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Abstract 

 
Different remote sensing techniques were employed to study benthic 

habitats in La Parguera, Puerto Rico. These include the comparison of two 

sensors with different spatial and spectral resolution, IKONOS (1 m, 4 

bands) and Hyperion (30 m, 220 bands). Image processing of IKONOS 

included atmospheric, sun glint, water column corrections, and supervised 

classifications for the characterization of sea grass, sand and coral. 

Hyperion data analysis included destriping, atmospheric correction, sun 

glint correction and classifications. Field data collection was performed by 

the establishment of three transects with ten quadrants for each habitat 

class. The best results for image classification in Ikonos imagery were 

obtained after deglinting of the image with 84 % accuracy and the best 

result with Hyperion were obtained with the spectral subset in the visible 

range with an accuracy of 75 %. These results showed that IKONOS had 

the best results with some limitations on the characterization of the 

composition of the benthic communities. Hyperspectral shows promise, 

but the coarse spatial resolution and poor signal to noise of the Hyperion 

instrument resulted in lower classification accuracy compared to 

IKONOS. 
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Resumen 
 

Diferentes técnicas de percepción remota han sido utilizadas para el 

estudio de hábitat béntico en La Parguera Puerto Rico. Estas incluyen la 

comparación de dos censores con diferente resolución espacial y espectral, 

IKONOS (1 m, 4 bandas) y Hyperion (30 m, 220 bandas). El 

procesamiento de la imagen de Ikonos incluyo corrección atmosférica, 

corrección de reflexión especular del oleaje, corrección de columna de 

agua y clasificaciones supervisadas para la caracterización de yerbas 

marinas, arenas y coral. El análisis de datos de Hyperion incluyo 

“destriping”, corrección atmosférica, corrección de reflexión especular del 

oleaje y clasificaciones. Los mejores resultados para la clasificación de las 

imágenes de Ikonos se obtuvieron luego la corrección de reflexión 

especular del oleaje  con una precisión de 84% y el mejor resultado con 

Hyperion se obtuvo de la imagen con las bandas en  el rango visible 

solamente.  IKONOS obtuvo mejores resultados con algunas limitaciones 

en la caracterización de la composición de las comunidades bénticas. 

Datos  hyper espectrales son prometedores pero la resolución espacial 

grande y la pobre  razón de señal versus  ruido del instrumento Hyperion 

resulto en poca precisión al compararse con IKONOS. 
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Chapter 1 

INTRODUCTION 
 

1.1 Statement of the Problem 

Among the benthic habitats coral reefs are the most important in coastal areas 

because of their essential role in the marine ecology. They provide nursery for different 

species and are natural breakwaters. In addition they provide recreational resources for 

humans. Scleractinean corals are the principal components of modern reefs and are of 

special interest to scientists since they can provide valuable scientific data on climate 

change and water chemistry. They are good contributors to the carbonate budget and 

fossil corals are useful in the determination of geologic history. For example, reef back 

stepping facilitate the determination of sea level changes through time.   

Coral reefs exert control on the surrounding environment. Their contribution to 

the carbonate budget is important in terms of sediment facies and distribution. Coral reefs 

are also affected by environmental change. They are sensitive to tectonic activity, sea 

level changes, variability in temperature, wave energy, salinity, light, and sedimentation.  

Mangrove forests are another essential part of marine habitats. These forests 

contribute to the ecology by providing the right conditions for the development of coral 

reefs. They act as natural nets controlling sediment input to coastal waters. Their roots are 

like filters that retain sediments providing low sediment conditions to the coast. They also 

provide nutrients for certain dinoflagellates (Green, E. et. al., 2000). 

The preservation and protection of these benthic habitats is very important due to 

their environmental role.  
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Remote sensing provides a tool to study benthic habitats but with certain 

limitations. New techniques and sensors are constantly produced to facilitate the study of 

these environments. Coastal remote sensing has disadvantages due to the presence of a 

water column and its components between the sensor and the target, which affects the 

reflectance received by the sensor and this has to be considered in the analysis of 

underwater features. Environmental conditions play an important role in terms of the 

water properties and the spectral response of the material of interest. Seasonal changes 

have to be considered since they exert control on the suspended sediments and suspended 

organic matter. 

Modern scientists have considered the use of passive remote sensing techniques 

for the study of coastal waters because of the sensor’s capabilities to map extensive areas. 

These techniques allow describing benthic features and zones from a satellite or airborne 

aircraft. Remote sensing techniques can characterize benthic features in the marine 

ecosystem but require extensive studies. 

Multi spectral and hyperspectral sensors have been evaluated in order to study a 

specific feature or habitat. This research evaluated several sensors for the selection of 

remote sensing techniques such as band analyses that are useful in the characterization of 

benthic habitats, including coral reefs. 

   This study contributes to the efforts in the third and fourth generations of 

experiments of SeaBED a testbed in coral reefs as part of the Center for Subsurface 

Sensing and Imaging Systems (CenSSIS). CenSSIS is one of 19 National Science 

Foundation (NSF) Engineering Research Centers (ERC) in the nation. The center 
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combines expertise in different areas including the study of coral reefs using remote 

sensing techniques 

   The first set of analyses consisted in the study of a coral reef near to the 

Magueyes Island’s Marine Science facility, Cayo Enrique, located at La Parguera in 

Lajas Puerto Rico. This reef was selected because it is easy to access and has been very 

well studied.  

La Parguera is a coastal region located along the southwest coast of Puerto Rico. 

Two sensors were tested to characterize sand, sea grass, and coral reefs in the area. These 

sensors are HYPERION (Hyperspectral Imager) and IKONOS.  This study helped to 

determine which remote sensor and analysis methods were appropriate for coral reef 

studies and for the characterization of different benthic habitats in the southwest coast of 

Puerto Rico. These multi-sensor approach and data fusion techniques gave us a better 

understanding of processes affecting the signal received by the sensors in these regions. 

 
1.2 Objectives 
 

The study of benthic habitats using passive optical remote sensing shows several 

challenges and requires new approaches and techniques. This study deals with two 

important questions: 

• What is the best combination of spectral and spatial resolution for studying 

benthic habitats in La Parguera? 

• What is the current status of these benthic communities according to the best 

available remote sensing techniques? 

 

 



 4  

Based on these questions, I have established the following working hypotheses: 

A. High-resolution multispectral imagery will perform better than coarse spatial 

resolution hyperspectral data. 

B. Different types of benthic habitats can be detected with the techniques developed 

in this study. 

 

In order to answer these questions and test these hypotheses, the following specific 

objectives were considered: 

1. Combine remote sensing techniques, laboratory analyses and fieldwork to 

evaluate different sensor resolutions in the study of benthic habitats. 

2. The development of better remote sensing techniques for the study of coral reefs 

and other benthic habitats in Puerto Rico. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Remote Sensing 

In Puerto Rico, the National Oceanic and Atmospheric Administration (NOAA) 

created a series of GIS maps of the coastal areas. Coral reefs, sea grass beds, mangrove 

forests and other important habitats were mapped using aerial photography (Kendall et 

al., 2002). The classification schemes used for benthic maps are based in zones and 

habitats. The different zones are: shoreline intertidal, lagoon, back reef, reef crest, 

forereef, bank shelf, bank shelf escarpment, dredged and unclassified areas. The habitats 

are: sand, mud, sea grass, sea grass continuous, macro algae, macro algae continuous, 

macro algae patchy, reef linear reef, reef spur and groove reef, reef patch reef, reef 

scattered coral rock, reef colonized pavement, reef colonized bedrock, hard bottom reef 

rubble, hard bottom uncovered pavement, hard bottom uncovered bedrock, land, 

mangrove, artificial, unknown and no attributes. The different maps of the coast of Puerto 

Rico are numbered. The map number for the area of La Parguera and Cayo Enrique is158 

and includes all the classifications mentioned before (Figure 1).    

 

 

 

 

 

 

Figure 1: NOAA benthic habitat map (map number 158)  
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Morelock et al. (1994) created the “Geologic maps of the southwestern Puerto 

Rico, Parguera to Guanica insular shelf”, which includes a series of detailed geological 

maps of bathymetry, sediment facies and texture facies, for the area of La Parguera and 

Guanica insular shelf (Figure 2). 
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                         Figure 2: Jack Morelock GIS map data subset for study area. 

 Remote sensing techniques have been applied to study coral reefs around the 

world. Due to the current technology limitations the testing of different sensors for 

benthic habitat studies is of great interest to researchers of different fields. For instance, 

Mumby et al. (2003) evaluated three optical remote sensing methods for measuring 

standing crop in the tropical Western Atlantic. They defined empirical relationships of 

field data with imagery from Landsat Thematic Mapper, SPOT and CASI data to predict 

standing crop. They also discuss cost benefits and monitoring considerations. 

Optical properties of benthic substrates are of great concern when using remote 

sensing techniques to study benthic habitats. Spectral reflectance of coral species have 

been analyzed and well studied. Hochberg and Atkinson (2003) collected 247 in situ 
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spectral reflectance of three coral species, five algal species and three sand benthic 

communities in Kaneohe bay, Oahu in Hawaii. They identified major reflectance features 

and applied linear discriminant functions to an AAHIS (Advanced Airborne 

Hyperspectral Imaging System) image.  

Holden and LeDrew (2001) took in situ reflectance measurements of corals in the 

U.S. Virgin Islands at various depths over different substratum. They made a comparison 

between hyperspectral reflectance measured at the top and the bottom of the water 

column in different water depth. They made a hyperspectral discrimination of healthy 

versus stressed corals in Fiji Islands, South Pacific and St. Croix, US Virgin Islands, and 

developed a high spectral resolution library. Hochberg et al. (2003) measured 13,100 in 

situ optical reflectance spectra of 12 reef bottom types in the Atlantic, Pacific and Indian 

Oceans. They classified fundamental bottom types, processed the spectra and determine 

spectral separability of bottom types using a classification analysis following the partition 

method (Rencher, 1995). In their Radiative transfer modeling analysis they determined 

that corals have a depth of detection limit of 10 to 20 meters in clear waters. 

The scientific community is presently evaluating different sensors to study coastal 

areas. Hochberg and Atkinson (2003) assess the capabilities of seven remote sensors to 

classify coral, algae and carbonate sand as pure and mixed spectra based on 10,632 

reflectance spectra measured in situ around the world reefs. They studied the spectral 

response of two hyperspectral sensors, AAHIS and AVIRIS, and three satellite 

multispectral sensors, IKONOS, Landsat ETM and SPOT- HRV, and two future satellite 

narrowband multispectral sensors, PROTO and CRESPO. They conducted discriminant, 

classification and spectral mixing analysis, and image simulation. Results based on 
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linearly mixed-sensor specific spectra demonstrate that the hyperspectral and narrowband 

multispectral sensors discriminate between coral and algae across many levels of mixing, 

while broadband sensors do not. However narrowband sensors overestimate coral cover. 

They conclude that it is necessary to design a sensor system specialized to coastal studies. 

Andre′fouet et al. (2003; unpublished) assessed the potential of IKONOS data for coral 

reef habitat mapping. Ten IKONOS images of reef habitats around the world were 

processed, including correction of sea surface roughness and bathymetry, supervised and 

unsupervised classifications, and accuracy assessment based on ground truth data. The 

results of IKONOS classification were compared with Landsat 7 data for simple to 

moderate complexity of reef habitats. Results showed a general linear trend of decreasing 

accuracy with increasing habitat complexity. In general, IKONOS performed better in 

accuracy compared to Landsat. The applied sea surface correction (Hochberg et al., 2003) 

uses the near infrared band to characterize the spatial distribution of relative glint 

intensity, which is scaled by absolute glint intensity in the visible bands. The result is 

subtracted from the visible bands filtering out glint effects. 

  Mumby and Edwards (2002) compared satellite and airborne systems to define 

habitat categories, supervise image classification, and make an independent assessment of 

thematic map accuracy. They used CASI, IKONOS, TM, MSS, and HVR data. Mustard 

et al. (2001) describe an atmospheric correction method applied to a temperate estuary 

using AVIRIS data. The method is based on scene information only (without in situ data) 

and accounts for non-uniform aerosol scattering glint from water surface and reflected 

skylight. 
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Hyperspectral imagery has been considered as a good option for coastal studies 

because higher spectral resolution provides more information. Goodman and Ustin 

(2003) employed hyperspectral detector capabilities and image processing tools for 

mapping and monitoring coral ecosystems in Kaneohe Bay, Hawaii using AVIRIS data. 

Their analysis starts with at-sensor radiance data, which are then atmospheric and water 

column corrected, and finally unmixing classified for benthic substrate. 

Hyperspectral methods for geologic mapping (Kruse et al., 1997; Kruse et al., 

1999; Kruse et al., 2002; Kruse et al., 2003; Kruse, 1996; Kruse and Lefkoff, 1993; 

Boardman and Kruse, 1993) have been implemented to coastal studies. Kruse et al. 

(1997) applied techniques developed for geologic mapping to near shore AVIRIS data of 

the White Point/San Pedro Channel area in California. The processing included data 

calibration to reflectance, linear transformation to minimize noise and determine data 

dimensionality, location of the most spectrally pure pixels, extraction of endmember 

spectra, and spatial mapping of specific endmembers. Kruse (2003) used an end-to-end 

approach with Hyperion satellite imagery in Buck Island, U.S. Virgin Islands. This 

methodology included the same standard processing performed to AVIRIS by Kruse et 

al. (1997).  

 
2.2 Study Site 

La Parguera is located in the southwestern coast of Puerto Rico (Figure 3). The 

Parguera shelf is a bedrock surface composed primarily of karst. This limestone surface 

has been modified by reef growth and sediment deposition since the last glacial low stand 

(Morelock et al., 1994). The modern bathymetry and sediment patterns are different from 

east to west along the Parguera insular shelf. More than 10,000 years ago, when sea level 
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was lower and the limestone surface of the Parguera shelf was exposed to sub aerial 

erosion, a karst surface developed (Morelock et al., 1994).  The average depth of 

Parguera shelf is 18 to 20 meters and the shelf width varies from 6 to 10 kilometers. La 

Parguera shelf was divided by Morelock et al. (1994) in three areas according to wave-

energy environments; outer shelf, middle shelf and inner shelf. The outer and middle 

shelves are 18 to 20 meters deep while the inner shelf is less than 6 m deep. A trace band 

of reefs separates the inner and middle shelf areas. The middle shelf lies within 4 to 10 

meters of the water surface and has more than 15 emergent reefs, which break the surface 

and hold a reef crest.  

               

                       

Figure 3:  Location of the area of study, southwestern Puerto Rico (Top Left), IKONOS image of 
Cayo Enrique (Bottom). 
 

 The sediment facies in the study area are diverse; reef skeletal sands, calcareous 

muds, Halimeda species sands, submerged reef and coral reef. Sediments of mixed grain 

size occur on the middle shelf around Cayo Enrique (Figure 2).  

 

IKONOS IMAGE ( 1 M) 
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The sediment textures include silty clays and sands, mixed silts, clays and sands, 

and consolidated carbonate material. The reefs at La Parguera have less than 10 percent 

terrigenous sediments (Morelock et al., 1994), because no fluvial system approach the sea 

in the area, local terrigenous runoff is trapped by coastal and near shore mangrove. 

According to Morelock et al. (1994; 2000) the coral reefs at La Parguera have the highest 

living coral coverage, diversity and abundance of all southwest Puerto Rico. The reef – 

building coral taxa, Montastraea annularis, Agaricia agaricites, Montastraea cavernosa, 

Porites asteroides, Colpophyllia natans, Acropora Palmata and Acropora cerviconis, 

dominate reefs of southwestern Puerto Rico (Morelock et al., 1994;2000). In Cayo 

Enrique , the forereef is dominated by Acropora palmata, until 5 meters. Other species 

that are abundant at 5 meters in Enrique reef are, Agaricia agaricites, Montastraea 

cavernosa, Montastraea annularis and Diploria sp (Ramirez unpublished MS Thesis, 

1992). At 10 meters depth all the species remain except Agaricia agaricites. Enrique reef 

has a slope of 45 degrees and an approximate depth of 25 meters. 
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Chapter 3 

MATERIALS AND METHODS 
 

3.1 Image Processing Overview 

Two images from La Parguera were used in this study.  Hyperion, acquired in 

2002 and IKONOS acquired in 2000. IKONOS image was georeferenced, and 

atmospherically and radiometrically corrected using ENVI 4.0 software. A simple dark 

pixel subtraction method was applied to the image. This is because the image is part of a 

set of IKONOS images acquired by the government of Puerto Rico to be used as a 

reference only, without any metadata information. A mask was applied to surface features 

such as mangroves and land in order to facilitate the classification of the benthic 

substrate. Sun glint effect was removed from the image using the algorithm described in 

Hochberg et al. (2003) and called Deglint V1.1. This algorithm uses the near- infrared 

band to characterize the spatial distribution of relative glint intensity. Then it is scaled by 

absolute glint intensities in each of the visible bands. A water column correction 

technique developed by Lyzenga (1981) was applied in order to reduce the effect of the 

water column, its components and variable depth. This water column correction is an 

image-based technique that compensates for the effect of variable depth. This method 

produces a depth invariant bottom index for pairs of spectral bands.  Finally supervised 

and unsupervised classifications were performed for algae, sand, coral, shallow water, 

and deep water. 

 Hyperion image processing included destriping, atmospheric correction, removal 

of glint effects and the creation of a mask. The mask was applied to land, mangrove 

areas, and waves generated by boats. The image destriping was accomplished using the 
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method described in Kruse et al. (2003). This method adjusts image column brightness 

based on a calculated offset relative to average detector response. Atmospheric correction 

was performed using Atmospheric Correction Now (ACORN 4.0) software. Deglinting of 

the image was performed by the application of the deglint algorithm 750 Normalizing 

developed by Lee et al. (1999). It assumes that the glint correction is constant at all 

wavelengths and the offset is calculated so that 750 nm reflectance equals a spectral 

constant, Δ. Then values of raw remote sensing reflectance are used to determine an 

approximation of actual remote sensing reflectance. A spectral subset in the visible range 

(400-700 nm) were selected in the processed Hyperion image and classified.  

 

3.2 Sensors Characteristics  

The characteristics of the sensors used in this study are shown in Table 1. 

Table 1: Characteristics of sensors used in this study 

 

Sensor Bands Spectral 
Range     

Spatial 
Resolution 

Image 
area 

Sensor technology Orbit Inclination 

IKONOS 4  0.45-
0.90µm  

1 m 11 km x 
1000 
km 

Linear array 
Pushbroom 

681 
km 

---- 

HYPERION 8-57 
79-224 

0.4-2.4 
µm 

30 m 7.5 km 
x 100 
km 

Pushbroom 
spectroradiometer 

705 
km 

98.20 

 

All the images were processed using the ENVI 4.0 software, which is a 

processing system, designed to provide complete analysis of satellite and aircraft remote 

sensing data. This software includes tools for spectra extraction, the use of spectral 

libraries and it analyzes high spectral resolution image datasets. 
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An essential part of the data analysis process includes the calibration of images to 

surface reflectance, called the radiometric calibration of the images (Clark et al., 

http://speclab.cr.usgs.gov/PAPERS.calibration.tutorial/calibntA.html). First, the data is 

atmospherically corrected using radiative transfer algorithms by adjusting atmospheric 

absorptions in the model and removing the atmospheric effect (Clark et al., 

http://speclab.cr.usgs.gov/PAPERS.calibration.tutorial/calibntA.html).This characterizes 

and removes the effects of Rayleight and aerosol scattering in the atmosphere (path 

radiance) and provides a correction for spectral response relative to wavelength. This 

correction was done with ENVI 4.0 module called ACORN. 

Each distinct image was georeferenced. Pre processing methods were applied to 

both satellite images and supervised and unsupervised classifications were performed to 

each image after each processing technique to determine different zones (or classes) 

based on the spectral response.  
 

3.3 IKONOS Image Processing 

The IKONOS image was acquired from the Puerto Rico Department of Transportation 

(DOT) in 2001.  This image does not have metadata because the DOT did not request it. 

The image map coordinate is in meters, Projection State Plane Nad 83. Digital numbers 

were converted to units of calibrated radiance (Wm-2sr-1nm-1) using the equations 

provided by official information on the website of Space Imaging 

(http://www.spaceimaging.com/).The image calibration to radiance equation is  

L i,j,k= DN i,j,k / CalCoef k                     (1) 
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Where: 

i,j,k = IKONOS image pixel i,j in spectral band k , Li,j,k = in-band radiance at the 

sensor aperture (mW/cm2*sr ), CalCoefk= in-Band Radiance Calibration Coefficient 

(DN*cm2*sr/mW), DNi,j,k = image product digital value (DN). 

 Image processing included atmospheric correction using dark pixel subtract, sun 

glint correction, water column correction, and supervised classifications for the 

characterization of sea grass, sand and coral. 

 

3.3.1 Atmospheric correction 

A dark pixel subtraction method was applied to the IKONOS image since an atmospheric 

correction to remove path radiance with ACORN software (version 4.0) was not viable. 

This is because the image was lacking of metadata. In order to correct the IKONOS 

image with ACORN we need the specific image date and image average time of 

collection (day/month/year) available in the metadata file. The dark pixel subtraction 

method assumes that somewhere in the image is a pixel with zero reflectance, that way 

the radiance recorded by the sensor is solely attributable to path radiance (Green et.al. 

2000). It assumes that scattering is zero in the infrared band but present in the bands with 

shorter wavelength. Then the minimum pixel value in each band is subtracted from all 

other pixels to remove path radiance. This method was applied using a feature available 

in ENVI 4.0.  

 

 



 16  

   

 

3.3.2 Masking 

Masking of the IKONOS imagery was performed using ArcGIS software (version 

8.0).  A mask was intended to apply using ENVI 4.0 with the determination of a range of 

values. Pixels on sea were masked as well as pixels on land. A geotiff was made for the 

IKONOS image; polygons were made in ArcGIS covering the surface features including 

land, mangrove, boats and waves induced by boats. The shapefile was imported as an .evf 

file and the mask applied in ENVI 4.0. 

 

3.3.3 Sun Glint Correction 

Glint is reflected light on the crests or slopes of waves generated by winds. This 

effect is a factor in wide field of view acquisition airborne or satellite missions. To 

remove this effect on the imagery a sun glint correction was performed with the 

algorithm described in Hochberg et al. (2003) and called Deglint V1.1. This algorithm 

uses the near- infrared band to characterize the spatial distribution of relative glint 

intensity assuming that this band exhibits maximum absorption and minimal water 

leaving radiance over clear waters. Then it is scaled by absolute glint intensities in each 

of the visible bands. The result is subtracted from the visible bands filtering out glint 

effects. 

Total radiance, LTOT(λ), is measured at an airborne or spaceborne spectral 

imaging system with specific angular dependencies corresponding to ground horizontal 
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spatial positions (x,y).  The LTOT(λ) measured by a radiometer pointed downward at sea 

surface is: 

 

                  LTOT (λ) = Latm (λ) + T(λ) x Lg (λ) + T(λ) x Lw  (λ)                                    (2) 

 

Where Latm(λ) is path radiance generated by scattering in the atmosphere. Lg (λ) is glint 

radiance generated by specular reflection at the sea surface of direct sunlight and diffuse 

skylight. Lw(λ) is the water-leaving radiance generated below the sea surface. T(λ) is the 

atmospheric transmittance. 

The spatial distribution function of LTOT(λ) is fTOT(x,y), each of the other 

radiances have their own spatial distribution function. For such image data, (1) is: 

 

fTOT (x,y: λ) x LTOT  (λ)=fatm(x,y: λ) x Latm(λ)+ T(λ) x fg (x,y: λ) x Lg(λ)+T(λ) x  fw(x,y:λ)xLw(λ)  (3) 

 

Where fw(x,y) is determined by the spatial distribution of subsurface features including 

the water column and seafloor. Fg(x,y) is determined by sea state and observation 

geometry relative to illumination geometry. Fx(x,y: λ) provide relative scaling factors at 

each (x,y: λ), and absolute  magnitudes are provided by the radiances  Lx( λ).  After 

atmospheric correction (2) becomes: 

 

[fTOT(x,y: λ) x LTOT (λ)]’= fg (x,y: λ) x Lg(λ)+ fw(x,y: λ) x Lw(λ)                     (4) 

 

For subsurface features, the quantity of concern is  [ fw(x,y: λ) x Lw(λ)] from the 

subtraction of  [ fg(x,y: λ) x Lg(λ)] from the atmospherically corrected image.  fg(x,y: λ) 
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and Lg(λ) must be estimated for all wavebands to be used  in the analysis of subsurface 

features. Geometrically shallow water is optically deep, at these wavelengths.  

Lw(λ) tends toward zero and equation (3) is reduced to 

 

[f  TOT  (x,y: NIR) x L TOT  (NIR)]’= fg (x,y:NIR) x Lg(NIR)                                (5) 

 

It means that after an atmospheric correction a NIR image of an aquatic environment is 

basically a measure of spatially relative glint intensity. fg (x,y:NIR)  is weighed by 

absolute glint intensity  Lg(NIR). The real index of refraction of the water is nearly equal 

at visible and NIR wavelengths. Therefore the relative amount of downwelling radiance 

reflected upward by the water surface is independent of wavelength and only a function 

of geometry. 

 

 fg(x,y: VIS)=  fg(x,y: NIR)= fg(x,y)                                                                     (6) 

 

This equation means that relative glint intensity fg(x,y)  is constant across all 

visible and near infrared wavelengths , even despite the fact that absolute glint intensity 

varies with wavelength . Absolute magnitude of Lg(VIS) is determined and scaled to 

fg(x,y) and subtracted from [f  TOT  (x,y: VIS) x L TOT  (VIS)] to produce the image of [f w  

(VIS) x L w  (VIS)]. 

The NIR waveband is scaled to determine fg(x,y), where its minimum is zero and 

its maximum one. The locations of brightest (j,i) and darkest (j’,i’) NIR pixels are 

determined, which represents the highest and lowest glint values.  
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This is Lg(NIR)+Lw(NIR) and  Lw(NIR), respectively. Where Lg(NIR) is 

computed by: 

 

Lg(NIR)= fg(j,i:NIR)x Lg(NIR)- fg(j’,i’:NIR)x  Lg(NIR) 

=.[ Lg(NIR) + Lw(NIR)]- Lw(NIR)                                                      (7) 

 

The NIR image is scaled to the range of zero to one by: 

  
 fg(x,y)=[f  TOT  (x,y: NIR) x L TOT  (NIR)]’- Lw(NIR)                                  (8) 
                                                    Lg(NIR) 
 

The maximum absolute glint intensities Lg(VIS) is determined in each visible  waveband, 

with VIS wavebands substituted for the NIR band.; 

 

Lg(VIS)= fg(j,i:VIS)x Lg(VIS)- fg(j’,i’:VIS)x  Lg(VIS) 

            = [Lg(VIS) + Lw(VIS)]- Lw(VIS)                                                           (9) 

 

Then the deglinted VIS wavebands are computed by: 

 

Fw(x,y:VIS)x Lw(VIS)= [f  TOT  (x,y: VIS) x L TOT  (VIS)]’- fg(x,y)xLg(VIS)   (10) 

 

This glint removal technique assumes that Lw(NIR) is zero for the whole image, 

but there is always some residual radiance in a NIR image, especially in the absence of an 

atmospheric correction. Another source of error is the estimation of Lg(VIS), the value of 

[f  TOT  (x,y: VIS) x L w  (VIS)]’ at the brightest pixel (j’,i’) is subtracted by the value at 
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the darkest pixel (j’,i’).  The implicit assumption is that Lw(VIS) is the same for both 

pixels. The sun glint correction of IKONOS image performed very well and subsurface 

features were more visible as shown in Figure 4. 

 

             

Figure 4: IKONOS raw image with the mask (left) and after the sun glint correction (right). 
 

3.3.4 Water Column Correction 

Attenuation is a process that occurs when light penetrates water and its intensity 

decreases exponentially with increasing depth and it is wavelength dependent.  At the 

visible range of the spectrum, the red portion attenuates faster than the shorter 

wavelengths of the blue portion. The decay of light intensity with increasing depth is a 

consequence of absorption and scattering in the water. Absorption is also wavelength 

dependent and in coastal waters is caused mostly by suspended materials like algae, 

organic and inorganic particles, dissolved organic compounds, and by the water itself.  

Scattering is due to the interaction of suspended particles in the water and increases with 

the turbidity of the water. 
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 The water column correction technique used in this research is the method 

developed by Lyzenga (1981).  It is an image-based technique to compensate for the 

effect of variable depth. This method produces a depth invariant bottom index from each 

pair of spectral bands and is suitable only in areas with good water clarity. 

Scattering in the atmosphere and external reflection from the water surface should 

be removed prior to the water column correction. Previous to this correction the 

algorithm for sun glint correction was applied, which removed the effect of reflected light 

on the crests or slopes of waves as well as the atmospheric effect. 

In clear waters the intensity of light decays exponentially with increasing depth, 

consequently radiance values will decrease linearly with increasing depth. In this method 

values of radiance are transformed using natural logarithms (ln). Then a relationship with 

depth becomes linear. For data that has been atmospherically corrected the equation is: 

 

Xi= ln (Li)                                                                                                  (11) 

 

Where Xi is the transformed radiance of a pixel in band i, and Li is the pixel radiance in 

band i. This is the equation that was used because prior to this water column correction 

other methods for atmospheric correction and glint correction were applied to the image. 

 The attenuation coefficient (k) describes the severity of light attenuation in water 

for a spectral band. Pixels of uniform substratum and variable depth are selected; the 

pixel data in both bands are transferred to a spreadsheet and converted to natural 

logarithm. The ratio of attenuation coefficients between pairs of spectral bands is 

calculated from the imagery itself using the pixel information. Two bands are selected 
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and a bi plot made of log-transformed radiances for the same substratum at different 

depths (Figure 5). Pixel values for each band will vary linearly according to their depth. 

The gradient of the bi-plot represents the relative amounts of attenuation in each band and 

the ratio of attenuation coefficient between bands (K). This ratio is independent of bottom 

type. The line represents an axis of radiance values for a specific bottom type. The 

gradient of each line should be identical because the ratio of attenuation coefficients is 

dependent only of wavelength of the band and clarity of the water. The y intercept for 

each bottom type is an index of bottom type, independent of depth.  

Before the implementation of depth invariant index processing all areas of land, 

mangrove, boats and clouds should be masked. Based on the equation of a straight line: 

 

Y=p+q*x                                                             (12) 

 

Where p is the y intercept, q is the gradient of the regression of y on x. If the equation is 

rearranged to give the y intercept: 

 

P=y - q*x                                                               (13) 

 

Subsequently, the depth invariant index equation is implemented to the whole image; 

 

Depth-invariant index ij= ln(Li)-[(ki/kj)*ln(Lj)]     (14) 
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Each pair of spectral bands will produce a single depth invariant band of bottom type. 

The resulting image is then processed for analysis of the benthic substrate. 

 Three Depth Invariant Index bands for each substrate resulted from the processing 

of the data. The bands plotted were; green vs. blue, red vs. blue and red vs. green. (See 

Appendix A). These index values are not related to radiance or reflectance measurements. 

The point collection depths for the three bottom types are not equal. The attenuation 

coefficient of the three bottom types is not the same because the points were not collected 

at similar depths or similar water conditions. It causes erroneousness in the results and is 

a limitation of the method.  
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Figure 5: Scatter plot of transformed coral radiance values at different depths in IKONOS image. 
 

3.3.5 Image Classification 

 Band analysis, supervised and unsupervised classifications were conducted for 

each Depth Invariant Index band to determine different zones (or classes) based on the 

spectral response. A set of 100 points were selected for each habitat class at different 

depths.   
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The areas selected for point collection were: Cayo Media Luna (3.04 m depth), 

and Cayo Enrique (1.37 m depth) for sand, Laurel (4.57 m depth ) and Mario (0.91 m 

depth) for coral and Laurel (3.66 m depth) and Cayo Enrique (1.5 m depth) for seagrass. 

The regions of interest (ROI’s) used for classification were; sea grass-red (1751 points), 

sand- green- (990 points), coral-blue (3034 points), deep water- yellow (4096 points) and  

shallow water- cyan (4896 points).  The Depth Invariant Index bands were classified with 

each supervised classification method available in ENVI. All the classification methods 

available in ENVI were tested and the best results were obtained with the minimum 

distance method. In this method training data is used only to determine class means and 

classification is performed by placing a pixel in the class of the nearest mean (Richards 

and Jia, 1999). This method does not use covariance data and it is not as flexible as other 

classification methods. Given that covariance data is not used in this technique class 

models are symmetric in the spectral domain (Richards and Jia, 1999). Then elongated 

classes will not be well modeled. The six classes used for classification were sand, sea 

grass, coral, deep water, shallow water and the land mask.  

 

3.4 HYPERION Image Processing 

Hyperion image was acquired in August 15, 2002.  Hyperion data analysis was 

performed using ENVI hyper spectral processing version 4.0. It includes atmospheric 

correction, destriping, an application of a Deglint algorithm, Georeferencing using 

IKONOS as a base image and selection of a spectral subset in the visible range. 
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3.4.1 Atmospheric Correction 

 Atmospheric correction was performed using Atmospheric CORection Now 

(ACORN) software (V 4.0) developed by ImSpec LLC, Boulder, Colorado. This is a 

MODTRAN4 technology that assesses, models and compensates for the atmosphere to 

allow calibration to surface reflectance without ground measurements. This algorithm 

was run in processing mode 1, which is a simple atmospheric correction of calibrated 

hyperspectral data. The parameters used were; tropic atmospheric model, derived water 

vapor using 940 and 1140 nm  bands, and image acorn estimated visibility. Required 

acorn inputs include; image dimension, image center latitude and longitude, image date 

and average time, and image acquisition altitude. Acorn values were converted to Remote 

sensing reflectance dividing reflectance by pi (Rrs= Ref/π). 

Other atmospheric correction methods available for Hyperspectral processing are; 

ATREM, FLAASH and TAFKAA. The ATREM software was developed by the 

University of Colorado. The ATREM software retrieves scaled surface reflectance from 

hyperspectral data using a radiative transfer model (Gao and Goetz, 1990).the solar zenith 

angle is derived from the AVIRIS acquisition time, date, and geographic location and the 

atmospheric transmittance spectra are derived from seven atmospheric gases. These gases 

are; methane, carbon dioxide, ozone, nitrous oxide, carbon monoxide, and water vapor. A 

water vapor “look up” table is created and the water vapor is then estimated for each 

AVIRIS pixel by determining the band depth and then compares the modeled band 

depths with the look up table. The resulting product is an image that shows the spatial 

distribution of diverse water vapor concentrations for each pixel. The result is a 
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reflectance corrected AVIRIS data and a water vapor image. ATREM version 3.1 was the 

last release and is not available to any further extent. 

FLAASH is an ENVI module for retrieving spectral reflectance from hyperspectral 

radiance images. It was developed by Spectral Sciences inc. sponsored by the Air Force 

Phillips Laboratory. It provides an accurate derivation of apparent surface reflectance by 

derivation of atmospheric properties form Hyperspectral data. Such properties are surface 

altitude, surface albedo, aerosol and cloud optical depths, water vapor, surface and 

atmospheric temperatures.  It also derives pressure altitude. The radiance spectra is 

extracted from the HIS data and compared with the MODTRAN “look up” tables pixel 

by pixel to determine scaled surface reflectance. 

TAFKAA is a Hyperspectral atmospheric correction algorithm design to attend the 

variables in shallow waters. It utilizes look up tables generated with a vector radiative 

transfer algorithm. Values from these tables are interpolated using information provided 

in the input files and the spectral characteristics of the input radiance data. The resulting 

output is optionally in the form of remote sensing reflectance, normalized ground leaving 

radiance or reflectance (Goodman, 2004). 

 

3.4.2 Masking 

 Hyperion processing included the creation of a mask of pixel values from zero to 

550.  The mask was applied to land and mangrove areas, boats and waves generated by 

boats (Figure 6).  
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Figure 6: Hyperion georeferenced raw data (left), destriped image (center), and atmospherically 
corrected, destriped and deglinted image (right). 
 
 
 
3.4.3 Destriping Method  

 Striping is caused by sensor system detector imbalance. When a detector fails and 

goes out of adjustment it provides readings different than the other detectors for the same 

band (for every pixel j in a line i). The data is valid but have to be corrected to have the 

same common contrast as the other detectors in the scan. The destriping of Hyperion 

image was accomplished using the method suggested by Kruse et al. (2003) using Montes 

code. This method adjusts image column brightness based on a calculated offset relative 

to average detector response.  It assumes that individual detectors are stable and that 

during data collection cross track detectors covered similar surface materials. In the case 

of Cayo Enrique the subset selected for the study is mostly covered by coastal waters. An 

average spectrum is calculated for each of the 256 detectors of Hyperion in a subset and 

then an overall scene average spectrum is calculated. Every column spectrum is 

subtracted from the global spectrum to calculate offsets that will be added to each pixel in 

the corresponding column (Kruse et al., 2003). 
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3.4.4 Sun Glint Correction 

Deglinting of the image was performed by the application of the algorithm 

developed by Lee et al. (1999).  It assumes that the glint correction is constant at all 

wavelengths and that the offset is calculated with reflectance at 750 nm equivalent a 

spectral constant,Δ (Lee et. al. in Goodman unpublished Ph.D. thesis). 

Therefore, from values of raw Remote Sensing Reflectance, Rrs
raw (sr-1), an 

approximation of actual Remote Sensing Reflectance Rrs(sr-1) is calculated by: 

 

Rrs(λ)=Rrs raw  (λ) – Rrs raw (750) +Δ                                      (15) 

 

                           Δ=0.000019+0.1(Rrs raw (640)- Rrs raw (750))                         (16) 

 

3.4.5 Georeferencing 

An image to image registration of Hyperion was performed in ENVI 4.0 using 

IKONOS as a base image. The warping method for georeferencing Hyperion was 

polynomial, degree 1 and the resampling nearest neighbor with background 0.0. Fifty 

ground control points were selected along the entire subset of La Parguera.  

 
  
3.4.6 Habitat Characterization 

 
                 Supervised and unsupervised classifications were performed in IKONOS and 

Hyperion images for sea grass, sand, and coral at La Parguera.  

All the classifications available in ENVI 4.0 were tested and determined that minimum 

distance classification bring the best results for this dataset.  
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             A spectral subset of 28 bands in the visible region (400-700 nm) was selected 

from Hyperion data for classification purposes after all the processing.  

Sea grass, algae and possible variations were characterized by visual inspection in the 

field by scuba diving and in the image. Band ratios and band analysis were performed for 

the characterization.  

Coral reef characterization was performed by inspection in the field and the 

image, band analysis methods and fieldwork for ground thruthing. Supervised and 

unsupervised classifications will be completed for each image. Possible variations will be 

considered in the classifications: dead and live coral, and branching versus massive coral.  

 

3. 5 Fieldwork  

 

Fieldwork was performed for accuracy assessment of the image data. Three 

transects of 20 meter width for each habitat class were initially established at Cayo 

Enrique (Figure 7). Each transects included ten quadrats of 1 m2, separated by a distance 

of 1 meter. GPS locations and pictures were taken for each quadrat in order to determine 

the approximated benthic composition.  In the case of corals, only the quadrats with large 

amount of corals (>80%) were considered.  

Above water and bottom albedo measurements were taken with the GER 1500 

spectroradiometer (Figure 8). The benthic composition and GPS data from transects were 

used as a reference for the image classifications. 
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Figure 8: Underwater quadrat station for sea grass (left) and bottom albedo measurements with 
the GER Spectroradiometer in a waterproof cage (right). 
 

3.5.1 Above Water Measurements 

The total signal measured by the remote sensor has a series of components, which 

must be separated. The atmosphere and the water column are two main components that 

have to be understood in order to obtain a correct bottom signal. In this research I 

evaluated the effects of the water column in the Remote sensing Reflectance (Rrs). 

Figure 7: Location of transects at Enrique Reef: A=coral, B=sand, C=sea grass. 

A         B              C 
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Apparent optical properties depend of the medium and the geometric structure of 

the light field in the environment (Holden and Le Drew, 2001). Rrs is an apparent optical 

property controlled by the absorption and the scattering properties of the constituents in 

the water column, the bottom reflectance, and bottom depth (Lee et al., 2001). Rrs 

determinations provide a link between imagery from satellite sensors and in situ 

concentrations of optically active constituents, for example, chlorophyll, dissolved 

organic matter, and particles in the water column (Toole et al., 2000). 

Remote sensing reflectance was determined as the ratio of the water leaving 

upwelling radiance L0 to incident downwelling irradiance Ed just above the water 

surface. The equation used was: 

 

                                         Rrs = (L0 -   f Ls) / Ed                                                           (17)       

 

Where Lo is the total radiance (from the ocean), which is contaminated by the sky 

radiance (Ls) and reflected off the sea surface and it is subtracted in order to obtain the 

water leaving radiance (Toole et al., 2000).  Ed is the incident downwelling radiance.  f is 

the Fresnel number which is the reflectance of the sea surface at a viewing angle, which 

counts for the percent of radiation of the sky that is reflected back to the sensor. At an 

angle of 45 degrees the Fresnel number is 0.028.  Above water measurements as well as 

the remote sensing reflectance are both sensitive to the proper removal of reflected sky 

radiance (Toole et al., 2000).  
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Rrs measurements were made with the GER-1500 Spectroradiometer at 45 degrees 

during clear skies. A clear sky is necessary because above water reflectance 

measurements vary with cloud conditions. 

The GER-1500 Spectroradiometer is an instrument from the Geophysical and 

Environmental Research Corporation. It is a lightweight, single beam field spectrometer 

that has a spectral range from 0.3 to 1.1 µm with a spectral sampling of 1.5. The 

instrument acquires single spectra in milliseconds. Figure 9 shows Remote sensing 

reflectance measurements taken at transects for validation of sensors. Measurements for 

sea grass were taken in Cayo Enrique and Media Luna, sand in Cayo Enrique and Media 

Luna, and coral in Cayo Enrique.  

 

 

Figure 9: Average of above water Remote sensing reflectance measurements for sea grass and 
sand and coral taken at transects for validation of sensors. 
 

3.5.2 Bottom Albedo measurements 

The bottom albedo measurements were also taken with the GER 1500 

Spectroradiometer in a waterproof cage (Figure 10).  A reference spectrum was collected 

from a calibrated panel (Spectralon) that reflects 99% of the incident radiation. Bottom 
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albedo was computed based on the ratio of target radiance and reference radiance. The 

decimal 0.99 refers to the percent reflected by the Spectralon reference. 

 

% Reflectance =     Target λ               * 0.99            (18) 
   Reference Panel λ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Average of underwater Remote sensing reflectance measurements for sea grass and 
sand (Left) and coral (Right), taken at transects. 
 
 
3.5.3 Bottom Types  

 
 
Three bottom types were studied and selected for image classification; sea grass, 

sand and coral (Figure 11). The percentage of living coral, coral cover or sub categories 

was not considered for image classification. Although shallow waters and deep waters 

were considered for classification, bathymetry corrections were not performed to the 

images. Of the methods applied the Lyzenga method was the only that compensates for 

variable depth. 
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Figure 11: Illustrations representing the different habitat categories used for classification( left- 
sea grass, center-coral, right-sand). 
 
 
3.5.4 Image Validation and Accuracy Assessment 
 
 
Field validation was conducted by selecting random points for each habitat class along 

the entire area of study at La Parguera.  

Thirty three points (Figure 12) were selected as reference for each habitat class at 

different locations including the area of Cayo Enrique, the test bed of this study. GPS 

points and GER Spectroradiometer above water measurements were also taken for the 

validation of the image data. The thirty two points selected per class were chosen 

collectively in different regions of the study area and were the same for both images, 

Ikonos and Hyperion (Figure 12 and Table 2). These points were randomly selected and 

at the same latitude and longitude in both images. For future studies more points should 

be collected and must be collected distant from each other and in different areas along the 

entire area of study. The pixel size in Hyperion (30 m) and the pixel size of Ikonos (1m) 

produce bias in the accuracy results because the pixel coverage ratio is 1:30 and the 

coverage of one meter is not exactly the coverage of 30 m, especially in terms of benthic 

habitats which are variable in composition. The pixel size and distance between points 

should be considered for point collection. 
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The accuracy assessment of classified habitat maps was evaluated using the confusion 

matrix (ENVI 4.0 tutorial). This is calculated by the comparison of the location and class 

of each ground truth point with the corresponding location and class in the classified 

image. This error matrix is a square array of rows and columns where the columns 

represent the reference data and the rows the classification generated by the remote 

sensed data and each cell has the sampling sited per class. Classified habitat maps were 

evaluated using the overall, user, and producer accuracy computed from the derived 

confusion matrices (Green et.al.2000). The overall accuracy is calculated by the sum of 

the number of pixels classified correctly divided by the sum of all the pixels in the entire 

ground truth classes. Ground truth ROI’s defines the true class of the pixels. The user’s 

accuracy is map based accuracy where the number of pixels correctly classified as a class 

is divided by the total number of pixels classified in that class. It is the probability that a 

pixel classified on the image is correctly classified when compared in the field. Error of 

commission occur when a pixel in a class is included when should be excluded. The 

producer accuracy is a reference based accuracy based in the probability that the 

classifier has labeled an image pixel into a specific class given that the ground truth is 

that class. It is the probability that any pixel in that category has been correctly classified. 

Correctly classified pixels are divided by the total number of ground reference pixels in 

that class. Error of omission will be to exclude a pixel that should be included in the 

class. The producer’s and user’s accuracy show the classification accuracy of individual 

classes.  

The kappa coefficient is another method for accuracy assessment and is included 

in the results. The Kappa coefficient is a measure of the proportional improvement by the 
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classifier over a purely random assignment of classes. It is calculated by multiplying the 

total number of pixels in all the ground truth classes by the sum of the confusion matrix 

diagonals, subtracting the sum of the ground truth pixels in a class times the sum of the 

classified pixels in that class summed over all classes, and dividing by the total number of 

pixels squared minus the sum of the ground truth pixels in that class times the sum of the 

classified pixels in that class summed over all classes (ENVI 4.0 Tutorials).  

 
 
 
Table 2: Field validation point data associated with figure 12. 
 

SUBSTRATE DEPTH LOCATION 
 

Sand 
 

6-7 Feet 
 

Media Luna 
 

Coral Community 
 

2 Feet 
Between Media Luna and 

Laurel 

 
Sea grass 

 
4 ½ Feet 

 
Laurel 

Sand  
2  Feet 

 
Enrique 

Sea grass  
2 Feet 

 
Enrique 

 
 



 37  

 
 
 

Figure 12: Field validation point location. A- seagrass (Cayo Enrique) and sand, B-
seagrass (Laurel), C-coral (Laurel),  
D-sand (Media Luna).  
 

3.5.5 Expected benefits 

This research provides the baseline for future habitat studies at la Parguera and for 

the testing of other sensors in this region. Sensors like AVIRIS, LASH and QuickBird are 

some examples of systems developed for earth studies that can be tested in this area. 

Field data collected for this project has been already used by engineering students in the 

testing and development of new image processing techniques and algorithms. The data 

and results included in this research can assist in the selection of the appropriate sensor 

and techniques to study benthic habitats at la Parguera. In general these studies are a 

reference for engineers in the development of sensors and image processing techniques 

and algorithms. For scientists it is of importance in the selection of cost and time 

effective sensors and selection of processing techniques. This research is another example 

of the need to develop a sensor with the qualifications to study underwater features. 

A 

B 

C

D
A

B C
D
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Chapter 4 

RESULTS 

4.1 Image classifications 

In order to obtain better results in the classification of underwater features masks 

were applied to the images using a range of values. Different ranges of values were used 

to create the masks but not all land and mangrove areas were completely covered and 

underwater pixels were included in the mask (Figure 13).  Mask polygons were created 

using ArcGIS to cover the land areas, mangrove areas well as boats and the waves 

generated by the boats.  

                                    

Figure 13:  Left, mask applied to Ikonos using a range of values. Right, mask applied to Ikonos 
using ArcGIS.  
 

All the image classifications available in ENVI 4.0 were applied to the images, including 

the unsupervised classifications. Unsupervised classifications resulted in inaccurate 

results and were not considered for mapping (Figure 14). The benthic regions were not 

clearly delineated. In general the best results were obtained using minimum distance 

supervised classification. In the case of Ikonos, the best results using minimum distance 
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classification were obtained after deglinting of the image where the boundaries between 

different bottom types are enhanced (Figure 13).  

 

Figure 14:  Left, Isodata unsupervised classification. Right, k-means unsupervised classification 
for Ikonos image. 
 

 

 

 

 

 

 

 

 

 
Figure 15: Minimum distance supervised classifications of  IKONOS raw and Deglinted Image. 
Left, IKONOS raw image classification. Right, IKONOS deglinted image classification. 
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After water column correction the classifications did not improve the results 

obtained after deglinting (Figure 16).  For sea grass the best classification were for bands 

red vs. green DII minimum distance classification.  For coral, the best results were 

obtained with the red vs green DII minimum distance classification and for sands the 

green vs. Blue DII minimum distance classification (Figure 14). The classifications 

performed to other pairs of bands were not accurate when classifying the benthic habitats 

at La Parguera. In general a specific pair of bands did not perform better than others. For 

each benthic class a specific pair of bands performed well but did not improve the results 

obtained before the application of water column correction to Ikonos.  

 

                                                          

Figure 16: Left, Sea grass red vs. green DII minimum distance classification. Center, Coral red vs 
green DII minimum distance classification. Right, Sand green vs. Blue DII minimum distance 
classification. 
 

The supervised classifications of Hyperion were performed after georeferencing 

of the images. The best results obtained in Hyperion classification where obtained after 

selecting a spectral subset in the visible bands (Figure 17). After processing, the maps are 

inaccurate and confusing and the benthic areas are not visible or clearly delineated. With 

the selection of the spectral subset better results are obtained in the image results.  
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The low signal to noise ratio of Hyperion and the pixel size and the nature of the 

post processing are factors that contribute to the results in the whole dataset. The 

classifications were executed after georeferencing of the images; it may alter the data 

results after image processing. Errors and original data modification can occur during 

processing. 

                 
 
 
 
 
 
 
 
 
 
 
A                                        B                                     C                                   D 
 
Figure 17: A, Raw minimum distance classified image. B, Hyperion atmospheric corrected and 
destriped image minimum distance classified image. C, Hyperion atmospheric corrected, 
destriped and deglinted minimum distance classified image. D,Hyperion spectral subset in the 
visible region (400-700 nm), georeferenced, destriped and deglinted image. 
 
 
IKONOS Accuracy Assessment 

 

The deglint algorithm applied to the IKONOS image improved significantly the 

contrast between subsurface features and boundaries between sand and seagrass areas.  

Overall accuracy in IKONOS (84.34%) showed significant improvement after deglinting 

of the image of 13.13 % over the raw image accuracy (71.21%). The improvement was 

also visible in the user accuracy (probability of a pixel to be classified as the class in the 

field) after glint corrections; seagrass (66%), sand (100%), and coral (100%) show 

improvements in this accuracies after correction. Coral shows 28% user accuracy in the 

raw data and after the glint correction it shows 100% user accuracy, this is a noticeable 
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improvement in the map classification. Sand (100%) and sea grass (66%) areas also show 

improvement after deglint corrections. These areas are generally shallow and mostly 

homogeneous in la Parguera. 

No significant improvement was shown after application of the Lyzenga method 

where the highest overall accuracy were approximately 68% for the depth invariant index 

band classification of coral, sea grass, and sand. But overall accuracy of these bands was 

mostly above 50%. The Lyzenga method compensates for variable depth, but no 

improvement in map accuracy were observed. Also the depths for point collection are 

variables depending on the substrate.  The overall accuracies were below the accuracies 

obtained in the raw image. The Lyzenga depth invariant index method gave a user’s 

accuracy very low for coral (<26%). The limitation of this method is that the same 

bottom type may not occur at variable range of depths thus affecting the estimation of 

diffuse attenuation coefficient (Maritorena, 1996). 

 
Table 3: Overall accuracies, user’s and producer’s accuracies for IKONOS 
classifications. 

 
Image Classification 

Class 
Producer 
accuracy 

User 
accuracy 

Overall 
accuracy 

Kappa  
Coefficient 

IKONOS 
Raw Image 

 
Sea grass 

 
45.45 

 
45.45 

 
71.21 

 
0.6545 

 Coral 24.24 28.57   
 Sand 100.00 97.06   
 Deep Water 84.85 84.85   
 Shallow Water 72.73 64.86   
 Mask 100.00 100.00   

IKONOS 
Deglinted 

 
Sea grass 

 
100.00 

 
66.00 

 
84.34 

 
0.8121 

 Coral 15.15 100.00   
 Sand 100.00 100.00   
 Deep Water 90.91 100.00   
 Shallow Water 100.00 70.21   
 Mask 100.00 100.00   

Lyzenga Coral 
Green-Blue 

 
 

Sea grass 

 
 

6.06 

 
 

12.50 

 
 

68.18 

 
 

0.6182 
 Coral 15.15 13.89   
 Sand 100.00 100.00   
 Deep Water 93.94 93.94   
 Shallow Water 93.94 65.96   
 Mask 100.00 100.00   
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Lyzenga Coral 
Red -Blue 

 
 

Sea grass 

 
 

57.58 

 
 

26.03 

 
 

47.97 

 
 

0.3758 
 Coral 6.06 13.33   
 Sand 100.00 97.06   
 Deep Water 24.24 44.44   
 Shallow Water 100.00 56.90   
 Mask 0 0   

Lyzenga Coral 
Red-Green 

 
 

Sea grass 

 
 

63.64 

 
 

51.22 

 
 

67.68 

 
 

0.6121 
 Coral 3.03 8.33   
 Sand 100.00 97.06   
 Deep Water 39.39 52.00   
 Shallow 100.00 62.26   
 Mask 100.00 100.00   

Lyzenga Sand 
Green -blue 

 
Sea grass 

 
6.06 

 
11.11 

 
68.6486 

 
0.6121 

 Coral 15.15 13.89   
 Sand 100.00 100.00   
 Deep Water 93.94 91.18   
 Shallow Water 90.91 68.18   
 Mask 100.00 100.00   

Lyzenga Sand 
Red - Blue 

 
Sea grass 

 
72.73 

 
57.14 

 
52.53 

 
0.4303 

 Coral 3.03 6.67   
 Sand 81.82 96.43   
 Deep Water 48.48 53.33   
 Shallow Water 9.09 23.08   
 Mask 100.00 47.14   

Lyzenga sand 
Red -green 

 
Sea grass 

9.09  
17.65 

 
55.05 

 
0.4606 

 Coral 3.03 6.67   
 Sand 27.27 90.00   
 Deep Water 90.91 35.71   
 Shallow Water 100.00 100.00   
 Mask 100.00 84.62   

Lyzenga 
sea grass 

Green-Blue 

 
 

Sea grass 

 
6.06 

 
11.11 

 
 

67.68 

 
 

0.6121 
 Coral 15.15 13.89   
 Sand 100.00 100.00   
 Deep Water 93.94 91.18   
 Shallow Water 90.91 68.18   
 Mask 100.00 100.00   

Lyzenga sea grass 
Red -blue 

 
 

Sea grass 

 
 

62.07 

 
 

48.65 

 
 

65.9459 

 
 

0.5818 
 Coral 6.45 16.67   
 Sand 100.00 96.97   
 Deep Water 25.81 44.44   
 Shallow Water 100.00 57.41   
 Mask 100.00 100.00   

Lyzenga 
Sea grass 

Red -Green 

 
 

Sea grass 

 
 

68.97 

 
 

60.61 

 
 

72.22 

 
 

0.6667 
 Coral 3.03 8.33   
 Sand 96.97 96.97   
 Deep Water 66.67 55.00   
 Shallow Water 100.00 75.00   
 Mask 100.00 100.00   
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4.3 HYPERION Accuracy Assessment 

 

The overall accuracy for Hyperion did not show improvement after application of the 

atmospheric correction and the deglint algorithm. Surprisingly the classification that 

performed the best was the one applied to the raw image data (72.73%). A spectral subset 

of hyperion were selected after application of the processing methods. Only the bands in 

the visible range were selected after the processing methods applied and the overall 

accuracy of the classification results improved slightly from a 72% overall accuracy to a 

75% overall accuracy. In this classification the user and producer accuracy of coral class 

is 0% and producer accuracies of sea grass, deep water and shallow water are 100 %. 

User accuracies for deep and shallow waters are 89.19 %, for sand 100% and for sea 

grass 56.9 %. The higher overall accuracy for Hyperion was obtained in the image with 

the visible bands spectral subset (75.25%). The longer wavelengths of Hyperion have low 

signal to noise ratio. Selecting only the visible range removes the longer wavelengths in 

the processing and selects the bands with better signal to noise ratio. This shows that the 

methods and algorithms applied to the image processing were proficient for some benthic 

habitats at these levels of processing. The longer wavelengths are used by ACORN in the 

atmospheric correction this affects the shorter bands in the processing. When the 

classification is applied to the whole set of bands the results are not as expected. 

Hyperion image raw data accuracy where similar to the IKONOS raw image accuracy, 

this shows that the post processing is crucial in order to improve the classifications 

results.  
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After application of the atmospheric correction to the unprocessed image the 

overall accuracy was reduced to 42.93% and after application of the deglint algorithm to 

that atmospherically corrected image a minimum improvement was observed getting an 

overall accuracy of 57.07%, but still it did not exceed the overall accuracy obtained in the 

image with the 400-700 nm spectral subset. Seagrass classification showed 100% in 

user’s and producer’s accuracies with the raw image and around 60% after other 

processing methods. Areas with coral in Hyperion raw data shows 57.14% user accuracy 

and 72.73% producer accuracy, higher than in the processed images where the accuracy 

was zero after application of the processing methods. Sand areas show similar results in 

the user’s accuracy with 100% in the raw image and the deglinted image, but lower 

percentages were observed in producer’s accuracy results. 

 
 
Table 4: Overall accuracies, use’s and producer’s accuracies for Hyperion classifications. 
 

 
Image Classification 

class 
Producer 
accuracy 

User  
accuracy 

Overall  
accuracy 

Kappa 
coefficient 

Hyperion Raw image Sea grass 100.00 100.00 72.72 0.6727 
 Coral 72.73 57.14   
 Sand 45.45 100.00   
 Deep Water 100.00 55.00   
 Shallow Water 18.18 40.00   
 Mask 100.00 100.00   

Hyperion Acorn Corrected  
Sea grass 

 
87.88 

 
63.04 

 
49.92 

 
0.3152 

 Coral 0.00 0.00   
 Sand 69.70 62.16   
 Deep Water 0.00 0.00   
 Shallow Water 0.00 0.00   
 Mask 100.00 100.00   

Hyperion Acorn Destriped 
Deglinted 

 
Sea grass 

 
100.00 

 
60.00 

 
57.07 

0.4848 

 Coral 0.00 0.00   
 Sand 66.67 100.00   
 Deep Water 75.76 29.41   
 Shallow Water 0.00 0.00   
 Mask 100.00 97.06   

Hyperion Acorn Destriped 
Deglinted-400-700 nm 

 
Sea grass 

 
100 

 
56.90 

75.25 0.7030 

 Coral 0 0   
 Sand 51.52 100   
 Deep Water 100 89.19   
 Shallow Water 100 89.19   
 Mask 100 100   
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4.3 Comparison between sensors 

In terms of overall accuracy IKONOS gave better results than Hyperion. The 

accuracy of Ikonos was higher than Hyperion when the raw images are compared.  After 

deglinting, IKONOS results were higher by an even more significant margin. The 

radiometric resolution, sensor calibration, and the pixel size are some of the reasons for 

lower accuracy with Hyperion. The low signal to noise ratio in this sensor is an important 

element to be considered after the atmospheric correction.  Low signal from the target of 

interest (i.e. seagrass, sand, or coral) adds error in the classification.  The spectral mixing 

in one single pixel of Hyperion (30 meters) could be another source of error, because it 

can cover an extensive area of these relative small reefs and different bottom types could 

be produced different signals that are mixed in the same pixel.  Using Hyperion the 

spectral mixing is very high. In contrast, IKONOS with a higher spatial resolution (1 

meter) has lower spectral mixing of benthic features per pixel. This increases the 

accuracy of pixel classification. The mixing of components in the pixel classification is 

the basis for the accuracy when classifying benthic features. 
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Chapter 5 

DISCUSSION 

Benthic communities in shallow areas are mapped better. Sands and seagrass are well 

mapped in Cayo Enrique.  Sea grasses and sands are located in the back reef lagoon 

which is a shallow region. The areas selected for testing sand were in the back reef 

lagoon and are mostly uniform sand areas. Carbonate sands and reef rubble in the reef 

crest are also well mapped. Sand areas along the study site are relatively shallow and 

mostly homogeneous as seen in IKONOS.   

Seagrass had good accuracies in most image classifications. Coverage of sea grass areas 

is very uniform in the study site and therefore the training pixels were very 

homogeneous. Errors of commission occur for this class because other types of 

vegetation are classified as sea grass, like syringodium. Seagrass in the back reef lagoon 

is mostly homogeneous. Bottom with sand and seagrass were much better classified than 

corals. Corals are in deeper regions of the reef and are difficult for mapping due to the 

depths of wavelength penetration. Coral bottoms were misclassified as shallow areas and 

submarine vegetation, such as algae. The photosynthetic algae in the coral can be 

confused spectrally with seagrass or other type of vegetation.   A relatively low accuracy 

was found when mapping corals in La Parguera.  

 The characteristics of the reef could be responsible for that because the specific area for 

testing the methods have corals at a slope of 45 degrees in the reef front and most of the 

corals in the area of study are sparse even when in the  tested area the corals were very 

shallow (1 meter). The water column exerts a strong effect in the signal of coral 

communities, especially those in deeper areas where absorption and scattering in the 
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water column are higher. Detailed classification of corals (i.e. subclasses) or even 

percentage coral cover per area cannot be obtained with the tested methods. The 

classifications using the water column depth invariant index bands in IKONOS produced 

very low overall accuracy when compared with field data. Low accuracies are obtained 

after this processing because during this processing spectral information is lost. The 

results show that the classification after deglinting of IKONOS image and prior to water 

column correction resulted in the best overall accuracies for this sensor.  

The best results obtained in the classifications performed with IKONOS and 

Hyperion images were the supervised Minimum Distance classifications. This was the 

supervised classification applied after all the processing methods.   

 Benthic habitats are in continuous change through the years. Another source of 

error in this study was the disparities in acquisition dates of the images and the field 

survey.  Hyperion data were acquired in 2002 and IKONOS data in 2000. Field surveys 

were conducted between summer 2004 and 2005.  The lack of metadata in IKONOS 

image required a dark pixel subtraction method (ENVI 4.0) for atmospheric correction 

instead of a more effective method for atmospheric correction.   All these factors add 

inaccuracy to the results in the image classifications and are limitations in the comparison 

between sensors. 
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Chapter 6 

CONCLUSIONS 

 

Ikonos provides the best reference map for La Parguera region. According to the 

analyses and techniques used in this study the overall accuracy of IKONOS deglinted 

image was significantly higher than with Hyperion for mapping benthic habitats in La 

Parguera, Puerto Rico.  These results show the benefits of higher spatial resolution when 

mapping benthic features. After deglinting, the IKONOS accuracies were higher by an 

even more significant margin. Ikonos shows good overall accuracy and kappa coefficient 

results. The results show that the classification after deglinting of IKONOS image and 

prior to water column correction is the best classification map for La Parguera.  

 In general good accuracies were obtained when mapping coral reefs at la Parguera. 

Hyperion raw data shows similar accuracy to Ikonos raw data when mapping coral reefs 

in La Parguera. It shows the importance of good spectral and spatial resolution. The 

radiometric resolution, sensor calibration, and the pixel size are some of the reasons for 

lower accuracy with Hyperion. The low signal to noise ratio in this sensor is an important 

element to be considered after the atmospheric correction.  Hyperion spectral resolution 

is superior but the spatial resolution of this sensor is a limitation as a result of the mixing 

of components in each pixel.  In a singular pixel of 30 meters various benthic habitats are 

included and the level of mixing is too high. The method for image classification of 

Hyperion image did not used spectral field data as a reference classification of the benthic 

habitats. This is a point to be considered in the resulting maps that were classified based 

in the transect GPS location of benthic habitats. The results in this research show that the 
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best accuracy was obtained with Ikonos sensor after deglinting. Accuracies of both 

sensors were very similar prior to the application of the algorithms for performance 

therefore the application of other methods could improve the Hyperion map accuracies.  

Ikonos has shown good overall accuracies although it has not been atmospherically 

corrected with an atmospheric correction module like ACORN. The good spatial 

resolution is definitely a characteristic that a sensor should have in order to study benthic 

habitats.  

This research provides the baseline for future habitat studies at la Parguera and for 

the testing of other sensors in this region. Field data collected for this project has been 

already used by engineering students in the testing and development of new image 

processing techniques and algorithms. The data and results included in this research can 

assist in the selection of the appropriate techniques and sensors to study benthic habitats 

at la Parguera. In general these studies are a reference for engineers in the development of 

sensors, image processing techniques and algorithms and for scientists in the selection of 

cost effective, time effective sensors and processing techniques. This is another example 

of the need to develop a sensor with the qualifications to study underwater features. 
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Chapter 7 

RECOMMENDATIONS 

 

Based on our work we recommend a most intensive image processing of both 

sensors in order to improve the atmospheric and water column corrections. Bathymetric 

corrections should be included in the analyses to be conducted in order to compensate for 

variable depth. The Lyzenga method is an image based technique for bathymetric 

correction. Other methods of predicting bathymetry are; Benny and Dawson Method 

(1983), Jupp Depth of Penetration Zones Method (1988), and the Lyzenga method.  

Bathymetric maps, sonar data and airborne LIDAR data are just some examples of data 

that can be complementary to remote sensing studies. The optical properties of the water 

column should be considered in order to understand the signal received by the sensor. It 

is also important to consider the radiometric, spectral, and spatial resolutions of the 

sensors used for these purposes.  Perhaps it will be necessary to test other remote sensors, 

like the recently improved AVIRIS. Sensors like AVIRIS, LASH and QuickBird are 

some examples of the systems developed for earth studies that can be tested in this area. 

Because Hyperion has low signal to noise ratio we have to test other spectroscopic 

sensors, such as AVIRIS in order to compare the benefits of high spatial resolution versus 

high spectral resolution. 

In terms of image collection, the date of collection and the field work should be 

completed at the same time. Benthic habitats are in constant change in particular the 

movement of the sands in the reef.  Field transects should include percentage of coral 

cover, sea grass or sand and the mixing of these components. Future field work should 
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include a quantification of the cover percent of the classes (sand, seagrass and coral). 

Field validation data and transect data should include more points for reference and 

points dispersed along the entire area of study and other reefs at La Parguera in order to 

reduce bias in the results .  
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Appendix 1:  
 
 
Sun Glint correction for IKONOS image 
 
 

             

Left image shows Ikonos raw data with mask. Right image shows IKONOS deglinted image. 
 

 

 

 

 

 

 

 

 

 
Minimum distance supervised classifications of IKONOS raw and Deglinted Image. Left, 
IKONOS raw image classification. Right, IKONOS deglinted image classification. 
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Appendix 2: 
 
Water Column Correction –Lyzenga Method 
 
 

 
 
 
Regions selected from the digital imagery over areas of submerged sand, sea grass and 
coral for calculation of attenuation coefficients.  
 
 
 
 
 
 
 
 

   Coral -3 feet 

Sand -10 feet

Sand -4-5 feet

Sea   grass 
4-5 feet

Sea grass 
12 feet 

 Soft Coral -15 feet 
-3 feet 

Coral -1-2 
feet 



 61  

 
 
 
Table 1: Ratio of attenuation coefficient in band I and band J by substrate. 
 
 

 
                       

Substrate 
 

Ln Bands 
(Ki/Kj )Ratio of attenuation 

coefficients in 
band i and band j 

 
 

Sand 

 
Red vs. Green 

 

 
0.7703 

 
 

 
Green vs. Blue 

 

 
0.7697 

 
 

 
Red vs. Blue 

 

 
0.6016 

 
 

Seagrass 

 
Red vs. Green 

 

 
0.7659 

  
Green vs. Blue 

 

 
0.7248 

  
Red vs. Blue 

 

 
0.5536 

 
 

Coral 

 
Red vs. Green 

 

 
0.5661 

  
Green vs. Blue 

 

 
0.6324 

  
Red vs. Blue 

 

 
0.3818 
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Water Column Correction –Lyzenga Method Depth Invariant Index Bands 
 
Coral Depth Invariant Index Band 

                 
 Left ,Coral Green vs Blue DII minimum distance classification.. Right, Red vs. Blue DII 
minimum distance classification. 
 

                          
 
Left, Coral red vs green DII minimum distance classification. Sand green vs. Blue DII 
minimum distance classification. 
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Left ,sand red vs.green DII minimum distance classification. Right sand red vs. blue DII 
minimum distance classification. 
 
 
      

                         
 
Left, seagrass green vs. blue DII minimum distance classification.seagrass red vs blue 
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Sea grass red vs. green DII minimum distance classification. 
 
 
 
 
 
Lyzenga Method –water column correction. Depth invariant index biplot graphs. 
 
 

Coral Red Band vs Green Band
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Coral Green Band vs Blue Band

y = 0.6324x + 2.3541
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Coral Red Band vs Blue Band
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Seagrass Red Band vs Green Band

y = 0.7659x + 2.5293
R2 = 0.9501

0

1

2

3

4

5

6

7

3 3.5 4 4.5 5 5.5

Ln Red Band

Ln
 G

re
en

 B
an

d

Series1
Linear (Series1)

 
 
 



 66  

Seagrass Green Band vs Blue Band
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Seagrass Red Band vs Blue Band
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Sand Red Band vs Green Band
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Sand Green Band vs Blue Band
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Sand Red Band vs Blue Band
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Appendix 3: 
 
Transect data points 

 
Location of transect GPS data points: Seagrass- black, sand-blue, coral-purple. Yellow 
lines represent transect approximate location. 
 

 

 
 

 

PAR-5
PAR-3

PAR-1

PAR-6

PAR-4

PAR-2

PAR-16 

PAR- 9
PAR-7

PAR-12

PAR-11

PAR-10
PAR- 8

PAR-15

P- 

PAR-13 

PAR-17 

PAR-18 

 

HYPERION GPS POINT IKONOS GPS POINTS 
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GPS data point of transects 
 
 

SUBSTRATE 
 

TRANSECT EAST 
POINT 

WEST 
POINT 

GPS Point 

 
 
 

Seagrass 
 

 
1 

East Point  
17 0 57’. 291    
67 0 03’ .122” 

 

West Point  
17 0 57’ .297”  67 
0 03’ .131” 

 

East -PAR-1 
 
West-PAR2 

  
2 

East Point   
17 0 57’ .303” 
67 0 03’ .118” 

West Point    
17 0 57’ .304”        
67 0 03’ .131” 

               

East -PAR-3 
 
West-PAR-4 

  
3 

East Point     
17 0 57’ .310”        
67 0 03’ .119” 

West Point 
17 0 57’ .308”        
67 0 03’ .130” 

 

East -PAR-5 
 
West-PAR-6 

 
 

Sand 

 
1 

East Point 
17 057’ .288”         
67 0 03’ .135” 

West Point   
17 0 57’ .290”        
67 0 03’ .144” 

 

East -PAR-7 
 
West-PAR-8 

  
2 

East Point      
17 0  57’ .290”       
67 0 03’ .134” 

 

West Point   
17 0 57’ .292”        
67 0  03’ .144” 

 

East -PAR-9 
 
West-PAR-10 

  
3 

South Point  
17 0 57’ .291”        
67 0 03’ .152” 

North Point  
17 0 57’ .301”        
67 0 03’ .154” 

South- PAR-11 
 
North- PAR-12 

 
 

Coral 
 

 
1 

South Point  
17 0 57’.278 
67 0 03’.179 
  

North Point 
17 0 57’.287    
67 0 03’.170 

South- PAR-13 
 
North- PAR-14 

  
2 

South Point  
17 0 57’.286    
67 0 03’.167 
  

North Point  
17 0 57’.298    
67 0 03’.171 

South- PAR-15 
 
North- PAR-16 

  
3 

South Point 
17 0 57’.298    
67 0 03’.171 
  

North Point  
17 0 57’.292    
67 0 03’.190 

South- PAR-17 
 
North- PAR-18 
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GPS Points in the image 
 

 
GPS Point 

 

 
Coordinates 

PAR-1- 17 0 57’17.45” N 
67 0 3’ 7.31”  W 

PAR-2 17 0 57’17.84 N 
67 0 3’ 7.85  W 

PAR-3 17 0 57’18.17 N 
67 0 3’ 7.11  W 

PAR-4 17 0 57’18.23 N 
67 0 3’ 7.85  W 

PAR-5 17 0 57’18.59 N 
67 0 3’ 7.11  W 

PAR-6 17 0 57’18.52 N 
67 0 3’ 7.79  W 

PAR-7 17 0 57’17.29 N 
67 0 3’ 8.06  W 

PAR-8 17 0 57’17.41 N 
67 0 3’ 8.67  W 

PAR-9 17 0 57’17.42 N 
67 0 3’ 8.06  W 

PAR-10 17 0 57’17.51 N 
67 0 3’ 8.67  W 

PAR-11 17 0 57’17.48 N 
67 0 3’ 9.11  W 

PAR-12 17 0 57’18.03 N 
67 0 3’ 9.21  W 

PAR-13 17 0 57’16.69 N 
67 0 3’ 10.77  W 

PAR-14 17 0 57’17.25 N 
67 0 3’ 10.20  W 

PAR-15 17 0 57’17.18 N 
67 0 3’ 9.99  W 

PAR-16 17 0 57’17.86 N 
67 0 3’ 10.23  W 

PAR-17 17 0 57’17. 54 N 
67 0 3’ 11.39  W 

PAR-18 17 0 57’18.32 N 
67 0 3’ 11.46 W 
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Appendix 4: 
Hyperion classifications 
 
 

                                    
 
 Hyperion Envi raw image (Left), Minimum distance classified image (Right). 
 
    
 

                   
 
Hyperion atmospheric corrected and destriped image (Left), minimum distance classified 
image (Right). 
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Hyperion atmospheric corrected,destriped and deglinted image (Left), minimum distance 
classified image (Right). 
 


