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Requirements for the Degree of Master of Science 
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By 

ANDRES SAAVEDRA RUIZ 

 

Chair: LEYDA LEON 

Co-Chair: SILVINA CANCELOS 

Major Department: ELECTRICAL ENGINEERING 

 

ABSTRACT 
  

Decompression sickness (DCS) occurs when divers rise to the surface exposing the body 

to sudden changes in pressure, generating nitrogen bubbles in tissues, causing serious bodily injury 

and even death. To prevent this risk, tables indicating divers’ ascent rates, descent rates, and 

waiting time in between decompression stops have been developed. Even with the help of such 

tables, decompression sickness still occurs in individuals who follow the instructions in dive tables. 

Therefore, prevention of DCS may be viable with a method that detects the presence of bubbles in 

real time. 



II 

 

In this thesis, we show a new method for bubble detection using a simplified human thigh 

prototype constructed with a piezoelectric ring (PZT) placed around it. In order to test this new 

method, we use two high-speed cameras, to record the bubbles produced in a bubble generator 

system, and pill microphones (PM) to measure disturbances in the prototype when it is in 

resonance. 

The electrical signals from the piezoelectric ring (PZT) and microphones (PM) are the 

inputs to a pattern recognition algorithm. In the classification stage of the pattern recognition, three 

classifiers are tested; the choice of classifiers are determined by the best accuracy. A neural 

network based classifier performed the best detection of bubbles for five classes of different 

diameter ranges. The detection accuracy was 98%. 
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Resumen de Disertación Presentado a Escuela Graduada 

De la Universidad de Puerto Rico como requisito parcial de los 

Requerimientos para el grado de Maestría en Ciencias 

ANALISIS DE SEÑAL DIGITAL PARA LA DETECCION DE BURBUJAS 

DE AIRE SOBRE VASOS SANGUINEOS DE UN MUSLO ARTIFICIAL 
 

Por 

ANDRES SAAVEDRA RUIZ 

 

Consejera: LEYDA LEON 

Co-Consejera: SILVINA CANCELOS 

Departamento: INGENIERIA ELECTRICA 

 

RESUMEN 
 

La enfermedad de descompresión (DCS) ocurre cuando los buzos ascienden a la superficie 

exponiendo el cuerpo a cambios bruscos de presión, generando burbujas de nitrógeno en los 

tejidos, causando serias lesiones en el cuerpo e incluso la muerte. Para evitar este riesgo, se han 

desarrollado tablas que indican diversas tasas de ascenso, las tasas de descenso y el tiempo de 

espera durante las paradas de descompresión. La frecuente aparición de ésta enfermedad es un 

problema que permanece en estudio, debido a que aún ocurre a buceadores que siguen las 

instrucciones de la tabla de buceo. Por lo tanto, la prevención de DCS podría ser viable con un 

método que detecte la presencia de burbujas en tiempo real. 
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En ésta tesis se describe un nuevo método para la detección de burbujas en un prototipo 

simplificado del muslo humano, por medio de un anillo piezoeléctrico (PZT) colocado alrededor 

de éste. En adición, utiliza dos cámaras de alta velocidad, que graban las burbujas provenientes 

del sistema generador de burbujas y también pequeños micrófonos (PM), que miden las 

perturbaciones dentro del prototipo cuando se encuentra en resonancia. 

Las señales eléctricas provenientes del anillo piezoeléctrico (PZT) y de los micrófonos 

(PM), son las observaciones de entrada a un patrón de reconocimiento. En la etapa de clasificación 

del patrón de reconocimiento, tres clasificadores son probados; la elección de dichos clasificadores 

se determinó por la mejor precisión. El algoritmo de redes neuronales presentó la mejor detección 

de burbujas para cinco clases de rangos de diámetro distintos con una precisión de 98%. 
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CHAPTER I 

1 INTRODUCTION 

1.1 Decompression Sickness 

Diving is the action where an individual immerses himself in water (sea, lake or river) to 

carry out marine-related activities, rescue operations, structure repairs, among others. Like any 

other activity, there are risks. These risks can be present because of the complexity of the work, 

and others may be avoided by following certain safety rules. Nevertheless, diving in and of itself 

represents exposure to a dangerous disease called decompression sickness. 

Decompression sickness (DCS) is a disease that occurs with the sudden loss of pressure 

which generates small bubbles. These bubbles (nitrogen bubbles), formed in blood and other 

tissues, are seen in divers who surface too quickly (Bookspan, 1997). DCS can occur when diving 

at approximate depths of 60 to 65 meters. As a safety precaution, a level of monitoring should be 

performed at a depth of 30-40 meters to identify the diver’s condition and avoid unnecessary risks. 

Monitoring is important since DCS may cause temporary paralysis, permanent injury or death. 

In 1878, a French scientist named Paul Bert, demonstrated the formation of bubbles in 

tissues and proposed the idea of a slow ascent to the surface (Bookspan, 1997). The symptoms 

associated with decompression can be divided into two types: 

 

 Type I: is usually characterized by pain in the joints with mottling of the skin 

producing a red or purplish-blue tinge, fatigue, mood swings, and irritable 

behavior. Onset may be gradual and may be transient (Gilliam, 2012). 
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Figure 1: Decompression Sickness type 1. Image taken from N Engl J Med 2010; 362:e67. Cutis 

Marmorata in Decompression Sickness. Used with the permission of Vasileios N. Kalentzos, M.D., 

M.P.H. URL of the website: http://www.nejm.org/doi/full/10.1056/NEJMicm0909444. 

 

 Type II: is characterized by central nervous system (CNS) spinal and cranial 

abnormalities often masked by pain distractions. In addition, some patients have 

symptoms such as: unusual fatigue, headache, and abdominal encircling (Gilliam, 

2012). The location of the above symptoms are shown in Figure 2. 
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Figure 2: Decompression sickness type 2. 

‘© Scubadoc's Diving Medicine Online, 1996-

2009. Used with permission of Ernest Campbell, 

MD, FACS. 

 

To avoid injury due to decompression sickness while diving, dive tables have been 

developed by the British biologist John Scott Haldane (Acott, 1999). These tables provide 

information about the speed of descent, ascent to the surface, and the waiting time for 

decompression stops, which allow bubbles formed to be dissolved. A typical diving table is shown 

in Figure 3. 

 

http://www.scuba-doc.com/cvESC.html
http://www.scuba-doc.com/cvESC.html
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Figure 3: Diver table: No-decompression limits and group designation table. ‘© PADI 2013. Used with 

permission of DSAT and PADI. 

 

Since the occurrence of decompression sickness is correlated to bubble formation in 

tissues, researchers began studies on the detection of bubbles using different methods. 

 

1.2 Problem Statement 

The incidence of decompression sickness is a problem that continues to be studied since it 

is seen in divers that strictly follow dive tables. Research continues in order to determine the causes 

of decompression sickness; in this field, the main objective is the detection of bubbles. "All bubble 

detection techniques in some way fail to sample the entire population of bubbles that could 

potentially exist, for example, as a result of limits in sensitivity or resolution" (Leighton, 1994). 

One of the methods used to detect bubbles in this field of research is the Doppler method, mostly 

because the ease of operation and it’s relatively reduce cost. Most other systems used today fail to 
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detect the size and number of micro-bubbles prior to the occurrence of the decompression 

symptoms (Valentin, 2012).  

 

1.3 Related work 

Some of the methods developed using ultrasound as a detection tool for the presence of 

bubbles are the following (Dee, 2011):  

 Pulse echo-ultrasound: a technique in which pulses of ultrasound generated by a 

piezoelectric transducer are sent into the region to be studied (tissues), and echo 

signals resulting from scattering and reflection are detected and displayed. The 

depth of a reflective structure is inferred from the delay between pulse transmission 

and echo reception. Stephen Daniels in 1981 (Dee, 2011), used an integrating pulse-

echo technique where the number of pulse echo-ultrasounds in a scan of the tissue 

are counted and recorded in a preselected time interval as a signal. The stationary 

bubbles would be seen as an increase to the echo count and the non-stationary ones 

would contribute to the variability in echo count, therefore, the echo count gives an 

estimate of gas volume in tissues.  

 Doppler ultrasound: measures the shift in frequency of a continuous ultrasonic 

wave when the wave source and/or detector are in motion. Doppler is still the most 

sensitive technique available. In addition, a Doppler unit is far smaller and less 

expensive than most instruments required by other methods. The Doppler’s ease of 

operation has aided in its popularity as a tool to examine divers after 

decompression. 
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 Harmonic ultrasound: technique based on the principle of exciting a bubble with a 

low frequency signal and comparing it to the bubble resonance frequency. If 

acoustic energy from the bubble is scattered, it can be detected. The excited bubble 

will oscillate in a non-linear manner, emitting a wave with a doubled frequency.  

 Dual frequency ultrasound: uses a low frequency signal (“pump”) to excite bubbles 

with a known radius, which makes them resonate. A second high frequency signal 

(“image”) is emitted. When it is incident on the resonating bubbles, a non-linear 

mixing occurs. This non-linear mixing causes results in a signal with the frequency 

of the “image” plus or minus the “pump” frequency (Buckey, et al., 2009). 

Techniques as pulse echo ultrasound, harmonic ultrasound and dual frequency ultrasound 

are under study. Doppler bubble detection is useful for deciding whether a diver needs to receive 

hyperbaric treatment. 

 

1.4 Research Strategy and Objectives 

In the bubble dynamics laboratory of the University of Puerto Rico Mayagüez Campus, a 

method for bubble detection in real time to prevent DCS has been proven to be feasible (Valentin, 

2012). The technique was tested on a simulated simplified artificial thigh that acts as an acoustic 

chamber where the situation of decompression was created by introducing bubbles of known size. 

Electrical signals emitted by a piezoelectric (PZT) ring placed around the artificial leg indicate the 

presence of bubbles. 

In order to use the above mentioned signals as a bubble detection method, signal analysis 

should be conducted to determine a relationship between the electrical signals and the presence of 
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stationary or non-stationary bubbles. Once this relationship was established, a pattern recognition 

algorithm was developed for the use of creating a data base in order to determine the size and 

amount of micro-bubbles present in the blood system that can potentially cause decompression 

sickness. 

The main objective of this research is to implement a pattern recognition scheme to indicate 

the presence of micro-bubbles in a diver’s bloodstream and in tissues. In order to achieve this goal, 

it is necessary to: (i) analyze the signals that are generated due to bubbles passing through the PZT 

ring, (ii) determine the size of the bubbles using image processing techniques of the images 

obtained from a high speed camera, and (iii) identify the relationship between the size of the 

bubbles and the PZT ring signals. 

 

1.5 Summary of the Following Chapters 

The thesis is distributed in six chapters: 

Chapter I: INTRODUCTION 

The introduction is based on the motivation for this research. In addition, it summarizes 

the strategy to provide a solution to the problem statement. 

Chapter II: THEORETICAL BACKGROUND 

The theoretical background makes an introduction to pattern recognition, explains the 

physics of sensors used in the pattern recognition, and the equations governing its 

classification. 

Chapter III: METHODOLOGY 
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This chapter provides the methods used in pattern recognition such as cameras, sensors, 

acquisition systems, and software specifications. Also, it provides the experimental setup 

for pattern recognition. 

Chapter IV: EXPERIMENTAL RESULTS 

Experimental results describe the relationship found between current drop and the diameter 

of the bubbles, the bubbles classification through classifiers, and the choice of the best 

classifier due to their performance and rate of convergence. 

Chapter V: CONCLUSIONS 

In the concluding chapter the most effective pattern recognition analysis after a complete 

experimental test is presented; also includes future work aimed at possible improvements 

in pattern recognition. 
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CHAPTER II  

2 THEORETICAL BACKGROUND 

2.1 Acoustic Chambers 

An acoustic chamber is a simple structure that consists of a glass cylinder with a 

piezoelectric (PZT) device glued around it (Cancelos, et al., 2005). They are made to generate 

large and controlled pressure oscillations. The excitation of the glass cylinder is caused by the 

motion of the PZT that deforms when a sinusoidal voltage is applied to it. The crystal contracts 

and expands at the same frequency at which the electrical current changes polarity. The 

piezoelectric deformation is transferred to the walls; this is the force that creates the standing 

acoustic pressure field in the liquid (Cancelos, et al., 2010).  

 

 

Figure 4: Standing waves Harmonics. 
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For all structures, there is an infinite number of natural vibration modes. Figure 4 shows 

the different standing waves harmonics, however, the greatest acoustic pressure obtained in the 

fluid occurs when an oscillating voltage with a frequency that matches the first resonance mode is 

applied. When the prototype works at the resonance condition, the sensitivity in the elastic 

properties of the medium become high. If a bubble is introduced in the acoustic chamber, it causes 

a change in the elastic properties of the fluid, also causing the electrical properties of PZT to 

change. 

 

2.1.1 Piezoelectric Ring 

The piezoelectric ring is a lead-zirconate-titanate ceramic, known by the acronym (PZT). 

This material has the property of generating an electric current when it is subjected to a mechanical 

stress, and vice versa when an electric field is applied to the material, it generates a mechanical 

deformation (Jordan, et al., 2001). 

The analysis of the PZT and the interactions with an acoustic chamber is a multi-

dimensional model of wave propagation in fluids (Cancelos, et al., 2005).  

A simplified piezoelectric model can be explained as a constitutive equation, expressed as: 

 

�⃗⃗� = 𝑑1�⃗� +∈𝑇 �⃗�  (2.1) 

𝑆 = 𝑠𝐸�⃗� + 𝑑2�⃗�  (2.2) 
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Where �⃗⃗�  is the electric displacement, 𝑑1 and 𝑑2 are the piezoelectric charge coefficients, 

respectively for the direct piezoelectric effect and the inverse piezoelectric effect. �⃗�  is the 

mechanical stress, ∈𝑇 permittivity constant at constant stress, �⃗�  is the electric field, 𝑆  mechanical 

strain, and 𝑠𝐸 is the mechanical compliance (Ledoux, 2011). Equations (2.1) and (2.2) constant 

temperature and linear coupling between electric field and strain were assumed. Equation (2.1) 

shows that part of an electrical field applied to material is converted into mechanical stress. 

Similarly, equation (2.2) shows that part of a mechanical strain applied to material is converted 

into an electrical field. 

When a piezoelectric material is subjected to acoustic vibrations, it generates an electric 

field with the same frequency as the vibration. For some frequencies, the transfer of electrical-

mechanical energy is maximum, but in other frequencies it is minimum. This behavior, allows the 

analogy between the piezoelectric and the RLC circuit to be made. The most common electrical 

circuit used to characterize a piezoelectric device is the Van Dyke Model (Kim, et al., 2008) shown 

in Figure 5. 

 

Figure 5: The Van Dyke Model. Simplified equivalent RLC 

circuit  
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The following equation shows the equivalent electrical admittance (𝑌𝑒𝑞 of the circuit shown 

in Figure 5: 

 

𝑌𝑒𝑞 = 𝑗𝑤𝐶0 +
1

𝑅 + 𝑗(𝑤𝐿 −
1
𝑤𝑐)

 
(2.3) 

 

 

In the above equation R, L and C represent the resistance, inductance and capacitance of 

the system respectively and Co is the real value of the measured capacitance of the PZT and it is 

often called blocked capacitance. 

Finally, applying conjugate, and expanding equation (2.3), equation (2.4) can be obtained. 

The real part (left hand side of equation (2.4)) is called conductance and the frequency that 

maximizes this quantity corresponds to the mechanical resonance frequency of the system. In this 

work the electrical conductance will be measured to determine the mechanical resonance of the 

prototype. 

 

𝑌𝑒𝑞 =
𝑅

𝑅2 + (
𝑤2𝐿𝐶 − 1

𝑤𝐶 )
2 + 𝑗𝑤𝐶0 +

𝑗 (
𝑤2𝐿𝐶 − 1

𝑤𝐶 )

𝑅2 + (
𝑤2𝐿𝐶 − 1

𝑤𝐶 )
2 

(2.4) 
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2.2 Bubble Detection Methods 

This section presents some methods for the detection of bubbles such as: basics of 

ultrasound, pulse echo ultrasound, Doppler ultrasound, harmonic ultrasound, and dual frequency 

ultrasound. 

The ultrasound term indicates sound waves of frequencies above 20 KHz. Frequencies 

between 1-30 MHz are used as diagnostic tools since they allow to capture images of internal body 

structures in a non-invasive manner (Lutz, et al., 2011). 

2.2.1  Ultrasound 

Ultrasound uses the reflection of sound waves off the boundaries between tissues of varying 

acoustic properties (Dee, 2011). “The acoustic properties of a medium are quantified in terms of 

its acoustic impedance, which is a measure of the degree to which the medium impedes the motion 

that constitutes the sound wave” (Lutz, et al., 2011). The acoustic impedance “𝑧” is related as: 

 

𝑧 = 𝜌𝑐 (2.5) 

Where “𝜌” is the density of the medium and “c” is the velocity of sound. The sound reflection 

coefficient 𝛼 at the boundary between two tissue types (z1 and z2) is calculated with equation (2.6): 

 

𝛼 = (
𝑧2 − 𝑧1

𝑧2 + 𝑧1
)
2

 
(2.6) 
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As the acoustic impedance of a gas bubble is much lower than the impedance of any tissue 

in the body (Nishi, et al., 1986) this method can be used as a bubble detector. 

 

2.2.2 Pulse-Echo Ultrasound 

This method consists of a pulsed ultrasonic transmitter that sends a signal to scan a tissue 

region, and a detector that records echoes reflected from scanned tissue in a pre-selected time 

interval (Daniels, 1981).  

 

 

Figure 6: A. Echo ultrasound without bubbles. B. Echo 

ultrasound with bubble. Werner Sölken 2008 - 2015 

 

The method has been used for stationary and non-stationary bubbles. Figure 6A shows 

echoes count without bubble and the Figure 6B shows for a stationary bubble, it generates an 

increase in the echoes counts (Dee, 2011). 
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The biggest problem with this method is the sensitivity to motion and when it is applied on 

a person in motion (as a diver) alteration in the echo are observed by increasing or decreasing the 

count and therefore it produces confusion in the bubble detection method. 

 

2.2.3 Doppler Ultrasound 

The Doppler effect is described as a change in the frequency of the wave due to relative 

motion between the source generating a wave and the observer receiving said wave (Dee, 2011). 

The Doppler ultrasound has the wave source and the observer or receiver fixed, but there is 

a reflector that is in motion. The reflector can act as transmitter and receiver. Therefore the 

relationship between the frequency experienced by a source and a receptor when both are moving 

is shown in the equation (2.7): 

 

𝑓 = 𝑓𝑜 (
𝑣𝑠 + 𝑣𝑟

𝑣𝑠 − 𝑣𝑟
) 

(2.7) 

 

Where, “𝑓𝑜” is the ultrasound frequency, “vr” is the speed of the reflector, “vs” is the speed 

of sound and “𝑓” is the detected frequency. 

When the Doppler effect is applied to the detection of microbubbles, the reflected ultrasound 

wave produces shifted frequencies. If “vs” is larger than “vr” and the angle between the transducer 

and the moving object is it considered, Doppler shift “𝑓𝑑” can be computed as (Sande Eftedal, 

2007): 
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𝑓𝑑 =
−2𝑓𝑜𝑣𝑟 cos(𝜃) cos (

𝛾
2)

𝑣𝑠
 

(2.8) 

 

With the angle “𝜃” being the bisector of the transmitter and receiver beams and the direction 

of movement. The angle “𝛾” is the angle between transmitter and receiver beams (Dee, 2011). 

The Doppler shift is not observed in bubbles within tissues because they are stationary 

structures. On the other hand, the gas bubbles in the blood flow present strong reflections that can 

be distinguished (Sande Eftedal, 2007). 

 

2.2.4 Harmonic Ultrasound 

This method uses an acoustic field with a wavelength greater than the radius of the bubble. 

By inducing a bubble to said acoustic field, it will respond to changes in pressure and it will 

oscillate causing scattering in the acoustic energy and the bubble can be detected. 
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Figure 7: Relationship between pressure amplitude and 

bubble radius. Taken from (Dee, 2011). 

 

(Brock-Fisher, 2004) measured the scattered pressure as a function of the bubble radius for 

the first and second harmonic. The results show that both harmonics have a linear response for 

bubble radius smaller than approximately 4um where both present a peak in pressure. However, 

as shown in Figure 7, the first harmonic continues showing a linear increase in pressure as the 

bubble radius increases, while the second harmonic doesn’t. Moreover, the first harmonic can be 

measured for bigger bubble radius. This means that the largest bubbles produce the greatest first 

harmonic response. Otherwise, the second harmonic does not. By excluding the second harmonic, 

the bubble can be detected with the first harmonic (Dee, 2011). 
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2.2.5 Dual Frequency Ultrasound 

This method applies two waves with different frequencies. The first wave is called “pump 

(fp)”, and the second wave is called “image (fi)”. The frequency range of the pump operation is 

between low KHz to low MHz. The pump frequency is adjusted to different bubble sizes, i.e, the 

pump frequency is adjusted to the resonance of the bubble’s target size. If a bubble with a 

resonance frequency equal to the pump frequency is present, then a wave with a frequency given 

by equation (2.9) is detected. 

 

𝑓𝐷𝐹𝑈 = 𝑓𝑖 ± 𝑓𝑝 (2.9) 

 

In an experimental study conducted by (Buckey, et al., 2009) the applicability of this method 

was proven to be feasible. They used a fi = 5 MHz and the fp = 2.25 MHz and the results they 

obtained are shown in Figure 8 where a received signal at 2.75 MHz, which is comparable with 

𝑓𝑖 − 𝑓𝑝 is observed indicating the presence of micro-bubbles with a mean diameter of 2 – 3 µm. 
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Figure 8: Dual frequency data of a target in the hip of an anesthetized swine 

before and after injection of microbubbles. Taken from (Buckey, et al., 2009). 

 

2.3 Pattern recognition: definition 

Pattern recognition is the act of taking in raw data and taking an action based on the 

“category” of the pattern (Duda, et al., 2000). A simplified process flow diagram of pattern 

recognition as proposed by (Webb, 2002) is illustrated in Figure 9. 

 

 

Figure 9: Pattern recognition diagram. 
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2.3.1 Sensor 

A sensor is a device capable of capturing information and transforming physical or 

chemical magnitudes into electrical magnitudes. In our case, the sensors are comprised of the 

piezoelectric ring, pill microphones, and high speed cameras. 

 

2.3.2 Features extraction 

Feature extraction is the process which determines the system variables that will be used 

as classifiers (Duda, et al., 2000). There are several techniques that are typically used on the row 

data to extract a useful variable. The most widely used techniques to process data are: the Root 

Mean Square (RMS), the Discrete Fourier Transform (DFT) and the Cross Correlation. The choice 

of technique will be based upon the type of change in the signal induced by the presence of the 

bubbles. 

2.3.2.1 The Root Mean Square 

When a signal has only amplitude changes, the common method to analyze this 

phenomenon is the root mean square (RMS). The RMS method takes a square of each point that 

represents the waveform (𝑥𝑁
2 ), dividing it by the length of the waveform (𝑁), and obtaining the 

mathematical average. The RMS is defined as: 

𝑋𝑅𝑀𝑆 = √
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + ⋯+ 𝑥𝑁
2 )

𝑁
= √

1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 

( 2.10) 
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The RMS method is usually applied in power system measurements, because it is fast and 

it requires less memory than other methods. (Panagiotakis, et al., 2005), used the RMS method as 

a speech/music discriminator. Two signals were acquired: the first one was a speech signal (the 

total duration was 11328 sec) and the second one was a music signal (the total duration was 3131 

sec). For both signals the RMS was computed and the next step was to calculate the histogram 

from both RMS values. The distributions obtained from the histograms (histogram of the speech 

signal and the histogram of the music signal) are almost non-overlapping, therefore, this method 

is adequate as a discriminator.  

Figure 10, shows an example of the RMS method applied on the coqui frog song (CFS) 

signal.  

 

Figure 10: The red circles are the RMS value from the Coqui Frog Song signal (blue line). 

 

The RMS value increases according to the amplitude of the original signal. One problem 

with this method is shown with the above example; even though the signal comes from the same 
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frog, there are fluctuations. The RMS value requires similar conditions when used for signal 

detection, otherwise, it will generate false positives. 

(Ingale, et al., 2013), used the RMS method as detection of power quality disturbances. 

The RMS value was computed for 2 cases: sag waveform and swell waveform.  

 

A. 
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B. 

 

Figure 11: A. Captured 3 Phase voltage sag waveform. B. Captured 3 Phase voltage 

swell waveform. 

 

Figure 11A shows a 3 phase voltage sag waveform with 2 transition periods and four 

triggering points. Triggering points refer to sudden changes on the voltage amplitude. When the 

RMS was computed, it detected 5 triggering points of the 4. A similar problem was found when 

the swell waveform was analyzed (Figure 11B). This method shows high sensitivity to changes in 

signal amplitude causing false positives for the triggering point’s detection, but on the other hand, 

it is useful for the changes in amplitude detection. 

 

2.3.2.2 Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) is a tool that, besides transforming the samples of 

signals from the time domain into the frequency domain, can be used in image compression, 
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interpolation, and in others tasks (Franchetti, et al., 2011). DFT is a modification of Fourier 

transform. The DFT is used, when the data are available as sampled time function form, and it 

were represented by a time series of amplitudes with fixed time intervals of limited duration. The 

DFT is calculated with the formula (Diniz, et al., 2010): 

 

𝑋𝑘 = ∑ 𝑥𝑖𝑒
−𝑗2𝜋𝑖𝑘

𝑁

𝑁−1

𝑖=0

 

 

(2.11) 

 

Where N is the total amount of the data points, 𝑥𝑖 refers to each point of the signal with i 

= 0, …, N-1, 𝑋𝑘 is the amplitude of each frequency 𝑘, with k = 1 .. N-1. 

The frequency resolution ∆𝑓 is determined by: 

 

∆𝑓 =
𝑓𝑠
𝑁

 (2.12) 

 

With fs as sample rate in samples per seconds. 

The Fast Fourier Transform (FFT) is a faster version of the DFT. Therefore, the FFT 

algorithms such as Cooley-Tukey reduce the computational work and the rate of convergence. The 

DFT is not suitable for non-stationary signals, in which case the STFT should be applied. The 

STFT, splits the signal into intervals that are considered as stationary, and then the DFT is used in 

each partitions (Pérez, et al., 2006). 
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An example of the analysis of signals using FFT is shown in Figure 12. In this example the 

Coqui frog song was analyzed (Figure 12A). At first glance the different frequency components 

are not noticeable. 

 

 

 

A. 

 

 

 

B. 

 

Figure 12: A. Original signal from the Coqui Frog 

Song (CFS). B. FFT of the Coqui Frog Song (CFS). 

 

Figure 12B shows the frequency components of the CFS, the components between 1800-

2100 Hz characterize the “Co” and the components between 3200-3500 Hz represents the “qui”. 

The use of the DFT in this case is capable of extracting the main features of the CFS. 
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2.3.2.3 Cross-correlation 

The auto-correlation and cross correlation are used to analyze the similarity between 

signals. If the comparison of the signal is done with itself, it is called “auto-correlation”, and it is 

defined by equation (2.13) and equation (2.14) for the case of continuous and discrete signals 

respectively.  

𝑅𝑥𝑥(𝜏) = ∫ 𝑥(𝑡)𝑥(𝑡−𝜏)𝑑𝑡

∞

−∞

 

 

(2.13) 

 

𝑅𝑥𝑥(𝑚) = ∑𝑥(𝑛)𝑥(𝑛−𝑚)

∞

−∞

 

 

 

(2.14) 

The cross correlation between two signals is defined by equation (2.15) and equation 

(2.16) for continuous signals and discrete signal respectively. 

𝑅𝑥𝑦(𝜏) = ∫ 𝑥(𝑡)𝑦(𝑡−𝜏)𝑑𝑡

∞

−∞

 

 

 

(2.15) 

𝑅𝑥𝑦(𝑚) = ∑𝑥(𝑛)𝑦(𝑛−𝑚)

∞

−∞

 

 

 

(2.16) 

In equations (2.13) and (2.15) “t” is the time and “𝜏” is the time shift. 𝜏 =0, ±a1, ±a2, …, 

aT-1, where “T” is the length of the analyzed signal and an refers to interval sections of the signal 

(smaller than the period of the signal). In the equations (2.14) and (2.16) “xn” refers to each data 
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in the signal and “m” is the “lag” (Stein, 2000). “m” is defined as 0, ±1, ±2, …, N-1, where N is 

the length of the sampled signal. 

In the analysis of structures, autocorrelation is frequently used to determine for example 

the condition of bridges. An example is shown in Figure 13: 

 

 

A. 

 

 

B. 

 

Figure 13: A. Signal of the sensor 1 from the measured vibrations caused by a car as it crosses a bridge. 

B. Is the same signal measured in sensor 2 but it arrives at an earlier time than the signal from Sensor 1. 

Example from MathWorks. “xcorr Reference Page.” Accessed August 17, 2015. 

http://www.mathworks.com/help/signal/ref/xcorr.html. 

  

Figure 13A shows the vibrations measured by sensor 1 when a car crosses a bridge. Figure 

13B shows a similar signal measured by sensor 2 but it arrives at an earlier time than the signal 

from Sensor 1.  

 

http://www.mathworks.com/help/signal/ref/xcorr.html
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Figure 14: Cross correlation between sensor 1 and sensor 2. Example from MathWorks. “xcorr 

Reference Page.” Accessed August 17, 2015. http://www.mathworks.com/help/signal/ref/xcorr.html. 

 

When the cross correlation was applied, the delay between the sensors 1 and 2 is clearly 

identified (see Figure 14). The absolute maximum of the cross correlation amplitude (is the same 

as the original signal) occurs for 𝜏 = 0.035 𝑠𝑒𝑐, which is coincident with the delay between the 

sensors. Therefore, the cross correlation indicates the similarity between signals (showing the 

maximum amplitude and comparing it with the original signal), and, it shows the delay between 

signals too. 

2.3.2.4 Summary 

The above mentioned methods should be used depending on the approach to extract 

information. 

 The RMS is useful for extracting features related to changes in amplitude. 

 The DFT is useful to extract features related to frequency. 

http://www.mathworks.com/help/signal/ref/xcorr.html
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 The Cross correlation is useful for extracting features related to changes in 

amplitude, in frequency and delays between signals. 

 

2.3.3 Classifier 

The main function of the classifier is to assign different characteristics to groups with 

largest similarity between them. The classifiers can be of two types: supervised or unsupervised. 

The supervised classification is the essential tool used for extracting quantitative 

information. Using this method, the analyst has sufficient known data available to generate 

representative parameters for each class of interest. This step is called training. Once trained, the 

classifier is used to attach labels to all the data according to the trained parameters (Jain, et al., 

1999). Among the most widely used supervised classifiers are the Neural Networks (NN) and 

Support Vectors Machine (SVM). 

On the other hand, the unsupervised classification does not require a human to have the 

foreknowledge of the classes, and uses clustering algorithms to classify a set of data (Jain, et al., 

1999). Among the most widely used unsupervised classifiers is the k-mean. 

The choice of the best classifier depends on the application. For example, if clustering of 

data is needed, the unsupervised classifiers are the most appropriate, while if the detection for 

recognition is needed the supervised methods should be chosen. 

2.3.3.1 Support vector machine 

Support Vector Machines (SVM) are defined by kernel functions that analyze data and 

recognize patterns. The simplicity comes from the fact that Support Vector Machines apply a 
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simple linear method to the data but in a high-dimensional feature space on-linearly related to the 

input space. Given a training set, SVM takes a set of input data and predicts, for each given input, 

which of two possible classes forms the output, making it a non-probabilistic binary linear 

classifier (Karatzoglou, et al., 2006). 

 

 

Figure 15: An example of a linearly separable set. 

 

SVM designs a hyperplane to separate classes:  

 

https://en.wikipedia.org/wiki/Probabilistic_logic
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_classifier
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𝑠(𝑥)⃗⃗⃗⃗ = 𝑎𝑇⃗⃗ ⃗⃗ 𝑥 + 𝑏 
( 2.17) 

 

Where 𝑎𝑇 and 𝑏 are real coefficients and 𝑥  is the input vector with the trained data. 

The classification can be defined as follows: 

 

𝐶𝑙𝑎𝑠𝑠 = 𝑠𝑖𝑔𝑛(𝑎𝑇⃗⃗ ⃗⃗ 𝑥 + 𝑏) 
( 2.18) 

 

Where the sign function determine if the 𝑠(𝑥)⃗⃗⃗⃗  is greater than zero, equal to zero or less than 

zero. The SVM algorithm is known for finding the maximum separation between classes. The 

decision for each points is given by:  

 

𝐶𝑙𝑎𝑠𝑠 1 → 𝑎𝑇⃗⃗ ⃗⃗ 𝑥 + 𝑏 = 1 
( 2.19) 

𝐶𝑙𝑎𝑠𝑠 2 → 𝑎𝑇⃗⃗ ⃗⃗ 𝑥 + 𝑏 = −1 
( 2.20) 

 

The distance to origin is: 

 

𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 1 →
|1 − 𝑏|

‖𝑤‖
 

( 2.21) 

𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 2 →
|−1 − 𝑏|

‖𝑤‖
 

( 2.22) 

 

The resulting margin is: 
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2

‖𝑤‖
 

( 2.23) 

 

Minimizing “w” causes the maximization of the separability. This is an optimization 

problem, with the following solution (Karatzoglou, et al., 2006): 

 

�⃗⃗� = ∑𝛼𝑖𝑦𝑖𝑥 𝑖

𝑁

𝑖=𝑜

 

 

( 2.24) 

∑𝛼𝑖𝑦𝑖 = 0

𝑁

𝑖=𝑜

 

 

( 2.25) 

 

(Guo, et al., 2015), used the supervised methods SVM and NN to identify muscle motion 

in humans. The information of the surface electromyography (sEMG) was obtained from six 

muscles of the upper-limb from 7 subjects. The RMS method was used to extract the feature as the 

sEMG detects changes amplitude. It was introduced in classifiers creating a pattern for muscle 

motion. The results showed that NN classifier produced the highest recognition accuracy rate. On 

the other hand, SVM took less time in training process than NN. SVM classifier is the most 

appropriate for real time applications. 
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2.3.3.2 Artificial Neural Networks (NN) 

A neuron is a processing element with the capacity to receive and transmit information to 

another neighbor neuron. Artificial neural networks are a computational attempt at modeling the 

information processing capabilities of nervous systems (Rojas, 1996). A typical model of the NN 

is shown in Figure 16. 

 

Figure 16: Non-lineal neuron model 

 

In the neuron model it is possible to identify three elements: 

1. The synaptic weights indicate the strength of a connection between neurons.  

2. Summing junction, is an added weight by the respective synapses of the neuron. 

3. An activation function is used to limit the amplitude of the output neuron. 

The mathematical model of a neuron can be written as (Hajek, 2005): 
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𝑣𝑘 = ∑𝑤𝑘𝑖𝑥𝑖

𝑝

𝑖=0

 

 

( 2.26) 

 

With the output: 

 

𝑦𝑘 = 𝑓(𝑣𝑘) ( 2.27) 

 

The activation function determines the output associated with specific inputs. Different 

types of the activation function exist, some of them below:  

1. Threshold activation function (McCulloch–Pitts model) is shown in Figure 17: 

 

 

Figure 17: Threshold activation function 
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𝑓(𝑣𝑘) = {
1, 𝑖𝑓 𝑣𝑘 = ∑𝑤𝑘𝑖𝑥𝑖

𝑝

𝑖=0

≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

( 2.28) 

 

 

 

2. Sigmoid activation function as illustrated in Figure 18: 

 

 

Figure 18: Sigmoid activation function 

 

It is defined as: 
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𝑓(𝑣𝑘) =
1

1 + 𝑒−𝑣
 

(2.29) 

 

 

 

 

 

3. Hyperbolic tangent function 

 

 

Figure 19: Hyperbolic tangent function 

 

The definition of the hyperbolic tangent function is shown in equation (2.30). Equation 

(2.30) can be re-written as equation (2.31): 
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𝑓(𝑣𝑘) =
𝑒𝑣 − 𝑒−𝑣

𝑒𝑣 + 𝑒−𝑣
 

(2.30) 

𝑓(𝑣𝑘) =
1 − 𝑒−2𝑣

1 + 𝑒−2𝑣
 

(2.31) 

 

(Brandon Rhudy, 2008), used NN to differentiate impulsive events, such as artillery fire, and 

non-impulsive events, such as wind or aircraft noise. Cross correlation technique was implemented as 

feature extraction, and the NN algorithm was trained with different types of noise source as: tank main 

gun, mortar impact, hand grenade, wind noise, helicopter, etc. A total 2670 recordings were used. The 

result shows that NN produced a high precision to discriminate between impulsive events and non-

impulse events. NN is an appropriate method when accuracy is more important than computational 

cost. 

 

2.3.3.3 K-mean 

K-mean is an algorithm to classify objects based on features into k number of clusters. 

The grouping is done by minimizing the sum of squares of distances between data and the 

corresponding cluster centroid (Teknomo, 2007). A simple algorithm for this classifier is shown 

in Figure 20: 
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Figure 20: K-mean Block Diagram 

 

1. The first step is to select the number of clusters "k". 

2. Choosing the initial partition (centroids 𝑥𝑠𝑖, 𝑦𝑠𝑖) to classify "k" clusters data. 

3. Compare each sample with the centroid of each cluster, the shortest distance 

indicated that belongs to that group. The Euclidean distance is used normally to 

determine the distances between pairs of the data. The Euclidean distance 

between to data points of the sampled signal (xi and yi)  is defined as: 

 

𝑑(𝑥,𝑦) = √∑(𝑥𝑖 − 𝑥𝑠𝑖)2 + (𝑦𝑖 − 𝑦𝑠𝑖)2

𝑁

𝑖=1

 

 

(2.32) 

4. When the clustering is done, the new centroid are determined with the average. 
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𝐶𝑘(𝑥,𝑦) = (
𝑥1 + 𝑥2+. . +𝑥𝑁

𝑁
,
𝑦1 + 𝑦2+. . +𝑦𝑁

𝑁
) (2.33) 

Where 𝐶𝑘(𝑥,𝑦) is the centroid of the k cluster, 𝑥𝑁 are the values of the feature x, 

and 𝑦𝑁 are the values of the feature y. N is the length of the data. 

5. If the centroids value change, then repeat step 3. 

6. If the centroids do not change, then done. 

If the number of data points is less than the number of clusters, then we assign each data 

as the centroids of the clusters (Teknomo, 2007). 

(Münz, et al., 2007), used the unsupervised K-mean method for the detection of anomalies 

in new monitoring data. The features used for clustering were: the total number of packages, total 

number of bytes, and number of different source-destination. These data were obtained of the flow 

records (2 minutes of recording) which are available in networks due to wide deployment of Cisco 

Netflow1. In this case two clusters were created (k=2) normal traffic and anomalous traffic. The 

cluster creation process is called training. The next step is to take the new data, extract the features 

and by computing the Euclidean distance to each of the clusters centroid determine if it is a normal 

or anomalous traffic. The results show that K-mean algorithm can be used as detector for 

anomalous traffic and it has a low computational cost, therefore it can be implemented in real-

time. 

  

                                                 
1 Cisco IOS NetFlow efficiently provides a key set of services for IP applications, including network traffic accounting, 

usage-based network billing, network planning, security, Denial of Service monitoring capabilities, and network 

monitoring. NetFlow provides valuable information about network users and applications, peak usage times, and 

traffic routing. The information is available on: http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-

netflow/index.html 
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CHAPTER III 

3 METHODOLOGY 
 

3.1 Artificial Thigh 

With the main objective of detecting bubble size, an artificial thigh was built with a PZT 

ring placed around it, generating an acoustic chamber. The experimentally used acoustic glass 

chamber consisted of a Pyrex cylinder with 95 ± 0.4 mm OD and 300 ± 5 mm length (Pyrex 7740, 

Ace Glass, Vineland, NJ) and an inner cylinder with 20 mm OD and 300 mm in length made of a 

material that mimics human bone (3403-09, Sawbones, Vashon, WA). The vein and artery were 

vinyl tubes with (7.94 ± 0.16 mm and 6.35 ± 0.1 mm OD respectively). The PZT ring has the 

following specifications (BM400, Sensor Technology Ltd., Canada): was radially polarized with 

110 ± 0.1mm OD, 98 mm ID, and 25.07 ± 0.8 mm height. The BM400 material is equivalent to 

Navy PZT Type IV materials (Sensor Technology, Collingwood, ON, Canada). The PZT ring was 

placed to around the glass cylinder and was glued with Stycast 1264 (Emerson & Cumming, 

Billerica, MA) epoxy, cured at room temperature. Three piezoelectric discs (C-5400, Santa 

Barbara, CA), were glued to the glass cylinder to 0 cm, 1cm and 2 cm from the bottom edge of the 

PZT ring.  

Using the simulated simplified human thigh, the objective was the detection, and 

characterization of the micro bubbles. The acoustic chamber was filled with distilled filtered water.  
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Figure 21: Acoustic Chamber. 

 

The acoustic chamber (Figure 21) should be filled with degassed water while at vacuum 

pressures of approximately 5-6 Torr. This procedure prevents the formation of random bubble 

nucleation, allowing for a better characterization of the system (Valentin, 2012). 

When the process is completed, a gas free acoustic chamber is ready for a frequency 

response analysis with the objective of determining its resonance frequency. 

 

3.2 Bubble Generating System 

A bubble generating system (Figure 22) is used to introduce bubbles in the artificial thigh 

and it is composed by 33 gauge needle with a point style number 3 (91033, Hamilton Company, 

Reno, NV) connected to a luer connector. Figure 22A shows a piece of acrylic that has a 120 mm 

length to drive bubbles into the artificial artery. 
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Figure 22: Bubble generator device. 

 

Figure 22B shows the connections of the needle with the luer connector and a small piece 

of acrylic. Each piece is used such as convertor between luer connector to PTFE tubing. Each 

tubing is connected with a Valve (86580, Hamilton Company, Reno, NV).  

An electro-valve that is a single solenoid 3 way 1 position, normally closed 

(EZ1GNBBG49A, Richland, MI), and syringe pump (NE-1000, Farmingdale, NY), were used 

such as a control system (see Figure 23)  to manage the volume of the minimum air induced to 

create one bubble into the acoustic chamber. 
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Figure 23: Bubble generator system. 

 

The electro valve is controlled by a program developed in Labview. The Labview algorithm is 

illustrated in Appendix 7.1. 

The voltage required to operate the solenoid is 24 VDC. However the 24 VDC cannot come 

from the NI6356 card port (Described in section 3.4). In the above, the solenoid must be controlled 

with a circuit to operate power systems with low voltage signals. The following diagram (Figure 

24), which illustrated an integrated circuit "L293" (used as a power converter), was implemented. 

 

Figure 24: Power converter diagram. 
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3.3 Degassing Protocol 

Initially, three liters of filtered deionized (Milli-Di, EMD Millipore, Merck KGaA, 

Germany) water in Erlenmeyer flask were magnetically stirred (11-100-100S Isotemp, Fisher 

Scientific, Waltham, MA) to promote off-gassing while a continuous vacuum that was applied by 

a vacuum pump (8890A, Welch,Niles, IL) for 45 minutes. Before filling the prototype, it is 

necessary to apply vacuum. Vacuum pressure was measured with a digital pressure gauge (68936-

80,760 torr, Cole Parmer, USA). The Erlenmeyer was previously coupled to a closed valve named 

inlet 1 in Figure 25, it valve connect the artificial thigh with the Erlenmeyer. When the degassing 

it’s done, the valve inlet 1 is open to fill the prototype. 

 

Figure 25: Prototype scheme. 
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Finally, the prototype was filled with approximately 2 liters. The next step was to close the 

inlet 1, and the connections of the Erlenmeyer’s output were connected to inlet 2. The vacuum 

flask was removed, and the vein and artery were filled with the leftover water. 

 

3.4 Data Acquisition 

3.4.1 Voltage divider 

A signal generator (3312A, Hewlett Packard Company, Palo Alto, CA) was connected to 

a PZT amplifier (EPA102, Piezo Systems Inc., Cambridge, MA).; the voltage from this device was 

10 Volts peak to peak (Vpp) . When the signal passed through the amplifier, it was amplified 20 

times, making the signal transmitted to the PZT ring 200 Vpp. Through a voltage divider, which 

attenuated the signal 10.09 times (Figure 26), the voltage (20 Vpp) and current (250-270 milli-

amperes peak to peak (mApp)) signals were displayed on the oscilloscope.  

 

 

Figure 26: Voltage Divider A. implemented B. Electrical circuit. 
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The oscilloscope (54615B, Hewlett Packard Company, Palo Alto, CA) and signal generator 

were connected via a GPIB2 (488.1, NI, Austin, TX) device to a computer.  

3.4.2 Frequency response 

A program developed in Labview was used to measure the frequency response (Appendix 

7.2); this program acquired current and voltage signals from the PZT and computed the electrical 

admittance of the PZT ring as a function of frequency.  

Electrical admittance is a complex quantity; its real part corresponds to the conductance of 

the PZT ring, the maximum conductance coincides with the mechanical resonance (Cancelos, et 

al., 2005).  

 

Figure 27: Frequency response of the acoustic chamber. 

                                                 
2 GPIB: (General Purpose Instrumentation Bus), transforms any computer with a USB port 

into a full function, plug and play IEEE 488.2 controller for up to 14 programmable GPIB 

instruments. 
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A typical frequency response is shown in Figure 27, where the resonance frequency was 

(13,158 ±40) Hz. The frequency response should always be found prior to performing the 

experiment because it changes with environmental conditions. 

With the measured resonance frequency, the signal generator was configured to generate a 

sinusoidal signal at this frequency, resulting in the formation of a standing wave in the acoustic 

chamber. When the acoustic chamber was excited with a frequency that matched its first resonant 

mode, any minor disturbance in this medium was a measurable response through the PZT ring. 

Disturbances in this acoustic chamber were associated with the bubbles that were introduced into 

the system. 

 

3.4.3 Data acquisition card 

The data acquisition card (NI 6356, National Instruments Corporation, Austin, TX) is a 

device capable of operating its eight analog channels at a sampling frequency of 1.25 MHz 

(National Instruments, 2009-2010). It also has two output analog channels and twenty-four digital 

channels of input and output (inputs and outputs are controlled by software). This device was 

configured to receive signals from the PZT ring using 5 analog channels. A picture of the DAQ is 

shown in Figure 28. 
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Figure 28: Data acquisition card NI 6356. 

 

Figure 29 shows a typical electrical current measured from the PZT and the effect of a 

passing bubble through it. Two different methods were used to analyze the electrical signals 

acquired from the PZT. In “method 1” the PZT was activated continuously while the bubbles were 

introduced into the system. The sample rate used to acquire data was 1 MHz, and the total time 

recorded was 20 seconds (20 Million sample data), initially capturing the first 10,000 samples of 

the signal which has no bubbles. In this data set, the absolute value and then the value of maximum 

amplitude of each semi cycle is obtained (see the Figure 66, Appendix 7.4.1).  
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Figure 29: Method 1 for acquired data was used for this case. 

 

In order to find the current drop, an algorithm was developed to determine the minimum 

peak when the current drops due to the presence of a bubble crossing the PZT ring (see the Figure 

67, Appendix 7.4.1). 

The operation of the algorithm is: 

1. From the peaks obtained in the algorithm of the Figure 66, the “z[n]” variable is created 

with samples than: y[n] < threshold. The goal is obtain only peaks from the signal. 

2. The threshold is determined with the following equation: 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑦[𝑛]̅̅ ̅̅ ̅ − 𝜎𝑦[𝑛] (3.1) 

 

With, 

𝑦[𝑛]̅̅ ̅̅ ̅ = (
1

10000
∑ 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒_𝑚𝑎𝑥𝑖

10000

𝑖=1

) 

(3.2) 
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𝜎𝑦[𝑛] = √
1

(9999)
∑ (𝑦𝑖 − 𝑦[𝑛]̅̅ ̅̅ ̅)

2
10000

𝑖=1

 

(3.3) 

3. When the samples from “y[n]” is: y[n] > threshold, the minimum value of the variable 

“z[n]”is calculated. 

4. Calculate current drop as: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑟𝑜𝑝(𝑛)[%] =
|𝑦(𝑛) − 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒_𝑚𝑖𝑛(𝑛)|

𝑦(𝑛)
(100%) (3.4) 

 

However, when the PZT was turned on, some bubbles were broken into smaller ones, 

whereas in some cases, they coalesced and in other cases, they continued oscillating close to the 

PZT without crossing it. From the above it was necessary to keep the PZT off in order to allow the 

bubbles to reach the middle of the acoustic chamber. After assuring this, the PZT is turned on. 

This permitted the control of the measurement of the bubble, the above method is called “method 

2”. 

 

A. 
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B. 

 

Figure 30: Electrical signal from the PZT. Method 2 for acquired data was used for this case. A- Signal 

current without bubble. B- Signal current with bubble. 

 

In method 2, it is necessary to acquire a reference signal as illustrated in Figure 30A (signal 

current without bubbles inside the acoustic chamber), and then acquire the current signal with 

induced bubbles into the acoustic chamber (Figure 30B). 

Experimentally, it was observed that the transient signal was between 9.5 ms to 10.8 ms. if 

the sampling frequency is 1 MHz; it means that approximately the first 10000 data points contain 

the transient part of the signal. Typically, signals in telecommunications are composed of the signal 

that carries the information, and the noisy signal (Borrion, 2006). In our case, the electrical signals 

from the PZT “SB(n)” are shaped by the transient “tSB(n)”, and stationary signal “s(n)”. 

 

𝑆𝐵(𝑛) = 𝑡𝑆𝐵(𝑛) + 𝑠(𝑛) (3.5) 
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Experimentally, a stationary signal without bubble “SNB(n)” and a stationary signal with 

bubble “SB(n)” were processed without finding any difference in them. Both signals (with and 

without bubbles) have the same amplitude. These signals can be expressed as: 

 

𝑆𝐵(𝑛) = 𝑡𝑆𝐵(𝑛) + 𝑠(𝑛) (3.6) 

𝑆𝑁𝐵(𝑛) = 𝑡𝑆𝑁𝐵(𝑛) + 𝑠(𝑛) (3.7) 

 

When equation (3.6) is subtracted from equation (3.7), the differential between electrical 

signals with bubble and without bubble is: 

 

𝑆𝑁𝐵(𝑛) − 𝑆𝐵(𝑛) = 𝑡𝑆𝑁𝐵(𝑛) − 𝑡𝑆𝐵(𝑛) (3.8) 

 

This deduction indicates that the difference between the signals with 𝑆𝐵(𝑛) and 𝑆𝑁𝐵(𝑛) is 

given by the transient signals. In order to identify the above difference between 𝑆𝐵(𝑛) and 𝑆𝑁𝐵(𝑛), 

the root mean square was used for both signals and compared using the relative value. The equation 

for this process is: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 [%] =  
|𝑆𝑁𝐵𝑅𝑀𝑆(𝑛) − 𝑆𝐵𝑅𝑀𝑆(𝑛)|

𝑆𝑁𝐵𝑅𝑀𝑆(𝑛)
(100%) (3.9) 

 

The algorithm developed for method 2 is shown in Appendix 7.4.2. 
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3.5 High Speed Cameras 

To perform a comparison between the electric signals on the PZT and the bubbles that were 

introduced into the system, two high-speed cameras (Speed Sense 9040 and Speed Sense 9090, 

Dantec Dynamics, Skovlunde, Denmark, DK-2740), hereafter called camera 1 and camera 2, 

Speed Sense 9040 and Speed Sense 9090 respectively, were implemented in the process. 

Additionally, two LEDs (19 LED constellation systems and constellation 120, Tallahassee, FL) 

called LED 1 and LED 2, respectively, were used. The image of the bubble leaving the bubble 

generation device provided the size of the bubble (camera 1), and the image of the bubble about 

to cross the PZT (camera 2) allowed the identification of the current drop associated with the 

particular bubble studied. The settings for the cameras recording were: 

 

 CAMERA 1 

(9040) 

CAMERA 2 

(9090) 

SAMPLE RATE 100 100 

NUMER OF THE IMAGE 2000 2000 

RESOLUTION IN AXIS X 800 1200 

RESOLUTION IN AXIS Y 600 800 

PIXEL DEPTH 8 8 

Table 1: Setup for the high speed cameras. 

 

Three bubbles of the bubble generating system are shown below: 
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Figure 31: Bubbles in the bubble generator. Images captured with camera 1. 

   

Figure 32: Images captured in the camera 2. 

 

The images in Figure 31 and Figure 32, are images of the camera 1 and 2, respectively. 

Through Dynamic Studio software, the image processing was performed by the shadow processing 

function. Through it, the bubble diameter recorded throughout the video was determined. Figure 

33 shows the histogram of micro bubbles upon activation of the bubble generator system: 
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Figure 33: Histogram of the microbubbles from the needle. 

 

Usually the generation of micro bubbles produced a population between 4-6 micro bubbles, 

the first to rise being the biggest bubble due to highest buoyancy. This bubble was the one used as 

a guide to enable the PZT. The Figure 34 shows the histogram from the artery. 
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Figure 34: Histogram of the microbubbles from the artery. 

3.6 Timing hub 

The high speed cameras were synchronized with the NI6356 card, since both devices were 

needed to estimate a relationship between the images of bubbles saved and the signals detected 

through the PZT ring. 

 

 

Figure 35: Timing hub device. 
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The synchronization of the devices previously mentioned (NI 6356, high speed cameras 

and LEDs) was performed with the timing hub (Figure 35). This device used external or internal 

inputs as triggers. The timing hub had eight output ports. The configurations of the input and output 

ports (Figure 36) were performed through Dynamic Studio (Version 3.14.35, Dantec Dynamics, 

Skovlunde, Denmark). 

 

 

Figure 36: Timing hub settings from Dynamic Studio. 
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The synchronization signal sent through the timing hub was 5 VDC (Figure 37); this is a 

square signal, and the frequency can be controlled using an external device as a signal generator 

(manual mode), or the frequency signal can be emitted from the timing hub (automatic mode). 

Both options can be chosen in the DynamicStudio software. The first signal emitted was a rising 

edge to the output port. 

 

 

Figure 37: Timing hub diagram. 
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3.7 Experimental Protocol 

A wave generated a signal that was induced into the prototype. This signal was observed 

by the oscilloscope. Both devices were connected via GPIB. The interface connection between 

computer, signal generator, and the oscilloscope were connected via GPIB by USB. 

 

 

Figure 38: Experimental setup #1. 

 

When the frequency response was found (with the experimental setup #1, see Figure 38), 

the waveform generator was tuned to the resonance frequency.  

 



    

 

60 

 

 

Figure 39: Experimental setup #2. 

 

The next step to activate the bubble generator system to recreate decompression sickness 

in the prototype. When activated, the timing hub started recording using the high-speed cameras 

and the data acquisition card (Figure 39). When the bubble was close to the PZT, the PZT was 

activated. 
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Figure 40: Experimental set-up. 

Figure 40 shows the real devices used for bubble detection in the Bubble Dynamics 

Laboratory. 

 

3.8 Implementation of Classifiers 

From section 3.6, the relationship between current drop and bubble diameter was obtained. 

These samples (electrical signals from PZT, MP1, MP2 and MP3) are the inputs to classifiers, and 

the samples of the high speed cameras are the references to determine the range of the classes. The 

following table shows the input data which is read by the classifier algorithm: 
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Relative value [x] Target [y] 

4.3 0 

6.4 0 

3.2 0 

4.3 1 

2.1 0 

3.7 0 

1.2 0 

4.3 0 

0.6 0 

3.2 0 

5.5 0 

7.5 1 

6.3 1 

5.6 1 

5.5 1 

3.5 0 

2.4 0 

6.4 1 

4.9 0 
Table 2: Example of the input data to classifiers. 

 

3.8.1.1 Support vector machine 

The training step begins when the relative values are induced as features “x” of the equation 

( 2.17) to determine the hyperplanes. To find the margin, equation ( 2.23) is used. Finally, the 

weights “w” must be minimized to maximize the separability between the classes “y” (equation 

( 2.24)). 

The algorithm was implemented with MATLAB software (Appendix 7.5). The toolbox used 

in MATLAB applied kernel functions. The linear kernel was implemented, expressed as: 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (3.10) 
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In order to determine the classification for the new data, the sum of similarities is 

computed: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑠𝑔𝑛 ∑𝑤𝑖𝑦𝑖

𝑁

𝑖=1

𝑘(𝑥𝑖 , 𝑥𝑗) (3.11) 

With, 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 ; kernel classifier predict label to unlabeled inputs. 

sgn ; it is an odd mathematical function that extracts the sign of a real number. 

𝑤𝑖 ; weights obtained from the training data. 

𝑦𝑖 ; the targets obtained from the training data. 

 

3.8.1.2 Artificial Neural Networks 

Table 2 is an example of the input data in which neural networks algorithm receive for 

processing. The NN toolbox of the MATLAB software was used (Appendix 7.6). Initially, the 

inputs are used as training data, with inputs and targets known. The weights and bias (the initial 

value of the bias “b” is zero) are detected, to which the error between update targets and estimate 

targets is zero. The expression to calculate the weights is: 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤(𝑖+1) = 𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑(𝑖) + 𝑦𝑖 ∗ 𝑥𝑖 (3.12) 

 

http://en.wikipedia.org/wiki/Even_and_odd_functions
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Sign_(mathematics)
http://en.wikipedia.org/wiki/Real_number
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The output expression when the update has been induced can be shown as: 

 

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤(𝑖) ∗ 𝑥𝑖 (3.13) 

 

The iteration is done if the calculated error between the “𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤(𝑖+1)” and 

“𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑(𝑖)” do not change. 

 

3.8.1.3 K-mean 

The relative value of the bubble diameter was used because this method generates data 

clustering. When the cluster has been determined, an algorithm was developed (Appendix 7.7) to 

predict the new samples. Each sample is joined to each cluster. The standard deviation is calculated 

also for each cluster, the minimum variation indicates which said sample belongs to these clusters. 
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CHAPTER IV 

4 EXPERIMENTAL RESULTS 
 

4.1 Result obtained from the features extraction 

4.1.1 Bubble in middle of the PZT ring 

The relative values obtained from the equation (3.9) in the section 3.4.3 and bubble size 

diameter obtained in the section 3.5 from bubbles crossing the PZT ring generate a relationship 

shown below in Figure 41. 

 

Figure 41: Effect of bubble size measured in the PZT when it is actuated at the time the 

bubble reaches the PZT center. Number of samples =126. 
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The error bars were computed, based on the DAQ card precision and the error propagation 

of the relative value of the difference in root mean square. 

Not having a linear relationship, the next step was divide the curve of the Figure 41 into 

different intervals. Initially, this curve was divided into two ranges: bubbles larger than 500 

microns and small bubbles under than 500 microns. In others word, the step “one” has a setup as: 

interval’s range is 500 µm and the number of ranges is 2. The second step is changing the range 

intervals to 200 µm, which increases the number of ranges to 5 (The K-mean algorithm was used 

to determine the number of classes). In order to compare the accuracy and error of the algorithms 

to find the best in the bubble detection, the confusion matrix was implemented.  

In order to take advantage of other observations and improve the estimate in the detection of 

bubbles, the signals captured by the microphones were also processed obtaining relative value 

from the voltage microphone and bubble diameter as shown in Figure 42: 
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Figure 42: Data obtained by measuring the voltage in a pill microphone located at the bottom 

edge of the PZT when the PZT was actuated when the bubble reached the PZT center. 

Number of samples = 63. 



    

 

68 

 

 

Figure 43: Data obtained by measuring the voltage in a pill microphone located 2cm from 

the bottom edge of the PZT when the PZT was actuated when the bubble reached the PZT 

center. Number of samples =63. 

 

In summary, the data obtained when the bubble crosses through the PZT are:  

 Electrical signal from PZT ring with 126 samples. 

 Electrical signal from "MP1" with 63 samples 

 Electrical signal from "MP2" with 38 samples. 

 Electrical signal from "MP3" with 63 samples. 

The differences are due to the fact that some tests were carried out with microphones at 0 

cm, 2 cm and 4 cm from bottom edge of the PZT, while others were changed to 0 cm, 1 cm and 2 

cm. When it was observed that the PZT bubbles were not detected beyond 2 cm (Figure 48), the 
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microphone signal acquired at 4 cm was suppressed. However, the microphones signals common 

for all test are PZT, MP at 0 cm and MP at 2 cm. 

4.1.2 Bubbles located 1 cm from the PZT ring 

When thinking about applying the "Method 2", it is important to consider a new condition. 

If the system will detect the bubbles by operating the PZT randomly, is necessary to determine the 

minimum distance for bubble detection. In order to find the PZT ring sensitivity, some tests were 

performed actuating the PZT to 1 cm from its bottom edge. Figure 44 shows the relative value 

ratio and bubble diameter from the PZT ring: 

 
Figure 44: Data obtained when the PZT was actuated when the bubble was located at 1cm 

from the PZT. Number of samples was 38. 
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Information was also acquired from microphones at 0 cm (Figure 45), 1 cm (Figure 46) and 

2 cm (Figure 47) from the bottom edge of ring PZT. 

 

Figure 45: Data obtained from measuring the voltage in a pill microphone located at the bottom edge of 

the PZT when the PZT was actuated when the bubble was located at 1cm from the PZT. Number of 

samples =38. 
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Figure 46: Data obtained from measuring the voltage in a pill microphone located at 1cm from the bottom 

edge of the PZT when the PZT was actuated when the bubble was located at 1cm from the PZT. Number 

of samples = 38. 
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Figure 47: Data obtained from measuring the voltage in a pill microphone located 2cm from the bottom 

edge of the when the PZT was actuated when the bubble was located at 1cm from the PZT. Number of 

samples = 38. 

 

4.1.3 Bubbles located 2 cm from the PZT ring 

From the data in Figure 48 it can be concluded that if bubbles are further away than 2cm 

from the PZT, the system cannot detect them. 
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Figure 48: Data obtained when the PZT was actuated when the bubble was at 2cm below the PZT. 

Number of samples = 20. 

 

4.2 Bubble detection with 1 feature for 2 Classes 

Initially, the relationship between relative value vs bubble size diameter was classified into 

2 types. The class “o” indicates the bubbles with a diameter less than 500 µm and the class “x” are 

bubbles larger than 500 µm. For the training data 3 different classifiers were used. The training 

step was developed for the three classifiers. 

4.2.1 K-mean 

Prediction of the K-mean algorithm (added STD predictor, see Appendix 7.7) was used 

when 100 data samples corresponding to the PZT were being actuated when the bubbles were at 
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its center. “0” represents bubbles predicted to have a size smaller than 500 μm and “1” represents 

bubbles bigger than 500 μm (Figure 49): 

 

 

Figure 49: The prediction of the K-mean algorithm response with 100 data samples. 

 

Table 3 indicates the real data (vertically), and the data detected by the K-mean algorithm 

(horizontally). 

 

 

Real 

0 1 Total 

K-mean 

0 64 3 67 

1 13 20 33 

Total 77 23 100 
Table 3: Results from the K-mean prediction to 1 feature and 2 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
84

100
= 𝟎. 𝟖𝟒 
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𝐸𝑟𝑟𝑜𝑟 =
16

100
= 𝟎. 𝟏𝟔 

 

4.2.2 SVM 

Predicted results of the SVM algorithm were used when 100 data samples corresponding 

to the PZT were being actuated when the bubbles were at its center (see Figure 50). “0” represents 

bubbles predicted to have a size smaller than 500 μm and “1” represents bubbles bigger than 500 

μm. 

 

Figure 50: Results of the SVM algorithm with 100 data samples. 

 

The following table shows the real data samples (vertically), with the data detected by the 

SVM algorithm (horizontally). 

 

 

 

Real 

0 1 Total 

SVM 
0 72 6 78 

1 5 17 22 
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Total 77 23 100 
Table 4: Results from the SVM prediction to 1 feature and 2 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
89

100
= 𝟎. 𝟖𝟗 

𝐸𝑟𝑟𝑜𝑟 =
11

100
= 𝟎. 𝟏𝟏 

 

4.2.3 NN 

Figure 51 shows the predicted results of the NN algorithm when 100 data samples 

corresponding to the PZT being actuated when the bubbles were at its center was used. “0” 

represents bubbles predicted to have a size smaller than 500 μm and “1” represents bubbles bigger 

than 500 μm. 

 

 

Figure 51: Results of the NN algorithm with 100 samples. 
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The following table shows the real data (vertically), with the data detected by the NN 

algorithm (horizontally). 

 

 

Real 

0 1 Total 

NN 

0 72 4 76 

1 5 19 24 

Total 77 23 100 
Table 5: Results from the NN prediction to 1 feature and 2 classes. 

 

The accuracy and error in bubble detection are: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
91

100
= 𝟎. 𝟗𝟏 

𝐸𝑟𝑟𝑜𝑟 =
9

100
= 𝟎. 𝟎𝟗 

 

4.3 Bubble detection with 1 feature for 5 Classes 

The detection of the bubbles in this section has been performed using the current signal 

and bubble diameter information divided into 5 classes. The 5 classes have been determined using 

the K-mean as reference. The K-mean classification was: 

 

Label Interval 

0 bubbles smaller than 220 μm 
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1 220 µm and 330 µm 

2 330 µm and 480 µm 

3 480 µm and 660 µm 

4 bubbles bigger than 660 µm 

Table 6: Intervals obtained from the K-mean classification to 1 feature and 5 classes. 

 

4.3.1 K-mean 

Figure 52 shows the prediction of the K-mean algorithm when 100 data samples were used. 

The Table 6 indicated the intervals in which predictor K-mean algorithm detected bubbles. 

 

 

Figure 52: The prediction of the K-mean algorithm was used when 100 data samples corresponding to 

the PZT were being actuated when the bubbles were at its center. 

 

 

Real  

0 1 2 3 4 Total 

KMEAN 
  

0 9 3 0 1 0 13 

1 2 25 4 0 0 31 

2 0 3 26 4 0 33 
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3 1 1 2 15 0 19 

4 0 0 1 1 2 4 

Total 11 34 28 24 3 100 
Table 7: Results from the K-mean prediction to 1 feature and 5 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
77

100
= 𝟎. 𝟕𝟕 

𝐸𝑟𝑟𝑜𝑟 =
23

100
= 𝟎. 𝟐𝟑 

The poor performance of this algorithm is due to which data on the edges of each cluster 

can affect the variance of several clusters similarly, and the algorithm associate the new data to the 

wrong cluster. 
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4.3.2 SVM 

The SVM algorithm detected four classes of 5 (Figure 53). This algorithm depends on the 

stage of training and not detecting class 5 may be due to the lack of observations to find optimal 

separability between classes.  

 

 

Figure 53: The prediction of the SVM algorithm was used when 100 data samples corresponding to the 

PZT were being actuated when the bubbles were at its center. 

 

 

Real  

0 1 2 3 4 Total 

SVM 

0 12 7 0 0 0 19 

1 1 24 1 0 0 26 

2 0 0 31 0 0 31 

3 0 0 1 19 4 24 

4 0 0 0 0 0 0 

Total 13 31 33 19 4 100 
Table 8: Results from the SVM prediction to 1 feature and 5 classes. 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
86

100
= 𝟎. 𝟖𝟔 
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𝐸𝑟𝑟𝑜𝑟 =
14

100
= 𝟎. 𝟏𝟒 

 

The performance dropped by 3% in accuracy with respect to detection of two classes. It is 

good because it could further increase the number of intervals, and the accuracy lost is under 5%, 

considering that an accuracy lost larger than 5% is relevant. 

4.3.3 NN 

The procedure was similar to SVM training, i.e. training was used for the current signal 

only. 

 

 

Figure 54: The prediction of the NN algorithm was used when 100 data samples corresponding to the 

PZT were being actuated when the bubbles were at its center. 

 

 

Real  

0 1 2 3 4 Total 

NN 

0 10 1 0 0 0 11 

1 3 29 0 0 0 32 

2 0 1 33 5 0 39 

3 0 0 0 14 4 18 
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4 0 0 0 0 0 0 

Total 13 31 33 19 4 100 
Table 9: Results from the NN prediction to 1 feature and 5 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
86

100
= 𝟎. 𝟖𝟔 

𝐸𝑟𝑟𝑜𝑟 =
14

100
= 𝟎. 𝟏𝟒 

 

The NN algorithm accuracy lost 5% due to increase the number of classes. 

4.4 Bubble detection with 3 features for 2 classes 

The input data for detection algorithms were: current signal from the PZT ring signal, 

voltage signal from the MP1 (0 cm) and voltage signal from the MP2 (2 cm). This set of inputs 

was selected because, as mentioned in section 3.6.2, these three devices are common to 63 data 

samples. On the other hand, only half the data would have been used for testing. 

4.4.1 K-mean 

“0” represents bubbles predicted to have a size smaller than 400 μm and “1” represents 

bubbles bigger than 400 μm.  
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Figure 55: Prediction of the K-mean algorithm response with 63 data samples. 

 

The first test is to detect bubbles again for 2 classes. Figure 55 shows the plot of relative 

value against bubble diameter. The response of the algorithm is summarized in the legend, that is, 

the grouping of the cluster "0" and the cluster "1". 

 

Real  

0 1 Total 

K-mean 

0 39 3 42 

1 0 21 21 

Total 39 24 63 
Table 10: Results from the K-mean prediction to 3 feature and 2 classes. 

 

The accuracy and error in bubble detection are: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝟎. 𝟗𝟓 

𝐸𝑟𝑟𝑜𝑟 = 𝟎. 𝟎𝟓 
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It should be noted that the number of data decreased from 100 samples to 63 samples. Also, 

signals from the microphones were also implemented. Thus, prediction accuracy improved by 

10%. 

4.4.2 SVM 

This algorithm training was conducted as: “0” represents bubbles predicted to have a size 

smaller than 400 μm and “1” represents bubbles bigger than 400 μm (Figure 56).  

 

 

Figure 56: Results of the SVM algorithm with 63 data samples. 

 

 

Real  

0 1 Total 

SVM 

0 37 3 40 

1 2 21 23 

Total 39 24 63 
Table 11: Results from the SVM prediction to 3 feature and 2 classes. 

 

The accuracy and error in bubble detection are: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝟎. 𝟗𝟐 

𝐸𝑟𝑟𝑜𝑟 = 𝟎. 𝟎𝟖 

 

The SVM algorithm as K-mean algorithm, also improved with respect to the detection of 

two classes only using the current signal. For this SVM algorithm, the accuracy improved over the 

previous result by 3%. 

4.4.3 NN 

The NN algorithm as SVM algorithm was trained with: “0” represents bubbles predicted 

to have a size smaller than 400 μm and “1” represents bubbles bigger than 400 μm (Figure 57).  

 

 

Figure 57: Response of the NN algorithm with 63 data samples. 

 

 

 

Real  

0 1 Total 

NN 
0 38 1 39 

1 2 22 24 
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Total 40 23 63 
Table 12: Results from the NN prediction to 3 feature and 2 classes. 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝟎. 𝟗𝟓 

𝐸𝑟𝑟𝑜𝑟 = 𝟎. 𝟎𝟓 

 

The NN algorithm improved its accuracy by 4% using microphones information with 

respect to the detection of bubbles using only current information from the PZT ring. 

 

4.5 Bubble detection with 3 features for 5 classes 

For this step the curve for relative value against bubble diameter was divided into 5 classes 

in the same manner as in section 4.2. The labels are: 

 

Label Interval 

0 bubbles smaller than 290 μm 

1 290 µm and 360 µm 

2 360 µm and 490 µm 

3 490 µm and 620 µm 

4 bubbles bigger than 620 µm 

Table 13: Intervals obtained from the K-mean classification to 3 features and 5 classes. 
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4.5.1 K-mean 

The prediction of the K-mean algorithm was used when 63 data samples corresponding to 

the PZT being actuated when the bubbles were at its center was used. Table 13 shows the intervals 

for the detection of the bubbles. 

 

 

Figure 58: Prediction of the K-mean algorithm response with 63 data samples to 3 features and 5 classes. 

 

 

Real  

0 1 2 3 4 TOTAL 

KMEAN 

0 13 0 0 0 1 14 

1 0 6 0 0 0 6 

2 0 0 10 0 0 10 

3 0 0 3 26 0 29 

4 0 0 0 0 4 4 

Total 13 6 13 26 5 63 
Table 14: Results from the K-mean prediction to 3 feature and 5 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝟎. 𝟗𝟒 
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𝐸𝑟𝑟𝑜𝑟 = 𝟎. 𝟎𝟔 

 

The loss of precision was 1% compared to the detection of bubbles for 2 classes shown in 

section 4.3.1. It is due to the problem of edges in the detection mentioned above. 

 

4.5.2 SVM 

The detection of the SVM algorithm when 63 data samples corresponding to the PZT being 

actuated when the bubbles were at its center was used. The Table 13 indicated the intervals in 

which predictor SVM algorithm detects bubbles. 

 

 

Figure 59: The prediction of the SVM algorithm response with 63 data samples to 3 features and 5 classes. 

 

 

Real  

0 1 2 3 4 Total 

SVM 

0 13 0 0 0 0 13 

1 0 6 0 0 0 6 

2 0 0 12 1 0 13 
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3 0 0 0 26 0 26 

4 2 1 0 0 2 5 

Total 15 7 12 27 2 63 
Table 15: Results from the SVM prediction to 3 feature and 5 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝟎. 𝟗𝟒 

𝐸𝑟𝑟𝑜𝑟 = 𝟎. 𝟎𝟔 

The accuracy of the SVM algorithm improved by 2% with respect to the detection of two 

classes using 3 features. This means that observations from the microphones are a significant 

contribution to this detection algorithm. 

4.5.3 NN 

The NN algorithm as SVM algorithm was trained with data from the Table 13. 

 

 

Figure 60: Prediction of the NN algorithm response with 63 data samples to 3 features and 5 classes. 
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Real 

0 1 2 3 4 Total 

NN 

0 13 0 0 0 0 13 

1 0 6 0 0 0 6 

2 0 0 13 0 0 13 

3 0 0 0 26 0 26 

4 0 1 0 0 4 5 

Total 13 7 13 26 4 63 
Table 16: Results from the NN prediction to 3 feature and 5 classes. 

 

The accuracy and error in bubble detection are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝟎. 𝟗𝟖 

𝐸𝑟𝑟𝑜𝑟 = 𝟎. 𝟎𝟐 

 

The NN algorithm improved the accuracy by 3% compared to the detection of two classes 

using 3 features. The NN algorithm is more accurate in comparison to SVM and K-mean. 

4.6 Overview and rate of convergence 

The algorithm analysis in the previous sections, were performed based on the accuracy and 

error in the bubbles detection. In this section, the iterations and rate of convergence are detected. 

For the comparison, a laptop with a processor “Intel(R) Core(TM) i7-2670QM CPU @ 

2.20GHz” was used. The priority configuration for MATLAB software was changed to real time 

in the computer. The “TALKLIST” command was called to determine the processes of the 

computer (see Appendix 7.8). The total CPU process is 368192. The specification for the computer 

to millions instructions per seconds (MIPS) is 128300. This establishes that the time count for each 
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generating MATLAB algorithm presents additional time of about 3 μsec. If the algorithms are 

being used by the computer, it would be negligible. However, there is no guarantee that the 

processing time of the algorithm is exactly from it. From the above, convergence time for each 

algorithm was defined in the following table: 

 

Algorithm Features Classes Iterations 
Time of 

convergence 

K-mean 1 2 4 0.14 

SVM 1 2 14 1.20 

NN 1 2 22 1.76 

K-mean 1 5 5 0.16 

SVM 1 5 29 1.84 

NN 1 5 19 1.78 

K-mean 3 2 8 0.15 

SVM 3 2 21 1.34 

NN 3 2 34 1.83 

K-mean 3 5 7 0.16 

SVM 3 5 27 1.84 

NN 3 5 133 2.03 

Table 17: Rate of convergence comparison for each algorithm 

 

From the above table, the K-mean algorithm with STD predictor is the faster in 

convergence because their operations are simple, i.e. getting Euclidean distances and standard 

deviations. SVM and NN algorithms are methods which use decomposed matrices to solve 

optimization problems; this generates more computational resources, and causes a delay. 
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4.7 Summary of the results and analysis 

The following table associates previous results in accuracy, iterations and convergence 

time for each algorithm in the respective condition as: characteristics and classes. 

 

Algorithm Samples Features Classes Iterations Time of convergence [seconds] Accuracy 

K-mean 100 1 2 4 0.14 84 

SVM 100 1 2 14 1.20 89 

NN 100 1 2 22 1.76 91 

K-mean 100 1 5 5 0.16 77 

SVM 100 1 5 29 1.84 86 

NN 100 1 5 19 1.78 86 

K-mean 63 3 2 8 0.15 95 

SVM 63 3 2 21 1.34 92 

NN 63 3 2 34 1.83 95 

K-mean 63 3 5 7 0.16 94 

SVM 63 3 5 27 1.84 94 

NN 63 3 5 133 2.03 98 
Table 18: Summary of the results. 

 

Note that the addition of new features to all predictor’s algorithms improves accuracy. The 

next image can better show this statement: 
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A. 

 

B. 

 

Figure 61: Predictor accuracy: A - is to 2 classes, the 3 first bins are the predictor results from 1 

feature and the last 3 bins are the predictor results from 3 features. B is to 5 classes, the 3 first bins are 

the predictor results from 1 feature and the last 3 bins are the predictor results from 3 features. 
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Figure 61 demonstrates that increasing the amount of characteristics, leads to an increase 

in the accuracy.  

 

A. 
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B. 

 

Figure 62: A - indicates the time of convergence to predictors for 2 classes. B - indicates the time of 

convergence to predictors for 5 classes. 

 

Convergence times of the algorithms show which supervised algorithm takes more time to 

converge due to the simplicity in calculating geometric distances, compared to solving 

optimization problems as noted in section 4.5. 

Among choices for most accurate algorithm for bubbles detection, the neural network 

would be appropriate choice of considering the accuracy from the Table 18. On the other hand, 

based on the choice of the faster algorithm for bubbles detection, the answer is K-mean with STD 

predictor. 

Analyzing the disadvantages, it is important to remember that the election of targets for the 

training stage was made by the K-mean. This favors the high precision of K-mean and STD 

predictor. 
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Another important point is the number of iterations when the features and classes are 

increased in neural networks. On a computer with the technical features that were used, it is not 

relevant; but when the implementation is in a microcontroller, FPGA or DSP hardware device the 

convergence time would increase considerably. 

 

4.8 Further testing 

Section 3.6.2 showed results for bubbles detection at 1 cm from the edge bottom of the 

PZT ring. 

Assuming the sensor works in a pulsated manner, and bubbles are present in the blood 

stream, then if the bubbles moving along the artery are further away than 2cm from the PZT the 

system will not detect them. If the bubble are between 0‐1cm from the PZT the system will detect 

them. 

The question is: will our sensor be able to distinguish a small bubble that might be at the 

center of the PZT when the PZT is actuated, from a big bubble that is at 1cm from the PZT when 

the PZT is actuated? Based on the obtained results, the answer to that question, is that it will. The 

results are shown in Table 19, Table 20 and Table 21. 

 

 

Real 

0 1 Total 

K-mean 

0 33 3 36 

1 2 25 27 

Total 35 28 63 
Table 19: Confusion matrix for the K-mean algorithm with 4 features for 

the data points corresponding to the actuated PZT when the bubbles were at 

the center of the PZT and for bubbles that were located at 1cm away from 

the PZT when it was actuated. 
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The accuracy and error of the K-mean and STD predictor algorithm are: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
58

63
= 𝟎. 𝟗𝟐 

 

𝐸𝑟𝑟𝑜𝑟 =
5

63
= 𝟎. 𝟎𝟖 

 

 

Real 

0 1 Total 

SVM 

0 31 10 41 

1 4 18 22 

Total 35 28 63 
Table 20: Confusion matrix for the SVM algorithm with 4 features for the 

data points corresponding to the actuated PZT when the bubbles were at the 

center of the PZT and for bubbles that were located at 1cm away from the 

PZT when it was actuated. 

 

The accuracy and error of the SVM predictor algorithm are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
49

63
= 𝟎. 𝟕𝟖 

 

𝐸𝑟𝑟𝑜𝑟 =
14

63
= 𝟎. 𝟐𝟐 

 

 

Real 

0 1 Total 

NN 
0 33 1 34 

1 2 27 29 
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Total 35 28 63 
Table 21: Confusion matrix for the neural network algorithm with 4 features 

for the data points corresponding to the actuated PZT when the bubbles were 

at the center of the PZT and for bubbles that were located at 1cm away from 

the PZT when it was actuated. 

 

The accuracy and error of the NN predictor algorithm are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
60

63
= 𝟎. 𝟗𝟓 

 

𝐸𝑟𝑟𝑜𝑟 =
3

63
= 𝟎. 𝟎𝟓 
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CHAPTER V 

5 CONCLUSION AND FUTURE WORK 
 

5.1 CONCLUSION 

The present study using an artificial thigh prototype with a piezoelectric ring, has shown 

feasibility in the bubble detection. For the purpose of this study, the addition of the individual 

components as pill microphones to improve the accuracy of the algorithms have been 

experimentally studied. 

In section 3.3.3 of this work, the different features extractions methods to determine the 

relationship between relative value (from the current signals) and the bubbles diameter were 

discussed. Method 2 was effective because it allows for control between the induction of the bubble 

in the prototype, and also in the measurement of the bubble across the PZT.  

In section 4.1.3 of the thesis, the maximum distance for the detection of the bubbles; in our 

case at 2 cm, was determined.  Thus, the focus of the experiments was with the PZT actuated when 

the bubble at a distance less than 2 cm from the bottom edge of the PZT. 

In section 4.7, the information obtained from the features extraction stage as inputs. Initially, 

the setup was 1 feature with 2 classes (detecting 2 bubbles sizes), were applied. Eventually, the 

amount of classes implemented in the algorithm increased to 5, in which the accuracy decreased 

up to a maximum of 5%. Thus, the next step was to increase the amount of features to 3 (PZT, 

MP1 and MP2) with 2 classes. In comparison with the previous result of using 1 feature and 2 

classes, the accuracy of the algorithm increased by 11%, 3% and 4% to K-mean, SVM and NN, 
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respectively. Given this improvement in accuracy which was achieved by implementing more 

features, the next step consisted of incrementing the amount of classes up to 5. The results showed 

high performance in accuracy (over 90%) for all algorithms when the amount of the features and 

classes were increased. 

In chapter four of the thesis, the pattern recognition methods with classifiers (K-mean, SVM 

and NN) having an accuracy of 94%, 94%, and 98%, respectively for bubble detection, were 

presented. The results showed that the best algorithm for the detection of bubbles for the 

combinations of classes and features being tested was the NN (98%). However, the computational 

cost of using this method (133 iterations) is a problem when compared to the efficiency of the K-

mean with STD predictor (94% in accuracy and 7 iterations) which is a good choice for randomized 

clustering. 

 

5.2 FUTURE WORK 

In this thesis, the main objective was to implement a pattern recognition scheme to indicate 

the presence of micro-bubbles in a diver. Prior to implementing the developed algorithm, a more 

complicated prototype that simulates the human thigh was implemented in order to obtain results 

as close as possible to the real conditions. To continue the work presented here the following 

suggestions are presented: 

 Considering the “features” obtained from the microphones, the accuracy of the 

bubble detection can be improved by increasing the number of microphones around the 

acoustic chamber. 
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 The classifiers can be tested by adding more classes in order to answer to the 

question: What is the maximum number of classes that the algorithms can identify while 

maintaining an accuracy over 90%? 

 Establish a relationship between the void fraction and bubble population. This 

relationship would contribute to the design of an estimator for determining the possible 

number of bubbles in the bubble population. 
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7 APPENDIX 
 

7.1 Algorithm setup bubble generating system  

The program is as follows: 

 

Figure 63: Pulse with modulator program in Labview.  

 

This program determines the pulse time, the duty cycle and the state. The duty cycle is given 

by the relationship: 

𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =  
𝜏

𝑇
 

(3.8) 

 

where ‘’τ’’ is the time, and the period of the signal is ‘’T’’ (pulse time in our case). The state 

indicated when working with “τ” in low or high. Because the NI6356 card always broadcasts a 

high pulse on digital port, this condition maintains activation of the electro valve at all times, so 
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the state will work on low pulse (actuates the solenoid when the pulse goes down to a 10% duty 

cycle as shown in Figure 63). 

 

7.2 Algorithm setup frequency response 

The algorithm to detect the frequency response is shows in Figure 64. 

 

 

Figure 64: Frequency response algorithm 

 

For the first step is necessary select the GPIB address. Each device, like the waveform 

generator and the oscilloscope, have addresses, therefore must be selected indicating the device. 

In our case, the oscilloscope address is 7 and the waveform generator is 11. The next step is to 
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select “set test parameters”, here the number of points, the range and breadth of the sweep 

frequency are chosen. 

 

7.3 Algorithm setup acquisition signals 

The front panel of the Labview program used with the data acquisition card is shown in 

Figure 65.  

 

Figure 65: Data acquisition program (Front Panel) 

 

Details of the configuration of the program are shown in Table 22: 

Regions Specifications 

CHANNEL PARAMETERS 

Establishes the channel parameters such as the amplitude level 

to be received in each channel. 
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TIMING PARAMETERS Specifies the value for the sample rate, for  example 1.0 MHz 

SAVE OPTIONS 

Select options for saving data, such as location and size of each 

file. The bottom "Split data file", when clicked, generates the 

partition size that was set. 

Table 22: Data acquisition program settings. 

 

7.4 Algorithms current drop detecting 

7.4.1 Method 1 

The following algorithm can detect the maximum amplitude of each semi cycle: 

 

 

Figure 66: Block diagram for amplitude peaks detection. This algorithm was 

developed in MATLAB 2013. 
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The algorithm developed to find the current drop was: 

 

 

 

Figure 67: Block diagram for current drop detection. This algorithm was developed in 

MATLAB 2013. 

 

7.4.2 Method 2 

 

The following algorithm was implemented to detect the differential between reference 

signal “xnb[n]” and bubble signal “xb[n]”: 
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Figure 68: Algorithm to detect Current drop in relative value using "method 2" 

 

7.5 K-mean Algorithm and STD predictor 

%Universidad de Puerto Rico 
%K-mean y STD predictor 
%Elaborado por: Andrés Saavedra Ruiz 
%2012-2015 
clc 
clear all 
close all 
%-------------------------------------------------------------------------- 
% Datos con las caracteristicas extraidas 
%-------------------------------------------------------------------------- 
A = xlsread('C:\Users\Andres Saavedra\Documents\MATLAB\work\Thesis\Algoritmos 

finales\Data entrenamiento\Data_input_2_features.xlsx'); 
Bubble_size1 = A(:,4);%columna con los tamaños de burbuja en micro-metros 
Curren_drop = A(:,3);%columna con las caidas en corriente en mili-amperios 
MP1 = A(:,5); 
MP2 = A(:,6); 
% ------------------------------------------------------------------------- 
% Clasificacion 
% ------------------------------------------------------------------------- 
tic%Inicio conteo de tiempo de ejecucion 
% MP3 = A(:,7); 
% X = [Bubble_size1 Curren_drop];% 2 features 
X = [Bubble_size1 Curren_drop MP1 MP2];% 4 features 
Grupos = 5;%Cantidad de clases 
rng('default') % For reproducibility 
opts = statset('Display','final');tic 
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[idx,ctrs] = 

kmeans(X,Grupos,'Distance','city','Replicates',15,'Options',opts); 
toc%Finaliza conteo tiempo de ejecucion 
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12) 
hold on 
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12) 
plot(ctrs(:,1),ctrs(:,2),'kx','MarkerSize',12,'LineWidth',2) 
plot(ctrs(:,1),ctrs(:,2),'ko','MarkerSize',12,'LineWidth',2) 
legend('Cluster 1','Cluster 2','Centroids','Location','NW') 
hold off 
Resultado = [X,idx]; 
toc 
gscatter(Bubble_size,X(:,2),idx,'br','xo')%2 clases color,simbolo 
% gscatter(Bubble_size,X(:,2),idx,'brkgm','xov*+')%5 clases 
% xlswrite('kmean_prediccion_4features_2clases',Resultado);% 
% xlswrite('kmean_clasificacion_4features_2clases',Resultado);% 
% ------------------------------------------------------------------------- 
% Inicializacion de grupos STD predictor 
% ------------------------------------------------------------------------- 
for j=1:length(Curren_drop)-1 
    bd = Resultado(:,1); 
    cd = Resultado(:,2); 
   if Resultado(j,6) == 1 
       Grupo1(j) = [bd(j) cd(j)]; 
        Grupo1(j) = Resultado(j,2); 
   else 
       Grupo1(j) = 0; 
   end 
   if Resultado(j,6) == 2 
       Grupo2(j) = Resultado(j,2); 
   else 
       Grupo2(j) = 0; 
   end 
end 
% ------------------------------------------------------------------------- 
% Decision: adicion de nuevo sample de corriente a los grupos ya 
% clasificados, determina cual presenta menor desviacion estandar, 
% prediciendo a cual intervalo de tamaños de burbuja pertenece esa caida de 
% corriente. 
% ------------------------------------------------------------------------- 
for l=1:length(Curren_drop) 

     
Nuevo_dato = Curren_drop(l); 
rms1 = std(Grupo1);Grupo1_1 = Grupo1; 
Grupo1_1(end+1) = Nuevo_dato; 
rms1_1 = std(Grupo1_1); 
error1 = abs(rms1-rms1_1); 

  
rms2 = std(Grupo2);Grupo2_2 = Grupo2; 
Grupo2_2(end+1) = Nuevo_dato; 
rms2_2 = std(Grupo2_2); 
error2 = abs(rms2-rms2_2); 
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    if error1 >  error2 
        salidapredictor(l) = 1; 
    %     display('Burbuja mayor a 500 um') 
    else 
    %     display('Burbuja menor a 500um') 
        salidapredictor(l) = 0; 
    end 
end 

 

7.6 SVM Algorithm 

The SVM function in MATLAB, for more than 2 classes, cannot be implemented. Thus, 

two algorithms were developed. The first shown below, it detects two bubble sizes: 

%Universidad de Puerto Rico 
%SVM predictor solo para dos clases 
%Elaborado por: Andrés Saavedra Ruiz 
%2012-2015 
close all 
clear all 
clc 
% ------------------------------------------------------------------------- 
% Definicion de variables 
% ------------------------------------------------------------------------- 
A = xlsread('C:\Users\Andres Saavedra\Documents\MATLAB\work\Thesis\Algoritmos 

finales\Data entrenamiento\Data_input_3_features.xlsx'); 
Current_drop = A(:,3); 
MP1 = A(:,5); 
MP2 = A(:,6); 
X = [Current_drop]; 
X = [Current_drop MP1 MP2] 
XTest = Current_drop; 
Y = A(:,7); 
% ------------------------------------------------------------------------- 
% Aplicacion de SVM 
% ------------------------------------------------------------------------- 
tic 
CVSVMModel = fitcsvm(X,Y) 
[label,score] = predict(CVSVMModel,XTest);toc 
Resultado = [XTest label]; 
% xlswrite('svm_prediccion_1feature_2classes',Resultado); 
% xlswrite('svm_prediccion_3feature_2classes',Resultado); 

 

In order to determine 5 classes, the next algorithm with one vs all methodology, was 

implemented: 
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%Universidad de Puerto Rico 
%SVM predictor mas de dos clases 
% Metodologia: 1 contra todos 
%Elaborado por: Andrés Saavedra Ruiz 
%2012-2015 
close all 
clear all 
clc 
% ------------------------------------------------------------------------- 
% Definicion de variables 
% ------------------------------------------------------------------------- 
A = xlsread('C:\Users\Andres Saavedra\Documents\MATLAB\work\Thesis\Algoritmos 

finales\Data entrenamiento\Data_input_3_features.xlsx'); 
Current_drop = A(:,3); 
MP1 = A(:,5); 
MP2 = A(:,6); 
X = [Current_drop]; 
Y = A(:,7); 
XTest = Current_drop; 
% ------------------------------------------------------------------------- 
% SVM multi clase, utilizando la funcion multisvm 
% Funcion desarrollada por Anand Mishra 2015 obtenida como solucion por 
% medio de Mathworks.com 
% ------------------------------------------------------------------------- 
tic 
results = multisvm(TrainingSet, GroupTrain, TestSet); 
toc 
% xlswrite('svm_prediccion_1feature_5class',Resultado); 
% xlswrite('svm_prediccion_3feature_5class',Resultado); 

 

7.7 Neural Network Algorithm 

%Universidad de Puerto Rico 
%SVM predictor mas de dos clases 
% Metodologia: 1 contra todos 
%Elaborado por: Andrés Saavedra Ruiz 
%2012-2015 
close all 
clear all 
clc 
A = xlsread('C:\Users\Andres Saavedra\Documents\MATLAB\work\Thesis\Algoritmos 

finales\Data entrenamiento\Data_input_3_features.xlsx'); 
Bubble_size = A(:,2); 
Current_drop = A(:,3); 
MP1 = A(:,5); 
MP2 = A(:,6); 
subg1 = A(:,10);subg2 = A(:,11);subg3 = A(:,12);subg4 = A(:,13);subg5 = 

A(:,14); 
group = [subg1 subg2 subg3 subg4 subg5]; 
% x = [Current_drop MP1 MP2]; 3 Features 
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x = Current_drop;%1 feature 
x = x'; 
t = group'; 
tic 
% Create a Pattern Recognition Network 
hiddenLayerSize = 6; 
net = patternnet(hiddenLayerSize); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x);%Resultado de las redes al probarlo con toda la data de entrada 
e = gsubtract(t,y); 
tind = vec2ind(t); 
yind = vec2ind(y); 
percentErrors = sum(tind ~= yind)/numel(tind); 
performance = perform(net,t,y); 
toc 
figure, plotconfusion(t,y) 
% xlswrite('NN_prediccion_5clases_3features',y');  

 

7.8 Rate of convergence 

The "TASKLIST" command was used to detect the processes used by the computer 

constantly. The next table shows the running process in the computer when prediction algorithm 

was computed. 

Image Name 

CPU 

Process 

Session 

Name Session# 

Mem 

Usage 

System Idle Process 0 Services 0 24 K 

System 4 Services 0 3,580 K 

smss.exe 500 Services 0 1,384 K 

csrss.exe 656 Services 0 6,696 K 

wininit.exe 792 Services 0 5,188 K 

csrss.exe 812 Console 1 12,724 K 

services.exe 848 Services 0 11,968 K 

lsass.exe 876 Services 0 14,640 K 

lsm.exe 884 Services 0 4,964 K 

winlogon.exe 972 Console 1 8,692 K 

svchost.exe 380 Services 0 12,216 K 

nvvsvc.exe 464 Services 0 8,632 K 
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nvSCPAPISvr.exe 524 Services 0 6,136 K 

svchost.exe 700 Services 0 11,420 K 

svchost.exe 804 Services 0 22,612 K 

svchost.exe 1036 Services 0 161,904 K 

svchost.exe 1076 Services 0 44,300 K 

svchost.exe 1200 Services 0 13,768 K 

svchost.exe 1364 Services 0 20,224 K 

NvXDSync.exe 1428 Console 1 22,724 K 

nvvsvc.exe 1440 Console 1 15,888 K 

AvastSvc.exe 1640 Services 0 41,412 K 

wlanext.exe 1648 Services 0 19,828 K 

conhost.exe 1656 Services 0 3,552 K 

spoolsv.exe 1832 Services 0 18,156 K 

svchost.exe 1868 Services 0 14,568 K 

armsvc.exe 1956 Services 0 4,192 K 

AERTSr64.exe 1980 Services 0 3,444 K 

AgentHost.Service.exe 2004 Services 0 17,500 K 

AppleMobileDeviceService.exe 2388 Services 0 9,856 K 

Agent.AgentHost.exe 2408 Services 0 27,460 K 

devmonsrv.exe 2540 Services 0 7,088 K 

svchost.exe 2576 Services 0 5,852 K 

EvtEng.exe 2652 Services 0 17,352 K 

hasplms.exe 2704 Services 0 21,708 K 

lkads.exe 2876 Services 0 9,100 K 

nidmsrv.exe 2916 Services 0 9,496 K 

SystemWebServer.exe 2960 Services 0 10,616 K 

rndlresolversvc.exe 3024 Services 0 4,204 K 

RegSrvc.exe 2136 Services 0 9,088 K 

SftService.exe 2696 Services 0 10,032 K 

taskhost.exe 2712 Console 1 9,920 K 

svchost.exe 3124 Services 0 6,840 K 

dwm.exe 3200 Console 1 10,624 K 

SupportAssistAgent.exe 3208 Services 0 42,360 K 

explorer.exe 3232 Console 1 93,368 K 

Toaster.exe 3456 Console 1 52,056 K 

TeamViewer_Service.exe 4080 Services 0 14,436 K 

WLIDSVC.EXE 2284 Services 0 12,532 K 

ZeroConfigService.exe 4128 Services 0 17,840 K 

RtkNGUI64.exe 4324 Console 1 13,276 K 

obexsrv.exe 4384 Services 0 7,512 K 

nvtray.exe 4400 Console 1 35,472 K 

hkcmd.exe 4436 Console 1 8,828 K 
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igfxpers.exe 4452 Console 1 12,804 K 

lkcitdl.exe 4572 Services 0 9,812 K 

Apoint.exe 4632 Console 1 12,896 K 

rundll32.exe 4724 Console 1 11,180 K 

quickset.exe 4924 Console 1 14,560 K 

WLIDSVCM.EXE 5056 Services 0 4,756 K 

lktsrv.exe 4424 Services 0 9,716 K 

unsecapp.exe 4660 Services 0 6,788 K 

ApplicationWebServer.exe 4824 Services 0 9,108 K 

WmiPrvSE.exe 1348 Services 0 14,644 K 

nmsrvc.exe 5424 Services 0 8,492 K 

WmiPrvSE.exe 5956 Services 0 27,532 K 

GoogleUpdate.exe 5488 Console 1 528 K 

ISUSPM.exe 5548 Console 1 7,964 K 

SearchIndexer.exe 3108 Services 0 59,772 K 

WebcamDell2.exe 6192 Console 1 9,836 K 

ApMsgFwd.exe 6388 Console 1 8,616 K 

mediasrv.exe 6456 Services 0 8,600 K 

AvastVBoxSVC.exe 6604 Services 0 12,276 K 

btplayerctrl.exe 6684 Console 1 7,004 K 

ApntEx.exe 6748 Console 1 8,120 K 

hidfind.exe 6764 Console 1 7,192 K 

conhost.exe 6824 Console 1 5,668 K 

SweetPacksUpdateManager.exe 6856 Console 1 10,280 K 

nmctxth.exe 6892 Console 1 15,276 K 

realsched.exe 7036 Console 1 412 K 

AgentHost.UI.exe 7052 Console 1 42,000 K 

svchost.exe 7096 Services 0 6,632 K 

svchost.exe 6320 Services 0 45,132 K 

avastui.exe 1380 Console 1 25,660 K 

ngservice.exe 6536 Services 0 4,592 K 

unsecapp.exe 3652 Console 1 8,692 K 

SearchProtocolHost.exe 5596 Services 0 8,984 K 

BTHSAmpPalService.exe 3112 Services 0 6,048 K 

BTHSSecurityMgr.exe 2804 Services 0 10,652 K 

DellDataVaultWiz.exe 5552 Services 0 12,152 K 

MATLAB.exe 6172 Console 1 465,244 K 

LMS.exe 6408 Services 0 5,272 K 

NASvc.exe 6704 Services 0 6,928 K 

svchost.exe 6300 Services 0 23,748 K 

wmpnetwk.exe 6156 Services 0 9,960 K 

DellDataVault.exe 5876 Services 0 11,740 K 
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UNS.exe 4184 Services 0 8,068 K 

WmiApSrv.exe 1132 Services 0 7,636 K 

cmd.exe 6888 Console 1 4,488 K 

conhost.exe 4244 Console 1 6,720 K 

SearchFilterHost.exe 4300 Services 0 6,664 K 

tasklist.exe 7956 Console 1 8,860 K 

 

Considering the hardware devices currently in the order to make the portable system, you 

must consider the following: 

 

Algorithm Features Classes Iterations 
Time of convergence [sec] 

PC PIC DSP FPGA 

K-mean 1 2 4 0.14 449.1 2.0 18.0 

SVM 1 2 14 1.20 3849.0 17.5 154.0 

NN 1 2 22 1.76 5645.2 25.7 225.0 

K-mean 1 5 5 0.16 513.2 2.3 20.5 

SVM 1 5 29 1.84 5901.8 26.8 236.1 

NN 1 5 19 1.78 5709.4 26.0 228.4 

K-mean 3 2 8 0.15 481.1 2.2 19.2 

SVM 3 2 21 1.34 4298.1 19.5 171.9 

NN 3 2 34 1.83 5869.7 26.7 234.8 

K-mean 3 5 7 0.16 513.2 2.3 20.5 

SVM 3 5 27 1.84 5901.8 26.8 236.1 

NN 3 5 133 2.03 6511.2 29.6 260.4 

Table 23: Comparison of the time of convergence to classifiers in different hardware devices. 

 

Table 23 used the following technical specifications: PIC “18F452” with 40 MIPS 

(Microchip, 2002). DSP “TMS320DM647” with 8800 MIPS (TI, 2012). FPGA Stratix 10 with 

1000 MIPS (Altera, 2015).  

 


