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ABSTRACT 

 
 
This thesis presents a variable dimension Gauss-Newton (VDGN) parameter estimation 

algorithm that can be used for fault detection, and diagnosis of a synchronous generator. The 

algorithm is derived as an extension of the variable dimension Newton Raphson algorithm 

proposed to solve nonlinear systems of equations. We study the conditioning of the 

parameter estimation problem for a linearized small-signal model of the synchronous 

generator using local sensitivity analysis. The conditioning analysis is performed on 

simulated data and experimental data for the FC5HP synchronous generator located at the 

Four Corners Generating Station of the Arizona Public Service Company (APS), rated at 483 

MVA. Results demonstrated that local sensitivity analysis is an effective tool to diagnose ill-

conditioning. The developed VDGN algorithm is shown to be a robust method for ill-

conditioned parameter estimation and its performance is compared with the subset selection 

method. Results using experimental and real data for the synchronous machine parameter 

estimation problem showed that the VDGN algorithm computes better parameter estimates 

than the subset selection method and requires less prior information to deal with the ill-

conditioning. 
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RESUMEN 

 
 
Esta tesis presenta el algoritmo de estimación de parámetros basado en la dimensión variable 

de Gauss Newton (VDGN) el cual puede ser usado para la detección y diagnóstico de fallas 

en un generador sincrónico. El algoritmo es derivado como una extensión del algoritmo de 

dimensión variable de Newton Raphson propuesto para resolver sistemas de ecuaciones no 

lineales. Estudiamos el problema de acondicionamiento en el problema de estimación de 

parámetros para el modelo linealizado de pequeña señal del generador sincrónico utilizando 

análisis de sensitividad local. El análisis de acondicionamiento es realizado con datos 

simulados y datos experimentales del generador sincrónico FC5HP de 483 MVA localizado 

en “Four Corners” estación de generación de la Compañía de Servicio Público de Arizona 

(APS). Los resultados demuestran que el análisis de sensitividad local es un instrumento 

efectivo para predecir el mal acondicionamiento. El desarrollo del algoritmo VDGN 

demuestra ser un método robusto para la estimación de parámetros mal acondicionados 

asimismo su comportamiento es comparado con el método de selección de subconjuntos. Los 

resultados del problema de estimación de parámetros de la maquina sincrónica usando datos 

simulados y experimentales, muestran que el algoritmo VDGN computa mucho mejor los 

parámetros estimados que el método de selección de subconjuntos y requiere poca o ninguna 

información a priori para solucionar el mal acondicionamiento  
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CHAPTER 1 INTRODUCTION 

1.1. JUSTIFICATION AND OBJECTIVES 

 The synchronous generator is considered the most important and expensive component of 

a plant in an electrical power system, thus it is of utmost importance that any anomaly in its 

operation is promptly corrected. Fault detection, isolation, and fault diagnosis for a 

synchronous generator is a desirable feature that could aid in better monitoring and 

automation of the machine behavior, and could have a significant impact in establishing an 

adequate maintenance schedule that ensures proper operation while taking into consideration 

cost and risk of having a large generator and its maintenance.  

 This research work looks at providing a robust parameter estimation algorithm that can 

be used in fault detection, isolation and diagnosis.  In a broad sense, a fault is understood as 

any kind of anomaly or malfunction that leads to an undesired performance of the system 

under consideration [1]. 

The problem of fault detection and isolation in dynamical systems is the problem of 

generating diagnosis signals sensitive to the occurrence of faults. Regarding a fault as an 

input acting on the system, a diagnostic signal must be able to “detect” its occurrence, as well 

as to “isolate” this particular input from all other inputs (disturbances, other faults) affecting 

the system behavior.  

A potential diagnosis signal is an on-line parameter estimate. Synchronous generator 

parameters have traditionally been obtained by performing a series of established tests. 

Several identification methods have been formulated when data are captured together with an 
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initial set of parameters (usually provided by manufacturers). One of the most common 

methods used in parameter estimation is output error identification, which minimizes a 

measure of the error between the actual system output and the output of the system model. 

Output error identification generally involves nonlinear computations, where iterative 

methods are necessary to compute the estimates. Physical restrictions in actuation in power 

systems make it difficult the collection of optimal data for model parameter estimation as in 

large synchronous machine. On the other side, we could have freedom to excite the system 

but because of the high resolution of the model, we might not be able to identify all its 

parameters while a simplified model might not capture the dynamics of interest. In the other 

case the resulting parameter estimation problem is ill conditioned. Ill conditioned refer to the 

situation were parameters estimates are very sensitive to noise or other disturbances in the 

problem data.  

For synchronous machine identification, it is usual to consider the parameters that 

involve the synchronous, transient and subtransient stages with the finality of reflecting the 

machine behavior under normal operation, before and after a perturbation. The importance of 

developing more complex machine models is evident because they permit to generate 

diagnosis signals sensitive to the occurrence of faults, to perform more accurate control, and 

to predict the machine behavior. For fault detection, we need capability to perform good 

parameter estimation. Therefore, the question of parameter conditioning is thus a decisive 

point in the application of fault detection and isolation.  Condition analysis refers to the 

methodology used to study the sensitivity of the parameter estimate to perturbations in the 

problem data such as, noise and disturbances in the measured voltages and currents. An 

estimate is ill conditioned if it is very sensitive to such perturbations. Examples of dealing 
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with ill-conditioning in electric machine parameter estimation are presented in [41-43] where 

an attempt of estimating all model parameters fails because of ill-conditioning, and in [26] 

using subset selection  methodologies to handle ill conditioning in parameter estimation for a 

synchronous generator are presented. This research work studies the use of variable 

dimension optimization methods to handle ill conditioning in parameter estimation.  

Additional objectives for this work are 

• To compare the use of subset selection and Variable Dimension Gauss Newton 

algorithms for parameter estimation for a synchronous generator.. 

• To apply the proposed algorithm for the case of a synchronous machine 

parameter estimation using real data provided by Dr. G. Heydt from Arizona 

State University (ASU). 

1.2. MOTIVATION 

 This work is motivated by the operating history of a 483 MW synchronous generator 

located at the Four Corners Generating Station of the Arizona Public Service Company 

(APS). This unit has undergone outages on a number of occasions due to a short circuit in its 

field winding. On each occasion this outage occurred, the rotor had to be rebuilt, thus leading 

to increased costs and possibly decreased reliability for the company. It is beneficial to 

develop methods to predict possible failures (for instance, a short circuit in the field 

winding). In this way, preventive maintenance, fault detection and fault diagnosis can be 

performed so as to avoid costly outages 
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1.3. CONTRIBUTION 

In this thesis we have addressed the development of robust parameter estimation 

algorithms that can be used in fault detection and diagnosis. Our work has focused mainly on 

development, testing and implementation of a variable dimension Gauss-Newton (VDGN) 

algorithm to solve ill conditioned parameter estimation problems. 

1.4. THESIS OUTLINE. 

This thesis is organized as follows. Chapter 2 presents some fundamental concepts and 

approaches of fault detection and diagnosis. This is followed by a literature review of failure 

detection in synchronous generators. Chapter 3 introduces the modeling of the synchronous 

generator. Chapter 4 addresses the least square parameter estimation and its application to the 

nonlinear synchronous generator parameter estimation problem. The nonlinear parameter 

estimation problem is solved by using Gauss Newton method so that the parameter estimates 

are computed. In addition, sensitivity analysis and evaluation of conditioning of the 

synchronous generator is introduced. Chapter 5 develops parameter estimation using the 

subset selection technique to overcome ill conditioning. Chapter 6 presents parameter 

estimation using the variable dimension technique and its application to the synchronous 

machine parameter estimation. The conclusions and recommendations and future work of 

this thesis are presented in Chapter 7. The appendices present the data formats that are 

supported by the synchronous parameter estimation algorithms and the MATLAB 

implementation of all algorithms. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 
 

2.1. INTRODUCTION 

For the improvement of reliability, safety and efficiency advanced methods of 

supervision, fault detection and diagnosis become increasingly important for many technical 

processes. This holds especially for safety related equipment like aircraft, trains, 

automobiles, power plants and chemical plants. 

 In this chapter, some fundamentals concepts and approaches of fault detection and 

diagnostic will be introduced. The literature review is mainly focused in the following topics 

• The scope of fault detection and diagnosis. 

• Approaches to fault detection and diagnosis. 

• Model-free methods 

• Model-Based Methods. 

• Failure detection in synchronous generator. 

2.2. THE SCOPE OF FAULT DETECTION AND DIAGNOSIS 

 In this initial section, some fundamental concepts and approaches of fault detection 

and diagnosis will be introduced.  

2.2.1. TYPES OF FAULTS  

 In general faults are deviations from the normal operation of the plant or its 

components. The faults of interest can be organized in the following categories [1-6]. 
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 Additive process faults. These are unknown inputs acting on the plant, which are 

normally zero and which, when present, cause a change in the plant outputs independent of 

the known inputs. 

 Multiplicative faults. These are changes (abrupt or gradual) in some plant parameters. 

They cause changes in the plant outputs which depend also on the magnitude of the known 

input. Such faults best describe the deterioration of plant equipment. 

 Sensor faults. These are discrepancies between the measured and actual values of 

individual plant variables. These faults are usually considered additive (independent of the 

measure magnitude), though some sensor faults (such as sticking or complete failure) may be 

better characterized as multiplicative. 

 Actuator faults. These are discrepancies between the input command of an actuator 

and its actual output. Actuator faults are usually handled as additive though, again kinds 

(sticking or complete failure) may be better described as multiplicative 

From the point of view of diagnosis, it is of interest how a particular fault affects the plant 

outputs (additive or multiplicative faults).  

2.2.2. FAULT DETECTION AND DIAGNOSIS 

 In this section, the fundamental concepts of fault detection and diagnosis using 

analytical redundancy are outlined. Fault detection and diagnosis in general include three 

functions [1] 

• Fault detection. To indicate the presence of fault(s) 

• Fault Isolation. To determine the location of the fault(s) 

• Fault identification. To determine the size of the fault(s) 
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The isolation and identification tasks together are referred to as fault diagnosis. The 

detection function is indispensable and the isolation function is usually also required. 

However, the fault identification function can be omitted in most cases, except when the fault 

size is really important the combination of isolation and identification (or isolation alone if 

the latter is missing) is also referred to as fault diagnosis. In many cases “diagnosis” is used 

simply as a synonym to “isolation”. 

Usually, the fault detection and diagnosis activity takes on-line, in real time. The detection 

and diagnosis may be performed in parallel or sequentially, that is by invoking the isolation 

function only once a fault has been detected, or in parallel, that is simultaneously. 

Particularly in model-based fault detection and diagnosis the following conventions are 

usually adopted. 

• It is assumed that faults are not present initially in the system but arrive at some later 

time. Faults are generally described by deterministic time-function which are 

unknown. 

• One may speak of additive disturbances as well, which are also deterministic and 

unknown inputs to the system. The distinction between additive faults and 

disturbances is subjective: faults are those unknown inputs which we wish to detect 

and isolate while disturbances are nuisances which we wish to ignore. 

• Any noise , that originates from the plant or from the sensors and actuators, is 

considered random with zero mean (any nonzero mean is handled as fault or 

disturbance) 
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• Modeling errors are discrepancies between the model (model parameters) and the 

true system. They may be present due to operating-point changes. Model errors are 

nuisances that we want to suppress.  

In most practical situations, fault diagnosis needs to be performed in the presence of 

disturbances, noise, and modeling errors. These interfere with the diagnosis of fault and may 

lead to false alarms and miss-classification (miss isolation). Therefore the diagnosis 

algorithm needs to be so designed that it  

• Is made insensitive to the disturbance 

• Includes mechanisms to suppress the effects of noise ; 

• Is robust with respect to modeling error; 

• Maintains sufficient sensitivity with respect to faults. 

Fault sensitivity, and robustness arise from interplay between faults on the one hand, and 

noise, disturbance and model errors on the other hand, and are affected by the design of the 

detection algorithm.  

 

2.3. APPROACHES TO FAULT DETECTION AND DIAGNOSIS 

 The methods of fault detection and diagnosis may be classified into two major groups: 

Those which do not utilize the mathematical model of the plant and those which do. This 

section is dedicated to the model based methods. Thus, we first, introduce, the model-free 

technique. 



 9

2.3.1. MODEL-FREE METHODS 

 The fault detection and isolation which do not use the mathematical model of the 

plant range from physical redundancy and especial sensors through limit-checking and 

spectrum analysis to logical reasoning [1-5]. 

 Physical redundancy. In this approach, multiple sensors are installed to measure the 

same physical quantity. Any serious discrepancy between the measurements indicates a 

sensor fault. An example of this method is presented in [7]. 

  Special sensors may be installed explicitly for detection and diagnosis. These are 

limit sensor (e.g., temperature or pressure) which perform limit checking (plant 

measurements are compared by computer to preset limits). Other special sensors may 

measure some fault indicating physical quantity. References [8-10] are examples of this 

technique 

 Spectrum analysis of plant measurements may also be used for detection and 

isolation. Most plant variables exhibit a typical frequency spectrum under normal operation 

condition; any deviation from this is an indication of abnormality, Reference [11] is a good 

example.  

2.3.2. MODEL-BASED METHODS 

 Different approaches for fault detection using mathematical models have been used in 

the last 20 years (see [1-6, 9, 27, 31]). Model-based fault detection and diagnosis (MBFDD) 

methods employ an explicit mathematical model of the system under test. The task consists 

of the detection of fault in the processes, actuators and sensors by using the dependencies 



 10

between different measurable signals. These dependencies are expressed by mathematical 

process models. 

 Most of the model-based fault detection and diagnosis methods rely on the concept of 

analytical redundancy, i.e., on static or dynamic relationships among measured variables. 

The entire fault detection, isolation and accommodation (FDIA) process consists then of the 

following three steps: 

• The generation of so-called residual, i.e. of functions that carry information about 

faults 

• The decision process that evaluates the residuals and monitoring if and where a fault 

has occurred 

• The accommodation process by which the normal system operation is restored 

Examining the literature on fault detection and isolation (FDI) based on analytical 

redundancy one can see that the wide variety of published methods can roughly be divided 

into two major groups: 

• Parameter estimation methods [6, 9, 26] 

• State (or output) estimation methods [4-6, 15, 16, 19, 27, 31]  

The parameter estimation approach employs on-line identification of the mathematical model 

in order to determine the physical coefficients of the process. In the state approximation on-

line reconstruction of sets or subsets of states or measured variables is done with the aid of 

parity equations, observers or Kalman filters whose estimates or innovations are then used 

for residual generation. In the literature one finds that the most commonly studied and 

applied fault diagnosis approach is the state estimation methods. 
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 Figure 2.1 shows the basic structure of model-based fault detection. Based on measured 

input signal U and output signal Y the detection methods generate residuals r, parameter 

estimates α̂  or state estimates θ̂  , which are called features. By comparison with the normal 

features, changes of features are detected, leading to analytical symptoms s. 

Faults

Process

Process
model

feature
generation

change
detection

fault
diagnosis

sensoractua-
tors

featuresr θα ˆ,ˆ,

symptomsanalyticals

faults

ectionfault
basedel

det
mod −

behaviornormal

U Y
H

 

Figure 2.1: General scheme of process MBFDD [5] 

 
2.3.2.1. PROCESS AND FAULTS MODELING 

 A fault is defined as a deviation of at least one characteristic property of a variable from 

an acceptable behavior [5]. Therefore, the fault is a state that may lead to a malfunction or 

failure of the system. The time dependency of faults can be distinguished such as an abrupt 

fault (stepwise), incipient fault (drift like), or intermittent fault. With regard to the process 

models, the fault can be further classified. According to Figure 2.2 additive faults influence a 
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variable Y by an addition of the fault f, and multiplicative faults by the product of another 

variable U with f. As we saw previously, additive faults appear as offset sensors, whereas 

multiplicative faults are parameters changes within a process. 

uY

f

fYY u +=

af ∆=

U
a

fUaU
tUaaY

+=
∆+= )()(

)(a )(b  

Figure 2.2  Basic models of faults: (a) additive faults; (b) multiplicative faults 

 
2.3.2.2. STATIC PROCESS MODEL 

The steady state behavior of a system can be frequently expressed by a non-linear 

characteristic as shown in Figure 2.3 .  

Y

U

iM∆

Uf Yf

U Y
++

 

Figure 2.3:  Fault detection of a nonlinear static process via parameter estimation 

         for steady states. 

 

where )(),( tYtU  are the measured signals, Uf , Yf  are the input and output additive faults; 

and iM∆  are the multiplicative parameter faults. A polynomial model is given by: 

 
q

qUMUMUMMY ++++= K2
210

s
T
sY αψ=→  

(2.1)

where 
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 ]U,,U,U,[ qT
s L21=ψ  (2.2)

 ]M,,M,M[ q
T
s K10=α  (2.3)

Estimates and changes of the parameter iM  can be obtained by parameter estimation 

methods such as least squares, using measurements of different input-output pairs [ ]jj U,Y .  

2.3.2.3. DYNAMIC PROCESS MODEL 

 More information on the process can usually be obtained with dynamic process model. 

This process model can be presented in form of differential equation or a state space model 

as a vector differential equation. Figure 2.4 shows the basic input/output linear dynamical 

model and fault modeling in the form of a differential equation. 

ia∆ jb∆

Yfuf

)(
)()(

SA
SBSG p =u y

 

Figure 2.4: Linear dynamic process input/output model and fault modeling 

 In Figure 2.4 ∞−= YtYty )()(  and ∞−= UtUtu )()(  are the measured signals, uf  and yf  

are the input, output additive faults respectively, ji ba ∆∆ ,  are the multiplicative parameter 

faults. The model equation  
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where 

 ( ) ( ) ( )[ ])t(u...)t(u)t(y)...t(y mnT −−= 1ψ (2.5)
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 ]b...ba...a[ mn
T

01=α  (2.6)

 

Figure 2.5 shows the state space linear dynamic model and fault modeling in the form of 

vector differential equation. 
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Figure 2.5 : State space model for linear dynamic process and fault modeling 

In Figure 2.5 tf  are the input additive state variable fault, mf  the output additive fault, 

jii cba ∆∆∆ ,,  are the multiplicative parameter faults; and the state space basic equations are 
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Similar representations hold for non-linear processes see [4], also in discrete time.  
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2.3.3. FAULT DETECTION USING PARAMETER ESTIMATION 

 In most practical cases the process parameters are partially or totally unknown. They can 

be determined with parameter estimation methods by measuring input and output signals if 

the model structure is known [2-5]. In [5] two approaches for parameter estimation using 

equation error and the output error are shown. The equation error is linear in the parameters 

and allows therefore direct estimation of the parameters. The Output error approach shown in 

Figure 2.6 needs nonlinear optimization methods and therefore iterative procedures, but may 

be more precise under the influence of process disturbances; see an example in [26].  

PARAM.
ESTIM.

−

+
( )sA
sB )(

( )sA
sB

ˆ
)(ˆ

u y

te

α̂

 

Figure 2.6: Minimization of output error 

The fault symptoms appear in deviations of the process parameters α∆ . As the process 

parameters ( )pf=α  depend on physically defined process coefficients p (such as 

inductances). Determination of changes p∆  allows usually a deeper insight and makes fault 

diagnosis easier. Parameter estimation methods usually need a process input excitation and 

are especially suitable for the detection of multiplicative faults [1, 5].  
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2.3.4. FAULT DETECTION USING OBSERVERS 

 If the process parameters are known, either state observers or output observers can be 

applied [1, 6]. The classical state observers can be applied if the faults are modeled as state 

variable changes ix∆ .In the case of multi-output processes, special arrangement of observers 

can be applied as shown in [2] and [8]. Another possibility is the use of output observers 

and\or unknown input observers if the reconstruction of the state variables )(tx  is not of 

interest, see Figure 2.7. 
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Figure 2.7: Output error fault detection for dynamic processes 

In this case, a linear transformation then leads to new state variables )(tξ . The residuals 

)(tr can be designed such that they are independent on the unknown inputs )(tv (disturbance 

signal), and of the state )(tx  and )(tu  by especial determination of the matrices ξC  and 2T . 

The residuals then depend only of the additive faults. However, all process model matrices 

must be known precisely. A comparison with the parity equation approach developed in the 

next section shows similarities. 
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2.3.5. FAULT DETECTION USING PARITY EQUATIONS 

A general approach of creating robustness in fault detection and isolation (FDI) has 

been pursued over the years by Willsky et al. (see [1-3, 5]). These investigators studied the 

problem of robust residual generation from the viewpoint of analytical redundancy relations, 

and introduced the concept of general parity checks. From this perspective, the innovation of 

an observer or a Kalman filter can be considered as the residual containing the complete set 

of redundancy relations. The alternative approach of increasing the robustness of observer 

schemes by using “robust” or “unknown inputs” observers has been tackled by [4]. 

 A straightforward model-based method of fault detection is to take a fixed model MG  

and run it parallel to the process, thus forming and output error [1]. 

 ( ) ( )[ ] ( )susGsGsr Mp )(' −= (2.9)

If )()( sGsG Mp = , the output error for additive input and output faults becomes, (Figure 2.4)  

 )()()()( sfsfsGsr yup +=  (2.10)

Another possibility is to generate a polynomial error or equation error. The residuals then 

depend only on the additive input faults )(tf u  and output faults )(tf y . 

The same procedure can be applied for multivariable processes by using a state space model 

as shown in Figure 2.8. 
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Figure 2.8 : State space model for fault detection with parity equations 

      for dynamic process  

In Figure 2.8  the parity equations are 
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The derivative of the signals can be obtained by state variable filters [6]. Corresponding 

equations exist for discrete time. The components of matrix W are selected such that one 

measured variable has no impact on a specific residual. This allows generating structured 

residuals in order to obtain good isolating patterns for the residuals. Hence parity equations 

are suitable for the detection of additive faults. They are simpler to design and to implement 

than output observer-based approaches and lead approximately to the same results 
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2.3.6. FAULT DIAGNOSIS METHODS 

 The task of fault diagnosis consists of the determination of the type of fault with as many 

details as possible such as the fault size, location and times of detection. The diagnostic 

procedure is based on the observed analytical and heuristic symptoms and the heuristic 

knowledge of the process [9, 21-24]. The inputs to a knowledge-based fault diagnosis system 

are all available symptoms as fact and the fault–relevant knowledge about the process, 

mostly in heuristic form. The symptoms may be presented just a binary values (0,1) or for 

example fuzzy sets to take gradual sizes into account. 

2.3.6.1. CLASSIFICATION METHODS OF FAULT DIAGNOSIS 

 If no further knowledge is available for the relationship between features and faults; 

classification or pattern recognitions methods can be used [21]. 

 In Figure 2.9 the reference vectors nR  are determined for the normal behavior. Then the 

corresponding input vectors R of the features are determined experimentally for certain faults 

jF . The reference between F and R  is therefore learned (or trained) experimentally and 

stored, forming and explicit knowledge base [6]. By comparison of the observed R with the 

normal reference nR , faults F can be concluded.  

 

RERERENCE
PATTERN

CLASSIFICATION

nR

R F

 

Figure 2.9  Classification methods 
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  One distinguished between statistical or geometrical classification methods. With or 

without certain probability function [21]. A further possibility of fault diagnosis is the use of 

neural networks [12] or neuro-fuzzy technique approach [14] because of its ability to 

approximate non-linear relation and to determine flexible decision regions for faults in 

continuous or discrete form.  

2.3.6.2. INFERENCE METHODS 

 For some technical processes, the basic relationships between faults and symptoms are 

at least partially known. Then this a-priori-knowledge can be represented in causal relations: 

fault-event-symptoms. For the establishment of this heuristic knowledge several approaches 

exist [6, 14]. 

2.4. FAILURE DETECTION IN SYNCRONOUS GENERATOR 

Examining the literature on fault detection and diagnosis in synchronous generators one 

can see a wide variety of published methods. These methods use the concepts developed 

above to detect and to diagnose faults. Although some of these works use model-free 

methods a few works develop fault detection and diagnosis using model-based methods, 

especially fault detection using parameter estimation concepts. 

Examples based on model-free methods can be seen in [11, 13, 18, 19, 25]. In [11] a 

method of detecting short circuits in both the stator and rotor windings of synchronous 

generator is proposed. The technique allows the identification of predictable harmonics in the 

rotor currents as well as predictable components in the stator current spectrum of the exciter. 

In [13], a combination of on-line monitoring and off-line diagnostic inspection, supported by 

data mining and expert systems is presented. In [25], thermal, acoustic, and rotor vibration 
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sensors are monitored in real-time to provide early warning of impending failures in hydro-

generator stator. 

Examples using model-based concepts are developed in [9, 12, 16, 26, 31].  

Development and implementation of a fault diagnostic scheme for generator winding 

protection using Artificial Neural Networks is introduced in [12]. This scheme has the ability 

to detect generator winding faults and classify the type of fault. In addition, the technique 

proposed in [12] has the ability to identify the faulty phases with higher sensitivity and 

stability boundaries as compared to differential relays. In [16] and [31] methods to detect 

faults using observers and extended Kalman filters are proposed. Process motor testing using 

parameter estimation fault detection is introduced in [9] and [26]. Several case studies 

obtained from field test at electric motor manufacturing plants are presented. Other special 

requirements for condition-base maintenance (CBM) in synchronous generator, maintenance 

experience and design, and system knowledge are discussed in [10, 17-20, 22-24]. 

2.5. SUMMARY 

 The literature review presented in this chapter, was mainly focused to approaches in 

fault detection and diagnosis. We described methods to monitor synchronous generator 

condition, process models and fault modeling, and the most practical cases of process 

parameters such as fault detection using parameter estimation, fault detection using 

parameter observers, fault detection using parity equations, and fault diagnosis methods. 

These methodologies were revised in order to provide an idea of how the parameter 

estimates, using different approaches, can be used to diagnose and detect possible 

synchronous machine faults. 
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CHAPTER 3 MODELING OF THE SYNCHRONOUS GENERATOR 

3.1. INTRODUCTION 

 On line fault detection, isolation and fault diagnosis of generator is desirable feature that 

could aid in better monitoring and automation of the machine behavior. The problem of fault 

detection and isolation in dynamical systems is the problem of generating diagnosis signals 

sensitive to the occurrence of faults, in this sense the importance of obtaining accurate 

parameters of synchronous machine is a desirable feature. Thus developing more complex 

machine models is desirable since they permit to generate diagnosis signals sensitive to the 

occurrence of faults as well as more accurate control and prediction of the machine behavior. 

 Traditional methods have been developed under the guidance of standard methods to 

measure the parameters for example, the short-circuit test is a conventional off-line method 

to determine synchronous machine parameters on unload machines. The test procedures are 

specified in IEEE Standard 115-1983.  These tests provide the d-axis parameters, but they do 

not give q-axis transient and subtransient constants.  Furthermore, the IEEE standard tests do 

not include measurements of the field circuits during the short circuit test, and consequently 

the field circuit is not adequately defined. Several alternative testing and analytical methods 

have been proposed and used to obtain better models, for instance [28] presents an enhanced 

sudden short circuit test, stator decrement test, and frequency response tests. Indeed, all these 

methods are conducted under off-line conditions. Thus the parameters obtained by these 

methods cannot truly characterize the machine behavior under various on-line conditions. 

Many studies have been published with great contribution to the on-line methods for 

synchronous machines parameter estimation [28-31]. [30] used a nonlinear least squares 
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parameter estimation approach for on-line identification. A full-scale experimental 

verification for large synchronous machines was presented. With the generator connected to 

a large power system and loaded normally, a sudden change of excitation (field voltage) is 

applied through some appropriate means. The transients in the line voltage, line currents and 

field voltage are recorded and used as the basis of parameter estimation. In [31] a Visual C++ 

engine and graphic user interface are implemented so as to allow parameter estimation for a 

synchronous machine from on-line measurements; the estimation is performed by using noise 

free data, resulting in accurate parameter estimates. The synchronous machine mathematical 

model used in [31] has three stator windings, one field winding and one damper winding all 

of them magnetically coupled.  

 The model and the data collected are of great importance in parameter estimation. For 

instance, models can suffer from over parameterization or the available data is not 

sufficiently rich for accurate parameter identification.  

In order to formulate de on-line parameter estimation for a synchronous generator, it is 

necessary to employ a mathematical model which represents the synchronous generator in 

the conditions under study. 

  In this regard, the next section presents the mathematical model of a synchronous 

machine and introduces its steady-state and transient performance. 

3.2. SYNCHRONOUS GENERATOR MODEL 

 It is necessary to make some assumptions in developing equations of a synchronous 

machine, as it is suggested in [26, 29]  
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• The stator winding are sinusoidally distributed along the air-gaps as far as the mutual 

effects with the rotor are concerned 

• Magnetic hysteresis is negligible 

• Magnetic saturation effects are negligible 

Given those considerations, the machine consists of two essential components: the field 

and the armature. The field winding carries direct current and produces a magnetic field, 

which induces alternating voltages in the armature windings [29]. It is customary to have the 

armature on the stator. The three-phase winding of the armature are distributed 120o apart in 

space so that, with uniform rotation of the magnetic field, voltages displaced 120o in time 

will be produced in the windings. When carrying balanced three-phase currents, the armature 

will produce a magnetic field in the air-gap rotating at synchronous speed. The field 

produced by the direct current in the rotor winding, on the other hand, revolves with the 

rotor. For production of a steady state torque, the fields of stator and rotor must run at 

precisely the synchronous machine. It is common to have two or three damper windings in 

the rotor mounted in the rotor with the intention to damp out speed oscillations. 

 Figure 3.1 shows the circuit of a synchronous machine of salient poles. The machine 

consists of two circuits, the rotor and the stator [28]. The circuit of the rotor has a field 

winding and three damper windings, two of them in quadrature axis, and the other in the 

direct axis. Variables cba v,v,v  are stator phase voltages;  2q1q1dfd v,v,vv ,   are field and 

damper winding voltages, and θ represents the rotor angle. 
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Figure 3.1  Rotor and stator circuits of the synchronous machine 

 

Based on the above schematic, the electrical and mechanical subsystems are obtained as 

shown in [26, 28, 29]. 

3.2.1. ELECTRICAL AND MECHANICAL EQUATIONS OF THE SYNCHRONOUS MACHINE 

The electrical subsystem of the synchronous machine is characterized by the stator a 

rotor equations. The quantities for the stator are 
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where cba iii ,, , are the stator currents and cba λλλ ,, are the a, b, c flux linkages defined  

as follows 
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and the equations of the rotor are 
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where qqdfd iiii 211 ,,,   are the rotor currents and qrqrdrfd 211 ,,, λλλλ  are the rotor flux linkage, 

defined by 
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The mechanical subsystem of the synchronous machine involves equations of motion and is 

given by: 

 ω
pdt

θd 2
=

 
(3.10)

 ωω DTT
dt
d

P
J em −−=

2
 

(3.11)

 
2

)(
2
3 piiT dqqde λλ −=

 
(3.12)

where the number of magnetic poles per phase is p , rm
p ωω
2

=  is the rotor angular velocity 

expressed in electrical radians per second for a p-pole machine and rmω  is the mechanical 

angular velocity of the rotor. J  represents the inertia constant, mT  is the load torque, eT  is the 

electrical torque and D is a mechanical damping coefficient. 

 Equations (3.1)-(3.12) completely describe the electrical and mechanical behavior of a 

synchronous machine [28]. The electric equations contain inductance terms, which vary with 

angle θ , which in turn varies with time. This dependency is eliminated by means of the Park 

transformation defined in [28] so as to obtain the so-called dq0 model. The general form of 

the transformation that accomplishes this is Park’s transformation 0dqT . So that the following 

expressions are fulfilled  

abcdqdqabcdqdqabcdqdq TiTivTv ψψ 000000 ===  

and  
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Using the expressions for cba λλλ ,,  given in equations (3.2)-(3.41), transforming the flux 

linkage and currents into dq0 components, and with suitable reduction of terms involving 

trigonometric terms, we obtain the following expressions of the Stator flux. 

 kdakdfdafddaaabaaq iLiLiLLL ++++−= )
2
3( 200λ (3.14)

 kdakdqaaabaaq iLiLLL +−+−= )
2
3( 200λ  (3.15)

 0000 )2( iLL abaa −−=λ  (3.16)
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2
3( 200 aaabaad LLLL ++= ; )

2
3( 200 aaabaaq LLLL −+= ; )2( 000 abaa LLL −=  

Then the flux linkage equations become 

 kdakdfdafdddd iLiLiL ++−=λ (3.17)

 kdakdqqq iLiL +−=λ  (3.18)

 000 iL−=λ  (3.19)

Using the same procedure to obtain the dq0 stator equations we can obtain the flux linkages 

for the rotor 
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 qakqqkqkqkqkqk iLiLiL
2
3

22112 −+=λ (3.23)

Observe that the dq0 components of stator flux linkages are seen to be related to the 

components of stator and rotor currents through constant inductances. For the dq0 

components of the rotor, all the inductances are also seen to be constant, i.e., they are 

independent of the rotor position. It should however be noted that the saturation effects are 

not considered here. The variations in the inductances due to the saturation are of different 

nature, which is not considered in this model. Using (3.13)-(3.19) Stator voltage equations in 

dq0 components can be expressed as follows [28] 
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and using (3.20)-(3.23) the rotor voltage equations in dq0 components can be expressed as 

follows 
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Reordering these last equations, we obtain 
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3.2.2. dq0 SYNCHRONOUS MACHINE MODEL 

The dq0 equations shown above can be rewritten as follows  
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and for the rotor 
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where qqdfds rrrrr 211 ,,,,  are the stator and rotor resistances; qqdfdqd iiiiii 211 ,,,,, , are the dq 

currents of the stator and rotor; qrqrdrfdqsds 211 ,,,,, λλλλλλ  are the dq fluxes of the stator and 

rotor. For balanced systems it is usually assumed that the voltage and current io, vo are equal 

to zero. 
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However we need to derive the parametrized model of the synchronous machine to use in the 

estimation process. In [29] the mathematical derivation for Small-Signal model of the 

synchronous generator is shown. An assumption mode is that the synchronous generator is 

connected to an infinite bus through a reactance ex . In steady state conditions, the variations 

of the dq-axis fluxes 
dt

d dλ
 and 

dt
d qλ

 are usually neglected [28] , so the stator quantities will 

contain only fundamental frequency component, for representing the interconnecting 

transmission network as shown in the next Figure [26, 28] 

G 

x e
V∞

 

Figure 3.2  Synchronous Generator Connected to an Infinite Bus 

Here xe is the line reactance, and V∞ is the voltage of the infinite bus. Another simplifying 

assumption normally made is that the per unit value of the rotor velocity rω  is equal to 1.0 

p.u. in the stator voltages equations. This is not the same as saying that speed is constant; it 

assumes that speed changes are small and do not have a significant effect on the voltage. 

Considering these assumptions described in [26, 28, 29] the incremental synchronous 

machine model for the electrical subsystem, linearized around an operating point is derived 

in [26] and given by  
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where "'''
d

EqEqE ∆∆∆ , are the incremental dq transient and sub-transient voltages; 

fdqd VVV ∆∆∆ ,,  are the incremental dq and field input voltages; qd ii ∆∆ ,  are the incremental 

dq output currents. ""'' ,,,,, qdqdqd xxxxxx  are the transient and sub-transient dq-axis reactances; 

",",'
qoTdoTdoT , are the dq-axis transient and sub-transient time constants, k is the ratio of the 

mutual reactance of the direct axis and the field winding resistance given by fdmd rxk /= . 

From the equations (3.40) to (3.44), we can identify the parameters of the synchronous 

generator electrical subsystem, which constitute the parameters to be estimated. These 

parameters are ordered in parameter vectorα , as follows. 

 T
qoqqdodddd TxxkTTxxx ][ """'

0
"'=α  (3.45)
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 The electric subsystem has nine parameters. There is an additional parameter k in our 

model which relates the field winding with the direct axes. For stability analysis, these 

parameters involve the synchronous transient and subtransient conditions of the machine. It 

is important to know what these parameters represent when the synchronous machine is 

connected to a large system. 

Suppose that a disturbance or fault happens when the machine is connected to an 

infinite bus like the one showed in Figure 3.2, so that, following the disturbance, currents are 

induced in the circuits of the machine rotor. Some of this induced rotor currents decay more 

rapidly than others. Machine parameters that influence rapidly decaying components are 

called the subtransient parameters ( """" ,,, qoqdod TxTx ), while those influencing the slowly 

decaying components are called the transient parameters ( '
dx , '

0dT ) and those influencing 

sustained components are the synchronous parameters ( qd xkx ,, ). The corresponding time 

constants determine the rate of decay of currents and voltages from the standard parameters 

used in specifying synchronous machine electrical characteristics. 

 During a rapid transient the limiting value of Ld is approached by the subtransient 

reactance "
dL , which represents the effective inductance dd i∆∆ /ψ immediately following a 

sudden change. The quantity "
dL  multiplied by the value of frequency leads to d-axis 

subtransient reactance "
dx . In absence of damper winding, the limiting value of inductance is 

'
dL , which leads to d-axis transient reactance. '

dx .  

 The parameter vector shown in (3.45) will be used through this thesis and, it 

constitutes the parameter vector to be estimated.  
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3.3. SUMMARY 

 In this chapter, we developed the mathematical model of the synchronous generator. 

For synchronous machine identification, it is necessary to consider the parameters that 

involve the synchronous, transient and subtransient stages with the finality of reflecting the 

machine behavior under normal operation, before and after a perturbation. The importance of 

developing more complex machine models is evident because they permit to generate 

diagnosis signal sensitive to the occurrence of faults, as well as more accurate control and 

prediction of the machine behavior. In this regard, a synchronous machine model that 

introduces its steady-state and transient performance was developed. This led to the dq 

linearized small signal model of the synchronous generator that contains parameters 

corresponding to the steady state, transient and subtransient conditions.  

In the next chapter we present a parameter estimation problem and parameter estimate 

condition analysis for the synchronous generator.  
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CHAPTER 4 PARAMETER ESTIMATION AND CONDITIONING 
ANALYSIS FOR THE SYNCHRONOUS GENERATOR 
MODEL 

4.1. INTRODUCTION 

 One of the most common mathematical tools used to solve problems of optimization 

and parameters estimation is the least squares method. In general the goal of the parameter 

estimation is to compute estimates of the parameters of a system when data or measurements 

are available. The parameter estimates are chosen so as to minimize a measure of the error 

between the model predictions and the measurements. For linear models, the least squares 

parameter estimate can be found easily. When the model of a system is nonlinear the problem 

of parameter estimation becomes more difficult to solve. Here it is necessary to use iterative 

methods to compute the estimate; reference [38] presents a detailed explanation. This chapter 

looks at the nonlinear least squares parameter estimation for a synchronous generator. The 

chapter is organized as follows. First the estimation approach of the linearized state space of 

synchronous machine based on the output error is introduced. Second the parameter 

estimation problem is analyzed and finally the parameter estimation for the synchronous 

generator is presented. 

4.2. OUTPUT ERROR FORMULATION  

  The linearized state space representation of synchronous machine model shown in 

equations (3.40)-(3.44) can be represented as follows [37] 
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where T
qoqqdodddd TxxkTTxxx ][ """'

0
"'=α  is the vector of parameters that we 

want to estimate, T
qdfd VVVu ][ ∆∆∆= , is the input, TdEqEqEtx ][)( "''' ∆∆∆= is the 

state, T
qd iity ][)( ∆∆= is the output, and )(),(),(),( αααα DCBA  are matrices given by 
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 The estimation approach is based on the output error method proposed in [26]. The 

output of the generator model is compared with the system and the parameters are estimated 

by minimizing a measure of the model prediction error  

 )(ˆ)( αyyαr −=  (4.3)

where )(
^
αy  is the N-vector of model predictions for the measurements and is given by 
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and y  is the N-vector of measurements. Notice that prediction error is a nonlinear function 

of the parameter vectorα .  

4.3. THE PARAMETER ESTIMATION PROBLEM 

4.3.1. LINEAR LEAST SQUARES PROBLEM 

 Karl Friedrich Gauss formulated the principle of least squares at the end of the 

eighteenth century. He stated that the unknown parameters of a model can be chosen this 

way: The sum of the squares of the difference between the actually observed and the 

computed values, multiplied by numbers that measure the degree of precision, is a minimum 

[29]. 

 Consider the problem of finding a vector nℜ∈x  such that 

 bA =x  (4.5)

For a particular application A is nm ×  matrix, b represents the available measurements, and x 

is a vector of parameters to be estimated. For ,nm > and Rank (A) = n, in general, there will 

be no solution to (4.5), so the linear least squares problem suggest to minimize the square 

norm of the error bAe −= x  as follows 

 2
minargˆ bA

nx
−=

ℜ∈
xxLS  (4.6)
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where 
2

.  is the Euclidean norm or 2-norm and. The solution set of (4.6) is defined by 

 { }0=−ℜ∈= )x̂(x̂ LS bAAV Tn . (4.7)

If Rank (A)= n, the columns of A are linearly independent and LSx̂ is given by 

 bAAA TT 1)(ˆ −=LSx . (4.8)

4.3.2. NONLINEAR LEAST SQUARES PARAMETER ESTIMATION 

Suppose that we have n observations (xi ,yi), i=1,2,…,m, from a fixed regresor 

nonlinear model with a known functional relationship f such that  

 yi=f (xi ,α*)+ε i (4.9)

where E[ε i]=0, n
ix ℜ∈  and the true value of α , *α  is known to belong to a set ⊆Θ p. 

The least squares estimate of *α  denoted by α̂  minimizes the error sum of squares 

 [ ]
2

1

2∑ -
n

i
ii xfyV

=

== )α(f-y);()α( α (4.10)

where [ ] T

nyyy L21=y  and 


















=

α),

α),
α),

αf

mxf

xf
xf

(

(
(

)( 2

1

M
 

)(αV  is a measure of model fit typically least squares  

 
∑
=

==
N

1i
2
i2

12

2

1
)α(r)α(r)(V α  

(4.11)

Notice that we can select different norms to measure the output error such as, grid norm, 

Euclidean norm, or Chebyshev norm [31].It should be distinguished that, unlike the linear 

least squares situation, V(α ) may have several local minima in addition to the global 
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minimum α̂ . Like the linear problem, the parameter vector α̂  estimates for the nonlinear 

case can be stated as the optimization problem,  

 )(
A

αVα
∈

=
α

argminˆ  (4.12)

where each );( αixf  is differentiable with respect to α  and α̂  will be a solution to 

 0))(( =− αfyJT  (4.13)

where 
α
αfJ

∂
 ∂

=
)(  is the Jacobian matrix. 

Solutions for nonlinear least squares problem are computed using iterative methods of which 

Gauss-Newton is among the most used [32]. Gauss Newton method start with an initial value 

of estimate, the next guess is then computed as. 

 iii1i pαα δ+=+ ˆˆ  (4.14)

where iδ , is a scalar that fixes the step size in the Gauss Newton direction ip , which is 

calculate by solving the linear least squares problem  

 iii r-pJ minargp
p

=  (4.15)

where   
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is the Jacobian of the residuals and ( )ii rr α̂= . Problems arise because poor practical 

identifiability causes this Jacobian to be ill conditioned and we need to deal with this in the 
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estimation process. In this thesis, we study the use of Variable Dimension Gauss-Newton 

algorithm. 

4.4. CONDITION ANALYSIS 

 Our approach to study parameter estimate sensitivity is by viewing the relation between 

data and parameter estimate as a mapping 

 ( )yFα̂ =  (4.17)

This mapping is defined by the optimization problem. Depending on the optimization 

criterion and model structure this mapping can be defined explicitly or implicitly.  The 

technique used here to analyze the conditioning of parameter estimates is based on local 

sensitivity analysis using relative condition numbers. The relative condition number 

measures the relative change in the parameter estimate caused changes in problem (see, e.g. 

[34]) and is given by 

 y
y
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y
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i ∆
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α∆ α̂  (4.18)
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is the sensitivity function [26, 35, 42], if∇  is the gradient of the i-th component of F, and ⋅  

is the 2-Norm or Euclidean norm. We will say that a parameter is ill conditioned if this 

number has a large magnitude and well conditioned otherwise [41]. We can see also that 

these numbers can give an idea of the quality of the estimates since good quality estimates 
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will in general be associated with well-conditioned parameters. For nonlinear least square 

estimation, let )(ˆ yFα NLS= , the Jacobian for the nonlinear least square problem mapping is 

given by  

 '1NLS *)'*( JJJ
y

F −=
∂

∂
 (4.20)

where J is the Jacobian of the residuals defined previously.  

Once ill-conditioning is identified, we can try to bring additional information into the 

problem to transform the ill-conditioned parameter estimation problem into a well-

conditioned one. An approach to do this is the subset selection method proposed in [26, 41-

43]. Subset selection is a methodology that is applied to parameter estimation in electric 

machines with the finality of overcoming ill-conditioning. A subset selection technique can 

be used as a way of incorporating prior information to the parameter estimation problem.   

4.5. SYNCHRONOUS GENERATOR EXPERIMENTAL DATA EXAMPLE 

 We develop an example to study the synchronous generator parameter conditioning 

using the proposed sensitivity analysis. The synchronous generator under consideration is the 

FC5HP located at the Four Corners Generating Station of the Arizona Public Service 

Company (APS) [31]. The data used throughout this was provided by [31]. The 

measurements were taken under steady state conditions when the generator is serving a load.  

Voltages and currents of the stator and field windings were measured as well as the active 

and reactive power. The active power has a value of 142.2 MW and the reactive power is 3.7 

MVA at a lagging power factor. Figure 4.1 and Figure 4.2 shows the voltage and current 
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waveforms of the stator and Figure 4.3 and Figure 4.4 illustrates the current and voltage 

waveforms of the field winding 

 

Figure 4.1  Steady estate operating condition, line to line stator voltages 

 
Figure 4.2  Steady estate operating condition, line to line stator currents 
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Notice that, the field voltage and currents are slowly varying DC signals, which are 

measured through a six pulse rectifier and thus their time plots have a rather unusual 

appearance as show in Figure 4.3. 

 

Figure 4.3 Steady state operating condition, field voltage 

 

Figure 4.4 Steady state operating condition, field current 
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 Appendix A shows the procedure of how the waveforms of the Figure 4.1-Figure 4.4 

were obtained. The nameplate parameters of the FC5HP were extracted from [31] and used 

to calculate the nominal values of the parameters of the linearized model presented in 

Chapter 2. In this research we use the stator and voltage equations of the synchronous 

machine model connected to an infinite bus so as to compute the numerical values of 

nominal parameters [28, 30].  These values are shown in Table 4.1. 

 

Table 4.1  Nominal parameter values for the 483MVA synchronous machine 

Parameters xd '
dx  

"
dx  '

doT  "
doT  k qx  "

qx  "
qoT  

Nominal 
Values (p.u.) 

1.801 0.285 0.220 3.7 0.032 47.143 1.72 0.220 0.059 

 

4.6. COMPUTING THE JACOBIAN 

 Recall that the Gauss-Newton algorithm needs the Jacobian matrix. To compute the 

Jacobian matrix, we start from (4.3), by deriving the output error )r(α  with respect to the 

parameter vector α , and is given by 
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r

iyJ  (4.21)

where each row is given by  
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and is computed by integrating the sensitivity equation 
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Notice that the last equation can constitute another system of equations, if we assume that 

i
i α̂∂

∂
=

xS  [37]. Then (4.23) can be rewritten as follows 
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or equivalently in state space form 
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and 
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To get a numerical value for the Jacobian matrix all we need to do is to perform the 

simulation of equation (4.25), which is evaluated at the nominal values of the parameters 

shown in Table 4.1. Observe the new inputs of the system described in (4.25), they constitute 
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the input T
qdfd VVVu ][ ∆∆∆=  and the state variables TdEqEqEtx ][)( "''' ∆∆∆=  of 

the system described in (4.1), which have already been computed in the previous section.  

 

4.7. FULL ORDER PARAMETER ESTIMATION 

In this section, we evaluate the sensitivity of full order synchronous machine parameter 

estimation problem. The idea is to show how small amount of noise are greatly amplified into 

the parameter estimates due to the problem of ill-conditioning. For this purpose, the 

formulation presented in (4.1)-(4.16) and the nominal values shown in Table 4.1 were used 

so as to find the parameter estimates of the synchronous machines [26].  

A Matlab code was implemented for this purpose and is shown in Appendix B. The 

obtained values shown in Table 4.2 were obtained by using the Gauss Newton algorithm 

after 6 iterations.  

Furthermore, making a relative comparison of the estimated values, we can see that some 

parameters have error percentages relatively large in comparison with others. In particular 

dx , 
"
dx  and k are the most sensitive of all followed by '

0dT . Observe that the error percentage 

corresponding to the q axis components are small in comparison with the others.   
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Table 4.2  Full order synchronous machine parameter estimation 

Parameters 
Nominal Values

i
Nα  

Parameters 

Estimates 
i
Eα̂  

Error (%) 

%100*
ˆ

i
N

i
E

i
N

α
ααE −

=  

dx  1.801 1.799 4.78 

'
dx  0.285 0.285 0.01 

"
dx  0.220 0.212 3.636 

'
0dT  3.700 3.696 0.098 

"
0dT  0.032 0.032 0.000 

k 47.143 47.098 9.440 

qx  1.720 1.720 0.000 

"
qx  0.220 0.220 0.000 

"
0qT  0.059 0.0590 0.000 

 

4.8. SENSITIVITY ANALYSIS OF THE PARAMETERS TO BE ESTIMATED 

 Using (4.19) the componentwise condition numbers for full-order parameter 

estimation were calculated and shown in Table 4.3 
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Table 4.3  Componentwise condition numbers for full order parameter estimation problem 

Parameter iα
yS ˆ  

qx̂  3.1597*101 

"
q̂oT  2.1088*102 

'ˆdx  3.0700*102 

"ˆdx  6.5274*102 

"ˆqx  1.0750*103 

"
d̂oT  1.8140*103 

dx̂  8.9896*103 

k̂  1.8937*104 

'
d̂oT  1.9956*104 

 

From the results shown in Table 4.3, we can see that qx  has the smallest condition number. 

The remaining parameters have condition numbers that are in the order of 102 through 104. 

Thus from these results, we can classify the parameters in two groups: well conditioned and 

ill-conditioned. Making a relative comparison we can say that the parameters k  and '
0dT  are 

the ill-conditioned ones and the remaining parameter can be considered as well-conditioned. 

If we observe the results of the full order Gauss-Newton parameter estimation for the 

synchronous machine showed in Table 4.2, we can see that the parameters that have the 

largest error percentage are the parameters dx , k and '
doT , which are among the worst 

conditioned parameters in Table 4.3, These results show that the componentwise condition 

numbers [26, 35, 41, 42] are practical and easy way to determine the condition of the 

parameter estimate, prior to perform parameter estimation. In this way, we can determine 

which parameter can be reliably estimated from the available data.  
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 Based in the results obtained in Table 4.3, we want to develop parameter estimation 

strategies that deal with the high sensitivity values and carry out reliable parameter 

estimation for the synchronous generator. The first strategy to be evaluated is an extended 

analysis of subset selection technique, previously presented by [26]; first it is necessary to 

find which parameter to fix. Once we know which parameter to fix, the subset selection 

strategy can be applied. 

4.9. SUMMARY 

 In this Chapter, the synchronous generator parameter estimation is presented; we also 

introduced the conditioning analysis of the parameter estimation problem. The idea of output 

error and least squares methodology were used to solve the problem of nonlinear parameter 

estimation. The Gauss Newton method was used to compute the parameter estimates. A 

numerical experiment of the synchronous machine was presented, the input data correspond 

to the FC5HP synchronous generator located at the Four Corners Generating Station of the 

Arizona Public Service Company (APS) and the simulation model of [26]. The 

measurements were taken under steady state conditions when the generator was serving a 

load. The Gauss Newton method was applied and the estimates shown in Table 4.2. Making a 

relative comparison of the estimated values, we could see that some parameters have error 

percentages relatively large in comparison with others. In particular, dx  and k have the 

highest error followed by '
0dT . Observe that the error percentage corresponding to the q axis 

components are small in comparison with the others. In this chapter, we also developed the 

study of parameter conditioning using the componentwise condition numbers. The numerical 

results of the synchronous machine example revealed relatively large condition numbers. 
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After a relative comparison we were able to identify that parameters k  and '
0dT  were the ill-

conditioned ones and the remaining parameter were considered well-conditioned. If we 

observe the results of the full order Gauss-Newton parameter estimation for the synchronous 

machine showed in Table 4.2, we can see that the parameters that have the largest error 

percentage are the parameters dx , k and '
doT , which are among the worst conditioned 

parameters in Table 4.3 

  The next chapter presents the subset selection technique as a way to deal with ill-

conditioning problem. 
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CHAPTER 5 SUBSET SELECTION ANALYSIS 

 As shown previously, local sensitivity analysis techniques to identify well-

conditioned and ill-conditioned parameters in the synchronous generator model was used 

Table 4.3 showed these results. The question that arises from this analysis is: given such 

value of parameter sensitivity, how reliable the parameter estimates will result? How well the 

parameter estimates will converge to the desired values? 

In Table 4.2, it was demonstrated that the parameter estimation from the available 

measurements is not totally unreliable. However the sensitivity values shown in Table 4.3 

have shown that some parameters ( ,, kxd  and '
0dT ) present considerable high condition 

numbers. Therefore, it is desired to explore some methodologies to overcome such relatively 

high sensitivity values. In that sense, this chapter and the next will be focused on presenting 

some of these techniques and their application to synchronous machine parameter estimation 

when real data are used. In particular, we want to apply the subset selection technique 

developed in [26] and the Variable Dimension Newton Raphson method, which is discussed 

in detail in Chapter 6.  

In the subset selection strategy [26] and [43], a subset of parameters is fixed to prior 

values while the remaining parameters are estimated from available data. Here we applied the 

procedure to determine how many parameters to fix by looking at the eigenstructure of the 

Hessian matrix. On the other hand, an extensive evaluation to determine which combination 

of parameters is the best subset to fix such that the condition numbers are reduced and 

therefore improve the parameter estimation problem.  



 52

5.1. ILL-CONDITIONING PROBLEM  

Before treating the problem of ill conditioning, we want to introduce other kind of 

approach used in the Gauss-Newton algorithm to compute the parameter estimates. This 

approach consists on expressing the Hessian matrix in terms of the Jacobian matrix. Hessian 

matrix is approximated in [41] and [44] as follows 

 ∑
∂∂

∂
+=

=

N

l

l
l

T r
r

1 '
)(

)()()()(
αα
α

αα αJαJH (5.1)

where H  is the Hessian matrix, which involves the second derivatives of the fit model 

)(αV with respect to the parameter vector α . 
α̂

)ˆ(

=
∂

∂
=

α
α

α

r

irJ is the Jacobian matrix of the 

residuals )(αr . Notice that the Hessian matrix is a nn ×  matrix. For small residuals the 

Hessian can be approximated by 

 )α(J)α(J)H(α T≈  (5.2)

Observe the simplicity of the equation (5.2), once the Jacobian is computed; the calculation 

of the Hessian matrix is not difficult. Basically, this matrix contains the information for 

computing the parameter estimates. An important issue is to evaluate the eigenvalues of the 

Hessian matrix, its nature and properties of inversion   

5.2. SUBSET SELECTION STRATEGY 

Subset Selection is a methodology that has been applied to parameter estimation in 

electric machines with the finality of overcoming ill conditioning [26]. 

This strategy consists of adding prior information to the parameter estimation problem, 

selecting a subset of parameters and fixes them to prior values and still performs meaningful 
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estimation of the remaining parameters [41-43]. In [41] and [43], the subset selection method 

was applied to induction motor and synchronous generator parameter estimation problems 

respectively. The number of parameters to fix was determined by eigenanalysis of the 

Hessian matrix and which parameters to fix were determined by the subset selection method 

for determining column independence in matrices presented in [43]. As in [26], in this 

research, we expand the study and perform the full combinatorial analysis to determine the 

best combination or combinations of parameters to be fixed. 

Once the parameters to fix are determined, the following constrained optimization 

problem is solved. 

 
*
22

2

2

αα  

    

=

=

Subject to

)(argminˆ αrα
α  (5.3)

where TTT αα ),( 21=α  is a partitioning of the parameter vector where 

nqpαα qp =+ℜ∈ℜ∈ ,, 21  and 1α  is the subset of parameters to estimate and 2α  is the 

subset of parameters to fix. Notice that the Jacobian for the reduced-order problem (5.3) 

consists of a subset of the columns of the Jacobian for full-order problem (4.12). 

 

5.2.1. QR FACTORIZATION AND SUBSET SELECTION 

The orthogonal-triangular QR factorization of an nm×  matrix A where nm ≥ , is given 

by 

 A=QR (5.4)

where mmQ ×ℜ∈  is orthonormal and nmR ×ℜ∈  is upper triangular.  
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The singular value decomposition of a matrix )( nmA n*m ≥ℜ∈ is given by 

 ),,( 1 n
T σσdiagAVU K=  (5.5)

where ( ) nm
nU ×ℜ∈= uu ,,1 L  and ( ) nn

nV ×ℜ∈= vv ,,1 L  are orthonormal matrices 

n
TT IVVUU == .Next the subset selection strategy of [43]; is presented 

5.3. SUBSET SELECTION ALGORITHM [41] 

1. Given an initial parameter vector estimate 0α̂ , compute the Jacobian matrix of the 

residuals J and compute the Hessian Matrix by using (5.2) 

2. Calculate the eigendescomposition of 

 

VV

VV)ˆ(
2

0

Σ=

Λ== Tα JJH T

 (5.6)

where )(),(),({ 21 HHH ndiag λλλ K=Λ } 

3. Determine p, the number of parameter to estimate, such that the first p 

eigenvalues of H are larger than a threshold.  

4. Make the partition ]VV[V pnp −=  with pV  containing the first p columns of V. 

5. Compute the QR decomposition with column-pivoting for TVp  [52] 

 QRPT =pV  (5.7)

6. Let αPα T= . The first p elements of this vector are the parameters to estimate, 

the n-p are the parameters to fix 

As we mentioned previously, the Jacobian of the reduced order problem contains a 

subset of the columns of the full order problem and hence the Hessian is a sub-matrix of the 
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full order Hessian. Steps 4-5 of the Algorithm above, guarantee that the reduced order 

Hessian is well conditioned. Here steps 4-5 are substituted by a combinatorial search and 

search for the best combination of p-column of the Jacobian that will result in the best 

conditioned Hessian. This combinatorial search is feasible in this low dimension problem, in 

high dimension problems the algorithm just presented is the way to go. Next the application 

of the modified subset selection to the synchronous machine parameter estimation is 

presented. 

 

5.4. SYNCHRONOUS MACHINE REAL DATA EXAMPLE 

The first step of the technique presented above suggests the computation of the 

eigendescomposition of the Hessian matrix, and is given by 
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and its eigenvalues are shown in Table 5.1  
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Table 5.1 Eigenvalues of the Hessian 

i iλ  

1 1.068 

2 2.423*10-1 

3 8.349*10-2 

4 3.297*10-3 

5 2.384*10-4 

6 5.653*10-5 

7 7.326*10-6 

8 1.895*10-7 

9 2.101*10-13 

 

The larger eigenvalue is 1.068 and the smaller is 2.101* 1310−  . Thus the condition 

number of the Hessian, would be 12100825 *.  , which is relatively large, meaning that H 

might be close to singularity and nonlinear least square solution might become  sensitive to 

perturbations in the input data. On the other hand this can lead to severe ill-conditioning and 

slow convergence as shown in [26]. However in our application this is not the case, the 

relative high sensitivity values shown in Chapter 3 (Table 3.3) do not dramatically affect the 

full order parameter estimation. Although this does not represent a severe problem, it is 

desired to evaluate the subset selection algorithm and perhaps obtain even more precise 

convergence and therefore smaller absolute errors of the estimates. 
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In this regard, looking at the results shown in Table 4.1, the last six eigenvalues are 

considerably smaller compared with the other two. If we set a threshold at 10-6 to neglect the 

eigenvalues, this will indicate that 7 parameters can be estimated more reliably from the 

available data. However we still do not know which parameter to fix and which to estimate. 

The next step would correspond to investigate what parameters of the parameter 

vector to estimate and what parameters to fix. For this purpose we apply the subset selection 

strategy to our test system (synchronous generator). Remember that the parameter vector to 

be estimated with its respective ordering is 
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applying steps 5 and 6 of the subset selection algorithm described in section 5.3, the 

permutation vector P can be obtained and it gives  

 [ ]164235987=P  (5.9)

which results in the following parameter partitions 
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According to (4.10), k and dx  are the parameters to be fixed. This result is quite consistent 

with results shown in Table 4.3. As it was stated previously, this research presents a more 

extended analysis of subset selection, which consists on evaluating all parameter 

combinations of the permutation vector P when two ( 2α ) parameters are fixed. Then 

evaluate the Hessian matrix conditioning for such combinations. The results of the 

combinatorial analysis for this problem are shown in Table 5.2. The first and third column of 
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the table give the parameter combination being considered and the second and fourth give the 

condition number of the reduced order Hessian for the particular combination. 

Table 5.2 Conditioning for all possible combinations  

COMBINATIONS H)(v  COMBINATIONS H)(v  

9     5     3     2     4     6     1 5.0822E+012 7     8     5     3     2     6     1 4.5299E+007

8     5     3     2     4     6     1 5.0822E+012 7     8     5     3     2     4     1 5.6404E+006

8     9     3     2     4     6     1 7.1267E+008 7     8     5     3     2     4     6 2.3227E+008

8     9     5     2     4     6     1 1.0502E+009 7     8     9     2     4     6     1 1.9429E+007

8     9     5     3     4     6     1 7.6684E+008 7     8     9     3     4     6     1 6.5703E+006

8     9     5     3     2     6     1 4.5299E+007 7     8     9     3     2     6     1 2.2703E+006

8     9     5     3     2     4     1 5.6404E+006 7     8     9     3     2     4     1 3.2107E+005

8     9     5     3     2     4     6 2.3227E+008 7     8     9     3     2     4     6 2.0560E+007

7     5     3     2     4     6     1 5.0822E+012 7     8     9     5     4     6     1 1.1472E+006

7     9     3     2     4     6     1 7.1267E+008 7     8     9     5     2     6     1 3.5313E+005

7     9     5     2     4     6     1 1.0502E+009 7     8     9     5     2     4     1 1.4497E+005

7     9     5     3     4     6     1 7.7120E+008 7     8     9     5     2     4     6 2.6403E+006

7     9     5     3     2     6     1 4.5299E+007 7     8     9     5     3     6     1 4.5769E+004

7     9     5     3     2     4     1 5.6404E+006 7     8     9     5     3     4     1 3.3078E+004

7     9     5     3     2     4     6 2.3227E+008 7     8     9     5     3     4     6 5.3409E+005

7     8     3     2     4     6     1 7.1267E+008 7     8     9     5     3     2     1 1.4451E+005

7     8     5     2     4     6     1 1.0502E+009 7     8     9     5     3     2     6 2.4727E+005

7     8     5     3     4     6     1 6.3205E+008 7     8     9     5     3     2     4 1.4561E+005

 

In Table 5.2 we identify two combinations with the smallest condition numbers. 

These are the combinations [7  8  9  5  3  6  1] and [7  8  9  5  3  4  1]. From this, we can infer 

that fixing the combinations, '
dx  and '

d0T ; '
dx  and k  respectively, the condition number of 
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the Hessian matrix is reduced significantly in comparison with others combinations. Notice 

the importance of evaluating all parameter vector combinations. Here we can obtain 

potentially good combinations and select those where prior information is available or of that 

have better quality. Furthermore it allows us to observe patterns that can give more insight 

into the parameter conditioning issue. Now let us evaluate the conditioning of the estimates 

for the two best combinations given above and observe how the condition numbers change. 

As in Chapter 3, here we use equation (3.12). The results are shown in Table 5.3 

Table 5.3 Parameter sensitivity for the better combinations obtained from subset selection. 

(NOTE: Hyphen denotes fixed parameters) 
Condition Numbers 

Parameter Fixing 
'
dx , '

d0T  

Fixing 
'
dx , k  

Full Order GN 

dx  7.8623*101 7.2516*101 8.9896*103 

'
dx  - - 3.0700*102 

"
dx  3.3749*101 3.3676*101 1.0750*103 

'
doT  - 1.2633*101 1.9956*104 

"
doT  2.2476*102 2.2587*102 1.8140*103 

k  1.2149*101 - 1.8937*104 

qx  3.1597*101 3.1597*101 3.1597*101 

"
qx  6.5274*102 6.5274*102 6.5274*102 

"
qoT  2.1088*102 2.1088*102 2.1088*102 
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Observe that the parameter conditioning is improved (reduced) by fixing the 

combinations '
dx , '

d0T  and '
dx , k  respectively.  

 The next step would be to estimate the parameters for the reduced order case. Here 

we also use the Gauss-Newton algorithm and the initial conditions for parameter estimation 

as presented in Chapter 3. A Matlab code was also implemented for this case and is shown in 

Appendix B. Table 5.4 shows the parameter estimates for the reduced order case, and Table 

5.5 illustrates the error percentages of the reduced and full order cases. 

 

Table 5.4   Parameter estimates for the better combinations obtained from subset selection. 
(Note: Hyphen denotes fixed parameters) 

Parameter Estimates 
Parameter 

Nominal Values 
Fixing 

'
dx , k  

Fixing 
'
dx , '

d0T  
Full Order 

GN 

dx  1.801 1.800 1.800 1.799 

'
dx  0.285 - - 0.285 

"
dx  0.220 0.220 0.220 0.212 

'
doT  3.700 3.700 - 3.696 

"
doT  0.032 0.032 0.032 0.032 

k  47.143 - 47.143 47.098 

qx  1.720 1.717 1.691 1.720 

"
qx  0.220 0.219 0.216 0.220 

"
qoT  0.059 0.059 0.059 0.0590 
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Table 5.5   Error of estimated parameters for the better combinations obtained from subset 
selection. (Note: Hyphen denotes fixed parameters) 

Error (%)of Estimated Parameters 
Parameter 

Nominal Values 
Fixing 

'
dx , k  

Fixing 
'
dx , '

d0T  
Full Order 

GN 

dx  4.78 0.055 0.055 4.78 

'
dx  0.010 - - 0.01 

"
dx  0.008 0.000 0.000 3.636 

'
doT  0.098 0.000 - 0.098 

"
doT  0.000 0.000 0.000 0.000 

k  9.440 - 0.000 9.440 

qx  0.000 0.169 1.700 0.000 

"
qx  0.000 0.169 1.700 0.000 

"
qoT  0.000 0.000 0.000 0.000 

 

 The parameter estimates of Table 5.4 converged after eight and seven iterations 

respectively. In Table 5.5 note that fixing the parameters combination '
dx , '

d0T , and '
dx , k  

results in considerable error percentages reduction that the full order Gauss Newton (GN) 

parameter estimation. 

5.5. SUMMARY 

In this Chapter we studied the Subset Selection strategy. This strategy consists of adding 

prior information to the parameter estimation problem, selecting a subset of parameters and 
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fixing them to prior values and still performs meaningful estimation of the remaining 

parameters. Therefore the number of parameters to fix was determined by eigenanalysis of 

the Hessian matrix. Which parameters to fix were determined by the subset selection method 

for determining column independence in matrices. In this chapter, we also studied and 

implemented the combinatorial analysis to determine the best combination or combinations 

of parameters to be fixed. Once the parameters to fix were determined, the constrained 

optimization problem described in equation (5.3) was solved. The application of this 

methodology to the synchronous machine parameter estimation problem was then presented.  

The application of the combinatorial analysis produced two combinations with the smallest 

condition numbers corresponding to fixing the combinations, '
dx , '

d0T ; and k  respectively. 

The condition number of the Hessian matrix is reduced significantly in comparison with 

others combinations. Then the conditioning of the estimates for the two best combinations 

was evaluated. It was observed that the parameter conditioning was improved condition 

numbers (reduced) by fixing the combinations '
dx , '

d0T  and '
dx , k  respectively. Then the 

parameter estimates for the reduced order case were evaluated using the Gauss-Newton 

algorithm. 

 In general, we can conclude that the estimates and the performance of the Subset 

Selection algorithm are considerably improved in comparison to the ones obtained for the 

full order Gauss Newton algorithm (Table 4.2). Furthermore by fixing the parameters 

combination '
dx , '

d0T , k  and '
dx  results in high sensitivity and error percentages reduction as 

shown in Table 5.4, and Table 5.5 respectively . 
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  The next Chapter is focused on an alternative algorithm that performs the nonlinear 

parameter estimation. The algorithm is based on the Variable Dimension Newton Raphson 

(VDNR) method. Our intention is to compare different computational strategies capable of 

overcoming ill conditioning and therefore provide different alternatives for making reliable 

parameter estimation and perform the fault detection analysis. 

. 
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CHAPTER 6 PARAMETER ESTIMATION USING VARIABLE 

DIMENSION GAUSS-NEWTON METHOD 

 

6.1. INTRODUCTION 

Ill-conditioning in parameter estimation problem affects directly the parameter 

identification. It is evident that additional strategies are required to mitigate ill-conditioning 

and compute more reliable parameter estimates. In the previous chapter, it was shown how 

the subset selection strategy gives reliable estimates and reduces problem sensitivity. 

In this chapter, a new algorithm to handle the ill-conditioned parameter estimation 

problem is presented. The new algorithm is based on variable dimension Newton-Raphson 

method [47-50] developed for the solution of circuit equation. The Generalized Newton 

Raphson method (GNR) is developed in [48] in order to solve the problem of the singular 

Jacobian of a nonlinear systems of equations and [50] used it as a core to further develop a 

Variable Dimension Newton Raphson (VDNR). According to [50], the VDNR method has a 

much better convergence property than the classical NR and is applicable to circuits with 

highly nonlinear behavior. In this section, the development of the variable dimension Gauss-

Newton method (VDGN) will be presented. Finally the VDGN is applied to the synchronous 

machine parameter estimation problem. We compare its performance with that of the Gauss-

Newton method applied to the full problem and to the reduced order problem from Subset 

Selection.  
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Since VDNR can handle problems with singular Jacobian, we expect that the proposed 

VDGN method will be able to handle ill conditioned parameter estimation problem with 

singular (or nearly singular) Hessian matrices. 

6.2. FORMULATION OF NEWTON-RAPHSON METHOD 

In this section the conventional Newton Raphson Method (NR) for non linear 

equation [50] is described. First we consider the problem of finding a solution or all the 

solutions for the set of nonlinear equation systems 
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The classical Newton-Raphson method is obtained by linearizing F. linearization is 

also a means of constructing iterative methods to solve (6.1). If we assume that z=α  is a 

zero for F, that 0α is an approximation to z and that F is differentiable for 0αα =  then to 

first approximation of the Taylor series expansion of F about 0α  

 ),α)(α)α)( 000 −+== zDF(F(zF0 (6.3)

where 
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If the Jacobian )α( 0DF  is nonsingular, then the equation  

 0)αα)(α)α 0100 =−+ DF(F( (6.5)

can be solved for 1α  

 ( ) )α)ααα 01 0
-1

0 F(DF(-= (6.6)

and 1α  may taken as a closer approximation to the zero z . The generalized Newton method 

for solving system of equations (6.1) is given by 

 ( )ii1+i ∂
∂ˆˆ αF
α
Fαα

-1

αα i 










−=

=

γ (6.7)

where γ  is the step length.  

Geometrically this method projects a linear system onto )α(F  at the point ))α(,(α nn F . (See 

Figure 6.1), we obtained the linear system )αα)(α()α()α( nnn −+= DFFF  that cut 0)α( =F  

axis at the point )α())α((αα nnn FDF−=  that is the 1iα̂ +  of the Newton-Rhapson formula 

(6.7)  
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Figure 6.1   Newton-Raphson Method 

 
Throughout this analysis we assume that the problem  ( ) 0=αF  has at least one solution. 

The NR method is well known for its good convergence rate but its convergence is only local 

and may require a very good initial guess of the solution.  

Various variants that can improve the convergence property have been proposed [48-49]. The 

homotopy method is one of them [55]. The basic principle of the homotopy method is to 

transform the original hard problem into a simpler problem that it easy to solve. The 

transformation is defined by a homotopy map. The homotopy method is globally convergent, 

provided that a correct homotopy map is chosen. A poor choice leads to numerous problems 

in the tracing of the solution, these problems include the presence of bifurcations, infinite 

solutions, abbreviate path and closely spaced solution curves. While most of them are 

solvable by sophisticated path-following algorithms, the best strategy is to use another 

homotopy map. However homotopy maps may not work for highly ill-conditioned problems. 

Thus an alternative approach to solve this problem is to use variable dimension Newton – 
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Raphson method (VDNR) that was originally proposed in [50]. It is based in the Generalized 

Newton method of Ben-Israel in [48] and then independently discovered in [50]. The 

advantage of the Generalized Newton method over the classical method is its enlarged 

convergence region. This method and the application of solution tracking will be discussed in 

the next section. 

6.3. FORMULATION OF THE GENERALIZED NEWTON-RAPHSON METHOD AND THE 

SOLUTION TRACKING 

 The conventional NR method described above can be generalized to find one of the 

solutions of a nonsquare nonlinear problem ( )αmF   

 0
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with nm ≤ ., )()()(1 ααα nm fff LL  is the first m-component of F. Since nm < , the 

solution set forms a n-m dimensional hypersurface. The basis iteration step of the 

Generalized Newton Raphson method (GNR) is [50]   

 ( )i
+

iF,i1+i - αFJα̂α̂ m=  (6.9)

where the Jacobian 
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α
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On the assumption that iF,J  has rank m at iαα = ,  +
iF,J  is the pseudoinverse of iF,J  defined 

to be 
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 ( ) 1JJJJ -T
iF,iF,

T
iF,

+
iF, =  (6.10)

The method above described is locally convergent. When m is small, +J iF,  can be calculated 

efficiently by equation (6.10). However, when m is large (6.10) become inefficient because 

T
iF,iF, JJ  is dense. The authors in [50] demonstrates that the equation (6.9) can be transformed 

into (6.11) and (6.12) below and (6.11) can be solved efficiently by modified Doolittle LU 

decomposition  

 y-1
i M=∆α  (6.11)

where  [ ]TT
i 0,)α(F= my   

 ii1+i ∆αα=α  (6.12)

The application of the GNR gives only one of the solution of ( ) 0α =Fm . To find the solution 

of the complete problem ( ) ( ) 0αα =F=Fn , we must track the solution of ( ) 0α =Fm   in the 

correct direction until we meet a solution of ( ) 0α1 =F +m . The desired solution may, however, 

be another point on the n-m dimensional hyper surface. Assume that 

• There is a continuous path between the desired solution and the starting point; 

• The path is on the hypersurface; 

• ( )FJ  has full row rank along the path  

The desired solution can be found by repeated application of the following prediction and 

correction step. At the 1+k th tracking step we have 

Prediction step: ( )ξk F,
+

k F,kp += JJ+Iαα  (6.13)

Correction  steps: ( )jc,jc, F,j c,1j c. αmF+
+ −= Jαα  (6.14)
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where p0,c αα =  and  j  is the iteration count of the number of the correction steps applied . 

The vector ξ specifies the direction of the tracking and the size of the prediction step. The 

prediction step projects ξ  onto the tangent plane of ( ) 0αFm =k  at point kα  by ( )k,F,F JJI +
k-  

[53], in effect, the prediction step perturbs kα  in the direction of the desired solution. The 

correction step brings the perturbed solution back onto the ( ) 0α =Fm  hypersurface.  Thus, 

1+kα will be closer to desired solution than kα . The correction step, which is actually repeated 

application of equation (6.9), should be continued until 

 ff ε<)( jc,im1=i
αmax

K
 (6.15)

where fε  is a user defined tolerance . 

 It is obvious that the prediction and correction step mentioned above are locally 

convergent if ∞ξ  is not small enough and the error criterion (6.14) is not satisfied even in 

the number of iterations has exceeded an upper bound. We may restart the tracking step using 

a smaller ξ . If ξ become too small and the path is too difficult to track, the method may 

choose to stop. 

 In the case ( ) 0JJ+I =k F,
+

k F, ξ , the tracking fails completely. At this point the 

( ) 0α =Fm  hypersurface is turning and becomes orthogonal to ξ . By the proof in [50], we 

know that there is a linear dependency between ξ  and one or more rows of kF,J . We must 

then use (6.16) and (6.17) to find out which row of kF,J  has a linear dependence with ξ . In 

effect, we know which function is the source of the trouble. 
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 When the algorithm is applied to a large scale system, the tracking step  ( )ξk F,
+

k F, JJ-I  

cannot be computed efficiently. Since the prediction step is started with ( ) 0F km ≈α ,  In[50] 

it is proved that the prediction step can be simplified to ξ+= kp αα . Then the failure 

condition ( ) 0JJ-I =k F,
+

k F, ξ   should be replaced by 

 
( )
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i
1kmin ε
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αα
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+

-
n1m=i K

 (6.16)

 This criterion ensures that the tracking is advancing in the direction of ξ , the parameter 

tε  is a user defined relative tolerance on the size of the corrected tracking step. When the 

algorithm fails to track the solution along the path and result in the removal of a function 

from tracking, the new tracking step may detect a zero crossover on the function just 

removed as shown in Figure 6.2 therefore, this crossover should be ignored. 

 

 

 

Figure 6.2   Example of false zero crossover of  jf  
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 If the corrected tracking step is very small, it can be concluded that the hypersurface  

( ) 0α =Fm  at the point kα  is nearly normal to ξ . Therefore, it is inefficient or impossible to 

track in the direction specified by ξ .  

 When the tracking step fails, it is necessary to know which of the functions under 

tracking should be removed. By making use of the knowledge that at least one of the 

functions to be removed can be computed by  

 [ ]0,1 TT γξ =−M  (6.17)

Then the corresponding function of each ∞> γγ 9.0k  should be removed, that is 

 

 { } 1µ0whereµ:k k <<>=
∞

γγβ (6.18)

 

It is important to notice that the tracking method described above is only an outline of how 

the GNR method can be used to move around the ( ) 0α =Fm  hypersurface. In practical 

implementations, the adaptive adjustment of the size of ξ  may involve a complex step 

control method [50]. The GNR method and the associated tracking method described above 

form the core of the VDNR method and will be discussed in the next section. 
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6.4. THE VARIABLE DIMENSION NEWTON-RAPHSON (VDNR) METHOD 

Variable dimension methods belong to the class of homotopy methods, but it is the 

dimension of the problem which is deformed rather than the equations [47]. This 

transformation is applicable to any problem and is computationally attractive because of its 

simplicity. From the point of view of parameter estimation problem, a fixed number of 

variables correspond to the number of degrees of freedom of the system modeled by the 

objective function (i.e. the model is fixed with respect to the structure of the problem). As 

soon as structural optimization is required, the number of parameters being estimated 

becomes a variable itself.  

Thus we can say that the basic approach of the variable dimension Newton Raphson 

method is to solve the succession of systems ( ) KK 0,F  ,0,αF m ==1 until ( ) ( ) 0αFαFn == , 

where [ ]T
m1 ff )()()α(Fm αα K= . The number of equations being solved will be increased or 

decreased accordingly to track the solution. When we have )α(Fn,m m≤  has one or more 

than one solutions. The solution set forms a m-n  dimensional hypersurface. 

 Although the VDNR method does not inherit the global convergence of the 

homotopy methods, it will not diverge to infinity. The success of the VDNR method relies on 

the following assumptions [50]. 

(i) mJ  has full row rank along the search path for all m 

(ii) )(αF  is twice continuously differentiable 

Assumption (i) may easily be fulfilled by adding a small diagonal matrix to mJ . This is a 

common practice to avoid matrix singularity. Alternatively one may use a nonsingular 
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approximation to mJ , since the solution sets of 0)( =αmF  is a hypersurface, the use of an 

inexact +
mJ  has no effect in the VDNR method. However this approximated mJ  should not 

produce a correction step which is opposite to the search direction. Assumption (ii) is 

necessary to ensure the convergence of the VDNR method. This condition is identical to the 

convergence criterion of the classical Newton Raphson method [44]. 

Similar to other homotopy methods, variable dimension methods have the advantage of being 

globally convergent on eventually passive systems [47].An additional advantage is that there 

is no need to choose a proper homotopy map. 

6.4.1. THE VARIABLE DIMENSION GAUSS –NEWTON METHOD 

   In the nonlinear least squares problems analyzed in section (4.3.2) before, the 

parameter estimate is chosen so that it minimizes the nonlinear cost function 

 
2

2
)(ˆ

2
1)( αyyαV −=  (6.19)

 )(
^

αVα
α

argmin=  (6.20)

where α̂  satisfy 

 ( ) 0== αFαyyJ ))(ˆ-(T
r   (6.21)

And 
α
ŷ

=J
∂
∂

r   is the Jacobian matrix of the residuals. For if V is differentiable, we can say 

that the each minimum point α̂  of )(αV  is a zero of the gradient 0=
∂

∂
=

α
αα )ˆ()ˆ( Vg . 

Conversely each zero of equation (5.1) is also the minimum point of V  [52], this is  
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where (c.f. (5.1))   
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The Newton-Raphson step that solve (6.22) is [44] 

 ][ gHi
1

1
−

+ −= αα   (6.25)

where the step  

 gHp 1−−=   (6.26)

Thus the Newton step is  

 rJAJJp rr
T
r

1−+−= )(   (6.27)

The Gauss Newton algorithm is obtained from Newton algorithm by ignoring part of the 

Hessian, namely )(αA  of (6.24) and becomes 

 .)(ˆˆ 1
1 rJJJ rr

T
ri

−
+ −α=α   (6.28)

Although we have written the Gauss-Newton step in the form (6.28), in good implementation 

r
T
r JJ  is never formed. Instead p  is obtained by solving the linear least-squares problem 

(4.15) 

ir r-pJ minargp
p

=i . 
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Thus the VDNR method that solve problems with singular Jacobian is derived to 

Variable dimension Gauss-Newton algorithm (VDGN) to handle ill conditioned parameters 

estimation problem with singular or nearly singular Hessian matrices 

6.4.2. FLOWCHART FOR VDGN ALGORITHM 

A flowchart showing the basic implementation of the VDGN algorithm is shown in 

Figure 6.3 and Figure 6.4. 

There are three important variables in this algorithm. 

i) ρ   is the set of indexes of functions which are solved, i.e., ( ) ρifi ∈∀= 0α  

ii) β   is the set of indexes of functions which have been removed from ρ by 

Step 12. 

iii) h  is the size of the search step. 

The use of β  in this algorithm is to avoid false inclusion of the same function after a 

function is removed from ρ  in Step 12. This false inclusion happens when the algorithm 

restarts tracking from the wrong side of the function as shown in Figure 6.2 
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Figure 6.3     Flow Chart part 1 
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Step 4 in the flowchart of Figure 6.4 is the tracking step. Step 7 detects the zero 

crossover in any function. Step 9 ensures that the new set of { }ρρ ∈= k:kfF  has 0k =f . 

Step 12 implements equation (6.16) and (6.17) respectively. In step 4 above, a failure in 

convergence will result in a reduction of dimension. This is a preliminary version of the final 

coding of this algorithm. The final coding allows the algorithm to restart from step 3, with a 

smaller prediction step size  h  until  h  is smaller than a user defined tolerance. A future 

study should involve the discussion of optimum step size control strategy for this algorithm. 

It should be noted that even if the equation which causes the failure is not to removed 

by step 12 in the first instance; it will be removed later as long as the tracking problem 

persists. In the worst case, we have φρ =  and we should have no tracking problem. This 

kind of over reduction of dimension will certainly reduce the efficiency of the method. 

However, by assumption (iii), the method will never diverge to infinity. Therefore, even if 

the efficiency is sometimes poor, the final solution will be found unless the method goes into 

a loop. 

To improve the efficiency, it is necessary that the function which causes a tracking 

problem be identified and removed immediately. 

 

6.5. SYNCHRONOUS MACHINE EXPERIMENTAL AND SIMULATED DATA EXAMPLE 

In this section, the VDGN algorithm introduced previously is applied to the synchronous 

machine parameter estimation problem. In this case we also use the same initial conditions 

used previously. The algorithm was implemented in Matlab and shown in Appendix B. Table 

6.1 illustrates the parameter estimates using experimental data of VDGN algorithm. 
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Table 6.1   VDGN synchronous machine parameter estimation (Experimental data) 

Parameters 
Nominal Values

i
Nα  

Parameters 

Estimates 
i
Eα̂  

Error (%) 

%100*
ˆ

i
N

i
E

i
N

α
ααE −

=  

dx  1.801 1.800 0.055 

'
dx  0.285 0. 285 0.000 

"
dx  0.220 0.220 0.000 

'
0dT  3.700 3.700 0.000 

"
0dT  0.032 0.032 0.000 

k 47.143 47.143 0.000 

qx  1.720 1.720 0.0004 

"
qx  0.220 0.220 0.008 

"
0qT  0.059 0.05899 0.003 

 

In this example, the step size is set 05.0=h  and the starting point of the parameters, 0α , 

is the 60% of the nominal values.  The initial set of indexes of functions to be solved is 

{ }φρ =  therefore, it is observed that after step 3 the search vector is 

T]05.005.005.005.005.005.005.005.005.0[ −−=ξ , point 01 =f  is the 

finish point of the step 7 ρ  becomes { }1=ρ . The algorithm tries to track along 1f  in the 

same direction until the algorithm finds a zero crossover on 2f , ρ  becomes  { }21=ρ , 
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now we have T]05.005.005.005.005.005.005.000[ −−=ξ . At this point, 

we can see that the curve 02 =f  is perpendicular to the search vector ξ . This invokes a 

failure condition explained in Section 5.2.  The algorithm tries to track along 02 =f , since 

2f  is the function being solved, we can set { }1=ρ   and   { }2=β   in Step 12 above. The 

algorithm continues with the search vector 

T]05.005.005.005.005.005.005.005.00[ −−−=ξ . The algorithm 

encounters a zero crossover in 2f  again. However, since β  contains the index of 2f  this 

zero crossover will be ignored.  The algorithm continues its search in the same direction until 

it finds a zero crossover in 3f .  Then we set  { }31=ρ  and { }φβ = , Now we have 

T]05.005.005.005.005.005.0005.00[ −−=ξ  and the algorithm tracks along 

03 =f  until it reaches 4f , at this point, the algorithm encounters a false zero crossover  and 

repeat the sequence same as  2f  ,  finding 4f  again, the algorithm continues to track along 

4f  until there is a zero crossover in 5f ,  Then we set { }531=ρ  and { }φβ = , now we 

have T]05.005.005.005.0005.0005.00[ −−=ξ  , and the algorithm track 

along 5f  until it reaches 6f  and the process is repeated for  7f  and 8f  until the algorithm 

finds the last solution  at 9f . 

By looking at Table 6.1 it can be seen that the values of the estimated parameters have 

smaller errors in comparison to the full order Gauss Newton estimation and the Subset 

Selection algorithm. This shows that the VDGN method also performs more efficiently than 

the Subset Selection algorithm shown in Chapter 4. Table 6.2 shows the results of applying 

VDNR to the problem of parameter estimation of the synchronous generator when the 



 82

simulated data is used. The nominal values corresponds to the ones employed in [26], the 

initial conditions of estimation are the same as in previous case. Observe that the error 

percentages are considerably small and reliable parameter estimates are obtained. 

Table 6.2   VDGN synchronous machine parameter estimation using data extracted from 
[26] (Simulated data) 

Parameters 

Nominal 

Values 
i
Nα  

Full order 

Gauss 

Newton 

VDGN Estimates
i
Eα̂  

Error (%) 

%100*
ˆ

i
N

i
E

i
N

α
ααE −

=  

dx  1.414 1.101 1.462 3.408 

'
dx  0.333 0.483 0.343 3.207 

"
dx  0.208 0.267 0.207 0.640 

'
0dT  5.85 -5.092 5.852 0.040 

"
0dT  0.194 0.108 0.198 2.153 

k 1552 -703.757 1552.000 0.000 

qx  1.302 1.457 1.302 0.000 

"
qx  0.396 0.477 0.396 0.000 

"
0qT  0.955 1.0904 0.955 0.000 

  

As a further analysis the VDGN results are compared to the values obtained by subset 

selection and full order Gauss Newton algorithm and shown in Table 6.3. Notice that the 

superiority of the VDGN method in comparison to the other methods (since it is possible to 

estimate efficiently all the parameters). 

 



 83

Table 6.3   Parameter estimates using VDGN , Subset Selection and full order Gauss Newton 
algorithms for experimental data 

Parameter Estimates 

Subset Selection Parameters Nominal 
Values VDGN I II Full Order 

dx  1.801 1.800 1.800 1.800 1.799 

'
dx  0.285 0. 285 - - 0.285 

"
dx  0.220 0.220 0.220 0.220 0.212 

'
doT  3.700 3.700 3.700 - 3.696 

"
doT  0.032 0.032 0.032 0.032 0.032 

k  47.143 47.143 - 47.143 47.098 

qx  1.720 1.720 1.717 1.691 1.720 

"
qx  0.220 0.220 0.219 0.216 0.220 

"
qoT  0.059 0.0589 0.059 0.059 0.059 

 

Table 6.4 shows the error percentages obtained from the VDGN method, for purposes 

of comparison the Subset Selection and the full order Gauss Newton results are also 

presented.  
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Table 6.4   Error in estimated parameters for experimental data 

Error(%) of Parameter Estimates 

Subset Selection Parameters 
VDGN 

I II 
Full Order 

dx  
0.055 0.055 0.055 4.78 

'
dx  0.000 - - 0.01 

"
dx  0.000 0.000 0.000 3.636 

'
doT  0.000 0.000 - 0.098 

"
doT  0.000 0.000 0.000 0.000 

k  0.000 - 0.000 9.440 

qx  
0.0004 0.169 1.700 0.000 

"
qx  

0.008 0.169 1.700 0.000 

"
qoT  

0.003 0.000 0.000 0.000 

 

 In Table 6.4, it can be seen that the VDGN shows smaller error percentages for the 

parameters of q-axis, qx , "
qx , "

qoT . It is evident that VDGN performs better in comparison to 

the full order Gauss Newton method. Note that the error percentage obtained for dx  and k  

using the full order Gauss Newton is considerably larger than the value obtained from VDGN 

method. In general, we can say that the presence of relative large error percentages on the 

values obtained by using subset selection and VDGN methods might be due to the noise 

associated to the input signal (i.e., the field voltage and field current) of the system. 



 85

Furthermore, notice the advantage of VDGN methodology in estimating all parameters of the 

model.  This capacity of VDGN provides complete information in terms of parameter 

estimates of the synchronous generator and represents a useful feature that will efficiently 

help to diagnose and detect possible failures in the operation of the generator. 

 In addition, Table 6.5 presents a comparison of the parameter estimates obtained in 

[26] (full-order Gauss Newton, subset selection and Tikhonov regularization) and the ones 

obtained by applying the VDGN method. 

  For this purpose the noisy simulated data and the nominal parameter presented in 

[26] was used for the application of the VDGN method. 

Table 6.5    Comparison of parameter estimates using noisy simulated data 

Parameter 
Nominal 

values 

Gauss- Full 

Order 

Subset 

k  and '
0dT  

Tikhonov VDNR 

dx  1.414 1.101 1.414 1.259 1.462 

'
dx  0.333 0.483 0.334 0.315 0.343 

"
dx  0.208 0.267 0.196 0.201 0.207 

'
0dT  5.85 -5.092 - 4.385 5.852 

"
0dT  0.194 0.108 0.812 0.177 0.198 

k  1552 -703.757 - 1163 1552.000 

qx  1.302 1.457 1.302 1.299 1.302 

"
qx  0.396 0.477 0.393 0.395 0.396 

"
0qT  0.955 1.0904 0.955 0.958 0.955 
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 From Table 6.5 it can be noticed that VDGN method is acceptably competitive with the 

other methods of estimation. Observe that by using the VDGN algorithm the parameter 

estimates are more reliable than the ones obtained using the Tikhonov regularization. By 

comparing the VDGN and subset selection results it can be seen that the subset selection 

strategy performs better than VDGN for the dx  and '
dx ; however for the remaining 

parameters VDGN is superior. This can be seen more clearly in Table 6.6, in which we 

present the error percentages of the parameter estimates for the different methodologies. The 

subset selection results corresponds to the case when k  and '
0dT  are fixed. 

Table 6.6   Comparison of error percentages using noisy simulated data 

Parameter Gauss Full Order Subset Selection Tikhonov VDNR 

dx  22.07 0.0384 10.89 3.408 

'
dx  45.109 0.118 3.55 3.207 

"
dx  28.393 5.664 3.42 0.640 

'
0dT  187.048 - 25.04 0.040 

"
0dT  44.148 6.594 11.16 2.153 

k  145.345 - 25 0.000 

qx  11.94 0.007 0.309 0.000 

"
qx  20.474 0.04 0.241 0.000 

"
0qT  1.0904 0.955 0.958 0.000 
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6.6. SUMMARY 

In this Chapter we studied the Variable Dimension Gauss-Newton (VDGN) method. 

The VNGN algorithm as show above is based on the variable dimension Newton Raphson 

(VDNR) method. The VDGN algorithm was applied to the synchronous machine 

experimental example so as to obtain the parameter estimates. The VDGN results were 

compared to the values obtained by subset selection and full order Gauss Newton algorithm 

and shown in Table 6.3. Notice that the superiority of the VDGN method in comparison to 

the other methods (since it is possible to estimate efficiently all the parameters). Table 6.4 

shows the error percentages obtained from the VDGN method, for purposes of comparison 

the Subset Selection and the full order Gauss Newton results are also presented.  In Table 

6.4, the VDGN shows smaller error percentages for the parameters of q-axis, qx , "
qx , "

qoT . It 

was evident that VDGN performs better in comparison to the full order Gauss Newton 

method. Note that the error percentage obtained for dx  and k  using the full order Gauss 

Newton is considerably larger than the value obtained from VDGN method. Notice the 

advantage of VDNR methodology of estimating all parameters of the model.  

Table 6.5 presents a comparison of the parameter estimates obtained in [26] (full-order 

Gauss Newton, subset selection and Tikhonov regularization) and the ones obtained by 

applying the VDGN method. For this purpose the noisy simulated data and the nominal 

parameter presented in [26] were used for the application of the VDGN method. From Table 

6.5 it can be noticed that VDGN method is acceptably competitive with the other methods of 

estimation. Observe that by using the VDGN algorithm the parameter estimates are more 

reliable than the ones obtained using the Tikhonov regularization. By comparing the VDGN 
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and subset selection results it can be seen that the subset selection strategy performs better 

than VDGN for the dx  and '
dx ; however for the remaining parameters VDGN is superior. 

This can be seen more clearly in Table 6.6, in which we present the error percentages of the 

parameter estimates for the different methodologies. The subset selection results corresponds 

to the case when k  and '
0dT  are fixed. 

 
 

. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

In this final chapter, the main results and the contributions of this thesis will be 

summarized. Then we outlined some potential future studies. 

7.1. SUMMARY AND CONTRIBUTIONS 

In this thesis we have addressed the use of robust parameter estimation algorithms that 

can be used in fault detection and diagnosis. Our work has focused mainly on studying the 

variable dimension Gauss-Newton algorithm to solve ill conditioned parameter estimation 

problem. 

In Chapter 1, the justification and objectives of this research were introduced; Chapter 

2 presents some fundamental concepts and approaches of failure detection and diagnosis in 

synchronous generators.  

Chapter 3 is dedicated to the description of the mathematical model of the synchronous 

generator. The importance of developing more complex machine models is evident because 

they permit to generate diagnosis signals sensitive to the occurrence of faults as well as more 

accurate control and prediction of the machine behavior. In this regard, a synchronous 

machine model that introduces its steady-state, and transient was developed. This led to the 

dq linearized small signal model of the synchronous generator that contains parameters 

corresponding to the steady state, transient and subtransient conditions.  

Chapter 4 presents the synchronous generator parameter estimation problem. In this 

chapter, we also introduced the conditioning analysis of the parameter estimation problem. 

The ideas of output error and least squares methodology were used to solve the problem of 
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nonlinear parameter estimation. In this chapter, the Gauss Newton method was introduced 

and used to compute the parameter estimates. A numerical experiment of the synchronous 

machine was presented, the input data corresponds to the FC5HP synchronous generator of 

the Arizona Public Service Company (APS) and the simulation model of [26]. The 

measurements were taken under steady state conditions when the generator was serving a 

load. The Gauss Newton method was applied and the estimates shown in Table 4.2. Making a 

relative comparison of the estimated values, we could see that some parameters have error 

percentages relatively large in comparison with others. In particular, dx  and k have the 

highest error followed by '
0dT . Observe that the error percentage corresponding to the q axis 

components are small in comparison with the others. In this chapter, we also developed the 

study of parameter conditioning using the componentwise condition numbers. The numerical 

results of the synchronous machine example revealed relatively large condition numbers. 

After a relative comparison we were able to identify that parameters k  and '
0dT  were the ill-

conditioned ones and the remaining parameter were considered well-conditioned. If we 

observe the results of the full order Gauss-Newton parameter estimation for the synchronous 

machine showed in Table 4.2, we can see that the parameters that have the largest error 

percentage are the parameters dx , k and '
doT , which are among the worst conditioned 

parameters in Table 4.3. 

Chapter 5 is mainly focused on Subset Selection analysis. This strategy consists of 

adding prior information to the parameter estimation problem, selecting a subset of 

parameters and fixing them to prior values and still performs meaningful estimation of the 

remaining parameters. Therefore the number of parameters to fix was determined by 
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eigenanalysis of the Hessian matrix. Which parameters to fix were determined by the subset 

selection method for determining column independence in matrices. In this chapter, we also 

studied and implemented the combinatorial analysis to determine the best combination or 

combinations of parameters to be fixed. Once the parameters to fix were determined, the 

constrained optimization problem described in equation (5.3) was solved. 

The application of this methodology to the synchronous machine parameter estimation 

problem was then presented.  The application of the combinatorial analysis produced two 

combinations with the smallest condition numbers corresponding to fixing the combinations, 

'
dx  and '

d0T ; and '
dx  and k  respectively. The condition number of the Hessian matrix is 

reduced significantly in comparison with others combinations. Then the conditioning of the 

estimates for the two best combinations was evaluated. It was observed that the parameter 

conditioning was improved condition numbers (reduced) by fixing the combinations '
dx , '

d0T  

and '
dx , k  respectively. Then the parameter estimates for the reduced order case were 

evaluated using the Gauss-Newton algorithm. In general, we concluded that the estimates and 

the performance of the Subset Selection algorithm were considerably improved in 

comparison to the ones obtained for the full order Gauss Newton algorithm (Table 4.2). 

Furthermore fixing the parameters combination '
dx , '

d0T , k  and '
dx  resulted in high 

sensitivity reduction as shown in Table 5.4. However the approach requires good prior 

information of the parameters being fixed. 

In Chapter 6 an alternative method based on the Variable Dimension Gauss-Newton 

(VDGN) algorithm was presented. The VNGN algorithm is based on the variable dimension 

Newton Raphson (VDNR) method. The VDGN algorithm was applied firstly to the 
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synchronous machine experimental example so as to obtain the parameter estimates. It was 

observed that the values of the estimated parameters in Table 6.4 presented smaller errors in 

comparison to the full order Gauss Newton estimation and the Subset Selection algorithm. 

This showed that the VDGN method performed better than the Subset Selection case shown 

in Chapter 5. Furthermore, the VDNR does not need accurate prior information of the 

parameters. In Table 6.4, the VDGN shows smaller error percentages for the parameters of q-

axis, qx , "
qx , "

qoT . It was evident that VDGN performs better in comparison to the full order 

Gauss Newton method. Note that the error percentage obtained for dx  and k  using the full 

order Gauss Newton is considerably larger than the value obtained from VDGN method. In 

general, we can say that the presence of relative large error percentages on the values 

obtained by using subset selection and VDGN methods might be due to the noise associated 

to the input signal (i.e. noise and harmonics in the field voltage and field current) of the 

system. Furthermore, notice the advantage of VDNR methodology of estimating all 

parameters of the model.  This capacity of VDNR provides complete information in terms of 

parameter estimates of the synchronous generator and represents a useful feature that will 

efficiently help to diagnose and detect possible failures in the operation of the generator. 

 In addition, Table 6.5 presents a comparison of the parameter estimates obtained in 

[26] (full-order Gauss Newton, subset selection and Tikhonov regularization) and the ones 

obtained by applying the VDGN method. For this purpose the noisy simulated data and the 

nominal parameter presented in [26] were used for the application of the VDGN method. 

From Table 6.5 it can be noticed that VDGN method is acceptably competitive with the other 

methods of estimation. Observe that by using the VDGN algorithm the parameter estimates 
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are more reliable than the ones obtained using the Tikhonov regularization. By comparing the 

VDGN and subset selection results it can be seen that the subset selection strategy performs 

better than VDGN for the dx  and '
dx ; however for the remaining parameters VDGN is 

superior. This can be seen more clearly in Table 6.6, in which we present the error 

percentages of the parameter estimates for the different methodologies. The subset selection 

results corresponds to the case when k  and '
0dT  are fixed. 

 From Table 6.5 and Table 6.6 we can conclude that the VDNR algorithm developed in 

this research performs as reliably as the other methods proposed in [26]. On the other hand, it 

has been observed that the simulation cost is higher in comparison to the other methods 

developed in this work. Since our problem is considerably small in terms of dimension (i.e. 

the model has nine parameters to be estimated) the VDNR is not costly as it would be for 

larger dimension problems. 

In summary we can conclude: 

For Experimental Data 

• Subset selection is excellent but requires good prior estimate of the parameter 

to be fixed 

• VDGN method perform better in comparison to the full order GN and Subset  

Selection algorithm and furthermore we need no accurate prior information of 

a parameter subset.   

For Simulated Data 

• VDGN performs better than Tikhonov and full-order GN and is relatively 

superior to the subset selection strategy. 
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In addition 

• VDGN algorithm developed in this research performs as reliably as the other 

methods proposed in [26]. 

• The excellent VDGN capacity of providing reliable and complete 

synchronous generator parameters estimates, represent a useful feature that 

will efficiently help to detect and diagnose possible failures in the operation of 

the generator.  

7.2. FUTURE  WORK 

 Based on the overall results we want to discuss some potential future studies that follow 

the strategies analyzed in this research. As discussed in Chapter 1 the objective of having 

accurate parameter estimates is to use them in applications of fault detection and diagnosis of 

synchronous generators. In that sense, one possible future study could be focused in the next 

alternatives as future work 

• Implementation of recursive VGND methods for on-line parameter estimation and 

use them in synchronous machine fault detection and diagnosis. 

• Use of the approach in a diagnosis loop. 

• Although VDGN has demonstrated great effectiveness for both the experimental 

and simulated data, it is necessary to prove mathematically the convergence of the 

algorithm. 
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APPENDIX A 
 

DATA FORMATS SUPPORTED BY THE ALGORITHMS 
 

There are two data formats that are supported by the synchronous parameter estimation 

algorithms: an abc data format that can be read as a text file (.txt extension), and a 

combination of two data files that follow the COMTRADE format of the IEEE Srt. C37-

111.1999 (.cfg and .dat extension) [54]. The purpose of having two data formats is to 

accommodate all possible configurations of data files currently used by utilities. The 

COMTRADE  format data file is the output of the of digital fault recorders (DFRs) that are 

typically used for recording measurements at the terminal of ha synchronous generator, while 

.txt files can be generated using variety of word processors. And example of each data format 

is shown in section A.1 and A.2 respectively 

A .1  TEX FILE (ABC) DATA FORMAT 

Input data in the form of a text file (.txt extension) is a convenient data format for data 

that have been preprocessed after the required measurements have been obtained from the 

data recording device. The data are arranged in columns in the order shows in Table A.1. 

There are nine columns that are required. The first column contains the time measurements, 

while the remaining eight columns contain the stator and field voltages ( abV , bcV , caV  and FV ) 

and the stator and field currents. ( aI , bI , cI  and FI ). 
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Table A.1 arrangement of data of 5in the text data file 

Time 
(s) 

abV  
(kV) 

bcV  
(kV) 

caV  
(kV) 

FV  
(V) 

aI  
(kA) 

bI  
(kA) 

cI  
(kA) 

FI  
(kA) 

0 -29.4 20.9 8.5 274.0 -2.37 1.24 1.05 1.19 

4.7x10-4 -30.3 16.6 13.6 114.0 -2.46 0.98 1.40 1.16 

9.40x10-4 -30.2 12.0 18.2 -60.7 -2.37 .53 1.75 1.12 

1.41x10-3 -29.1 6.8 22.2 -231.0 -2.19 0.09 2.02 1.08 

1.88x10-3 -27.0 1.3 25.4 311.0 -1.93 -0.44 2.28 1.19 

M  M   M  M  M  M  M  M  

 

A 2  COMTRADE  DATA FORMAT 

 The second option that is supported by the synchronous parameter estimation 

algorithms is the format that is based on COMTRADE data format which is an IEEE 

standard. A DFR outputs two data files, the first being a configuration data file containing 

general information for the signals, while the second file is .dat file and contains the 

measurements at the generator terminal. Sample configurations file of FC5HP synchronous 

generator of Arizona Public Service (APS) can be seen in Figure A.1. A complete 

explanation of each item in the configuration file is offered in [54]. In general, the first two 

lines in the file contain the heading and the number of channels that were used to record data. 

The next section of the file that is arranged in numerical order contains information for each 

measurement. This information contains the channel, the unit of measurement (e.g. V, kV or 

kA), the multiplication factor to be used for each signal and the offset (if any) because of the 

DFR settings.  
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Figure A.1   FC5HP synchronous generator (.cfg) data file following the  
COMTRADE format 

 
 

 Finally, the last section of the configuration file contains the frequency of the 

generator, the sample rate and total number of samples, the start and end times and dates of 

the measurement, and the data file type (e.g. ASCII or binary). The configuration file is 

associated with a data file with a .dat extension. These are produced simultaneously by the 

recording device. The .dat file contains integer measurements of the signals. The column 

numbers in the .dat file correspond to the channel number in the .cfg file starting from 

column 3. Column 1 contains the sample number, while column 2 contains the timestamp. 

From the timestamp the time of each measurements can be obtained by, 

 stimemulttimestampt µ)()( ×= (A.1)

where timemult is the timestamp multiplication factor obtained from the last line of the .cfg 

file. A sample .dat file can be seen in Figure. A.2 
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Figure A.2   FC5HP data (.dat) file following the COMTRADE format 
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APPENDIX B 

MATLAB  CODES AND FILES 
 

This appendix shows the MATLAB codes and files for computing the parameter 

conditioning and parameter estimation of the FC5HP synchronous generator. Table B.1 

correspond to the MATLAB files for calculation of the Jacobian, Hessian and the respective 

generator waveforms. Table B.2 contains the MATLAB files for the VDNR method  

B.1 FILES FOR SYNCHRONOUS MACHINE MODEL 

Table B. 1 Main files and functions for the Synchronous Machine Model and Parameter 
Estimation 

File Description 
PSERC-Data This file calculates the voltages and currents of FC5HP synchronous 

generator   
Elmode This file calculates the electrical subsystem matrices Ae, Be, Ce and 

De using the parameter set of FC5HP synchronous generator  

Gen_sim This file calculates the system matrices A,B,C and D 
using the parameter set of FC5HP synchronous generator 

Grade0 Calculates the Jacobian for electrical model, For no parameters fixed  
Grade_1 Calculates the Jacobian for electrical model, 2 fixed parameters 
Grade_2 Calculates the Jacobian for electrical model, 2 fixed parameters 
Error0 This file computes the error function between the measurements and 

the prediction model of the electrical system with no parameters fixed 

Error_1 Computes the error function between the measurements and the 
prediction model of the electrical system with two parameters fixed 

Error_2 Computes the error function between the measurements and the 
prediction model of the electrical system with two parameters fixed 

Error_3 Computes the error function between the measurements and the 
prediction model of the electrical system with two parameters fixed 

Gauss_e This files compute the parameter estimates by implementing Gauss 
Newton algorithm 
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PSERC-Data 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PSERC SYNCHRONOUS GENERATOR DATA 
% VOLTAGES AND CURRENTS 
% Loading FC5HP data from PSERC-ASU 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%JHQ%%%%% 
 
clear all 
clc 
load('FC5HP_1.txt'); 
t=FC5HP_1(:,2); 
%line to line voltages 
Vab=0.0018998961*FC5HP_1(:,7); 
Vbc=0.0018998961*FC5HP_1(:,8); 
Vca=0.0018998961*FC5HP_1(:,9); 
%line to line currents 
Ia=0.0026987161*FC5HP_1(:,3); 
Ib=0.0026987161*FC5HP_1(:,4); 
Ic=0.0026987161*FC5HP_1(:,5); 
 
Vfd=0.0518153496*-1*FC5HP_1(:,6); 
Ifd=0.2072613984*FC5HP_1(:,10); 
 
%subplot(311) 
figure(1) 
plot(t,Vab,'g-', t, Vbc,'r--', t,Vca,'b-.'); 
title('Line to line voltages ') 
legend('Vab','Vbc','Vca') 
xlabel('Time [us]');ylabel('kV');grid 
axis([0 1*10^5 -40 40]) 
 
%subplot(312) 
figure(2) 
plot(t,Ia,'g-', t, Ib,'r--', t,Ic,'b-.'); 
title('Line to line currents ') 
legend('Ia','Ib','Ic') 
xlabel('Time [us]');ylabel('kA');grid 
axis([0 1*10^5 -20 20]) 
 
%subplot(313) 
figure(3) 
plot(t,Vfd) 
title('Field voltage');grid 
legend('Vfd(V)') 
xlabel('Time [us]') 
axis([0 1*10^5 -1000 400]) 
 
figure(4) 
plot(t,Ifd,'g'); 
title('Field current');grid 
legend('Ifd(A)') 
xlabel('Time [us]') 
axis([0 1*10^5 2420 2620]) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
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MVAbase=483000000; 
Wsyn=2*pi*60; 
Vbase=17962.92; 
Ibase=2416.05353; 
VLLrms=22000; 

 

Elmode 
 
 
% Script-file for the simulation of the  
% electrical subsystem of a synchronous generator 
% 
% This file calculates the electrical subsystem matrices  
% Ae,Be,Ce and De using the parameter set of FC5HP  
% synchronous generator “PSERC-ASU” 
% 

% Input:  none 

% Output: generator's electrical subsystem matrices Ae,Be,Ce,De 
% 
% After having calculated the system matrices, the 
% output and state vectors  
% 
%ye = [id iq]' 
%xe = [Eq' Eq'' Ed'']' 
% 
% of the electrical subsystem can be calculated invoking 
% 
%    [ye,xe] = lsim(Ae,Be,Ce,De,u,T); 
% 
% with  
% 
%u = [vd vq vfd]' 
%  
% the subsystem's input vector and T a time vector. 
% 
% Prior to calculating [ye,xe] the simulation file 'gen_sim' must  
% be used to get the voltages vd and vq! 
 
%*********** the calculations start here ************************ 
 
%%%%% Fixed Parameters (from 'china paper')%%%%% 
 
xd=1.801; % 1. parameter to be estimated 
xd_=0.285; % 2. parameter to be estimated 
xd__=0.220; % 3. parameter to be estimated 
Td0_=3.7; % 4. parameter to be estimated 
Td0__=0.032; % 5. parameter to be estimated 
k=47.143;  % 6. parameter to be estimated 
xq=1.72; % 7. parameter to be estimated 
xq__=0.220; % 8. parameter to be estimated 
Tq0__=0.059; % 9. parameter to be estimated 
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H=1.3114;  % parameter known due to prior estimations 
Df=1.89; % parameter known due to prior estimations 
X=0.016; % parameter known due to prior estimations 
Vb=0.99; % parameter known due to prior estimations 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                            %% 
%%   Calculation of the system matrices       %% 
%%                                            %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
d12=-1/xd__; 
d21=1/xq__; 
 
Ae=[a11 a12 0;a21 a22 0;0 0 a33]; 
Be=[0 b12 b13;0 b22 b23;b31 0 0]; 
Ce=[0 c12 0;0 0 c23]; 
De=[0 d12 0;d21 0 0]; 
 

Gen_sim 
% Script-file for generator simulation 
% 
% This file calculates the system matrices A,B,C and D 
% using the parameter set of FC5HP  
% synchronous generator “PSERC-ASU” 
 
% Input:  none 
% Output: generator's system matrices A,B,C,D 
% 
% After having calculated the system matrices, the 
% generator's output and state vectors  
% 
%    y = [id iq delta_t vd vq]' 
%    x = [Eq' Eq'' Ed'' w phi]' 
% 
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% can be calculated invoking 
% 
%    [y,x] = lsim(A,B,C,D,vfd,T); 
% 
% with vfd the incremental field voltage as the only system 
% input and T a time vector. 
 
 
 
%*********** the calculations start here ************************ 
 
%%%%% specify operating point %%%%%%%%%%%%%% 
 
P=1;  % active power p.u. 
Q=0.1;  % reactive power p.u. 
alpha_bus=70; % angle between d-axis and Vbus,  
  % see phasor relationships in Fig. 1 
 
%%%%% Design Parameters (fixed) %%%%%%%%%%%% 
 
xd=1.80; % 1. parameter to be estimated(pu) 
xd_=0.285; % 2. parameter to be estimated(pu) 
xd__=0.220; % 3. parameter to be estimated(pu) 
Td0_=3.7; % 4. parameter to be estimated(sec) 
Td0__=0.032; % 5. parameter to be estimated(sec) 
k=47.143;  % 6. parameter to be estimated 
xq=1.72; % 7. parameter to be estimated(pu) 
xq__=0.220; % 8. parameter to be estimated(pu) 
Tq0__=0.059; % 9. parameter to be estimated(sec) 
H=1.314;  % 10.(Mw.sec/MVA)inertia constant 
Df=1.89; % 11.(mechanical damping coefficient) 
            %or Damping Torque. 
X=0.016; % 12.(Xe) 
Vb=0.99; % 13.(Vbus)infinite bus  
w0=2*pi*60; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                          %% 
%%           Operating Point                %% 
%%                                          %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
alpha=alpha_bus/180*pi; % alpha in rad 
Vd=Vb*cos(alpha); % Vbus on the d-axis 
Vq=Vb*sin(alpha); % Vbus on the q-axis 
 
%%%%% Solution for id0 %%%%%%%%%%%%%%%%%%%%%%%% 
 
a=X*(Vq^2+Vd^2); 
b=Vq^3+Vq*(Vd^2)-2*X*P*Vd; 
c=X*(P^2)-Vq*Vd*P-Q*(Vq^2); 
 
p=b/a/2; 
q=c/a; 
 
x1=-p+sqrt(p^2-q); 
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x2=-p-sqrt(p^2-q); 
 
if x1>=0 
 id0=x1; 
else 
 id0=x2; 
end 
 
 
%%%%% Solution for iq0 %%%%%%%%%%%%%%%%%%%%%%%% 
 
iq0=(P-id0*Vd)/Vq; 
 
%%%%% Solution for vd0 %%%%%%%%%%%%%%%%%%%%%%%% 
 
vd0=Vd-X*iq0; 
 
%%%%% Solution for vq0 %%%%%%%%%%%%%%%%%%%%%%%% 
 
vq0=Vq+X*id0; 
 
%%%%% Solution for delta_t0 %%%%%%%%%%%%%%%%%%% 
 
delta_t0=atan(vd0/vq0); 
 
%%%%% Solution for I0 %%%%%%%%%%%%%%%%%%%%%%%%% 
 
I0=sqrt(id0^2+iq0^2); 
 
%%%%% Solution for Vt0 %%%%%%%%%%%%%%%%%%%%%%%% 
 
Vt0=sqrt(vd0^2+vq0^2); 
 
%%%%% Solution for phi0 %%%%%%%%%%%%%%%%%%%%% 
 
phi0=atan(vq0/vd0)-atan(iq0/id0); 
 
%%%%% Solution for Theta0 %%%%%%%%%%%%%%%%%%%%% 
 
Theta0=atan(vq0/vd0)-atan(Vq/Vd); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear a b c p q x1 x2 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                            %% 
%%   Calculation of the system matrices       %% 
%%                                            %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%% d_phi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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a1=1/(1+(iq0/id0)^2)*iq0/id0/id0; 
a2=1/(1+(iq0/id0)^2)/id0; 
 
%%%%%%%%%%%% d_I %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
c1=id0/I0; 
c2=iq0/I0; 
 
%%%%%%%%%%%% d_Vt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
b2=(Vt0*X*cos(pi/2-phi0)-I0*(X^2))/(Vt0-I0*X*cos(pi/2-phi0)); 
b1=(Vt0*I0*X*sin(pi/2-phi0))/(Vt0-I0*X*cos(pi/2-phi0)); 
d1=b1*a1+b2*c1; 
d2=b2*c2-b1*a2; 
 
%%%%%%%%%%%% d_vd, d_vq %%%%%%%%%%%%%%%%%%%%%%%%% 
 
e1=sin(delta_t0); 
e2=Vt0*cos(delta_t0); 
e3=cos(delta_t0); 
e4=Vt0*sin(delta_t0); 
 
f1=e1*d1; 
f2=e1*d2; 
f3=e2-e1*b1; 
f4=e3*d1; 
f5=e3*d2; 
f6=e3*b1+e4; 
 
%%%%%%%%%%%% d_id, d_iq %%%%%%%%%%%%%%%%%%%%%%%%% 
 
g1=1+f4/xd__; 
g2=1-f2/xq__; 
 
h1=1/g1/xd__; 
h2=f5/g1/xd__; 
h3=f6/g1/xd__; 
h4=1/g2/xq__; 
h5=f1/g2/xq__; 
h6=f3/g2/xq__; 
 
k1=h1/(1+h2*h5); 
k2=h2*h4/(1+h2*h5); 
k3=(h3-h2*h6)/(1+h2*h5); 
k4=h4-h5*k2; 
k5=h5*k1; 
k6=h6+h5*k3; 
 
%%%%%%%%%%%% d_vd, d_vq %%%%%%%%%%%%%%%%%%%%%%%%% 
 
l1=f1*k1+f2*k5; 
l2=f2*k4-f1*k2; 
l3=f1*k3+f3+f2*k6; 
l4=f4*k1+f5*k5; 
l5=f5*k4-f4*k2; 
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l6=f4*k3+f5*k6-f6; 
 
%%%%%%%%%%%% d_P %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
m1=id0*l1+iq0*l4+vd0*k1+vq0*k5; 
m2=id0*l2+iq0*l5-vd0*k2+vq0*k4; 
m3=id0*l3+iq0*l6+vd0*k3+vq0*k6; 
 
%%%%%%%%%%%% d_w %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
n1=w0*m1/2/H; 
n2=w0*m2/2/H; 
n3=w0*m3/2/H; 
 
%%%%%%%%%%%% d_Theta %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
r1=(I0*(X^2))/(Vb*Vt0*sin(Theta0)); 
r2=(Vb*cos(Theta0)-Vt0)/(Vb*Vt0*sin(Theta0)); 
r3=r1*c1+r2*d1; 
r4=r1*c2+r2*d2; 
r5=r2*b1; 
 
s1=r3*k1+r4*k5; 
s2=r4*k4-r3*k2; 
s3=r3*k3-r5+r4*k6; 
 
%%%%%%%%%%%% d_delta_t %%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t1=1/(1+s3); 
t2=s1/(1+s3); 
t3=s2/(1+s3); 
 
%%%%%%%%%%%% d_Eq_ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
alp1=1/Td0_; 
alp2=(xd-xd_)/Td0_/xd__; 
alp3=alp2; 
alp4=k/Td0_; 
 
bet1=alp3*l4-alp2-alp3*l6*t2; 
bet2=-alp3*l6*t3+alp3*l5; 
bet3=alp3*l6*t1; 
 
%%%%%%%%%%%% d_Eq__ %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
gam1=(1/Td0__-1/Td0_); 
gam2=(1/Td0__+(xd-xd_)/Td0_/xd__+(xd_-xd__)/Td0__/xd__); 
gam3=k/Td0_; 
gam4=(xd-xd_)/Td0_/xd__+(xd_-xd__)/Td0__/xd__; 
 
nu1=gam4*l4-gam2-gam4*l6*t2; 
nu2=-gam4*l6*t3+gam4*l5; 
nu3=gam4*l6*t1; 
 
%%%%%%%%%%%% d_Ed__ %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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zet1=xq/Tq0__/xq__; 
zet2=(xq-xq__)/Tq0__/xq__; 
 
mu1=zet1+zet2*l2-zet2*l3*t3; 
mu2=zet2*l3*t2-zet2*l1; 
mu3=zet2*l3*t1; 
 
%%%%%%%%%%%% d_w %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
z1=n3*t2-n1; 
z2=n2-n3*t3; 
z3=n3*t1; 
 
%%%%%%%%%%%% d_id %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A1=k1-k3*t2; 
A2=-k3*t3-k2; 
A3=k3*t1; 
 
%%%%%%%%%%%% d_iq %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
B1=k5-k6*t2; 
B2=k4-k6*t3; 
B3=k6*t1; 
 
%%%%%%%%%%%% d_vd, d_vq %%%%%%%%%%%%%%%%%%%%%%%%% 
C1=l1-l3*t2; 
C2=l2-l3*t3; 
C3=l3*t1; 
C4=l4-l6*t2; 
C5=l5-l6*t3; 
C6=l6*t1; 
 
%%%%%%%%%%%% System Matrices %%%%%%%%%%%%%%%%%%%% 
A=[alp1 bet1 bet2 0 bet3 
   gam1 nu1 nu2 0 nu3 
   0 mu2 -mu1 0 -mu3 
   0 z1 -z2 -Df/H -z3 
   0 0 0 1 0]; 
 
B=[alp4 gam3 0 0 0]'; 
 
C=[0 A1 A2 0 A3 
   0 B1 B2 0 B3 
   0 -t2 -t3 0 t1 
   0 C1 C2 0 C3 
   0 C4 C5 0 C6]; 
 
D=[0 0 0 0 0]'; 
 
clear a1 a2 c1 c2 b1 b2 d1 d2 e1 e2 e3 e4 f1 f2 f3 f4 f5 f6 
clear g1 g2 h1 h2 h3 h4 h5 h6 k1 k2 k3 k4 k5 k6 l1 l2 l3 l4 l5 l6 
clear m1 m2 m3 n1 n2 n3 r1 r2 r3 r4 r5 s1 s2 s3 t1 t2 t3 
clear alp1 alp2 alp3 alp4 bet1 bet2 bet3 gam1 gam2 gam3 gam4 
clear nu1 nu2 nu3 zet1 zet2 mu1 mu2 mu3 z1 z2 z3 A1 A2 A3 B1 B2 B3 
clear C1 C2 C3 C4 C5 C6 
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Grade0 
% grade0(p,u,t,ye) gradient function for electrical model 
%   no parameters fixed 
 
function gf=grade0(p,u,T,y) 
 
xd=p(1); 
xd_=p(2); 
xd__=p(3); 
Td0_=p(4); 
Td0__=p(5); 
k=p(6); 
xq=p(7); 
xq__=p(8); 
Tq0__=p(9); 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
A=[a11 a12 0;a21 a22 0;0 0 a33]; 
B=[0 b12 b13;0 b22 b23;b31 0 0]; 
C=[0 c12 0;0 0 c23]; 
 
x=lsim(A,B,eye(3),zeros(3),u,T); 
 
A11=A(1,1)*eye(9); 
A12=A(1,2)*eye(9); 
A13=A(1,3)*eye(9); 
A21=A(2,1)*eye(9); 
A22=A(2,2)*eye(9); 
A23=A(2,3)*eye(9); 
A31=A(3,1)*eye(9); 
A32=A(3,2)*eye(9); 
A33=A(3,3)*eye(9); 
 
Ax=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
 
B11=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__ 0 0 1/Td0_/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2)) 0 0 (xd-xd_)/(Td0_*(xd__^2)) 0 
0 -(xd-xd_)/(xd__*(Td0_^2)) -k/(Td0_^2) -1/(Td0_^2) ... 
(xd-xd_)/(xd__*(Td0_^2)) 0 
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0 0 0 0 0 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B21=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__+1/Td0__/xd__ 0 0 1/Td0_/xd__-1/Td0__/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2))-xd_/(Td0__*(xd__^2)) 0 0 ... 
(xd-xd_)/(Td0_*(xd__^2))+xd_/(Td0__*(xd__^2)) 0 
0 -(xd-xd_)/((Td0_^2)*xd__) -k/(Td0_^2) 1/(Td0_^2) ... 
(xd-xd_)/((Td0_^2)*xd__) 0 
0 -(xd_-xd__)/((Td0__^2)*xd__) 0 -1/(Td0__^2) ... 
(xd_-xd__)/((Td0__^2)*xd__)+1/(Td0__^2) 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B31=[zeros(6) 
-1/Tq0__/xq__ 0 0 0 0 -1/Tq0__/xq__ 
xq/(Tq0__*(xq__^2)) 0 0 0 0 xq/(Tq0__*(xq__^2)) 
(xq-xq__)/((Tq0__^2)*xq__) 0 0 0 0 xq/((Tq0__^2)*xq__)]; 
 
Bx=[B11;B21;B31]; 
 
C11=C(1,1)*eye(9); 
C12=C(1,2)*eye(9); 
C13=C(1,3)*eye(9); 
C21=C(2,1)*eye(9); 
C22=C(2,2)*eye(9); 
C23=C(2,3)*eye(9); 
 
Cx=[C11 C12 C13;C21 C22 C23]; 
 
Dx=zeros(18,6); 
 
Dx(3,2)=1/(xd__^2); 
Dx(3,5)=-1/(xd__^2); 
Dx(17,1)=-1/(xq__^2); 
Dx(17,6)=-1/(xq__^2); 
 
yx=lsim(Ax,Bx,Cx,Dx,[u; x'],T); 
 
J1=yx(:,1:9); 
J2=yx(:,10:18); 
 
[m,n]=size(J1); 
J=zeros(2*m,n); 
 
for n=1:m 
 J(2*n-1,:)=J1(n,:); 
 J(2*n,:)=J2(n,:); 
end 
gf=-J'; 
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Grade_1 
 
% grade2(p,u,t,ye) gradient function for electrical model 
%   2 fixed parameters 
 
function gf=grade_1(p,u,t,y) 
 
% Vector of reorderings: p=[8 7 9 5 3 2 1] 
%     1     2      3     4     5   6    7     8     9  ] 
%  [  xd    xd'    xd"  Tdo' Tdo"  k    xq    xq"  Tqo"  
%p=[7 8 9 5 3 4 1] % Vector of reordering 
a=[7 8 9 5 3 4 1];; 
n=length(a);  % Number of unfixed parameters 
 
xd=p(7);  
xd_=0.285;%fixed 
xd__=p(5); 
Td0_=p(6); 
Td0__=p(4); 
k = 47.143;% fixed 
xq=p(1); 
xq__=p(2); 
Tq0__=p(3); 
 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
A=[a11 a12 0;a21 a22 0;0 0 a33]; 
B=[0 b12 b13;0 b22 b23;b31 0 0]; 
C=[0 c12 0;0 0 c23]; 
 
x=lsim(A,B,eye(3),zeros(3),u,t); 
 
A11=A(1,1)*eye(n); 
A12=A(1,2)*eye(n); 
A13=A(1,3)*eye(n); 
A21=A(2,1)*eye(n); 
A22=A(2,2)*eye(n); 
A23=A(2,3)*eye(n); 
A31=A(3,1)*eye(n); 
A32=A(3,2)*eye(n); 
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A33=A(3,3)*eye(n); 
 
Ax=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
 
B11=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__ 0 0 1/Td0_/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2)) 0 0 (xd-xd_)/(Td0_*(xd__^2)) 0 
0 -(xd-xd_)/(xd__*(Td0_^2)) -k/(Td0_^2) -1/(Td0_^2) ... 
(xd-xd_)/(xd__*(Td0_^2)) 0 
0 0 0 0 0 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B21=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__+1/Td0__/xd__ 0 0 1/Td0_/xd__-1/Td0__/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2))-xd_/(Td0__*(xd__^2)) 0 0 ... 
(xd-xd_)/(Td0_*(xd__^2))+xd_/(Td0__*(xd__^2)) 0 
0 -(xd-xd_)/((Td0_^2)*xd__) -k/(Td0_^2) 1/(Td0_^2) ... 
(xd-xd_)/((Td0_^2)*xd__) 0 
0 -(xd_-xd__)/((Td0__^2)*xd__) 0 -1/(Td0__^2) ... 
(xd_-xd__)/((Td0__^2)*xd__)+1/(Td0__^2) 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B31=[zeros(6) 
-1/Tq0__/xq__ 0 0 0 0 -1/Tq0__/xq__ 
xq/(Tq0__*(xq__^2)) 0 0 0 0 xq/(Tq0__*(xq__^2)) 
(xq-xq__)/((Tq0__^2)*xq__) 0 0 0 0 xq/((Tq0__^2)*xq__)]; 
 
B11=B11(a,:); 
B21=B21(a,:); 
B31=B31(a,:); 
 
Bx=[B11;B21;B31]; 
 
C11=C(1,1)*eye(n); 
C12=C(1,2)*eye(n); 
C13=C(1,3)*eye(n); 
C21=C(2,1)*eye(n); 
C22=C(2,2)*eye(n); 
C23=C(2,3)*eye(n); 
 
Cx=[C11 C12 C13;C21 C22 C23]; 
 
Dx=zeros(2*n,6); 
 
Dx(5,2)=1/(xd__^2); 
Dx(5,5)=-1/(xd__^2); 
Dx(8,1)=-1/(xq__^2); 
Dx(8,6)=-1/(xq__^2); 
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yx=lsim(Ax,Bx,Cx,Dx,[u' x],t); 
 
J1=yx(:,1:n); 
J2=yx(:,n+1:2*n); 
 
[m,n]=size(J1); 
J=zeros(2*m,n); 
for n=1:m 
 J(2*n-1,:)=J1(n,:); 
 J(2*n,:)=J2(n,:); 
end 
 
gf=-J'; 
 
 
%J1=yx(:,1:7); 
%J2=yx(:,8:14); 
 
%[m,n]=size(J1); 
%J=zeros(2*m,n); 
 
%for n=1:m 
% J(2*n-1,:)=J1(n,:); 
% J(2*n,:)=J2(n,:); 
%end 
 
%gf=-J'; 
 
Grade_2 
 
% grade2(p,u,t,ye) gradient function for electrical model 
%   2 fixed parameters 
 
function gf=grade_2(p,u,t,y) 
 
%     1     2      3     4     5   6    7     8     9  ] 
%  [  xd    xd'    xd"  Tdo' Tdo"  k    xq    xq"  Tqo"  
 
%p=[7 8 9 5 3 6 1];  % Vector of reordering 
a=[7 8 9 5 3 6 1];  
n=length(a);  % Number of unfixed parameters 
 
xd=p(7);  
xd_=0.285; %fixed 
xd__=p(5); 
Td0_=3.7; % fixed 
Td0__=p(4); 
k =p(6);  
xq=p(1); 
xq__=p(2); 
Tq0__=p(3); 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 



 118

a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
A=[a11 a12 0;a21 a22 0;0 0 a33]; 
B=[0 b12 b13;0 b22 b23;b31 0 0]; 
C=[0 c12 0;0 0 c23]; 
 
x=lsim(A,B,eye(3),zeros(3),u,t); 
 
A11=A(1,1)*eye(n); 
A12=A(1,2)*eye(n); 
A13=A(1,3)*eye(n); 
A21=A(2,1)*eye(n); 
A22=A(2,2)*eye(n); 
A23=A(2,3)*eye(n); 
A31=A(3,1)*eye(n); 
A32=A(3,2)*eye(n); 
A33=A(3,3)*eye(n); 
 
Ax=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
 
B11=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__ 0 0 1/Td0_/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2)) 0 0 (xd-xd_)/(Td0_*(xd__^2)) 0 
0 -(xd-xd_)/(xd__*(Td0_^2)) -k/(Td0_^2) -1/(Td0_^2) ... 
(xd-xd_)/(xd__*(Td0_^2)) 0 
0 0 0 0 0 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B21=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__+1/Td0__/xd__ 0 0 1/Td0_/xd__-1/Td0__/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2))-xd_/(Td0__*(xd__^2)) 0 0 ... 
(xd-xd_)/(Td0_*(xd__^2))+xd_/(Td0__*(xd__^2)) 0 
0 -(xd-xd_)/((Td0_^2)*xd__) -k/(Td0_^2) 1/(Td0_^2) ... 
(xd-xd_)/((Td0_^2)*xd__) 0 
0 -(xd_-xd__)/((Td0__^2)*xd__) 0 -1/(Td0__^2) ... 
(xd_-xd__)/((Td0__^2)*xd__)+1/(Td0__^2) 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B31=[zeros(6) 
-1/Tq0__/xq__ 0 0 0 0 -1/Tq0__/xq__ 
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xq/(Tq0__*(xq__^2)) 0 0 0 0 xq/(Tq0__*(xq__^2)) 
(xq-xq__)/((Tq0__^2)*xq__) 0 0 0 0 xq/((Tq0__^2)*xq__)]; 
 
B11=B11(a,:); 
B21=B21(a,:); 
B31=B31(a,:); 
 
Bx=[B11;B21;B31]; 
 
C11=C(1,1)*eye(n); 
C12=C(1,2)*eye(n); 
C13=C(1,3)*eye(n); 
C21=C(2,1)*eye(n); 
C22=C(2,2)*eye(n); 
C23=C(2,3)*eye(n); 
 
Cx=[C11 C12 C13;C21 C22 C23]; 
 
Dx=zeros(2*n,6); 
 
Dx(6,2)=1/(xd__^2); 
Dx(6,5)=-1/(xd__^2); 
Dx(8,1)=-1/(xq__^2); 
Dx(8,6)=-1/(xq__^2); 
 
 
yx=lsim(Ax,Bx,Cx,Dx,[u' x],t); 
 
J1=yx(:,1:n); 
J2=yx(:,n+1:2*n); 
 
[m,n]=size(J1); 
J=zeros(2*m,n); 
for n=1:m 
 J(2*n-1,:)=J1(n,:); 
 J(2*n,:)=J2(n,:); 
end 
 
gf=-J'; 
 
 
%J1=yx(:,1:7); 
%J2=yx(:,8:14); 
 
%[m,n]=size(J1); 
%J=zeros(2*m,n); 
 
%for n=1:m 
% J(2*n-1,:)=J1(n,:); 
% J(2*n,:)=J2(n,:); 
%end 
 
%gf=-J'; 
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Error_1 
 
% erre2(p,u,t,ye) error function for electrical model 
%   2 fixed parameters 
% 
% Vector of reorderings: p=[8 7 9 5 3 2 1] 
%     1     2      3     4     5   6    7     8     9  ] 
%  [  xd    xd'    xd"  Tdo' Tdo"  k    xq    xq"  Tqo"  
%p=[7 8 9 5 3 4 1] 
 
function e = erre2(p,u,t,y) 
 
xd=p(7);  
xd_=0.285;%fixed 
xd__=p(5); 
Td0_=p(6); 
Td0__=p(4); 
k = 47.143;% fixed 
xq=p(1); 
xq__=p(2); 
Tq0__=p(3); 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
d12=-1/xd__; 
d21=1/xq__; 
 
Ax=[a11 a12 0;a21 a22 0;0 0 a33]; 
Bx=[0 b12 b13;0 b22 b23;b31 0 0]; 
Cx=[0 c12 0;0 0 c23]; 
Dx=[0 d12 0;d21 0 0]; 
 
yx=lsim(Ax,Bx,Cx,Dx,u,t); 
 
er=y-yx; 
[m,n]=size(er); 
e=zeros(m*n,1); 
for i=1:m 
e([2*i-1:2*i],1)=er(i,:)'; 
end 
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Error_2 
 
% erre2(p,u,t,ye) error function for electrical model 
%   2 fixed parameters 
% 
 
%     1     2      3     4     5   6    7     8     9  ] 
%  [  xd    xd'    xd"  Tdo' Tdo"  k    xq    xq"  Tqo"  
 
%p=[7 8 9 5 3 6 1];  % Vector of reordering 
 
function e = erre22(p,u,t,y) 
 
xd=p(7);  
xd_=0.285; %fixed 
xd__=p(5); 
Td0_=3.7; % fixed 
Td0__=p(4); 
k =p(6);  
xq=p(1); 
xq__=p(2); 
Tq0__=p(3); 
 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
d12=-1/xd__; 
d21=1/xq__; 
 
Ax=[a11 a12 0;a21 a22 0;0 0 a33]; 
Bx=[0 b12 b13;0 b22 b23;b31 0 0]; 
Cx=[0 c12 0;0 0 c23]; 
Dx=[0 d12 0;d21 0 0]; 
 
yx=lsim(Ax,Bx,Cx,Dx,u,t); 
 
er=y-yx; 
[m,n]=size(er); 
e=zeros(m*n,1); 
for i=1:m 
e([2*i-1:2*i],1)=er(i,:)'; 
end 
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Gauss_e 
 
% This file implement the Gauss-Newton algorithm  
% for parameter estimation  
% Problem of the FC5HP synchronous generator PSERC-ASU 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc 
load('FC5HP_1.txt');%PSERC-ASU data 
T=FC5HP_1(:,2);%time (us) 
T=T*1E-6; %time(sec)ojo.. 
%vfd=(0.0518153496/199912.79)*FC5HP_1(:,6);%d_axis field voltage(pu) 
vfd=(0.0518153496/153510)*FC5HP_1(:,6);%2nd assumption 
 
% n= rand(1,length(vfd)); 
% m=0.05*n; 
% vfd=vfd.*m';% noise 
gen_sim; 
[y,x]=lsim(A,B,C,D,vfd,T); 
vd=y(:,4)'; 
vq=y(:,5)'; 
u=[vd;vq;vfd']; 
elmod; 
[ye,xe]=lsim(Ae,Be,Ce,De,u,T); 
figure(1) 
plot(T,ye); 
figure(2); 
plot(T,vfd); 
%plot(T,u); 
%Nominal values of the parameters 
p1=[1.801 0.285 0.220 3.7 0.032 47.143 1.72 0.220 0.059]';%GAUSS-PSERC 
p=.65*p1;%initial guess of the parameters to be estimated 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Gauss Newton Algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
alph=1; alp=0*p0; 
i=0;p_prev=p0; change=100000; 
%Gauss Newton implementation 
while ((i<=500)&(change>=0.0001)) 
    e=erre0(p0,u,T,ye); 
    J=(grade0(p0,u,T,ye))';%Jacobian matrix 
    h=inv(J'*J)*J'*e;%search direction 
    %p0=p0+(alph)^i*h' 
    p0=p0-alph*h% parameter to be estimated 
    i=i+1 
    alp=p0 
     
    change=norm(p_prev-alp)/norm(p_prev) 
    norm(erre0(p0,u,T,ye)) 
    p_prev=alp; 
end 
 
 
%%%%Relative error%%%%% 
[f,c]=size(p); 
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for n=1:f 
 er(n)=(p(n,c)-alp(n,c))*100/p(n,c); 
end 
p 
p0 
E=((p-p0)*100)./p 
%%%condition analysis%%%%% 
H=J'*J; 
conditionH=cond(H) 
eigenvaluesH = svd(H) 
%%%%%Fast Fourier Transf.%%%%%%%% 
Y = fft(vfd,900); 
Pyy = Y.* conj(Y) / 900; 
f = 1000*(0:256)/900; 
figure(3) 
plot(f,Pyy(1:257)) 
title('Frequency content of vfd') 
xlabel('frequency (Hz)') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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B.2  VDGN FILES 

Table B. 2 Main Functions for VDNR method 

Function Description 
Elmode This file calculates the electrical subsystem matrices Ae, Be, Ce 

and De using the parameter set of FC5HP synchronous generator  

Gen_sim This file calculates the system matrices A,B,C and D 
using the parameter set of FC5HP synchronous generator 

Erre_0 .Calculates the Jacobian for electrical for full order model,  
Grade_0 Calculates the Jacobian for electrical for full order model,  
Grade_VDGN Calculates the Jacobian for electrical model, For VDGN. 

algorithm 
Step_3 Calculates the size h  of the search step *. 
Step_4 Calculates the tracking step of the VDNR algorithm. 
Step_12* Calculates the new set of indexes ( β )of functions which have 

been removed from ρ  
VDNR Algorithm Computes the VDNR algorithm . 

 
 
Erre_0 
 
% erre0(p,u,t,ye) error function for electrical model 
 
% global ct 
% ct=ct+1 
%  p=[1 2 3 4 5 6 7 8 9] 
 
function e = erre0(p,u,T,ya) 
 
xd=p(1); % 1. parameter to be estimated 
xd_=p(2); % 2. parameter to be estimated 
xd__=p(3); % 3. parameter to be estimated 
Td0_=p(4); % 4. parameter to be estimated 
Td0__=p(5); % 5. parameter to be estimated 
k=p(6);  % 6. parameter to be estimated 
xq=p(7); % 7. parameter to be estimated 
xq__=p(8); % 8. parameter to be estimated 
Tq0__=p(9); % 9. parameter to be estimated 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
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b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
d12=-1/xd__; 
d21=1/xq__; 
 
Ax=[a11 a12 0;a21 a22 0;0 0 a33]; 
Bx=[0 b12 b13;0 b22 b23;b31 0 0]; 
Cx=[0 c12 0;0 0 c23]; 
Dx=[0 d12 0;d21 0 0]; 
 
yx=lsim(Ax,Bx,Cx,Dx,u,T); 
 
er=ya-yx; 
[m,n]=size(er); 
e=zeros(m*n,1); 
for i=1:m 
e([2*i-1:2*i],1)=er(i,:)'; 
end 
 
 
Grade_0 
 
% grade0(p,u,t,ye) gradient function for electrical model 
 
function gf=grade0(p,u,T,y) 
 
xd=p(1); 
xd_=p(2); 
xd__=p(3); 
Td0_=p(4); 
Td0__=p(5); 
k=p(6); 
xq=p(7); 
xq__=p(8); 
Tq0__=p(9); 
 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 
a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
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c23=1/xq__; 
 
A=[a11 a12 0;a21 a22 0;0 0 a33]; 
B=[0 b12 b13;0 b22 b23;b31 0 0]; 
C=[0 c12 0;0 0 c23]; 
 
x=lsim(A,B,eye(3),zeros(3),u,T); 
 
 
A11=A(1,1)*eye(9); 
A12=A(1,2)*eye(9); 
A13=A(1,3)*eye(9); 
A21=A(2,1)*eye(9); 
A22=A(2,2)*eye(9); 
A23=A(2,3)*eye(9); 
A31=A(3,1)*eye(9); 
A32=A(3,2)*eye(9); 
A33=A(3,3)*eye(9); 
 
Ax=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
 
B11=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__ 0 0 1/Td0_/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2)) 0 0 (xd-xd_)/(Td0_*(xd__^2)) 0 
0 -(xd-xd_)/(xd__*(Td0_^2)) -k/(Td0_^2) -1/(Td0_^2) ... 
(xd-xd_)/(xd__*(Td0_^2)) 0 
0 0 0 0 0 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B21=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__+1/Td0__/xd__ 0 0 1/Td0_/xd__-1/Td0__/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2))-xd_/(Td0__*(xd__^2)) 0 0 ... 
(xd-xd_)/(Td0_*(xd__^2))+xd_/(Td0__*(xd__^2)) 0 
0 -(xd-xd_)/((Td0_^2)*xd__) -k/(Td0_^2) 1/(Td0_^2) ... 
(xd-xd_)/((Td0_^2)*xd__) 0 
0 -(xd_-xd__)/((Td0__^2)*xd__) 0 -1/(Td0__^2) ... 
(xd_-xd__)/((Td0__^2)*xd__)+1/(Td0__^2) 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B31=[zeros(6) 
-1/Tq0__/xq__ 0 0 0 0 -1/Tq0__/xq__ 
xq/(Tq0__*(xq__^2)) 0 0 0 0 xq/(Tq0__*(xq__^2)) 
(xq-xq__)/((Tq0__^2)*xq__) 0 0 0 0 xq/((Tq0__^2)*xq__)]; 
 
Bx=[B11;B21;B31]; 
 
C11=C(1,1)*eye(9); 
C12=C(1,2)*eye(9); 
C13=C(1,3)*eye(9); 
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C21=C(2,1)*eye(9); 
C22=C(2,2)*eye(9); 
C23=C(2,3)*eye(9); 
 
Cx=[C11 C12 C13;C21 C22 C23]; 
 
Dx=zeros(18,6); 
 
Dx(3,2)=1/(xd__^2); 
Dx(3,5)=-1/(xd__^2); 
Dx(17,1)=-1/(xq__^2); 
Dx(17,6)=-1/(xq__^2); 
 
yx=lsim(Ax,Bx,Cx,Dx,[u; x'],T); 
 
J1=yx(:,1:9); 
J2=yx(:,10:18); 
 
[m,n]=size(J1); 
J=zeros(2*m,n); 
 
for n=1:m 
 J(2*n-1,:)=J1(n,:); 
 J(2*n,:)=J2(n,:); 
end 
 
gf=-J'; 
 
 
Grade-VDGN 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  gradient function for electrical model 
%     variable dimension 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function gf=gradeVDNR(alpha,p,u,T,y) 
%**** 
n=length(alpha); 
%**** 
xd=p(1); 
xd_=p(2); 
xd__=p(3); 
Td0_=p(4); 
Td0__=p(5); 
k=p(6); 
xq=p(7); 
xq__=p(8); 
Tq0__=p(9); 
 
%****** 
%p=p(alpha,:) 
%****** 
a11=1/Td0_; 
a12=-(xd-xd_)/(Td0_*xd__); 
a21=1/Td0__-1/Td0_; 
a22=-(1/Td0__+(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__)); 



 128

a33=-xq/(Tq0__*xq__); 
 
b12=(xd-xd_)/(Td0_*xd__); 
b13=k/Td0_; 
b22=(xd-xd_)/(Td0_*xd__)+(xd_-xd__)/(Td0__*xd__); 
b23=k/Td0_; 
b31=-(xq-xq__)/(Tq0__*xq__); 
 
c12=1/xd__; 
c23=1/xq__; 
 
A=[a11 a12 0;a21 a22 0;0 0 a33] 
B=[0 b12 b13;0 b22 b23;b31 0 0] 
C=[0 c12 0;0 0 c23] 
T=T 
u=u 
x=lsim(A,B,eye(3),zeros(3),u,T) 
 
 
A11=A(1,1)*eye(n); 
A12=A(1,2)*eye(n); 
A13=A(1,3)*eye(n); 
A21=A(2,1)*eye(n); 
A22=A(2,2)*eye(n); 
A23=A(2,3)*eye(n); 
A31=A(3,1)*eye(n); 
A32=A(3,2)*eye(n); 
A33=A(3,3)*eye(n); 
 
Ax=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
 
B11=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__ 0 0 1/Td0_/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2)) 0 0 (xd-xd_)/(Td0_*(xd__^2)) 0 
0 -(xd-xd_)/(xd__*(Td0_^2)) -k/(Td0_^2) -1/(Td0_^2) ... 
(xd-xd_)/(xd__*(Td0_^2)) 0 
0 0 0 0 0 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
 
B21=[0 1/Td0_/xd__ 0 0 -1/Td0_/xd__ 0 
0 -1/Td0_/xd__+1/Td0__/xd__ 0 0 1/Td0_/xd__-1/Td0__/xd__ 0 
0 -(xd-xd_)/(Td0_*(xd__^2))-xd_/(Td0__*(xd__^2)) 0 0 ... 
(xd-xd_)/(Td0_*(xd__^2))+xd_/(Td0__*(xd__^2)) 0 
0 -(xd-xd_)/((Td0_^2)*xd__) -k/(Td0_^2) 1/(Td0_^2) ... 
(xd-xd_)/((Td0_^2)*xd__) 0 
0 -(xd_-xd__)/((Td0__^2)*xd__) 0 -1/(Td0__^2) ... 
(xd_-xd__)/((Td0__^2)*xd__)+1/(Td0__^2) 0 
0 0 1/Td0_ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0]; 
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B31=[zeros(6) 
-1/Tq0__/xq__ 0 0 0 0 -1/Tq0__/xq__ 
xq/(Tq0__*(xq__^2)) 0 0 0 0 xq/(Tq0__*(xq__^2)) 
(xq-xq__)/((Tq0__^2)*xq__) 0 0 0 0 xq/((Tq0__^2)*xq__)]; 
%***** 
B11=B11(alpha,:); 
B21=B21(alpha,:); 
B31=B31(alpha,:); 
%***** 
Bx=[B11;B21;B31]; 
 
C11=C(1,1)*eye(n); 
C12=C(1,2)*eye(n); 
C13=C(1,3)*eye(n); 
C21=C(2,1)*eye(n); 
C22=C(2,2)*eye(n); 
C23=C(2,3)*eye(n); 
 
Cx=[C11 C12 C13;C21 C22 C23]; 
 
Dx1=zeros(18,6); 
Dx1(3,2)=1/(xd__^2); 
Dx1(3,5)=-1/(xd__^2); 
Dx1(17,1)=-1/(xq__^2); 
Dx1(17,6)=-1/(xq__^2); 
%*********** 
%D11=Dx1(1:n,:); 
%D21=Dx1((n+1):(2*n),:); 
D11=Dx1(1:9,:); 
D21=Dx1((9+1):(2*9),:); 
D11=D11(alpha,:); 
D21=D21(alpha,:); 
 
Dx=[D11;D21]; 
%*********** 
 
yx=lsim(Ax,Bx,Cx,Dx,[u; x'],T); 
 
J1=yx(:,1:n); 
J2=yx(:,n+1:2*n); 
 
[m,n]=size(J1); 
J=zeros(2*m,n); 
 
for n=1:m 
 J(2*n-1,:)=J1(n,:); 
 J(2*n,:)=J2(n,:); 
end 
 
gf=-J'; 
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Step_3 
 
function ei=step3(alpha,F,h,n) 
for i=1:n 
    inters=intersect(i,alpha) 
    if (inters); 
        ei(i,1)=0; 
    else  
        if F(i,1) >= 0 
            ei(i,1)= -h; 
        else ei(i,1)= h; 
        end 
    end 
end 
 
Step_4 
 
function [pc,iter]=step4_m21(pc,F,alpha,u,T,ye,p,maxiter); 
     
%j=0; 
ef=0.0001;  
iter=0 
%pc=pc0%p+ei;%correction step 
n1=length(pc); 
p_ind=(1:n1); % vector of indices of "pc" 
set=setdiff(p_ind,alpha);% indices of "pc" that are not in "alpha" 
Fk=F 
 while ((iter <=maxiter)& (max(abs(Fk))) > ef ) %(change>=0.01)) 
     pc=pc        
     e=erre0(pc,u,T,ye);%2048*1 
            %J=(grade0(pc,u,T,ye))'%2048x9 
            J=(gradeVDNR(alpha,pc,u,T,ye))';%2048xm 
            Fk=J'*e; %mx1  
            H_=inv(J'*J); %mxm 
            pc(alpha) = pc(alpha,:) - H_*Fk %(mxm)(mx1)=nx1 
            pc(set)=p(set,:) %(m-n)x1...9x1 
            %j=j+1; 
             
            iter =iter+1            
 end 
 
 
Step_12 
 
function [alpha,beta,n3]=step12(ei,JF,alpha) 
 
        gamma=ei'*JF;%(1x9)(9x9)=(1x9) 
        [n1,m1]=size(gamma); 
        u1=0.9;%user defined variable 
        in=u1*norm(gamma,inf); 
        for k=1:m1 
            if abs(gamma(1,k)) > in 
                 beta = k %set of ind func wich have been removed 
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                 alpha=setdiff(alpha,beta) 
                 n3=alpha 
                 %alpha(1,k)= 0; 
            end 
        end 
 
 
 
VDGN Algorithm 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This file implement the VDNR algorithm               % 
% for parameter estimation                              % 
% Problem of the FC5HP synchronous generator PSERC-ASU  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc 
load('FC5HP_1.txt');%PSERC-ASU data 
T=FC5HP_1(:,2);%time (us) 
T=T*1E-6; %time(sec).. 
%vfd=(0.0518153496/199912.79)*FC5HP_1(:,6);%d_axis field voltage(pu) 
vfd=(0.0518153496/153510)*FC5HP_1(:,6);%2nd assumption 
 
% n= rand(1,length(vfd)); 
% m=0.05*n; 
gen_sim; 
[y,x]=lsim(A,B,C,D,vfd,T); 
vd=y(:,4)'; 
vq=y(:,5)'; 
u=[vd;vq;vfd']; 
elmod; 
[ye,xe]=lsim(Ae,Be,Ce,De,u,T); 
figure(1) 
plot(T,ye); 
figure(2); 
plot(T,vfd); 
%plot(T,u); 
%Nominal values of the parameters 
p1=[1.801 0.285 0.220 3.7 0.032 47.143 1.72 0.220 0.059]';%VDNR(PSERC 
p=.65*p1;%initial guess of the parameters to be estimated 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% VDNR algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
beta=[]; 
k=0; 
h=0.1;% search step size 
ef=10e-6%0.001%user relative error tolerance 
et=.01%user def. tol. det when the tracking should be stopped 
iter1=1; 
iter=0; 
maxiter=9; 
alpha=[]% 
%Step 2 
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%residual computing 
n0=length(p1); 
n2=alpha; 
n3=[1 4]; 
kmax=5; 
while (iter < iter1)% | (length(alpha)==0) 
       %if lenght(alpha)>0 
        e=erre0(p,u,T,ye);%2048x1 
        J1=(grade0(p,u,T,ye))';%2048x9..Ji 
        %J=(gradeVDNR(alpha,p,u,T,ye))'; 
        JF=J1'*J1;%9x9 
        JFm=JF'*inv(JF*JF');%9x9 
        F=J1'*e;%9x1 %F(k) 
        [n,m]=size(F); 
     
        n2=n3; 
  %step 3 
        ei=step3(alpha,F,h,n); 
         %%%%%%%%%%%%%%%%%%%%%%% 
         %step4 
         %pc0=p+ei; 
        pc=p+(eye(length(p))-JFm*JF)*ei; 
        if length(alpha)~= 0 
         %[pc,iter,Fk,J]=step4_m21(pc0,F,alpha,u,T,ye);%pcj1    
        [pc,iter]=step4_m21(pc,F,alpha,u,T,ye,p,maxiter); 
        end 
        %step 5 
        if (iter < maxiter)| length(alpha)== 0 
             
            iter=iter 
            pk1 = pc; % step6...p(k+1)=p(c,j) 
            %for step8 
            %step7 
            e=erre0(pk1,u,T,ye); 
            J=(grade0(pk1,u,T,ye))'; 
            Fk1=J'*e; 
            for i=1:n 
                i=i 
                un=union(alpha,beta); 
                inter2 = intersect(i,un); 
                [mm,nn]=size(inter2); 
                cond2=(Fk1(i,1)*F(i,1)); 
                if (cond2<0) & (nn==0)%or isempty(iter2) 
                    alpha =union(alpha,i) %union(i,alpha); 
                 
                    %and goto step 9 
                     pc=pk1; %p(c,0)=p(k+1) 
                    [pc,iter]=step4_m21(pc,F,alpha,u,T,ye,p1,maxiter); 
                 
                   if iter > maxiter%goto step12 
                        [alpha,beta,n3]=step12(ei,JF,alpha); 
                        %step 3 
                        ei=step3(alpha,F,h,n); 
                        %step4 
                        pc=p+(eye(length(p))-JFm*JF)*ei; 
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                       pc,iter]=step4_m21(pc,F,alpha,u,T,ye,p,maxiter); 
                        break  
                    elseif iter<=maxiter %step 11  % 
                        p = pc; %   p(k+1)=p(c,j) 
                        beta=[]; 
                        iter=maxiter;% goto step 2 
                        break 
                                           %k=k+1; 
                   end 
                end 
            end 
            if iter <=maxiter 
            %step8 
                for i=1:n 
                i=i 
                un=union(alpha,beta); 
                inter2 = intersect(i,un); 
                [mm,nn]=size(inter2); 
                    if (nn==0)&(((pk1(i,1)-p(i,1))./(ei(i,1)))<=et) 
                                       
                        [alpha,beta,n3]=step12(ei,JF,alpha)%goto step 12 
                        %step 3 
                        ei=track(alpha,F,h,n); 
                        pc=p+(eye(length(p))-JFm*JF)*ei; 
                        [pc,iter]=step4_m21(pc,F,alpha,u,T,ye,p,maxiter); 
                        break 
                    elseif nn==0% goto step4 
                    pc=p+(eye(length(p))-JFm*JF)*ei; 
                    [pc,iter]=step4_m21(pc,F,alpha,u,T,ye,p,maxiter); 
                    break 
                    end  
                    k=k+1; 
                end 
            end 
             
        end 
                
        if iter > maxiter  
         [alpha,beta,n3]=step12(ei,JF,alpha)%step12 
        end 
        iter1=iter1+1 
        alpha 
    end 
 
 
%%%Relative Error%%%% 
pc 
p1 
E=(p1-pc)*100./p1. 
 


