
PETRI NET WORKFLOW MODELING FOR DIGITAL
PUBLISHING MEASURING QUANTITATIVE DEPENDABILITY

ATTRIBUTES

By

Gustavo Adolfo Chaparro-Baquero

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

July 12th, 2006

Approved by:

José Fernando Vega-Riveros, Ph.D Date
Member, Graduate Committee

Wilson Rivera, Ph.D Date
Member, Graduate Committee

Nayda G. Santiago, Ph.D Date
President, Graduate Committee

Karen Orengo, Ph.D Date
Representative of Graduate Studies

Isidoro Couvertier, Ph.D Date
Director of the Department

Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

PETRI NET WORKFLOW MODELING FOR DIGITAL
PUBLISHING MEASURING QUANTITATIVE DEPENDABILITY

ATTRIBUTES

By

Gustavo Adolfo Chaparro-Baquero

July 12th 2006

Chair: Nayda G. Santiago, Ph.D
Major Department: Electrical and Computer Engineering

This work presents the concept of workflow modeling using Generalized Sto-

chastic Petri Nets (GSPN) for the Digital Publishing business process and how the

attributes of dependability are measured in a quantitative form. In this approach,

these are measured from the workflow model itself instead from a combinatorial

model adapting some methodologies and strategies for combinatorial model build

to the creation of the workflow process definition, improving the analysis of a work-

flow model. This approach will lead to make the model more versatile. Contrasting

the analysis provided in other research projects, our work proposes an analysis of

quantitative dependability over a workflow model, and not only an analysis of its

structure and performance.

Publishing market competence is highly close and prices are regulated by the

market itself with a very little gap between cost and profit. How reliable or, even

more, trustable a print-shop could be to its client means to increase or decrease that

gap of profitableness. Applying these measure concepts to the Digital Publishing

ii

pre-press process provides a better workflow management in this area than current

procedures, since this process is based on its trustworthiness.

Modeling the business process of Digital Publishing using the theory of Workflow-

Nets and translating them into GSPN, we obtain a Quantitative Dependability WF-

net based Model (QDWM). The methodology for creating a QDWM, which allows

workflow modeling measuring quantitative dependability attributes is introduced,

and the results for a case study on preflight and ripping stages of the Digital Pub-

lishing workflow are presented. A contrast between results from a Fault Tree Model

(Combinatorial Model) and a QDWM, shows that the later is able to measure quan-

titative dependability attributes maintaining its main intended function: to be a

workflow model.

iii

Resumen de Tesis Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ciencias

MODELAJE DEL FLUJO-DE-TRABAJO DEL PROCESO DE
IMPRESION DIGITAL MIDIENDO ATRIBUTOS DE
DEPENDABILIDAD EN FORMA CUANTITATIVA

Por

Gustavo Adolfo Chaparro-Baquero

Julio 12 2006

Consejero: Nayda G. Santiago, Ph.D
Departamento: Ingenieŕıa Eléctrica y Computadoras

Esta tesis presenta el concepto de modelaje de flujo-de-trabajo utilizando redes

de petri estocásticas generalizadas para el proceso empresarial de publicaciones dig-

itales y la forma en la cual los atributos de dependabilidad son medidos en forma

cuantitativa. En la solución presentada, estas medidas son tomadas directamente del

modelo de flujo-de-trabajo en lugar de un modelo combinatorio adaptando algunas

metodoloǵıas y estrategias de diseo de modelos combinatorios a la creación de un

modelo de flujo-de-trabajo, mejorando asi el análisis de éste último. Esto conlleva a

hacer el modelo mas versátil. En contraste con el análisis provisto en otros trabajos

de investigación, nuestro trabajo propone un análisis de dependabilidad en forma

cuantitativa sobre un modelo de flujo-de-trabajo y no solamente un análisis de su

estructura y desempeño.

El mercado de la industria de la publicación digital es altamente cerrado y los

precios son regulados por el mercado mismo con un muy pequeo margen entre costo y

beneficio. Qu tan acreditable, o aun más, confiable una imprenta pueda ser para sus

clientes significa un mayor o menor incremento en ese margen de ganancia. Al aplicar

iv

estos nuevos conceptos de medida al proceso de preimpresión de publicación digital

se provee una mejor administración del flujo-de-trabajo para esta area comparando

con los procesos que actualmente se llevan a cabo, ya que este proceso, como se dijo

anteriormente, esta altamente basado en su confiabilidad.

Al modelar el proceso de negocios de publicación digital usando la teoria de

Workflow-nets y traduciendo este modelo a redes de petri generalizadas, se obtiene

un Modelo de Dependabilidad Cuantitativa basado en Workflow-Nets (QDWM). Se

introduce la metodoloǵıa para la creación de este modelo, el cual permite medir

atributos de dependabilidad de forma cuantitativa a partir de un modelo de flujo-

de-trabajo y los resultados para los casos de estudio de las estaciones de ”Preflight”

y ”Ripping” tambien son presentados. Un contraste entre los resultados de un

Arbol de Faltas y un QDWM, muestra que éste último es capaz de medir atributos

de dependabilidad de forma cuantitativa manteniendo su función principal: ser un

modelo de flujo-de-trabajo.

v

Copyright c© 2006

by

Gustavo Adolfo Chaparro-Baquero

This document is dedicated to every person who has helped me in this long trip,

and it is also dedicated to every person that believed in me, specially my Mother,

my Aunt, my Grandma and my beloved family.

ACKNOWLEDGMENTS

Thanks to my advisor, graduate committee, my mother, aunt, grandma and

my whole family, my huge group of friends, PDC and ADMG Labs, HP Labs, Eng.

Sameer Handam and thanks to all my sponsors.

This work has been supported by a grant from the Imaging and Printing Group

(IPG) of Hewlett-Packard (HP), Aguadilla, Puerto Rico.

viii

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iv

ACKNOWLEDGMENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

LIST OF SYMBOLS . xv

1 INTRODUCTION . 1

1.1 Preface . 1
1.2 Problem Statement . 3
1.3 Solution Approach . 3
1.4 Thesis Structure . 3

2 PRELIMINARY CONCEPTS . 5

2.1 Petri Nets . 5
2.1.1 Petri Net Extensions . 6
2.1.2 Timed Petri Nets . 7

2.2 Workflow Modeling . 10
2.2.1 Workflow-nets . 12
2.2.2 Measures Taken from a workflow model based on Petri Nets 15

2.3 Dependability . 16

3 DEVELOPING A WF-NET MODEL FOR DIGITAL PUBLISHING . . 21

4 MEASURING DEPENDABILITY ATTRIBUTES USING A WORK-
FLOW MODEL . 30

4.1 The Preflight subprocess . 31
4.1.1 Alternative model to measure dependability applied to the

Preflight process . 32
4.1.2 Develop a WF-net including fault parameters for Preflight . 34

4.2 The Ripping subprocess . 37

ix

4.2.1 Alternative model to measure dependability applied to the
Ripping process . 39

4.2.2 Develop a WF-net including fault parameters for Ripping . 40

5 COMPARATIVE MEASURES, RESULTS AND ANALYSIS 44

5.1 Software Tool . 45
5.2 Analysis for the Preflight subprocess 48
5.3 Analysis for the Ripping subprocess 50

6 CONCLUSION AND FUTURE WORK 52

6.1 Concluding remarks . 52
6.2 Future work . 53

APPENDICES . 55

A SOFTWARE TOOL CODE - SERVICE MANUAL 56

A.1 System Requirements . 56

B SOFTWARE TOOL - USER MANUAL 57

B.1 Getting Started . 57
B.2 Petri Net Simulator Features . 57
B.3 Functions . 59

BIOGRAPHICAL SKETCH . 66

x

LIST OF TABLES
Table page

1–1 Digital Publishing pre-press process stages 2

2–1 Description of the additional transitions of a Workflow-net 12

4–1 Analysis of the possible faults present in preflight 32

4–2 Analysis of the possible errors present in ripping 37

xi

LIST OF FIGURES
Figure page

2–1 Example of a Petri Net (PN) . 5

2–2 Example of a Timed Petri Net . 8

2–3 Example of a Reachability Graph . 9

2–4 Example of how to obtain a Continuous Time Markov Chain from a
Reachability Graph of a GSPN . 10

2–5 Additional transitions of a Workflow-net and their corresponding PN
meaning . 13

2–6 Description of the basic constructions for routing tasks 14

2–7 Dependability Taxonomy . 17

2–8 Fault Tree Diagram example . 19

3–1 Workflow model for the Digital Publishing pre-press process 24

3–2 Model representation of the Intent subprocess 25

3–3 Model representation of the Preflight subprocess 26

3–4 Model representation of the Imposition subprocess 27

3–5 Model representation of the Ripping subprocess 27

3–6 WoPeD screen-shot showing the DP Workflow-net 29

3–7 Woflan screen-shot showing the analysis done over the DP Workflow-net 29

4–1 Fault Tree for the Preflight pre-press process 33

4–2 Replacing the subprocess ”check and repair faults in the job” in the
preflight stage WF-net (figure 3–3) 34

4–3 Fault treatment subprocess . 35

4–4 Complete WF-net of the preflight process after include the fault treat-
ment subprocess . 36

4–5 OR-split translation into GSPN . 37

xii

4–6 Workflow Model of the Preflight pre-press process based on GSPN . . 38

4–7 Fault Tree for the Ripping pre-press process 40

4–8 Replacing the subprocess ”check and repair errors in the job” in the
ripping stage WF-net (figure 3–5) 41

4–9 Complete WF-net of the ripping process after include the fault treat-
ment subprocess . 42

4–10 Workflow Model of the Ripping pre-press process based on GSPN . . 43

5–1 Graphical User Interface (GUI) of Simulator application. On the top
we see the function buttons, and on the bottom we can see the
drawing area . 46

5–2 Pop up menu for editing primitive attributes. This menu is called
when a right click is performed over a primitive and the program
is set into data entry mode (Attribute button is clicked) 47

5–3 Batch-Processing application screen-shot 49

5–4 Batch-Processing application screen-shot calling Ptplot 49

B–1 Graphical User Interface (GUI) of Simulator application. On the top
we see the function buttons, and on the bottom we can see the
drawing area . 58

B–2 Pop up menu for editing primitive attributes. This menu is called
when a right click is performed over a primitive and the program
is set into data entry mode (Attribute button is clicked) 60

xiii

LIST OF ABBREVIATIONS

DP Digital Publishing
RIP Raster Image Processing
WF-net Workflow-net
PN Petri Nets
SPN Stochastic Petri Net.
GSPN Generalized Stochastic Petri Net.
CTMC Continuous Time Markov Chain
QDWM Quantitative Dependability WF-net based Model

xiv

LIST OF SYMBOLS

λi Exponential distribution rate for each transition firing
PF Probability of Failure
R Reliability

xv

CHAPTER 1

INTRODUCTION

1.1 Preface

Digital Publishing (DP) is the process of linking printing presses to computers

with the purpose of raise the quality level for short-run printing. However, the

realization of this potential has been seriously hampered by a number of difficulties.

These difficulties include both the problem of getting the document to print correctly

without faults and errors on the press and the difficulty of managing the increasingly

complex workflow. [1].

The most common format used in graphic arts and printshops is PDF (Portable

Document Format), which was not only developed for graphic arts industry, but also

for the Internet and enterprise world. For that reason, it is flexible to include or

exclude certain objects and parameters (like fonts and sounds), that may be the

source of an incorrect job printing. Thus, this flexibility causes the faults and future

failures present in the system.

Consequently, digital publishing not only opens up new business but also re-

quires new business models which lead to new workflow designs. The fact that

information remains digital from the design stage all the way to printing leads to

potential automation of processes that in traditional workshops are still manually

executed.

The pre-press process in DP consists on different job treatment stages involving

the correct set up of each job in order to be printed. The typical pre-press stages in

a DP workflow are described in Table 1–1 [2].

1

2

Table 1–1: Digital Publishing pre-press process stages

Stage Description
Intent Track the document specifications provided by the client, like

type of job (book, brochure, poster, etc.), tolerance of quality
(Magazine, Newspaper, flyer, etc.), and due date of the job.

Pre-flight Check if the digital document has all the elements requited
to perform well in the production workflow. These elements
include page file format, image resolution, font types, safety
margins and mismatched colors.

Trapping Overlap colors to compensate press registration. Register is the
accurate positioning of two or more colors of ink in a printed
sheet.

Imposition Arrange individual pages on a press sheet, so that when it is
folded and trimmed, the pages are in the correct orientation
and order.

Proofing Check physically if there are faults remaining in the job ver-
ifying the output before printed. Provides an overall view of
the color, sizes, and placements of all job elements. Sometimes
printshops use proofing printers that simulate the results ob-
tained in the high-volume printers. Conventional way is film-
based.

Ripping Decode Postscript, creates an intermediate list of objects and
instructions, and finally converts graphic elements into bitmaps
for rendering on an output device. The term Ripping is well-
known in the DP industry. It is going to be used along this
document making reference to the action of RIP (Raster Image
Processing) a job document.

There are isolated software tools that process job documents in each stage of

the DP workflow for the DP pre-press process. Each of these software packages

is designed to complete a stage of the DP workflow, but they do not ensure by

themselves the correct printing of a job. There are some packages available aimed

at the managing of a DP workflow. However, those packages cannot guarantee the

automation of the entire process with an acceptable level of reliability. An industry

goal is to integrate the processes into a production workflow or a supply chain path

to reduce the costs, increase productivity, and serve customers better [3].

3

1.2 Problem Statement

One of our goals is to create a workflow process definition of the pre-press DP

process, integrating every singular component of each stage into a unique produc-

tion workflow. The rational is that this workflow definition would improve the global

process itself and consequently its dependability. The analysis of dependability is

useful if the system or process needs to be critically trustable or if its failures are

decreasing the throughput of the system. Besides, to measure dependability quanti-

tatively aids in the analysis of the behavior of the system in the presence of faults. It

also estimates which parameters provide the system with a higher trustworthiness.

Performance is useful to characterize the system and its throughput, but quantitative

measures of dependability shows the probabilistic estimates of the future incidence

of the faults. This measures help justify the functional specifications that the system

has to meet.

To create a workflow process definition, it is necessary to know the business

process definition to be modeled, in order to map it to a workflow model. From

the resultant workflow model we should be able to analyze the dependability of

the system, measuring quantitatively attributes of dependability such as reliability,

maintainability, availability and safety.

1.3 Solution Approach

This work describes the concept of workflow modeling using Petri Nets for

the Digital Publishing business process and how the attributes of dependability are

measured in a quantitative form, improving the analysis tools necessary to achieve

a good workflow process definition. We also propose a methodology for measuring

quantitative dependability attributes from a workflow process definition.

1.4 Thesis Structure

The thesis is organized as follows. Chapter 2 provides background related to

Petri Nets, workflow modeling and dependability. Chapter 3 presents a DP workflow

4

based on the informal description of the business process. Chapter 4 describes the

application of an alternative methodology to measure dependability for DP, and the

use of Generalized Stochastic Petri Nets for the analysis of workflow model char-

acteristics. Attributes of dependability are measured in a quantitative form, from

the workflow model itself to improve modeling. Finally we point out a comparison

between results from both methodologies, and concluding remarks in chapters 5,

and 6, respectively. Appendix A describes the service manual for the software tool

developed for this project that implements QDWMs and appendix B shows the its

user manual.

CHAPTER 2

PRELIMINARY CONCEPTS

There are three basic concepts involved in this work: Petri Nets, modeling

of workflows, and dependability. In the following paragraphs these concepts are

described.

2.1 Petri Nets

A Petri Net (PN) is a five-tuple (P, T, I, O, MP) where P represents a set

of places, P = p1, p2, ..., pn, with one place for each circle in the Petri Net graph;

T represents a set of transitions, T = t1, t2, ..., tm, with one for each bar in the

Petri Net graph; I represents an input function that defines directed arcs from

places to transitions; O represents an output function that defines directed arcs

from transitions to places; and finally MP represents the marking of places with

tokens. Tokens are represented as small dots or integer numbers and the diminution

of tokens over the places determine the state of a Petri Net. An example of a Petri

Net is shown in figure 2–1, where the circles represents places, the boxes represents

transitions and the tokens are represented by small dots.

Figure 2–1: Example of a Petri Net (PN)

5

6

Transitions are the active components of a Petri Net. A transition could rep-

resent: events, operations, transformation, transportation and so on. Places are

passive and they could represent: medium, buffer, geographical locations, phase,

and conditions. Tokens often indicate objects (physical or representing informa-

tion). The dynamic behavior of the system is then modeled by the flow of token

and firing of transitions.

As a graphical tool, Petri nets can be used as a visual-communication aid sim-

ilar to flow charts, block diagrams, and networks. In addition, tokens are used in

these nets to simulate the dynamic and concurrent activities of systems. As a math-

ematical tool, it is possible to set up state equations, algebraic equations, and other

mathematical models governing the behavior of systems.

Petri Nets provide a uniform environment for modeling, formal analysis, and

design of discrete event systems. Petri Nets models are used for the analysis of behav-

ioral properties and performance evaluation, as well as for systematic construction

of discrete-event simulators [4]. In a discrete event system, discrete entities change

state as events occur and the state of the system changes only when those events

occur. Digital Printing involves a combination of separate stages that manipulates

a job in order to ensure its printability and its correct delivery to the client. The

arrival, manipulation and print out of those jobs are discrete events [2]. For that

reason Digital Publishing is modeled as a discrete event system.

Petri nets have evolved to incorporate more detailed techniques for modeling.

Those techniques have been called Extensions.

2.1.1 Petri Net Extensions

Since their invention in the early 60’s, Petri Nets theory have been increased

with new ideas, which means that a Petri Net could be enhanced with different

type of extensions. A High level Petri net is a net that involves three extensions

useful for describing workflow models and mapping business process to them. The

7

three variants are: Colored Petri Nets, Hierarchical Petri Nets, and Petri Nets with

time. Colored Petri Nets associate a different color to each token generated for

each case routed through the net. Thus, a token color is associated with singular

characteristics depending on the case. Hierarchical Petri Nets associate subnets to

some transitions of a main net. This helps build and organize easily a net because

each subprocess of a main process could be represented with a subnet of a main

net. The final variant, Petri nets with time, have had many approaches. One of

them associates a variable of time with each token. This number acts as the firing

enabling time of that token, which means that, for instance, a token with enabling

time of six cannot be fired before six units of time after its arrival to the place. This

is helpful to model the timing of a process [5]. Another approach for a Petri Net

with time, Timed Petri Nets, associates time with a firing delay on each transition

in the net.

2.1.2 Timed Petri Nets

To study performance and dependability issues of systems it is necessary to

include a timing concept into the model, because an ordinary PN only describes

the structure of the model, but performance and dependability analysis involves

also time evolution study. There are several possibilities to do this for a Petri net.

However, the most common way is to associate a firing delay with each transition.

This delay specifies the time that the transition has to be enabled, before it can

actually fire. If the delay follows a random distribution function, the resulting net

class is called stochastic Petri net. Different types of transitions can be distinguished

depending on their associated delay. These include immediate transitions (no de-

lay), exponential transitions (delay is an exponential distribution), and deterministic

transitions (delay is fixed). An example of a Timed Petri Net is shown in figure 2–2.

As it was mentioned before, the dynamic behavior of the system is determined

by the movement of tokens through the net. This movement is product of transition

8

Figure 2–2: Example of a Timed Petri Net

fire enabling. A transition is enabled to fire when every input place associated with

it has the number of tokens that each arc specifies. When any transition fires tokens,

those that were at the input places are removed, but just one transition is enabled

to fire at a time. The multiplicity of each arc, which is the number of tokens to be

removed or fired, is specified as an integer close to the arc, but if it is not specified,

its default value is one.

Each configuration or distribution of tokens along the Petri Net represents a

state of the net, and this state is called a marking, thus each transition firing gen-

erates a marking of the net. If the number of tokens is finite or bounded, then

the number of markings is too. If a marking Mx could be obtained from an initial

marking Mi through token firings, it is said that the marking Mx is reachable from

the marking Mi. The reachability set is a graph where the initial node represents

the initial marking of a net, Mi and each subsequent child of this node represents

the reachability marking after firing each transition from a specific marking. An

inhibitor arc is an arc that will cause a transition firing, if the number of tokens

in the input place indicated by its multiplicity are not in this input place. If the

inhibitor arc is connected to an output place, this arc will remove the tokens fired

from the net, avoiding them to reach the output place. In figure 2–3 an example of

a Petri Net and its corresponding Reachability Graph is shown.

9

(a) Reachability Graph (b) Petri Net

Figure 2–3: Example of a Reachability Graph

Stochastic Petri Nets

A Stochastic Petri Net (SPN) has associated a firing delay to all of its transition,

and this delay of time is associated with a random variable exponentially distributed.

This means that the distribution of the random variable Xi of the firing time of a

transition is given by FXi
(X) = 1−e−λi·X . The average time of firing of the transition

ti is 1
λi

. The qualitative analysis of a SPN is made analyzing the Markovian process

associated with the SPN itself. This is done by adding to each arc of the reachability

graph, a weight equivalent to the exponential distribution rate (λi) of each transition

firing. This results in obtaining a Markov chain from the SPN. Achieving the steady

state distribution of the Markov chain, is possible to compute performance measures

like the probability of being in a subset of markings, the mean number of tokens

and the probability of firing any transition.

Generalized Stochastic Petri Nets

Stochastic Petri Nets are helpful for evaluating in terms of probabilities the

extent to which some attributes like availability, maintainability, safety and relia-

bility are satisfied into a system [6]. It is not always useful to associate a random

10

distribution function of time to each firing transition in the net, because either the

execution time of this transition is zero (immediate) or this execution time could be

approximated to zero. The inclusion of immediate transitions makes it easier the

analysis of the net reducing the states that have to be computed. A Petri Net that

involves exponentially distributed transitions and immediate transitions is called

a Generalized Stochastic Petri Net (GSPN) [7]. Figure 2–4 shows the process of

obtaining a Continuous Time Markov Chain (CTMC) from a GSPN. First, the cor-

responding Reachability Graph is obtained from the GSPN. Then this reachability

graph is converted into a CTMC.

(a) GSPN Example

(b) Reachability Graph (c) Continuous Time Markov Chain

Figure 2–4: Example of how to obtain a Continuous Time Markov Chain from a
Reachability Graph of a GSPN

2.2 Workflow Modeling

Workflow is referred to the study of operational aspects of a specific activity in

a workable environment. This includes how to arrange tasks, how to perform them,

how to establish their order of execution and how to supervise them. There are

different concepts that must be kept in mind in order to model a workflow. A case

11

is defined as the tangible object that is processed or modified in the workflow. Each

case has a beginning into the workflow and therefore and end, and each case can

also be differentiated from another case. A task is a part of the whole work that has

to be done in order to process or modify each case. A task is executed by a resource,

which means a person or a machine and it could be seen also as a process that cannot

be subdivided. A resource is referred to every person, machine or groups of these,

that perform a specific part of the work, a task. Each case incoming to the workflow

involves a sequence of tasks to be performed in order to treat the case itself. This

sequence along with the conditions that determine the order of execution of these

tasks is called a process. Routing refers to the path that each case takes into the

workflow, which is associated with the order of the tasks that treat that case [5].

The concept of workflow management refers to the action of taking the business

processes out of the applications and put them in decomposed management systems.

A workflow system manages the workflows and defines the routing of the informa-

tion of each case through the human resources and the application programs. A

Workflow management system (WFMS) is used to define and use workflow systems.

In general a workflow management system controls the workflows that involve each

case management as well as the resources and applications.

Frequently PN are used to model workflows, since it supports modeling of the

dynamic changes of a workflow system. Within a workflow it is necessary to handle

cases, which are individual activations of a workflow. Each case fires different tasks

in different order and each task has preconditions that must be accomplished before

complete it.

There are at least three good reasons to use PN in workflow modeling and

analysis. First, PN use formal semantics despite their graphical nature, which guar-

antee a structured definition of the model. Second, PN are state-based instead of

event-based, which allows to model the state of each case clearly. Finally, there

12

exist abundance of analysis techniques for PN. Among them, we can count analyt-

ical tools and simulators [8]. Although there are many different ways to define a

workflow process, their expressive power is often weaker than the expressive power

of PN, because PN are able to model certain routing structures that other models

cannot model.

Many classes of PN for workflow modeling have been proposed. One of those

classes is the Workflow-net, which is an extension of a PN proposed by Wil van der

Aalst [5].

2.2.1 Workflow-nets

In a Workflow-net must exist a place with no incoming arcs, which identifies

the beginning of the process, and a place with no outgoing arcs which identifies the

end of the process. A workflow-net must be strongly connected, which means that

any node can be reach from the starting place following a certain path.

The theory of Workflow-nets has additional classes of transitions that aids to

clarify the routing rules described by the workflow model. These transitions are

AND-split, AND-join, OR-split and OR-join, and they are shown in figure 2–5 along

with their corresponding PN meaning. In table 2–1 each of these kind of transitions

is described.

Table 2–1: Description of the additional transitions of a Workflow-net

Name Description
AND-Split A token must be produced for each of the output places under

all circumstances.
AND-join The task can only take place once there is a token at each of

the input places.
OR-split A token must be produced for just one of the output places. A

decision rule must be adopted to solve the corresponding firing
conflict.

OR-join The task take place once the single token reach one of the input
places.

13

AND-split

AND-join

OR-split

OR-join

Figure 2–5: Additional transitions of a Workflow-net and their corresponding PN
meaning

A Workflow-net must be sound, which means that it must not have unnecessary

tasks and every case treated by the process must not make any reference to this case

once the case reach the final state, i.e., remaining tokens must not be leaved in the

process. Thus, the workflow-nets theory define that a net is sound if it fulfills the

following three requirements:

• For each token put in the place start, one (and only one) token eventually appears

int he place end

• When the token appears in the place end, all the other places are empty

• For each transition (task), it is possible to move from the initial state to a state in

which that transition is enabled

The soundness property corresponds with two additional properties of a PN:

liveness and boundedness. PN theory identifies certain properties that a net could

have. One of those conditions is to be Live. A PN is live when it is possible to reach

(for each transtition t and for every state reachable from the initial one) a state

14

in which transitionn t is enabled. Another condition is to be Bounded. A PN is

bounded when there is an upper limit to the number of tokens in each place. When

a PN is bounded to just one token per place, the net is also safe. Thus, a PN is Safe

when the number of tokens in each place will never be larger than one. Thus, if we

have two sound and safe Workflow-nets V and W and we have a task t in V which

has precisely one input and one output place, then we may replace task t in V by

W and then the resulting Workflow-net, X, is sound and safe again, and therefore

X is also sound. The crux of the proof is the observation that every state in the

resulting Workflow-net X can be mapped onto a state in V and a state in W and

vice versa. For more details we refer to [5].

In order to build a sound Workflow-net, its construction must be done with

sound processes. The theory identifies four basic constructions for routing tasks,

which fulfill with the soundness property. These constructions are described in

figure 2–6. These four buildingblocks could be seen as the algebra for Workflow-nets

construction, which means that all the properties of the buildingblocks are inherited

by every Workflow-net resulting from constructing with them. It is noteworthy to

say that a Workflow-net could be made also using any sound and safe Workflow-net.

(a) Basic building
block

(b) Sequential routing: Task A
is executed before Task B

(c) Iterative rout-
ing: Task B is re-
peated

(d) Alternative routing: Either Task A
or Task B is executed

(e) Parallel routing: Task A and Task
B, both are executed in any order

Figure 2–6: Description of the basic constructions for routing tasks

15

2.2.2 Measures Taken from a workflow model based on Petri Nets

Workflow modeling and analysis based on PN have been used in many settings

in industry. In many opportunities, PN analysis has helped to verify the soundness

of the model and repair errors in the PN itself, proving that the implementation of

PN in the modeling and analysis of workflow systems provides a standard design

method approach [9]. Some of those studies have been concentrated in workflow

performance issues [10].

A PN which models the control-flow dimension of a workflow is called a Workflow-

net. A Workflow-net specifies the dynamic behavior of a single case in isolation. In

[11] an approach is presented to extract both a workflow model and performance

indicators from timed workflow logs, which means to track the completion of a task

in time and to track the route of each case through the workflow.

Not only the task and resources are important to be managed in a workflow

process, but also the time of completion of those tasks is important. Time man-

agement is essential in determining and controlling the life cycle of each activity

involved in the business process. The so called Workflow-nets (WF-nets) have been

extended with time intervals in order to make them able to analyze workflow systems

with time constraints. Those time intervals in this Timed Workflow-nets (TWF-net)

are associated with the transition firing, but unlike the stochastic PN, which use a

random variable, they use a deterministic interval [12].

Workflow models based on PN have been used to design workflow process def-

initions of various business processes with successful results. Because the workflow

model is the heart of the workflow management system, it must be a careful design

work. PN theory have been used only to debug the model itself and to analyze

it, which involves adding time variables to the net, and measuring performance is-

sues. It has been used to improve the model in early stages of the model creation.

However, the analysis made over a WF-net based on PN reduces to soundness and

16

performance study of the model, but other measures like dependability has not been

introduced in that examination of the workflow model.

2.3 Dependability

Dependability is the ability to deliver service that can justifiably be trusted.

This concept includes measures such as reliability, availability, maintainability, and

safety. The methodology behind dependability focuses on managing errors, which

means to identify, treat and classify the different types of errors that could be found

in a system. This concept formulates a series of definitions of errors and failures

that exist in the system and, in general, dependability is a sum of attributes for

error identification of a system.

The definition of the dependability concept matches with what we want the

digital printing workflow to be. The metric establishes that errors are acceptable,

in a certain level for the system, but the system itself must ensure that those errors

will not cause any problem to the user. Only in that case, the user will trust the

system. Certain levels of dependability are necessary to guarantee in a DP workflow

process. Besides, the digital printing system is highly based, on the warranty that

could be offered to the client. This means that the final job will be finished on time

and correctly and with the least amount of acceptable errors. The system is based

on the trustworthiness that each client gives to the system.

There are three concepts that shape dependability, which are the attributes of,

the means to attain and the threats to dependability. The first aspect of depend-

ability model that we have to point out is the way that it treats and classifies the

possible errors and faults present in any system. Thus, the threats to dependability

are shown as faults, errors and failures. The next aspect refers to the attributes

or concepts that integrate dependability, which are basically availability, reliabil-

ity, safety, confidentiality, maintainability and integrity. Depending on the system

which is going to be adapted to dependability, the above attributes will be included

17

in the measures or not. The last concept refers to the means to attain dependability

which consist of fault treatments, either at the beginning of the design or in the

analysis of the future behavior of the system. The means to attain dependability

are: fault prevention, fault tolerance, fault removal and fault forecasting. Figure

2–7 shows the taxonomy of dependability. A very important thing is the fact that

the whole model to attain dependability of a system is a framework, which needs

the addition or subtraction of certain necessary aspects depending on the particular

system that is required to be designed, but there are a minimum of aspects that

must be included.

Figure 2–7: Dependability Taxonomy

As mentioned above, there are four means to attain dependability in a system,

each of them used in a different stage of the establishment or design of the system.

Those means are: Fault Prevention, Fault Removal, Fault Tolerance, and Fault

Forecasting. Fault Prevention refers to the avoidance of faults in the fists stages of

the system, which means system entries with less or no faults. Fault removal refers to

verify the system looking for faults and correct them. Fault tolerance refers to make

18

the system strong enough to detect a fault or an error, and recover from it by itself.

Fault forecasting refers to performing an evaluation to the system behavior with

respect to fault occurrence or activation. Evaluation has two aspects: To identify

and classify possible faults and errors that the system could show is a qualitative

evaluation. To establish in terms of probabilities the extent to which the attributes

pertinent to the evaluated system are satisfied in the presence of those faults and

errors is a quantitative evaluation.

Fault Prevention and Fault Removal for the DP pre-press process are not mean-

ingful to be studied, because it is assumed that each job incoming to the press will

contain faults and errors making the reduction of the severity of those faults and

errors difficult. For the DP pre-press process could be possible to study a fault toler-

ance mean to attain dependability, perhaps using common techniques such as adding

replication or enhancing the system to do exception handling [13], but that study is

out of the scope of this work. This work is focused on obtain qualitative measures of

the attributes of dependability from a workflow process definition, particularly from

the workflow process definition of the digital printing pre-press business process.

There are known tools and techniques for quantitative dependability analysis

such as: Static and dynamic fault trees, Stochastic Petri Nets, Markov and queu-

ing models, and Reliability block diagrams [14]. Fault Tree Analysis (FTA) and

Reliability Block Diagrams (RBD) are Combinatorial Models. Combinatorial Mod-

els enumerate all the possible combination of failed and working elements or events

that represents either the success of the failure of the system. Petri nets and Markov

models are Noncombinatorial Models [15].

Unlike Markov models, combinatorial models cannot accurately model dynamic

system behavior, making this Markov models the most common way to study the

dependability of complex systems [16]. Besides, markovian models have more pow-

erful approaches than combinatorial models, but are more complex too. They can

19

model behavior of the system that cannot be modeled with combinatorial models

such as time [17].

A Fault Tree Analysis is intended to model the combination of conditions that

result in the system failure and is a well known and a common technique to do a

dependability analysis. A fault tree diagram uses ”AND” gates (all inputs must

fail for the gate to fail), ”OR” gates (any input failure causes the gate to fail), and

”K-OUT-of-N” gates (k or more input failures cause the gate to fail). Every input

to the tree is known as a basic event and there is a single output called the top event

representing a system failure event. Figure 2–8 shows an example of a fault tree.

Figure 2–8: Fault Tree Diagram example

Another common way to do a dependability analysis is to do it over a depend-

ability model, based on a Markov model in which each node is associated with the

failure of a component in the system and the weight in the arcs are associated with

the failure rate parameter. Furthermore, this Markov model could be associated

with an Stochastic PN or viceversa. Over this dependability model different kinds

of studies could be done, for instance, a preliminary evaluation, a sensitivity analysis

that explores the effects of changing the model, and a specification determination

20

that establish the initial conditions to achieve a known result [18]. Stochastic mod-

els have been widely used in engineering to describe the operation of a system with

respect of time in order to analyze its reliability, maintainability or safety, because

these Markov methods have shown to be powerful tools in this kind of analysis.

Different methodologies and strategies to develop and construct dependability

models have been proposed, based on stochastic PN or stochastic reward nets, as

in [19], [20] and [21]. Some of those strategies have become into automatic analysis

software tools. For instance, one of the applications of the project HIDE [22] trans-

forms UML to SPN in order to create a dependability model to analyze the reliability

of the system with the intention of improve the system design. MEADEP [23] pro-

vides some additional features over the dependability analysis. Another example of

dependability modeling tool is web-based tool aimed to model dependability based

on a framework supported on the values of acceptable manifestation of failures that

are gathered from the user [24].

In [25] a modeling methodology is presented, in which a design-engineer can

specify a design using a single model which is capable of combine both the per-

formance and dependability characteristics of a system. The main feature of this

methodology is that a single model is used to study performance, reliability and

behavior, eliminating inconsistencies between different models. The above men-

tioned methodology builds an analytical model using Colored Petri Nets from a

block model, which is used to analyze behavior, performance and dependability.

Such a methodology is proposed for the design of hardware devices using also hard-

ware description languages. ADEPT [26] is a tool developed to implement a digital

systems design environment, which incorporates the methodology described in [25].

CHAPTER 3

DEVELOPING A WF-NET MODEL FOR

DIGITAL PUBLISHING

From the informal description of the business process of DP, it is possible to

identify each part of the workflow model such as tasks, cases, processes, and routes,

and then, construct the workflow model. Thus, this model can be introduced into

a workflow engine of a workflow management system. The following paragraphs

depict the essential stages in a Digital Printing process [2].

When a job comes into the printshop, this job has a minimum of specifications.

Some of these specifications are the type of job (book, brochure, poster, etc), the

quality of service that the client needs for his/her job (Magazine, Newspaper, flyer,

etc) and the due date of the job. This information must be collected from the client

and well wrote down in order to track the printing process of the job. This first

stage of the process is what we call the Intent stage.

After receiving a job, the printshop must ensure that it does not have faults,

and the printshop does it processing the job in the Preflight stage. This stage is

aimed to check a series of minimum items that the job must contain in order to be

well printed, depending on the specifications before registered in the previous stage

that received the job from the client. The preflight stage selects the best profile for

the job treatment. A profile is a set of characteristics that will be checked in the

job, for example, black and white, generic press, CMYK color printing, and so on.

A report of the process is made and this report indicates which and where the faults

in the job are, so they can be fixed either in the preflight station or in other station

21

22

better qualified. The preflight technician decides based on the report whether a fault

is fixable or not. Sometimes, there are catastrophic faults present in the job, which

means that it will never be well printed or could be printed with less quality that

the specified for the job. Some of these faults become errors, because they cannot

be fixed. If a fault or an error cannot be fixed, the job must be submitted back to

the client. The client will then repair the job or will send the object that contains

the problem in the job, so the printshop could be able to do it. For instance, if a

magazine publication printed in color has an image in one of its pages with 300 dpi

(or less), it could be considered as a fault that has a highly probability of become

into an error, because the quality of the color printing of the magazine should be

high and that image will probably show a pixelation effect (a pixelation effect is

when the eye can notice the color change in the dots of the image easily).

Once the preflight stage checks and fixes all the faults in the job, it is submitted

to be trapped. There are a variety of software packages that are made to trap a

job. The Trapping stage consists into fill the border of a color-change line with

some of the same color tone. Due to the high production volumes and the speeds

of the printing machines, sometimes the paper could change its position during the

printing itself, so, for instance, a job containing a black object so close to a yellow

object, and this job is not trapped, it could be printed with a gab between the black

and the yellow objects; unless the color of the sheet of paper is yellow, this gap

will get into the notice of the reader of this job. If the job of the above example is

trapped, even if the paper moves, the gap will be filled with the same color tone of

one of the objects. The trapping process could be applied to more than two colors

at a same time.

In order to check the proof of accuracy of the job that will be printed, it is sent

to the preliminary Proofing stage. In this stage a printed copy of job is made to check

physically if there are faults remaining in the job. This proof also provides an overall

23

view of the color, sizes, and placements of all job elements. Sometimes printshops

use proofing printers that simulate the results obtained in the high-volume printers.

If an error is detected the job is sent back to the preflight stage in order to correct

it, and again, an expert or a technician is responsible to judge such a decision, based

on the physical printed copy.

The following step is to impose the job. Imposition is the stage where each page

of the job is arrange in a determined position into the whole big sheet of paper that

will be sent to the high-volume printer. In the imposition stage, called the finishing

stage, are also set the margins and conditions of the job in order to be well folded

and trimmed. There is a variety of types of folds that a document could have, for

instance, the French fold, work and turn, sheet wise or work and flop. The document

is also imposed depending on the final binding, for example, the job could be bind

using wire stitches, cloth tape, spiral plastic coil or a perfect binding. . There are

other types of proofers, which involve calibrated monitors instead of printed copies,

this is called soft proofing. A final proof of accuracy is made after the imposition

stage. This proof is a legally binding sample of how the job is expected to appear

when printed.

Finally, when the job is supposed to be completely free of faults and errors, it is

sent to the RIP or Ripping stage. RIP is the acronym for Raster Image Processing

and it is defined as the action of turn vector digital information (a postscript of a

PDF file, for instance) into a high-resolution raster image, which means that RIP

takes the digital information about fonts and graphics that describes the appearance

of the file and translates it into an image composed of individual dots that the

printing device can print. The RIP process can take a long period of time, and if

the files of a job sent to be ripped contain faults or errors, the RIP process could

fail, making a wrong translation to dots printable by a printer, which means, for

instance, fonts overlapped, images with bad resolution or objects misplaced. If a

24

job fails ripping, some procedures could be applied in order to fix the problem.

Nevertheless, if the RIP process definitely fails, the job should be sent to an early

stage in order to determine the exact problem cause and correct it. Besides, a

document job could be labeled as a failure job and it must be sent back to the

client.

Based on this description of the system it is possible to map it into a workflow

model based on Petri Nets. Dependening upon the informal description of the

system, we have created the corresponding process, mapping this description of the

system into a workflow model based on Petri Nets. The result is shown in figure 3–1.

The boxes marked with a rectangle inside indicates that this task is a subprocess. In

the following paragraphs we explain some subprocess corresponding to some stages.

Figure 3–1: Workflow model for the Digital Publishing pre-press process

In figure 3–2, we can see the model representation for the intent sub-process.

When a job arrives to the print shop it has to be checked and labeled. The files that

make a job can be received by different ways, magnetic disk, optical disk, e-mail,

and so on. The intent sub-process looks for to carry out all these tasks. Here the

fonts used in the documents are checked to see if they exist in the house, otherwise

25

the client must be informed of that situation. The graphics must be correctly linked

in the documents. If the files are compressed, they must be uncompressed to be

processed. If the whole job is complete, the document is registered and labeled. In

this procedure, the job is classified depending on its type. Besides, the job is rated

with a severity grade that will serve as a measure of its final quality requirements.

Finally, a due date is assigned to the job.

Figure 3–2: Model representation of the Intent subprocess

The first stage that we modeled serving as our first case of study was the pre-

flight pre-press process. Figure 3–3 shows the model representation for the preflight

sub-process. The job is registered in the preflight module, then a preflight report

about it is made, according to a preflight profile preselected. The report is reviewed

by a preflight technician or printing expert. The technician search and repair, if

26

possible, faults in the document. For instance, faults related with fonts, image res-

olution, or color bases. In subsequent chapters we discuss in detail the preflight

stage.

Figure 3–3: Model representation of the Preflight subprocess

The imposition subprocess model is indicated in figure 3–4. It can be seen that

each job has to be imposed using one of four possible methods: French fold, work

and turn, sheet wise and work and flop. After this procedure, the binding process

must be selected for the job, choosing from four options: wire stitches, cloth tape,

spiral plastic coil and perfect binding.

The RIP process is shown in figure 3–5. Here the job is received at the stage

and is RIPed. Subsequently, it is verified if the RIP process was successful. If it

was, the job is sent to be printed at the press, otherwise the job is checked to find

errors that cause the RIP to fail. They can be easy or difficult to track down and

correct. There are some steps that can be done in order to identify these errors.

Here we mention only four of them. Find and replace the font that is causing the

problem in order to replace the file of that font with a new and uncorrupted copy.

Try to reduce the amount of pages that are printed at a time, dividing the job into

smaller ripping packages. Check that all graphics and complex image effects are

converted to a bitmap format before placing them into the application file. Finally,

recreate the document in a different application, distiller for instance. If an error is

identified, but it cannot be repaired, the job must be marked as failure. Besides, if

no errors are found to be the cause of the ripping failure, the job must be marked

as failure too.

27

Figure 3–4: Model representation of the Imposition subprocess

Figure 3–5: Model representation of the Ripping subprocess

28

We verified the properties of our DP Workflow model and subprocesses using a

couple of software tools: WoPeD 1.0 [27] and Woflan 2.2 [28]. WoPeD was developed

at the University of Cooperative Education (Berufsakademie) Karlsruhe. It is a tool

for editing and simulating WF-nets, that uses Woflan as analysis tool. Woflan was

developed at the Technische Universiteit Eindhoven. It checks for soundness in

WF-nets. A screen-shot showing the DP Workflow-net of figure 3–1 modeled into

WoPeD, is depicted in figure 3–6.

Woflan can verify the soundness of a given process definition. This soundness

property is the minimal requirement any workflow process definition should satisfy.

The diagnosis view of the software tool (figure 3–7) shows all properties of the process

definition in a tree-like manner. At the root, the name of the process definition file is

shown. This root node has two child nodes: the upper for the diagnosis results and

the lower for the diagnostic properties. The diagnosis results node shows in brief the

results on the main properties (workflow, safeness, liveness, soundness). Figure 3–7

depicts a screen-shot showing the soundness analysis done over the DP Workflow-

net by Woflan. It can be seen that the Workflow-net is completely sound, because

every property and condition for a proper workflow is corroborated to appear in the

workflow analyzed.

PN theory identifies certain properties that a net could have in order to fulfill

certain conditions. One of those condition is to be Live. A PN is live when it is

possible to reach (for each transtition t and for every state reachable from the initial

one) a state in which transitionn t is enabled. Another condition is to be Bounded.

A PN is bounded when there is an upper limit to the number of tokens in each place.

When a PN is bounded to just one token per place, the net is also safe. Thus, a PN

is Safe when the number of tokens in each place will never be larger than one.

29

Figure 3–6: WoPeD screen-shot showing the DP Workflow-net

Figure 3–7: Woflan screen-shot showing the analysis done over the DP Workflow-net

CHAPTER 4

MEASURING DEPENDABILITY

ATTRIBUTES USING A WORKFLOW MODEL

We obtained values of dependability attributes in a quantitative form from

the workflow model instead from a combinatorial model. In order to do this, we

adapted some methodologies and strategies that build models to the creation of the

workflow process definition. In order to obtain values for dependability attributes in

a quantitative form, from a workflow model instead of from a combinatorial model

model, we adapted some methodologies and strategies that build models that allow

to measure dependability, to the creation of the workflow process definition.

This approach will lead to the addition of parameters to the model, in order

to make it more accurate. Constrasting the analysis provided in [10] and [4], our

work proposes an analysis of quantitative dependability over a workflow model, and

not only an analysis of its structure and performance. Furthermore, we suggest

a methodology to include parameters for dependability analysis into the workflow

process definition mapped from the business process of the high dependable system.

We want to obtain the qualitative dependability attributes of the system making

a fault forecasting analysis, which is performed by evaluating the system behavior

with respect to fault occurrence or activation. The qualitative evaluation of a system

aims to identify, classify and rank the failure modes (the different ways a system

can fail) or the event combinations (component failures or environmental conditions)

that would lead to system failures.

30

31

In the following sections, we present our methodology applied to two subprocess

of the DP Workflow-net: The pre-press processes of Preflight and Ripping.

4.1 The Preflight subprocess

An study over a variety of PDF documents produced by a diversity of software

tools was done in order to identify the most common critical faults present in a job.

For this, the reports produced by a commercial preflight tool were analyzed, finding

that faults related with not embedded fonts, low image resolution, objects overlapping safety

zones and images using the wrong color base were the most common ones. According

to our study, the mean probability of find a fault related with fonts not embedded

is 67%, the mean probability of find a fault related with a wrong color base is 38%,

and the mean probability of find a fault related with a low image resolution is 61%.

Table 4–1 shows the most relevant faults that could be present in a document

(based on [2] and on our own study). Faults are classified by the kind of failure

that they are able to generate. For instance, a fault related with fonts will lead

to a failure that could be classified in domain as a contain failure (C) or a timing

failure (T). A contain failure refers to a failure in the content of the service (in DP,

for instance, if an image is printed out of the paper margins) and a timing failure

refers to a failure in the time of completion of the service (in DP, a job that takes

an overdue time in being completed).

The consistency (C) or inconsistency (I) of a failure is seen in if this failure is

perceived by all final users in the same way or not, respectively (in DP, a change

in the font type could be seen in a different way by each client, and it depends on

the clients job, for example, a brochure, a book or a magazine). The consequences

of a fault could be classified in minor, medium, and catastrophic, depending on the

severity of degradation in the final service provided. Faults such as incomplete or

corrupted files could lead to catastrophic failures (C). In contrast, if an image placed

32

in a document requires being in CMYK color process, and is in RGB, these fault

could lead to a medium (Md) or minor (Mn) failures.

Table 4–1: Analysis of the possible faults present in preflight

Domain Consistency Consequences
Not embedded Fonts Content/Timing Inconsist. Medium
Low image resolution Content/Timing Inconsist. Medium
Wrong color base Content/Timing Consist. Minor
Missing images Timing Consist. Catastrophic
Incomplete or corrupted files Timing Consist. Catastrophic

In a previous chapter we showed the preflight subprocess, arguing that it was

going to serve as our first case of study. We first show an alternative model to mea-

sure quantitative dependability attributes from the workflow model of this process.

Then, we illustrate our methodology to create a workflow model able to measure

quantitative dependability attributes from this system.

4.1.1 Alternative model to measure dependability applied to the Pre-
flight process

We have studied dependability analysis over the workflow model of DP applying

either a dependability model as well as a FTA technique. In a workflow model the

time associated with each transition models the time consumed by the execution of

that specific task. In contrast, the time that a dependability model assign to each

transition represents the time that a fault or error takes to be present in the model.

A workflow model treats cases and the faults and errors must be associated with

those cases. Thus, those faults and errors are inherent to each case an do not depend

of time. For a DP case, i.e., a document job the faults and errors have an inherent

probability of occurrence independent of time. For this reason, we conclude that a

dependability model is not useful to be applied in order to analyze the dependability

of the workflow model, because such a model obtained in terms of GSPN would result

into a model with a vanishing initial marking. Therefore, we use the FTA technique

33

in order to aid the construction of our model and its corresponding methodology, as

well as to contrast the results obtained from it.

In this case of study we assume that the pre-press process of preflight has five

fault sources that could lead to a failure of the system, i.e., the pre-flight pre-press

process rejects the job analyzed. Figure 4–1 shows the fault tree representation of

the preflight subprocess. The couple of events A, B and C represent faults that

are fixable in the preflight station. A represents faults related with fonts, B faults

related with image resolutions and C faults related with wrong color bases. The first

event of each couple represents the presence of the fault in the job and the second

event of the couple represents the ability of repair that kind of fault. Events D and

E represent non-fixable faults. D represents faults related with corrupted files and

E faults related with missing images.

Figure 4–1: Fault Tree for the Preflight pre-press process

The analytic equation that describes the probability of failure of the preflight

pre-press process, analyzing the fault tree in figure 4–1, was obtained. Thus, the

expression of the probability of failure of the preflight stage is the equation (4.1). We

used the corresponding letter instead of use the events multiplication (for instance:

A ⇒ A1 · A2)

34

PF = (A + B + C − AB − AC −BC + ABC)·

·(1−D − E + DE) + D + E −DE

(4.1)

The equation for the reliability of the preflight stage is: R = 1−PF . Replacing

into this equation, we have:

R = 1− [(A + B + C − AB − AC −BC+

+ABC) · (1−D − E + DE) + D + E −DE]

(4.2)

4.1.2 Develop a WF-net including fault parameters for Preflight

To analyze quantitatively dependability attributes in a WF-net, it is necessary

to add the identified possible faults of the system into the model generated. We

include those faults into the model of figure 3–3 by replacing the task check and

repair faults in the job by five parallel sub-processes, using an AND-split/AND-join

construction. Each of them check the presence of a kind of one of the most relevant

faults that a job could have. The resulting net is shown in figure 4–2

Figure 4–2: Replacing the subprocess ”check and repair faults in the job” in the
preflight stage WF-net (figure 3–3)

35

We defined a fault treatment sub-process, shown in figure 4–3. For constructing

this WF-net we add an OR-split that checks for the presence of faults. Later, we

include another OR-split checking if the fault can be repairable. Finally, we put

a task for each of the three situations (no faults, repairable and not-repairable).

Subsequently, we replace each sub-process in figure 4–2 for our fault treatment sub-

process. This give us as result, a better WF-net for the preflight prepress process,

which is shown in figure 4–4

Figure 4–3: Fault treatment subprocess

In the same manner that we test correctness in the DP workflow, we test the

correctness of the WF-net for the preflight pre-press process using WoPeD and

Woflan. The WF-net for preflight complies with workflow model parameters.

To obtain either performance or dependability measures from a WF-net model,

time and fault parameters must be included. Our methodology includes time as

a random variable exponentially distributed on some transitions of the net, and

include fault parameters as immediate transition weighs. Consequently, the net

must be converted into a GSPN. To do so, it is necessary to replace the OR-split

blocks (figure 4–5.a) by a combination of transitions. The outcome is governed by a

fault probability . The OR-split block (figure 4–5.a) is replaced by an exponentially

transition simulating the action followed by two immediate transitions disposed in

36

Figure 4–4: Complete WF-net of the preflight process after include the fault treat-
ment subprocess

37

parallel, (figure 4–5.b) assigning the fault probability to the weight of one of the

immediate transitions and its complement to the other one. The resultant model

replacing the OR-split blocks is shown in figure 4–6. This net is a Quantitative

Dependability WF-net based Model (QDWM).

(a) OR-split construction
block

(b) Block translating the OR-split into
GSPN

Figure 4–5: OR-split translation into GSPN

4.2 The Ripping subprocess

Our second case of study is the DP pre-press process of Ripping. Although in

this stage the job is supposed to be flawless, in many cases it is not true. Once

the job income to the process and it is rippped, the output file is verified to check

the correspondence between the intended final print and the print provided by that

final ripping output. There are a series of steps that can be done before the ripping

process in order to avoid a failure, and after a failure in that ripping process occurs

[2] [29]. We are considering in this part of our analysis and for the inclusion into our

workflow the most relevant of those correcting steps. Table 4–2 shows those errors

present in a document that could cause a failure in the ripping stage. Errors are

classified by the kind of failure that they are able to generate.

Table 4–2: Analysis of the possible errors present in ripping

Domain Consistency Consequences
Corrupted copies of fonts Content/Timing Inconsist. Medium
Excessive amount of pages Timing Consist. Medium
Wrong format for image effects Content/Timing Inconsist. Minor
Wrong document generation Timing Consist. Medium

In the same way that we analyze the preflight pre-press process, we first develop

an alternative model to measure dependability of the ripping pre-press process.

38

Figure 4–6: Workflow Model of the Preflight pre-press process based on GSPN

39

Then, we illustrate our methodology to create a workflow model able to measure

quantitative dependability attributes applied to the ripping process.

4.2.1 Alternative model to measure dependability applied to the Rip-
ping process

In this case of study we assume that the pre-press process of ripping may fail

with a certain probability, that event is called in the fault tree event E. Once the

process fails, we also assume that it has four error sources that could lead to a

failure of the system, i.e., the ripping pre-press process do not generate correctly

the bitmap file for rendering on an output device. Figure 4–7 shows the fault tree

representation of the ripping subprocess. The couple of events A, B, C, and D

represent those errors, present in the job, that could lead to a failure. We assume

that all of them may be fixable with a certain probability. A represents errors related

with corrupted copies of fonts, B errors related with excessive amount of pages to be

ripped, C errors related with complex image effects not converted to bitmap format,

and D errors related with a wrong document generation. The first event of each

couple represents the presence of the error in the job and the second event of the

couple represents the ability of repair that kind of error. The event F represents

the possible case when the existence of every possible error in the job is verified but

not founded. In such a case the ripping process is still unsuccessful and it must be

labeled as failure.

The analytic equation that describes the probability of failure of the ripping

pre-press process, analyzing the fault tree in figure 4–7, was obtained. Thus, the

expression of the probability of failure of the ripping stage is the equation (4.3). We

used the corresponding letter instead of use the events multiplication (for instance:

A ⇒ A1 · A2)

40

Figure 4–7: Fault Tree for the Ripping pre-press process

PF = [(F + A + B + C + D − FA−BC −BD − CD + BCD)−

−(F + A− FA) · (B + C + D −BC −BD − CD + BCD)] · E
(4.3)

The equation for the reliability of the ripping stage is: R = 1− PF . Replacing

into this equation, we have:

R = 1− [(F + A + B + C + D − FA−BC −BD − CD + BCD)−

−(F + A− FA) · (B + C + D −BC −BD − CD + BCD)] · E
(4.4)

4.2.2 Develop a WF-net including fault parameters for Ripping

To analyze quantitatively dependability attributes in the ripping WF-net, it

is necessary to add the identified possible sources of error of the system into the

model generated. We include those errors into the model of figure 3–5 by replacing

the task check and repair errors in the job by four parallel sub-processes, using an

AND-split/AND-join construction. Each of them check the presence of a kind of

one of the most relevant errors that a job could have. The resulting net is shown in

figure 4–8

41

Figure 4–8: Replacing the subprocess ”check and repair errors in the job” in the
ripping stage WF-net (figure 3–5)

Using the same methodology of replacing the subprocesses of figure 4–8 by the

subprocess shown in figure 4–3 we obtain the WF-net shown in figure 4–9. Once

again we test soundness in this WF-net using WoPeD and Woflan. In order to

convert this net into a GSPN we replace the OR-split blocks (figure 4–5.a) by a

combination of transitions. The outcome is governed by a fault probability . The

OR-split block (figure 4–5.a) is replaced by an exponentially transition simulating

the action followed by two immediate transitions disposed in parallel, (figure 4–5.b)

assigning the fault probability to the weight of one of the immediate transitions and

its complement to the other one. The resultant model replacing the OR-split blocks

is shown in figure 4–10. This net is a Quantitative Dependability WF-net based

Model (QDWM) for the DP pre-press process of Ripping.

42

Figure 4–9: Complete WF-net of the ripping process after include the fault treatment
subprocess

43

Figure 4–10: Workflow Model of the Ripping pre-press process based on GSPN

CHAPTER 5

COMPARATIVE MEASURES, RESULTS AND

ANALYSIS

We have shown two methodologies to analyze dependability on a system so far.

The first one is a fault tree model, which is a combinatorial model, that involves the

faults, errors and the final system conditions to reach a failure. This combinatorial

model gives the opportunity of analyze the quantitative attributes but it does not

give the opportunity to analyze either the performance or the structure of the system.

The second one, our proposed methodology, incorporates the combinatorial

model of the system based on the faults that this model itself could contain into

a workflow model preserving the characteristic routing rules, and behavior of a

workflow model, enhancing the model. The resultant net will contain not only fault

and failure states, but also normal workflow states, making the model more accurate.

Besides structure, behavior, performance, and dependability could be analyzed using

the same net.

In this section the results from a QDWM are compared with the results obtained

from a Fault Tree model. These results are obtained introducing different vectors of

fault and error parameters to each model and comparing the outputs.

To obtain results from the Fault Trees of the Figs. 4–1 and 4–7, vectors above

mentioned are introduced in the equations (4.2) and (4.4) respectively. To obtain

the quantitative dependability attributes of the GSPN of Figs. 4–6 and 4–10, it is

necessary to follow a series of steps. First, it is necessary to generate the reach-

ability graph of the GSPN. From this reachability graph it is possible to deduce

44

45

the associated Continuous Time Markov Chain (CTMC). Doing the steady-state

analysis of the CTMC is obtained the probability of the system of being in any

of its states, thus it is achievable to work out the dependability attributes of the

system checking the corresponding combination of probabilities of being in certain

states that belongs to each attribute. This analysis was done using a software tool

named SHARPE [30]. SHARPE is used to model and validate distributed systems

using GSPN, among other kind of models. This tool offers a multi-environment

graphical interface and provides a specification language and solution methods for

performance and reliability modeling.

5.1 Software Tool

We have developed a software tool that consists in two different applications.

The first one allows users to create GSPN as well as create, save, and load Petri

Nets for Workflow Modeling, i.e., QDWMs. First, the user creates a graphical rep-

resentation of the QDWM on screen, then each primitive’s corresponding attribute

is introduced. The application name task to a timed transition and transition to

an immediate transition. The user must specify the name of the primitive (for in-

stance: task1, transition1 or place1), the value of the attribute (number of tokens,

time parameter for tasks or weight/probability for transitions), and if the task is a

discard task. The application name discard task to a task that represents an action

of discard or refuse the case treated in the workflow. This task represents an event

when the fault or error cannot be repaired or removed from the case becoming into

a high probable possibility of failure.

A dummy place is introduced into the net and every task that treats the case of

non-repairable fault or error (a discard task) is connected to this place. Subsequently,

it is analyzed the probability that this place is empty in steady-state. Thus, we

obtain the reliability of the whole process in steady-state. For instance, in figure

46

4–6, transitions T2, T9, T14, T20, and T22 would be connected to a dummy place

(not depicted).

The QDWM-Creation application shows the net graphically in addition to sav-

ing all of the attributes for further processing. The purpose of this tool is to generate

a text description of the topology and its attributes (called Netlist) that shall be

saved in a file (SHARPE NETLIST.txt).

The QDWM-Creation application permits the user to interact with a dynamic

Graphical User Interface (GUI) on which the Petri Net can be drawn and its data

entered. The GUI consists of a window with two sections within it. On the top are

eight different buttons each executing a different function. These functions include

selecting a primitive to be drawn (Place, Transition, Task, or Arc), selecting a data

entry mode, creating a netlist of the net, saving the Petri Net onto file, and loading

a previously saved Petri Net. The other section is an area with white background

that is left for drawing the Petri Net. In figure 5–1 we see an illustration of the

Simulator’s GUI.

Figure 5–1: Graphical User Interface (GUI) of Simulator application. On the top
we see the function buttons, and on the bottom we can see the drawing area

47

A user creates a Petri Net by selecting primitives from the buttons and clicking

on the drawing area. Depending on which primitive is selected at the moment, and

by clicking the drawing area the primitive shall appear on screen. After drawing the

net, the user can input data into each primitive. This is done by first placing the

application in a data entry mode and pressing on the attributes button and right

clicking on the primitive. Once this is done, a pop up menu appears with fields for

entering name, attribute, and if the primitive is a task, to set it as discarded or

not. In Figure 5–2 we see an illustration of the pop up menu. After the Petri Net

is created and its data is entered the user can either save the Petri Net or create

the Petri Net’s netlist on a file. By selecting the Netlist button a file is generated

called SHARPE NETLIST.txt that contains the text description of the topology

and attributes of the Petri Net.

Figure 5–2: Pop up menu for editing primitive attributes. This menu is called when
a right click is performed over a primitive and the program is set into data entry
mode (Attribute button is clicked)

This file appears in the Project Folder’s directory. The Petri Net is can be saved

for future use by clicking the Save button another file is generated with the name

the user desires. This file contains an internal description, used by this application,

of the Petri Net and its data in order to draw and load the net at a later time. To

load a Petri Net simply press the load button. A menu shall appear where the user

48

selects which file is to be loaded. Once the file is selected, the Petri Net represented

in that file is drawn and its data is loaded into the program’s data structures.

The second application of the software is intended to to a batch processing over

the QDWM. The file SHARPE NETLIST.txt is asked to be loaded by the user and

it is displayed in the left part of the GUI. The user must select a task or a transi-

tion and introduce its name in the text space named ”Task or Transition Name”.

Subsequently the user selects start value, end value and step of the attribute of that

primitive first selected. By pressing the button ”Perform Calculations” the applica-

tion feed the analyzer tool SHARPE with the file SHARPE NETLIST.txt, changing

the value of the corresponding primitive. In the center of the GUI are shown the

couples of data: Primitive value vs. SHARPE result, for each primitive value. In the

right side of the GUI are displayed the outputs of SHARPE for each primitive value.

Figure 5–3 shows an screen-shot of the Batch-Processing application. By pressing

the button ”Graph with Ptplot” the application calls an external application named

Ptplot. Ptplot is a software tool developed in the Ptolemy project at the University

of California at Berkely and it is a 2D data plotter and histogram tool implemented

in Java [31]. Ptplot draws those points into a single graph and connect them and

it allows to save the graph or export it to encapsulated postscript format. Fig 5–4

shows the Batch-Processing application calling Ptplot.

5.2 Analysis for the Preflight subprocess

For our first case of study, the eight fault parameters on each vector are: Prob-

ability of find a fault related with fonts, image resolution, wrong color base, incom-

plete or corrupted files and, incomplete or missing images. Besides, probability of

not repair faults related with fonts, images resolution, and wrong color bases. For

each model the fault parameters are the same. As we mentioned before, in the fault

tree case, outputs are obtained from the equation (4.2), whereas in the QDWM case,

outputs are acquired from the analysis software tool.

49

Figure 5–3: Batch-Processing application screen-shot

Figure 5–4: Batch-Processing application screen-shot calling Ptplot

50

Using ten different vectors generated randomly, we can see that the steady-state

reliability obtained from the QDWM of the preflight pre-press process, is totally

related with the reliability obtained from the Fault Tree model. The mean error

between both measures is around 8.0 · 10−5 and the correlation between them is

0.9999, which is highly close to one. For these reasons, we can tell that a QDWM

is able to measure reliability from a process. Due to its WF-net properties were not

altered, this QDWM also allows to measure performance attributes of the process

and it conserves its main intended function: to be a workflow model.

Concerning to our case of study of preflight, we assume a input vector in order

to analyze the reliability of the preflight pre-press process. This vector is as follows:

probability of find a fault related with fonts, 0.67; image resolution, 0.39; wrong

color base, 0.61; incomplete or corrupted files, 0.05; and incomplete or missing

images, 0.05. Besides, probability of not repair faults related with fonts, 0.08; image

resolution, 0.05; and wrong color base, 0.03. The resulting reliability is 0.82. The

reliability for this pre-press stage is around 0.90 according to local printshops.

5.3 Analysis for the Ripping subprocess

For our second case of study, the eight then error events on each vector are:

Probability of find corrupted copies of fonts, excessive amount of pages to be ripped,

complex image effects not converted to bitmap format, and wrong document gener-

ation. Also, probability of cannot replace the file with uncorrupted copies of fonts,

cannot divide the job into smaller ripping packages, cannot convert to bitmap for-

mat complex image effects before placing them in the application file, and cannot

recreate document in a different application. In addition, probability of ripping fail-

ure and probability of cannot find the cause of the ripping failure. Once again, for

each model the error events are the same. As we mentioned before, in the fault tree

case, outputs are obtained from the equation (4.4), whereas in the QDWM case,

outputs are acquired from the analysis software tool.

51

For the case of ripping, we used another group of ten different vectors generated

randomly. Again we see that the steady-state reliability obtained from the QDWM

model is quite similar with the reliability obtained from the Fault Tree model. The

mean error between both measures is also around 8.0 · 10−5 and their correlation

is 0.99999. In this model, the WF-net properties were not altered either, therefore

this QDWM also conserves its main intended function: to be a workflow model.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Concluding remarks

We obtained values of dependability attributes in a quantitative form from the

workflow model instead from a combinatorial model adapting some methodologies

and strategies for combinatorial model build to the creation of the workflow process

definition. This approach will lead to the addition of parameters to the model, in

order to make it more versatile. Contrasting the analysis provided in other research

projects, our work proposes an analysis of quantitative dependability over a workflow

model, and not only an analysis of its structure and performance.

The resulting WF-net from the inclusion of the fault treatment subprocess

into the initial workflow model is the QDWM once it is translated into GSPN.

Every subprocess used to create these WF-nets is sound, and those nets were tested

using specialized software. Accordingly, the QDWM created is completely sound.

Therefore, the QDWM allows to analyze the dependability of the system and its

methodology of creation preserves its routing structures and its function to measure

performance too.

It was shown that structural and performance analysis are important in a

workflow model in order to guarantee the best workflow process definition to be

implemented in a workflow management system. It is also important to measure

dependability attributes and refine the design of that workflow process definition.

Dependability attributes have been measured using combinatorial models based on

the faults and their probability of occurrence in the system. The idea proposed is

52

53

to measure quantitatively dependability attributes from the workflow model itself,

improving the analysis tools necessary to achieve a good workflow process defini-

tion. Applying this new measure concepts to the general Digital Printing pre-press

process ensures a better workflow management in this area, because this process is

highly based on its trustworthiness. Those measures of dependability are intended

to help in the design of a more reliable system.

6.2 Future work

• This work was focused on measuring quantitative dependability attributes. It

was achieved by doing a Fault Forecasting analysis. In a future work the Digital

Publishing workflow could be studied by using Fault Tolerant analysis (make the

system strong enough to detect a fault or an error, and recover from it by itself).

One possibility is to apply common techniques such as redundance and exception

handling to the creation of the DP workflow model, so that the business process

definition could be enhanced even more. Our proposed workflow does not treat

widely the failure situations that may occur. In most cases the proposed solution

consist in send back the job to an early stage, which means to start over the process

again, or simply to send it back to the client. A fault tolerance workflow would be

able to recognize the fault, the error or the failure, and for instance, isolate it. It

could be seen as part of go deeper in the study of repairing processes. Exception

handling in a workflow could be seen as treat certain cases in a different way. In

our proposed workflow, if a job does not have every font embedded, the preflight

subprocess will fail. And exception handling could be to mark as successful job in

the preflight stage if only a few group of fonts cannot be embedded

• We have created a generic DP workflow model with the most basic and relevant

stages and characteristics of the DP business process. However, this workflow could

be studied adding some new features of the business process, such as a soft-proofing

stage and an accounting stage. The inclusion of new features and stages into the

54

DP workflow will lead to add new tasks and, therefore, new routing definitions for

these tasks. For instance, an accounting stage could calculate job price based on

new features settle in the intent stage. If the client decline a preflight service on his

job, making lower the printing cost, just a soft-proofing preview could be offered.

• To analyze each subprocess we have use fixed probabilities for all documents. An-

other possibility is to extend the study to subclassify documents in classes such

as books, posters, or magazines, and adapt the probabilities according to the the

kind of job. Having those probabilities, the workflow model could be designed to

be dynamic, changing the routing paths depending on the case. A workflow man-

agement system could be able to manage different workflow engines with different

workflow models. These models would depend on a subclassification of the cases

treated in the whole system, which lead to characterize the process for each kind of

document and gather information about time of completion of task treating only

certain kind of documents, probability of fault existence in certain kind of docu-

ments, and so on. A fault forecasting analysis would have to be done over each

subclass.

APPENDICES

APPENDIX A

SOFTWARE TOOL CODE - SERVICE

MANUAL

A.1 System Requirements

For Windows or Linux, the software requires the use of the following libraries:

• java.awt.*

• java.awt.event.*

• javax.swing.*

• java.util.*

• java.io.*

The application will run on any OS that possesses an up to date Java Virtual

Machine (JVM).

To EDIT or RUN application:

Java NetBeans IDE 4.1- This program was written and tested using IDE. Simply

open a project with the source code and package of this application. It can be

proceeded to edit, build and run the application from this environment. Trying to

edit and run this application in a more recent NetBeans IDE (5 and up) has caused

problems. In this case a new project should be opened and only the source code

files should be imported into the project on the new IDE.

Petri Net Simulator Tool should also run on any Java Interpreter. In that case

the class files (x.class) from this application should be run.

56

APPENDIX B

SOFTWARE TOOL - USER MANUAL

B.1 Getting Started

Petri Net Simulator Tool is a software application written in JAVA that allows

the user to create, save, and load Petri Nets for Workflow Modeling. The Petri Net

consists of its graphical representation on screen along with its primitive’s corre-

sponding attributes. The simulator shows the net graphically in addition to saving

all of the attributes for further processing. The purpose of this tool is to generate a

text description of the topology and its attributes (called Netlist) that shall be saved

in a file (SHARPE NETLIST.txt) and later on this file is entered into an analyzer

tool (SHARPE) for further processing.

B.2 Petri Net Simulator Features

The Simulator application permits the user to interact with a dynamic Graphi-

cal User Interface (GUI) on which the Petri Net can be drawn and its data entered.

The GUI consists of a window with two sections within it. On the top are eight

different buttons that each execute a different function. These functions include

selecting a primitive to be drawn (Place, Transition, Task, or Arc), selecting a data

entry mode, creating a netlist of the net, saving the Petri Net onto file, and loading

a previously saved Petri Net. The other section is an area with white background

that is left for drawing the Petri Net. In figure B–1 we see an illustration of the

Simulator’s GUI.

A user creates a Petri Net by selecting primitives from the buttons and clicking

on the drawing area. Depending on which primitive is selected at the moment, and

57

58

Figure B–1: Graphical User Interface (GUI) of Simulator application. On the top
we see the function buttons, and on the bottom we can see the drawing area

by clicking the drawing area the primitive shall appear on screen. After drawing

the net, the user can input data into each primitive. This is done by first placing

the application in a data entry mode by pressing on the attributes button and right

clicking on the primitive. Once this is done, a pop up menu appears with fields for

entering name, attribute, and if the primitive is a task, to set it as discarded or not.

After the Petri Net is created and its data is entered the user can either save the

Petri Net or create the Petri Net’s netlist on a file. By selecting the Netlist button

a file is generated called SHARPE NETLIST.txt that contains the text description

of the topology and attributes of the Petri Net. This file is what the analyzing tool

SHARPE takes as input to perform calculations of dependability for that net. This

file appears in the Project Folder’s directory. If the Petri Net is to be saved for

future use, by clicking the Save button another file is generated with the name the

user desires. This file contains an internal description, used by this simulator, of the

Petri Net and its data in order to draw and load the net at a later time. To load a

Petri Net simply press the load button. A menu shall appear where the user selects

59

which file is to be loaded. Once the file is selected, the Petri Net represented in that

file is drawn and its data is loaded into the program’s data structures.

B.3 Functions

Following is a description of each button and its function.

• Place Button- By selecting the place button the program is set to draw a Place

primitive on the drawing area. After this button is selected, a click on the drawing

area will create a place on screen.

• Trans Button- By selecting the transition button the program is set to draw a

Transition primitive on the drawing area. After this button is selected, a click on

the drawing area will create a transition on screen.

• Task Button- By selecting the task button the program is set to draw a Task

primitive on the drawing area. After this button is selected, a click on the drawing

area will create a task on screen.

• Arc Button- By selecting the Arc button the program is set to draw an Arc prim-

itive on the drawing area. After this button is selected, a press of the mouse on

the drawing area will begin to create a line on screen. The mouse must be thereon

dragged and the arc will still be rendered. Once the mouse reaches the arc’s end-

point the mouse is released and the arc is finalized with its starting point and

ending point.

• Erase Button- By selecting the Erase button the program is set into deletion mode.

After this button is selected a left click on top of a Petri Net primitive shall not

only erase the primitive, but also erase any arcs that are connected to it.

• Move Button- By selecting the Move button the program is set into a selection

mode. After this button is pressed the user can select, drag, and drop any primitive

to a new position. Any arcs that are attached to the primitive being moved remain

connected to it, and automatically reposition themselves to the primitive’s new

position.

60

• Attributes Button- By selecting the Attributes button the program is set into a

data entry mode. After this button is selected a right click on top of a Petri Net

primitive will call a pop up menu which contains fields for entering name, attribute,

and if the primitive is a task, to set it as discarded or not by means of a checkbox.

Once the data is entered in the pop up menu, pressing the OK button of the pop up

menu saves the primitive’s data and returns from the menu. If the Cancel button

is selected the program returns from the pop up menu without saving any data.

In Figure B–2 we see an illustration of the pop up menu.

Figure B–2: Pop up menu for editing primitive attributes. This menu is called when
a right click is performed over a primitive and the program is set into data entry
mode (Attribute button is clicked)

• Netlist Button- By selecting the netlist button a file is generated called SHARPE NETLIST.txt

and is saved in the project folder’s directory. This file is written in a special format

that SHARPE understands. This file contains a text description of the Petri Net’s

topology and data. If there is already a file called SHARPE NETLIST.txt in that

path it shall be overwritten.

• Save Button- By selecting the save button a menu appears in which the user selects

the path and file name where to save the Petri Net. Once a file is selected, the

program generates in this file a text description of the Petri Net’s topology and its

data. This is done to load a previously saved Petri Net at a later time.

61

• Open Button- By selecting the open button a menu appears in which the user

selects the path and file of the Petri Net that is to be loaded. Once the appropriate

file is selected, the program reads and interprets its contents, proceeds to draw the

whole net and load its attributes into the program’s data structures.

REFERENCE LIST

[1] N. Santiago, F. Vega-Riveros, W. Rivera, M. Rodriguez-Martinez, T. Avel-

lanet, G. Chaparro-Baquero, W. Lozano, A. Pereira, and H. Santos-Villalobos.

Towards development of concepts and algorithms to enable automated digital

publishing workflows. Technical report, University of Puerto Rico, Mayaguez

Campus, May 2005.

[2] M. L. Kepler. The Handbook of Digital Publishing - Vol. II. Prentice-Hall, 2001.

[3] D. Monkerud. Realizing the promise of workflow automation. Digital Publishing

Solutions Magazine Online, May 2004.

[4] R. Zurawski and M. Zhou. Petri nets and industrial applications - a tutorial.

IEEE Trans. on Industrial Electronics, 41(6):567–583, 1994.

[5] W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models,

Methods, ans Systems. The MIT Press, Cambridge, Massachusetts, 2002.

[6] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-

onomy of dependable and secure computing. IEEE Transactions on Dependable

and Secure Computing, 01(1):11–33, January-March 2004.

[7] F. Bause and P. Kritzinger. Stochastic Petri Nets, an introduction to the theory.

Friedr. Vieweg & Son, 2002.

[8] W. M. P. van der Aalst. The Application of Petri Nets to Workflow Manage-

ment. The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[9] B. Mikolajczak and D.L. Byrne. Workflow modeling and diagnosis with petri

nets - a case study of a manufacturing process. In Systems, Man and Cy-

bernetics, 2002 IEEE International Conference on, page 6 pp. vol.5, October

2002.

62

63

[10] J. Li, Y. Fan, and M. Zhou. Performance modeling and analysis of workflow.

Systems, Man and Cybernetics, Part A, IEEE Transactions on, 34(2):229– 242,

March 2004.

[11] W. M. P. van der Aalst and B. F. van Dongen. Discovering workflow perfor-

mance models from timed logs. In Engineering and Deployment of Cooperative

Information Systems, First International Conference (EDCIS 2002) Beijing,

China, September 17-20, 2002 / Y. Han, S. Tai, D. Wikarski (Eds.), pages

1–45pp. Springer Verlag, LNCS 2480, September 2002.

[12] S. Ling and H. Schmidt. Time petri nets for workflow modelling and analysis.

In Systems, Man, and Cybernetics, 2000 IEEE International Conference on,

pages 3039–3044 vol.4, 2000.

[13] G. Alonso, C. Hagen, D. Agrawal, A. E. Abbadi, and C. Mohan. Enhancing the

fault tolerance of workflow management systems. IEEE Concurrency, 8(3):74–

81, 2000.

[14] A. Avizienis, J. C. Laprie, and B. Randell. Fundamental concepts of depend-

ability. In 3rd Information Survivability Workshop (ISW’2000), Boston (USA),

pages 7–12, October 2000.

[15] A. Johnson Jr. and M. Malek. Survey of software tools for evaluating reliability,

availability, and serviceability. In ACM Press, editor, ACM Computing Surveys

(CSUR), volume 20, pages 227–269, December 1988.

[16] N. B. Fuqua. The applicability of markov analysis methods to reliability,

maintainability, and safety. Selected Topics in Assurance Related Technologies

START, 10(2), 2003.

[17] M. Nicholson and J. McDermid. Analysis of dependable computer systems.

Technical report, University of York, November 1994.

64

[18] D.I. Heimann, N. Mittal, and K.S. Trivedi. Dependability modeling for com-

puter systems. In Reliability and Maintainability Symposium, 1991. Proceed-

ings., Annual, pages 120–128, January 1991.

[19] N. Lopez-Benitez. Dependability analysis of distributed computing systems

using stochastic petri nets. In Reliable Distributed Systems, 1992. Proceedings.,

11th Symposium on, pages 85–92, October 1992.

[20] J. K. Muppala and C. Lin. Dependability analysis of large-scale distributed

systems using stochastic petri nets. In Systems, Man, and Cybernetics, 1996.,

IEEE International Conference on, pages 3033 – 3038, October 1996.

[21] J. C. Laprie. Dependability of computer systems: concepts, limits, improve-

ments. In Software Reliability Engineering, 1995. Proceedings., Sixth Interna-

tional Symposium on, pages 2–11, October 1995.

[22] A. Bondavalli, I. Majzik, and I. Mura. Automatic dependability analysis for

supporting design decisions in uml. In High-Assurance Systems Engineering,

1999. Proceedings. 4th IEEE International Symposium on, pages 64–71, 1999.

[23] D. Tang, M. Hecht, J. Agron, A. Miller, and H. Hecht. Engineering oriented de-

pendability evaluation: Meadep and its applications. In Fault-Tolerant Systems,

1997. Proceedings., Pacific Rim International Symposium on, pages 85–90, De-

cember 1997.

[24] S. Asgari, V. Basili, P. Cost, P. Donzelli, L. Hochstein, M. Lindvall, I. Rus,

F. Shull, R. Tvedt, and M. Zelkowitz. Empirical-based estimation of the effect

on software dependability of a technique for architecture conformance verifi-

cation. In Workshop on Architecting Dependable Systems, ICSE, Edinburgh,

Scotland, May 2004.

[25] R. Rao, G. Swaminathan, B.W. Johnson, and J. H. Aylor. Synthesis of relia-

bility models from behavioral-performance models. In Proceedings of the 1994

Reliability and Maintainability Symposium (RAMS), pages 292–297, January

65

1994.

[26] R. H. Klenke, M. Meyassed, J. H. Aylor, B. W. Johnson, R. Rao, and A. Ghosh.

An integrated design environment for performance and dependability analysis.

In DAC ’97: Proceedings of the 34th annual conference on Design automation,

pages 184–189, New York, NY, USA, 1997. ACM Press.

[27] University of Cooperative Education (Berufsakademie) Karlsruhe. Woped

(”workflow petrinet designer”). http://www.woped.org, Accessed: March-2006.

[28] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing workflow

processes using woflan. In The Computer Journal. British Computer Society,

volume 44, pages 246–279, 2001.

[29] J. Howard B. It will not rip, rip errors and fixes.

http://desktoppub.about.com/cs/rip/a/rip 2.htm, May 2006.

[30] C. Hirel, R. Sahner, X. Zang, and K. Trivedi. Reliability and performability

modeling using sharpe 2000. In Proceedings of the 11th International Confer-

ence on Computer Performance Evaluation: Modelling Techniques and Tools,

volume 1786, pages 345–349.

[31] E. A. Lee. Overview of the ptolemy project. Technical Memorandum UCB/ERL

M03/25, University of California, Berkeley, July 2003.

BIOGRAPHICAL SKETCH

Gustavo Adolfo Chaparro-Baquero was born in January 22th of 1980 in Bogotá,

Colombia. Gustavo studied his bachelor in the Pontificia Universidad Javeriana at

Bogotá, obtaining his title as Electronic Engineer in September of 2002. His grading

project was an ”Educational Software for Children with Cerebral Paralysis”. His

work was meritorious to win the National Award for the Technology Innovation

Granted by E.T.B. and The National University of Colombia, in the category of

Innovation on Information Technologies pursuing the social improvement in Colom-

bia in 2003. Gustavo received his title as Master of Science in Computer Engi-

neering from the University of Puerto Rico, Mayaguez Campus in 2006. A paper

from his Master’s Thesis was published in the 2nd IEEE International Symposium

on Dependable, Autonomic and Secure Computing (DASC’06), Indiana University,

Purdue University, Indianapolis, USA September 29 - October 1, 2006.

66

PETRI NET WORKFLOW MODELING FOR DIGITAL
PUBLISHING MEASURING QUANTITATIVE DEPENDABILITY
ATTRIBUTES

Gustavo Adolfo Chaparro-Baquero
(787) 484-4953
Department of Electrical and Computer Engineering
Chair: Nayda G. Santiago, Ph.D
Degree: Master of Science
Graduation Date: July 12th 2006

This work describes the concept of workflow modeling using Generalized Sto-

chastic Petri Nets (GSPN) for the Digital Publishing business process and how the

attributes of dependability are measured in a quantitative form. In our novel ap-

proach, these are measured from the workflow model itself, improving the analysis

of a workflow model. Applying these measure concepts to the general Digital Pub-

lishing pre-press process provides a better workflow management in this area than

the actual procedure, since this process is based on its trustworthiness. Once the

methodology for workflow modeling measuring quantitative dependability attributes

is introduced, the results for a case study on the preflight stage and for the ripping

stage of the Digital Publishing workflow are presented.

