessing is used
to reduce multiplicative, baseline, and wavelength shifts (Cao, 2013). SNV performs a
normalization of the spectra reducing scattering effects due to packing heterogeneity or path-
length variations. Also, it improves instrument transferability (Cao, 2013). SNV
preprocessing applies a subtraction of the mean and divide with the standard deviation

(Barnes, Dhanoa, & Lister, 1989). Equation (1-6) shows the SNV preprocessing given by:

SNV = % (1-6)
n-—1

where x represents the absorbance of the sample at the specific wavenumber, and i represents

the average of all absorbances of the sample.

Figure 6 shows an example of how it works the SNV pretreatment on the spectra with a real
case using a commercial refined sugar (sucrose) obtained from supermarkets. The granules
of sugar were grinded manually in a mortar to obtain fine particles of this material. NIR
spectra of powder samples based on grinded granules (grinded sugar) and powder samples

from raw material (refined sugar) were acquired using the solid probe of the FT-NIR
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instrument. The difference of these materials is the particle size; grinded sugar had lower
particle size than refined sugar due the result of grinding the raw granules in a mortar. The
NIR spectra of grinded sugar had a lower baseline than the spectra of refined sugar because
more radiation reach the detector due that there is more reflected radiation by the particles
(Figure 6a). After SNV pretreatment (Figure 6b) the spectra of grinded sugar and refined
sugar presented a similar baseline with changes in some parts due to the absorption of the
material and the wavenumber of the radiation. However, this pretreatment reduces the
difference due to the baseline and it allows to evaluate the difference in absorbance of the

materials.
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Figure 6. Representation of the SNV pretreatment with NIR spectra of sugar fine and ground sugar.

a) NIR spectra without pretreatment, b) SVN spectra.

1.2.4.3.  Derivatives Savitzky-Golay

The derivatives (first and second derivative) were the most used preprocessing methods

in this dissertation to evaluate the spectra and to perform NIR calibrations. Derivatives are

functions utilized to reduce scatter effects of continuous spectra using the polynomial

Savitzky-Golay smooth (Savitzky & Golay, 1964). The first derivative preprocessing is

usually used to reduce additive baseline ("offset™), where the second derivative preprocessing
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also involves removal of linear baseline. Similar to how the Savitzky-Golay smoothing
works, the derivatives generate a new function that depends on the number of points used

(Nes et al., 2002).

Figure 7 shows an example of how it works the first derivative pretreatment for a set of NIR
spectra using the solid probe of the FT-NIR instrument of powder blends with three
components at different concentration levels. Figure 7a shows the NIR spectra of particulate
materials such as powder blends which presented differences in spectral baseline due to the
complex interaction of particles with different size and composition. Additionally, the NIR
spectra of each powder blend presented differences in the absorption bands due to
concentration of the materials; for this case is acetaminophen (APAP), lactose (lac), and
microcrystalline cellulose (MCC). After first derivative pretreatment (Figure 7b) the
differences in spectral baseline were minimized and it is possible to observe their differences

in absorption bands due to concentration of the components.
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Figure 7. Representation of the first derivative pretreatment with NIR spectra of powder blends at
several levels of acetaminophen (APAP), lactose (Lac), and microcrystalline cellulose (MCC)
concentration. a) NIR spectra without pretreatment, b) first derivative spectra.

Combination of preprocessing techniques such as SNV + first or second derivatives,
are used as methods for scatter correction to reduce the physical variability such as particle
size between samples and adjustment for baseline shift over the long period of data collection

(Cao, 2013).
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The most common methods of multivariate calibration are Principal Components
Analysis (PCA), Principal Components Regression (PCR), and Partial Least Squares (PLS).
A brief description of these methods are presented; however, it is recommended to read these

references: (Beebe et al., 1998; Kim H Esbensen et al., 2002; Nees et al., 2002).

1.2.4.4.  Principal Components Analysis

Principal Component Analysis (PCA) was utilized in this dissertation as projection
method which provided an interpretable overview of the main multidimensional data matrix.
PCA takes information carried by the original variables and projects them onto a smaller
number of latent variables called Principal Components (PC). Each PC explains a certain
amount of the total information contained in the original data and the first PC contains the
greatest source of information in the data set. Each subsequent PC contains, in order, less
information than the previous one. By plotting PCs, important sample and variable
interrelationships can be revealed, leading to the interpretation of certain sample groupings,
similarities or differences (Beebe et al., 1998; Kim H Esbensen et al., 2002; Nas et al., 2002).
Figure 8 shows a graphical description of a PCA., and corresponding scores plots in two and
three dimensions. Each NIR spectra contains the absorption at each wavenumber (variable),
making it a vector for each sample. After performing the PCA, the number of variables is
reduced to a small number (called the PC). The scores (dots in the new space) represent the
projection of the original variables into the new space. In this case the first source of variation

Is the concentration level starting at 70% LC and finalizing at 130% LC.
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Figure 8. Graphical description of a PCA, and corresponding scores plots. Left: variable 1, variable
2, and variable 3 (X-variables). Right: (PC1 and PC2).

PCA can be used to reveal the hidden structure within large data sets. It provides a
visual representation of the relationships between the samples and variables, and it provides
insights into how measured variables cause some samples to be similar, or how they differ
between them. Figure 9 shows an example of the use of a PCA with the compressibility
profile of two lactose powders with different particle size within a FT4 powder rheometer.
Lactose 70 (blue triangles) presents higher particle size than lactose 140 (orange boxes). As
exploratory data analysis, using all the NIR spectra shows two cluster groups related to the
particle size of the two powders (Figure 9a). After divide the datasets by particle size and
process, the PCA shows the variation based on the compressibility of the powders within the

FT4 (Figure 9b).
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Figure 9. PCA of two datasets for two powder blends of lactose with two particle size within a
compressibility profile in a FT4 powder rheometer. a) Lactose 70 (blue triangles) presents higher
particle size than lactose 140 (orange boxes). b) Compressibility profile at 0, 1, 2, 3, 6, 9, 12, and 15
kilo Pascal.

1.2.45.  Multiple Linear Regression
Multiple linear regression (MLR), is a classical regression method that combines a set
of several predictor or X-variables in linear combinations, which correlate as closely as
possible to a corresponding single response or Y-vector (Beebe et al., 1998; Kim H Esbensen

etal., 2002; Nas et al., 2002).
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MLR has the following properties and behavior:

. The number of X-variables must be smaller than the number of samples;

. In case of collinearity among X-variables, the b-coefficients are not reliable, and the

model may be unstable;

. MLR tends to overfit when noisy data is used.

1.2.4.6.  Principal Component Regression

Principal Component Regression (PCR), is a method for relating the variance in a
response variable (Y-variable) to the variance of several predictors (X-variables), with
explanatory or predictive purposes. It is a two-step procedure which first decomposes an X-
matrix by PCA, then fits an MLR model, using the PC scores instead of the original X-

variables as predictors (Beebe et al., 1998; Kim H Esbensen et al., 2002; Nas et al., 2002).

This method performs particularly well when the various X-variables express common
information, i.e. when there is a large amount of correlation, or even collinearity. Since the
scores are orthogonal, the MLR solution is stable and therefore the PCR model does not
suffer from collinearity effects. It is the belief of some data analysis scientists that PCR is
superior to PLS since it forces analysts to better understand their data and its preprocessing
(transformations) before the application of a regression procedure (Beebe et al., 1998; Kim

H Esbensen et al., 2002; Nas et al., 2002).
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1.2.4.7. Partial Least Squares

Partial Least Squares (PLS) Regression, also sometimes referred to as Projection to
Latent Structures or just PLS was the method for multivariate calibration used in the studies
described in this dissertation to obtain a relationship of the spectra (X-variables) and the
properties (Y-variables) to model. PLS models both the X- and Y-matrices simultaneously
to find the latent (or hidden) variables in X that will best predict the latent variables in Y.
These PLS components are similar to principal components but will be referred to as factors

(Beebe et al., 1998; Kim H Esbensen et al., 2002; Nas et al., 2002).

PLS maximizes the covariance between X and Y data. In this case, convergence of the
system to a minimum residual error is often achieved in fewer factors than using PCR. This
contrasts with PCR, which first performs PCA on X and then regresses the scores (T) vs. the

Y data (Beebe et al., 1998; Kim H Esbensen et al., 2002; Nas et al., 2002).

1.2.4.8.  Statistical Evaluation of the results and validation
The performance of the multivariate calibration method used was evaluated in terms of
the following statistical parameters: bias, standard deviation, Root Mean Square Error of
Prediction (RMSEP), and Relative Standard Error of Prediction, RSEP (%) (Beebe et al.,

1998; Kim H Esbensen et al., 2002; Nas et al., 2002).

The bias is the average difference between the predicted and measured values for the

validation set, is a measure of the accuracy, expressed by equation (1-7):

Yic Pi—yi)
n

bias = (1-7)
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Where ¥; and y; are, respectively, the predicted and measured values of sample i of
the n samples in the validation set. A model that is not representative of the validation set

will lead to significant bias.

The RMSEP is the average prediction error calculated by equation (1-8):
n O:—:)2
RMSEP = |H=0” (1-8)

If both calibration and validation sets are representative of future prediction errors, the
RMSEP should be a good estimation for future predictions. High RMSEP values could be an
indication of a lack of accuracy and/or precision. However, a high RMSEP does not
necessarily mean a poor method; if the samples are highly heterogeneous, the accuracy and

precision will be affected.

The Relative Standard Error of Prediction, RSEP (%), is a measure of the error in
comparison with the measured values in the validation set, and is calculated by equation (1-
9):

Yii-vi)?
?:1(371')2

RSEP(%) = 100 X (1-9)
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CHAPTER 2: STUDY OF NIR CHEMOMETRIC MODELS WITH LOW
HETEROGENEITY FILMS. THE ROLE OF SAMPLING AND SPECTRAL

PREPROCESSING ON PLS ERRORS

Based on the Work Published in: Journal of Near Infrared Spectroscopy 25(2), 2017, 103—
115.

Carlos Ortega-Zufiiga, Kerimar Reyes-Maldonado, Rafael Méndez and Rodolfo J Romafiach.
This chapter is not an exact copy of the published paper. It contains original information.

2.1. INTRODUCTION

This work was performed to investigate the effect of depth of penetration, scattering and
absorption of NIR radiation on the errors observed in reflectance measurements with PLS
calibration models. The understanding of systematic and random errors is extremely
important in NIR spectroscopy, and in all the analytical methods available to chemists who
provide valuable information to society. However, NIR spectroscopy is subject to a number
of errors associated with the fact that the samples analyzed are usually solids, with significant
scattering. The sources of error are different than in an HPLC method where samples are
dissolved, filtered, and centrifuged. Thus, the importance of investigating the effect of depth

of penetration and scattering on quantitative PLS measurements.

Sampling errors also affect the quality of data reported by analytical chemists. According to
the Theory of Sampling (TOS), the combined sampling errors are one or two orders of
magnitude higher than analytical errors, therefore, the quality of the data is almost entirely
dependent upon proper sampling practices..Kim H. Esbensen & Geladi, 2010; Kim H.
Esbensen & Paasch-Mortensen, 2010; Petersen, Minkkinen, & Esbensen, 2005) TOS also
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indicates that heterogeneity is the source of all sampling errors. NIR spectroscopy is often
performed with samples that are mixtures and where heterogeneity leads to sampling
errors.(Kim H. Esbensen & Paasch-Mortensen, 2010; K. H. Esbensen, Roman-Ospino,
Sanchez, & Romanach, 2016; Petersen et al., 2005) However, the errors in NIR spectroscopy
are also related to the complex interaction between light and particles (scattering), and the

optical set up used.

The interaction of the radiation with solids is complex and does not follow Beer’s law (D.
Dahm & Dahm, 2014). Figure 10 shows an idealized case of layer of particles and the
interaction with NIR radiation. Figure 10 shows that particles such as pharmaceutical
powders are not organized in that way, because particles have physical properties as
segregation, consolidation, cohesion, among other that makes the bulk material to be
heterogeneous. The interaction of NIR radiation is in a random way as particles in solids have
a random distribution. This complex interaction makes NIR spectra difficult to evaluate for
newcomers in this area. Nevertheless, NIR spectroscopy is considered one of the most
suitable and fast non-destructive methods for analysis of materials. NIR scattering is affected
by physical differences of the materials, such as particle size,(D. Dahm, 2005; Frake et al.,
1998; Himmelsbach, Barton, & Akin, 1986; Sarraguca, Cruz, Amaral, Costa, & Lopes, 2011)
density,(D. R. Ely, Thommes, & Carvajal, 2008; Gupta, Peck, Miller, & Morris, 2005;
Roman-Ospino et al., 2016) and thickness,(Heymann, Mirschel, & Scherzer, 2010;
Heymann, Mirschel, Scherzer, & Buchmeiser, 2009; Romer, Heindmaki, Strachan, Sandler,
& Yliruusi, 2008) This scattered radiation was studied using different numbers of layers of

similar polymer sheets to describe the representative layer theory (D. J. Dahm & Dahm,
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2001) and to find the absorption and remission fractions for layers which best fit the observed
log(1/R) values.(D. Dahm, Dahm, & Norris, 2000),(D. Dahm, Dahm, & Norris, 2002) The
mathematics described by the equations of Benford used in the study are in agreement with
the behavior of the absorption/remission of samples with plane parallel layers. A substantial
error was found to fit perfectly the experimental data as result of incomplete detection of the
remitted radiation by differences in sample roughness. In spite of the complexity of the

interaction between radiation and particles, NIR spectroscopy is applied in many industries.

Figure 10. Idealized case of organized particle layers; in reality pharmaceutical powders do not have
organized particle layers.

Table 2 provides a summary of applications using NIR spectroscopy and chemometrics for
quantification purposes in different industries. The summary in Table 2 was difficult to

create because of differences in the way that NIR results are reported in publications and
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different industries and is not considered a complete description of the errors observed in
NIR spectroscopy. Table 2 indicates that liquid samples present the lowest errors with
RSEP(%) less than 2%. Polymer blends and pellets present RSEP(%) lower than 6%.
Pharmaceutical powder blends and granulates present RSEP of 7.5% and lower, and

pharmaceutical tablets have been determined with RSEP (%) of 0.9-7.5%.

Table 2. Summary of studies using NIR spectroscopy and chemometrics for quantification purposes.
T: transmission, R: diffuse reflection, and TF: transflection. * RSEP values presented in percent (%).

Reference Error value” Method Samples
Tankeu et al(Tankeu, Vermaak, Kamatou, <2 T lavender oils
& Viljoen, 2014)
Alves and Poppi(Alves & Poppi, 2013) <2 TF ternary fuel blends
Rohe et al(Rohe et al., 1999) <2 T polymer blends
Heymann et al(Heymann et al., 2010) <2 TF polymer film coatings
Sulub and Derudder(Sulub & DeRudder, <3 R polymer blends
2013)
Rosas et al(Rosas, Blanco, Santamaria, & 6.2 R ternary mixture pellets
Alcala, 2013)
Coldn et al(Colén, Florian, Acevedo, 2.5 R pharm. powder blends
Méndez, & Romafiach, 2014)
Vanarase et al(VVanarase, Alcala, Jerez 7.5 R pharm. powder blends
Rozo, Muzzio, & Romafiach, 2010)
Dou et al(Dou, Sun, Ren, Ju, & Ren, 1.07 R pharm. powder blends
2005)
Cérdenas et al(Cardenas, Blanco, & 1.90 R lab. powder blends and
Alcala, 2014) ind. gran.
Blanco et al(Blanco, Bautista, & Alcala, 39and 1.6 R pharm. powder blends
2008) (granules)
Caérdenas et al(Cardenas, Cordobés, 0.81-2.68 R pharm. powder blends
Blanco, & Alcala, 2015) and tablets
Sanchez-Paternina et al(Adriluz Sanchez- <5 T pharm. powder blends
Paternina et al., 2016)
Blanco et al(Blanco, Coello, Iturriaga, <16 R powder blends (milled
Maspoch, & Pou, 2001) tablets)
Dou et al(Dou et al., 2005) 1.2 R two components tablets
Blanco and Alcala(Blanco & Alcala, 09-6.8 R pharm. Tablets
2006)
Abrahamsson et al(Abrahamsson, 25 T intact pharm. Tablets
Johansson, Andersson-Engels, Svanberg,
& Folestad, 2005)
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Polymer films that are much less heterogeneous than powder samples, such as
pharmaceutical materials, were selected in this application to reduce sampling errors. The
polymer films were used to minimize sampling errors but maintain scattering to study its
effect on the errors in PLS calibration models. The reduction of sampling errors facilitates
the study of the effect of: 1. Scattering and depth of penetration, 2. the selection of spectral

regions and 3. the effect of preprocessing on the errors observed in PLS calibration models.

2.1.1. Scientific literature and contribution

This dissertation is based on the experimental setup of the representative layer theory (RLT)
for diffuse reflectance (D. Dahm et al., 2000). In the theory, the theoretical description of the
spectroscopic absorption, remission, and transmission fractions of the samples with different
thickness using plane parallel mathematics are examined and tested. The RLT assumes that
samples are composed of plane parallel layers, each individual layer is representative of the
entire sample. The application of discontinuous mathematics (D. Dahm et al., 2000) was used
to determine the absorption and remission coefficients of the samples. The authors tested the
theory using two polymer films composed of polyethylene (plastic sheets) with uniform
thickness and different surface roughness. The authors described efficiently the absorption
and remission behavior of the samples by the mathematics of plane parallel layers. They
found a substantial experimental error attributed to the remitted radiation primarily surface
reflection that did not reach the detector. This left an open door to investigate the impact of

the error due to light scattering in NIR diffuse reflection models.
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Representative layer theory has been studied using polymer films with uniform thickness and
also have been applied to real systems such as powdered samples (Cair6s, Coello, &
Maspoch, 2008), milk (D. J. Dahm, 2013), and it has been used in combination with linear
polarization spectroscopy to powder and milk samples (Gobrecht, Bendoula, Roger, &
Bellon-Maurel, 2015). However, the experimental setup mentioned in the test of the RLT
does not consider the optical sampling of the NIR radiation and its effect on the errors in the
model. Therefore, this chapter was undertaken to determine the impact of depth of
penetration into low heterogeneous materials such a polymer films with uniform thickness
on the statistical errors observed in NIR calibration models. The scientific contribution of
this work is to develop an experiment that can be helpful to understand the complex of
absorption and scattering of NIR radiation into solids materials using low heterogeneous
polymers. This is the first study reported to estimate by multivariate data analysis the
maximum depth of penetration of NIR radiation into polymer film materials and to calculate
the minimum statistical error in the NIR calibration method avoiding the undesired effect of
the heterogeneity of particulate systems. This work presents an extension of a previous article
to train students in NIR spectroscopy, which has been used in a number of trainings of new
students and industrial scientists (Romafach, Hernandez-Torres, Roman-Ospino, Pastrana-

Otero, & Semidei-Ortiz, 2014) based on the study of Dahm et al (D. Dahm et al., 2000).

2.2. MATERIALS AND METHODS

2.2.1. Polypropylene polymers

Samsill® No. S43496 non-glare sheet protectors composed of heavy weight polypropylene

top load were used in this study (Figure 11). Films of 21 cm length and 7 cm width were cut
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from these sheet protectors into smaller pieces sufficiently large to cover the integrating

sphere window of the NIR system.
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Figure 11. Samsill® No. S43496 non-glare sheet protectors composed of heavy weight
polypropylene top load were used in this study.

2.2.2. Layer thickness measurements of individual films

Fifty polypropylene films were numbered on the bottom corner and the thickness of the
polymer films was measured using a digital micrometer (Marathon, 0-25mm, resolution:
0.001mm, accuracy: 0.002 mm). The left, center, and right sides of the films were measured
with the digital micrometer as shown in Figure 12 to determine whether significant variations
existed from film to film. The thickness of each individual film used in this study was
obtained, and the thickness values of different combinations of film layers was determined.
The thickness of the polymer films stacked together was also determined taking into

consideration the variation of combination with different film layers. The purpose of this
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combination of film layer is to obtain the variation of different layers, because in practice is

not possible to use exactly the same film layers and the same position of the film polymer.

S5cm S5cm
< > < S
| | |
A #
7cm R1 R 5 R 3
v
) 21cm .
Region 1 Region 2 Region 3
s ~ N2 N

F

Film thickness measurement

Figure 12. Thickness measurements in three different regions of the layer.

2.2.3. Acquisition of NIR spectra

NIR spectra were acquired using the integrating sphere module in a Bruker MPA (Multi-
Purpose) FT-NIR Analyzer (Massachusetts, USA) equipped with a semiconductor room
temperature sulphide lead (RT-PbS) external detector that works from 12800 to 3600 cm™
(780 to 2780 nm). The integrating sphere is fixed within the spectrometer; unlike the fiber
optic probe which can be moved. Single and stacked polymer films were placed over the
integrating sphere of the MPA. The macrosample set up was used providing a NIR beam
diameter of 15 mm. All NIR spectra were acquired over 12500 to 3500 cm™ (800 to 2857
nm) spectral range at a resolution of 8 cm™, with 64 scans for background and 64 scans for

the sample.
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The remitted radiation was acquired in reflection mode in the first experimental setup (Figure
13a). The term remitted radiation refers to light that has been absorbed and then sends back
by the summation of external reflection (specular and diffuse), internal reflection, and
backward scattering (radiation that leaves the sample in opposite direction as the incident
beam) (D. Dahm et al., 2000; D. J. Dahm, 2013). The second experimental setup (Figure
13b) was used to collect spectra in transflection mode. This second setup included a metallic
plate on top of the film layers. The plate provides a reflective surface to force the radiation
back through the films. The transflection spectra were the result of the radiation passing at
least twice through the films.(D. Dahm & Dahm, 2014),(D. Dahm et al., 2000) The metallic
plate and a metallic cylinder were also helpful in pressing the polymer film layers to minimize

the effect of trapped air between the layers.
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Figure 13. Experimental setup for the acquisition of films spectra. a) NIR acquisition film spectra
using the integrating sphere macrosample setup. b) NIR acquisition film spectra using the integrating
sphere macrosample setup with the metallic plate on top of the films working as a reflective surface.
In the instrumental setup the metallic plate and the metallic cylinder were used to minimize the air
between the films.

2.2.4. NIR sampling depth into polymer layers

Powder talc obtained by commercial talc product was used to estimate the optical sampling
depth of the NIR radiation into the polymers. The effective sampling depth into polymer film
layers was estimated by placing powder talc (hydrated magnesium silicate, MgzSisO10(OH).)
(Ferrage et al., 2003) on top of films. The amount of powder talc was enough to cover the
emerging light of the integrating sphere module. NIR spectra were then obtained with the

integrating sphere as described above.
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2.2.5. Development of Multivariate Calibration Models

Principal component analysis (PCA) and partial least squares (PLS) regression calibration
models were obtained using the SIMCA software, version 14 (MKS Umetrics AB, Umea,

Sweden).

The quality of the models was determined in terms of the bias, equation (2-1), the standard
deviation, the root mean square error of prediction (RMSEP), equation (2-2), and the relative

standard errors of prediction RSEP (%), equation (2-3), defined as:

" (Y_pred_yiref)

Bias = Y-, — - (2-1)
n 'pred_ _ref 2
RMSEP = \/E‘“(Yl ) (2-2)
Z’L (Y_pred_y'ref)z
RSEP (%) = 100 x j d 12 n_‘l(y.ref; (2-3)

where n is the number of samples used in the test set, YP™® and Y"® the predicted and measured
reference values. The number of PLS factors was chosen by the minimum error (RMSEP or

RSEP (%)) and bias calculated.
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2.3. RESULTS AND DISCUSSION

2.3.1. NIR spectra of film layers with and without metal plate

Figure 14 shows the NIR spectra of the films in the first experimental setup. The boxed area
shows the vibrational combination bands of the stretching and deformation modes of methyl
and methylene groups of polypropylene in the 7350-7070 cm spectral region and the second
overtones of the asymmetric stretching mode of methyl and methylene groups in the 8400-
8200cm™ region (Furukawa et al., 2003; Watari & Ozaki, 2004; Workman Jr., 2001). In
Figure 14, the spectrum of one film shows a high baseline and weak absorption bands. This
high baseline is observed because most of the radiation is transmitted through the film away
from the detector. Only a minor portion of the radiation is remitted (back-scattered to the
detector). As the number of films increases, the baseline decreases, and the intensity values
of absorption bands increase. Despite these spectral differences due the number of films, the
chemical heterogeneity remains equivalent from film layer to film layer. The correlation
coefficient of the NIR spectra of the film layers has values that range from 0.954 to 0.999,
that all films are very similar. This experiment was first performed in the description of the
representative layer theory (D. Dahm et al., 2000),(D. Dahm et al., 2002). The present work
presents an extension of a previous article to train students in NIR spectroscopy (Romaiiach
et al., 2014) based on the study of Dahm et al (D. Dahm et al., 2000). The baseline changes
and depth of penetration observed in NIR spectra which are extremely important to
understand NIR applications (Berntsson et al., 1999; Berntsson, Danielsson, & Folestad,
1998; Clarke, Hammond, Jee, & Moffat, 2002; lyer, Morris, & Drennen I11, 2002; Johansson,
Sparén, Svensson, Folestad, & Claybourn, 2007; Mauritz, Morrisby, Hutton, Legge, &

Kaminski, 2010; Oelkrug, Brun, Rebner, Boldrini, & Kessler, 2012; Romafiach et al., 2014;
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A Sénchez-Paternina et al., 2015; Shi & Anderson, 2010). The experiment is now used to

study the effect of scattering on the errors observed in PLS regression predictions.
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Figure 14. Spectral region for acquisition without metal plate and spectral region used in
chemometric models.

Figure 15 shows the spectra of the films for the second experimental setup (transflection
mode). In this case, the metallic plate was placed at the top of the film layers. The baseline
is lower than in the previous spectra because the metallic plate reflects the radiation through
the polymer films. The radiation passed at least twice through the films, and there are three
important properties of the interaction of light with the films: the absorption of the molecular
vibration modes of the molecules, the transmission through the thickness of the film layers,
and the remission or radiation that reached the detector. In this experimental setup the

radiation passed at least twice through the films, increasing the pathlength and therefore
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transmission and absorption by the material. The metallic plate worked as a reflective surface

that increased the remission of the radiation.(Kogak, Lucania, & Berets, 2009)
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Figure 15. Spectral region for acquisition with metal plate and spectral region used in chemometrics
models.

2.3.2. NIR spectra of individual film with metal plate and PCA evaluation

Figure 16 (up) shows the NIR spectra of 30 individual films with the metallic plate.
As shown the figure, the spectra have minor differences of baseline, and this is due to physical
effects when the polymer film is placed over the window of the integrating sphere in the FT-
MPA. As shown by Figure 16 (bottom), a spectral pretreatment such as standard normal
variate (SNV), reduces the differences in baseline in the spectra. As shown by Figure 16
(up), a PCA evaluation of the NIR spectra without spectral pretreatment does not have a
distribution of the scores (Figure 17, up), but the PCA of the SNV spectra (Figure 17,

bottom) shows a distribution around the center of the PC1 and PC2. This indicates that SNV
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spectra have similar pattern that makes the scores to be equivalent. Equation (2-4) shows the

SNV preprocessing given by:

SNV = X=X (2-4)

/(x— x)2
n-—1
where x represents the absorbance of the sample at the specific wavenumber, and X represents

the average of all absorbances of the sample.

0.44 -
0.42 -
0.40
0.38
0.36 -
0.34 -

Absorbance

0.32
0.30

0.28 — . T . : .
12500 11500 10500 9500 8500 7500 6500 S500 4500

Wavenumber (cm™)
1.50
125
1.00
0.75 |
0.50 -
0.25 -
0.00 -
-0.25 -
-0.50 -
-0.75 -

-1 000 | ! 1 T 1 Ll 1 T 1 T 1 LI 1 T 1 Ll 1
12500 11500 10500 9500 8500 7500 6500 5500 4500
Wavenumber (cm™)

Figure 16. NIR spectra of individual polypropylene films (up). Normalized spectra (SNV) of
individual films (bottom).
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Figure 17. Top — PCA scores plot obtained with NIR spectra of individual polypropylene films ().
Bottom-PCA scores plot after normalized spectra (SNV) of individual films (bottom).

2.3.3. Thickness of polypropylene film layers

The thickness of the polymer films was measured in the left, center, and right sides of the
individual films to evaluate if there was heterogeneity in film thickness which could affect
the results. Table 3 shows that film thickness was very uniform from side to side, and from

film to film. This low heterogeneity is an advantage for this study, since heterogeneity is
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recognized as the major source of sampling errors (Kim H. Esbensen & Geladi, 2010; Kim

H. Esbensen & Paasch-Mortensen, 2010; Petersen et al., 2005).

Table 3. Average and standard deviation for the thickness measurements on the different of fifty
films. Values are in mm.

n=>50 Region1 | Region 2 Region 3 | Average 3 Regions
Average (mm) | 0.08563 0.08558 0.08563 0.08561
Std dev (mm) | 0.00220 0.00198 0.00167 0.00196

The thickness from one to thirty stacked polymer films in three different combinations of
layers was measured. These measurements were performed to evaluate whether air trapped
between the layers were affecting the measured film thickness. The average thickness of one
film was 0.086 mm and the average for thirty films was 2.520 mm. A linear regression
between the number of film layers and the thickness shows that R? is 0.9998 the slope is
0.084 and the intercept is -0.002 (Figure 18). The average film thickness (0.086 mm), this
value is similar to the slope (0.084) obtained in the measurement from one to thirty film
layers. These results show that the differences in film thickness between individual and
stacked films are very low, and the possible effect of air trapped between the layers has been

minimized.
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Figure 18. Thickness measurement vs number of films.

2.3.4. Depth of penetration of NIR radiation into polymer layers

The depth of penetration of NIR radiation in polymer film layers was determined first to learn

how it affects PLS regression models. The effective sampling depth of penetration was

estimated by placing talc (hydrated magnesium silicate, MgsSisO10(OH)2) on top of the films.

The amount of powder talc was enough to cover the emerging light of the integrating sphere

module. The film layers were increased up to 50 films with a thickness of 4.25 mm. Figure

19a shows that the second overtone of O-H stretching of talc is observed at 10534 cm™, while

Figure 19b shows the first overtone overtones at 7186 and 7154 cm™.(Zhang et al., 2006)

When more than thirty-six film layers were used (3.04 mm), the absorption band of the

second overtones of O-H stretching in talc (hydrated magnesium silicate, MgsSizO10(OH)2)

were not observed and the spectra did not vary significantly. Thus, the depth of penetration
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of NIR radiation was estimated as 3.04 mm (thickness of 36 film layers) through visual

inspection of the spectra.
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Figure 19. Film spectra with talc powder on top side. a) Second overtone of O-H stretching of talc
(hydrated magnesium silicate, MgsSisO10(OH)2), and b) first overtones of OH stretching of talc.

A second assessment of the depth of penetration of the NIR radiation was performed in the
second overtone region (10560 — 10510 cm™) using SNV spectral preprocessing and PCA in
this region. Figure 20 shows the NIR spectra of the second overtone region of O-H stretching
band of talc on top of 28 to 50 layers (2.36 to 4.22 mm), and Figure 20 shows an expanded
view. Figure 21 and Figure 22 shows the PCA on the second overtone region of O-H
stretching of talc using SNV as spectral preprocessing in the region of 10560 — 10510 cm™.
Figure 21 shows the PCA score plot for spectra of one to 36 film layers (0.08 to 3.04 mm).
The score plot is enlarged in Figure 22 shows the distribution from twenty-four to thirty-six

film layers (2.02 to 3.04 mm). In Figure 22, the scores vary linearly along the first principal
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component from 24 to 35 films. When more than thirty-five film layers (2.95 mm) are used,
this linear trend is no longer observed as shown in Figure 22. In summary, the depth of
penetration of NIR radiation in the second overtone region of talc (10534 cm™) was estimated
through PCA as 2.95 mm into polymer film layers which is similar to the result by visual

inspection (3.04 mm) described in the previous paragraph.
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Figure 20. Evaluation of the depth of penetration of radiation based on the intensity of the second
overtone of O-H stretching of talc (hydrated magnesium silicate, MgsSizO10(OH).). Film spectra with
talc powder on the top side on the spectral region of 11500 — 10300 cm™. Box zone is the zoom in
the second overtone of O-H stretching of talc.
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Figure 21. PCA performed using SNV on the spectral region 10560-10510 cm-1. Box zone is the
zoom of PCA from twenty-four to fifty film layers.
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Figure 22. Zoom of the PCA from twenty-four to fifty film layers performed using SNV on the
spectral region 10560-10510 cm™.

The first overtones of O-H stretching of talc (hydrated magnesium silicate, MgzSisO10(OH)z2)
are shown in Figure 19b at 7186 and 7154 cm™.(S. Petit, Decarreau, Martin, & Buchet, 2004;

Sabine Petit, Martin, Wiewiora, De Parseval, & Decarreau, 2004; Zhang et al., 2006) This
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region contains bands with moderate intensity (significantly stronger than bands located in
the second overtone region), which facilitated this study in a spectral region widely used in
NIR calibration models.(Norris, 1989) PCA was performed to estimate the depth of
penetration of NIR radiation in the polypropylene films in this region. Figure 23 shows the
NIR spectra of talc placed on top of 16 to 50 film layers (1.35 to 4.22 mm) in the region of
9000 to 6500 cm™ using SNV as preprocessing. Figure 24 shows the first overtone of the O-
H stretching bands of talc from 7270 to 7110 cm™. Figure 25 and Figure 26 show the
evaluation of the PCA on the first overtone region of O-H stretching of talc using SNV as
spectral preprocessing on the region of 7270 to 7100 cm™. Figure 25 shows the distribution
of the score plots from one to thirty-seven film layers (0.085 to 3.12 mm). The box contains
the score plot distribution from twenty-five to thirty-seven film layers (2.11 to 3.12 mm) at
Figure 26. In summary, the depth of penetration of NIR radiation in the first overtones region

of talc (7186 and 7154 cm™) was estimated as 3.12 mm into polymer film layers.
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Figure 23. Evaluation of the depth of penetration of radiation on the first overtone of O-H stretching
of talc (hydrated magnesium silicate, MgsSisO10(OH)>). Film spectra with talc powder on the top side
on the spectral region 9000 — 6500 cm™. Zoom in the first overtones of O-H stretching of talc powder.
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Figure 24. Evaluation of the depth of penetration of radiation on the first overtones of O-H stretching

of talc (hydrated magnesium silicate, MgsSisO10(OH)2). Zoom in the first overtone of O-H stretching

of talc.
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Figure 25. PCA performed using SNV on the spectral region 7270 — 7100 cm™.
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Figure 26. Zoom of the PCA from twenty-four to fifty film layers on the spectral region 7270 — 7100
cm,

The analysis performed shows an estimate of sampling depth of 2.95 mm for polypropylene
films near 10534 cm, and 3.12 mm around 7186 and 7154 cm™. This result is in agreement
with previous studies that show a depth of penetration from 1.9 and 2.7 mm at 1210 nm (8264
cm?) and 1186 nm (8432 cm™) respectively in diffuse reflectance measurements of
tablets.(lyer et al., 2002) In transmission measurements the depth of penetration reported is
from 3.4 to 4.9 mm at 1210 nm (8264 cm™) and 1186 nm (8432 cm™) respectively.(lyer et
al., 2002) In pharmaceutical powders samples the depth of penetration of NIR radiation at
1123 nm (8907 cm™) is 2.4 mm in samples with 10% of active pharmaceutical ingredient in

diffuse reflection mode.(Bellamy, Nordon, & Littlejohn, 2008)

48



2.3.5. Prediction of number of films

The development of the NIR calibration model for the prediction of number of film
layers was based on the results of the penetration of radiation in the polymer films. Figure
27 shows the calibration design (C.D.) used in this study. The first set of PLS models were
based on the sampling depth of penetration below the infinite depth. Thirty film layers were
used to develop these models, with the exclusion of every fifth film as shown in Figure 27a.
In this case the radiation does not reach infinite depth, and this guarantees that all the samples
are analysed by NIR radiation. Even though there are 30 films (below infinite depth) — this
represents a case with multiple pathlengths.(Oelkrug et al., 2012) Some of the radiation is
being scattered through 15 films, other by 22 films, etc. A second calibration model was
developed with 50 film layers as shown in Figure 27b. Table 4 shows the results of PLS
models with and without the metallic plate in the 9000 — 6500 cm™ region. The results show
the lowest error values using first derivative with 25 points as spectral preprocessing. The
bias for all calibration models is low,(Bondi, Igne, Drennen, & Anderson, 2012) and the
confidence intervals of the bias includes zero in all the calibration models developed
regardless of the spectral preprocessing used. This result highlights that sampling is
unbiased,(Kim H. Esbensen, Paoletti, & Minkkinen, 2012) and there is an absence of
systematic error by the NIR method. Thus, the RMSEP and RSEP (%) summarize the random
error in the measurements, and values are low after all spectral preprocessing, even though
SNV models have higher error values. In this experiment, the first derivative calibration
model shows lower RMSEP and RSEP (%) values. The accuracy of the results is somewhat

lower using the metallic plate than models without the metallic plate, however, all calibration
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models developed with the metallic plate include zero within the 95% confidence interval of

the bias. These results are obtained in two optical designs both with multiple pathlengths.
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Figure 27. Calibration designs used in the study. a) Design using a total number of thirty film layers,
excluding each fifth layers up until twenty-five film layers, and b) design using a total number of fifty
film layers, excluding each fifth layers up until forty-five film layers. Number of films used for
calibration set (left) and validation set (right).
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Table 4. RMSEP, RSEP (%), bias for the PLS models performed with and without metallic plate on
top for models using thirty film layers on the spectral region 9000 — 6500 cm™. " units: number of
films layers.

SPECTRAL WITHOUT METAL PLATE WITH METAL PLATE

n=30 n=30
PREPROCESSING | "' > (RMSI;P* RSEP (%) | Bias (RMSI;P* RSEP (%) | Bias
No pretreatment - 0.40 2.42 -0.03 1.00 6.01 0.37
SNV - 1.02 615 |-0.05| 0.8 411 | 0.14
Savitzky-Golay 9 0.40 242 | -003| 099 599 | 0.37
Savitzky-Golay 15 0.40 241 -0.03 1.00 6.00 0.37
1% Derivative 15 0.30 179 | 004 | 027 160 | 011
1% Derivative 25 0.29 177 | 003 | o027 165 | 0.10
gil"\'/tzf{fgéfx/;ﬁve 15 0.91 551 | -0.03| 044 264 | 014
SNV + 1% Derivative | 15 0.93 349 |-001| o061 370 | 015
2" Derivative 15 0.58 349 | 000 | 039 235 | 017
2" Derivative 25 0.37 221 | -001] 032 190 | 0.14
SNV + 21
S rivative 15 1.69 1019 | 024 | 1.10 661 | 017
Row Center - 0.32 192 | 000 | 055 334 | 007
MSC - 0.55 330 |-0.03| 0.70 421 | 011
gg‘r"i’vggcteer 1 15 0.30 179 | 004 | 027 160 | 011
MSC + 1% Derivative | 15 1.08 654 | 014 | 1.08 652 | 0.38

Table 5 shows the predictions obtained in PLS models using 50 films in the spectral region
of 9000 - 6500 cm™* without the metallic plate removing every fifth film layer (as shown in
Figure 13b). Table 5 shows that the best prediction result was for the model without spectral
preprocessing, RSEP (%) =5.38 and bias = 0.21. This low result was surprising because most
NIR calibration models include spectral preprocessing. In this experiment the changes
observed in the baseline of the spectra are related to the number of films, thus making the
prediction possible without preprocessing. The calibration models are being developed
according to physical changes (varying the number of polymer film layers) and an increasing

pathlength for the radiation in the layers. The results show that spectral preprocessing should
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be performed based on an understanding of the physics and chemistry of the material.(Beebe

et al., 1998; Pell, Seasholtz, Beebe, & Koch, 2014)

The right side of Table 5 shows the results of models performed from one to thirty film layers
as calibration set and with a prediction set that varied from thirty-one to fifty film layers. The
authors recognize that the larger number of films in the validation set should increase the
error. However, this is a simulation of a situation that frequently occurs in NIR spectroscopic
calibration models due to sample heterogeneity. Calibration models are built obtaining
spectra of the sample that is illuminated by the NIR radiation. However, a larger sample size
could be analyzed with a reference method (e.g. HPLC) and the material outside of the area
interrogated by the NIR radiation could be different. In this case the RMSEP and RSEP (%)
values are higher and the bias has a confidence interval that does not include zero, indicating
a systematic error that is also a sampling error. These comparison models show the
importance of the depth of penetration of near infrared radiation. If the sample has a high
heterogeneity, sampling errors will occur.(Kim H. Esbensen & Geladi, 2010; Kim H.

Esbensen & Paasch-Mortensen, 2010; K. H. Esbensen et al., 2016; Petersen et al., 2005)
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Table 5. RMSEP, RSEP (%), and bias for the PLS models performed without metallic plate for
models using fifty film layers on the spectral region 9000 — 6500 cm™. * units: number of films layers.

VALIDATION SET VALIDATION SET

SPECTRAL POINTS | (5,10, 15, ..., 45 FILMS) (31 - 50 FILMS)

PREPROCESSING RMSEP" | RSEP (%) | Bias' | RMSEP" | RSEP (%) | Bias’

No preprocessing 3 151 538 | 021 | 724 1770 | -6.21

SNV ; 3.03 1077 | 015 | 9.09 221 | -817

1% Derivative 15 227 807 | 043 | 866 2117 | -7.54

15! Derivative 25 2.18 7.73 0.10 8.52 20.82 -7.40
st

gN\.’ +1 15 3.92 1394 | 043 | 1054 | 2577 | -959

erivative

2" Derivative 15 2.42 859 | 013 | 897 2194 | -7.84

2" Derivative 25 241 857 | 063 | 892 2180 | -7.77
nd

SNV +2 15 4.20 1493 | 033 | 1110 | 2712 | -10.10

Derivative

The effect of selection of spectral region was also studied (Table 6). This evaluation was
performed because the depth of penetration of NIR radiation depends on the wavelength of
radiation and the heterogeneity of the material, therefore the statistical errors in NIR
calibration models will also depend on depth of penetration.(Berntsson et al., 1998) Table 6
shows the RSEP (%) values of PLS models performed in seven spectral regions with different
spectral preprocessing without metallic plate using thirty film layers. The first region (9000-
6500 cm™) comprises the combination bands and second overtones of the asymmetric
stretching modes of methyl and methylene groups of polypropylene, where the spectral bands
have moderate intensity. The second region (9000-4500 cm™?) includes the first overtones of
methyl and methylene groups of polypropylene, which have high absorbance. The third
region (11500-4500 cm™) comprises almost the entire spectrum except for the strongest
bands observed below 4500 cm related to C-H combination bands, and above 11500 cm™.
The fourth region (6500-4500 cm™) comprises the first overtones of the asymmetric and
symmetric stretching modes of methyl and methylene groups of polypropylene. The fifth

region (11500-6500 cm™) comprises the second overtones and combination bands, and it
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includes the third overtone which has low intensity values. The sixth region (11500-10300
cm) comprises the third overtone region, and the seventh region (12500-3500 cm™)
comprises the entire spectral region acquired by the NIR method. The PLS models in the
spectral regions evaluated in this study show that first derivative has the lower error values
(in terms of RSEP (%)). The lower errors were observed in models that includes the first,
second and combination bands of methyl and methylene groups of polypropylene and
excludes the limits of the detector with high spectral noise (S.R.1: 9000-6500 cm™, S.R.2:

9000-4500 cm™, S.R.3: 11500-4500 cm™).

Table 6. RSEP(%)/bias values for the PLS models performed without metallic plate using thirty film
layers on the spectral region (S.R.): S.R.1: 9000-6500 cm?, S.R.2: 9000-4500 cm*, S.R.3: 11500-
4500 cm?, S.R.4: 6500-4500 cm?, S.R.5: 11500-6500 cm?, S.R.6: 11500-10300 cm?, and S.R.7:
12500-3600 cm™. NP: no spectral preprocessing, SNV: Standard Normal Variate, 1% first derivative
(25 points), SNV-1t: SNV + first derivative (25 points), 2": second derivative (25 points), and SNV-
2": SNV + second derivative (25 points).

SPEC.

SREP. SR.1 SR.2 SR3 S.R4 SR5 S.R.6 SR.7
NP 2.42/-0.03 | 4.14/0.04 | 4.16/0.03 4.88/0.09 | 2.38/-0.02 | 2.82/0.00 | 5.79/0.18
SNV 6.15/-0.05 | 3.76/-0.08 | 5.42/0.04 3.23/0.08 | 10.73/0.20 | 4.67/0.12 | 4.10/0.01
1t 1.77/0.03 | 1.94/-0.07 | 2.01/-0.05 | 2.20/-0.08 | 2.52/0.02 | 3.24/0.12 | 4.68/0.08
SNV-1st | 2.21/-0.01 | 2.49/-0.04 | 2.73/0.02 2.87/-0.03 |3.17/0.01 |5.27/0.17 | 5.86/0.17
2nd 3.49/-0.01 | 361/-0.11 | 4.66/-0.06 | 3.83/-0.04 |7.57/0.00 |6.83/0.00 | 6.34/0.03
SNv-2n | 10.19/0.24 | 4.92/-0.05 | 7.69/0.04 4.92/-0.07 | 9.72/-0.10 | 9.22/0.49 | 9.01/0.10

The lowest error value obtained in this study is for the model using first derivative with 25
points on the 9000 — 6500 cm™ spectral region. Figure 28 shows the loading line plot (up)
and the spectra using first derivative (bottom). The model using the metallic plate has similar
error values than model without the metallic plate, but bias is somewhat higher. An
evaluation of loading weights in the model without the metallic plate shows the first loading

w*c with R?X=0.996 and a correlation with the first derivative spectra of 0.9993.

54



Loading weights First derivative (25p) 9000 — 6500 cm!

Response

-0.1 w¥c[1] w¥*c[2] — w¥c[3]
R2X[1] =0.996 R2X[2] =0.00418 R2X[3] = 3.26e-005
-0.15
8964.07 8470.35 7976.63 7482.92 6989.2
Wavenumber (¢cm-1)
~ First derivative spectra (25p) 9000 — 6500 cm! DS1.Film

2 0.003

25
2. 0.002
2
g 0.001 20
§
= 0 15
S
+ -0.001
£ 10
™ 0.002

5

-0.003 g
9000 8500 8000 7500 7000
Wavenumber (cm-1) 0

Figure 28. Loading weight lines and first derivative spectra. up) Loading line plot w*c performed on
the spectral region 9000-6500 cm™ using 1% derivative (25 points) as preprocessing, and bottom) film
spectra on the spectral region 9000 - 6500 cm™ using 1% derivative (25 points) as preprocessing.
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2.3.6. Evaluation of models varying the number of samples in C.S.

Eight different calibration sets were evaluated varying the number of polymer film layers in
the calibration and validation sets as shown in Table 7. The top part of Table 7 provides a
summary of the calibration models developed and the bottom part the details of the spectra
used in the calibration model and the validation set. The first calibration set includes 26
calibration spectra and predicts every 6™ film layer (n =4) as outlined in Table 6. The second
calibration set includes 25 calibration spectra and leaves out every fifth film for a total of 5
validation samples. The impact of a lower number of samples in the calibration set was
evaluated in models that contains the samples separated each three (No. 6), four (No. 7), and

five film layers (No. 8).

Table 7 (up) shows the results of the PLS models obtained by the different calibration sets
with the 9000 — 6500 cm™* using different spectral preprocessing. The table shows that the
lower RSEP(%) values are obtained using first derivative with 25 points (preprocessing
number 3) in all the calibration sets. The calibration performed using every fifth film layers
as validation set (C.S. No. 2) presents the lowest RSEP(%) values. In almost all the models
the bias is negligible, and the confidence interval of the bias includes zero, except in
calibration set 6, 7 and 8, and which contain the lowest number of samples in the calibration
set. The bias is significant when the number of calibration samples is less than elven. This
result highlights the lack of systematic error by the NIR method, as long as the number of
samples in the calibration set is representative of all the variation to be modelled by a PLS

regression.
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Table 7. RSEP(%) and bias values obtained by the different calibration set (C.S.) evaluated for the PLS models performed without metallic plate on
top for models using a total of thirty film layers in the spectral region of 9000 — 6500 cm™. 1: no spectral preprocessing, 2: SNV, 3: first derivative
(25 points), 4: SNV + first derivative (25 points), 5: second derivative (25 points), and 6: SNV + second derivative (25 points). nca: humber of

samples for calibration set, nva: number of samples for validation set. *: the confidence interval does not include zero.

SPEC Nca=26 Nyva=4 Ncai=25 nva=5 Nca=23 Nva=7 Nca=21 Nva=9 Nca=16 nva=14 Nca=11 nva=19 | nca=9 nva=21 Nca=7 Nva=23
' RSEP . RSEP . RSEP . RSEP . RSEP . RSEP .« | RSEP .« | RSEP -
PREP.
(%) Bias (%) Bias (%) Bias (%) Bias (%) Bias (%) Bias (%) Bias (%) Bias
NP 3.31 0.02 2.42 -0.03 | 2.54 0.03 3.13 0.05 2.77 -0.02 2.86 0.13 3.20 0.15 3.38 0.24
SNV 4.90 0.25 6.15 -0.05 5.62 -0.08 5.31 0.07 5.69 0.14 6.63 0.28 9.01 0.56 9.62 0.72
13t 2.75 0.08 1.77 0.03 1.96 0.02 2.41 0.10 2.12 0.00 2.27 0.07 2.48 0.15 2.83 0.19
SNV-1st 3.44 -0.08 2.21 -0.01 2.65 0.00 4.24 0.11 2.92 -0.08 3.67 0.12 401 0.17 4.60 0.32
2nd 4.41 0.19 3.49 -0.01 5.27 -0.15 4.64 0.14 5.30 0.05 5.76 0.12 71.22 0.36 8.73 0.24
SNV-2nd 6.63 0.77 10.19 0.24 8.87 -0.07 9.38 0.18 9.12 0.31 11.11 0.19 13.13 0.34 13.20 0.20
C.S.No.1 C.S. No. 2 C.S. No. 3 C.S. No. 4 C.S.No. 5 C.S. No. 6 C.S.No. 7 C.S. No. 8
1,2,3,4,5,7,8,11,2,3,4,6,7,11,2,3,5,6,7,11,2,45,7,8,|1,3,5/7,9 11, |1, 3,6, 9, 12, |1, 4, 8, 12, 16, | 1, 5, 10, 15, 20,
5 4 9,10,11, 13,14, | 8,9, 11, 12,13, | 9, 10, 11, 13, | 10, 11, 13, 14, | 13, 15, 17, 19, | 15, 18, 21, 24, | 20, 24, 28, 30 25, 30
=] = 15, 16, 17, 19, | 14, 16, 17, 18, | 14, 15, 17, 18, | 16, 17, 19, 20, | 21, 23, 25, 27, | 27,30
__§ —g o |20, 21, 22, 23, | 19, 21, 22, 23, | 19, 21, 22, 23, | 22, 23, 25, 26, | 29, 30
T S % 25, 26, 27, 28, | 24, 26, 27, 28, | 25, 26, 27, 29, | 28, 29, 30
OZ= |99 30 29, 30 30
6, 12,18, 24 5,10, 15,20,25 | 4,8,12,16,20, | 3, 6, 9, 12, 15, | 2,4,6,8,10,12, | 2,4,5,7,8,10, | 2,3,5,6,7,9, | 2, 3,4, 6,7, 8,
c s 24,28 18, 21, 24, 28 14, 16, 18, 20, | 11, 13, 14, 16, | 10, 11, 13, 14, | 9, 11, 12, 13,
.g s 22,24, 26,28 17, 19, 20, 22, | 15, 17, 18, 19, | 14, 16, 17, 18,
g .g © 23, 25, 26, 28, | 21, 22, 23, 25, | 19, 21, 22, 23,
TS5 29 26, 27, 29 24, 26, 27, 28,
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2.3.7. Evaluation of models at the three different regions of the films

PLS calibration models were performed for the left, middle, and center regions of the films and
compared to evaluate whether a significant difference exists between the three regions of the film
layers. Table 8 presents the RMSEP values for the models performed with and without metallic
plate, the results shows a similar pattern using three PLS factors, at different spectral pretreatments
in the 9000-6500 cm* spectral region. A correlation between the different PLS results from one to
five PLS factors, show values above the 0.991, which demonstrate that the results in the three
regions are similarly equivalent. An ANOVA single factor of these data (from one to five PLS
factors) shows that F= 0.1541 with Fcrit= 2.2939 (p-value= 0.9784), indicating that the results of

pretreatments on the three regions of the film layers are statistically equivalent.

This evaluation demonstrate an uncomplicated method to analyze the results and it is suitable for
low-heterogeneous materials, where differences due to sampling process have a low impact on the
results, as long as instrumental setup allows a correct sampling procedure. If the polymer films
presented non-uniformities in all the regions of the material, the results of ANOVA were

statistically inequivalent.
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Table 8. RMSEP values for the PLS models performed with and without metallic plate on top for models
using thirty film layers at three different regions of the film layers.

RMSEP WITH METAL RMSEP WITHOUT
SPECTRAL PLS PLATE METAL PLATE
PREPROCESSING | FACTORS | Region | Region | Region | Region | Region | Region
1 2 3 1 2 3
1 3.88 3.83 4.04 5.85 5.84 5.81
2 3.77 3.80 3.92 1.79 1.74 1.89
No Pretreatment 3 1.84 1.76 1.80 1.05 0.81 0.93
4 1.12 1.03 1.10 0.70 0.54 0.71
5 0.60 0.78 1.21 0.80 0.55 0.65
1 5.48 5.51 5.57 7.88 7.52 7.64
2 3.15 3.15 3.25 2.91 2.96 2.78
SNV 3 2.09 1.94 1.99 1.81 1.27 1.48
4 0.77 1.16 1.26 1.17 0.98 1.17
5 0.36 0.77 0.66 1.08 0.95 111
1 4.25 4.27 4.35 2.25 2.27 2.37
2 1.93 1.83 1.90 1.34 1.22 1.23
1st derivative 3 1.32 1.20 0.91 0.95 0.79 0.96
4 0.49 0.48 0.76 0.59 0.57 0.63
5 0.40 0.37 0.57 0.60 0.50 0.52
1 3.66 3.67 3.71 2.38 2.36 2.39
2 2.27 2.21 2.24 2.07 2.02 2.05
2nd derivative 3 1.79 1.74 1.82 1.07 0.87 1.06
4 0.89 0.73 0.95 0.86 0.74 0.82
5 0.81 0.64 0.98 0.75 0.68 0.67

2.3.8. Comparing the number of film and thickness values as Y value

To evaluate the effect of using a parameter such as number of films layers or a physical parameter
such as thickness on the PLS calibration, two sets of models were performed. The first set was
done using the previous data of number of films and the second set was using the thickness values
obtained before. Table 9 shows the results of the comparison for the results of PLS calibration
using the number of films and the thickness measurements. As shows the results, the models are
quite similar between number of film and thickness measurements. An ANOVA single factor of

these data (from one to five PLS factors) shows that F=0.2889 with Fcrit= 2.725 (p-value= 0.8333),
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indicating that the results of pretreatments using the thickness as Y value, that is a physical
parameter, or using the number of film layers are statistically equivalent. This similarity can be
confirmed with the results obtained between the relationship with thickness measurement average

and the number of films (Table 2).

Table 9. RSEP (%) values for the PLS models performed with and without metallic plate on top for models
using thirty film layers at three different regions of the film layers using Y-value the thickness and the
number of film layers.

DATA bLS RSEP (%) METAL RSEP (%) NO METAL
PRETREATMENT | FACTORS | THICKNESS | S2VSEX | THickness | SIVISER
No Pretreatment 3 9.82 9.44 2.59 0.24
SNV 3 10.75 10.70 10.75 10.70
1st derivative 3 7.22 6.95 5.00 4.67
2nd derivative 3 8.46 9.09 5.43 5.15

2.3.9. Evaluation of models on two different seasons of the year

The PLS calibration models were used for prediction at two different seasons of the year. The
acquisition of the NIR spectra for the first models was in April 2015, and the second set of spectra
was acquired on October 2015. The main difference between these seasons was the humidity in
the environment. For this reason, the impact of the humidity in the laboratory on the PLS
calibration was evaluated in this special case, using materials with a low grade of heterogeneity,

high stability and low degradation with respect to time.

Table 10 shows the summarized results for the first experiments performed on April 2015 and the
second experiments performed on October 2015. The PLS models of the first experiments have
lower RMSEP values than the values of the second experiment. So, what can be the source of error

that leads to this difference? There are two principal sources of error that answer this question. The
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first one is the lamp source of NIR radiation. The effect of lamp aging is a subject of study in NIR
calibration models. The second one is the humidity in the laboratory. This is another subject of
study with a strong interest in the pharmaceutical industry and academic laboratories because the
humidity affects the stability of the materials and causes degradation with time. To evaluate these
two sources of error, the background single channel spectra of different sets of NIR data was
analyzed. If intensity of lamp is decreased for aging the maximum value of the single channel will
be decreased, and if the humidity affects the NIR spectra, the background single channel will

present information of OH regions in the spectra.

Table 10. RMSEP values at two different seasons of the year using the metallic plate.

DATA PLS FIRST SECOND
PRETREATMENT | FACTORS | EXPERIMENT | EXPERIMENT
No Pretreatment 3 1.00 1.39
SNV 3 0.68 1.77

1st derivative 3 0.26 1.33

2nd derivative 3 0.39 1.50

Figure 29 shows the evaluation of the background single channel of the first experiment acquired
on April 2015 and the second experiment acquired on October 2015. The red single channel spectra
correspond to the background acquired on April, and the blue single channel spectra corresponds
to the background acquired on October. In both cases, due to the methodology used by comparing
three different regions, a high amount of NIR spectral data was necessary. This caused that were
used at least two days with two different background single channel to complete the set of data in
each evaluation. For this reason, two background single channels for each set of data in the seasons
were analyzed. The issue in this point is that the difference in background from the month of April
is lower compared to the difference in background from the month of October. Taking in

consideration that the absorbance is a logarithmic function, these difference in background single
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channels in the same month cause bigger differences in the NIR spectra of the film polymers

acquired on different days.
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Figure 29. Single channel spectra of the background acquired at two different seasons of the year.

2.4. CONCLUSIONS OF CHAPTER 2

This study provides an uncomplicated method based on the test of representative layer theory to
have a better understanding of absorption and scattering effects of NIR radiation into solid
materials using low heterogeneous polypropylene non-glare films. The optical sampling of the
NIR radiation into the polymer films was determined and it was estimated the maximum sampling

depth that can penetrates the samples without a loss of information.

PLS calibration models were developed based on the results of the depth of penetration of NIR

radiation into the samples and it was evaluated the effect of use more samples that beyond the

62



optical sampling. The results shown that NIR method is unbiased as long as the number of samples

are within the depth of penetration of the NIR radiation.

This study also provides an economic and efficient method to test the reliability of the NIR
instrument through the lifecycle of the lamp source and instrument parts. It is suggested to use

polymer film standards to follow the quality guidance of the industry laboratories.

PLS models predicted the number of polypropylene films with high accuracy for calibration
models built with up to 30 films. The PLS calibration models were developed with a system of
low heterogeneity but with significant light scattering. Even though there are 30 films (below
infinite depth) — this represents a case with multiple pathlengths. The radiation could be remitted
to the detector after passing through only film, through 15, or through the 30 films. The radiation
travels multiple pathlengths through the films, and the path travelled by the radiation is not known.
In spite of these uncertainties, a systematic error is not observed with the calibration models

developed with 30 films, and the six different preprocessing methods.

As long as the number of samples in the calibration set is representative of the variation to be
modelled by a PLS regression, the sampling by the NIR method was unbiased. Sampling errors
were obtained when the number of films used was greater than the depth of penetration of the NIR
radiation. The results show the NIR spectroscopy is able to provide results with high accuracy as
long as the sampling error is reduced. The sampling error was reduced by using a system with low
heterogeneity in this study since as TOS indicates, heterogeneity is the major source of all sampling

errors.
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CHAPTER 3: STUDY OF NIR CHEMOMETRIC MODELS WITH LOW
HETEROGENEITY FILMS PART Il HETEROGENEITY. THE ROLE OF SAMPLING
AND SPECTRAL PREPROCESSING ON PLS ERRORS

To be submitted to: Journal of Near Infrared Spectroscopy

Carlos Ortega-Zuiiiga, Ricardo Navarro-Dent, and Rodolfo J. Romafiach

This chapter is not an exact copy of the paper to be submitted. It contains original information.

3.1. INTRODUCTION

Near infrared (NIR) spectroscopy is widely used for non-destructive analysis in the
agricultural, food, petrochemical and pharmaceutical industry and in process analytical technology
(PAT) (Roggo et al., 2007; US-FDA, 2004). The understanding of NIR spectroscopy has grown
as a result of thousands of studies, publications, and multiple books (D. Dahm & Dahm, 2014; D.
Dahm et al., 2000, 2002; D. J. Dahm & Dahm, 2001; Norris, 1989; Romafiach, Roman-Ospino, &
Alcala, 2016; Williams & Norris, 1987; Workman & Weyer, 2012). One recent publication
presented a procedure for the development and validation of NIR methods for pharmaceutical
materials (Romafach et al., 2016). In spite of the progress made, there is still a need to understand
the errors observed in NIR methods that can arise due to a number of sources. Partial least squares
(PLS) regression methods require spectral variation that need to be enough representative of the
property to model, and the presence of interferences with strong overlapping or spectral noise may
result in biased predictions (Gowen, Downey, Esquerre, & O'Donnell, 2011; Kalivas & Palmer,

2014).

There are errors related to the NIR optical sampling of the materials (Ortega-Zufiga, Reyes-

Maldonado, Méndez, & Romafiach, 2017). The NIR radiation that reaches the detector in diffuse
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reflectance measurements is remitted from the top of 1-2 mm of the powder surface (K. H.
Esbensen et al., 2016). A “mismatch error” may occur when the NIR measurement is on the top
1-2 mm of the surface, but the reference method is analyzing a 20 mm thick sample with a different
composition (Romafiach, 2017). This systematic sampling error is likely one of the most
significant sources of error in NIR spectroscopy (Mark, 1991). There are also a number of other
sampling errors that have been characterized within the field known as the Theory of Sampling
(TOS) (K. Esbensen & Julius, 2009; Kim H. Esbensen & Paasch-Mortensen, 2010; Kim H.
Esbensen et al., 2012; K. H. Esbensen et al., 2016; Kim H Esbensen & Wagner, 2014). TOS also
explains that the material analysed by the NIR radiation, may not be representative of the full lot
to be characterized. A sampling error, known as the fundamental sampling error, will occur due to
the heterogeneity of the material analysed. This is an un-avoidable sampling error, but there are
also a number of incorrect sampling errors which may occur. According to Theory of Sampling
(TOS), sampling errors, which are caused by material heterogeneity and sampling process
deficiencies are one or two orders of magnitude higher than analytical errors (Kim H. Esbensen &
Paasch-Mortensen, 2010; Romafach, 2017). Therefore, data quality depends heavily on sampling

methods (Kim H. Esbensen & Paasch-Mortensen, 2010; Roggo et al., 2007).

NIR radiation may interact with a particle one or more than times as shown in previous
studies (Abrahamsson et al., 2005; Johansson et al., 2002). NIR radiation also penetrates more at
high frequencies where less absorption occurs than at lower frequencies (Bellamy et al., 2008; lyer
et al., 2002; Ortega-Zufiga et al., 2017). NIR spectroscopy could be visualized as occurring in a
multiple path length cell since the depth of penetration varies according to the frequency of
radiation and light scattering. Thus, NIR spectroscopy does not follow Beer’s law (D. Dahm &

Dahm, 2014). The depth of penetration of NIR radiation can be estimated but the exact mass of
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material that interacts with NIR radiation is not known (Colon et al., 2014; Adriluz Sanchez-
Paternina et al., 2016). This complex interaction between light and particles (physics of diffuse

reflectance) can also be considered a source of error in NIR spectroscopy.

A previous study evaluated the effect of light scattering on the determination of the number
of polypropylene polymer films stacked together (Ortega-Zuiiiga et al., 2017). The polymer films
provided a system with a reduced heterogeneity to determine the error associated with light
scattering. Experiments with similar polymer films were used to develop the Representative Layer
Theory (RLT) (D. Dahm & Dahm, 2014; D. Dahm et al., 2000, 2002; D. J. Dahm & Dahm, 2001).
Even though these films have very low heterogeneity in comparison to agricultural products and
pharmaceutical powder mixtures, similar sampling errors are observed in these methods due to the
physics of diffuse reflectance. Diffuse reflectance spectra of powder mixtures are based on the
interaction of the radiation with the top 1 — 2 mm of the material (Col6n et al., 2014; Adriluz
Sanchez-Paternina et al., 2016), but the analysis of this top portion is frequently compared with
that of a larger (thicker) sample. Thus, the experiment conducted with the film layers was
considered a simulation of the analyses conducted with powder samples but with a reduction in

sample heterogeneity.

In this study, NIR calibration models were developed using two polymers materials
(polypropylene and polyethylene) with similar thickness (for the polyethylene film was 0.083 +
0.002 mm, and the polypropylene film was 0.086 + 0.002 mm) to understand the absorption and
scattering effects on the errors observed by partial least squares when two materials are added to
the sample. The polymers used in this experiment constitute a system with reduced heterogeneity,
where the two films have similar thickness (polypropylene and polyethylene), and this represents

a system with multiple pathlengths (Oelkrug et al., 2012). Calibration models were based on the
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polyethylene percent content in the mix of films to evaluate the linearity of NIR predictions. All
spectral measurements were performed with a number of films below the infinite depth of
penetration to avoid this sampling error and guaranteeing that all the samples were analyzed by
the NIR radiation (Ortega-Zuiiiga et al., 2017). Additionally, calibration models were tested with
the NIR spectra acquired in a second instrument to test the reproducibility of the models. This
study therefore facilitated the study of more complex sample composition and the effects that: (1)
materials with NIR spectra similarities for example excipients in pharmaceutical formulations, (2)
evaluation of NIR calibration on a second instrument to test the reproducibility of the model, and
(3) selection of spectral range and preprocessing to perform a NIR calibration model that works

on two FT-NIR spectrometers in two different laboratories.

3.2. MATERIAL AND METHODS

3.2.1. Polymer films

Non-glare sheet protectors Samsill® (Lot. No. S43496; Samsill Corporation, 5740 Hartman
Rd., Fort Worth, TX 76119) composed of heavy weight polypropylene top load were used in this
study. Films were cut into rectangles sufficiently large to cover the integrating sphere window of
the NIR system. Full Weight Plastic Sheet, 4X6-C Polyethylene Sheeting, 4-Mil, Clear, Poly-
Cover® (Warp Bros manufacturer, 4647 W. Augusta Blvd. Chicago, IL 60651) were also cut into
rectangles large enough to cover the integrating sphere window of the NIR system. The
approximate thickness was measured by triplicate to determinate an average; for the polyethylene

film was 0.083 £ 0.002 mm, and the polypropylene film was 0.086 + 0.002 mm.
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3.2.2. Layer thickness measurements

A digital micrometre (0-25mm, resolution: 0.001lmm, and accuracy: 0.002 mm,
manufactured by Marathon Management Company; Catalog No. S40502A; Fisher Scientific
Company L.L.C.; 300 Industry Dr, Pittsburgh, PA 15275) was used to measure the thickness of
the films. These were measured in triplicate (once on each side and once in the centre) to determine

the average thickness of each sample and reduce variation.

3.2.3. Acquisition of NIR spectra

NIR spectra were obtained in the method development laboratory using the integrating
sphere module in a Bruker MPA (Multi-Purpose Analyzer) FT-NIR (MA, USA) with a
semiconductor room temperature lead sulphide (RT-PbS) external detector. A second Bruker MPA
FT-NIR spectrometer from a different laboratory was used for the reproducibility study. The
different arrangements of films were placed over the integrating sphere window of the FT-NIR
spectrometer. The macro sample setup was used providing a NIR beam diameter of 15 mm. All
NIR spectra were acquired over a 12000 — 4000 cm™ (833.33 — 2500 nm) spectral range at a
resolution of 16 cm™, with 32 scans for background and 32 scans for the sample. The remitted
radiation was obtained in diffuse reflection mode. The films were pressed with a metallic plate and
cylinder to minimize the effect of trapped air between the polymer films. This metal plate was

removed from the top of the films before obtaining each spectrum.

The spectral bands related to NIR vibrations of the polyethylene and polypropylene were
evaluated to find spectral regions where both components present differences that can be used to

develop a NIR calibration model. Spectra of 10 polyethylene and 10 polypropylene films were

68



taken separately to evaluate the similarity of the NIR spectra of the materials. These were
compared by determining their correlation coefficients using different spectral preprocessing with

different spectral regions.

NIR infrared spectra were obtained for three layers of films as shown in Figure 30. The
bottom set layer consisted of polypropylene films placed over the integrating sphere, the middle
layer were polyethylene films and the top layer was polypropylene films. Figure 30 shows the
specific schemes for the arrangement of the three layers, the bottom and top layers were varied
from one to six polypropylene films (maintaining a total sum of seven polypropylene films in each
scheme) while the middle layer was varied from one to ten polyethylene films. The first spectrum
for scheme 1 in Figure 30 was obtained with one polypropylene film followed by one polyethylene
film and six polypropylene films on top. This arrangement was maintained while the number of
polyethylene films were increased up to ten films. This provided a total of ten sample arrangements
for the first scheme. The scheme 2 in Figure 30 included two polypropylene films on the bottom,
while varying the polyethylene films from 1-10 in the middle and five polypropylene films on top.
The scheme 6 in Figure 30 consisted of six polypropylene films on the bottom as the number of
polyethylene films in the middle was varied from 1 — 10 films and one polypropylene film was
placed on top. These arrangements yielded a total of 60 different distributions of polyethylene and
polypropylene films. NIR spectra were obtained in triplicate at each of these arrangements for a

total of 180 spectra.
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Figure 30. Sample arrangements. Polypropylene films in black line and polyethylene films in gray dashed
line. The total number of spectra acquired were 180 (6 schemes, 10 sample arrangements, 3 spectra for each
sample).

3.2.4. Development of Calibration Models

A total of 180 spectra were obtained for the calibration models using one FT-NIR
spectrometer. Principal component analysis (PCA) and Partial Least Squares (PLS) regression
were performed to develop the calibration models using the software SIMCA 15 (Sartorious
Stedim Data Analytics Solutions, Umea, Sweden). The calibration models were developed with:
(1) No preprocessing (NP), (2) Standard Normal Variate (SNV), (3) first derivative (1%der), (4)

second derivative (2"%der), (5) SNV+1%der, and (6) SNV+2"der as spectral preprocessing.

The Y-variable evaluated was the percentage composition of polyethylene in total films of
sample arrangement. This variable was chosen to obtain a parameter for the content of
polyethylene based on the thickness of the whole sample using the equation (3-1). The average
thickness of sample is a measurement of the total polymers (polyethylene and polypropylene films)
stacked together, and the average thickness of polyethylene films is a measurement of the total

number of polyethylene stacked together without the layers of polypropylene.
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Thickness of Polyethylene Films

CPolyethylene (%) = 100 X ( ) (3-1)

Thickness of sample

3.2.5. Validation of the Calibration Models

The calibration models were validated by repeating the spectral acquisition shown in Figure
30 on three different days chosen randomly by two different analysts with a first FT-NIR
spectrometer in the method development laboratory. A second FT-NIR spectrometer from a second
laboratory was used to obtain the NIR spectra on three different days randomly to test the
reproducibility of the method. The predictive capability of the models developed was assessed in
terms of root mean squared error of prediction, RMSEP, equation (3-2); the relative root mean

squared error of prediction, RSEP(%), equation (3-3); and bias, equation (3-4), defined as:

n

n _pred_ _ref 2
RMSEP = \/Zl:l(yl i) (3-2)

n .pred_ ‘ref 2
Z‘“(Yl( fy) ) % 100 (3-3)
Z?=1 Yire

RSEP(%) = \/

" (Ylpred _Y.ref)

Bias = Y, ~ - (3-4)

n

Where n is the number of samples used in the validation set, and Y”"** and Y;"*’ are the predicted

and measured reference values based on the Y-variable used.
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3.3. RESULTS AND DISCUSSION

3.3.1. NIR spectral evaluation

Figure 31 shows the NIR spectra of polyethylene and polypropylene corresponding to ten
stacked films of each material separately. The two materials show significant spectral differences,
with the polyethylene film showing narrower bands than the polypropylene film. For the
polypropylene material the combination band of the first overtone and deformation mode of methyl
and methylene groups are found in the 7350 — 7070 cm™* spectral region; the second overtones of
the asymmetric stretching mode of methyl (-CHs) and methylene (-CH>-) groups are found in the

8400 — 8200 cm! spectral region. Table 11 and

Table 12 shows the assignment of the NIR bands of polypropylene and polyethylene
materials based on previous studies. The intense band at 8227 cm™ corresponds to the second
overtone of the stretching mode of methylene in polyethylene, this band present a moderate
intensity at 8242 cm™ in polypropylene. The band at 8389 cm corresponds to the second overtone
vibrational mode of methyl group in polypropylene, while this is a weak band at 8420 cm™ in
polyethylene. These bands have been studied to monitor the density of polyethylene as quality
control in a polymer production process by the ratio of the two absorption bands (Nagata, Ohshima,
& Tanigaki, 2000). The density becomes lower as the number of polymer chain branches increases,
and their backbone length kept constant. Methyl groups are located at the ends of branches as well
as at the ends of the main chains. Therefore, the density and degree of branching was estimated by

the ratio of the absorption bands of methyl and methylene groups (Nagata et al., 2000).
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Figure 31. SNV spectra of polymer layers. Solid line for polypropylene and double line for polyethylene.
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Table 11. Assignment of the NIR bands of polypropylene materials.

(CH3)

2003)

Polymer” Assignation nm (rep.) cm? (rep.) cm (obs.)
C-H str first overtone (CHy) %gg)(Furukawa etal., | 5656.11 5662
C-H str first overtone (CHy) %gg)(Furukawa etal, | 5780.35 -
1726 (Workman & 5793.74 5797
C-H str first overtone (CHs) Weyer, 2012;
Workman Jr., 2001)
C-H str first overtone (CHs) 170561 Soiiii(vgg(t)ar)' & | 5832
1700 (Furukawa et al., | 5882.35 5893
C-H str first overtone (CHs) \legjér\/\/z%rf? an &
Workman Jr., 2001)
2X C-H str + C-H def (CH,) 1413.83 éggii(vggg; & | 7077
2% C-H str + C-H def (CH,) %ggg)(Furukawa etal., | 7022.47 -
2x C-Hstr+ C-H def (CHy) | =048 élzgii(vggé%' & | 718
@ | C-H combination (CH, and \1/\3/)23e(rV\£(())r1l<2rT]an & | 711360 ]
[¢5) 1 ]
B Chs) Workman Jr., 2001)
; 2% C-H str + C-H def (CH,) %ggg)(Furukawa etal., |7194.24 -
o 2% C-H str + C-H def (CHs) ;g(?)(g))(Furukawa etal., |7299.27 -
2x C-H str + C-H def (CHs) 1382.74 éiiii(vglgéar)l & |-
C-H str second overtone \1/3§Se(r\/\£%r1kzn'] an & 8196.72 )
(CHs) Workman Jr., 2001)
C-H str second overtone 1216 (Furukawa et al., | 8223.68 8242
(CH») 2003)
C-H str second overtone 1218.92 8204 (Watari & | -
(CHy) Ozaki, 2004)
1192 (Furukawa et al., | 8389.26 8389
C-H str second overtone 2003; Workman &
(CH:3) Weyer, 2012;
Workman Jr., 2001)
C-H str second overtone 1193.18 8381 (Watari & | -
(CHs) Ozaki, 2004)
C-H str second overtone 1151.81 8682 (Watari & | 8655
(CHa) Ozaki, 2004)
C-H str second overtone 1150 (Furukawa et al., | 8695.65 -
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Table 12. Assignment of the NIR bands of polyethylene materials.

C-H str second overtone (CHs)

Weyer, 2012)

Polymer” Assignation nm (rep.) cm-1 (rep.) cm-1 (obs.)

C-H str first overtone (CHy) ;I7 Giégg)lmoyama et | 5068.93 5666
C-H str first overtone (CHy) ;IY Z%SQ;moyama et | 5787.04 5778
2% C-H str + 1 C-H def (CHy) ésgje(r\’\g%rlkga” & | 69410 098
2% C-H str + 1 C-H def (CHy) e;41;5 9(98{?)|moyama et | 7062.15 7062
2% C-H str + 1 C-H def (CHy) \%Sige(r\’\g%rlkga” & | 709220 ]
2x C-H str + 1 C-H def (CH,) ;?9?9(98;)moyama et | 7183l )
2X C-H str + 1 C-H def (CHy) ésgje(r\’\g%rlkga” & | 717360 rira

% 1374 (Shimoyama et | 7278.02 -

= 2X C-H str + 1 C-H def (CHz3) al., 1998), (Workman

% & Weyer, 2012)

§ C-H str second overtone (CH>) \1/\3e1§e(r\/\g())r1k2n)1 an & 8210.18 8227
C-H str second overtone (CH.) ;2 1£11£g;moyama ot | 823723 )
C-H str second overtone (CH,) \1/\%33(/)e(r\/\£(())r1k2n)1 an& | 8403.36 i
C-H str second overtone (CHs) ;Il 8?9(5{?)|moyama et | 843L70 8420
C-H str second overtone (CHy) ;Il 6?9(;;1)|moyama et | 857633 8562
C-H str second overtone (CHs) \%\%Sje(r\/\g%rlkg an & 8665.51 8655
C-H str second overtone (CHs) ;|1 4$é§g)|moyama et | 8726.00 )

1130 (Workman & 8849.56 -

Figure 32 shows the NIR spectra for schemes 1 and 6 as the number of polyethylene (PE)

films was increased. The black color is used for the spectra of scheme 1 which has one

polypropylene (PP) film at the bottom and six at the top, the gray color is for scheme 6 which has

six films of polypropylene at the bottom and one at the top. Figure 32 shows differences in spectral
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baseline due to the portion of the radiation that was remitted (back-scattered to the detector). The
spectral baseline is reduced as the number of PE films is increased. When the number of PE is the
same for the schemes 1 and 6, their spectra present minor baseline differences and differences in
the intensity of the bands. However, the spectra of the scheme 1 show the intense band of
methylene (-CH.-) in PE at 8227 cm™, and the NIR spectra of the scheme 6 shows diminished this
band with an increment of the methyl (-CH3) band in PP at 8389 cm™. These differences can be
significant in the development of NIR calibration models, for example, APl concentration in
bilayer tablets or coating process, where the heterogeneity of the blend has a significant
contribution in spectral features of the API (Andersson, Josefson, Langkilde, & Wahlund, 1999;

Ito et al., 2010).

084 v Toso{ T T & T |
080 7 i
0.76 1 g4 -
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Figure 32. Polyethylene spectral changes as film number increases in the schemes 1 and 6. Black colour
for scheme 1, gray colour for scheme 6, PE: polyethylene.
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The correlation coefficient of the NIR spectra for polyethylene and polypropylene varied
from 0.449 to 0.975 depending the spectral region and spectral preprocessing as described in Table
13. There are differences on the spectral range of 8800 — 8300 cm due to molecular vibrations of
the structures as discussed before. The use of NIR spectra with high similarity can be challenging,
even, the use of SNV as spectral preprocessing presents a high correlation coefficient between the
materials as shown in Table 13, which imply a challenge for model development. The correlation
coefficient decreases significantly when derivatives are used as spectral preprocessing compared
to raw spectra and SNV. The development of a calibration model using materials which present a
high correlation coefficient in their NIR spectra, can be improved with the correct usage of the
spectral region and preprocessing (Alcala et al., 2013; Da-Col & Poppi, 2018). The correlation
coefficient of PE and PP spectra throughout the 9500 — 6500 cm™ and 6500 — 5000 cm* spectral
regions between the materials become significantly lower when the first or second derivatives are

used as spectral preprocessing as shown in Table 13.

Table 13. Correlation coefficient values for polyethylene and polypropylene in five spectral regions. NP:

no spectral preprocessing; SNV: standard normal variate; 1t first derivative (25 points); SNV-15: SNV +

first derivative (25 points); 2"": second derivative (25 points); SNV-2": SNV + second derivative (25
oints).

Preprocessing 12000-4000 cm™ | 9500-6500 cm™ | 6500-5000 cm™ | 5000-4000 cm™
NP 0.975 0.917 0.922 0.971
SNV 0.975 0.917 0.922 0.971
1% 0.901 0.786 0.838 0.922
2" 0.560 0.474 0.449 0.616
SNV-1* 0.901 0.786 0.838 0.922
SNV-2M 0.560 0.474 0.449 0.616

Table 14 shows the average percentage composition of polyethylene within each scheme
arrangement on Figure 30. The arrangements of each scheme in Figure 30 has a variation on the

number of polyethylene films from one to ten, while the total number of polyethylene films
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remains seven (7) in all the schemes. Table 14 shows that the increments of thickness in the
average sample and average polyethylene depends on the number of polyethylene films used in
the arrangements, this increment is 0.083 mm. However, the average polyethylene percentage
composition is a value that depends on the thickness of polyethylene films and the sample
thickness, where the total number of polypropylene films is fixed to a total number of seven
(Equation 1). Table 14 shows the percentage composition of polyethylene (%PE) which does not
present a constant variation, and the increment shows a rate of change that vary from 9.5% and
2.6%, as shown in Figure 33. Table 14 shows the approximate change in the intensity of the
absorbance band of methylene (-CH-) in PE at 8227 cm™ in the scheme 1 and 6, after baseline
correction. The approximate change in the scheme 1 is 0.009, while the approximate change in the
scheme 6 is 0.013. A linear regression between the number of PE films and the approximate change
in the intensity of methylene at 8227 cm™ shows a R? of 0.9832 and 0.9573 for scheme 1 and 6,
respectively. This is due to the NIR radiation that travels into the PE films in the scheme 6 pass
firstly into a thicker layer of PP compared to the scheme 1. Therefore, the interaction of the NIR
radiation with the PE films is lower. This approximate change in the intensity of the absorbance
band of methylene can be a source of error in a NIR calibration model and the difference of the

results of the different scheme need to be evaluated in deep.

Table 14. Description of polyethylene (PE) in each scheme. These variations were done for each of the six
schemes. Seven polypropylene films were used in each scheme. Thickness for one polyethylene film: 0.083
+ 0.002 mm, thickness for one polypropylene film: 0.086 + 0.002 mm.

PE PP Sample PE %PE _Intensity* (CHy) _Intensity* (CHy)
Films Eilms Thickness Thickness Composition in PE 8227 cm in PE 8227 cm
(x0.01 mm)  (¥0.01 mm) (0.1 %) Scheme 1 Scheme 6

1 7 0.69 0.08 121 0.075 0.059

2 7 0.77 0.17 21.6 0.097 0.071

3 7 0.85 0.25 29.3 0.116 0.085

4 7 0.93 0.33 35.5 0.135 0.094

5 7 1.02 0.42 40.8 0.149 0.103

6 7 1.10 0.50 45.3 0.156 0.115

7 7 1.18 0.58 49.1 0.171 0.127
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8 7 1.27 0.66 52.4 0.182 0.129

9 7 1.35 0.75 55.4 0.186 0.136

10 7 1.43 0.83 58.0 0.191 0.144
“ Band intensity after baseline correction of the NIR spectra.

Figure 33 shows the relationship between the percentage of polyethylene films vs the
number of polyethylene films. The use of the number of films as Y-variable implies to consider a
linear change based on the number of polyethylene films stacked together no matter the thickness
of the materials. Therefore, the use percent of polyethylene in total films as Y-variable implies to
consider the thickness of the polyethylene and polypropylene films stacked together as physical

variable to represent the changes in content composition of the samples.
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Figure 33. Percentage of polyethylene films vs number of polyethylene films.

3.3.2. PCA and spectral preprocessing evaluation

Figure 34 shows the PCA score plots of the NIR spectra in the spectral region of 9500 —
6500 cm™ with the preprocessing: a) second derivative (25-point window) and b) SNV+1%
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derivative (25-point window) of the calibration samples with the six schemes evaluated in this
study. As shows the figure, for the second derivative preprocessing (Figure 34a), the first principal
component represents the variation in the composition of polyethylene in the schemes with an
explained variance of 92.2%. The second component has an explained variance of 7.6% and it
depends of the schemes. For the scheme 1 the bottom layer has one film of polypropylene, and
most of the radiation reaches the middle layer composed of the polyethylene films. The scheme 6
has six films of polypropylene in the bottom layer, and the radiation must travel into more PP
films. Therefore, the spectra of the scheme 6 contain more information of the PP than the scheme
1, and the scores of this samples present a different pattern which can be explained with the first
and second component of the PCA plot. The SNV+1% derivative (25-point window) preprocessing
(Figure 34b) shows a pattern where the variation of polyethylene in the six schemes is similar

with an explained variance in the first component of 96.7% and 3.1% in the second component.
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Figure 34. PCA scores plot of the NIR spectra for calibration samples (six schemes) acquired with the first
instrument. Spectral region 9500 — 6500 cm™ using the preprocessings: a) 2" derivative (25-point window)
and b) SNV+1* derivative (25-point window). Percentage of polyethylene increasing from white to black
colour.
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3.3.3. Evaluation of the validation sets over three replicates

The validation spectra were obtained by placing the films over the integrating sphere on
three separate days in the same way as the calibration set. This procedure was performed using the
first and second FT-NIR spectrometers. Table 15 shows the global RMSEP, RSEP(%) and bias
for each validation set in the spectral region of 9500 — 6500 cm™ with first derivative (25-point
window), and 2" derivative (25-point window). These statistical results were calculated based on
the predictions with one, two and three PLS factors for the six schemes in each validation set. The
results in the first FT-NIR spectrometer shows that three PLS factors present the lower errors and
bias. However, the use of this calibration model with three PLS factors in the second instrument
result in higher errors and bias when SNV+1% derivative is used as spectral preprocessing. The
calibration model using second derivative as preprocessing provides the lower errors and bias

when used to predict spectra from the first and second FT-NIR spectrometers.

Table 15. Results of three validations acquired with the first and second instrument until three PLS factors
using the spectral region 9500 — 6500 cm™. The RMSEP, RSEP(%), and bias values are calculated for the
six schemes used in this study. The cells marked with "*' indicate that zero is included within the 95%
confidence interval of the bias.

Vall-NIR1 Val2-NIR1 Val3-NIR1
PLS RSEP . RMS RSEP . RMSE RSEP .
Preproc. Factors RMSEP (%) Bias Ep (%) Bias p (%) Bias
1 8.10 19.08  0.40" 821 1932 0.29" | 843 19.86 0.20"
2"9der 2 2.55 6.01 1.33 1.76 4.15 1.01 1.50 3.52 0.01"
3 2.52 5.93 1.39 1.66 3.92 1.12 1.32 3.10 -0.09"
SNV+1st 1 11.14 26.24  0.07" | 1098 25.85 -0.18" | 11.09 26.11 0.26"
der 2 2.49 5.87 -0.85 2.66 6.25 -1.26 2.45 5.77 -1.09
3 1.86 4.38 -0.78 1.96 462 -0.19" | 2.04 4.80 -1.42
Vall-NIR?2 Val2-NIR 2 Val3-NIR 2
1 8.34 19.63  0.49" 853 2008 0.72° | 823 19.37 0.72"
2"der 2 1.96 4.62 0.86 1.80 4.24 1.00 1.81 4.26 1.25
3 1.87 441 0.96 1.68 3.95 1.03 1.64 3.86 1.28
SNV+1s 1 10.86 25,57 0.00° | 11.05 26.01 0.38" | 11.12 26.19 0.38"
der 2 8.73 20.56  -8.18 991 2334 -949 9.61 2262 -9.15
3 10.66 2510 -10.03 | 12.69 29.89 -12.17 | 12.33 29.03 -11.83

2"der: second derivative (25-point window); SNV+1%tder: SNV + first derivative (25-point window).
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Table 16 shows the statistical results by scheme averaging the three validations acquired
with by the first and the second FT-NIR spectrometer; the results are presented using the second
PLS factor as it was shown before that provides the lower errors and bias. The results using
SNV+1% derivative provides lower errors and bias in the first FT-NIR spectrometer, however the
calibration with this spectral preprocessing present a high error and bias when used to predict
spectra acquired with the second instrument. The calibration model using second derivative
provides the lower errors and bias in both instruments with RSEP(%) up to 5.27% and bias up to
1.67 percent of polyethylene. Previous results showed a RSEP(%) of 1.77 and 0.03 of bias.
However, this result is based in one FT-NIR spectrometer and using one polymer (polypropylene)
with variation of the number of film layers below the infinite depth of penetration of the NIR
radiation into the material.(Ortega-Zufiiga et al., 2017) It should be noted that results using
derivatives provide the lower error and bias when physical variation is present in the system to be
modelled as previous studies show (Ortega-Zufiiga et al., 2019; Ortega-Zufiiga et al., 2017;

Roman-Ospino et al., 2016; Sasi¢, Blackwood, Liu, Ward, & Clarke, 2015).
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Table 16. Statistical results by scheme of the three validations acquired with the first and second instrument
using two PLS factors with the spectral region 9500 — 6500 cm™. The RMSEP, RSEP(%), and bias values
were calculated for the six schemes used in this study.

NIR 2" derivative (25-point window)
RMSEP/Bias Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6
Val 1 2.40/-2.04 2.44/1.95 3.50/3.35 2.02/1.81 1.59/0.38 2.91/254
Val 2 1.50/0.52 2.11/1.85 1.49/0.65 1.95/1.55 1.56/1.07 1.87/0.43
1 Val 3 1.35/1.20 1.55/-0.70 1.48/1.03 1.36/-0.52 1.23/05 1.92/-1.43
SNV +1% derivative (25-point window)
Val 1 2.83/-1.67 1.6/0.13 1.61/0.88 1.05/-0.24 3.84/-2.88 2.88/-1.32
Val 2 3.39/-2.56 1.55/0.33 2.19/-0.46 | 1.73/-0.15 2.59/-1.38 3.73/-3.35
Val 3 1.51/-0.44 2.66/-1.47 1.39/0.24 2.1/-0.96 1.72/-0.27 4.16 / -3.66
2" derivative (25-point window)
Val 1 1.90/1.31 3.02/2.74 1.37/-0.34 2.06/1.53 1.31/-0.45 1.61/0.36
Val 2 2.66/2.45 1.72/1.24 1.47/0.84 1.63/1.02 1.35/-0.43 1.67/0.86
2 Val 3 1.55/0.97 1.34/0.75 1.90/1.51 1.96 /1.54 2.20/1.62 1.78/1.13
SNV +1% derivative (25-point window)
Val 1 10.35/-9.72 7.89/-7.2 8.27/-7.69 | 6.73/-6.27 9.28/-9.07 9.39/-9.13
Val 2 8.94/-8.33 9.37/-885 | 9.09/-8.70 | 9.32/-9.02 | 11.32/-11.09 | 11.16/-10.97
Val 3 10.38/-9.67 | 9.47/-892 | 8.48/-7.99 | 8.96/-8.69 8.72/-8.44 11.32/-11.18

A graphical evaluation of the calibration samples and the test sets of the first and second FT-
NIR is presented in Figure 35. The figure shows the PLS score plots of the calibration and test
sets of the first and second FT-NIR spectrometer using the second derivative (Figure 35a) and
SNV+1% derivative (Figure 35b) as preprocessing in the spectral region of 9500 — 6500 cm™. As
shown the figure, the score plot of the samples using the second derivative preprocessing presented
a similar pattern and the plots are grouped by number of polyethylene films in each scheme. The
samples are aligned by scheme allowing a separation and classification by number of polyethylene
and by scheme in the experimental setup. In the case of the score plots using the SNV+1% derivative
preprocessing the samples of the test set with the second FT-NIR presented a bias. However, these
samples maintained the pattern of the score plots of the calibration set. A possible way to correct
this bias is a method of slope/bias correction or mathematical treatment of the score plots of this

test set; however, in this study was evaluated a second spectral region where the raw materials
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presented differences. The NIR region evaluated is the 6500 — 5000 cmt, as shown in Table 13

the correlation coefficient present similar value as the 9500 — 6500 cm* spectral region.

@ Calibration /\ NIR1 [ | NIR2

-0.0002
Scheme 3 [@ ﬁ 6 PE

-0.0004
Scheme 6 ﬁ 10 PE
-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015
t[1]
s b
(\\6\ 798 Scheme 6 )
0.04 N
- Scheme 3
@%.“\%// g B
¢
0.02 \‘\c‘ // Scheme 1

y A

R E] ~ @ 10 PE
\ 5 B O &

-0.02 v ] V@ % % % [El 6 PE

o,

-0.3 -0.2 -0.1 0
t[1]

t[2]
\
1> N

0.2

Figure 35. PLS scores of calibration and test sets with NIR1 and NIR2 in the spectral region 9500 — 6500
cm using the spectral preprocessing. a) 2" derivative (25-point window) and b) SNV+1% derivative (25-
point window). Direction of the increasing number of polyethylene films in middle layer (dashed arrow).
Dotted arrow shows the bias of the scores for test samples acquired using the NIR2.
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Table 17 shows the global results (RMSEP, RSEP(%) and bias) for each validation set
acquired with the first and the second FT-NIR spectrometers respectively using first derivative
(25-point window), and 2" derivative (25-point window) as spectral preprocessing in the spectral
region of 6500 — 5000 cm™. As shows the table, the use of two PLS factors provides the lower
error and bias regardless of the spectral preprocessing. The use of three PLS factors enhances the
bias values, however the error did not improve significantly. Therefore, the evaluation was done
using two PLS factors for the schemes as shown in Table 18. The predictions presented low error
and bias values regardless of the spectral preprocessing making difficult the selection of one
preprocessing as the best for the calibration model. Figure 36 shows the PLS score plots of the
calibration and test sets of the first and second FT-NIR spectrometers using the second derivative
(Figure 36a) and SNV+1% derivative (Figure 36b) as preprocessing in the spectral region of 6500
— 5000 cm™*. As shows the figure, the score plots of the calibration and the score plots of the test
sets with the first and second FT-NIR spectrometers presented a similar pattern regardless the

spectral preprocessing.
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Table 17. Global results of three validations acquired with the first and second instrument until three PLS
factors using the spectral region 6500 — 5000 cm-1. The RMSEP, RSEP(%), and bias values are calculated
for the six schemes used in this study. Bias in cells marked with *' indicate that zero is in the 95%

confidence interval.

Vall-NIR1 Val2-NIR1 Val3-NIR1
Preproc. Fgclzgrs RMSEP R(E/I;P Bias RMSEP R(E/E)P Bias | RMSEP R(E/E)P Bias
1 11.13 26.20 -0.13" 11.07 26.06 -0.21" 11.28 26.57 -0.66"
2"der 2 2.38 5.60 0.53 1.09 257 -0.04" 241 5.69 -2.16
3 243 5.71 0.56 1.05 246 0147 1.98 465 -1.69
SNV+1S 1 12.15 28.61 -0.15 12.08 2844 -0.11" 12.08 28.44 -0.04"
der 2 2.45 5.76 0.38 2.44 5.74 0.94 2.60 6.11 1.12
3 2.92 6.87 1.46 2.95 6.94 1.69 3.36 7.90 2.38

Val1l-NIR?2 Val2-NIR?2 Val3-NIR 2
1 11.33 26.69 0.32" 11.26 26,51 0.72" 11.17 26.29 0.71°
2"der 2 1.74 4.09 1.01 2.37 5.57 2.18 2.59 6.09 242
3 1.92 4.52 1.36 2.41 5.67 2.30 2.73 6.42 2.55
SNV+1 1 12.04 28.35 0.01: 12.13 28.56 -0.18" 12.07 28.42 -0.14"
der 2 2.35 5.53 0.03 3.55 837 -252 3.03 7.12 -2.14
3 2.97 6.98 1.39 2.38 5.61 0.63 2.44 5.76 1.12

2"der: second derivative (25-point window); SNV+15der: SNV + first derivative (25-point window).

Table 18. Statistical results by scheme of the three validations acquired with the first and second instrument
using two PLS factors with the spectral region 6500 — 5000 cm™. The RMSEP, RSEP(%), and bias values
are calculated for the six schemes used in this study.

NIR 2" derivative (25-point window)
RMSEP/Bias | Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6
1 Val 1 3.81/-345| 217/1.71 2.53/2.45 0.77/0.18 0.76 /-0.34 2.67/2.63
Val 2 0.87/-042 | 0.96/-0.83 | 1.14/-1.07 1.47/1.35 0.61/0.36 1.29/0.36
Val 3 095/-0.39 | 3.30/-3.25 | 1.88/-1.83 | 2.72/-2.67 | 2.18/-2.12 | 2.74/-2.69
SNV +1% derivative (25-point window)
Val 1 2.74/-1.86 | 1.74/0.76 2.52/2.00 1.79/0.69 2.87/-0.81 2.76/1.50
Val 2 2.28/1.07 | 3.79/3.49 2.28/1.18 1.48/0.33 2.02/0.73 2.15/-1.15
Val 3 3.73/2.88 | 2.06/0.04 2.84/2.38 1.75/0.25 2.68/2.14 1.99/-0.97
2" derivative (25-point window)
2 Val 1 294/292 | 2.65/2.62 0.86/-0.78 0.78/0.67 0.50/0.06 0.90/0.55
Val 2 3.37/332 | 2.14/2.02 1.57/1.52 2.06/2.03 1.27/1.16 3.06/3.01
Val 3 213/1.92 | 158/1.46 2.71/2.65 2.98/2.94 2.38/2.31 3.35/3.23
SNV +1% derivative (25-point window)
Val 1 277/-0.03 | 2.61/1.79 2.03/-0.82 2.29/1.53 2.45/-157 | 1.80/-0.73
Val 2 250/058 | 347/-290 | 293/-246 | 359/-295 | 4.46/-4.05 | 4.01/-3.33
Val 3 3.58/-245 | 3.18/-252 | 3.24/-266 | 2.72/-2.10 | 1.93/-0.67 | 3.22/-2.47
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Figure 36. PCA scores of calibration and test sets with NIR1 and NIR2 in the spectral region 6500 — 5000
cm* using the spectral preprocessing. a) 2" derivative (25-point window) and b) SNV+1% derivative (25-

point window). Direction of the increasing number of polyethylene films in middle layer (dashed arrow).

An evaluation of the loading weights of the calibration models performed in the spectral

region of 6500 — 5000 cm™ shows similar R2X cumulative values using two PLS factors (R*X
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[2PLS factors] = 0.998). Figure 37 and Figure 38 shows the PLS loading weights line plot for the
models performed in the spectral region of 6500 — 5000 cm™ using SNV + 1% derivative and second
derivative respectively. Figures ## show, the first and second loading weight (w*c[1] and w*c[2])
represent the changes in the amount of polymer into the schemes. However, the model using
second derivative shows clearly the changes in the amount of polyethylene with the first loading
weight (w*c[1]) and the changes n the amount of polypropylene with the second loading weight

(w*c[2]).

sergpgl1] —w¥c[2] —w*c[3] ~=PE o bl s
R2X =0.908 R2X=0.090 R2X=0.001

SNV+1%t derivative response

5800 5600 5400 5200 5000
Wavenumber (cm)
Figure 37. PLS loading-weights line plot performed on the 6500-5000 cm spectral region using the SNV

+ 1st derivative (25 points) for preprocessing.

6400 6200 6000
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Figure 38. PLS loading-weights line plot performed on the 6500-5000 cm™ spectral region using the second
derivative (25 points) for preprocessing.

3.3.4. Statistical evaluation using the ANOVA method

The results were further evaluated by ANOVA according to the evaluation by PCA and PLS
regression in the NIR spectral regions (9500 — 6500 cm™ and 6500 — 5000 cm™). Before the
analysis, the results were divided in two groups by the two spectral regions and the assumptions
of the model were reviewed with the residual plots for each group (Figure 39). In both cases, the
factors of interest with their respective levels were: the %PE composition of polyethylene (1-10
levels), the different schemes for arrangement of the polymer films (1-6), the NIR instrument used
for spectral acquisition (NIR1 and NIR2), the spectral preprocessing (2"%der and SNV+1%der), and
the validation on three different days (Vall, Val2, and Val3) was used like a block. The response
variable was the residual between the reference value and the estimated values by the model with

the different factor levels. The residuals presented a well adeacuacy of the model in both regions;
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however, the normality and constant variance assumptions are more stable in the residuals of the

6500 — 5000 cm* spectral region.

a) Residual Plots, Spectral region: 9500 — 6500 cm!
Normal Probability Plot Versus Fits
99.99 " 4
=
. 5
R 5 2
: <
v 50 o
) N0
=] 10 -E
~
1 =
S
" -2 0 2 & @ 10 -5 0 5
Standardiz ed Residual Fitted Value
Histogram - Versus Order
80 2
I Y
19 2
5 60 _g
§ 40 "E 0-
= 20 S
g
0 S
24 16 08 00 08 16 24 32 & "SPLESHL IS ILPS SO
Standardiz ed Residual
Observation Order
b Residual Plots, Spectral region: 6500 — 5000 cm!
) Normal Probability Plot Versus Fits
99.99 ®
=
99 E 24
- 90 é
- 3 0
g 5
10 = 241
: E
- =
o011 L dZ -4l
-4 -2 0 2 4 -50 -25 0.0 25 50
Standardiz ed Residual Fitted Value
Histogram i Versus Order
80 £
£ 60/ &
g =
g 40 5
9 =
& 20| g
=
=
o . £
-3 -2 R 0 1 2 3 »

Standardiz ed Residual

Observation Order

Figure 39. Residuals plot: normal probability, versus fit, histogram, and versus order performed on the
spectral regions: a) 9500-6500 cm* and b) 6500-5000 cm,
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The results of the ANOVA are presented in Table 19 for the evaluation in the spectral region 9500
— 6500 cm™ and Table 20 for the evaluation in the spectral region 6500 — 5000 cm™. The result in
the spectral region of 9500 — 6500 cm™ showed that all the main factors were statistically
significant (p-values < 0.05). The main factors: the spectral acquisition scheme and the NIR
instrument were not statistically significant in the spectral region of 6500 — 5000 cm™ (p-values >
0.05). In summary, the level of the different main factors did not affect the result of the residuals
significantly in the spectral region of 6500 — 5000 cm™; while residuals in the spectral region of
9500 — 6500 cm™* were affected by changes in the levels of the main factors. These results showed
that using the spectral region of 6500 — 5000 cm™ provided NIR predictions with low residuals

values that follow a normal distribution.

Table 19. ANOVA results for the spectral region of 9500 — 6500 cm™.

Source DF | AdjSS Adj MS F-value p-value
Val 2 917.2 458.60 62.90 0.000
%PE 9 865.3 96.15 13.19 0.000
Scheme 5 212.6 42.52 5.83 0.000
NIR 1 857.7 857.71 117.64 0.000
Preprocessing 1 3332.9 3332.86 457.12 0.000
%PE *Scheme 45 54.7 1.22 0.17 1.000
%PE *NIR 9 158.4 17.60 241 0.011
%PE *Preprocessing 9 43.5 4.84 0.66 0.742
Scheme*NIR 5 68.9 13.77 1.89 0.094
Scheme*Preprocessing 5 47.5 9.49 1.30 0.261
NIR*Preprocessing 1 1022.7 1022.71 140.27 0.000
Error 627 4571.4 7.29

Total 719 12152.8
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Table 20. ANOVA results for the spectral region of 6500 — 5000 cm™.

Source DF Adj SS Adj MS F-value p-value
Val 2 60.51 30.25 10.35 0.000
%PE 9 251.19 27.91 9.55 0.000
Scheme 5 27.82 5.56 1.90 0.092
NIR 1 0.10 0.10 0.03 0.856
Preprocessing 1 281.39 281.39 96.29 0.000
%PE *Scheme 45 84.60 1.88 0.64 0.967
%PE *NIR 9 23.55 2.62 0.90 0.529
%PE *Preprocessing 9 484.23 53.80 18.41 0.000
Scheme*NIR 5 117.56 23.51 8.05 0.000
Scheme*Preprocessing 5 60.71 12.14 4.16 0.001
NIR*Preprocessing 1 1042.38 1042.38 356.71 0.000
Error 627 1832.23 2.92

Total 719 4266.27

Based on the results evaluated by PCA, the error of the NIR predictions and the statistical
evaluation by ANOVA, the calibration model in the spectral region of 6500 — 5000 cm™ using
second derivative (25 points) as spectral preprocessing was selected for the evaluation on both
NIR instruments to demonstrate the performance of the method and the reliability of the analytical
results. The findings in this study shows the lack of systematic error of a NIR method by PLS
regression after a careful evaluation of the spectral regions, spectral preprocessing, and a statistical
evaluation of the results. The use of low heterogeneous materials provides a simple system to test
the reproducibility of a calibration method in two different NIR instruments with low error and

bias due to material’s heterogeneity and spectral differences between the instruments.
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3.4. CONCLUSIONS OF CHAPTER 3

PLS models developed with a FT-NIR spectrometer using two polymers materials with similar
thickness (polypropylene and polyethylene) presented high accuracy and precision for validation
samples acquired with the first instrument and samples acquired in a second FT-NIR spectrometer
in another laboratory. Calibration models in the spectral region of 9500 — 6500 cm™ based on a
previous study using second derivative (25-points) and SNV + 1% derivative (25-points) shows
high accuracy and precision in the validation samples of the first instrument; however, the
predictions of the NIR spectra of the validation samples acquired with the second instrument
presented a systematic error with high bias. Therefore, the statistical values of three prediction
sets, the PCA, and the loading weights of the PLS models were evaluated in a second spectral

region, 6500 — 5000 cm™,

The prediction errors of the PLS models in the second spectral region (6500 — 5000 cm™) showed
lower values compared to the results in the spectral region of 9500 — 6500 cm™ based on the
spectral preprocessing used in this study, second derivative (25-points) and SNV + 1% derivative
(25-points). Loading weights line plot up until three PLS factors showed that first and second
loading weight (w*c[1] and w*c[2]) represent the changes in the amount of polymer into the
schemes. Further statistical evaluation needs to be performed to select a robust PLS model that can

be used in different NIR instruments.
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CHAPTER 4: DEVELOPMENT OF NEAR INFRARED SPECTROSCOPIC
CALIBRATION MODELS FOR IN-LINE DETERMINATION OF LOW DRUG
CONCENTRATION, BULK DENSITY, AND RELATIVE SPECIFIC VOID VOLUME
WITHIN A FEED FRAME

Based on Publication in: Journal of Pharmaceutical and Biomedical Analysis 164 (2019) 211-
222.

Carlos Ortega-Zufiga, Carlos Pinzon-De la Rosa, Andrés D. Roman-Ospino, Alberto Serrano-
Vargas, Rodolfo J. Romarfiacha, Rafael Méndez.

This chapter is not an exact copy of the published paper. It contains original information.

4.1. INTRODUCTION

A number of Process Analytical Technology (PAT) methods have been focused on understanding
blending processes and obtaining adequate blend uniformity (Gupta et al., 2005; Pestieau et al.,
2014; Skibsted, Westerhuis, Smilde, & Witte, 2007). The implementation of these analytical
methods in pharmaceutical manufacturing processes with low concentration of API is challenging
due to powder flow properties such as segregation. The limit of quantification of the spectrometer
used for monitoring the formulation could also be a limiting factor (Beach et al., 2010; D. Ely,
Chamarthy, & Carvajal, 2006). However, the implementation of near infrared (NIR) spectroscopy
in combination with chemometrics and sampling strategies have provided excellent results for
formulations with low concentration of API. The applicability of NIR spectroscopy for real time
measurement in the compression machine, more specifically on the tableting feed frame section
has increased (Mateo-Ortiz, Colon, Romafach, & Méndez, 2014; Mendez, Muzzio, & Velazquez,
2010; Mendez, Muzzio, & Velazquez, 2012; Wahl et al., 2014; Ward, Blackwood, Polizzi, &

Clarke, 2013). The feed frame is chosen because it is the most representative stage measurement
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of API concentration possible before the final product. The operational conditions of the feed
frame (paddle and die disk speed) have been demonstrated to affect the material properties of the
powder blends, and in turn the final product quality (Mateo-Ortiz et al., 2014). Furthermore,
changes in the physical properties of the blends due to shear stress (Hernandez et al., 2016), over-
mixing (Igne, Talwar, Drennen, & Anderson, 2013), or over-lubrication (Igne et al., 2013) are
some of the problems that can arise from challenging process conditions in pharmaceutical
manufacturing.

Changes in physical properties of the materials due to the process within the feed frame (powder
density, particle size, flowability, cohesivity), have shown a significant effect on the NIR spectra,
therefore in predictions of the calibration model (Sierra-Vega et al., 2018). The determination of
the API concentration by NIR spectroscopy is difficult for low concentrations in the formulation,
since spectral preprocessing cannot eliminate completely the effects of the physical properties of
materials on the NIR spectra (Hernandez et al., 2016; Igne et al., 2013; Singh, Roman-Ospino,
Romafiach, lerapetritou, & Ramachandran, 2015). The characterization of pharmaceutical
materials within a feed frame using various spectroscopic techniques has been recently studied by
several groups to evaluate flowability, drug concentration, content uniformity, segregation,
potency in tablets, and composition of powder blends. Table 21 provides a summary of recent
studies using spectroscopic techniques in combination with chemometrics for quantitative
determinations of pharmaceutical materials within a feed frame. Table 21 also describes several
conditions that affect the analysis using a spectroscopic technique. The powder dynamics within
the feed frame can be significantly affected at lower paddle wheel speed which impacts the sample
presentation to the sensor (Ward et al., 2013). The physical position of the probe sensor (working

distance, measurement angle and location) is also an issue that has an impact on the analysis
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because it significantly affects the interaction of the radiation with the particles in the powder
blends (Sasi¢ et al., 2015). Changes in paddle wheel speed significantly affects the wave behavior
of the system, but the mass hold-up remains constant. Also, changes in the die disc speed affect
considerably the mass hold-up, increases the speed the mass hold-up decreases, but the wave
remains constant (Sierra-Vega et al., 2018).

This study describes advances in the real-time determination of drug concentration within a feed
frame. A NIR calibration model was developed to determine the concentration of API at 3.00
%w/w. The calibration model was developed with a design that included a high variability of major
excipients complementing a previous work that used minor variations of the excipients (Sierra-
Vega et al., 2018). The calibration design facilitates the evaluation of powder density and porosity
of the blends based on NIR calibration spectra. This study presents the first NIR calibration models
to determine powder density and relative specific void volume for blends at low API
concentrations within the feed frame. The powder density of the blends can be used to control
tablet weight and therefore the content uniformity of the drug can be controlled in the die filling
process in the feed frame. This work also contributes to the understanding of powder dynamics
within the feed frame. Studies shows that the implementation of probe sensors for monitoring
blending process facilitates the understanding powder dynamics which in practice are complex to
evaluate by theoretical arguments and computational tools (Table 21) (Koller et al., 2011). The
location of the probe sensor requires a priori knowledge of the process and the physics of the
materials as shown in Table 21. However, working with several disciplines facilitates the analysis
of the results obtained by NIR, chemometrics and computational tools to understand powder

dynamics, physical properties and flow properties of the powder blends in pharmaceutical
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manufacturing process. This is basically, the application of PAT in pharmaceutical industry as a

process understanding, control, and risk-based approach (Dickens, 2010).

Table 21. Studies using spectroscopy and chemometrics for quantification purposes within a feed frame

(Hetrick et al.,
2017)

variability to include in the calibration and
minimizing the consumption of API and
other raw materials.

Reference Method* | Purpose Challenge
Liu Y. and | NIR. Powder blend monitoring using NIR | Dynamic of powder flow.
Blackwood D. spectroscopy with chemometrics. Sample presentation.
(2012) (Yang Distance of NIR probe.
& Daniel,
2012, May 1)
Ward HW. et | NIR. Monitor the  powder composition | Mass throughput rate.
al. (2013) circulating using NIR spectroscopy | Low paddle wheel rotational speed
(Ward et al, following the derivative intensity of APl | causes bias between weight corrected
2013) band vs results and NIR signal.
time.
Mateo-Ortiz NIR. Off-line and in-line calibrations of API at | Powder accumulation on right
D. et al (2014) 5 to 15 %w/w to monitor die filling process | window would represent a false signal
(Mateo-Ortiz and understand powder behavior within | because is analyzed the same portion
etal., 2014) the feed frame of the material.
Off-line  calibration  did  not
incorporate powder dynamics within
the feed frame.
Wahl P.R., et | NIR In-line APl monitoring of powder blends | Stochastic segregation in hopper
al (2014) during manufacturing using Partial Least | feeding at 12-30% LC of API.
(Wahl et al., Squares (PLS) model of lab spectra | Critically at the end of process
2014) transferred via local centering. probably caused by segregation.
Sagi¢ S.etal. | NIR. Determination of APl in powder blends at | Physical position of NIR probe within
(2015) (Sasi¢ 3.5 %w/w using univariate analysis via | the feed frame causes differences in
etal., 2015) 2nd derivative spectra assessing by PCA as | baseline spectra.
further information.
Gosselin R. et | LIFS, Monitoring change in concentration of | Dynamics perceived by each probe
al. (2017) | NIR, multicomponent system of three API | varying powder composition.
(Gosselin, RGB color | (vitamins) using three spectroscopic tools
Duréo, imaging. triggered by a sensor to avoid interference
Abatzoglou, & between them.
Guay, 2015)
Durdo P.etal. | LIFS, Monitoring a multicomponent system of | 4 of the 5 vitamins could be monitored
(2017) (Duréo, | NIR, five APl  (vitamins) using three | by at least one of the tools according
Fauteux- RGB color | spectroscopic tools. to their physical characteristics and
Lefebvre, imaging. concentrations.
Guay,
Abatzoglou, &
Gosselin,
2017)
Hetrick E.M. | NIR. Design an offline approach to mimic the | Use of narrow wavelength range to
et al. (2017) full process allowing more source of | increase the sensitivity of the model

for the API.
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calibration with changes of 10% and 20%
of nominal paddle wheel speed.
Variographic analysis to characterize
sampling unit.

LiY.etal. Raman. Development and validation according to | Offline  modeling accurate  of
(2018) (Li, ICH-Q2 for inline and offline calibration to | predicting inline data after bias
Anderson, determine the blend content during tablet | correction.
Drennen, compression.
Airiau, & Igne,
2018)
De Leersnyder | NIR. Monitoring powder blends with two | Effect of paddle wheel fingers on
F.etal. different API target concentrations: 5 and | powder blend to avoid disturbances in
(2018) (De 20 %w/w. NIR signal.
Leersnyder et Effect of filling degree on NIR
al., 2018) spectra.
Lower paddle speed caused more
variation in predictions.
Sierra-Vega NIR. Determination of drug concentration in 3 | Changes in paddle wheel speed
N.O. et al. %w/w APl in powder blends with low | significantly affects the wave
(2018) (Sierra- changes in excipient composition by NIR | behavior of the system (frequency and
Vega et al., spectroscopy and PLS regression. amplitude), but the mass hold-up
2018) Evaluation of robustness of the NIR | remains constant.

Changes in the die disc speed affect
considerably the mass hold-up,
increases the speed the mass hold-up
decreases, but the wave remains
constant.

* NIR: Near Infrared, LIFS: Light-Induced Fluorescence Spectroscopy, RGB: Red Green Blue.

4.2. MATERIALS AND METHODS

4.2.1. Materials

Acetaminophen USP/paracetamol ph Eur semi-fine powder (APAP) from Mallinckrodt (Raleigh

NC USA) was used as active pharmaceutical ingredient (API). Vivapur 102 microcrystalline

cellulose PH. (MCC) from JRS Pharma LP (USA) and Tablettose 70 agglomerated lactose

monohydrate PH. EUR/USP-NF/JP (Meggle Excipients & Technology, Wasserburg, Germany)

were used as main excipients. Colloidal silicon dioxide (SiO2) from Acros Organics was used to

improve flow properties and magnesium stearate NF (MgSt) non-bovine from Mallinckrodt Inc.

(Saint Louis, MO, USA) was used as lubricant.
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4.2.2. Preparation of calibration and test set blends

The formulation components were added in layers to a 16-quart Patterson Kelley stainless steel
crossflow v-blender system. Two layers of lactose monohydrate were placed in the bottom and
upper part of the blender, while MCC, APAP and SiO> were placed in the middle. Blends are
initially mixed at 15 RPMs for 60 minutes, MgSt was added afterwards and mixed for an additional
4 minutes to avoid over-lubrication effects. After blending, samples were stored in sealed plastic
bags and used for the feed frame experiments within the next 24 hours. The composition of the
blends is described in Table 22. This calibration design includes a high variability of major
excipients complementing a previous work that used minor variations (Sierra-Vega et al., 2018)
which facilitates the evaluation of powder density and relative specific volume of the blends based

on NIR calibration spectra.

Table 22. Composition of calibration blends and test set blends

Blend APAP MCC Lac SiO2 MgSt
(Yow/w) (Yow/iw) (Yow/iw) (Yow/w) (Yow/w)
Calibration Blends
Cal1l 1.50 15.15 81.95 0.50 0.90
Cal 2 2.50 36.42 59.53 0.50 1.05
Cal 3 3.50 59.41 35.50 0.50 1.09
Cal 4 4,50 81.08 12.92 0.50 1.00
Test Set Blends
TS1 3.00 47.75 47.75 0.50 1.00
TS 2 3.00 24.76 70.74 0.50 1.00
TS3 3.00 41.04 54.46 0.50 1.00
TS 4 3.00 54.90 40.60 0.50 1.00

4.2.3. Characterization of powder blends

Bulk, tap, and true density (gas pycnometer) were characterized for all calibration and test
set blends. A graduated cylinder and Rice Lake TA-120 analytical balance was used to determine

bulk density. A VanKel Varian Tap density tester was used to apply 500 taps for tap density
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measurements. An AccuPyc Il 1340 gas displacement pycnometer (Micromeritics, Norcross, GA)
was used to measure the true density from 2.0 grams of powder sample in a 10 cm? sample cell,
and ultra-pure Helium (99.999%) from Praxair. A total of 10 purge and testing cycles at a final
pressure of 19.5 psig were used for the analysis at a feed rate of 0.005 psig/min to avoid disturbing

the powder sample.

4.2.4. Particle size distribution (PSD)

The particle size distribution (PSD) of raw materials and blends collected after the feed frame
experiments were obtained with the Malvern Insitec Analyzer (Malvern Instruments Model
IDC2000). Ten grams of each sample was analyzed three times and the PSD was reported as an

average value for D10, D50 and D90.

4.2.5. Instrumentation and acquisition of NIR spectra

A Matrix-F FT-NIR spectrometer from Bruker Optics (Billerica, MA, USA) was used for near
infrared spectral acquisition of the calibration and test set blends. Spectral acquisition parameters
were set at 16 scans per sample, 64 scans for background, and 16 cm™ of resolution. NIR spectra
were obtained approximately every 5 seconds. Opus 7.2 software and its feature “Control Process”
was used to control the NIR instrument and for automatic continuous data acquisition during each
measurement. During the experimental runs, a significant amount of spectral data was obtained
(more than 100 spectra per blend).

All NIR spectra were obtained for flowing powders within a tablet press hopper, a standard feed
frame taken from a Fette 3090 tablet press as shown in Figure 40, and an in-house high-density

polyurethane rotating die disk. The Fette 3090 feed frame is a multistage/multi-blade system, with
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three blades, one at the top which reduces the consolidation of the powder material entering the
feed frame, and two other blades. The polyurethane die disk consists of 36 dies of 10 mm diameter
and is mounted on a rotating DC gear motor which allow to rotate the disk in counter and clockwise

direction at controlled RPMs.

Figure 40. Fette 3090 feed frame assembly with the die disk and NIR probe.

The calibration and test set powder blends were fed into the Fette 3090 tablet press feed frame
using the tablet press hopper and the attached pipe. The NIR probe was installed outside the left
window on top of the feed frame. This location was selected because no stagnant material is
observed on this location, and the powder flow is uniform during the experiments (Mateo-Ortiz et
al., 2014). Similar observations were made in a previous study, where the effect of paddle height
and the gap between paddles and the bottom part of the device was evaluated (Mateo-Ortiz et al.,
2014). This study showed that the lower paddle height forces the material to pass above the paddles
reducing the accumulation of the powder in the left window location. The original plastic feed

frame window was replaced by a custom-made sapphire window with 30.10 mm of diameter, and
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a total thickness of 10.10 mm from Guild Optical Associates, (Amherst, NH). NIR spectra were
obtained through this sapphire window.

The feed frame was turned-on for the material to distribute within the feed frame and between the
blades. NIR spectra of the powder material within the feed frame were acquired prior to each
experimental run to ensure the optimal probe position. After setting the probe, the feed frame and
rotating disk were turned-on until the system achieves steady-state. NIR spectra were acquired
after the powder throughput reached steady state. Experiments were performed at 30 RPM’s for

feed frame and die disk rotation.

4.2.6. Development of multivariate calibration models

NIR spectral preprocessing, Principal Component Analysis (PCA) and Partial Least Squares (PLS)
regression models were developed with SIMCA 15 software (Sartorious Stedim Data Analytics
Solutions, Umed, Sweden). Two different spectral regions based on APAP absorption bands were
evaluated during the development of the calibration model, as well spectral preprocessing such as
standard normal variate (SNV), first and second derivatives (1% der, 2" der), and combinations of
SNV with derivatives. Model performance was evaluated calculating root mean square error of
prediction (RMSEP), the relative standard errors of prediction (RSEP (%)), bias, and standard

deviation defined as:

n &2
RMSEP = |2=aizyd® (1)

n

Z?=1(}A’i _yi)z
i )?

RSEP(%) = 100 x )
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. D)
Bias = YL~ 3

where n is the number of samples in the validation set, the §; and y; are the predicted and reference

concentration values of the sample in validation.

4.3. RESULTS AND DISCUSSION

4.3.1. Development of calibration model

Figure 41 shows all NIR spectra obtained in a single feed-frame experiment. The first 20 spectra
were obtained in the first 90 seconds of the experiments. These spectra were affected by low mass
hold-up within the feed frame resulting in a high baseline (the lower the mass hold-up the farthest
the powder from the NIR probe). Calibration models were developed using spectra obtained after
mass steady state (# 21 — 80). After the 80 spectra the baseline increases as the mass hold-up inside
the feed frame begins to decrease indicating that the system is operating outside of mass steady

state.
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Figure 41. NIR spectra obtained during a full experimental run. Black line for the NIR spectra obtained
during the first 90 seconds. Gray line for the NIR spectra during the steady state process. Light gray dashed
line for the NIR spectra obtained after the steady state process.

Figure 42 shows the averaged second derivative spectra of the 1.50 and 4.50 (%w/w) blends in
the 7600 — 4177 cm* spectral range where the major spectral differences were observed. Important
API bands were observed from 7420 — 7125 cm™ and 5580 — 5220 cm™* (close up windows). The
region at higher wavenumbers contains bands with moderate intensity and more energy which
implies more penetration of the radiation than the bands located at the lower wavenumbers which
has more intensity, but the radiation penetrates less (lyer et al., 2002). The observation of these
spectral differences is essential for the development of a PLS calibration model, where a

mathematical relationship is obtained between spectral changes and API concentration.
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Figure 42. Second derivative (25 points) NIR spectra for calibration blends with 1.50 and 4.50 (%w/w) of
API (Acetaminophen) in the spectral region 7600 — 4200 cm* (close up regions 7420 — 7125 cm™ and 5580
—5220 cm?).

Figures 28 to 33 shows the PCA score plots of the NIR spectra for the calibration blends in the
spectral region of 7600 — 4177 cm™ using spectral preprocessing. Figure 43 shows the PCA of the
calibration without preprocessing; the spectra of the samples are not distributed by concentration
level. Figure 44 shows the PCA of the calibration with SNV preprocessing. The explained
variance is 83.3% in the first principal component and 1.36% in the second component. The
samples are distributed by concentration level of the API along the first component and show
variations in the second component distributed by changes in concentration of the major
excipients. The PCA scores plot of the calibration blends with 1.5 and 4.5 (%w/w) of APAP,
present the higher concentration of one of the major excipients (MCC or lactose) as shown in
Table 22. The scores of these samples are aligned in the same direction of the second component

as shown the PCA of the different spectral preprocessing used. Figure 45 and Figure 46 shows
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the PCA plots using first and second derivative (25-point window) respectively. The use of the
derivative preprocessing of the NIR calibration spectra provides an explained X variance higher
than the obtained using SNV preprocessing, up to 95.5% in the first principal component with the
use of second derivative. The samples are separated by concentration level along the first
component and the variation in the second component is lower with the use of second derivative
(1.26% of the explained variance). Figure 46 shows all the samples are within and the plots are
distributed by clusters of concentration level with the use of second derivative (25-point). Figure
47 and Figure 48 shows the PCA using SNV+1%t and SNV+2" derivative (25-point window), with
the samples distributed along the first principal component with 91.1% and 89.5% of the explained
X variance respectively. The explained X variance of the first component is slightly lower than the
variance with the second derivative preprocessing. In summary, the PCA plots of the calibration
spectra shows a distribution pattern separated by concentration level in the first principal
component, indicating that this spectral variation could be used to develop a PLS calibration model
to determine the concentration of APAP in the range of 1.50 to 4.50 (%w/w) in powder blends

within the feed frame.
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Figure 43. PCA score plots of the NIR spectra for calibration blends with 1.50, 2.50, 3.50, and 4.50 (%w/w)
of API (acetaminophen) in the spectral region 7600 — 4200 cm™ without spectral preprocessing.
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Figure 44. PCA score plots of the NIR spectra for calibration blends with 1.50, 2.50, 3.50, and 4.50 (%w/w)
of API (acetaminophen) in the spectral region 7600 — 4200 cm™ with spectral preprocessing SNV.
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Figure 45. PCA score plots of the NIR spectra for calibration blends with 1.50, 2.50, 3.50, and 4.50 (%w/w)

of API (acetaminophen) in the spectral region 7600 — 4200 cm™ with spectral preprocessing 1% derivative
25-point window.
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Figure 46. PCA score plots of the NIR spectra for calibration blends with 1.50, 2.50, 3.50, and 4.50 (Y%ow/w)
of API (acetaminophen) in the spectral region 7600 — 4200 cm™* with spectral preprocessing 2™ derivative
25-point window.

109



@1.50%

A H2.50%
0.08 A A3.50%
0.06 v4.50%
0.04

t[2

— 0.02
; C
-0.02 .

-0.04
-0.06
-0.08 ‘ ‘ ‘ ‘
-0.3 -0.2 -0.1 0 0.1 0.2

t[1]
Figure 47. PCA score plots of the NIR spectra for calibration blends with 1.50, 2.50, 3.50, and 4.50 (%w/w)

of API (acetaminophen) in the spectral region 7600 — 4200 cm™ with spectral preprocessing SNV+1%
derivative 25-point window.
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Figure 48. PCA score plots of the NIR spectra for calibration blends with 1.50, 2.50, 3.50, and 4.50 (%ow/w)

of API (acetaminophen) in the spectral region 7600 — 4200 cm-1 with spectral preprocessing SNV+2™
derivative 25-point window.
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4.3.2. Prediction of test set blends

Table 23 shows the figures of merit of calibration models developed within the 7600 — 4177 cm™
and 5446 — 4779 cm spectral regions based on the prediction of test set blends. These spectra
were obtained after steady state was achieved within the feed frame. The effectiveness of the
models was evaluated by predicting independent test set blends prepared as described in Table 22.
Test set blend 1 had equal proportions of the major excipients used in the blend (47.75 % (w/w)
each). The figures of merit for test set blend 1 (Table 23) show low RSEP(%) and bias regardless
of the preprocessing and spectral region that was used. Most of the calibration models provided
excellent predictions with only 2 latent variables, and bias that varied from 0.00 to 0.22 (Yow/w).
The best predictions obtained for test set blend 1 were with calibration model 4 developed in the
7600 — 4177 cm* spectral region using 2 latent variables and SNV+1% derivative (25 points) as
spectral preprocessing. This calibration model provided a bias of -0.01 (%w/w) and RSEP(%) of
2.21 (%w/w). Test set 1 was accurately predicted with practically all the spectral regions and
spectral preprocessing described in Table 23.

Test set blend 2 was prepared with a greater difference in excipients (24.76 %w/w for MCC and
70.74 %w/w for lactose) as shown in Table 22. This variation in excipients for test set 2 is within
the range of variations in the composition of calibration blends. Calibration model 4, predicted test
set blend 1 with a bias of only -0.01 % (w/w), now predicts test set blend 2 with a bias of -1.15
(%w/w) with 2 latent variables and with an RSEP(%) greater than 38%. The RSEP(%) in the
predictions from test set blend 2 are over 30% for several of the calibration models described in
Table 22. The predictions of test set blend 2 present low accuracy and precision for most of the
preprocessing in the spectral regions evaluated in this study, except for second derivative

calibration models. The predictions after SNV transformation presented the higher bias and
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standard deviation values. The calibration models developed using the 2" derivative (25 points)
provided the best accuracy and acceptable precision for the case of test set blend 2, using three
latent variables, in the spectral region of 7600 — 4177 cm™. The calibration models developed
using the 2" derivative (25 points) were the only models that provided adequate accuracy in the
prediction of test set blend 2.

The calibration models were further evaluated through the predictions of test set blends 3 and 4.
Test set blend 3 had 41.04 (%w/w) for MCC and 54.46 (%w/w) for lactose, while test set blend 4
had 54.90 (%w/w) for MCC and 40.60 (%w/w) for lactose as shown in Table 22. Even though the
composition of test set blends 3 and 4 are very similar with minor changes between the excipients,
the accuracy and precision are different according to the spectral region and preprocessing used.
The results using SNV provided high RSEP(%) values (up to 13.93%) and low accuracy even
using three latent variables with bias up to 0.42 (%w/w) from the reference value (3.00 %w/w).
The calibration model performed with second derivative in the 7600 — 4177 cm™ spectral region
using three latent variables provided a high accuracy and precision for test blend 4 but not for test
blend 3. Further evaluation needs to be performed to understand the results of this calibration
model.

The results described in Table 23 shows that there is not a unique calibration model that is capable
of predicting the four test set blends with high accuracy and precision. Test set blend 1 is predicted
with high accuracy by practically all the calibration models developed. However, the calibration
models developed have difficulty in handling the variations observed in the other test set blends.
Based on the results obtained in Table 23, the evaluation of PLS score plot was performed on the
calibration model using 2" derivative (25-point window) as preprocessing in the 7600 — 4177 cm’

! spectral region.
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Table 23. Summary of the predictions of an independent 3.00 (%w/w) test set (TS) blend with the
developed calibration models. n>38 spectra

TS RMSEP | RSEP | Average Bias RMSEP | RSEP | Average Bias
blend (%) (%) (Yow/w) (Yowiw) | (%) (%) (Yow/w) (Yow/w)
2 Latent variables 3 Latent variables
Cal model 1: SNV 7600 — 4177 cm™?
1 0.07 2.26 3.00 £ 0.07 | 0.00 0.07 2.25 3.02£0.06 | 0.02
2 1.25 4151 1.78+0.26 | -1.22 1.25 41.70 1.77+0.24 | -1.23
3 0.34 11.47 2.66+0.03 | -0.34 0.30 10.03 2.70+£0.03 | -0.30
4 0.36 12.10 3.36 £0.03 | 0.36 0.42 13.93 3.42+£0.03 | 0.42
Cal model 2: 1% der(25) 7600 — 4177 cm'!
1 0.22 7.43 3.22+£0.05 | 0.22 0.09 2.84 3.04£0.08 | 0.04
2 0.77 25.51 2.27+£0.23 | -0.73 0.32 10.81 2.74+£0.19 | -0.26
3 0.09 3.14 2.91+£0.04 | -0.09 0.48 15.90 2.52+0.03 | -0.48
4 0.58 19.21 3.58+0.02 | 0.58 0.12 3.99 3.12+£0.03 | 0.12
Cal model 3: 2" der(25) 7600 — 4177 cm™*
1 0.10 3.39 3.01+0.10 | 0.01 0.07 2.34 3.02 £0.07 | 0.02
2 0.13 4.26 3.08+0.10 | 0.08 0.11 3.66 3.04+£0.10 | 0.04
3 0.67 22.33 2.33+0.06 | -0.67 0.52 17.40 2.48+0.05 | -0.52
4 0.20 6.70 2.81+0.06 | -0.19 0.05 1.75 3.00+0.05 | 0.00
Cal model 4: SNV+1% der(25) 7600 — 4177 cm**
1 0.07 2.21 2.99+0.07 | -0.01 0.06 1.85 3.00+£0.06 | 0.00
2 1.17 39.03 185+0.21 | -1.15 1.15 38.41 187+0.21 | -1.13
3 0.29 9.52 2.72+£0.04 | -0.28 0.24 8.13 2.76+£0.04 | -0.24
4 0.39 12.94 3.39+£0.04 | 0.39 0.44 14.53 3.43+0.03 | 0.43
Cal model 5: SNV 5446 — 4779 cm™?
1 0.14 4.56 2.91+0.10 | -0.09 0.10 3.25 2.96+0.09 | -0.04
2 1.14 37.94 1.89+0.25 | -1.11 1.21 40.30 1.82+0.25 | -1.18
3 0.36 12.14 2.64+£0.03 | -0.36 0.29 9.71 2.71+£0.03 | -0.29
4 0.20 6.83 3.20+£0.03 | 0.20 0.32 10.75 3.32+0.03 | 0.32
Cal model 6: 1% der(25) 5446 — 4779 cm™
1 0.23 7.51 3.22+0.06 | 0.22 0.12 3.90 2.94+0.10 | -0.06
2 0.73 24.22 2.31+£0.24 | -0.69 0.26 8.77 2.89+0.24 | -0.11
3 0.11 3.62 2.90+£0.04 | -0.10 0.65 21.74 2.35+0.03 | -0.65
4 0.54 18.03 3.54+£0.02 | 0.54 0.15 5.14 2.85+0.04 | -0.15
Cal model 7: 2™ der(25) 5446 — 4779 cm™
1 0.13 4.44 2.98+0.13 | -0.02 0.06 2.01 3.03+0.06 | 0.03
2 0.24 7.83 3.21+£0.11 | 0.21 0.21 7.00 3.19+£0.09 | 0.19
3 0.78 25.93 2.22+0.06 | -0.78 0.58 19.28 2.42 £0.05 | -0.58
4 0.36 11.99 2.65+0.06 | -0.35 0.11 3.74 2.90+0.06 | -0.10
Cal model 8: SNV+1% der(25) 5446 — 4779 cm?
1 0.13 4.45 2.89+0.08 | -0.11 0.12 3.91 2.91+0.07 | -0.09
2 1.10 36.71 1.93+0.24 | -1.07 1.14 38.16 1.88+0.25 | -1.12
3 0.43 14.35 2.57+0.03 | -0.43 0.40 13.26 2.60+0.03 | -0.40
4 0.17 5.69 3.17+£0.02 | 0.17 0.23 7.54 3.22+0.03 | 0.22

Figure 49 shows the PLS score plot projections of the calibration and test set blends using the
second derivative model (25-point window) in the 7600 — 4177 cm™ spectral region. The scores

of the calibration blends (white symbols) vary along the first principal component according to the
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concentration of the API. However, the scores of the calibration blends differ along the second
component. The PLS score plots of the calibration blends present a similar pattern distribution as
the PCA score plots of the same blends shown in Figure 4d. The difference between the PLS score
plots and the PCA score plots of the calibration blends is in the second principal component, in the
projection of the plots in this axis, and the explained X variance (1.26% for the PCA and 1.08%
for PLS). The scores of the calibration blends with 1.50 and 4.50 %w/w of APAP are in the positive
values of the second component. Calibration blend 1 has a high lactose (81.95 %w/w) composition,
while calibration blend 4 has a high MCC content (81.08 %w/w) as shown in Table 22. The
calibration blends with 2.50 and 3.50 %w/w of APAP are observed in the opposite site of second
component). Calibration blend 2 has 36.42 (%w/w) MCC and 59.53 (%w/w) lactose, while
calibration blend 3 has 59.41 (%w/w) and 35.50 (%w/w) lactose. Therefore, the second principal

component is related to concentration of MCC and lactose in the in the blends.

Figure 49 also shows the projection of the test set blends (gray symbols), all of which have a 3.00
(%w/w) APAP concentration. Test set blend 1 has the same content of MCC and lac (47.75 %w/w),
and its scores are projected between those of the 2.50 (%w/w) and 3.50 (%w/w) calibration blends.
The scores of test set blend 2 are aligned with the second component and projected away from
those of the 2.50 (%w/w) and 3.50 (%w/w) calibration blends. This projection can be due to the
high content of lactose in the formulation of this blend (70.74 %w/w), following a similar tendency
as calibration blends with 1.50 and 4.50 %w/w APAP. However, as discussed before, the accuracy
of the predictions for this blend is high, while the precision is not the best for the test set blends,
but is an acceptable value as shown in Table 23 (average 3.04 £ 0.10 %w/w using three latent

variables). The test set blend 3 scores are projected with the scores of the 2.50 (%w/w) calibration
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blends, explaining the negative bias observed in many of the calibration models summarized by

Table 23.
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Figure 49. PLS score projections for calibration blends with 1.50, 2.50, 3.50, and 4.50 (%w/w) APAP and

3.00 (%w/w) APAP test set blends predictions. Calibration model 2™ derivative (25-point window) in the
spectral region 7600 — 4177 cm™.

Test set blends 3 and 4 present intermediate values of lac and MCC (Table 22) and are projected
in the center of the first principal component, and this is correct according to concentration of the
API. As the case of the calibration blends with 2.50 and 3.50 %w/w of APAP, the projections of
test set blends 3 and 4 are in the negative values of the second component. The case of the
projections of the test set blend 2 need to be further evaluated. This blend presents a high
concentration of one of the excipients (70.74 %wi/w lactose), and it is in the range of the calibration
blends.

The two excipients, Vivapur 102 microcrystalline cellulose and Tablettose 70 lactose

monohydrate, differ significantly in their bulk densities as shown in Table 24. The APAP used
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had a bulk density of 0.35 g/cm?® while MCC had a bulk density of 0.31 g/cm®. Lactose (tablettose
70) had a much larger bulk density of 0.52 g/cm®. Changes in the concentration of MCC or lactose
in the formulations significantly affect the physical properties of the blends which leads to changes
in the spectral data, therefore these changes in spectral data leads the patterns in the PCA and PLS
score projection. These figures show that a higher concentration of one the major excipients (MCC
or lactose) present positive values of the scores in the second principal component using the model
2" derivative (25-point window) in the spectral region 7600 — 4177 cm™. Equivalently, middle
values in the concentration of major excipients are observed in the opposite site of second
component of the projections. Therefore, the physical properties of the calibration and test set
blends were characterized to obtain a better understanding of how changes in the excipient ratios

affect the predictions of the calibration models.

Table 24. Determination of bulk and tap densities for calibration and test set blends.

. APAP Average Bulk Average Ta|
Blend / Material (%w/w)  Density (3/cm3) n=2  Density (gg/cm3)pn:2

Cal 1 1.50 0.53 0.65

Cal 2 2.50 0.48 0.63

Cal 3 3.50 0.44 0.58

Cal 4 4.50 0.41 0.56

TS1 3.00 0.47 0.65

TS 2 3.00 0.51 0.66

TS3 3.00 0.49 0.64

TS4 3.00 0.45 0.61

APAP (Pure) - 0.35 0.64
Vivapur 102 (Pure) - 0.31 0.46
Tablettose 70 (Pure) - 0.52 0.66

4.3.3. Characterization of the physical properties of the blends

The bulk, tap, true density (Table 24) of the blends, the excipients and APAP were determined, as

well as their particle size distribution (Table 25). Particle size, like bulk density, is controlled by
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the lactose concentration of the blends (low lactose concentration, low particle size distribution).
The characterization of these excipients showed that the average D50 for lactose (211.5 pm) is 2

times the value on MCC (99.2 um) creating a similar effect on bulk density.

Table 25. Particle size distribution for calibration and test set (TS) blends as determined by the Insitec Dry
particle size analyzer.

Series Name D10 (micron) D50 (micron) D90 (micron)
Value | Average | Std. Dev | Value | Average | Std. Dev | Value | Average | Std. Dev

Call 97.1 57.51 11.71 272.86 | 196.01 21.12 615.71 | 420.21 100.47
Cal 2 39.74 | 45.28 5.35 124,75 | 171.21 14.82 262.46 | 406.95 109.58
Cal 3 39.2 | 37.15 2.35 144.34 | 141.57 7.72 482.79 | 377.44 | 4151
Cal 4 31.65 | 32.91 1.37 111.38 | 122.42 4.98 272.53 | 328.12 17.13
TS1 51.78 | 39.86 4.25 189.65 | 156.27 12.14 514.47 | 360.08 66.04
TS?2 46.04 | 48.51 6.21 153.72 | 181.88 14.22 320.29 | 387.79 64.95
TS 3 46.76 | 40.29 5.07 160.36 | 154.92 13.36 399.74 | 417.19 55.45
TS 4 46.28 | 40.46 3.36 164.62 | 149.94 9.27 363.32 | 371.64 16.61

Figure 50 shows a linear regression developed between lactose and the D50 of the blends, since
lactose is affecting more significantly the particle size of the blends. This linear regression was
used to calculate the amount of lactose (and hence MCC) by interpolation to the D50 of the 3.00
(%w/w) in APAP of the blends. Test set blend 3 presents a deviation of 6.5% from the average
D50 in Table 25. This deviation of the trend of particle size can be partially the reason of the low
accuracy of predictions for this test set blend as shown in Table 2 (bias of -0.52 %w/w). For the
regression with the bulk density (Figure 50 bottom) the value of the bulk density is closer to the
trend and show a better correlation. This provide an opportunity to develop a calibration model

base on the bulk density.
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Figure 50. Linear relationship between: lactose (%ow/w) and D50 particle size distribution (top), and lactose
(%w/w) and bulk density (g/cm?®) (bottom) for calibration and test set (TS) blends.

4.3.4. Development of RSVV and powder bulk density models

A calibration based relative specific void volume of the powder blends was developed based on
relative specific void volume (RSVV) of the powder blends since the results obtained showed that
the powder density of the blends has a significant effect on the drug concentration predictions.
True density would be the most representative physical property to be used as reference value,
since it represents the most accurate density value measured, due to the rigorous conditions of the
test (powder porosity volume is removed using an inert gas). However, the differences between
the true density values of each blend are minimal. Higher numerical values were obtained
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(equation 4) calculating the relative specific void volume (RSVV) with the bulk density (ppuix)
and the true density (p:ye) Values for all calibration and tests blends (Table 26). Using the
measured bulk and true density (pycnometer) values for all calibration and test set blends from
Table 4. The relative specific void volume is directly proportional to the porosity (relative specific
void volume / relative specific bulk volume) of the blends due to the variation in excipients. These
changes in the amount of lactose and MCC in each blend and the differences in mean particle size

between both impacts significantly the RSVV of the void volume.

RSVV = [————] @)

Pbulk Ptrue

Table 26. Relative specific volume and true density values for calibration and test set (TS) blends.

Blends Bulk Density | True Density | Relative Specific Void
(g/cm®) (g/cm®) Volume (cm®g)
Call 0.53 1571 1.263
Cal 2 0.48 1.568 1.446
Cal 3 0.44 1.566 1.611
Cal 4 0.41 1.569 1.812
TS1 0.47 1.572 1.480
TS 2 0.51 1.571 1.330
TS 3 0.49 1.568 1.412
TS4 0.45 1.574 1.581

* base 1 g of powder blend.

The relative specific void volume calibration models were developed with similar spectral regions
and pre-treatments as in the previous sections. Table 27 shows the results of the calibration models
based on relative specific void volume of the blends. From the table several calibration models
based on relative specific volume, exhibited excellent results prediction for all 4 independent test
set blends. RSEP(%) below 4%, and significantly low bias values were obtained. Best results for

all test set blends, were obtained using SNV+1% derivative (25 points) using one latent variable in
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the spectral range 7600 — 4177 cm™. By using a physical property as reference value (bulk density,
true density, RSVV), the predictions improved significantly in comparison with the predictions
when concentration was used as a reference value. Most of the variation in the calibration model
can be attributed in physical changes in the samples and using a physical property as reference
enhances the accuracy of the model. This result indicates that the changes in porosity significantly
affect the API concentration predictions and is the reason why was not be possible to find a robust

model to predict the API concentration for the 4 test set blends in this study.

120



Table 27. Summary of the predictions for test set (TS) blends 1 - 4 based on relative specific void volume

(RSVV). n>38 spectra

Ref. Average Bias Average Bias
'tI)'IS (RSVV RMSEP | RSEP (RSV\? (RSVV RMSEP | RSEP (RSV\? (RSVV
end (%) (%) (%) (%)
cm3/q) cm3/g) cm3/q) cm3/g) cm3/q)
1 Latent variable 2 Latent variables
Cal model 1: SNV 7600 — 4177 cm?*
1 1.480 0.05 3.64 153+0.01 | 0.05 0.06 3.86 154+0.01 | 0.06
2 1.330 0.05 3.95 1.31+0.05 -0.02 0.04 3.06 1.32+0.04 | -0.01
3 1.412 0.06 3.93 1.47+0.01 | 0.06 0.07 4.78 1.48+0.01 | 0.07
4 1.581 0.01 0.87 159+0.00 |0.01 0.02 1.50 1.60+0.00 | 0.02
Cal model 2: 1% der(25) 7600 — 4177 cm'!
1 1.480 0.11 7.44 1.56+0.08 | 0.08 0.09 6.27 1.57+0.01 | 0.09
2 1.330 0.10 7.85 1.42+0.05 | 0.09 0.09 6.75 1.41+0.04 | 0.08
3 1.412 0.03 2.32 1.44+0.02 | 0.03 0.10 6.79 151+0.01 |0.10
4 1.581 0.07 4.57 1.51+0.01 -0.07 0.04 2.78 1.62+0.00 | 0.04
Cal model 3: 2" der(25) 7600 — 4177 cm™
1 1.480 0.10 6.66 157+0.05 | 0.09 0.06 4.21 153+0.03 | 0.05
2 1.330 0.09 6.89 1.41+0.04 | 0.08 0.23 16.96 155+0.02 | 0.22
3 1.412 0.07 4.75 1.48+0.01 | 0.07 0.02 1.31 140+0.01 |-0.01
4 1.581 0.02 1.05 1.57+0.01 -0.01 0.10 6.45 1.48+0.01 | -0.10
Cal model 4: SNV+1%t der(25) 7600 — 4177 cm**
1 1.480 0.05 3.39 152+0.03 | 0.04 0.06 3.83 153+0.02 | 0.05
2 1.330 0.04 3.26 1.36+0.03 | 0.03 0.04 2.83 1.35+0.03 | 0.02
3 1.412 0.04 2.87 1.45+0.01 | 0.04 0.08 5.50 1.49+0.01 | 0.08
4 1.581 0.03 2.14 1.55+0.01 -0.03 0.02 1.45 1.60+0.01 | 0.02
Cal model 5: SNV 5446 — 4779 cm™?
1 1.480 0.07 4.47 1.54+0.03 | 0.06 0.04 2.91 1.52+0.02 | 0.04
2 1.330 0.04 2.64 1.35+0.03 | 0.02 0.04 3.36 1.35+0.04 | 0.02
3 1.412 0.08 5.39 1.49+0.01 | 0.08 0.05 3.84 1.47+0.01 | 0.05
4 1.581 0.01 0.57 1.59+0.01 | 0.00 0.02 1.24 156+0.00 | -0.02
Cal model 6: 1% der(25) 5446 — 4779 cm™
1 1.480 0.11 7.33 155+0.08 | 0.07 0.09 6.14 157+0.01 | 0.09
2 1.330 0.10 7.76 1.42+0.05 | 0.09 0.10 7.50 1.42+0.04 | 0.09
3 1.412 0.03 2.39 1.44+0.02 | 0.03 0.09 6.41 1.50+£0.01 | 0.09
4 1.581 0.07 4.47 151+0.01 -0.07 0.03 2.17 1.61+0.00 0.03
Cal model 7: 2™ der(25) 5446 — 4779 cm™
1 1.480 0.10 6.67 1.56+0.05 | 0.08 0.06 3.87 1.53+0.03 | 0.05
2 1.330 0.10 7.17 1.42+0.04 | 0.09 0.25 18.85 158+0.02 | 0.25
3 1.412 0.06 4.09 1.47+0.01 | 0.06 0.03 2.07 1.39+0.01 | -0.03
4 1.581 0.03 1.63 1.56+0.01 -0.02 0.12 7.87 1.46+0.01 |-0.12
Cal model 8: SNV+1% der(25) 5446 — 4779 cm?
1 1.480 0.05 3.49 1.52+0.03 | 0.04 0.05 3.15 152+0.03 | 0.04
2 1.330 0.04 2.98 1.35+0.03 | 0.02 0.05 3.57 1.36+0.03 | 0.03
3 1.412 0.05 3.54 1.46+0.01 | 0.05 0.04 2.75 1.45+0.01 | 0.04
4 1.581 0.03 1.64 1.56+0.01 -0.02 0.04 2.62 154+0.01 | -0.04
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Figure 51 shows the results of the NIR predictions of APAP versus the RSVV predictions of the
test set blends using the second derivative and SNV +1st derivative models. The predictions of the
blends are using the first and two latent variables in the 7600 — 4177 cm™* spectral region with the
two spectral preprocessing mentioned before. From the figure the results of the NIR predictions
present a high correlation (up to 0.976) with the results of the RSVV predictions for the four blends
evaluated, except for the second derivative predictions using two latent variables. This result
supports that relative specific void volume affect the NIR predictions of the API in powder blends
at low concentration as mentioned. The model using second derivative with two latent variables
present the lowest correlation between NIR predictions of the APl and the RSVV predictions. In
spite of this calibration model presents the best predictions as shown in Table 22, the predictions

tend to be affected by relative specific void volume of the blends as shown in Figure 51.
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Figure 51. NIR predicted values vs reference relative specific void volume (RSVV) of the test set (TS)
blends. 2" derivative model (left graphs). SNV+1% derivative model (right graphs). 1 latent variable (upper
graphs). 2 latent variables (bottom graphs). Gray columns for NIR predicted values and checker board
columns for reference RSVV values.
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A calibration based bulk density of the powder blends was developed based on the results
described in Figure 50. A previous study shows that powder density of the blends has an impact
on the NIR spectra at different tap density levels, different strain levels, and applying normal forces
during a compressibility test with a powder rheometer (Roméan-Ospino et al., 2016). In this work,
NIR calibration models based on bulk density of the powder blends were developed by sampling
within the feed frame for blends with different excipient ratio. Table 28 shows the results of the
test set blends based on bulk density calibration models. As show the table, using one latent
variable the results are excellent for the four test set blends evaluated in this study. Calibration
models using SNV and SNV+1% derivative in the two spectral regions evaluated in this study
present the best results with RSEP(%) values below that 2.60 % and low bias. This result, as
demonstrated by a previous study (Roman-Ospino et al., 2016) show that powder density of the
formulations has an impact on the NIR spectra of the blends, in this case at low API concentrations.
Changes on NIR spectra of the powder blends due to process within the feed frame can be used to
monitor these physical changes to improve control strategies for properties such as tablet mass,

hardness and dissolution.
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Table 28. Summary of the predictions for test set (TS) blends 1 - 4 based on bulk density. n>38 spectra.

Ref. Average Bias Average Bias
TS (Bulk RMSEP | RSEP (Bulk RMSEP | RSEP (Bulk
blend | dens. | (%) () | Bulkdens. | e | (o) () | Bulkdens. | o
/ cm3) g/ cm3)
g/ cm3) g g/ cm3) g/ cm3)
1 Latent variable 2 Latent variables
Cal model 1: SNV 7600 — 4177 cm*
1 0.47 0.01 1.19 0.47+0.00 | 0.00 0.01 1.43 0.46+0.00 |-0.01
2 0.51 0.01 2.40 051+0.01 | 0.00 0.02 3.13 052+0.01 |0.01
3 0.49 0.01 2.09 0.48 £ 0.00 -0.01 0.01 1.99 0.48+0.00 |-0.01
4 0.45 0.00 0.44 0.45+0.00 | 0.00 0.00 0.29 0.45+0.00 | 0.00
Cal model 2: 1% der(25) 7600 — 4177 cm™
1 0.47 0.02 4.39 0.46 £ 0.02 -0.01 0.02 3.32 0.45+0.00 | -0.02
2 0.51 0.02 4.45 0.49 £ 001 -0.02 0.02 3.21 050+£0.01 |-0.01
3 0.49 0.01 1.18 0.49+0.00 | 0.00 0.02 4.26 0.47+0.00 | -0.02
4 0.45 0.02 4.47 0.47+0.00 | 0.02 0.01 1.40 0.44+£0.00 |-0.01
Cal model 3: 2" der(25) 7600 — 4177 cm™
1 0.47 0.02 3.55 0.46 £ 0.01 -0.01 0.01 2.06 0.46+0.00 |-0.01
2 0.51 0.02 3.85 0.49 £ 0.01 -0.02 0.04 7.16 047+0.01 |-0.04
3 0.49 0.01 2.65 0.48 £ 0.00 -0.01 0.01 1.65 0.48+0.00 |-0.01
4 0.45 0.01 1.63 0.46+0.00 |0.01 0.01 2.36 0.46+0.00 | 0.01
Cal model 4: SNV+1%t der(25) 7600 — 4177 cm**
1 0.47 0.01 1.52 0.47+0.01 | 0.00 0.01 1.28 0.47+0.00 | 0.00
2 0.51 0.01 1.87 0.50 £ 0.01 -0.01 0.01 1.85 0.51+0.00 | 0.00
3 0.49 0.01 1.50 0.48 £ 0.00 -0.01 0.01 2.10 0.48+0.01 |-0.01
4 0.45 0.01 2.59 0.46+0.00 | 0.01 0.00 1.02 0.45+0.00 | 0.00
Cal model 5: SNV 5446 — 4779 cm™?
1 0.47 0.01 2.07 0.46 £ 0.01 -0.01 0.01 3.00 0.46+0.01 |-0.01
2 0.51 0.01 1.44 0.51+£0.01 | 0.00 0.01 1.63 052+0.01 |0.01
3 0.49 0.02 3.29 0.47 £ 0.00 -0.02 0.02 4.82 0.47+0.00 | -0.02
4 0.45 0.00 0.60 0.45+0.00 | 0.00 0.01 2.12 0.44+0.00 |-0.01
Cal model 6: 1% der(25) 5446 — 4779 cm™
1 0.47 0.02 4.32 0.46 £ 0.02 -0.01 0.02 3.47 0.45+0.00 | -0.02
2 0.51 0.02 4.39 0.49 £ 0.01 -0.02 0.02 3.33 050+0.01 |-0.01
3 0.49 0.01 1.22 0.49+0.00 | 0.00 0.02 4.27 0.47+0.00 | -0.02
4 0.45 0.02 4.39 0.47+0.00 | 0.02 0.01 1.34 0.44+0.00 |-0.01
Cal model 7: 2™ der(25) 5446 — 4779 cm™
1 0.47 0.02 3.58 0.46 £ 0.01 -0.01 0.01 2.17 046+0.01 |-0.01
2 0.51 0.02 4.01 0.49 £ 0.01 -0.02 0.04 8.03 0.47+0.01 | -0.04
3 0.49 0.01 2.23 0.48 £ 0.00 -0.01 0.00 0.70 0.49+0.00 | 0.00
4 0.45 0.01 2.13 0.46+0.00 | 0.01 0.02 4.04 0.47+0.00 | 0.02
Cal model 8: SNV+1% der(25) 5446 — 4779 cm!
1 0.47 0.01 1.42 0.47+0.01 | 0.00 0.01 1.66 0.46+0.00 |-0.01
2 0.51 0.01 1.70 051+0.01 | 0.00 0.01 1.98 051+0.01 | 0.00
3 0.49 0.01 1.97 0.48 £ 0.00 -0.01 0.02 3.30 0.47+0.00 |-0.02
4 0.45 0.01 2.13 0.46 + 000 0.01 0.00 0.51 0.45+0.00 | 0.00
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These results of this study show that NIR spectroscopy could be used to monitor physical
properties as bulk density and RSVV of the powder blends within the feed frame and contribute
to the control of tablet weight variability. The same NIR spectra could also be used to determine
low drug concentration, or for real time identification of the powder blend (Vargas et al., 2018).
NIR measurements within the feed frame could become important elements within modern

pharmaceutical quality control.

4.4. CONCLUSIONS OF CHAPTER 4

This study has described the first evaluation of powder bulk density and relative specific void
volume (RSVV) or porosity of powder blends at low API concentrations within the feed frame.
This determination was made possible by the large differences in powder density in the excipients
used which facilitates the evaluation of powder density and RSVV of the blends based on NIR
spectra.

Further evaluation using the powder density and particle size data of the blends showed a trend
based on the linear regression of the D50 and bulk density vs lactose concentration (%w/w). D50
values of lactose is approximately 2 times than MCC, the bulk density of the blends. The test set
blend 3 presented a deviation of this linear trend, which partially can explain the bias of the NIR
predictions of this blend.

NIR calibrations based relative specific void volume and bulk density of the blends were
developed since the results obtained showed that the powder density of the blends has a significant
effect on the drug concentration predictions. These calibration models using the same spectral
region and pretreatments as the used for API concentration presented excellent results prediction

for all 4 independent test set blends using one latent variable. By using a physical property as
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reference value (bulk density, true density, RSVV), the predictions were improved significantly.
This result supports that most of the variation in the calibration model can be attributed to physical
changes on the samples and using a physical property as reference enhances the accuracy of the

model.
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CHAPTER 5: NIR SPECTROSCOPY AS A NON-DESTRUCTIVE AT LINE METHOD
FOR MONITORING TABLET DRUG CONCENTRATION IN A CONTINUOUS
MANUFACTURING PROCESS

To be submitted, Carlos A. Ortega-Zufiiga, Jesus Torres, Rafael Méndez, Anthony Gonzalez,
Yleana Colon, Eric Sanchez, Rodolfo J. Romariach

This chapter is not an exact copy of the paper to be submitted. It contains original information.

5.1. INTRODUCTION

This study was performed to develop an at-line near-infrared (NIR) spectroscopy method
with chemometrics to determine drug concentration and confirm composition correctness of one
active pharmaceutical ingredient (API) in core tablets of a combination medicine of two APIs from

a Continuous Manufacturing (CM) process for real-time release testing (RTRt).

The “Guidance for Industry of the Food and Drug Administration” (FDA) (US-FDA, 2004)
has increased the interest in process analytical technology (PAT) initiative in the pharmaceutical
industry. One subject described in the guidance is RTRt. Real time release is a principle that
provides assurance of the quality criteria specifications intended during the manufacturing process
of a product with good manufacturing practice (GMP) requirements based on process data analysis
(Pestieau et al., 2014; Skibsted et al., 2007). The development of an RTR system requires an in-
depth and careful analysis of the quality attributes of the materials involved in all the
manufacturing process. The use of NIR and chemometrics as PAT serves to monitor and evaluate
the changes in the materials during the manufacturing processes and facilitates the analysis and
decision making for control process (Duréo et al., 2017; lerapetritou, Muzzio, & Reklaitis, 2016;

Roméan-Ospino et al., 2016; Singh et al., 2015).
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Continuous manufacturing, as the FDA states, “often involves a higher level of process
design to ensure adequate process control and product quality” (Lee et al., 2015). Since the FDA
approved the use of CM for the first time on a continuous manufacturing production line, there has
been growing research regarding process understanding of manufacturing and the science behind
the technological advancements in CM processes (US-FDA, 2015). Puerto Rico has the second
CM line approved by the FDA for tablet production of an anti-HIV product (Pharmaceutical
Technology Editors, 2016, Apr 12). The use of CM to replace batch manufacturing is the result of
five years of collaboration of the industry and the academia, principally Rutgers University and
University of Puerto Rico at Mayaguez (Pharmaceutical Technology Editors, 2016, Apr 12).
However, CM presents a challenge since the process is different to traditional batch manufacturing.
An in deep understanding of the process behind the CM and a science based knowledge of the
system dynamics of the materials with the use of PAT assures the improvement of the process
control strategies and the manufacturing of the final drug product following the quality by design
(QbD) paradigm (Singh et al., 2014; Yu et al., 2016). The success of continuous manufacturing is
due to the collaborative efforts of industry and academia (Collins, 2018). The achievement of a
high level of understanding regarding the science behind process changes, material
characterization through continuous product manufacturing, big-data analysis for making
decisions in real time, and the compliance of guidelines and regulatory requirements for GMP and
QbD of a drug product, require an engagement of collaboration between the industry, academia,

and government entities (O’Connor, Yu, & Lee, 2016).

This study describes the development of an at-line non-destructive method to determine drug
concentration of one API in tablets of a combination medicine of two APIs from a CM process

within a commercial manufacturing plant for RTRt. The development of the method follows the
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PAT guidance for manufacturing and quality assurance (US-FDA, 2004), and the ICH Q2
parameters for validation of an analytical method (ICH, 2005). The model was challenged with a
design of experiment of the manufacturing process variables to achieve a better understanding of
the changes in the material within manufacturing and to evaluate potential parameters during the
process. Also, this evaluation serves for the improvement of control strategies in the manufacturing

of a drug product following the QbD paradigm.

5.2. MATERIALS AND METHODS

5.2.1. Materials

The formulation included the first API with a concentration lower than 20% (w/w) and the
second API with a concentration greater than 60% (w/w), MCC Avicel PH102 as the filler,
magnesium stearate NF/PH EUR as the lubricant, and a pre-blend material that is a formulation of
MCC Ceolus and croscarmellose. All materials and excipients used in this study were acquired by

the Janssen Gurabo inventory.

5.2.2. Continuous manufacturing system

The feeding system consists of five (5) gravimetric/volumetric feeders (monitored by the K-
tron gravimetric feeder control). The gravimetric/volumetric feeders feed each material to maintain
a constant line throughput. After, the material enters an in-line continuous paddle blender
(performed using a Glatt Conti blender). Then, after the gravimetric/volumetric feeders achieved
a steady state (the mass flow of all feeders in use is within its reject limits range) the compacting
of powder blend was performed to make tablets (Korsch Tablet Press). Figure 52 shows the

diagram of the continuous manufacturing line. The CM includes the volumetric (V1, V2, V3, and
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V4) and gravimetric feeders (G1, G2, G3, G4, and G5), the continuous blender, the interface for
NIR spectra acquisition, and the tablet press for tablet compression (Image from: J.M. Vargas et

al. International Journal of Pharmaceutics 538 (2018) 167-178.).

vi [ \va [ \v3 [\ v4
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Figure 52. Diagram of the continuous manufacturing line including the volumetric (V1, V2, V3, and V4)
and gravimetric feeders (G1, G2, G3, G4, and G5), the continuous blender, and the interface for NIR spectra
acquisition, and the tablet press for tablet compression.
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5.2.3. Preparation of the calibration and validation sets CM system

Calibration and validation tablets were produced at the CM line at concentrations in the range
within 70% to 130% of label claim (LC) for API-1 at five (5) equidistant concentration levels
(70%, 85%, 100%, 115%, and 130% LC). The concentration of the filler was varied to maintain
the target conditions. The calibration and validation samples were prepared with the same

equipment operation used for commercial processes.

5.2.4. At-line NIR spectral acquisition

Spectra from all core tablets were acquired using a Bruker FT-NIR MPA (MA, USA)
coupled with a transmission probe, an integrating sphere device, and a room temperature Indium
Gallium Arsenide (RT-InGaAs) external detector. The transmission mode was used for the
analysis. All NIR spectra were acquired within the 14000 — 7000 cm™ (714.3 — 1428.6 nm) spectral

range at a resolution of 64 cm™, with 128 scans for background and 128 scans for sample.

Calibration and validation tablet spectra were acquired at the left, center, and right sides of each
tablet to construct the different calibration models (5 concentration levels, 70%, 85%, 100%,
115%, and 130% LC; 10 tablets per concentration level). A second lot of the API-1 was used to
produce a second set of tablets at target concentration (100% LC). A total of one-hundred and ten
(110) tablets were analyzed using NIR spectroscopy in transmission mode, and UPLC was used

as the reference method.
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5.2.5. Development of multivariate calibration models

Principal component analysis (PCA) and partial least squares (PLS) regression calibration
models were performed using SIMCA P+12 software (MKS Umetrics part of Sartorius Stedim
Biotech, Umea, Sweden). Different spectral regions and spectral preprocessing were evaluated
including standard normal variate (SNV), first and second derivatives, and combination of SNV

with derivatives.

The predictive performance of the calibration model was evaluated in terms of the bias, the
standard deviation, the root mean square of prediction (RMSEP), and the relative standard error of

prediction (RSEP (%)), defined as:

n (Y_pred _Y.ref)

Bias = ¥jo; (5-1)
n 'pred_ 'Tef 2
RMSEP = i, (") (5-2)
n
n (Y‘pred_y'ref)z
RSEP (%) = 100 x [—=- - (5-3)
Z?=1(Yiref)

where n is the number of samples used in the validation set, Y?"¢4 and Y"¢/ the predicted
and measured reference values. The number of PLS factors was chosen by the minimum error

(RMSEP and RSEP (%)), bias, and standard deviation calculated.
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5.2.6. API UPLC method

The reference method used for quality control and analytical quantification of the API in
tablets was a validated laboratory UPLC method. Each tablet collected was weighed and
transferred to 50 mL volumetric flasks using a solution of 50% acetonitrile/50% distilled water as
diluent. After sample preparation, the solution was analyzed using a UPLC equipped with a

variable wavelength UV detector, stationary phase BEH C18 column, and auto-sampler.

5.3. RESULTS

5.3.1. NIR spectral evaluation

To identify the characteristics of the NIR spectral data for the raw materials of the core
tablets, an overlay of spectra (Figure 53) was acquired from one tablet prepared with pure API-1,
one tablet with pure API-2, and another with the pure excipient with the main components in the
formulation. These spectra were examined to assess the spectral range where the absorbance bands

are present.

The absorbance bands of API-1 were observed between 13530 — 13220 cm™ which is related
to the fourth overtone region of C-H stretching. There is a broad band at 11840 — 11220 cm™ which
is related to the third overtone region of C-H stretching. Also, there is an intense and narrow band
at 10500 — 10000 cm™ which there is no reference information, but it is in the second overtone
region of O-H. This is a starting point to perform studies about the API-1 molecule because there
are only a few scientific studies, and they are not related to the NIR spectra of this compound.

However, the scope of this study is not a comprehensive analysis of the molecular vibrations of
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the API-1, for this study it is enough to know the basics of the vibrations to understand the changes

in the NIR spectra of the tablets prepared in the CM line.
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Figure 53. Raw spectra overlay of pure API-1, API-2, and one excipient tablet.

5.3.2. UPLC results

Core calibration and validation tablets sets were collected for analytical testing after their

spectra was acquired using the NIR Analyzers. The UPLC results are shown in

Table 29 for the calibration set and Table 30 for the validation set. The UPLC

concentration (% LC) is considered as the reference result for each of the tablets. As shown in

Table 29 and Table 30, the percent relative standard deviation (% RSD) of the UPLC results

per concentration ranges (n=10) were all less than 2.3% with a range of 0.9 to 2.1% for standard
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deviation, showing precise preparation of the low API-1 concentration tablets for the calibration

and the validation by the CM line.

Table 29. UPLC results of the calibration tablets.

Target (C(:)Zrll_cé;] tration Average | Std, Dev. F(QOZ?
70 70.4 1.6 2.3
85 84.1 1.4 1.7
100 100.7 1.2 1.1
115 1135 1.1 1.0
130 129.2 2.1 1.6

Table 30. UPLC results of the validation tablets.

Target (C(:)ztcé? tration Average | Std, Dev. I?Oio?
70 70.4 0.9 1.3

85 84.4 15 1.8

100 100.0 1.8 1.8

115 114.7 1.3 1.1

130 128.9 2.2 1.7

100 (API-1 2" lot) 99.1 2.1 2.1

5.3.3. Development of calibration models

Based on the differences in the raw spectra (Figure 53) there are two major spectral regions
that include the absorbance bands where the API-1, API-2 and the major excipient in tablets can
be identified. Figure 54 shows the first derivative spectra of these pure components. As shown in
Figure 54, there are two major spectral regions that include different information. The region of
10522 — 10005 cm™* shows an intense band of the API-1 and the other components does not present
a notable pattern. The region of 11988 — 10754 cm includes absorbance bands of the API-1, API-

2 and the major excipient components.
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Figure 54. Overlay of the first derivative spectra of pure API-1, API-2, and one excipient tablet. Blue box:
11998 — 10753 cm™ spectral region. Black box: 10522 — 10005 cm'* spectral region.

5.3.4. PCA evaluation based on API-1

As shown in Table 31, the models present high R2X and Q2 values (above 97%) which

means that there is a high variation explained by the models.

Table 31. R2X and Q2 values from the PCA in the spectral regions and spectral preprocessing selected
based on the API-1 vibrational bands.
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Model Spectral region Spectral 1PC 2 PCs

(cm™) pre-processing R2X(cum) | Q2(cum) | R2X(cum) | Q2(cum)
M1 12005-10152 SNV + 15t der 0.993 0.993 0.996 0.996
M2 10522-10005 SNV 0.990 0.989 0.993 0.990
M3 10522-10005 SNV + 1%t der 0.997 0.996 0.998 0.997
M4 10522-10129 SNV + 15t der 0.998 0.998 0.999 0.999
M5 11988 - 10754 SNV + 15t der 0.974 0.973 0.987 0.985
Me | 11998-10754 + SNV + 1%t der 0.994 0.994 0.997 0.997

10522-10129

Figure 55 through Figure 60 show the PCA based on the spectral regions of the API-1 and

the spectral preprocessing evaluated in Table 31. Based on the results from Table 31, the model

with the lower values of R2X and Q2 is the M5 model; however, the PCA of this data shows well

distributed plots. The model M4 has the higher values of R2X and Q2 from the table; however,

the distribution of the score plots is not well defined as in M1, M6, or even M4 which has the

lowest values.

From the results shown in Table 31 and the PCA of these models, the evaluation based only in the

numerical information (R2X and Q2) is not the best assessment to decide the performance of the

model; furthermore, a careful inspection of the data is necessary.
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Figure 55. PCA based on the API-1, spectral region: 12005 — 10152 cm, and spectral preprocessing: SNV
+ 1% derivative.
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Figure 56. PCA based on the API-1, spectral region: 10522 — 10005 cm™, and spectral preprocessing: SNV.
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Figure 57. PCA based on the API-1, spectral region: 10522 — 10005 cm, and spectral preprocessing: SNV
+ 1%t derivative.
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Figure 58. PCA based on the API-1, spectral region: 10522 — 10129 cm, and spectral preprocessing: SNV
+ 1%t derivative.
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Figure 59. PCA based on the API-1, spectral region: 11988 — 10754 cm™, and spectral preprocessing: SNV
+ 1% derivative.
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Figure 60. PCA based on the API-1, spectral region: 11998 — 10754 + 10522 — 10129 cm'?, and spectral
preprocessing: SNV + 1% derivative.
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5.3.5. PLS models based on API-1

Table 32 displays a summary of the initial assessment performed using one (1) and two (2)
PLS factors. For the NIR models evaluated, the first PLS component explains more than 97% of
the variation of the samples in the calibration set. The second component contributes with no more
than 1.4%. Based on the fraction of Y-variation modeled by the PLS components, models with
0.000 value of R2Y for the second component were not considered for evaluation since there is
little information in the Y-variation. Therefore, models M1, M3, M4, and M6 using 2 PLS factors
are not discussed further. These models have low Q2 values (in some cases negative values)

explaining little information of the variation in the cross-validation.

Table 32. Description of the PLS factors for the NIR calibration models.

Model | PLS R2X  |R2X(cum) | R2Y |R2Y(cum)| Q2 | Q2(cum)
Factors SNV+1st derivative 12003-10152 cm™*
M1 1 0.998 0.998 0.996 0.996 0.995 0.995
2 0.001 0.999 0.000 0.996 0.033 0.996
SNV 10522-10005 cm™*
M2 1 0.990 0.990 0.994 0.994 0.994 0.994
2 0.002 0.992 0.001 0.996 0.100 0.995
SNV+1st derivative 10522-10005 cm™
M3 1 0.981 0.981 0.995 0.995 0.995 0.995
2 0.014 0.996 0.000 0.995 -0.015 0.995
SNV+1st derivative 10522-10129 cm™
M4 1 0.993 0.993 0.993 0.993 0.992 0.992
2 0.004 0.997 0.000 0.993 0.027 0.993
SNV+1st derivative 11998-10754 cm™
M5 1 0.970 0.970 0.995 0.995 0.995 0.995
2 0.013 0.982 0.002 0.997 0.271 0.996
SNV+1st derivative 11998-10754 + 10522-10129 cm**
M6 1 0.980 0.980 ‘ 0.996 ‘ 0.996 0.995 0.995
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2 0012 | 0992 | 0.000 0.996 -0.025 0.995

R2X - Sum of Squares of all the x-variables explained by the extracted components.
R2Y - Sum of Squares of all the y-variables explained by the extracted components.
Q2 - The fraction of the total variation of X (PC) and Y (PLS) that can be predicted by the current component.

5.3.6. Calibration cross-validation and validation analysis

During development activities, the technique of “cross-validation” was used to obtain
information regarding the suitability of the NIR calibration model performance. In Cross-
Validation, the entire calibration set was split into groups of seven (10) samples, which were
removed individually from the rest of the samples and tested as unknowns against the NIR
calibration model that was constructed using the rest of the samples. The predictive performance
of the model was evaluated using root mean square error of calibration (RMSEC), root mean
square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP).
Based on previous studies developed using the same CM line, the model was evaluated using a
maximum of two PLS factors to optimize the ability to predict new samples (Colén, Vargas,
Sanchez, Navarro, & Romafach, 2016; Vargas et al., 2018). Results for each preliminary model
assessment are shown in Table 33. The lowest RMSEC, RMSECV, and RMSEP were obtained
using the M3 and M5 models. Therefore, the NIR calibration model evaluation was developed
within the range of 11998 — 10753 cm™ with SNV + 1% derivative as spectral preprocessing using
2 PLS factors, based on the results from Table 32 and Table 33. However, the SNV + 1% derivative
model showed an intense API-1 band seen in the range of 10522 — 10129 cm™, shown in Figure
54. Both models were used to evaluate the effect of NIR spectral selection in the challenge

evaluation of the models.
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Table 33. Results for each preliminary model assessment for the calibration set.

PLS RMSEC for calibration set
Eactars

M1 M2 M3 M4 M5 M6
1 1.4 1.6 1.5 1.8 1.5 1.4
2 1.3 1.4 1.5 1.7 1.2 1.3
PLS RMSECYV for calibration set
Factors

M1 M2 M3 M4 M5 M6
1 1.4 1.6 15 1.8 1.5 1.4
2 1.4 1.5 1.5 1.8 1.3 1.4
PLS RMSEP for validation set
Factors

M1 M2 M3 M4 M5 M6
1 1.7 1.9 1.8 1.8 1.4 1.8
2 1.6 1.7 1.7 1.7 1.5 1.7

5.3.7. PLS score plot analysis of the calibration set

Score plots are useful to detect patterns, clustering, and outliers in the data. Score Plots were
created for calibration set of tablets for 1 PLS and 2 PLS factors. Figure 61 shows the score line
plot of the NIR calibration model developed using 1 PLS factor (Figure 61a) and 2 PLS factors
(Figure 61b) for the selected model strategy. The first PLS factor describes variation in
concentration since samples are very well aligned in increasing concentration (left to right). The
second PC also describes variation in the sample set, this variation is similar at the extremes of
concentration ranges and very small compared to the variation described by the first PC. All
samples in the score plots are within the 95% confidence interval in the 1 PC score plot; however,
one sample at 130% LC concentration level in score plot using 2 PCs is outside of the 95%
confidence interval. This sample outside of the limit is not treated as an outlier and will be used
for the development of the NIR calibration model since there is a 5% of probability that samples

will fall outside of the ellipse.
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Figure 61. PLS score plots of the calibration set. a) 1 PLS Score Plot and b) 2 PLS Score Plot.

5.3.8. Predictive performance of the NIR calibration model at left, center, right, and

average sides of validation set

The NIR calibration model was developed using the average of left, center, and right spectra

for each tablet with the calibration set. Individual NIR spectra of left, center, and right sides, as
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well as the average of the three side predictions for each tablet of the validation set were used as

evaluation to test the model’s performance.

NIR predictions of left, center, and right spectra for each individual tablet were compared
between them to evaluate if there are differences in the results for position of measurement at each
concentration level. Ten (10) tablets per concentration level of the validation set were evaluated

by a single factor ANOVA.

The null hypothesis tested with the ANOVA is that there will not be differences between the
means of the spectra of the experimental groups (average value of the dependent variable). The
alternative or research hypothesis is that the average is not the same for all groups. In general, if
the calculated F statistic in a test is larger than the table F value, we can reject the null hypothesis.
The p-value is a numerical measure of the statistical significance of a hypothesis test. It says how
likely it is that we could have gotten our sample data even if the null hypothesis is true. By
convention, if the p-value is less than 5% (p < 0.05) the null hypothesis can be rejected (Wahid,
Latiff, & Ahmad, 2017). Table 34 shows a summary of the single factor ANOVA for each

concentration level, evaluated by center, left, and right NIR predictions of validation set.

The F crit is 3.354 for the number of samples and groups used. Based on the results obtained,
there is no statistical difference on the calculated NIR predictions of left, center, and right sides
for concentration levels 85% - 130% LC with calculated F being lower than the F crit va