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ABSTRACT 

 

In this work was studied the rotational Brownian motion of magnetic spherical and 

tri-axial ellipsoidal particles suspended in a Newtonian fluid, in the dilute suspension 

limit, under applied shear and magnetic fields by Brownian dynamics simulation to 

determine the magnetization and magnetoviscosity of the suspension. The algorithm 

describing the change in the magnetization and magnetoviscosity of the suspension was 

derived from the stochastic angular momentum equation using the fluctuation-dissipation 

theorem and a quaternion formulation of orientation space. Results are presented for the 

response of dilute suspensions of magnetic nanoparticles to constant and transient 

magnetic fields with and without simple shear flow fields. 

Simulation results are in agreement with the Langevin function for equilibrium 

magnetization and with single-exponential relaxation from equilibrium at small fields 

using Perrin’s effective relaxation time. Dynamic susceptibilities for ellipsoidal particles 

of different aspect ratios were obtained from the response to oscillating magnetic fields of 

different frequencies and described by Debye’s model for the complex susceptibility 

using Perrin’s effective relaxation time. 

Suspensions of ellipsoidal particles show a significant effect of aspect ratio on the 

intrinsic magnetoviscosity of the suspension, and this effect is more pronounced as the 

aspect ratio becomes more extreme. The use of an effective rotational diffusion 

coefficient ,r effD  collapses the normalized intrinsic magnetoviscosity of all suspensions 

to a master curve as a function of Péclet number and the Langevin parameter 

   0 BH k T   , up to a critical value of  for which the results for suspensions of 
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spherical particles deviate from those of suspensions of ellipsoids. This discrepancy is 

attributed to the action of the shear-torque on the ellipsoidal particles, which tends to 

orient the particles in the direction of maximum deformation of the simple shear flow.  

On the other hand, for suspensions of spherical particles a decrease to negative values 

in the intrinsic magnetoviscosity is observed for oscillating and co-rotating magnetic 

fields whereas an increase is observed for counter-rotating magnetic fields. The 

frequency corresponding to zero viscosity and the minimum value in the negative 

viscosity is lower for co-rotating magnetic fields than for oscillating magnetic fields. In 

the negative magnetoviscosity regions the particles in a co-rotating magnetic field rotate 

faster than in an oscillating magnetic field. It is estimated that the flow due to co-rotating 

particles could be strong enough to obtain a negative effective viscosity in dilute 

suspension. Moreover, it is shown that the commonly accepted constitutive equation for 

the antisymmetric stress describes well the intrinsic magnetoviscosity of the suspension. 
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1 INTRODUCTION 

 

1.1 Magnetic fluids 

Magnetic fluids, commonly referred to as ferrofluids, are suspensions of permanently 

magnetized nanoparticles with diameter of order 5-15 nm suspended in a non-magnetic 

carrier liquid, usually water or oil, and volume concentration up to about 10%. These 

magnetic nanoparticles are typically single domain superparamagnetic particles of 

magnetite (Fe3O4), maghemite (-Fe2O3), various types of ferrites, iron, nickel, cobalt and 

other magnetic materials characterized by a magnetic dipole moment   [1]. The 

magnetic nanoparticles are often coated with an organic surfactant to prevent 

agglomeration of particles due to both attractive van der Waals and magnetic forces (see 

Figure 1-1). Additionally, thermal agitation keeps the particles suspended because of 

Brownian motion, which results from constant and random collisions with molecules of 

the surrounding fluid. 

 

 

 

Figure 1-1: Sketch of magnetic particles in a ferrofluid 

 

magnetic particle 
5-15 nm

surfactant 
2 nm 
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Since their invention in 1964, motivated by the objective of converting heat to work 

without mechanical parts [1], ferrofluids have been a challenging subject for fluid 

mechanics as well as for various applications [2]. Some of these applications are for 

example the cooling of loudspeakers with magnetic fluids, liquid O-rings in rotary and 

exclusion seals, inertial dampers in shock absorbers, or even in medicine for drug 

targeting, for magnetic hyperthermia in cancer treatment, or as bio-sensors [3, 4]. The use 

of magnetic fluids has attracted attention over the last decades because they exhibit 

functional properties, both magnetic and rheological, when they are subjected to an 

external magnetic field. Magnetic control of flow properties of these fluids results in 

several phenomena such as viscosity increases in constant magnetic fields [5, 6], the so-

called “negative viscosity effect” in oscillating magnetic fields [7], and field induced 

flow in uniform rotating magnetic fields [8], leading to interesting consequences for 

hydrodynamics in general and for applications in science and engineering. 

 

1.2 Magnetic properties of ferrofluids 

Because of their small size, the suspended particles can be treated as magnetic dipoles 

in the carrier liquid. When a constant magnetic field H is applied on a magnetic fluid it 

exerts a torque  0m  T H  tending to align the magnetic dipole moment of the 

particles with the field, resulting in suspensions with superparamagnetic behavior. It 

means a high magnetization in low to moderate magnetic fields. 

 

1.2.1 Equilibrium magnetization and Langevin function 

The magnetization m of a homogeneous magnetic fluid can be calculated from 
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1

1
N

i

i
V



 m  , (1.1) 

 

where V is the volume of the suspension and N is the number of particles. In 

dimensionless form, i.e., the magnetization divided by its saturation value, is then given 

as 

 

 
1

1
N

i
s i

m N


  m
m  . (1.2) 

 

The latter expression represents the average dimensionless magnetization of a 

magnetic fluid. In this study the focus is on the magnetization in the direction of the 

applied field, and henceforth it will be assumed that the ferrofluid is a dilute system 

where there are not magnetic or hydrodynamic interactions between particles. 

In the absence of an applied magnetic field, the particles are randomly oriented and 

the suspension does not have a net magnetization. When the suspension is subjected to an 

external magnetic field the magnetic dipole moments of the particles tend to align along 

the direction of the applied magnetic field either by particle rotation or by rotation of the 

dipole moment within the particle. However, for low field strengths this tendency is 

partially overcome by thermal agitation. As the magnetic field strength increases the 

magnetic dipole of the particles becomes increasingly aligned with the field direction 

until it achieves a saturation state where the dipoles are almost completely aligned with 

the magnetic field. 



 4

Considering a collection of single domain magnetic particles suspended in a non-

magnetic carrier fluid, the magnitude of the torque on each particle exerted by an external 

magnetic field is given by: 

 

 0 sinT H   , (1.3) 

 

where  is the angle between  and H. The energy necessary to turn the dipole to any 

angle   is 

 

  0
0

1 cos  W Td H


    , (1.4) 

 

where W is the work stored as potential energy to re-orient the dipole parallel to the field. 

Thermal agitation opposes this alignment, thus, Boltzmann statistics describes the 

number of dipoles having energy W as [1] 

 

 cos( , )
4 sinh

 d
d

N
n e 

 
 

, (1.5) 

 

where Nd is the total number of dipoles and    0 BH k T   , being kB Boltzmann’s 

constant, and T the absolute temperature. If particles with their dipoles forming an angle 

  with the field are considered, integrating (1.5) over   the following expression is 

obtained 
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 cos( )
2sinh

 d
d

N
n e 


. (1.6) 

 

For what the effective magnetic dipole moment of a particle is its component along 

the field direction, i.e. cos  . Therefore, the average value of cos   is given by 

 

 0

0

cos ( )sin
1

cos coth

( )sin

    
 




d

d

n d

n d





    
   


  

. (1.7) 

 

Let n be the number of particles in a unit volume of fluid, then, the magnetization m 

along the magnetic field direction of ferrofluid is cosm n   , and its saturation value 

ms, in terms of the dipole of the particles, is sm n . Therefore, from (1.7), the 

dimensionless magnetization of the suspension becomes 

 

 
1

coth ( )
s

m
m L

m
 


    , (1.8) 

 

where ( )L   denotes the Langevin function, and  is so-called the Langevin parameter. 

Figure 1-2 shows an experimental magnetization curve for cobalt ferrite (CoFe2O4) 

nanoparticles suspended in hexane. The magnetization curve saturates at high values of  

where the magnetic field dominates the Brownian torque resulting in particles with their 
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magnetic dipole moments almost aligned in the field direction. On the other hand, at low 

, the rotational Brownian motion dominates and the particles have random orientations. 

 

 

Figure 1-2: Magnetization curve for particles of 9 nm of cobalt ferrite in hexane. Volume fraction is 0.1%. 

 

1.2.2 Dynamic magnetization and Debye model 

There are two mechanisms by which the particle’s magnetic dipole moment can be 

aligned along the field direction in a ferrofluid: Brownian relaxation and Néel relaxation 

[1]. Brownian relaxation occurs if the magnetic moment of the particle is fixed in its 

crystal structure [2]. The relaxation of this kind of particles implies rotation of the whole 

particle and is characterized by a Brownian relaxation time of hydrodynamic origin. In 

order to obtain a model for this relaxation mode of the magnetization, it is necessary to 

solve the Smoluchowski equation for the orientational distribution function  , ,f t   of 

the magnetic dipole moments, which in vectorial form is written as [9] 
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    1
r m r

f
f f

t


  


     


D T    . (1.9) 

 

In (1.9)   is the differential operator in orientation space, rD  is the rotational diffusion 

tensor given by the generalized Stokes-Einstein equation as   1
r B rk T D  , and r  is 

the rotational hydrodynamic resistance dyadic. We are only interested in solutions that 

are dependent on the zenithal angle  (see Figure 1-5) because it alone enters into the 

potential energy of the permanent dipole in the external field, as shown in Section 1.2.1. 

For the particular case of isotropic particles, the rotational hydrodynamic resistance is 

expressed by the scalar r . Thus, for a constant magnetic field 0 zHH i , (1.9) would be 

written as 

 

 
   0 0 21 1

sin sin
sin sin

r

B B

Hf f
f

k T t k T

   
    

          
. (1.10) 

 

Solving (1.10) for values of    0 1BH k T   , the expression for the mean dipole 

of the system, cos cos sinf d       , is used to obtain the dimensionless 

magnetization of the suspension ( ) coszm t    . Two special situations are readily 

obtained: (i) relaxation upon switching off the field, and (ii) response to an oscillating 

field. In the first case, we assume that the system is at equilibrium with an external 

magnetic field at 0t , and suddenly the field is turned off, 0 0H , for 0t . At 0t  

the distribution function is given by (1.6) 
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 cos( 0)
2sinh

 f t e 


, (1.11) 

 

where (1.11) can be expanded to first order in the small Langevin parameter as 

 

 2 0 cos1
( 0) 1 cos ( ) 1

2 2 B

f t O
k T

     


           
. (1.12) 

 

This suggests an orientation distribution function in (1.10) of the form 

 

 0 cos1
1 ( )

2 B

f g t
k T

   
  

 
. (1.13) 

 

Since 0 0H  for 0t , and substituting (1.13) in (1.10) we obtain that tg e  , where 

 2r Bk T   is called the Debye (or Brownian, B ) relaxation time. This result for the 

function g is then used to obtain the dimensionless magnetization, along the magnetic 

field direction, of the suspension 

 

  1
exp

3z Bm t    (1.14) 

 

In the case of a weak external oscillating magnetic field,  0 cos zH t H i , the 

dipole moment of the particles follows the oscillations of the magnetic field with a phase-
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lag between the field and the particles. The z-component of the dimensionless 

magnetization is then 

 

    1 1
ˆRe 'cos( ) ''sin( )

3 3
          

   
  j t

zm e t t     . (1.15) 

 

where ˆ ' ''j      is the dimensionless complex susceptibility. The nondimensional in-

phase and out-of-phase susceptibilities, '  and "  respectively, are frequency-

dependent 

 

 
 

 
 2 2

1
' ,      "

1 1


 

 


 

   
  . (1.16) 

 

Experimental techniques to measure relaxation time of magnetization have been 

developed by Fannin [10-12], consisting in the determination of the complex 

susceptibility when an alternating magnetic field is applied. 

On the other hand, under certain conditions the magnetic moment may rotate inside 

the particle; thus, in Néel relaxation, the magnetic moment aligns without physical 

rotation of the particle. This kind of relaxation takes place if the thermal energy 

overcomes the energy barrier provided by the magnetocrystalline anisotropy of the 

magnetic material. The Néel relaxation time is given by 

 

 0 exp
 

  
 

c
N

B

KV

k T
  , (1.17) 
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where 0  is a decay time between 10-10 to 10-8 sec. [12], K is the magnetocrystalline 

anisotropy constant, and Vc is the volume of the magnetic core of the particle. 

It is important to note that both relaxation mechanisms are particle size dependent, 

and thus, for a monodisperse suspension, the effective magnetic relaxation time   will 

follow the shorter process, as seen from [13] 

 

 


B N

B N

 
 

. (1.18) 

 

 

Figure 1-3: Brownian, Néel, and effective relaxation times at 298 K for magnetite nanoparticles suspended 
in water as a function of magnetic core radius. 

 

As shown in Figure 1-3, the transition from Néel to Brownian relaxation time may be 

considered to take place for particles with a size ds obtained by equating B  and N ; thus, 

8.5sd  nm for iron and 4 nm for cobalt [1]. 
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In this work we consider monodisperse suspensions composed of magnetic 

nanoparticles that relax following the Brownian relaxation mechanism, therefore 

equations (1.8), and (1.14) to (1.16) form the basis to analyze magnetic properties of the 

suspension. 

 

1.3 Rheological properties 

The presence of suspended particles in a fluid changes the effective rheological 

properties of the suspension, especially its viscosity. The first theoretical treatment of 

such changes in the viscosity for dilute suspensions of spherical particles was given by 

Einstein, who obtained the following relation for the viscosity of a force and torque free 

suspension [14] 

 

 
0

5
1

2

 


  . (1.19) 

 

This can be expressed more generally as [15] 

 

 2 3
1 2

0

1 ( )C C O
   


    . (1.20) 

 

Here 0  is the viscosity of the carrier fluid, and the coefficient C2 reflects interactions 

between pairs of spheres, influenced by the spatial distribution of the particles. 

In the case of a magnetic fluid in a simple shear flow field, if an external magnetic 

field is applied the particles will rotate relative to the fluid resulting in an additional 
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change in the viscosity of the suspension. As an example, consider the spherical particle 

shown in Figure 1-4 possessing a permanent particle-locked magnetic dipole moment. In 

the absence of an external magnetic field the suspended particle rotates freely with its 

axis of rotation parallel to the flow vorticity w. When a constant (i.e. stationary) magnetic 

field is applied and assuming that the field is perpendicular to the vorticity of the flow, 

the magnetic torque exerted on the particle counteracts the hydrodynamic torque, aligning 

the dipole moment with the field. The counteraction of the torques results in hindered 

rotation of the particles, thus increasing the rate of mechanical energy dissipation, and 

hence the effective viscosity of the suspension [16]. In the case where the magnetic field 

is collinear with the vorticity, the particle can rotate freely and no field influence on the 

viscosity of the suspension will be observed.  

 

v

v + v
w

magnetic 
torque

hydrodynamic 
torque

H

w

v

v + v
w

v

v + v
w

magnetic 
torque

hydrodynamic 
torque

H

w

magnetic 
torque

hydrodynamic 
torque

H

w

 

Figure 1-4: Sketch of a magnetic particle under shear flow and magnetic field. 

 

On the other hand, if an oscillating magnetic field with frequency higher than the 

local angular velocity of the fluid is applied, the torque acting on each particle causes the 

particles to rotate faster than the fluid, reducing the friction between adjacent fluid layers, 
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thus decreasing the effective viscosity of the suspension. Therefore, at high frequencies 

of the magnetic field, the part of the field-dependent viscosity can become negative, a 

phenomenon known as “the negative viscosity effect”, which was first observed by Bacri 

et al. [7] and theoretically described by Shliomis and Morozov [17]. 

It is interesting to note that the viscosity appears to be anisotropic depending not only 

on the strength but also on the direction of the field relative to the flow [2]. Moreover, 

owing to the presence of internal couples in the suspension, the bulk stress tensor for 

suspensions of dipolar particles subjected to an external magnetic field becomes 

asymmetric [6,9,10]. 

 

1.4 Rotational Brownian motion of an orthotropic particle in magnetic 

and shear fields 

For a tri-axial ellipsoidal particle (an orthotropic particle1), physical and magnetic 

properties are most naturally written in a cartesian coordinate system with axes aligned 

with the principal semiaxes of the ellipsoid (primed axes) rather than relative to the 

coordinate axes of the laboratory space (unprimed axes), as illustrated in Figure 1-5. An 

ellipsoid has three principal semiaxes a1, a2, and a3, directed along the x’, y’, and z’-axis, 

respectively. In the present work the following cases will be considered: spherical 

particles 1 2 3a a a  ; prolate ellipsoids 1 2 3( )a a a  ; oblate ellipsoids 1 2 3( )a a a  ; 

and scalene ellipsoids 1 2 3a a a  . 

                                                 

1 An orthotropic particle has three planes of symmetry through its centre of volume. 
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It is further considered that the magnetic dipole moment of the particle, ' , is directed 

along the z’-axis, which may not necessarily be the major semiaxis of the particle. The 

magnetic field, H, is assumed to be applied in the yz-plane and the simple shear flow is 

along the y-axis. 

 

 

Figure 1-5: Particle model and coordinates axes. 

 

If the shear rate is denoted by  , then the unperturbed flow velocity v, the local angular 

velocity of the fluid f , and the rate-of-strain tensor   are given by 

 

  1 1
2 2,    ,    =y f x y z z yz     v i i i i i i    . (1.21) 

 

The rotational motion of a particle is described by classical mechanics as 

 

 ,         
d

dt d I
dt

 T
  , (1.22) 
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where  is the angular velocity of the particle, d is the infinitesimal rotation vector, I 

the inertia moment, and T the torques acting on the particle. 

Brownian dynamics simulations are based on the integration of the stochastic angular 

momentum equation in order to obtain the time evolution of the particle orientation. 

Because of the small sizes and low mass of nanoparticles in a ferrofluid, the moment of 

inertia of the particle is negligible. Therefore, the time scale 1110  srI    for the 

angular velocity correlation is short compared to the natural observation time for 

Brownian motion ~ 10-6 s, which implies that the angular velocity quickly approaches the 

Maxwell-Boltzmann distribution [18], and whence the inertial term in the equation of 

motion can be neglected. 

There are three kinds of torque acting on the particle: hydrodynamic torque Th, 

magnetic torque Tm, and Brownian torque TB. In the inertialess limit the angular 

momentum balance is given as 

 

 ' ' 'h m B  T T T 0  (1.23) 

 

where the prime denotes a vector relative to body-fixed axes. 

For the hydrodynamic torque, it is well known that at low Reynolds number the force 

on a rigid particle of arbitrary shape is directly proportional to both the fluid viscosity and 

the free stream velocity. If it is assumed that the rigid particle is immersed in a shear flow 

and that the quasistatic Stokes equation is applicable, then 
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 2

0

1
p


 v   (1.24) 

 0 v , (1.25) 

 

with boundary conditions given by 

 

 0 0  v U r  on particle surface, (1.26) 

 0 0 0  as f r     v u r r  , (1.27) 

 

where 0 denotes any point in the particle, U0 the velocity of this point , r0 the position 

vector of a point relative to 0, and u0 the velocity of the undisturbed flow at 0. Equation 

(1.27) corresponds to a decomposition of the original shearing motion into translational, 

rotational and pure shear contributions. 

Owing to the linearity of the equations of motion and boundary conditions is possible 

to establish and solve separate problems satisfying (1.26) and (1.27), with which the 

hydrodynamic torque exerted by the fluid on the particle by virtue of the individual 

rotational motion and pure shear is given by [19, 20] 

 

  0 0' ' ' ' ' : 'h r f       T      (1.28) 

 

where 'rK  is the hydrodynamic resistance dyadic, '  and ' f  are the angular velocity 

of both the particle and the fluid respectively, '  is the rate-of-strain tensor relative to 
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body-fixed axes, and 0'  is a constant triadic dependent only upon the shape of the 

particle. 

Defining 

 

 
0

 ( 1,2,3)
( ) ( )j

j

d
j

a


 


 

   (1.29) 

 

in which 

 

     1 2
2 2 2

1 2 3( ) a a a          , (1.30) 

 

the polyadics in (1.28), for an orthotropic particle, have the form [20] 

 

 
2 2 2 2 2 2
2 3 3 1 1 2

' ' ' ' ' '2 2 2 2 2 2
2 2 3 3 3 3 1 1 1 1 2 2

16
'

3r x x y y z z
a a a a a a

a a a a a a


     

   
      

K i i i i i i , (1.31) 

 

 
2 2 2 2
3 2 1 3

0 ' ' ' ' ' ' ' ' ' ' ' '2 2 2 2
3 3 2 2 1 1 3 3

8
' ) )

3 x y z x z y y z x y x z
a a a a

a a a a


   

  
     

(i i i i i i (i i i i i i  

 
2 2
2 1

' ' ' ' ' '2 2
2 2 1 1

)z x y z y x
a a

a a 


   
(i i i i i i . (1.32) 

 

On the other hand, the magnetic torque on a particle in a magnetic field can be 

obtained by integrating the Maxwell stress tensor over the surface of the particle Sp [21] 
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2
p

m e
S

d H         T r S BH I , (1.33) 

 

where r is the position vector, B the magnetic flux density, and H the magnetic field. For 

the case of a magnetized spherical particle in a uniform magnetic field the solution is well 

known [21]. 

Despite the geometry of the particle and since each particle in the ferrofluid is 

considered as a permanently magnetized nanoparticle, they can be modeled as 

infinitesimal dipoles where the magnetic torque would be given by  

 

  0' ' 'm  T Hμ , (1.34) 

 

where '  H A H  is the magnetic field transformed to the body-fixed axes through the 

transformation matrix A. The transformation matrix is an operator that, acting on the 

components of a vector in a coordinate system, yields the components of the vector in 

other coordinate system [22]. Because only three coordinates are necessary to specify any 

orientation of a rigid body, the Euler angles have been the most common set of 

coordinates to form proper orthogonal transformation matrices. However, the Euler 

angles are difficult to use in numerical solutions because the trigonometric functions 

involved could lead to a singular problem. 

In order to free the algorithm from singularities the transformation matrix is then 

expressed in terms of the Euler parameters, e0, e1, e2, and e3, as [22] 
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   
   
   

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2

2 2

2 2

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e

     
 

      
 

      

A  (1.35) 

 

in which the Euler parameters satisfy the relation 2 2 2 2
0 1 2 3 1e e e e    . 

Substituting (1.28) and (1.34) into (1.23), and solving for ' , we obtain 

 

          1 1 1
0 0 0 0' ' ' ' : ' ' ' ' ' 'f r r r B           K K H K T     (1.36) 

 

In order to reduce the number of variables and parameters, (1.38) can be expressed in 

dimensionless form using appropriate scaled variables. There are two time scales to 

consider: (i) a diffusive time scale, 1 rD , and (ii) a convective time scale, 1  . The 

diffusive time scale is the time required for particle rotation due to Brownian torques, 

whereas the convective time scale is associated with rotation due to the local vorticity of 

the flow. Because the Brownian torque results from collisions between the particle and 

the fluid molecules it is natural to assume that the diffusive time scale is shorter than the 

time scale in which we observe the rotation of the particle. Therefore, to capture the 

faster process of the particle in the simulations, a diffusive time scale given by ,max1 rD  

is used to nondimensionalize the angular velocity of the particle. Hence, the 

dimensionless variables are then defined as 

 

 0
0

,max ,min ,min

' '' '
' ,    ' ,   ' ,    ' ,f r

f r
r r rD K K

   
K

K  


     
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' ' '

'= ,    '= ,    '
H 


H

H 



 . (1.37) 

 

In (1.37), μ and H are the magnitudes of '  and 'H  respectively, and Dr,max is the larger 

of the diagonal terms in the rotational diffusion tensor 'rD , written relative to particle-

fixed axes. The rotational diffusion tensor is given by the generalized Stokes-Einstein 

equation   1
0' 'r B rk T  D K . 

With these definitions in (1.36), setting ' 'd dt   , where 'd   is the infinitesimal 

rotation vector, and finally integrating from time t to time t t   using a first-order 

forward Euler method, which gives good numerical results when the diffusion coefficient 

is constant [18], and applying the fluctuation-dissipation theorem [18, 23] to the 

Brownian term, it is obtained 

 

        1 1

0' Pe ' ' ' : ' ' ' ' ' 'r f r rt t
                    

K K H B w             , (1.38) 

 

where ,maxPer rD  is the rotational Péclet number. The fluctuation-dissipation theorem 

relates short-time correlations of dynamical variables to dissipation constants such as 

  1T
0' ' 2 'B rk T   B B K , where Bk  is Boltzmann’s constant, T the absolute temperature, 

and the superscript T implies transposition. Vector w is a random vector characterized by 

a Gaussian distribution with zero mean, 0w , and variance t  w w . In (1.38) 

 1 2

,max' ' rDB B  and  1 2

,max'= ' rDw w  
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The algorithm proceeds from a starting configuration by calculating the change in 

orientation at each time step by evaluating (1.38) and using the relation between the 

angular velocity vector and the Euler parameters 
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 (1.39) 

 

to evaluate the change in Euler parameters. The Euler parameters of each particle are 

renormalized after each time step. 

 

1.5 Motivation 

Commonly, ferrofluids are composed of spherical permanently magnetized 

nanoparticles suspended in water or an organic solvent (Figure 1-6). In order to describe 

the behavior of ferrofluids under certain conditions of external magnetic and flow fields 

several theories have been developed such as the Langevin function, to determine the 

equilibrium magnetization of the suspension, Debye’s model, for the dynamic 

magnetization of a suspension of spherical particles, and equations for the 

magnetoviscosity, also for suspensions of spherical particles, solving the system of 

ferrohydrodynamic equations. Nevertheless, other type of particles such as fibers, rods, 

spheroids, plates, and their aggregating clusters have been studied due to their 

applicability in many different fields of modern technology. The paint, ceramic, and 

pharmaceutical industries use suspensions of anisotropic particles, the dynamics of which 
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differ significantly from systems composed of spherical particles [24]. The macroscopic 

properties of such suspensions  thermal conductivity, viscosity, magnetization, etc  

greatly depend on the orientation of the particles in the medium. Thus, for example, the 

scattering and absorption properties of particles are affected by deviations of the particle 

morphology from that of a perfect sphere [25], the combined anisotropic morphology and 

directional interactions of magnetic peanut-shaped particles make them interesting 

candidates for the assembly of colloidal analogues of molecular crystals [26], and 

spheroids and rod-like particles are used to develop high-quality magnetic recording 

materials where the orientational distribution of the particles is carefully controlled by 

applied magnetic and flow fields [27]. These types of particles have been modeled as 

axisymmetric particles with two characteristic relaxation times, parallel and 

perpendicular to the symmetry axis, making feasible analytical solutions or numerical 

approximations, even considering interacting particles. 

In the case of axisymmetric particles, some theoretical models have been developed 

by solving the Fokker-Planck equation for dilute suspensions [28-30]. The instantaneous 

orientation of a single axisymmetric particle is typically specified by a unit vector e 

locked into the particle and lying along its symmetry axis, which typically coincides with 

the magnetic dipole. For this case, numerical solutions for the orientational distribution 

function ( )f e  have also been obtained. For semi-concentrated suspensions, interactions 

between particles make necessary a numerical solution for the probability distribution 

function, which describes the average orientations of particles in the bulk of the 

suspension, or from the stochastic Langevin equation [23, 31-33].  
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All of the work discussed above considered suspensions of spheres or solids of 

revolution, such as spheroids and rods. However, the nanoparticles obtained in magnetic 

fluid synthesis are not perfectly spherical or axisymmetric. Moreover, in the use of 

ferrofluids as bio-sensors, purification fluids or drug delivery carriers, once the particles 

attach to an analyte or target, the particle loses its symmetry and the models developed 

are not able to describe the behavior of these suspensions. On the other hand, lithographic 

techniques may provide a method to produce asymmetric magnetic particles by design. 

This underscores the need to understand the dynamics of asymmetric magnetic particles, 

the orientation of which is not wholly specified by a simple unit vector locked into each 

particle.  

The study of suspensions composed of tri-axial ellipsoidal particles (Figure 1-6) by 

numerical simulations, will allow us to understand the behavior of suspensions composed 

of asymmetric top particles where their orientations are characterized by three 

independent parameters, such as for example the Euler’s angles, and furthermore three 

relaxation times, making more complex their study from an analytical and numerical 

point of view [9], especially in situations for which there is flow. Thus, alternative 

methods of simulation, suitable to tri-axial ellipsoids, are needed to study and model 

these types of suspensions. 

The purpose of this work is to present simulations of rotational Brownian dynamics 

for magnetization and magnetoviscosity of a magnetic fluid composed of spherical or tri-

axial ellipsoidal particles suspended in a Newtonian fluid and which is subjected to 

magnetic and shear flow fields. To do this a FORTRAN-95 code was implemented in 



 24

order to perform the simulations under diverse conditions of the external fields and 

different aspect ratios of the particles. 

 

 

Figure 1-6: TEM image from ferrofluids composed of spherical particles (left) and SEM image of a 
suspension composed of tri-axial ellipsoidal particles (right). 
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2 ROTATIONAL BROWNIAN DYNAMICS 

SIMULATIONS OF NON-INTERACTING 

MAGNETIZED ELLIPSOIDS IN CONSTANT 

AND OSCILLATING MAGNETIC FIELDS 

 

As mentioned in the previous chapter, magnetic fluids are composed usually of 

spherical magnetic nanoparticles and analytical models have been developed in order to 

describe the magnetization of dilute suspensions of these particles. In the case of 

concentrated systems, interparticle interactions become relevant and a numerical 

approach is typically required. Indeed, numerical solutions of the Langevin equations 

have been obtained and several methods for simulating the Brownian dynamics of 

spherical particles have been developed, such as the work by Ermak and McCammon 

[31], who considered hydrodynamic interactions between spherical particles, and 

Dickinson [23], who incorporated the effects of rotation-translation coupling. Their 

results show values of the translational diffusion coefficient and the rotational decay rate 

that are in good agreement with the theoretical values from the Oseen and Rotne-Prager 

diffusion tensors. More recently, Meriguet et al. [32] simulated the influence of an 

effective pair-interaction potential between spherical particles on the magnetization 

relaxation of ferrofluids through integration of the stochastic translational and rotational 

Langevin equations. They found that the relaxation time increases as the volume fraction 

of particles increases. 
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On the other hand, in the case of axisymmetric particles, the Brownian motion of 

ellipsoids in suspensions without external forces has been recently studied experimentally 

by Han et al. [34]. The experiments were restricted to two dimensions (2D) and the 

suspensions were made very dilute in order to avoid interactions between particles. In 

their work it was evident that a particle with a given initial angle will diffuse more 

rapidly along its long axis than along its short axis if the diffusion time is lower than the 

rotational relaxation time,   (anisotropic diffusion). As time progresses, memory of the 

initial orientation is lost, and diffusion becomes isotropic. More recently, direct 

visualization of dynamics of colloidal rods was carried out by Mukhija and Solomon 

[24]. They reported a particle tracking confocal microscopy method to characterize the 

translational and orientational dynamics of anisotropic particles undergoing Brownian 

motion in three dimensions. Their results showed that translational and rotational 

diffusion coefficients agree well with theory for prolate shaped particles in a dilute 

suspension. 

Simulations have also been used to study the effects of an external force field on 

suspensions of nonspherical particles. An approach for modeling the rotational dynamics 

of axially symmetric magnetic particles in fluid suspensions, in the dilute limit, was 

developed by Scherer and Matutis [35]. Based on a generalized Lagrangian formulation 

for the equation of motion, they showed the effect of particle inertia on the susceptibility, 

suggesting that the peak of the imaginary part of the complex susceptibility shifts to 

higher frequencies as the moment of inertia increases. 

In the case of asymmetric top particles, despite the difficulty in obtaining analytical 

solutions, an analytical model was obtained by Perrin [36] and Coffey et al. [37] for the 
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dynamics of a collection of non-interacting asymmetric-top particles in the cases of 

relaxation from an equilibrium field and response to an oscillating field, both in the limit 

of small applied fields. Perrin’s solution was obtained by solving for the orientational 

distribution function, finding that the time-dependent polarization is given by three 

exponentials with distinct relaxation times. Additionally, fluorescence depolarization 

methods have been also used to investigate the rotational motion of molecules [38, 39] 

despite their hydrodynamic shape. This technique is based on the fact that when a 

chromophore rigidly bound to a macromolecule is excited by a light pulse, the anisotropy 

of fluorescence decays due to the Brownian rotation of the macromolecule [40]. Thus, 

Weber [41] obtained analytically that even for a molecule of irregular shape moving in a 

medium in which the resistance to the rotational motion is anisotropic, after an 

instantaneous light pulse, a polarized component of the fluorescence will show a 

maximum of three exponential decays. The same result was found later by Small and 

Isenberg [40] considering a general ellipsoid as a hydrodynamic model for a rigid body. 

Nevertheless, Chuang and Eisenthal [42], and Erhenberg and Rigler [43] showed that for 

a general particle with the absorption vector along an arbitrary direction in the molecular 

frame, the time-dependent fluorescence depolarization caused by anisotropic rotation 

diffusion has a maximum of five exponential decays. 

   More recently, Kalmykov and Titov [44, 45] obtained analogous results to those of 

Perrin by averaging the non-inertial Langevin equation for rotational Brownian motion, 

considering the nonlinear transient response of non-interacting asymmetric tops to 

arbitrary fields and susceptibility to small probe fields in the presence of large bias fields. 

This approach yields an infinite hierarchy of differential-recurrence relations for the 
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statistical moments describing the orientational relaxation of particles, where the 

resulting system of moment equations is solved by a complex mathematical method 

known as the matrix continued fraction method. Their results show that the dipole 

relaxation function can be approximated, in the time domain, by three exponentials with 

distinct relaxation times and, the dynamic susceptibility, in frequency domain, by three 

Lorentzians. 

The models obtained by Perrin and Kalmykov and Titov may be applied to the 

interpretation of experimental data on linear and non-linear response of dilute 

suspensions of magnetic nanoparticles of arbitrary shape, however these theories would 

benefit from verification. As proposed by Kalmykov and Titov, the models could be 

compared with results obtained through numerical simulations, because in computer 

simulations it is easier to achieve large values of the magnetic field. Therefore, the 

purpose of this chapter is to present simulation results for the rotational Brownian 

dynamics of non-interacting tri-axial ellipsoidal particles with an embedded magnetic 

dipole in order to validate the theory mentioned above, and show if it is applicable to the 

interpretation of experimental data. It is assumed that the magnetic dipole is rigidly 

locked into the particle, neglecting the effect of Néel relaxation. 

 

2.1 Calculation of the magnetization of the suspension 

To calculate the time evolution of the magnetization by numerical simulation it is 

necessary to express (1.2) in terms of the Euler parameters of the particles. Using the 

transformation matrix A, the magnetization of the suspension can be obtained from 
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n 

    . (2.1) 

 

Thus, from (2.1) in conjunction with (1.38) and (1.39) making Pe 0r  , the evolution 

with time of the magnetization can be obtained. 

 

2.2 Magnetization response to weak magnetic fields 

According to Perrin’s analysis [36, 37] for the case of an ellipsoid with its magnetic 

dipole along one of its principal axes, say the z’-axis, Eqs. (1.14) and (1.15) continue to 

apply insofar as the relaxation time  is replaced by an effective relaxation time, that in 

dimensionless form is given by 

 

 , ' ' , ' ',max

, ' ' , ' ' ,min , ' ' , ' '

2 2 r x x r y yr
eff

r x x r y y r r x x r y y

K KD

D D K K K


 
      

 . (2.2) 

 

As has been mentioned before, Perrin’s analysis is limited to relaxation from a small 

applied field or response to a small oscillating probe field. 

 

2.2.1 Simulation parameters 

The particles are considered permanently magnetized along the z’-axis, and different 

particle aspect ratios were used in the simulations, as illustrated in Figure 2-1 and 

summarized in Table 2.1. Three types of simulation runs were performed: (i) equilibrium 

in a constant magnetic field, (ii) relaxation after switching off an equilibrium field, and 
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(iii) response to an oscillating magnetic field. All runs were performed using 105 non-

interacting particles, a time step 0.01t  , and different values of the Langevin 

parameter (0.1 30)  . For the relaxation runs the system was allowed to achieve 

equilibrium and then the magnetic field was suppressed.  

 

 

Figure 2-1: Type of ellipsoidal particles used in the simulations. 

 

For the oscillating magnetic field runs the suspension was subjected to an a.c. 

magnetic field  0 cos zH tH i  and runs were conducted at dimensionless frequencies, 

,maxrD   , in the range of 10-2 – 102. Values for hydrodynamic resistance 

coefficients were calculated from (1.31) and summarized in Table 2.1. 

 

2.2.2 Simulation results and discussion 

Equilibrium simulations were carried out first in order to validate the algorithm. 

Figure 2-2 shows the dimensionless equilibrium magnetization as a function of the 

Langevin parameter for the different types of particles. Clearly, the equilibrium 

magnetization is well described by the Langevin function, Eq. (1.8), independent of the 
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aspect ratio of the particles. This is to be expected because the energy necessary to rotate 

the particle into the field direction, which enters into the equilibrium Boltzmann 

distribution, is a function only of the zenithal angle  (see Eq. (1.5) and Figure 1-5). 

 

Table 2.1: Aspect ratios and rotational hydrodynamic resistance coefficients of the different types of 

particles used in the simulations. Here 1 1 3a a a , 2 2 3a a a , and 3
3

ˆ
r rK K a  

Type of particle 1a  2a  , ' '
ˆ

r x xK , ' '
ˆ

r y yK , ' '
ˆ

r z zK  

Sphere 1.0 1.0 25.13 25.13 25.13 

Prolate 0.1 0.1 3.33 3.33 0.17 

Oblate 0.1 1.0 12.04 10.80 10.80 

Scalene-1 0.1 0.25 4.06 4.69 0.64 

Scalene-2 0.1 0.5 5.76 6.77 2.44 

Scalene-3 1.0 0.5 2.44 6.77 5.76 

 

Figure 2-3 shows relaxation of the magnetization after the external field is 

suppressed. The system is allowed to achieve equilibrium in 104 time steps, then the 

external field is set to zero. The relaxation curves are shifted to higher values of 

dimensionless time when the aspect ratio of the particle is lower. Hence, prolate shaped 

particles take longer times relative to the minimum characteristic relaxation time to relax 

to a new equilibrium state, compared to spherical and oblate particles.  
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Figure 2-2: Dimensionless equilibrium magnetization as a function of Langevin parameter. 

 

 

 

Figure 2-3: Relaxation of dimensionless normalized magnetization for 0.1  .  Dashed line represents the 
Eq. (2.3) with eff  from (2.2). 

 

~
 

~ 

~
~ 
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For 0.1   the magnetization curves show good agreement with Debye’s theory, Eq. 

(1.14), with the particles having an effective relaxation time given by eff ; thus, the 

relaxation of the magnetization in dimensionless form can be written as 

 

 ( ) (0)exp 2z z
eff

t
m t m



 
   

 


 


. (2.3) 

 

Eq. (2.3) can be used to obtain eff  from the slopes of the curves in Figure 2-3. 

Values for eff  shown in Table 2.2, agree with Perin’s effective relaxation time. 

 

Table 2.2: Dimensionless effective relaxation time from simulations and theory for each type of particle 

Type of particle , 0.1eff    ,Eq. (2.2)eff

Sphere 1.1  0.03 1.0 

Prolate 20.0  2.0 20.2 

Oblate 1.0  0.06 1.06 

Scalene-1 6.4  0.6 6.89 

Scalene-2 2.9  0.6 2.57 

Scalene-3 1.4  0.02 1.47 

 

In the case of an external oscillating magnetic field, the dimensionless magnetization 

for a suspension composed of tri-axial particles has periodic behavior and therefore it can 

be represented by a Fourier series as 
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1

1
' cos( ) '' sin( )

3z n n
n

m n t n t  




          , (2.4) 

 

here 1n   denotes the fundamental susceptibility, while 2,3,4,...n   are the higher order 

harmonics in ̂ . 

 

 

Figure 2-4: Variation of the magnetization with time when an external oscillating magnetic field is applied, 

for 0.1   and 0.4  . 

 

For 0.1   it is possible to obtain the fundamental in-phase and out-of-phase 

dimensionless dynamic susceptibilities, '  and '' , respectively, by simple integration 

as Fourier coefficients. Thus, 

 

~

~ 
~ 
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 (2.5) 

 

Eq. (2.5) can be evaluated numerically using simulation results for zm . 

Note that when an oscillating magnetic field is applied, the magnetization of the 

suspension changes with time following the field oscillations. There exists a phase-lag 

between the magnetization and the magnetic field, which is dependent on the aspect ratio 

of the particles and the frequency of the magnetic field, as shown in Figure 2-4. 

Figure 2-5 shows dimensionless susceptibilities as a function of dimensionless 

frequency. All curves have the same shape as Debye’s model for particles with only one 

relaxation time, but particles with aspect ratios less than one shift to the left indicating a 

slower relaxation process characterized by a higher effective relaxation time, eff .  

At low frequencies the magnetic field has a characteristic time that is longer than the 

eff  of the particles, then the magnetization is in-phase with the magnetic field and it is 

independent of the aspect ratio as is observed from '  and ''  values close to one and 

zero, respectively. As the frequency increases, the characteristic time of the magnetic 

field is lower than eff  and thus those particles with higher eff  show out-of-phase and 

lower values of the dimensionless magnetization.  

As expected for particles suspended in a Newtonian fluid, in-phase and out-of-phase 

susceptibilities vanish at high frequencies, where the particles are unable to follow the 



 36

magnetic field fluctuations. It can be seem from the particular case of isotropic particles, 

Eq. (1.16), where 
0

lim ', " 0


 


 . 

 

 

 

Figure 2-5: Real (a) and imaginary (b) components of the dimensionless complex susceptibility as a 
function of dimensionless frequency. Solid line represents the Debye’s model, Eq. (1.16), and markers from 
Figure 2-2. 

~

~
 

~
 

~
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Figure 2-6: Real (a) and imaginary (b) components of the dimensionless complex susceptibility as a 

function of 2eff  . Symbols from Figure 2-2. 

 

Now, according to these observations and Perrin’s analysis the in-phase and out-of-

phase susceptibilities may be expressed as 

 

~

~
 

~ 

~
 

~~
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. (2.6) 

 

This implies that the dynamic susceptibilities, '  and '' , can be represented by a 

unique curve when plotted against 2eff  . Indeed, as shown in Figure 2-6 the complex 

susceptibility fits this model independent of the aspect ratio of the particles. 

 

2.3 Magnetization response to strong magnetic fields 

For asymmetric top particles in equilibrium with a strong external constant field 

0 zHH i , if the field is suppressed the magnetization will relax to a new equilibrium 

state following exponential decay, which according to Kalmykov and Titov’s analysis 

[44] is given by (in our notation) 

 

  31 2 22 22 2 2
0 ' ' '( ) tt t

z x y zm L e e e                 . (2.7) 

 

Here 0( )L   is the Langevin function, Eq. (1.8), 0  is the Langevin parameter for H0, and 

the relaxation times 1 , 2 , and 3  depend on the diagonal components of the rotational 

diffusion tensor as follows 

 

 ,max ,max ,max
1 2 3

, ' ' , ' ' , ' ' , ' ' , ' ' , ' '

2 2 2
,    ,    r r r

r y y r z z r x x r z z r x x r y y

D D D

D D D D D D
    

  
   . (2.8) 
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On the other hand, if the suspension is subjected to a magnetic field given by 

0 1 H H H where 0 0 zHH i  is a strong d.c. field (bias field) and  1 1Re j t
zH e H i

   

is a small a.c. perturbing field (probe field), the magnetization may be approximated by 

[45]. 

 

  20
0 1 0

0

( )
ˆ( ) 1 2 ( ) Re j t

z
L

m L L e    


 
    

 

  , (2.9) 

 

where 1  is the Langevin parameter for H1 (i.e., 1 1  , which is the linear response 

condition), and ̂  is given by three Lorentzians as 

 

 
22 2
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, (2.10) 

 

with 0( )F   being a function that relates all i  with the constant bias field 

 

 
2 2
0 0 0

0
0 0

1 coth
( )

coth 1
F

  
 
 




. (2.11) 

 

For large equilibrium and small probe fields, this theory was compared with results from 

Brownian dynamics simulations, showing that Eqs. (2.7) and (2.9) are correct for the 

conditions proposed. 
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2.3.1 Simulation parameters 

To verify the models proposed, the particles were considered permanently 

magnetized along an arbitrary direction such as ' ' 'x y z      , and a “toy” scalene 

particle, characterized by three different hydrodynamic resistance coefficients, i.e. 

' '
ˆ 10x xK  , ' '

ˆ 1.0y yK  , and ' '
ˆ 0.1z zK  , was used in order to separate the contribution of 

the corresponding relaxation modes to the transient ( )zm t . All runs were performed using 

105 non-interacting particles, a time step 0.01t  , and different values of the Langevin 

parameter ( 0 1,  10, 100   and 1 0.1  ). For relaxation runs the system was allowed to 

achieve equilibrium and then the magnetic field was suppressed. For oscillating magnetic 

field runs the suspension was subjected to a strong bias field 0H  until achieving 

equilibrium, then a small oscillating field 1H  was imposed and runs were conducted at 

dimensionless frequencies in the range of 10-2 to 102. 

 

2.3.2 Simulation results and discussion 

Figure 2-7 shows the normalized dimensionless magnetization as a function of 

dimensionless time for different values of the Langevin parameter. Clearly, the 

anisotropic magnetization relaxation is well described by (2.7) for large 0  parameters. 

Furthermore, the expressions for the relaxation times in (2.8) are the same of those given 

by Perrin [36], thus indicating that (2.7) can predicts results for magnetization relaxation 

even at small values of the Langevin parameter, which agrees with Weber’s model [41] 

and Small and Isenberg [40] for fluorescence depolarization. Thus, despite the strength of 

the magnetic filed at the initial equilibrium state, the magnetization decay is well 
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represented by three exponentials, contrary to the five exponentials obtained analytically 

by Chuang and Eisenthal [42], and Erhenberg and Rigler [43] in the case of anisotropic 

fluorescence depolarization after an instantaneous exciting light pulse. 

 

 

Figure 2-7: Relaxation of dimensionless normalized magnetization for different values of Langevin 
parameter and comparison with Kalmykov and Titov’s model (K & T). 

 

On the other hand, a comparison of the real and imaginary parts of the dimensionless 

complex susceptibility ˆ ( )   using the equation (2.10)  and results from simulations are 

given in Figure 2-8. The numerical results for 0.1   are in agreement with those from 

the effective relaxation time solution for a high bias field strength parameter 0  at low 

and high frequencies. At intermediate frequencies the results for the in-phase and out-of-

phase susceptibilities obtained from (2.10) are slightly higher than those from 

simulations, thus (2.9) will predict higher values of the magnetization of the suspension.  

~

~ 

~
~
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Figure 2-8: Real and imaginary components of the dimensionless complex susceptibility as a function of 
the dimensionless frequency for different probe field strengths. Markers for simulation results and solid 
lines for Kalmykov and Titov’s model. 
 

~

~
 

~
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~ 
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Similar behavior is achieved with 1 1  , showing that (2.10) is capable to predicts 

the complex susceptibility of suspensions of asymmetric top particles for slightly higher 

probe fields. 

 

2.4 Conclusions 

The magnetization of suspensions of non-interacting tri-axial permanently 

magnetized particles under d.c. and a.c. external magnetic fields was studied. The 

inertialess approximation of the Langevin equation was solved numerically and simulated 

in order to obtain the dynamic magnetic behavior of the suspension when it is subjected 

to an external magnetic field and the carrier fluid is a Newtonian liquid. 

The results show that the equilibrium magnetization of the suspension is independent 

of the aspect ratio of the particles and is described by the Langevin function. 

Furthermore, relaxation from small and high fields shows the magnetization being 

characterized by effective relaxation times as shown by Perrin [36], Coffey et al. [37], 

and Kalmykov and Titov [44], respectively. Also, simulations demonstrate that in-phase 

and out-of-phase susceptibilities can be represented by a unique function using the 

effective relaxation time, eff , independent of the aspect ratio of the particle for small 

external magnetic fields, and that is well described by three Lorentzians for small probe 

fields superimposed over a strong bias field. 

These results are of great interest because recent studies from atmospheric science, 

toxicology, and epidemiology have shown the need to better characterize and understand 

the formation process of the nanometric fraction of particulate matter, due to its possible 

effects on the environment and on human health [46]. Consequently, there is an 
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increasing demand for diagnostics able to determine physical and chemical properties of 

particles in the nanosize range. Thus, by measuring the characteristic time of 

depolarization processes, as for example by optical methods based on time-depend 

fluorescence polarization, it is possible to determine the particle’s size. 
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3 MAGNETOVISCOSITY OF DILUTE 

SUSPENSIONS OF MAGNETIC ELLIPSOIDS IN 

CONSTANT MAGNETIC FIELDS 

 

For a collection of particles with embedded magnetic dipoles suspended in a 

Newtonian fluid in simple shear flow it is known that if an external magnetic field is 

applied the particles will rotate relative to the fluid resulting in a change in the viscosity 

of the suspension. This phenomenon is known as the magnetoviscous effect and the part 

of the viscosity resulting from the action of the field as the magnetoviscosity [47] or 

rotational viscosity [2, 48]. This effect is in addition to the increase in viscosity for force- 

and torque-free suspended particles, first estimated by Einstein [14, 49] for a suspension 

of rigid spherical particles.  

The influence of an external magnetic field on the viscosity of a magnetic fluid was 

first observed experimentally by McTague [5] and Rosensweig et al. [6]. While McTague 

focused only on the magnetic effect on the capillary viscosity of highly diluted 

ferrofluids, Rosensweig considered the effect of shear rate, showing that the suspension 

has shear thinning behavior. Later, a theoretical description was developed by Hall and 

Busenberg [50], who considered a suspension of ferromagnetic spherical particles but 

neglected Brownian motion. Based on an energy balance, their results predict that the 

effective viscosity of the suspension in shear flow depends on both the direction and 

magnitude of the external magnetic field through 
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 (3.1) 

 

where  is the volume fraction of particles in solution, 0 is the viscosity of the carrier 

liquid,    3
0 04H a       represents the ratio between the magnetic torque and the 

hydrodynamic torque acting on a particle, and   is the angle between the magnetic field 

and vorticity.  

Later, Shliomis [48] argued that viscosity values obtained from (3.1) were not in 

agreement with the experimental results of McTague due to the fact that Brownian 

rotation was neglected. Shliomis [48] derived an expression for a suspension of 

magnetized Brownian spherical particles for the case of low shear rate and short 

magnetization relaxation time, 1f B   , which is given by 

 

 2
0

3 5 tanh
1 sin

2 2 tanh
m     

 
     

, (3.2) 

 

where m is the magnetic part of the viscosity (which we shall refer to as the 

magnetoviscosity),  is the Langevin parameter, and   is the angle between the 

magnetic field and vorticity. Although (3.2) includes the effect of rotational Brownian 

motion it neglects the effect of shear rate, hence it cannot fully describe the results of 

Rosensweig et al. [6]. However, more recently Shliomis [51] obtained an expression for 

the magnetoviscosity of dilute ferrofluids for finite shear rates, 1f B   . The viscosity 
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equation was derived from a phenomenological magnetization equation, which in turn 

was derived from irreversible thermodynamics, employing the effective-field method, 

resulting in the following 
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 (3.3) 

 

where   is analogous to the Langevin parameter for an effective magnetic field, and 

 L   is the Langevin function as given by (1.8). According to Shliomis, this equation 

yields a quite satisfactory description of magnetoviscosity in the whole region of 

magnetic field strength and shear rate. 

Working independently, Brenner and Weissman [52] numerically solved the 

Smoluchowski equation for the orientational distribution function and developed a 

dynamical theory of the rheology of suspensions of non-interacting dipolar Brownian 

spherical particles. They derived expressions for the stress tensor and showed the effect 

on the intrinsic viscosity of both the external field strength and shear rate, parameterized 

through the rotational Péclet number Per rD  , where   is the shear-rate of the fluid 

and rD  is the rotational diffusion coefficient of the particle. Note that in Brenner and 

Weissman’s work a factor of 1/2 is included in their rotational Péclet number. In addition 

to numerical solutions, they provide several analytic solutions using a perturbation 

method for some limited ranges of the parameters studied, such as weak external field 
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and dominant shear rate. Their results show a discrepancy with experimental data which 

is attributed to the fact that the suspension was assumed sufficiently dilute to preclude 

hydrodynamic and magnetic interactions between the particles. 

As mentioned in Chapter 1, nonspherical particles have received recent attention due 

to their applicability in many different fields of modern technology [24, 28, 53-57]. For 

example, Satoh [27] studied the effect of magnetic and shear flow fields on the 

orientation distribution and viscosity of dilute spherocylinder dispersions when the 

magnetic moment is parallel to the particle symmetry axis for Pe 1r   and 1  . The 

governing equation was solved by means of Galerkin’s method and his results show that 

for a magnetic field perpendicular to the local vorticity of the fluid, the orientation 

distribution is dependent on the relative ratio between magnetic field and shear rate, and 

that particles with extreme aspect ratio lead to a larger increase in viscosity. On the other 

hand, Strand and Kim [58] presented a numerical method, employing the Galerkin 

method, for calculating the orientation distribution function and thus rheological 

properties of dilute suspensions of dipolar Brownian axisymmetric particles subjected to 

shear and external magnetic fields. They studied the effect of the orientation of the 

magnetic field respect to the local vorticity on the intrinsic effective viscosity, founding 

that particles with extreme aspect ratio exhibit a maximum value of effective viscosity for 

intermediate shear rates at selected field orientations. Recently, Satoh et al. [59, 60] 

analyzed the case with the magnetic moment normal to the particle symmetry axis. 

Furthermore, Asokan and Ramamohan [54] computed rheological parameters of 

suspensions of noninteracting spheroids in a simple shear flow under an external force 
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field. They found chaotic fluctuations in the apparent viscosity when the external field is 

periodic in time. 

The purpose of this chapter is to present rotational Brownian dynamics simulations 

for the intrinsic magnetoviscosity [ ]m  of a magnetic fluid composed of non-interacting 

tri-axial ellipsoidal permanently magnetized particles suspended in a Newtonian fluid and 

subjected to both magnetic fields and simple shear flow in order to study the effect of the 

aspect ratio of the particles on the intrinsic magnetoviscosity of the suspension. 

 

3.1 Calculation of the magnetoviscosity of the suspension 

The viscous (or deviatoric) stress tensor   for a suspension of dipolar particles 

subjected to an external field is characterized by both a symmetric and an antisymmetric 

part [61, 62] 

 

 s a    . (3.4) 

 

The antisymmetric component a  arises from the angular slip velocity between the 

local angular velocity of the suspension and the average angular velocity of the particles 

[61]. This slip velocity appears as a result of hindered rotation of the particles due to 

external couples, resulting in a greater rate of mechanical energy dissipation, and hence, a 

larger apparent viscosity [50, 63]. 

The antisymmetric component of the viscous stress tensor due to the action of 

magnetic couples in a dilute suspension can be obtained as follows: The spin velocity   

in the ferrofluid is governed by the internal angular momentum equation 
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D

I
Dt

    C T T


  (3.5) 

 

where I is the moment of inertia density of the suspension, C is the couple stress tensor 

density that represents the diffusion of internal angular momentum between contiguous 

material elements, T  denotes the pseudovector associated to the antisymmetric stress 

tensor, and extT  is the external couple density acting on the structured continuum.  

In order that the suspension be considered as a continuum, it must satisfy the 

inequality   1a L  , where L is the length scale on which the velocity field varies, and a 

is the characteristic length of the particles. Whence, in the continuum limit, namely where 

  0a L   (since the size of the particles in a magnetic fluid), and the assumption of a 

dilute suspension, the internal angular momentum equation becomes couple-stress-free 

and inertia-free; thus, from (3.5) ext  T T 0  [62]. 

According to Brenner [64], for a two-phase system, neglecting rotary inertial effects 

on the particles, the external couple density exerted on the macrocontinuum would be 

given as  ,ext m ii
V T T , where Tm is the magnetic torque acting on each particle. 

Since the antisymmetric part of the stress tensor a  can be found from T , using the 

following relationship employing the alternating tensor ε: 1
2

a
 T , then 
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in which n is the number density of particles, and the angular brackets denote an average 

over the ensemble of particles in the suspension. 

For the simple shear flow given in (1.21), the apparent viscosity of the suspension due 

to the antisymmetric part of the viscous stress tensor is given by m a
zy zy    , which is 

referred to as the magnetoviscosity of the suspension. Therefore, from the Péclet number 

definition 
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Using the Stokes-Einstein equation for ,maxrD , and Eq. (3.6), we obtain that 
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where the volume fraction of particles  can be expressed as pnV  , with 

4
1 2 33pV a a a  being the volume of a tri-axial particle. Thus, (3.8) becomes 
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where 1 1 3a a a , 2 2 3a a a , and 3
,min ,min 3

ˆ
r rK K a . For a dilute suspension, the 

intrinsic magnetoviscosity [ ]m
zy  is defined as 
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Thus, from (3.9) 
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Equation (3.11) furnishes [ ]m
zy  as a function of the Langevin parameter, the 

dimensionless shear-rate expressed as a rotational Péclet number, the particle shape, and 

the average orientation of the particles. It is important to note that the aspect ratio is 

defined relative to the semiaxis along the magnetic dipole moment of the particle.  

To calculate the time evolution of the intrinsic magnetoviscosity by numerical 

simulation it is necessary to express (3.11) in terms of the Euler parameters of the 

particles. Using the transformation matrix A, the intrinsic magnetoviscosity of the 

suspension, subjected to a magnetic field along the z-direction, can be obtained from 
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Thus, from (3.12) in conjunction with (1.38) and (1.39), the evolution with time of 

the intrinsic magnetoviscosity is obtained. 
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For the present, the influence of the aspect ratio of the particles on the 

magnetoviscosity of the suspension, when it is under an external magnetic field, is 

studied. 

 

3.2 Simulation parameters 

Various particle aspect ratios were used in the simulations, as summarized in Table 

2.1 (except Scalene-3). The suspension was subjected to a constant magnetic field 

zHH i  and to a simple shear flow as given by (1.21). All runs were performed starting 

from a random configuration, using 105 noninteracting particles, a time step of 0.01t  , 

Langevin parameters of 0.1 100  , and shear rates of 0.1 Pe 100r  .  

 

3.3 Results and discussion 

Figure 3-1 shows the intrinsic magnetoviscosity of a suspension of spherical particles 

as a function of the Langevin parameter and Péclet number. The figure shows that the 

intrinsic magnetoviscosity approaches the saturation value of 3/2 at high field, 20  , 

where the magnetic field dominates the Brownian and hydrodynamic torques, resulting in 

particles with their magnetic dipole moments almost aligned in the field direction, and 

leading to a complete hindrance of the particle’s rotation. For 1   the particle achieves 

a stable, non-rotating state in which  0 ; thus, for a spherical particle neglecting the 

Brownian torque, we obtain from (1.38) that 

 

  Per f
d

dt
  H

     . (3.13) 
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Note that in the particular case of an isotropic particle the angular momentum equation 

can be expressed relative to space-fixed axes. The solution of this differential equation 

furnishes the particle orientation as a function of time. Therefore, in steady state and 

taking into account that 1 , this unique terminal condition is characterized by the 

orientation vector 

 

 

1 22
Pe Pe

1
2 2

r r
y z 

      
   

i i . (3.14) 

 

As    the embedded dipole exhibits a preferred orientation along the magnetic field 

direction, z i , and the orientational distribution function becomes the Dirac delta 

function [64]. On the other hand, at low fields, the hydrodynamic torque dominates and 

the particles are able to rotate with the fluid leading to a decrease in the intrinsic 

viscosity. 

For Pe 4r   (corresponding to 1f B    in Shliomis’ analysis) (3.2) agrees with the 

results obtained from our simulations in the low- and high- limits, but deviates from 

these for intermediate . This discrepancy is due to an approximate phenomenological 

equation for the change in the suspension magnetization vector used to derive (3.2) (i.e., 

the so-called magnetization relaxation equation, which is a generalization of the Debye’s 

relaxation equation), valid for any magnetic field magnitude but only small vorticities, as 

follow 
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Figure 3-1: Intrinsic magnetoviscosity of a suspension of spherical particles as a function of Langevin 
parameter for different values of rotational Péclet number, and comparison with results from [48]. Inset, 
comparison with results from Brenner and Weissman (B & W) [52]. 
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where m is the magnetic fluid magnetization and meq its equilibrium value as given by 

the Langevin function. 

As shown later by Shliomis [51], other magnetization equations obtained by 

introducing the concept of an “effective” magnetic field, and applicable for large 
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deviations from equilibrium, result in different dependence of the magnetic viscosity on 

the magnetic-field strength. On the other hand, our results are in excellent agreement with 

those of Brenner and Weissman [52] for Per = 2.0. 

For higher Per, (3.2) is unable to describe the behavior of the suspension and the 

results show a decreased effect of  on the viscosity. Moreover, the simulations do not 

predict a hysteresis of the magnetoviscosity at high shear (Per > 24) and high field as was 

calculated by Shliomis [48] and He et al. [47] using the ferrohydrodynamic equations. 

Again, the use of an approximate magnetization relaxation equation seems to be to 

blame. 

As seen in Figure 3-1, the intrinsic magnetoviscosity increases with the magnetic 

field strength until it achieves a saturation value, for which the rotational motion of the 

particles is prevented by the magnetic field. This condition is achieved at lower applied 

fields (i.e., lower values of ) as the Péclet number decreases, i.e. where Brownian 

motion dominates the shear forces. As Per increases, the larger shear rate forces the 

particles to rotate out of alignment with the magnetic field; hence the magnetic field 

strength for the suppression of the rotational motion of the particles increases. 

Figure 3-2 illustrates the effect of shear rate on the intrinsic magnetoviscosity. At low 

shear rates [ ]m
zy  remains constant up to a critical value of Per, which increases as    

increases. At higher shear rates the intrinsic viscosity decreases to zero, indicating shear 

thinning behavior, as predicted by Brenner and Weissman [52], and observed 

experimentally by Rosensweig et al. [6]. 
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Figure 3-2: Intrinsic magnetoviscosity of a suspension of spherical particles as a function of rotational 
Péclet number for different values of Langevin parameter.  

 

In the case of ellipsoidal particles the aspect ratio has a significant effect on the 

viscosity of the suspension. Figure 3-3 shows this as a function of the Langevin 

parameter for a value of ,minPe / 5.0r rK  . The parameter ,minPe /r rK  was used in order 

to compare results under similar flow conditions. As was the case for spherical particles, 

the intrinsic magnetoviscosity increases with the strength of the magnetic field, 

approaching a saturation state. Saturation is achieved faster when the aspect ratio of the 

particles is lower owing to the decreased rotational hydrodynamic resistance 

perpendicular to the axis along the magnetic dipole moment, as can be determined from 

(3.19). 

Figure 3-4 shows the intrinsic magnetoviscosity as a function of Péclet number for a 

Langevin parameter of 3.0. It is seen that at low values of Per the intrinsic 
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magnetoviscosity is higher as the aspect ratio decreases and tends to zero at high values 

of Per, as for spherical particles. 

 

 

Figure 3-3: Intrinsic magnetoviscosity of suspensions of ellipsoidal particles as a function of Langevin 

parameter for ,minPe / 5.0r rK  . Here [ ]m
zy   is the intrinsic viscosity for   . 

 

For suspensions of ellipsoidal particles, the intrinsic magnetoviscosity also exhibits a 

critical value of Péclet number above which the viscosity decreases, and which shifts 

towards higher values as the aspect ratio of the particles increases. For example, a 

suspension of prolate shaped particles achieves this critical value at a lower rate of strain, 

relative to the maximum rotational diffusion coefficient, than a suspension of oblate 

particles. 

As was mentioned above, if an external magnetic field is applied the particles will 

rotate relative to the fluid resulting in a change in the viscosity of the suspension. 
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Figure 3-4: Intrinsic magnetoviscosity of suspensions of ellipsoidal particles as a function of rotational 
Péclet number for 3.0  . 

 

Thus, when a magnetic field is applied, it turns the particle increasing the z-

component of the magnetic dipoles, and then the particle rotates tending to align its 

magnetic dipole moment with the external field. This rotation can be separated into 

individual rotations about the primed axes. Rotations around the z’-axis do not contribute 

to any change in the alignment with the magnetic field. Therefore, the alignment process 

can be represented by a combination of individual rotations about the x’ and y’-axis, i.e., 

the relaxation motion is independent of rotation around the magnetic dipole. 

Results from simulations suggest that it is possible to fit the data to a unique curve by 

using an effective rotational diffusion coefficient Dr,eff instead of Dr, max to define an 
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effective Péclet number, , ff ,max ,effPe Pe ( / )r e r r rD D , where Dr,eff is obtained from 

averaging the rotational diffusion tensor, 'rD , around the z’-axis of the particle. The 

average rotational diffusion tensor with respect to rotation around the z’-axis, 'rD , can 

be obtained from [65] 

 

  
2

T

0
' ( ) 'r R r Rf d


   D A D A , (3.16) 

 

where ( ) 1 (2 )f    is the assumed homogeneous orientational distribution function, 

and AR is the rotation matrix. 

The corresponding rotation matrix, AR, is given by [22] 
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The average rotational diffusion tensor for an orthotropic particle, after averaging, 

becomes 

 

  ' ' ' ''r z z z zD D  D i i I i i , (3.18) 

 

where 
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  1
, ' ' , ' ' , ' '2    and   r x x r y y r z zD D D D D    . (3.19) 

 

The coefficients represented by the subscripts  and || pertain, respectively, to rotations 

about axes perpendicular and parallel to the z’-axis of the particle, thus, ,effrD D . 

As shown in Figure 3-5, if the Péclet number is defined with respect to Dr,eff, the 

normalized intrinsic magnetoviscosity, 0[ ]/[ ]m m
zy zy  , of suspensions of ellipsoidal 

particles exhibits similar behavior to that of spherical particles for low Langevin 

parameters. In this case, because the magnetic torque is not strong enough to align the 

dipole moments with the field, the particles are able to rotate more or less freely with the 

shear flow exhibiting an almost isotropic orientational distribution, independent of the 

aspect ratio. On the other hand, for 10  , Figure 3-5 shows that the results for 

ellipsoidal particles deviate from those for spherical particles for , ffPe 3.0r e  .  

At higher  the particles tend to align with the magnetic field, thus, for low , ffPer e , 

the results show good agreement independent of the aspect ratio. At higher , ffPer e , the 

particles rotate out of alignment with the magnetic field, but owing to the effect of the 

shear-torque on ellipsoidal particles, they are preferably oriented in the direction of 

maximum strain, i.e. at an angle of π/4 with respect to the xz-plane and in the flow 

direction (the yz-plane). 

This behavior was first shown by Jeffery [66] who solved analytically the motion of 

an ellipsoidal particle (an axisymmetric particle) immersed in a viscous fluid. 
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Figure 3-5: Normalized intrinsic magnetoviscosity as a function of , ffPer e  for different values of . Here 

[ ]m
zy   is the intrinsic magnetoviscosity for , ffPe 0r e  . 

 

It was found that there are two couples acting upon the particle: one tending to rotate 

the particle with the local vorticity of the fluid, and the other, from the rate-of-strain field, 

tending to turn the particle until its largest axis coincides with the principal direction of 
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 . Figure 3-6 confirms this fact, showing the orientational distribution of the magnetic 

dipole moment of different types of particles for 10   and , ffPe 18.93r e  .  

 

 

Figure 3-6: Orientational distribution of the magnetic dipole moment of (a) spherical particles, (b) prolate 
particles, (c) scalene1 particles, and (d) oblate particles, for 10   and , ffPe 18.93r e  . Dots correspond 

to particles with their magnetic dipole moments aligned with the corresponding point in the unit sphere. H 
arrow is the magnetic field direction, f  the angular velocity direction, and S the maximum strain 

direction. 

 

For spherical particles the magnetic dipole moment distribution is almost isotropic on 

the upper half of the downstream hemisphere of orientation space due to the high shear 

rate and because the rate-of-strain field does not exert a torque on the spheres [67]. On 
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the other hand, the ellipsoidal particles tend to have their dipoles concentrated in the 

direction of maximum strain, resulting in a larger magnetic torque in (3.6). 

 

3.4 Conclusions 

Through rotational Brownian dynamics simulations we have studied the rheological 

properties, specifically magnetoviscosity, of dilute magnetic fluids composed of 

magnetized spherical and ellipsoidal particles in magnetic and shear flow fields. The 

governing equation of the infinitesimal rotation vector was derived from the stochastic 

angular momentum balance of a single particle and solved numerically. An intrinsic 

viscosity due to the magnetic field was calculated. The simulations have been carried out 

for a wide range of conditions in order to elucidate patterns in the behavior of these 

suspensions. 

Results for spherical particles were compared with existing theoretical predictions 

and other numerical solutions. Good agreement was obtained with results from Brenner 

and Weissman [52] who studied the orientation distribution of dipolar Brownian spheres 

numerically. On the other hand, the intrinsic magnetoviscosity calculated from Shiliomis’ 

equation deviates from the results of the simulations for intermediate values of the 

Langevin parameter. Also, simulation results do not exhibit hysteresis of 

magnetoviscosity at high rotational Péclet numbers, as predicted by  Shliomis [48] and 

He et al. [47]. These discrepancies are due to the use of an approximate 

phenomenological magnetization relaxation equation in their analyses. 

Suspensions of ellipsoidal particles show a significant effect of aspect ratio on the 

intrinsic magnetoviscosity of the suspension. This effect is more significant as the aspect 
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ratio of the particles decreases. Thus, the intrinsic magnetoviscosity of suspensions of 

prolate particles saturates at lower  than oblate particles. Moreover, these kinds of 

suspensions also exhibit shear thinning behavior, with qualitative features that are in 

common with suspensions of spherical particles. 

Using an effective rotational diffusion coefficient Dr,eff it was possible to represent the 

normalized intrinsic magnetoviscosity as a unique function of Péclet number with  as a 

parameter. At high values of the Langevin parameter the results for magnetoviscosity of 

suspensions of spherical particles deviate from those for ellipsoidal particles. This 

discrepancy was attributed to the effect of the shear-torque on the orientation distribution 

of the non-spherical particles. 

Because the possibility of magnetic control of the properties of magnetic fluids a 

wide variety of possible applications of these suspensions in different fields of 

engineering and biomedical can be developed. Thus for example, a magnetic fluid might 

be used to electronic control of the performance of damping systems such as clutches, 

brakes, and dampers. 
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4 MAGNETOVISCOSITY OF DILUTE MAGNETIC 

FLUIDS IN OSCILLATING AND ROTATING 

MAGNETIC FIELDS 

 

The increase in the viscosity of a magnetic fluid under the influence of a constant 

magnetic field was discussed in Chapter 3 for suspensions of spherical and ellipsoidal 

particles. In this chapter, the effect of an alternating magnetic field on the rheological 

properties of magnetic fluids has been considered. In this case, under certain conditions 

the magnetic field reinforces the rotational motion of the particles and part of the energy 

of the magnetic field is transferred to the fluid as kinetic energy, accelerating the 

ferrofluid flow. This effect is seen as if the viscosity of the suspension decreased [68, 69]. 

Shliomis and Morozov [17] showed theoretically that if the magnetic field oscillates with 

a high enough frequency, 1B  , where   is the oscillating field frequency and B  is 

the Brownian relaxation time, the magnetoviscosity of a dilute suspension of spherical 

particles becomes negative. The expression derived by Shiliomis and Morozov for the 

magnetoviscosity m  in an oscillating magnetic field of small amplitude, was obtained 

solving the system of ferrohydrodynamic equations, which is given by 
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where 0  is the viscosity of the carrier fluid,   is the volume fraction of particles, and   

is the Langevin parameter, with 0  being the permeability of free space,   the particle 

magnetic dipole, H the magnetic field, kB Boltzmann’s constant, and T the absolute 

temperature. 

The so-called “negative viscosity effect” was first confirmed experimentally by Bacri 

et al.[7] for a water-based magnetic fluid composed of cobalt-ferrite (CoFe2O4) particles 

with a volume fraction of 20% and subjected to an oscillating magnetic field. A 

Poiseuille flow in a horizontal capillary tube was used for viscosity measurements. They 

observed a decrease of the magnetoviscosity to -19 cP at 2000 OeH   and 700 Hz  .  

 

 

Figure 4-1: Experimental reduced viscosity rη /m   versus magnetic field H for different frequencies f: 

●: f = 0; ■: f = 52 Hz; ▲: f = 150 Hz; ◊: f = 345 Hz; +: f = 645 Hz; ∆: f = 1480 Hz.  is the viscosity of the 
suspension in zero magnetic field. Reproduced with permission from [70]. 

 

Later, Zeuner, Richter, and Rehberg [71], conducting an experiment similar to Bacri 

et al., carried out a comparison of experimental results of reduced viscosity for a colloidal 

suspension of magnetite (Fe3O4) with the predictions of a theoretical model given in [7] 
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for finite values of  , which is based on the ferrohydrodynamics equations and the 

effective field method . They observed, for a large range of magnetic field strength and 

oscillation frequencies, the negative viscosity effect and found qualitative agreement 

between measurements and the theory given. The dependence of m  on the flow vorticity 

in an oscillating magnetic field was studied experimentally by Gazeau et al. [72] for a 

ferrofluid in cylindrical Couette rheometer. They founded that the inner moving cylinder 

rotates at expense of the field for high field frequencies. 

The effect of the flow vorticity was demonstrated theoretically by Krekov, Shliomis, 

and Kamiyama [69], who solved numerically a set of ferrohydrodynamic equations 

showing the non-Newtonian behavior of a dilute ferrofluid under conditions taking place 

in the experiments performed by Bacri et al. [7]. The calculations were performed with 

two different phenomenological magnetization equations in order to compare the results, 

employing the Eq. (3.15) and a magnetization equation derived from the Fokker-Planck 

equation. Their results show that Eq. (3.15) gives an adequate description of phenomenon 

in weak magnetic fields, and a nonlinear and nonmonotonic dependence of  m  on the 

flow vorticity. On the other hand, Morimoto, Maekawa, and Matsumoto [73] studied 

rheological and magnetic properties of a magnetic fluid composed of permanently 

magnetized spherical particles, subjected to both alternating magnetic and shear flow 

fields, by non-equilibrium Brownian dynamics simulations. The system was restricted to 

two dimensions (2D) and they took into account interparticle potentials such as dipole-

dipole interactions, van der Waals attraction, and repulsion caused by surfactant contact.  

Their results show the effect on rotational viscosity of the magnetic field strength and 

shear rate for Pe 1 , exhibiting the negative viscosity effect, which was attributed to 
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resonance between the rotational motions of the particles and the fluctuation of the 

magnetic field. 

The response of magnetic fluids to rotating magnetic fields was first observed 

experimentally by Moskowitz and Rosensweig [8] and studied theoretically by Zaitsev 

and Shliomis [74]. Interest here has centered on measurements of velocity profiles of 

concentrated suspensions since field rotation causes macroscopic motion of the fluid due 

to the average rotation of the suspended particles, a phenomenon known as spin-up flow 

[75]. On the other hand, the rheological properties of magnetic fluids subjected to 

rotating magnetic fields can be studied experimentally from measurements of the torque 

required to rotate a spindle submerged in ferrofluid. Thus, Rinaldi et al. [76] showed for a 

ferrofluid composed of magnetite particles that with the magnetic field counter-rotating 

and co-rotating with the spindle, the torque increases and decreases, respectively, as the 

strength of the magnetic field and frequency increase (see Figure 4-2). A decrease in the 

measured torque corresponds to a negative magnetoviscosity. In the experiments reported 

by Rinaldi et al. even negative torques can be measured, which would correspond to a 

negative effective viscosity of the suspension (that is, the magnetoviscosity is negative 

and larger in magnitude than the base fluid and Einstein viscosities). While there has 

been much work on the viscosity of magnetic fluids under oscillating magnetic fields, 

relatively few studies of the magnetoviscosity under rotating magnetic fields have been 

reported. Additionally, analytical models for magnetoviscosity in oscillating magnetic 

fields are based on the solution of the system of ferrohydrodynamic equations [7, 17, 77], 

which are limited by the assumptions of the magnetization relaxation equations used. 
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Figure 4-2: Torque required to rotate a spindle surrounded with ferrofluid at a rate of 100 rpm as function 
of applied field magnitude, rotation direction, and frequency. Reproduced with permission from [76]. 

 

In this chapter rotational Brownian dynamics simulations for the intrinsic 

magnetoviscosity [ ]m  of a magnetic fluid composed of non-interacting permanently 

magnetized spherical particles suspended in a Newtonian fluid and subjected to both 

magnetic fields and simple shear flow are presented. Furthermore, the effect of the 

amplitude and frequency of the external magnetic field and the magnitude of the shear 

rate on the intrinsic magnetoviscosity of the suspension was studied. 

 

4.1 Calculation of the magnetoviscosity of the suspension 

For the case of spherical particles (3.11) is given by 
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Therefore, to calculate the time evolution of the intrinsic magnetoviscosity by 

numerical simulation it is necessary to express (4.2) in terms of the Euler parameters of 

the particles. Using the transformation matrix A, the intrinsic magnetoviscosity of the 

suspension is then obtained from 
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Thus, from (4.3) in conjunction with (1.38) and (1.39), the evolution with time of the 

intrinsic magnetoviscosity is obtained. 

 

4.2 Simulation parameters and conditions 

The suspension was subjected to a simple shear flow as given by (1.21), and three 

types of simulation runs were performed: (i) response to an oscillating magnetic field 

 cos zt H i   , (ii) response to a co-rotating field    sin cosy zt t   H i i    , and (iii) 

response to a counter-rotating magnetic field    sin cosy zt t   H i i    . Here co-

rotation means rotation in the same direction as the local vorticity of the fluid and 

counter-rotation in the opposite direction. All runs were performed starting from a 

random configuration, using 105 noninteracting spherical particles, a time step of 

0.01t  , dimensionless frequency   in the range of 10-2 to 102, and Langevin 
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parameters of 1 10  . For a particle of typical size 10d   nm suspended in a fluid 

with viscosity 3
0 10  Pa s    the Brownian relaxation time is very short 

7 610 10B
   s, therefore, large values of Péclet number are difficult to obtain in 

practice, so Per was varied from 0.1 to 1. 

 

4.3 Simulation results and discussion 

The effect of the strength and frequency of an oscillating magnetic field on the 

intrinsic magnetoviscosity [ ]m
zy  is shown in Figure 4-3 for Pe 0.1r  . At low frequency 

of the magnetic field the intrinsic magnetoviscosity approaches an equilibrium value, as 

shown in Chapter 3, and it decreases as the frequency increases. The intrinsic 

magnetoviscosity becomes negative at intermediate frequencies and will be zero at high 

frequencies, where the magnetic field has no effect on the magnetoviscosity. As showed 

numerically by Morimoto, Maekawa, and Matzumoto [73], at low magnetic field 

frequencies the angular velocity of the particles is lower than the angular velocity of the 

fluid, which results in an increase of the apparent viscosity. On the other hand, at higher 

frequencies the angular velocity of the particles is higher than the angular velocity of the 

fluid, which results in a decrease of the apparent viscosity, as mentioned in earlier. At 

very high frequencies the particles are unable to follow the magnetic field fluctuation and 

therefore the particles rotate freely with the local vorticity of the carrier fluid. 

Furthermore, Figure 4-3 shows that the minimum intrinsic magnetoviscosity decreases 

and the frequency corresponding to that minimum viscosity increases as the strength of 

the magnetic field,  , increases. 
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Figure 4-3: Dependence of the intrinsic magnetoviscosity on the magnitude and frequency of an oscillating 
magnetic field for Pe 0.1r  . 

 

On the other hand, rotating magnetic fields exhibit a dramatic effect on the apparent 

viscosity of the suspension. Figure 4-4 shows the effect of the amplitude and frequency 

of a rotating magnetic field on the intrinsic magnetoviscosity for Pe 0.1r  . Results in 

Figure 4-4a show that when a co-rotating magnetic field is applied, the frequency of the 

magnetic field at which the intrinsic magnetoviscosity becomes zero is much lower in 

comparison with that of the alternating field case. Furthermore, the minimum value of the 

viscosity is much lower and its magnitude dramatically increases as the amplitude   of 

the magnetic field increases. 

The field frequency required to reach the minimum intrinsic magnetoviscosity 

increases slightly as   increases. Also, the frequency range under which negative 

intrinsic magnetoviscosity appears is wider than for oscillating magnetic fields. 

~
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Figure 4-4: Dependence of the intrinsic magnetoviscosity on the magnitude and frequency of (a) a co-
rotating and (b) a counter-rotating magnetic field for Pe 0.1r  . 

 

On the other hand, for a counter-rotating magnetic field, Figure 4-4b shows that the 

magnetoviscosity is always positive in the whole range of frequencies, exhibiting a peak 

of maximum magnetoviscosity which increases in magnitude as   increases. As for co-

~

~
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rotating fields, the field frequency required to reach the maximum viscosity increases 

slightly as   increases. 

It is important to note that the curve of intrinsic magnetoviscosity for counter-rotating 

field is almost a mirror image of that for co-rotating fields, which could be attributed to 

the fact that the particles are rotating in opposite direction, shifting thus the 

magnetoviscosity to positive values in the whole range of frequencies as seen from (4.6) 

and (4.7), and to the reversibility of the low Reynolds number flow [78] imposed on the 

particles. 

 

 

Figure 4-5: Dependence of the intrinsic magnetoviscosity on the Péclet number and frequency of an 
oscillating magnetic field for 1  . 

 

~
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Figure 4-6: Dependence of the intrinsic magnetoviscosity on the Péclet number and frequency of (a) a co-
rotating and (b) a counter-rotating magnetic field for 1  . 

 

In contrast to the results obtained by Morimoto, Maekawa and Matzumoto [73] for 

Pe 1r   and 5, the Péclet number does not have a significant effect on the 

magnetoviscosity of the suspension in oscillating magnetic field for 0.1 Pe 1r  , as 

~

~
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shown in Figure 4-5. On the other hand, under co-rotating magnetic fields, Figure 4-6a 

shows that, for 1  , the frequency where the intrinsic magnetoviscosity becomes zero 

is lower and the frequency range for negative viscosity is wider as Per decreases. 

Furthermore, the field frequency required to reach the minimum intrinsic 

magnetoviscosity remains almost constant as Per  increases. The effect of the shear rate 

on the intrinsic magnetoviscosity in counter-rotating field shows behavior similar to that 

with a co-rotating magnetic field (see Figure 4-6b). 

Figure 4-7 shows a comparison between the minimum values of the intrinsic 

magnetoviscosity obtained for both oscillating and co-rotating magnetic fields as a 

function of   and Per . For both cases the figure shows that the magnitude of the 

intrinsic magnetoviscosity increases as the strength of the magnetic field increases. 

In the simulated range the rotational Péclet number has no effect on min[ ]m
zy  for an 

oscillating magnetic field, Figure 4-7a; whereas in a co-rotating field, Figure 4-7b shows 

that the magnitude of min[ ]m
zy  increases as the Péclet number decreases. It is important to 

note that for Pe 0.1r   the magnitude of the minimum intrinsic magnetoviscosity for a 

co-rotating magnetic field is ~102 times greater than that for an oscillating magnetic field. 

Thus, the possibility to obtain negative values of the effective viscosity eff of a 

suspension composed of permanently magnetized spherical particles is attainable.  

The effective viscosity of the suspension, subjected to an external magnetic field, can 

be obtained combining the symmetric and the antisymmetric parts of the viscous stress 

tensor. Therefore, from (3.4) and using the Eq. (1.19) and (3.10) we obtain 
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Figure 4-7: Minimum value of the intrinsic magnetoviscosity as a function of the Langevin parameter and 
Péclet number for (a) an oscillating and (b) a co-rotating magnetic field. 
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Thus, the effective viscosity of the suspension eff zy     is then 
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Equation (4.5) is plotted in Figure 4-8 as a function of the Langevin parameter for a 

particle volume fraction of 0.01  , which we assume as a dilute enough suspension for 

the simulations to be representative. Figure 4-8 shows 0eff   for high values of   and 

frequency under co-rotating magnetic field. This result is analogous to the torque 

measurements on commercial ferrofluid in rotating magnetic fields by Rinaldi et al. [76].  

 

 

Figure 4-8: Normalized effective viscosity of the suspension as a function of the Langevin parameter for 
Pe 0.1r   and 0.01  . 

 

According to this, the fluid behaves as if it is filled with nanosized rotors that 

reduce the friction between adjacent fluid layers [72] due to the transfer of part of the 

magnetic field energy as kinetic energy into the fluid, leading to a decrease in the 

~

~ 
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effective viscosity of the suspension. Figure 4-8 also shows a negligible effect of the 

oscillating magnetic field on eff  in comparison with the case of rotating magnetic fields. 

In the negative intrinsic magnetoviscosity regions, the mean angular velocity of the 

particles should be higher than the local angular velocity of the carrier fluid. To illustrate 

this, we determined the dimensionless mean angular velocity of the particles x  and 

compared it with the local angular velocity of the carrier fluid 1 2f  . The time 

variation of the mean angular displacement  x t   about the x-axis is shown in Figure 

4-9 for 4   and Pe 1r  . Note that the slope in Figure 4-9 gives the dimensionless 

mean angular velocity of the particles.  

In the case of a co-rotating magnetic field, Figure 4-9a shows for 0.1   that the 

mean angular velocity of the particles is lower than the fluid angular velocity, 

x f   , which leads to positive values of the intrinsic magnetoviscosity. As the field 

frequency increases, the mean angular velocity of the particles eventually is higher than 

the angular velocity of the fluid, x f   , and the magnetoviscosity becomes 

negative. At very high magnetic field frequencies the particles cannot follow the 

magnetic field rotation, therefore they rotate freely with the fluid, x f   , and the 

suspension behaves as a torque-free suspension. Whence, the effect of the rotating 

magnetic field on the intrinsic magnetoviscosity disappears.  
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Figure 4-9: Time variation of the mean angular displacement of magnetic particles in both (a) co-rotating 
and (b) counter-rotating magnetic fields for 4   and Pe 1r  . 

 

In the case of a counter-rotating magnetic field, Figure 4-9b shows that for 0.1   

the particles rotate slower than in the case of a co-rotating field in the same direction as 

the local vorticity, which is because the hydrodynamic torque dominates the magnetic 
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torque. As the frequency increases, the magnetic torque dominates and the particles rotate 

in opposite direction to the local vorticity, therefore the intrinsic magnetoviscosity 

increases. At very high frequencies the magnetic field has no effect on [ ]m
zy . 

The results shown in Figure 4-9a qualitatively agree with those obtained by 

Morimoto, Maekawa and Matzumoto [73] for oscillating magnetic fields, showing an 

increase of the average angular velocity of the particles relative to that for oscillating 

field.  

We compared the dimensionless mean angular velocity of the particles for 1   and 

Pe 1r  , when they are subjected to oscillating and co-rotating magnetic fields. Figure 

4-10 shows that for 2.5  , in an oscillating magnetic field the particles rotate at the 

same angular velocity of the fluid, but in a co-rotating magnetic field the particles rotate 

faster than the fluid, which leads to lower values in the negative intrinsic 

magnetoviscosity.  

The reason for the discrepancy in the angular velocity of the particles is that, as 

shown in Figure 4-11, for an oscillating magnetic field the magnetic torque changes 

direction as the particles rotate and the field oscillates, at times reducing the rotation rate 

of the particles; whereas for a co-rotating magnetic field the magnetic torque always 

reinforces the rotation in the same direction of the local vorticity, increasing the rotation 

rate of the particles. 

The results from these simulations can also be used to verify the suspension scale 

constitutive equation governing the antisymmetric part of the deviatoric stress, which 

according to Condiff and Dahler [61] is given by 
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Figure 4-10: Comparison of variations of the mean angular displacement of magnetic particles in 

oscillating and co-rotating magnetic fields at 2.5   for 1   and Pe 1r  . 

 

 

Figure 4-11: Variation of the macroscopic magnetic torque (  T m H , where m  is the dimensionless 

magnetization of the suspension) in the flow vorticity direction (x-axis) with time in an oscillating and a co-

rotating magnetic field at 2.5   for 1   and Pe 1r  . 
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Here 06v    is the vortex viscosity [64] and   is the average angular velocity of the 

particulate phase of the suspension. Combining (1.21), (1.37), (3.10) , and (4.6) it is 

obtained, in dimensionless form, that 
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Figure 4-12: Intrinsic magnetoviscosity in co-rotating magnetic field as function of the angular slip velocity 
for 1   and Pe 0.1r  . 

 

Figure 4-12 clearly demonstrates that the intrinsic magnetoviscosity obtained by 

Brownian dynamics simulation agrees well with the theoretical prediction for dilute 

~
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suspensions given by (4.7); whence, this result confirms the correctness of the 

constitutive equation (4.6) for the antisymmetric stress. A similar result was obtained by 

Feng et al. [62] by numerical boundary element method simulations but neglecting 

particle Brownian motion. 

 

4.4 Conclusions 

Using rotational Brownian dynamics simulations, the rheological properties, 

specifically intrinsic magnetoviscosity, of dilute magnetic fluids composed of magnetized 

spherical particles in oscillating/rotating magnetic fields and simple shear flow were 

studied. The governing equation of the infinitesimal rotation vector was derived from the 

stochastic angular momentum balance of a single particle and solved numerically. An 

intrinsic viscosity due to the magnetic field was calculated. The simulations have been 

carried out for a wide range of conditions in order to compare the effect of alternating and 

rotating magnetic fields. 

Results for oscillating magnetic field are in agreement with those obtained in [73], 

showing additionally that the Péclet number does not have a significant effect on the 

magnetoviscosity for Pe 1r  . Simulation results show a considerable effect of a co-

rotating magnetic field on the intrinsic magnetoviscosity in comparison with an 

oscillating magnetic field. Indeed, compared to oscillating magnetic fields, for co-rotating 

fields the intrinsic magnetoviscosity becomes zero at lower frequency and the minimum 

viscosity obtained is much lower at the same values of   and Per  parameters. In 

counter-rotating magnetic fields the intrinsic magnetoviscosity was positive in the whole 

range of field amplitude and frequency and exhibits a maximum at an intermediate 
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frequency. In this case the particles rotate slower or in opposite direction to the local 

angular velocity of the fluid. In the negative intrinsic magnetoviscosity regions, the mean 

angular velocity of the particles is higher than the local angular velocity of the fluid. In 

co-rotating magnetic fields particles rotate faster than in oscillating magnetic fields, 

which results in higher magnitude of negative magnetoviscosity. Therefore, co-rotating 

magnetic fields seem to be suitable to obtain negative effective viscosity in magnetic 

nanoparticles suspensions. Finally, simulation results for the intrinsic magnetoviscosity 

show that the commonly accepted constitutive equation for the antisymmetric part of the 

viscous stress tensor is applicable to dilute suspensions of spherical particles. 

As has been discussed in previous chapters, the magnetic field exerts a torque to the 

magnetic particles in the suspension, influencing their free rotation in a shear flow, thus 

changing the viscosity of the suspension even to negative values. This attractive property 

could lead to a new generation of adaptative dampers. As a consequence, experiments to 

provide a quantitative proof of the above mentioned numerical approaches have to be 

performed. However, an investigation of magnetoviscous effects in magnetic fluids does 

not only require the possibility of application of variable magnetic fields and shear rate, 

but also make use of suspensions composed of asymmetric particles. This can be done by 

a modification of commercially available rheometers and by desing of the particle’s 

geometry. 
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