
MORPHOLOGICAL ANALYSIS OF WORDS
USING GENETIC ALGORITHMS

by

Ernesto A. Pérez

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2013
Approved by:

____________________________________ ___________________
José Fernando Vega Riveros, PhD Date
President, Graduate Committee

____________________________________ ___________________
Hilton Alers-Valentín, PhD Date
Member, Graduate Committee

____________________________________ ___________________
Bienvenido Vélez, PhD Date
Member, Graduate Committee

____________________________________ ___________________
Reyes M. Ortiz-Albino, PhD Date
Representative of Graduate Studies

____________________________________ ___________________
Pedro Rivera Vega, PhD Date
Chairperson of the Department

ABSTRACT

Morphology is the part of grammar concerned with word formation. It explains why

people sometimes immediately understand words when coming across them for the first time.

It is also useful in computer search queries by helping to determine related words through

word analysis. This thesis investigates the use of genetic algorithms as a means to perform

morphological analysis of words. Spanish is used to make tests since it has a richer

morphology than English. The genetic algorithm system naturally improves its capability to

perform morphological analysis as more words are taught to it. The system makes use of a

custom word similarity measure algorithm during the morphological division process.

ii

RESUMEN

La morfología es aquella parte de la gramática a la que le concierne la formación de

palabras. Esto explica porqué las personas a veces entienden inmediatamente aquellas

palabras con las que se encuentran por primera vez. También es útil en búsquedas por

computadora al ayudar a determinar palabras relacionadas por medio del análisis de las

mismas. Esta tesis investiga el uso de algoritmos genéticos como un medio para llevar a cabo

un análisis morfológico de palabras. El español se utiliza para hacer pruebas ya que la

morfología de esta lengua es más detallada que la del inglés. Por lo tanto se hace más retante

llevar a cabo este análisis de palabras en español que en inglés. El sistema basado en

algoritmos genéticos naturalmente mejora su capacidad para llevar a cabo divisiones de

palabras a medida de que se le enseñen más palabras. Durante el proceso de división

morfológica, el sistema hace uso de un algoritmo de medida de similitud de palabras.

iii

To my family

iv

ACKNOWLEDGEMENTS

I am grateful for the extensive help of the professors José Fernando Vega Riveros, Hilton

Alers-Valentín and Bienvenido Vélez. I would not have been able to complete my thesis

without their help. I also would like to acknowledge my family. Without their support, this

work would not have been possible.

v

TABLE OF CONTENTS

Table of Contents

ABSTRACT...II

RESUMEN...III

ACKNOWLEDGEMENTS...V

TABLE OF CONTENTS..VI

TABLE LIST...VIII

FIGURE LIST...IX

LISTING LIST..X

1. INTRODUCTION..1

1.1 SYSTEM OVERVIEW

...

5
1.2 THESIS CONTRIBUTION

..

9

2. METHODOLOGY..10

3. THE SYSTEM AND THE GENETIC ALGORITHM...14

3.1 THE CHROMOSOMES

..

15
3.2 THE FITNESS FUNCTION

...

15
3.3 THE SELECTION PROCESS

..

20
3.4 THE NEXT GENERATION

...

21
3.5 MUTATIONS

...

22
3.6 THE OVERALL PROCESS

...

23
3.7 AN ALTERNATIVE TO THE GENETIC ALGORITHM

...

24

4. THE WORD SIMILARITY MEASURE ALGORITHM..25

4.1 THE ORDER SCORE

..

27
4.2 THE LETTER SIMILARITY SCORE

..

29
4.3 THE SIZE SCORE

..

30
4.4 THE SEGMENT PAIR AND SEGMENT PAIRS SCORES

...

30
4.5 THE WORD SIMILARITY SCORE

..

32
4.6 TESTING THE SIMILARITY ALGORITHM

..

34
4.7 DISCARDED PROTOTYPE SCORES

...

36
4.8 THE CACHE SYSTEM

..

37
4.9 OTHER LANGUAGES

..

37

vi

4.10 COMPARISON AGAINST SEQUENCE ALIGNMENT

..

39

5. EXPERIMENTATION..40

5.1 CORPUS EXPERIMENTATION

...

40
5.2 REINFORCEMENT LEARNING

...

43
5.3 BENCHMARKING

..

46
5.4 RESULTS FOR THE ALTERNATIVE FORMULA

...

46
5.5 MORPHEME LEARNING

..

51
5.6 SUPPLETIVE WORDS

..

52

6. CONCLUSIONS..54

APPENDIX A. JAVA CODE WITH ALGORITHMS..56

APPENDIX B. CORPUS USED FOR EXPERIMENTATION...104

APPENDIX C. MAXIMUM DISORDER SCORES..107

REFERENCES...110

vii

TABLE LIST

Table List

TABLE 1. MAXIMUM DISORDER SCORES...28

TABLE 2. EXTRAPOLATED DISORDER SCORES...29

TABLE 3. SAMPLE PRONUNCIATION TABLE...33

TABLE 4. RESULTS OF CORPUS EXPERIMENTATION...45

TABLE 5. NEW MAXIMUM DISORDER SCORES..47

TABLE 6. RESULTS OF ALTERNATIVE CORPUS EXPERIMENTATION...49

TABLE 7. SUMMARY COMPARISON (WITHOUT POSITION DATA)..50

TABLE 8. SUMMARY COMPARISON (WITH POSITION DATA)..50

TABLE 9. RESULTS FOR VARIOUS AMOUNTS OF MORPHEME LEARNING...................................52

viii

FIGURE LIST

Figure List

FIGURE 1. SYSTEM BASICS...6

FIGURE 2. POSSIBLE DATA FOR MORPHEME ER..17

FIGURE 3. SAMPLE SCALING FACTOR CHART..18

FIGURE 4. AN OLD VERSION OF THE SCALING FACTOR CHART...19

FIGURE 5. CHROMOSOME VIEWED AS A LOOP...21

FIGURE 6. SEGMENT MATCHING...25

FIGURE 7. PARTIALLY SHARED MATCHING...26

FIGURE 8. SUBSEGMENT MATCHING..28

FIGURE 9. SCORES BLOCK DIAGRAM...34

FIGURE 10. POSITION SCORE...38

FIGURE 11. COVERAGE SCORE...38

FIGURE 12. NON-CROSSING SCORE...38

ix

LISTING LIST

Listing List

LISTING 1. PRONUNCIATION EQUIVALENCIES...33

LISTING 2. SIMILARITY TEST RUN #1..35

LISTING 3. SIMILARITY TEST RUN #2..36

LISTING 4. SIMILARITY TEST RUN #3..36

LISTING 5. SAMPLE RUN (MODALITY #1)...41

LISTING 6. SAMPLE RUN (MODALITY #2)...42

x

1. INTRODUCTION

This thesis deals with morphological analysis. What is morphology? “It's the part of

grammar concerned with words and word formation. The most important component of the

word structure is the morpheme, the smallest unit of language that carries information about

meaning or function.” [1, 2]

The following morphological division of the spanish word gatitas (= female kittens) is

useful in understanding morphology:

gat - it - a - s

(species) (size) (gender) (number)

If we substituted the gat morpheme with the perr morpheme, the word would become

perritas (= small female dogs). If we substituted the it morpheme with the ot morpheme, the

word would be become gatotas (= large female cats). If we removed the it morpheme, the

word would become gatas (= female cats). If we substituted the a morpheme with the o

morpheme, the word would becomes gatitos (= male kittens). If we removed the s

morpheme, the word would become gatita (= single female kitten). An example of English

morphology can be seen in the following words from [1]:

• act

• act-ive

• act-iv-ate

1

• re-act-iv-ate

• re-act-iv-at-ion

In the above example, the morphemes ive and iv are variants of one another: they are

written differently and appropriate to the word in which they are being used, but they carry

the same meaning. The same can be said about the morphemes ate and at. However, since the

morphemes ate and at are pronounced differently, they are considered to be allomorphs of

one another [1, 3]. There is no allomorphic variation when there is no change in

pronunciation. For example, when comparing create with creat-ive, there is no allomorphic

variation since there is no difference in pronunciation between the morphemes create and

creat- in this case. On the other hand, when comparing electric with electric-ity, there is

allomorphic variation between electric and electric- even though the spelling is the same. [1]

Stemming is the process by which we reduce words, through the removal of

morphemes, until we arrive at that which is the root that provides the core meaning of the

word [4]. Consider the word reactivation. We can either remove re to obtain activation, or we

can remove ion to obtain reactivate. From either of these two new words we can remove

another morpheme to obtain activate, and we can continue the process by removing ate to

obtain active, and finally by removing ive to obtain act which is the root of reactivation. In-

depth coverage of stemming is provided by [5, 6].

2

A morpheme that can be a word by itself is called a free morpheme, whereas a

morpheme that must be attached to another element is a bound morpheme. For example, act

is a free morpheme whereas re is a bound morpheme [1, 3].

Morphological analysis is the process we used to perform morpheme identification.

This analysis is used in different areas such as spelling error correction [7], machine

translation [7, 8], speech recognition, information retrieval, text understanding, and statistical

language modeling [8]; text to speech synthesis, hyphenation, and other language

engineering tasks [9]. Google has been using stemming for its search and retrieval functions

since at least 2006 [10].

According to [7], “The complexity of word form morphology varies widely among the

world's languages, but is regarded quite high even in the relatively simple cases, such as

English.” Furthermore, the Spanish language has a richer morphology than English [11]. In-

depth morphological analysis has been performed for a variety of languages. In [12], Tang

analyzed the English language, in it a series of morphological rules were derived from word

lists by means of statistical learning. Papers [13], [14], [15] and [16] analyzed the Spanish

language. Tzoukermann and Liberman [13] used a directed graph, where each directed edge

is labeled with word relations such as spelling, pronunciation, morphosyntactic features and

others. According to the online Oxford Dictionaries, morphosyntactic is defined as involving

both morphology and syntax. A program searches this graph to find all sequences of relations

with some interesting property, such as the form of a certain spelling, a morphological

division, etc. The graph is generated from approximately 55,000 basic words taken from a

3

dictionary. Velásquez et al [14] perform morphological analysis through generation: given a

word, an hypothesis is formulated based on dictionary data and other criteria, and forms are

generated based on that hypothesis. The generated forms are then compared to the original

word and if a form coincides, then the hypothesis is considered correct. Moreno and Goñi

[15] provided a Prolog implementation for morphological analysis with only six DCG rules,

relying on a dictionary of more than 43,000 entries. A DCG, that is, a Definite Clause

Grammar, represents a grammar as a set of definite clauses in first-order logic. They are

usually associated with the Prolog language. According to the paper, only correct forms are

analyzed. Zapata and Edison [16] used a lexicon of model verbs that group conjugations of a

large set of verbs. Templates are used to store the resulting data in plain text files, using one

file per template. This approach did not require datasets as large as those used in other

systems. Al-Sughaiyer and Al-Kharashi [17] discussed a variety of techniques regarding the

morphological analysis of the Arabic language, none of which were based on genetic

algorithms. Van den Bosch and Daelemans [7] analyze Dutch, they used a windowing system

to sequentially classify various “task instances” of the word being analyzed. In this case, task

instances are word substrings that are to be classified. When the system comes across new

instances, the system searches for the best matching instances in memory, and it then

determines the classification of the new instance. When all task instances of a word have

been classified, the morphological analysis is complete. Monson et al [18] discussed a system

called ParaMor, which analyzes Spanish, English, and German. The system first finds sets of

mutually exclusive strings such that each set is very similar to one of the inflection classes of

a language. (Each inflection class is a set. An example of an inflection class for English is the

4

set of words that end in a silent e). Words are arranged in schemes, which are the sets of

stems and suffixes; such schemes are arranged as nodes in a network. The ParaMor system

searches the network for the schemes that cover portions of the true inflection classes of the

language. Later, inflection classes are clustered and filtered. Finally, word segmentation

occurs.

This thesis presents a system that seeks to delimit all of the morphemes of a word

without having to carry out the stemming process.

1.1 System overview

In order to delimit the morphemes of a word, genetic algorithms as in [19] are used, which

are a form of reinforcement learning [20]. Given that the system has learned a number of

words and their morphological divisions, the system can be asked to compute the

morphological division of a new word based on what the system has learned. The block

diagram shown in Figure 1 illustrates the basics of this system.

5

Figure 1. System Basics

The system has knowledge about some morpheme data that it has learned. The system

learns these from morphological divisions that are taught either by the user at run-time

and/or, optionally, by a corpus that is fed to the system at the moment in which it starts. The

user can keep teaching and making queries at any moment. When a user query is made, the

query is fed to the genetic algorithm which outputs a computed morphological division. This

division will be correct if there is a reasonable amount of known morpheme data relevant to

the query that is made. As shown later on Table 4 of Chapter 5, excessive knowledge of many

different kinds of morphemes when the system is neither recording position nor frequency

data pollutes the system to an extent where the genetic algorithm is not able to reliably

compute a correct result.

As explained below, the fitness function makes use of a word similarity measure

algorithm. A number of papers have been written regarding the matter of word similarity

6

measure [21, 22, 23]. In paper [21], the author's goal was the automatic generation of

language-dependent string matching functions in order to improve the recognition of string

similarity. There is a focus on the recognition of cognates from specific language pairs. In

[22], the concept of string block edit distance was examined. Two strings A and B are

compared by extracting collections of substrings and placing them into correspondence.

There are variations of the problem depending on whether the strings must be matched in

their entirety, and whether overlap is permitted. In [23], Mackay and Kondrak described a

system to compute word similarity based on Pair Hidden Markov Models, a technique

adapted from the field of bioinformatics. This technique uses training data that consists of

word pairs known to be similar, as in [21], the tests focus on the identification of cognates.

The system described in this thesis resembles that of paper [22] at a very basic level,

however, the system uses different metrics. Also, this system uses a word similarity measure

algorithm that is tailored to the Spanish language by considering diacritics and pronunciation

similarity.

The standard operators of selection, crossover and mutation are to be used during the

genetic algorithm process. After a number of generations, there is an expectation that the

fittest chromosome represents the correct morphological division of the query's word. The

genetic algorithm used in this system is discussed in more detail in Chapter 3.

There are similar works that use genetic algorithms to perform morphological

division of words. This work seeks to perform full morphological division of words, which

7

may result in more than two morphemes per word, whereas the work presented in Gelbukh et

al [24] is concerned only with a two-part prefix/suffix division.

Papers [25] and [26] analyzed French using genetic algorithms. Kazakov [25]

performed two-part division of words recursively. The system divides a list of words into the

smallest possible sets of stems and suffixes that it can find. Then, for each of the stem and

suffix sets, the process is repeated until no more stem-suffix divisions can be made. Kazakov

and Manandhar [26] extend the work presented in Kazakov [25]. The authors presented

techniques for the generation of word segmentation rules (logic clauses in Prolog form) given

a list of words. The result is a logic program that can be used for the segmentation of

previously unseen words. Both [25] and [26] perform their work on a list of undivided words

whereas the system described in this thesis depends on being taught the morphological

division of words.

In this thesis we discuss a few distinct modes of operation for the genetic algorithm

used in the morphological division of spanish words. First, we describe an algorithm that

determines, as a percentage, the similarity of two words. Consider, for example, that after a

number of spanish words have been learned, we want the algorithm to make a best guess of

the conjugation of an irregular verb that the algorithm has learned. For example, given that it

knows that the word poner (= to put) is divided as pon-er, the algorithm correctly guesses

that the irregular conjugation pondré (= I will put) is divided as pond-ré. (The reverse,

concluding pon-er given the knowledge of pond-ré, is not always correct and will depend on

the information that the system has learned; namely, that the system has learned at least one

8

verb that ends in -er, such as com-er (= to eat).) Thus, the algorithm that determines the

similarity of two words is fundamental to the genetic algorithm described in this thesis.

In Chapter 3 we discuss the genetic algorithm itself. There are two variations.

Furthermore, for each of the two variations we will discuss how the genetic algorithm works

from scratch (i.e., having learned nothing) vs. how the system runs given a corpus that

consists of a number of words that have been previously morphologically divided.

1.2 Thesis contribution

This thesis uses genetic algorithms in such a way that words are morphologically

divided all at once. Other systems that use genetic algorithms perform the division by

recursively dividing words into two parts, as described in Section 1.1. In addition, this thesis

focuses on the Spanish language, since it has a richer morphology than English.

The system is tested with a corpus as well as without. Furthermore, the system is

tested in two different modalities: one that records the position and frequency of each

morpheme in candidate charts, and one that does not. Details are given in Section 3.2, which

describes the fitness function.

A significant contribution of this thesis is a custom word similarity algorithm, tailored

to the Spanish language. Tests are run and compared with two different formulas: the average

formula, discussed in Section 4.4, and the product formula, discussed in Section 5.4.

Appendix A shows the Java program that implements the genetic algorithm and the

word similarity measure algorithm.

9

2. METHODOLOGY

The tests described in this thesis uses genetic algorithms to study the problem of

performing correct morphological division of spanish words. Genetic algorithms seem to be a

reasonable tool for the solution to the problem, and this thesis proves that they are indeed a

very useful tool. As described in Chapter 1, there are papers ([25, 26]) that describe the

recursive division of words into two parts until the word is fully divided. In contrast, this

system divides a word all-at-once when queried about it.

A custom word similarity measure algorithm for the Spanish language was developed

for this system. To design the measure of similarity a heuristic approach was used. A series of

pairs of spanish words of various kinds of similarity were written down in paper: words were

classified in five categories according to how similar they could be perceived. Some of these

pairs were very similar, others were fairly similar, somewhat similar, slightly similar, and

not-at-all similar. Then a word similarity measure metric was developed to compare pairs of

spanish words. If the metric yields 100% both words should be the same, if the metric yields

0% then there should not be letters in common. The metric yields various other percentages

in all other cases. The important part here is that if pair A scores higher than pair B, then pair

A has more similarity among its words than pair B. For example, the pair of words “hice”

and “rehice” should score a higher similarity value than the pair of words “hice” and “playa”.

In order to be able to compute this metric, we developed 9 different scores. These are:

10

(1) the order score, which measures the relative order of letters between two similar word

segments,

(2) the letter similarity score, which distinguishes between letters that have diacritics from

those that do not,

(3) the size score, which measures how much a pair of word segments includes letters from

both source words,

(4) the segment pair score, which is the result of combining the three previous scores, either

by an average formula or by a product formula,

(5) the segment pairs score, which is the highest score from all segment pair scores,

(6) the position score, which measures how much variation is there between the relative

positions of a pair of word segments,

(7) the coverage score, which measures how much all word segments include letters from

both source words,

(8) the non-crossing score, which measures a pair of a pair of word segments, such that it

yields 100% if both words of a pair of word segments lies to the left of both words of the

other pair of word segments, yielding various other values otherwise, and

(9) the final result, also known as the word similarity score, which is the final metric that

measures the amount of similarity between two words.

These scores are described in detail throughout Chapter 4.

11

A corpus of over 640 words was built and used to train and test the system. Each of

the entries in this corpus is a spanish word that has been previously morphologically divided

by the author. About 590 words are used to train the system and the remaining 50 words are

used to test it. The corpus was built using [3] and is listed in Appendix B. An attempt was

made to find a pre-existing corpus of spanish words that are morphologically divided, but no

such corpus was found. According to the corpora-request mailing list, which is a very busy

mailing list on the matter of corpora, no such dataset exists. The corpora-request mailing list

can be reached at http://mailman.uib.no/listinfo/corpora. As for the data used by papers [13],

[14], [15] and [16], the input are plain words that have not been previously morphologically

divided.

Tests were run with each corpus entry being taught to the system 15, 25, 35 and 50

times. The tests performed best overall when each corpus entry was taught to the system 35

times. This is explained in Section 5.5. This learning is about updating some morpheme

charts as will be described in Section 3.2. After that, a total of 50 tests were run. For each

test, the system is asked to morphologically divide a spanish word that is not in the corpus. It

is at this point where genetic algorithms are used. They are described in more detail in

Chapter 3. Each chromosome is a hypothesis that represents a possible morphological

division. The winning chromosome is, according to the genetic algorithm, the best hypothesis

regarding the morphological division that can be applied to the word that is being queried.

For each of those 50 tests the correct division is known as part of the test. For each test, if the

winning chromosome indeed represents the correct division, the test result is recorded as an

12

http://mailman.uib.no/listinfo/corpora

“immediate result”. Otherwise, the correct division is taught to the system 35 times and the

test is run again for the same word. If the winning chromosome represents the correct

division, the test result is recorded as “requires teaching”. Otherwise the test result is

recorded as “did not learn”. The result of these experiments as well as an explanation of these

results is described in Chapter 5. The system was also tested with an alternative formula (the

product formula) and the results were compared to the original formula (the average

formula). These are described in Section 5.4.

The program was written in Java since it is a computer language that is easy to use.

The program was run on an 1.86GHz 1GB Intel computer. This computer is over 10 times

faster than the computer used in [25]. None of the other two papers that deal with

morphology and genetic algorithms specify which kind of computer was used to run the tests.

The outcome of the tests is completely independent of the speed of the computer.

13

3. THE SYSTEM AND THE GENETIC ALGORITHM

In the software's learning system, there are two operations that can be carried out: one

is to teach the morphological division of a new spanish word to the system; the other is to ask

the system to compute the morphological division of a word that has been given.

To teach the system, we type an equals sign followed by a morphologically divided

spanish word. For example,

=viv-ir

=viv-i-mos

=viv-e

To query the system, we simply type a single spanish word, and the system will output what

it believes is the best morphological division for the word. For example, given that the

system has learned enough about spanish verbs that end in er, then upon asking about comer

it should come up with com-er as a solution.

There are two important details here. First, sometimes two or more morphological

divisions will tie for the best solution. Second, the system will sometimes output inconsistent

results given the same input. All of this is related to the kind and amount of information that

the system has learned at the moment it is queried, in addition to genetic algorithms being

stochastic.

14

3.1 The chromosomes

The goal of the genetic algorithm is to determine the morphological division of a

word it has been given. Since the chromosomes represent potential solutions to the query,

they are made up of a series of bits such that the presence of a 1 represents a boundary

between morphemes, and the presence of a 0 represents the lack of such boundaries. For

example, if we query the system about the word comer, then the chromosome 1100 represents

the morphological division c-o-mer. (Observe that the length of the chromosome is one less

than the length of the word.) When the query first runs, it begins with a pool of 400 such

chromosomes, which are generated at random. There is always the possibility of there being

multiple chromosomes which are the same, especially with shorter words.

Originally, the genetic algorithm started out with a pool of only 200 chromosomes,

however, in order to better handle larger words the amount was raised to 400 chromosomes.

Since the genetic algorithm performed satisfactorily with this amount, as it can be seen in the

right column of tables 4 and 6, the value was kept permanently.

3.2 The fitness function

We now compute a fitness score for each chromosome. The system has two modes of

operation. In one, the fitness function seeks to match each of the morphemes delimited by the

chromosome to the morpheme it most resembles among all it has learned. It is at this point

where the system uses the word similarity measure algorithm. Consider an example where

15

the system is initialized from scratch (i.e., it has learned nothing), and we teach it only the

following three morphological divisions:

=viv-ir

=viv-i-mos

=viv-e

This means that the system knows about the morphemes viv, ir, i, e, and mos. Now, suppose

we query it about the word comer and we have a chromosome with the makeup 1100

(representing c-o-mer). Then for each of the tentative morphemes c, o and mer, the system

will find the morpheme among viv, ir, i, e and mos that most resembles the tentative

morpheme. For mer, the system determines via the word similarity measure algorithm that

the learned morpheme it most resembles is mos. Likewise for o. For c the word similarity

score yields zero since none of the learned morphemes resembles it. In this mode of

operation, the highest word similarity score for each match (c → 0) (o ↔ mos) (mer ↔ mos)

becomes the fitness value of the chromosome.

The second mode of operation is an extension of the first one. In addition to

considering the word similarity score for each match, the system considers position and

frequency data. When the system learns, it remembers the relative positions and frequency of

each morpheme. For example, the morpheme er tends to be at the end (such as in beb-er and

com-er), and also fairly close to the end (such as in hacer-er-le). Whereas the morpheme

super tends to be at the beginning, unless we teach it something like super-super-buen-o, in

16

which case it will learn that it can be in the middle. The way the position and frequency data

is learned can be thought to be similar to a stem graph with position percentages in the

horizontal axis and frequency in the vertical axis. An example is shown in Figure 2.

0
1
2
3
4
5
6
7

Relative position

F
re

q
u

e
n

cy

Figure 2. Possible Data For Morpheme er

We now proceed to compute a scaling factor to be used in the fitness function. For

every relative position for which we have recorded frequency data the scaling factor will be

100%. For all other relative positions, the scaling factor will be less than 100% and greater

than or equal to 50%. This is shown in Figure 3. It is desirable that the lowest scaling factor

be a value higher than 0% since it is to be used in a multiplication. The lower scaling factor

was chosen to be 50% and it was found to yield excellent results. This can be seen in the

discussion of experimentation of Chapter 5.

Observe the point close to relative position 70%, which has a scaling factor of 50%.

Note that this point is not exactly in the middle between the two relative positions 62.5% and

80% (the ones having recorded frequency values). Rather, it lies toward the left. That is

because the right value (a frequency of 6 for relative position 80%) is greater than the left

17

value (a frequency of 2 for relative position 62.5%). In case that the value for relative

position 80% keeps increasing, then the relative position whose scaling factor is 50% will

keep moving towards the left, asymptotic to the left relative position. Likewise, if the left

relative position had a frequency greater than the right relative position, the relative position

whose scaling factor is 50% will be somewhere within the right half. If both relative

positions had the same frequency, the relative position whose scaling factor is 50% will be

right in the middle.

Figure 3. Sample Scaling Factor Chart

When the system is evaluating the fitness score for a chromosome, it first picks one of

its morphemes. We call it the check morpheme. The relative position (0% to 100%) of the

check morpheme within the chromosome is known as the check position.

The system now runs through every morpheme that it has learned and compares them

to the check morpheme. Each of those morphemes is known as a candidate morpheme. The

18

system then retrieves the candidate chart for the candidate morpheme, this is a chart like the

one shown in Figure 3.

The check position is looked up within the candidate chart and a scaling factor is

obtained. Next, a similarity measure (0% to 100%) is obtained by comparing the check

morpheme to the candidate morpheme using the word similarity measure algorithm described

in Chapter 4. The similarity measure is multiplied by the scaling factor in order to obtain the

morpheme similarity score.

The morpheme similarity score is computed for every check morpheme within the

chromosome. The highest morpheme similarity score among these becomes the fitness value

for the chromosome.

Figure 4. An Old Version Of The Scaling Factor Chart

Originally, the scaling factor was defined differently. An old version of the scaling

factor chart is shown in Figure 4. The scaling factor used was computed by a straight line

between each pair of relative positions for which data had been recorded. This type of scaling

19

factor computation gave poor results on the experiments. On the other hand, the scaling

factor chart shown in Figure 3 provided excellent results as can be seen by the

experimentation described in Chapter 5.

3.3 The selection process

All of the chromosomes in the pool are sorted descendingly by their fitness score.

Whenever two or more chromosomes have the exact same makeup (i.e., they are literally the

same), only one instance of them is kept during the sorting process.

Next, we divide the pool in two halves, such that the lowest scoring chromosome of

the top half scores more than the highest scoring chromosome of the bottom half. This

implies that the halves are not necessarily of the same size. When this is the case, the top half

will be bigger than the bottom half. Consider for example a pool of 8 chromosomes with

scores 80, 70, 60, 60, 60, 40, 35 and 10. Then the top half will turn out to be 80, 70, 60, 60

and 60; and the bottom half 40, 35 and 10.

The top half becomes the mating pool, i.e., its chromosomes become candidates for

mating. Selection is made using weighted probabilities. Each mating candidate is assigned a

relative score, which is the difference between its fitness score and the fitness score of the

lowest scoring chromosome of the bottom pool. Those values are converted into probabilities

that add to 1 by dividing each relative score by the sum of all relative scores. The system then

uses those probabilities to randomly choose enough couples that go on to become parents and

20

generate an amount of offspring chromosomes that is equal to that in the initial pool. The

amount is not always exactly equal due to the use of elitism, which is discussed below.

3.4 The next generation

Each couple of parents mate to create two offspring. According to [29], “Two-point

crossover performs the same task as one-point crossover (i.e., exchanging a single segment),

but is more general. [...] Researchers now agree that two-point crossover is generally better

than one-point crossover.” The following figure illustrates this concept. It originally

appeared in Beasley et al [29].

Figure 5. Chromosome Viewed As A Loop

All of the chromosomes in a single run of the genetic algorithm have the same length.

To perform a two-point crossover, we first choose two cut points randomly, such that they are

not the same. A cut point is either a position between bits or the position after the final bit,

which is considered to be the same as the position before the first bit. The first offspring is

the same as the first parent, except that the bits between the cut points are those of the second

21

parent. Likewise, the second offspring is the same as the second parent, except that the bits

between the cut points are those of the first parent. One-point crossover is the same as two-

point crossover with the exception that one of the points is fixed to be the boundary that joins

the start and the finish of the chromosome. The system implementation only makes use of

two-point crossover.

In addition to the new offspring, the chromosomes with the highest fitness score of

this generation are passed on directly to the pool of the next generation. This is known as

elitism.

3.5 Mutations

After the next generation has been created, each of the chromosomes has a 5% chance

to mutate. According to the book “Practical Genetic Algorithms” by Randy L. Haupt and Sue

Ellen Haupt, page 42: “Increasing the number of mutations increases the algorithm's freedom

to search outside the current region of parameter space. It also tends to distract the algorithm

from converging on a solution. Typically, on the order of 1% to 5% of the bits mutate per

iteration […] We want to mutate 5% of the population (μ = 0.05) except for the best

chromosome.” Given that the experimentation results shown on Chapter 5 are very good, it is

understood that the choice of 5% for the mutation parameter is a reasonable one.

One of the elite chromosomes that were passed on from the previous generation is

protected from mutation. The mutation process is very simple: one of the bits of the

chromosome is selected at random, and its value is flipped to the opposite one.

22

3.6 The overall process

Because of the way the genetic algorithm has been implemented, the elite

chromosomes get gradually better as generations go by. In case that an elite chromosome has

a fitness score of 0.999 or more, out of a maximum of 1.0, then the algorithm stops

immediately. This usually happens when the system is queried about a word it has already

learned. Due to randomness, this may either happen in the first generation, or it may take

several.

If 40 consecutive generations go by without improvement of the elite, then the

algorithm stops. From experience, this could probably be reduced to about 20 or even less

without adverse effects, but is kept at 40 to ensure good performance of the algorithm.

If a total of 150 generations go by, the algorithm stops immediately regardless of the

state of the elite. From experience, this has never actually happened. The maximum amount

of generations that have been seen is around 50, at a point in which the limit of 40

consecutive generations without improvement of the elite is reached and the algorithm stops.

23

3.7 An alternative to the genetic algorithm

If the genetic algorithm runs for only 40 generations, and every generation has about

400 chromosomes (a value which varies due to elitism), then the fitness function is evaluated

about 16,000 times. However, if we generate all possible chromosome combinations for a

word of 14 letters, then we would have 213 = 8,192 chromosomes, since the length of every

chromosome is the amount of letters in the word minus one. If we simply evaluate all those

chromosomes one by one, and pick the best chromosome, we would finish faster than if we

ran the genetic algorithm, assuming that the genetic algorithm runs for only 40 generations.

For a word of 15 letters (such as superestadistas) we would have 214 = 16,384 chromosomes.

In that case the genetic algorithm would be faster assuming, again, that the algorithm runs for

only 40 generations. However, words of at least 15 letters are uncommon, thus sequentially

running through all possible combinations seems to be a better option than the use of the

genetic algorithm. Nevertheless, the fitness function that was developed for the genetic

algorithm remains a valuable contribution of this thesis, along with the word similarity

measure algorithm discussed in Chapter 4.

However, for small words the genetic algorithm may finish in a few generations if it

quickly finds a chromosome whose fitness value is at least 0.999. Due to the use of

randomness in the genetic algorithm this is sometimes true, therefore, the use of all possible

combinations is usually, but not always, a better alternative to the genetic algorithm.

24

4. THE WORD SIMILARITY MEASURE ALGORITHM

The word similarity measure algorithm begins with a process known as segment matching. A

segment is a substring of a word, and a word in this context is a string of Spanish letters, with

or without diacritics. An example is shown in Figure 6.

Figure 6. Segment Matching

There are three rules that govern the segment matching process. First, diacritics are

ignored during the process. Thus, the n can match the ñ, the u can match ú and ü, and so on

for the remaining vowels a, e, i and o. Second, the set of letters in one segment must be the

same as that of the other segment (while ignoring diacritics, of course). Third, the order of

the letters does not matter. Of course, segments must be continuous. Note that each segment

in a pair has the same length, which can be as small as one letter or as big as the smallest

word. When a pair entirely covers both words, it does not necessarily mean that the words are

the same, since order is ignored during the matching process. The algorithm finds as many

segment pairs as it is possible, with the exception that no segment pair can be wholly a subset

25

of another. To understand this, imagine a segment pair made up of segments A and B, and

another segment pair made up of segments C and D. Then, if C is a subset of A it should not

be the case that D is a subset of B. As an example, in Figure 6 there is no segment pair that

can match ci in the first word with ci in the second word, since each is a subset of segments

that already form a pair. To ensure this requirement, the algorithm begins by trying to find the

biggest segment pair possible. Then, it progressively reduces the length of the matches

attempted until individual letters are considered. While a segment pair cannot be wholly a

subset of another, it is possible for a segment pair to partially share letters in common with

another segment pair. The following figure demonstrates an example:

Figure 7. Partially Shared Matching

The system now proceeds to compute several scores for each segment pair before an

overall word similarity score is computed. If the system finds no matching segment pairs,

then the word similarity score will be 0%.

26

In order to obtain the word similarity score, the following scores are computed:

1. The order score. 4. The segment pair score.

2. The letter similarity score. 5. The segment pairs score.

3. The size score.

4.1 The order score

First, we compute a disorder score. An example is shown in Figure 8. The segment

pair is further subdivided into subsegment pairs such that each pair is equivalent with

diacritics ignored. In other words, order matters for each subsegment pair. For the example

given, the segment pair berta-taber is divided into the subsegment pairs ber-ber and ta-ta.

Then, for each segment, each of its subsegments is given an index number. In the figure these

are the values 0 and 1. A subsegment score is given to each subsegment pair, which is the

magnitude of the difference between indexes, with the total sum being the disorder score for

the segment pair.

That disorder score is then divided by the maximum possible score given the amount

of subsegment pairs. The result of that division is a value between 0 and 1, representing the

proportional disorder score x. As a special case, if the amount of subsegment pairs is 1, then

the result of the division is defined to be 0. This is because the maximum possible score for 1

subsegment pair is 0, and thus we would have to perform a division by 0.

27

A program was written to try all possibilities and report the maximum possible

disorder score for each size. The program is listed in Appendix C. The results are shown in

Table 1. Those results are in turn extrapolated and shown in Table 2.

These words share the segment pair shown.
There are two subsegment pairs.

The numbers are indexes.
The disorder score is: | 0 – 1 | + | 1 – 0 | = 2.

Figure 8. Subsegment Matching

Subsegment pairs Maximum score

1 0

2 2

3 4

4 8

5 12

6 18

7 24

8 32

9 40

10 50

11

The program
stops due to
excessive

memory usage

Table 1. Maximum Disorder Scores

28

Subsegment pairs Maximum score

n = Even
n2

2

n = Odd
n2−1

2

Table 2. Extrapolated Disorder Scores

(Please note that applying n = 1 through 10 to Table 2 yields the values on Table 1.)

For the example given in Figure 8, we have that the disorder score is 2, and for the

amount of subsegment pairs which is 2, the maximum score is 2. Dividing the disorder score

2 by the maximum score 2 yields a proportional disorder score of 1. We now proceed to

evaluate 1 – x on the result in order to obtain an order score, with 0% resulting from the

worst possible order and 100% resulting from perfect order. In the example given in Figure 8

we have that the order score is 1 – proportional disorder score = 1 – 1 = 0.

4.2 The letter similarity score

We match as many pairs of characters from one segment to the other (diacritics must

match) as it is possible. For example, for the segment pair amor and majó, we have the pairs

a-a and m-m, but not o-ó. The number of matching pairs m is divided by the segment length s

in order to produce a value between 0 and 1, representing a percentage. Recall that both

segments in a segment pair have the same segment length s. In the example for the segment

pair amor and majó, m = 2 and s = 4. Thus the letter similarity score for this pair is 2 ÷ 4 = ½.

29

4.3 The size score

The total sum of characters of both segments is divided by the total sum of characters

of both words. This again produces a value between 0 and 1, representing a percentage.

Consider the word pair amor-amores and the segment pair amor-amor. Here, the size score

would be 8 (from amor-amor) divided by 10 (from amor-amores), which yields 0.8.

4.4 The segment pair and segment pairs scores

The average of the order score, the letter similarity score, and the size score is taken

in order to produce the segment pair score. Since each score lies between 0 and 1, the

segment pair score will likewise lie between 0 and 1.

The segment pairs score for the word is the highest value among all of the segment

pair scores. Consider the word pair revista-revisita. There are two segment pairs: revis-revis

and ista-sita.

To calculate the disorder score for revis-revis, we divide the segment pair into

subsegment pairs. However, in this case there is only one subsegment pair, which is

revis-revis itself. Thus, both revis bear an index number of 0. The score for the subsegment

pair revis-revis is | 0 – 0 | = 0. From Table 1, the maximum score for 1 subsegment pair is 0,

thus to obtain the proportional disorder score we would divide 0 ÷ 0, but this is not possible,

so we make use of the special rule that says that we take the result of the division to be 0.

This was described in Section 4.1.

30

We now compute one minus the proportional disorder score to obtain the order score.

Thus, the order score is 1 in this case.

To obtain the letter similarity score, we note that there are 5 matches in revis-revis,

and that the length of each segment is 5, thus the letter similarity score is 5 ÷ 5 = 1.

To obtain the size score, we note that the segment pair revis-revis has 10 characters in

total, whereas the words being compared, revista and revisita, have 15 characters in total.

Thus the size score is 10 ÷ 15 = 2/3.

To obtain the segment pair score for the segment pair revis-revis within the word pair

revista-revisita, we take average of the order score, the letter similarity score, and the size

score. Thus, we take the average of 1, 1, and 2/3, which is 88.88889%.

To calculate the disorder score for ista-sita, we divide the segment pair into

subsegment pairs. These are i-i, s-s and ta-ta. For i the indexes are 0 within ista and 1 within

sita. Thus the value of i is | 0 – 1 | = 1. For s the indexes are 1 within ista and 0 within sita.

Thus the value of s is | 1 – 0 | = 1. For ta the indexes are 2 within ista and 2 within sita. Thus

the value of ta is | 2 – 2 | = 0. The disorder score for ista-sita is 1 + 1 + 0 = 2.

From Table 1, the 3 subsegments pairs i-i, s-s and ta-ta. have a maximum disorder

score of 4. Thus the proportional disorder score is 2 ÷ 4 = ½. To obtain the order score we

compute one minus the proportional disorder score ½. Thus the order score is ½.

To obtain the letter similarity score, we note that there are 4 matches in ista-sita, and

that the length of each segment is 4, thus the letter similarity score is 4 ÷ 4 = 1.

31

To obtain the size score, we note that the segment pair ista-sita has 8 characters in

total, whereas the words being compared, revista and revisita, have 15 characters in total.

Thus the size score is 8 ÷ 15 = 8/15.

To obtain the segment pair score for the segment pair ista-sita within the word pair

revista-revisita, we take average of the order score, the letter similarity score, and the size

score. Thus, we take the average of ½, 1, and 8/15, which is 67.77778%.

The segment pairs score is the highest of the two segment pair scores, 88.88889%

and 67.77778%. Thus the segment pairs score for revista-revisita is 88.88889%.

4.5 The word similarity score

For each of the two words, a set of words that are similar in pronunciation is

calculated. Listing 1 shows all of the pronunciation equivalences used. They were compiled

as a result of an analysis of equivalences – no source was used. For example, given the word

casa (= house), the following words are computed: caza, kasa, kaza. Of these, only caza (=

hunt) is a spanish word, but we are not concerned with meaning.

Each of the two sets of words become the row and column headers of a crossover

table. Then, for each cell in the table, the segment pairs score is computed as described in the

previous section. Table 3 shows an example for the pair casa and moza (= young lady).

32

ca ↔ ka1 cc ↔ x
ce ↔ se ge ↔ je
ci ↔ si gi ↔ ji
co ↔ ko que ↔ ke ↔ qe2

cu ↔ ku qui ↔ ki ↔ qi
b ↔ v s ↔ z
ll → y
y (followed by a vowel) → ll
y (at the end or followed by a consonant) → i
i (at the end and not preceded by gu, qu) → y
u or ú or ü (neither preceded by g nor q) → w
w → u (if it would not become preceded by g nor q)
h (not as part of ch) → nothing3

1 When a diacritic is present, it is kept in the conversion.
1 For example, ca ↔ ka implies cá ↔ ká.
2 While the syllables qe and qi are not Spanish syllables,
2 they are nonetheless used as equivalencies.
3 This conversion is one way, we certainly do not insert h characters
4 arbitrarily in any word!

Listing 1. Pronunciation Equivalencies

moza mosa

casa 25% 50%

caza 50% 25%

kasa 25% 50%

kaza 50% 25%

Table 3. Sample Pronunciation Table

The final word similarity score is the average of the segment pairs score for the

original pair of words (in Table 3, at the top left) and the highest score among all of the cells

in the table. For the example of casa and moza, the final word similarity score is the average

between 25% and 50%, which is 37.5%.

33

Figure 9. Scores Block Diagram

Why was this average formula chosen? The cell at the top left represents the

comparison from a purely ortographical point of view. Meanwhile, all the other cells

represent various scores from a pronunciation point of view, taking the highest value among

them as the official score that is based on pronunciation. To allow both aspects to be taken

into account, we average this value with the value computed from a purely ortographical

point of view. This is the final word similarity score.

4.6 Testing the similarity algorithm

A program was written to receive as input an arbitrary long list of spanish words from

the user, and to order them using the similarity algorithm in such a way that every pair of

consecutive words is as similar as possible. Listings 2, 3 and 4 show three distinct sample

34

outputs. Occasionally, a pair of consecutive words could come out being quite dissimilar; this

is usually the case, because there is no better choice of similarity out of the remaining words

in the list, or simply because the similarity and ordering are suboptimal due to the complexity

of the problem. In the case of the ordering algorithm, consider it to be similar to the

Traveling Salesman Problem (TSP). We can compute a similarity score between every pair of

words, must note that finding an ordering that maximizes the similarities between every pair

of consecutive words is similar to finding an order that minimizes the distance between every

pair of cities in a TSP. Thus, an approximation is used in the implementation. The way the

ordering algorithm works: first pick the word that most resembles all of the rest. Successively

pick the word that most resembles the previous one. Listing 2 shows a fairly good outcome

of the algorithm; whereas the ordering in Listings 3 and 4 is not always obvious.

1. pares 6. oso 11. visionario 16. llueve

2. par 7. vicio 12. cena 17. Jueves

3. parejo 8. servicio 13. cuece 18. mueves

4. parsimonia 9. visión 14. duele

5. parsimonioso 10. televisión 15. telepatía

Listing 2. Similarity Test Run #1

35

1. ría 7. gracias 13. subir 19. adoquín

2. avería 8. arco 14. urgir 20. Utuado

3. aerolito 9. dar 15. surgir 21. acentuado

4. arbolito 10. brindar 16. armonía 22. hacendoso

5. acólito 11. brincar 17. letanía 23. bonito

6. litografía 12. cubrir 18. arlequín 24. quingombó

Listing 3. Similarity Test Run #2

1. generoso 9. rosa 17. céntimo 25. onda

2. genes 10. jardinero 18. mover 26. monseñor

3. virgen 11. ceder 19. verificar 27. señorío

4. origen 12. creer 20. perilla 28. villorrio

5. genético 13. crear 21. periscopio 29. excesivo

6. timón 14. crecer 22. perlado 30. jazmín

7. jamón 15. acrecentar 23. lado

8. roja 16. sentar 24. ondulado

Listing 4. Similarity Test Run #3

4.7 Discarded prototype scores

There were three types of score for which the word similarity measure algorithm was

found to perform poorly when they were factored into it. The first was a position score for

segment pairs, which would score higher as the relative positions were more similar (i.e.,

both segments toward the middle or towards the end of their respective words), and would

score lower as the relative positions were less similar (i.e., one segment towards the

beginning of its word, and the other toward the end of its word). The second was a coverage

score that would score higher the more letters were part of segment pairs. The third was a

36

non-crossing score for pairs of segment pairs. If one were to draw lines between segment

pairs, then it would score lower the more those lines crossed, scoring highest when they did

not.

4.8 The cache system

A cache system was implemented into the word similarity measure algorithm that

significantly speeds up the performance of the genetic algorithm. It consists of 100,000

entries, each one holding the word similarity measure score for a pair of words. It was

implemented using the associative array facilities already present in the Java language.

4.9 Other languages

While the word similarity measure algorithm described in this thesis is tailored to the

Spanish language, the language that was chosen to test the system, it can be modified so that

the system can be made to work with other languages.

For example, French makes use of 5 diacritic marks. These are the acute accent (as in

é), the grave accent (as in è), the circumflex (as in ê), the diaeresis (as in ë), and the cedilla

(as in ç). It also makes use of 2 ligatures, “œ” and “æ”. In addition, French lacks the letter ñ.

Special rules need to be considered. For example, when identifying pairs of segments,

under which circumstances should “œ” match “oe”? And, should “œ” be able to match “eo”?

Regardless of the word similarity measure algorithm in use, the genetic algorithm

does not need to be modified. In particular, the fitness function can be used as is.

37

Figure 10. Position Score

Figure 11. Coverage Score

Figure 12. Non-Crossing Score

38

4.10 Comparison against sequence alignment

According to [27], “Sequence alignment is the problem of finding the optimal

character-by-character correspondence between two sequences.” The paper gives an

example of performing sequence alignment on the pair of words traceback and backtrack.

There are two possible alignments:

T R – A C E B – – – A C K

– – B A C – – K T R A C K

– – – – T R A C E B A C K

B A C K T R A C – – – – K

Sequence alignment is often used for the alignment of DNA and protein sequences in

[28]. It is used in the alignment tasks where the order is important. The word similarity

measure algorithm presented in this thesis does not work sequentially. Figures 6, 7 and 8

provide examples of the non-sequential nature of this algorithm. Therefore, the use of a

sequence alignment algorithm is not an appropriate substitute to the word similarity

algorithm.

39

5. EXPERIMENTATION

Here we present a sample run of the system from scratch (i.e., with no data previously

learned). There are two modalities. Listing 5 shows the system running when it does not

record position and frequency data. In contrast, Listing 6 shows the system running when it

does record position and frequency. The run is similar to that of Listing 5, with the

differences shown in bold. The important detail is that the modality that records position and

frequency correctly divided one word that the other modality did not (gatotes), and failed at

correctly dividing two words that the other modality did (chica and chiquitiquitica). In the

next section we will see a more significant difference between the two modalities.

5.1 Corpus experimentation

A corpus of over 640 spanish words has been created, with each word being

morphologically divided. It includes nouns, adjectives, verbs and adverbs, and is listed in

Appendix B. An extensive Internet search was conducted in an attempt to find another corpus

of spanish words that have already been morphologically divided, but no such corpus was

found.

About 590 words from the corpus are loaded at the beginning of the system run, and

we then proceed to test its ability to correctly perform morphological divisions on the

remaining 50 words. The results are shown in Table 4, with a summary of results at the

bottom. The results show that the modality of using position and frequency data is much

40

=gat-it-o-s
gatitos (Correctly yields gat-it-o-s)
gatitas (Incorrectly yields gat-ita-s)
=gat-it-a-s
gatitas (Correctly yields gat-it-a-s)
gatititas (Correctly yields gat-it-it-a-s)
gato (Correctly yields gat-o)
gata (Correctly yields gat-a)
gatos (Correctly yields gat-o-s)
gatas (Correctly yields gat-a-s)
gatotas (Incorrectly yields gat-o-t-a-s)
=gat-ot-a-s
gatotas (Correctly yields gat-ot-a-s)
gatitotas (Correctly yields gat-it-ot-a-s)
gatotes (Incorrectly yields gat-ote-s)
=gat-ot-es
gatotes (Correctly yields gat-ot-es)
gatototes (Correctly yields gat-ot-ot-es)
conejitas (Correctly yields conej-it-a-s)
conejotes (Correctly yields conej-ot-es)
perras (Correctly yields perr-a-s)
perrototes (Correctly yields perr-ot-ot-es)
chica (Correctly yields chic-a)
=ch-ic-a
chica (Correctly yields ch-ic-a)
chico (Correctly yields ch-ic-o)
chiquitico (Correctly yields ch-iquit-ic-o)
chiquitiquitica (Correctly yields ch-iquit-iquit-ic-a)
comer (Incorrectly yields c-o-mer)
=com-e-r
comer (Correctly yields com-e-r)
beber (Correctly yields beb-e-r)
remover (Incorrectly yields r-e-mov-e-r)
=re-mov-er
remover (Incorrectly yields remov-e-r)

Listing 5. Sample Run (Modality #1)

41

=gat-it-o-s
gatitos (Correctly yields gat-it-o-s)
gatitas (Incorrectly yields gat-it-as)
=gat-it-a-s
gatitas (Correctly yields gat-it-a-s)
gatititas (Correctly yields gat-it-it-a-s)
gato (Correctly yields gat-o)
gata (Correctly yields gat-a)
gatos (Correctly yields gat-o-s)
gatas (Correctly yields gat-a-s)
gatotas (Incorrectly yields gatot-a-s)
=gat-ot-a-s
gatotas (Correctly yields gat-ot-a-s)
gatitotas (Correctly yields gat-it-ot-a-s)
gatotes (Correctly yields gat-ot-es)
gatototes (Correctly yields gat-ot-ot-es)
conejitas (Correctly yields conej-it-a-s)
conejotes (Correctly yields conej-ot-es)
perras (Correctly yields perr-a-s)
perrototes (Correctly yields perr-ot-ot-es)
chica (Incorrectly yields c-hic-a)
=ch-ic-a
chica (Correctly yields ch-ic-a)
chico (Correctly yields ch-ic-o)
chiquitico (Correctly yields ch-iquit-ic-o)
chiquitiquitica (Incorrectly yields ch-iquitiquit-ic-a)
=ch-iquit-iquit-ic-a
chiquitiquitica (Correctly yields ch-iquit-iquit-ic-a)
comer (Incorrectly yields c-o-mer)
=com-e-r
comer (Correctly yields com-e-r)
beber (Correctly yields beb-e-r)
remover (Incorrectly yields remov-e-r)

Listing 6. Sample Run (Modality #2)

better than the other modality when a corpus is used. This states the benefit both of recording

position and frequency data as well as using a corpus.

42

The fact that the system does not learn in some instances is significant. When no

position or frequency data is recorded, the system could not learn 13 out of 50 words – that is

26% of the words given. Since this modality relies only on a list of morphemes learned, it

means that the use of the corpus in this modality was counterproductive. Meanwhile, the

recording of position and frequency data improved the performance of the system because

there were no words it could not learn (versus 13 in the other modality).

5.2 Reinforcement learning

A total of 50 tests were run with the results shown in Table 4. In preparation for these

tests, each corpus entry was taught to the system 35 times. For each test that did not yield the

correct result immediately after running the query for that word, we taught the correct

morphological division 35 times and ran the test again.

Must note that there are two types of reinforcement learning that occur in this system.

When a query is made, genetic algorithms are used, which use a form of reinforcement

learning. On the other hand, when the system is taught a morphological division, position and

frequency data is updated according to what is newly taught. By teaching the same division

many times, the system gives more weight (records an increased frequency) to the

morpheme-position pairs of that word. This type of reinforcement learning cannot occur in

the modality that does not record position nor frequency. In that modality, only morphemes

are learned, therefore, teaching the same division more than once has no effect.

43

Word Divided Word Without Position Data With Position Data

gatotes gat-ot-es Immediate result, ties with 4 others1 Immediate result, ties with 1 other

ultrafino ultra-fin-o Immediate result2 Immediate result

ultraconservador ultra-conserv-a-dor Did not learn Immediate result

taxis taxi-s Requires teaching3 Immediate result

beben beb-e-n Immediate result, ties with 1 other Immediate result

cosedora cos-e-dor-a Immediate result, ties with 14 others Immediate result

repartirse repart-ir-se Did not learn Immediate result

recibido recib-id-o Immediate result, ties with 1 other Immediate result, ties with 1 other

recibís recib-í-s Immediate result Immediate result

cuéntale cuént-a-le Requires teaching, ties with 2 others4 Requires teaching, ties with 1 other

silloncito sill-on-cit-o Immediate result, ties with 5 others Immediate result

ininterrumpido in-interrump-id-o Requires teaching Immediate result

reinscribir re-inscrib-ir Did not learn Immediate result

inactivo in-act-iv-o Immediate result, ties with 10 others Immediate result

sobrepuesta sobre-puest-a Immediate result Immediate result

preacuerdo pre-acuerd-o Did not learn Immediate result

exnovia ex-novi-a Immediate result, ties with 1 other Immediate result

vicepresidente vice-presid-ente Did not learn Immediate result, ties with 1 other

vicedecanato vice-decan-ato Did not learn Immediate result

extracurricular extra-curricul-ar Did not learn Immediate result

anticonstitucionales anti-constitu-cion-al-es Did not learn Immediate result

observarán observ-a-rá-n Immediate result, ties with 1 other Immediate result

extensionalidad extension-al-i-dad Did not learn Immediate result, ties with 1 other

principado princip-ado Did not learn Immediate result, ties with 1 other

tolerancia toler-ancia Requires teaching, ties with 3 others Immediate result

bienaventuranza bien-aventur-anza Did not learn Immediate result

1 “Immediate result, ties with 4 others” means that before teaching, five solutions of equal fitness score tied up for the
best, and one of them was the correct morphological division for that word. There is no need to teach.

2 “Immediate result” means that the system was able to perform the correct morphological division for that word without
having to teach it the correct morphological division.

3 “Requires teaching” means that the system was not able to perform the correct morphological division for that word
before having to teach it the correct morphological division. After teaching, the system does perform the correct
morphological division.

4 “Requires teaching, ties with 1 other” means that after teaching, two solutions of equal fitness score tied up for the best,
and one of them was the correct morphological division for that word.

44

Word Divided Word Without Position Data With Position Data

incertidumbre in-certi-dumbre Requires teaching, ties with 1 other Immediate result

torcedura torc-edura Requires teaching, ties with 6 others Immediate result

cabezota cabez-ot-a Requires teaching, ties with 1 other Immediate result

panezote pan-ezot-e Requires teaching, ties with 3 others Immediate result

villorrio vill-orri-o Requires teaching, ties with 5 others Immediate result

colombiano colombi-an-o Did not learn Immediate result

vizcaína vizca-ín-a Requires teaching, ties with 3 others Immediate result

tepozteco tepoz-tec-o Requires teaching, ties with 2 others Immediate result

comías com-í-a-s Immediate result, ties with 1 other Immediate result

comiste com-iste Immediate result, ties with 4 others Immediate result

cantaremos cant-a-re-mos Immediate result, ties with 4 others Immediate result, ties with 1 other

viviré viv-i-ré Immediate result, ties with 8 others Immediate result, ties with 1 other

vivirá viv-i-rá Immediate result, ties with 8 others Immediate result

viviríamos viv-i-ría-mos Immediate result, ties with 16 others Immediate result

vivirían viv-i-ría-n Immediate result, ties with 20 others Immediate result

cantásemos cant-á-se-mos Immediate result, ties with 3 others Immediate result

cantáremos cant-á-re-mos Immediate result, ties with 2 others Immediate result

cantareis cant-a-re-is Immediate result, ties with 10 others Immediate result

vivieren viv-ie-re-n Immediate result, ties with 21 others Immediate result, ties with 1 other

librería libr-ería Immediate result, ties with 4 others Immediate result, ties with 1 other

caserío cas-erío Requires teaching, ties with 6 others Immediate result, ties with 1 other

jugaré jug-a-ré Requires teaching, ties with 2 others Immediate result, ties with 1 other

superestadistas super-estad-ista-s Immediate result, ties with 2 others Immediate result

escogería escog-e-ría Did not learn Immediate result, ties with 1 other

Note: Due to randomness, results
may vary slightly when retrying some
of the tests that end in ties,
particularly if there are many, which
are a result of a set of morphemes
not being properly trained (i.e., too
little training).

Did not learn: 26%
Immediate result (no ties): 6%
Immediate result (with ties): 42%
Requires teaching (no ties): 4%
Requires teaching (with ties): 22%

Did not learn: 0%
Immediate result (no ties): 74%
Immediate result (with ties): 24%
Requires teaching (no ties): 0%
Requires teaching (with ties): 2%

Table 4. Results Of Corpus Experimentation

45

5.3 Benchmarking

An attempt was made to contrast the results obtained by this system with the results

obtained by similar ones. Four papers about morphological division of spanish words were

found: [13, 14, 15, 16]. None of these offer data that can be used to compare this system

against those. In addition, three papers about morphological division using genetic

algorithms were found [24, 25, 26]. Of these, [24] offers no comparable data, [25] only offers

average frequencies of words obtained from a French lexicon (not useful for benchmarking),

and [26] only performs divisions of each word into two parts (morphemes).

5.4 Results For The Alternative Formula

In Section 4.4, we saw that we calculate the segment pair scores by averaging the

respective order score, the letter similarity score, and the size score. An alternative formula

can be used, which is the product of all of these three scores. However, if one of these values

is zero then the resulting segment pair score will be zero, eliminating the contribution of the

other values. Therefore, we want to make it so that zero cannot be one of the possible values

for any of those three scores.

First we handle the order score. We add 1 to the maximum possible disorder score

that is shown in Table 2. The new formulas can be seen in Table 5. Since we are dividing a

disorder score by a maximum possible disorder score in order to obtain the proportional

disorder score x, this will cause 0% to be possible for x whereas 100% may not be. When we

46

then compute 1 – x, we obtain as the order score a number that lies between 0% (exclusive)

to 100% (inclusive), as desired.

Subsegment pairs New maximum score

n = Even

n2

2
+1 =

n2
+2
2

n = Odd

n2−1
2

+1 =
n2+1

2

Table 5. New Maximum Disorder Scores

Regarding the letter similarity score, we use the following formula:

m +1
s + 1

where m is the number of matching pairs and s is the segments' length. This makes it

impossible for zero to be a result of computing the letter similarity score.

Regarding the size score, the value will never be zero due to the words and the

segment length always being at least one.

The tests that were ran in Table 4 were re-run with these changes. The results follow:

Word Divided Word Without Position Data With Position Data

gatotes gat-ot-es Immediate result, ties with 4 others5 Immediate result, ties with 1 other

ultrafino ultra-fin-o Immediate result Immediate result

ultraconservador ultra-conserv-a-dor Did not learn Did not learn

taxis taxi-s Requires teaching Immediate result

beben beb-e-n Immediate result, ties with 1 other Immediate result

cosedora cos-e-dor-a Immediate result, ties with 13 others Immediate result

repartirse repart-ir-se Did not learn Immediate result

5 For an explanation of these terms please refer to Table 4.

47

Word Divided Word Without Position Data With Position Data

recibido recib-id-o Immediate result, ties with 1 other Immediate result, ties with 1 other

recibís recib-í-s Immediate result Immediate result

cuéntale cuént-a-le Did not learn Immediate result, ties with 1 other

silloncito sill-on-cit-o Did not learn Immediate result

ininterrumpido in-interrump-id-o Did not learn Immediate result

reinscribir re-inscrib-ir Requires teaching Immediate result

inactivo in-act-iv-o Immediate result, ties with 11 others Immediate result

sobrepuesta sobre-puest-a Immediate result Immediate result

preacuerdo pre-acuerd-o Requires teaching, ties with 3 others Immediate result

exnovia ex-novi-a Immediate result, ties with 1 other Immediate result

vicepresidente vice-presid-ente Did not learn Immediate result, ties with 1 other

vicedecanato vice-decan-ato Did not learn Immediate result

extracurricular extra-curricul-ar Did not learn Immediate result

anticonstitucionales anti-constitu-cion-al-es Did not learn Immediate result

observarán observ-a-rá-n Requires teaching, ties with 1 other Immediate result

extensionalidad extension-al-i-dad Did not learn Requires teaching

principado princip-ado Requires teaching, ties with 1 other Immediate result, ties with 1 other

tolerancia toler-ancia Requires teaching, ties with 8 others Immediate result

bienaventuranza bien-aventur-anza Did not learn Immediate result

incertidumbre in-certi-dumbre Requires teaching Immediate result

torcedura torc-edura Requires teaching, ties with 4 others Immediate result

cabezota cabez-ot-a Requires teaching, ties with 1 other Immediate result

panezote pan-ezot-e Requires teaching, ties with 3 others Immediate result

villorrio vill-orri-o Requires teaching, ties with 7 others Immediate result

colombiano colombi-an-o Requires teaching Immediate result

vizcaína vizca-ín-a Requires teaching, ties with 3 others Immediate result

tepozteco tepoz-tec-o Did not learn Immediate result

comías com-í-a-s Immediate result, ties with 1 other Immediate result

comiste com-iste Immediate result, ties with 4 others Immediate result

cantaremos cant-a-re-mos Immediate result, ties with 4 others Immediate result, ties with 1 other

viviré viv-i-ré Immediate result, ties with 8 others Immediate result, ties with 1 other

vivirá viv-i-rá Immediate result, ties with 8 others Immediate result

48

Word Divided Word Without Position Data With Position Data

viviríamos viv-i-ría-mos Immediate result, ties with 15 others Immediate result

vivirían viv-i-ría-n Immediate result, ties with 20 others Immediate result

cantásemos cant-á-se-mos Did not learn Immediate result

cantáremos cant-á-re-mos Requires teaching, ties with 3 others Immediate result

cantareis cant-a-re-is Requires teaching, ties with 8 others Immediate result

vivieren viv-ie-re-n Immediate result, ties with 21 others Immediate result, ties with 1 other

librería libr-ería Immediate result, ties with 5 others Immediate result, ties with 1 other

caserío cas-erío Requires teaching, ties with 6 others Immediate result, ties with 1 other

jugaré jug-a-ré Requires teaching, ties with 2 others Immediate result, ties with 1 other

superestadistas super-estad-ista-s Did not learn Immediate result

escogería escog-e-ría Requires teaching, ties with 3 others Immediate result

Note: Due to randomness, results
may vary slightly when retrying some
of the tests that end in ties,
particularly if there are many, which
are a result of a set of morphemes
not being properly trained (i.e., too
little training).

Did not learn: 28%
Immediate result (no ties): 6%
Immediate result (with ties): 30%
Requires teaching (no ties): 8%
Requires teaching (with ties): 28%

Did not learn: 2%
Immediate result (no ties): 74%
Immediate result (with ties): 22%
Requires teaching (no ties): 2%
Requires teaching (with ties): 0%

Table 6. Results Of Alternative Corpus Experimentation

49

Comparing tables 4 and 6:

Without Position Data

Average Formula Product Formula Improvement

1 Did not learn less is better 26% 28% -2%

2 Immediate result (no ties) more is better 6% 6% 0%

3 Immediate result (with ties) more is better 42% 30% -12%

4 Requires teaching (no ties) depends on context 4% 8%

5 Requires teaching (with ties) depends on context 22% 28%

6 Sum of items 2 through 5 more is better 74% 72% -2%

7 Sum of items 1, 4 and 5 less is better 52% 64% -12%

Table 7. Summary Comparison (Without Position Data)

This shows that it is better to use the average formula, at least when working with the

modality that does not record position nor frequency data.

With Position Data

Average Formula Product Formula Improvement

1 Did not learn less is better 0% 2% -2%

2 Immediate result (no ties) more is better 74% 74% 0%

3 Immediate result (with ties) more is better 24% 22% -2%

4 Requires teaching (no ties) depends on context 0% 2%

5 Requires teaching (with ties) depends on context 2% 0%

6 Sum of items 2 through 5 more is better 100% 98% -2%

7 Sum of items 1, 4 and 5 less is better 2% 4% -2%

Table 8. Summary Comparison (With Position Data)

It can be seen that in the modality that does record position and frequency data, which

is the most useful modality, the average formula is also better than the product formula.

50

5.5 Morpheme Learning

Tests were run while teaching morphemes to the system a different amount of times:

1, 15, 25, 35 and 50 times. The summary of results is shown in Table 9. They were run in the

modality that records position and frequency data. It can be seen that teaching morphemes 35

times is the best choice among these options, although the results for teaching morphemes

15, 25, 35 and 50 times is very similar. By teaching the same division many times, it gives

more weight to the morpheme-position pairs of that word. This influences the outcome of the

fitness function during the execution of the genetic algorithm.

Note that teaching the morphological division only once yields poor results. The

percentages of immediate results is significantly lower than the percentages obtained when

teaching the morphemes 15, 25, 35 or 50 times. Furthermore, the execution was slower when

teaching the morphemes only once, because there are many more “requires teaching” results,

which require that the genetic algorithm runs twice: once before teaching the correct division

to the system and again afterwards. Compare this to the system yielding immediate results,

which requires that the genetic algorithm runs only once.

51

Average formula Learn 1 time Learn 15 times Learn 25 times Learn 35 times Learn 50 times

Did not learn 0% 0% 2% 0% 0%

Immediate result (no ties) 30% 74% 74% 74% 78%

Immediate result (with ties) 14% 22% 24% 24% 16%

Requires teaching (no ties) 50% 4% 0% 0% 4%

Requires teaching (with ties) 6% 0% 0% 2% 2%

Product formula Learn 1 time Learn 15 times Learn 25 times Learn 35 times Learn 50 times

Did not learn 10% 2% 6% 2% 0%

Immediate result (no ties) 30% 74% 72% 74% 74%

Immediate result (with ties) 12% 18% 22% 22% 16%

Requires teaching (no ties) 44% 2% 0% 2% 2%

Requires teaching (with ties) 4% 4% 0% 0% 8%

Table 9. Results For Various Amounts Of Morpheme Learning

5.6 Suppletive Words

Allomorphs are different forms of the same morpheme, where a form can vary in

sound without varying in meaning. For example, in Spanish, the allomorphs of the plural

morpheme have the three forms -s, -es and -ø.

casa (house)

casa-s (houses)

reloj (clock)

reloj-es (clocks)

análisis (analysis or analyses)

Other examples of allomorphs are:

52

extend-er (to extend)

extens-ión (extension)

imprim-ir (to print)

impres-ión (printout)

The above are examples of partial suppletion, where the alternate forms have some degree of

similarity. Total suppletion occurs where the forms are entirely different, such as:

buen-o (good)

mejor (better)

hag-o ([I] do)

hic-e ([I] did)

The corpus includes the two pairs of suppletive words above described, plus the following

two additional pairs:

v-oy ([I] go)

fu-i ([I] went)

mal-o (bad)

peor (worse)

As can be seen in Tables 4 and 6, the inclusion of these suppletive words in the corpus does

not prevent the system from achieving near-perfect performance in the modality where

position and frequency data are recorded.

53

6. CONCLUSIONS

Genetic algorithms coupled with corpora are a viable option to the problem of

morphological analysis. Without the use of a corpus, the system performs reasonably well as

long as the queried words are fairly similar to those that have been taught to the system. That

is because without the use of a corpus the amount of words taught to the system is small due

to the manual nature of the teaching process. On the other hand, the use of a corpus improves

the ability of the system to correctly perform morphological divisions on a variety of

different words. This is true even when there are suppletive words present in the corpus.

The system performs in a near-perfect fashion when there is recording of position and

frequency data. On the other hand, it performs poorly when no position or frequency data is

recorded.

When morphemes are taught to the system 35 times the results were better than when

the morphemes are taught to the system 1, 15, 25 or 50 times. The results for teaching 15, 25,

35 and 50 times are similar. However, when teaching only once the system produced poor

results and the execution of the tests was slower.

The word similarity measure algorithm, tailored to the Spanish language since it has a

richer morphology than English, leads to a satisfactory performance of the genetic algorithm.

54

The default formula used to compute the segment pair score is the average formula. A

different formula was tested for comparison: the product formula. The tests and comparisons

demonstrate that the use of the average formula is better than the product formula.

Further research on this topic can include the use of chromosomes that carry more

data than just possible morphological divisions, the use of an improved fitness function, the

use of an improved selection process, the use of an enhanced word similarity measure

algorithm, and/or the use of paralellism in a more powerful architecture.

~ * ~

55

APPENDIX A. JAVA CODE WITH ALGORITHMS

The following program implements the genetic algorithm and the word similarity

measure algorithm. The main menu provides options for:

(1) Use the word similarity measure algorithm to perform a detailed comparison between two

words,

(2) Receive a list of words from the user and order them such that every pair of consecutive

words is as similar as possible,

(3) Run the main system either in the modality that records position and frequency data or in

the one that does not, optionally making use of training words from a corpus, and allowing

the user to teach the system new morphological divisions manually and to ask the system for

the morphological division of any word given,

(4) Automatically test the 50 words in the modality that records position and frequency data

and in the one that does not.

The program is 2,525 lines long.

package morphologicalAnalysisOfSpanishWordsUsingGeneticAlgorithms;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.Scanner;
import java.util.TreeMap;

56

import java.util.TreeSet;
import javax.swing.JFileChooser;
import javax.swing.filechooser.FileNameExtensionFilter;

public class MorphologicalAnalysisOfSpanishWordsUsingGeneticAlgorithms {
private static enum FormulaKind {

AVERAGE,
PRODUCT

}
private static FormulaKind formulaKind = FormulaKind.AVERAGE;
private static int LEARN_REPETITIONS = 35;
private static Random randomNumberGenerator = new Random();
private static interface ChromosomePair<ChromosomeType> {

Chromosome<ChromosomeType> getFirstChromosome();
Chromosome<ChromosomeType> getSecondChromosome();

}
private static interface Chromosome<ChromosomeType> {

ChromosomePair<ChromosomeType> crossover(ChromosomeType mate);
ChromosomeType getMutation();
ChromosomeType getCopy();
double getFitnessScore();

}
private static interface ChromosomePool<ChromosomeType> {

int getSize();
int getGenerationNumber();
ArrayList<ChromosomeType> getChromosomes();
double getFitnessScore();
double getStandardDeviation();
ChromosomePool<ChromosomeType> getNextGeneration(int maximumPoolSize);
TreeSet<ChromosomeType> getWinners();
ChromosomeType getRandomFromWinners();

}
private static interface GeneticAlgorithm<ResultType> {

ResultType run();
}
private static class WordsMustMatchException extends RuntimeException {

private static final long serialVersionUID = -2625331807823094688L;
public WordsMustMatchException() {

super("Chromosome words must match during crossover!");
}

}
private static class ChromosomeLengthMismatchException extends RuntimeException {

private static final long serialVersionUID = 6115325754890060239L;
public ChromosomeLengthMismatchException() {

super("Chromosome length does not match word length!");
}

}
private static class PoolsMustBeOfAtLeastSizeTwoException extends RuntimeException {

private static final long serialVersionUID = -5089017810768240136L;
public PoolsMustBeOfAtLeastSizeTwoException() {

super("Pools must be of at least size 2!");
}

}
private static class InvalidGenerationNumberException extends RuntimeException {

private static final long serialVersionUID = -6029748470529970745L;
public InvalidGenerationNumberException() {

super("Invalid generation number!");
}

}
private static class MalformedMorphemyzedWordException extends RuntimeException {

private static final long serialVersionUID = -967849264232856193L;
public MalformedMorphemyzedWordException() {

super("Malformed morphemyzed word!");

57

}
}
private static class MorphemyzedWordPair implements ChromosomePair<MorphemyzedWord> {

private MorphemyzedWord firstChromosome;
private MorphemyzedWord secondChromosome;
public MorphemyzedWordPair(MorphemyzedWord firstChromosome, MorphemyzedWord

secondChromosome) {
this.firstChromosome = firstChromosome;
this.secondChromosome = secondChromosome;

}
public MorphemyzedWord getFirstChromosome() {

return firstChromosome;
}
public MorphemyzedWord getSecondChromosome() {

return secondChromosome;
}

}
private static class MorphemyzedWord implements Chromosome<MorphemyzedWord>,

Comparable<MorphemyzedWord> {
private String word;
private int wordLength;
private int chromosomeLength;
private boolean[] chromosome;
private boolean computedFitnessScore;
private double fitnessScore;
private MorphemeDataGetter getter;
public MorphemyzedWord(String word, MorphemeDataGetter getter) {

if (getter == null) {
throw new NullPointerException();

}
this.word = word;
wordLength = word.length();
chromosomeLength = wordLength - 1;
if (chromosomeLength < 0) {

chromosomeLength = 0;
}
chromosome = new boolean[chromosomeLength];
for (int index = 0; index < chromosomeLength; index++) {

chromosome[index] = randomNumberGenerator.nextInt(2) == 1;
}
computedFitnessScore = false;
fitnessScore = 0;
this.getter = getter;

}
public MorphemyzedWord(MorphemeDataGetter getter, String morphemyzedWord) {

if (getter == null) {
throw new NullPointerException();

}
if (morphemyzedWord == null) {

throw new NullPointerException();
}
if (morphemyzedWord.isEmpty()) {

throw new MalformedMorphemyzedWordException();
}
if (morphemyzedWord.charAt(0) == '-') {

throw new MalformedMorphemyzedWordException();
}
int morphemyzedWordLength = morphemyzedWord.length();
if (morphemyzedWord.charAt(morphemyzedWordLength - 1) == '-') {

throw new MalformedMorphemyzedWordException();
}
word = "";
for (int index = 0; index < morphemyzedWordLength; index++) {

58

char character = morphemyzedWord.charAt(index);
if (character != '-') {

word += character;
}

}
wordLength = word.length();
chromosomeLength = wordLength - 1;
chromosome = new boolean[chromosomeLength];
int chromosomeIndex = 0;
for (int index = 1; index < morphemyzedWordLength; index++) {

char character = morphemyzedWord.charAt(index);
if (character == '-') {

chromosome[chromosomeIndex++] = true;
index++;

} else {
chromosome[chromosomeIndex++] = false;

}
}
computedFitnessScore = false;
fitnessScore = 0;
this.getter = getter;

}
private MorphemyzedWord(String word, MorphemeDataGetter getter, boolean[]

chromosome, boolean computedFitnessScore, double fitnessScore) {
if (getter == null) {

throw new NullPointerException();
}
this.word = word;
wordLength = word.length();
chromosomeLength = wordLength - 1;
if (chromosomeLength < 0) {

chromosomeLength = 0;
}
if (chromosome.length != chromosomeLength) {

throw new ChromosomeLengthMismatchException();
}
this.chromosome = chromosome;
this.computedFitnessScore = computedFitnessScore;
this.fitnessScore = fitnessScore;
this.getter = getter;

}
public boolean equals(Object obj) {

if (obj == null) {
return false;

}
if (!(obj.getClass().equals(MorphemyzedWord.class))) {

return false;
}
MorphemyzedWord Obj = (MorphemyzedWord)obj;
if (!(word.equals(Obj.word))) {

return false;
}
if (chromosomeLength != Obj.chromosomeLength) {

return false;
}
for (int i = 0; i < chromosomeLength; i++) {

if (chromosome[i] != Obj.chromosome[i]) {
return false;

}
}
return getter.equals(getter);

}
public int hashCode() {

59

return word.hashCode() ^ chromosome.hashCode() ^ getter.hashCode();
}
public int compareTo(MorphemyzedWord o) {

if (o == null) {
throw new NullPointerException();

}
if (!(o.getClass().equals(MorphemyzedWord.class))) {

throw new ClassCastException();
}
int result = word.compareTo(o.word);
if (result < 0) {

return -1;
}
if (result > 0) {

return 1;
}
result = chromosomeLength - o.chromosomeLength;
if (result != 0) {

return result;
}
for (int i = 0; i < chromosomeLength; i++) {

if ((!chromosome[i]) && o.chromosome[i]) {
return -1;

}
if (chromosome[i] && (!o.chromosome[i])) {

return 1;
}

}
return getter.hashCode() - o.getter.hashCode();

}
/*public String getWord() {

return word;
}
public int getWordLength() {

return wordLength;
}
public MorphemeDataGetter getGetter() {

return getter;
}
public int getChromosomeLength() {

return chromosomeLength;
}
public boolean[] getChromosome() {

return Arrays.copyOf(chromosome, chromosomeLength);
}*/
public String getDisplayString() {

String result = "";
int chromosomeLength = chromosome.length;
ArrayList<String> morphemes = new ArrayList<String>();
int startIndex = 0;
for (int index = 0; index < chromosomeLength; index++) {

if (chromosome[index]) {
morphemes.add(word.substring(startIndex, index + 1));
startIndex = index + 1;

}
}
morphemes.add(word.substring(startIndex, wordLength));
int morphemesSize = morphemes.size();
for (int index = 0; index < morphemesSize; index++) {

result += morphemes.get(index);
if (index < morphemesSize - 1) {

result += "-";
}

60

}
return result;

}
public ArrayList<String> getMorphemes() {

ArrayList<String> result = new ArrayList<String>();
String morpheme = String.valueOf(word.charAt(0));
for (int index = 0; index < chromosomeLength; index++) {

if (chromosome[index]) {
result.add(morpheme);
morpheme = String.valueOf(word.charAt(index + 1));

} else {
morpheme += String.valueOf(word.charAt(index + 1));

}
}
result.add(morpheme);
return result;

}
public MorphemyzedWordPair crossover(MorphemyzedWord mate) {

if (!(mate.word.equals(word))) {
throw new WordsMustMatchException();

}
if (chromosomeLength < 2) {

return new MorphemyzedWordPair(new MorphemyzedWord(word,
getter), new MorphemyzedWord(word, getter));

}
int endPoint1 = randomNumberGenerator.nextInt(chromosomeLength);
int endPoint2 = randomNumberGenerator.nextInt(chromosomeLength - 1);
if (endPoint2 >= endPoint1) {

endPoint2++;
}
if (endPoint2 < endPoint1) {

int temp = endPoint1;
endPoint1 = endPoint2;
endPoint2 = temp;

}
boolean[] newChromosome1 = new boolean[chromosomeLength];
boolean[] newChromosome2 = new boolean[chromosomeLength];
for (int index = 0; index < chromosomeLength; index++) {

if (index < endPoint1 || index >= endPoint2) {
newChromosome1[index] = chromosome[index];
newChromosome2[index] = mate.chromosome[index];

} else {
newChromosome1[index] = mate.chromosome[index];
newChromosome2[index] = chromosome[index];

}
}
return new MorphemyzedWordPair(new MorphemyzedWord(word, getter,

newChromosome1, false, 0), new MorphemyzedWord(word, getter, newChromosome2, false, 0));
}
public MorphemyzedWord getMutation() {

MorphemyzedWord newChromosome = getCopy();
if (chromosomeLength > 0) {

int mutationIndex =
randomNumberGenerator.nextInt(chromosomeLength);

newChromosome.chromosome[mutationIndex] = !
chromosome[mutationIndex];

newChromosome.computedFitnessScore = false;
}
return newChromosome;

}
public MorphemyzedWord getCopy() {

return new MorphemyzedWord(word, getter, chromosome,
computedFitnessScore, fitnessScore);

61

}
public double getFitnessScore() {

if (computedFitnessScore) {
return fitnessScore;

}
ArrayList<String> morphemes = new ArrayList<String>();
ArrayList<Float> morphemePositions = new ArrayList<Float>();
int startIndex = 0;
for (int index = 0; index < chromosomeLength; index++) {

if (chromosome[index]) {
String morpheme = word.substring(startIndex, index + 1);
morphemes.add(morpheme);
int morphemeLength = morpheme.length();
morphemePositions.add(startIndex / (float)(wordLength -

morphemeLength)); //If denominator 0, highestScore will be 0
startIndex = index + 1;

}
}
String morpheme = word.substring(startIndex, wordLength);
morphemes.add(morpheme);
int morphemeLength = morpheme.length();
morphemePositions.add(startIndex / (float)(wordLength -

morphemeLength)); //If denominator 0, highestScore will be 0
//Got morphemes
int morphemesSize = morphemes.size();
fitnessScore = 0;
for (int index = 0; index < morphemesSize; index++) {

morpheme = morphemes.get(index);
morphemeLength = morpheme.length();
double highestScore = (double)0;
for (String candidateMorpheme: getter.getCandidateMorphemes())

{
double morphemeSimilarityScore;
if (getter instanceof FullLearningMorphemeDataGetter) {

float checkPosition =
morphemePositions.get(index);

TreeMap<Float, Integer> positionData =
((FullLearningMorphemeDataGetter)getter).getPositionData(candidateMorpheme);

morphemeSimilarityScore =
getMorphemeSimilarityScore(morpheme, checkPosition, candidateMorpheme, positionData);

} else {
morphemeSimilarityScore =

getWordSimilarityScore(morpheme, candidateMorpheme);
}
if (morphemeSimilarityScore > highestScore) {

highestScore = morphemeSimilarityScore;
}

}
fitnessScore += highestScore;

}
fitnessScore /= (double)morphemesSize;
computedFitnessScore = true;
return fitnessScore;

}
}
private static class MorphemyzedWordPool implements ChromosomePool<MorphemyzedWord> {

private String word;
private int size;
private MorphemyzedWord[] chromosomes;
private int generationNumber;
private boolean computedFitnessScore = false;
private double fitnessScore = 0;
private boolean computedStandardDeviation = false;

62

private double standardDeviation = 0;
private boolean computedWinners = false;
private TreeSet<MorphemyzedWord> winners = null;
private MorphemeDataGetter getter;
public MorphemyzedWordPool(String word, MorphemeDataGetter getter, int size,

boolean automatic) {
if (getter == null) {

throw new NullPointerException();
}
if (size < 2) {

throw new PoolsMustBeOfAtLeastSizeTwoException();
}
this.word = word;
this.size = size;
chromosomes = new MorphemyzedWord[size];
for (int index = 0; index < size; index++) {

chromosomes[index] = new MorphemyzedWord(word, getter);
}
generationNumber = 1;
this.getter = getter;
if (!automatic) {

System.out.println("Generation #1, size = " + size);
}

}
private MorphemyzedWordPool(String word, MorphemeDataGetter getter,

MorphemyzedWord[] chromosomes, int generationNumber, boolean computedFitnessScore, double
fitnessScore, boolean computedStandardDeviation, double standardDeviation, boolean
computedWinners, TreeSet<MorphemyzedWord> winners, boolean automatic) {

if (getter == null) {
throw new NullPointerException();

}
size = chromosomes.length;
if (size < 2) {

throw new PoolsMustBeOfAtLeastSizeTwoException();
}
if (generationNumber < 1) {

throw new InvalidGenerationNumberException();
}
this.word = word;
this.chromosomes = chromosomes;
this.generationNumber = generationNumber;
this.computedFitnessScore = computedFitnessScore;
this.fitnessScore = fitnessScore;
this.computedStandardDeviation = computedStandardDeviation;
this.standardDeviation = standardDeviation;
this.computedWinners = computedWinners;
this.winners = winners;
this.getter = getter;
if (!automatic) {

System.out.println("Generation #" + generationNumber + ", size
= " + size);

}
}
/*public String getWord() {

return word;
}
public int getWordLength() {

return wordLength;
}
public MorphemeDataGetter getGetter() {

return getter;
}*/
public int getSize() {

63

return size;
}
public int getGenerationNumber() {

return generationNumber;
}
public ArrayList<MorphemyzedWord> getChromosomes() {

return new ArrayList<MorphemyzedWord>(Arrays.asList(chromosomes));
}
/*public MorphemyzedWordPool getCopy() {

return new MorphemyzedWordPool(word, getter, chromosomes,
generationNumber, computedFitnessScore, fitnessScore, computedStandardDeviation,
standardDeviation, computedWinners, winners);

}*/
public double getFitnessScore() {

if (computedFitnessScore) {
return fitnessScore;

}
boolean firstComputation = true;
for (MorphemyzedWord chromosome: chromosomes) {

if (firstComputation) {
fitnessScore = chromosome.getFitnessScore();
firstComputation = false;

} else {
double currentFitnessScore =

chromosome.getFitnessScore();
if (currentFitnessScore > fitnessScore) {

fitnessScore = currentFitnessScore;
}

}
}
computedFitnessScore = true;
return fitnessScore;

}
public double getStandardDeviation() {

if (computedStandardDeviation) {
return standardDeviation;

}
double mean = 0;
for (MorphemyzedWord chromosome: chromosomes) {

mean += chromosome.getFitnessScore();
}
mean /= (float)size;
standardDeviation = 0;
for (MorphemyzedWord chromosome: chromosomes) {

double toBeSquared = chromosome.getFitnessScore() - mean;
standardDeviation += toBeSquared * toBeSquared;

}
standardDeviation = Math.sqrt(standardDeviation / (float)size);
computedStandardDeviation = true;
return standardDeviation;

}
public MorphemyzedWordPool getNextGeneration(int maximumPoolSize) {

return getNextGeneration(maximumPoolSize, false);
}
public MorphemyzedWordPool getNextGeneration(int maximumPoolSize, boolean

automatic) {
maximumPoolSize = (int)Math.floor(maximumPoolSize / (float)2) * 2;
if (maximumPoolSize < 2) {

throw new PoolsMustBeOfAtLeastSizeTwoException();
}
TreeMap<Double, TreeSet<MorphemyzedWord>> scoresMap = new

TreeMap<Double, TreeSet<MorphemyzedWord>>();
for (MorphemyzedWord chromosome: chromosomes) {

64

double chromosomeFitnessScore = chromosome.getFitnessScore();
if (!(scoresMap.containsKey(chromosomeFitnessScore))) {

scoresMap.put(chromosomeFitnessScore, new
TreeSet<MorphemyzedWord>());

}
scoresMap.get(chromosomeFitnessScore).add(chromosome);

}
ArrayList<Double> scoresList = new

ArrayList<Double>(scoresMap.keySet());
Collections.sort(scoresList, Collections.reverseOrder());
int scoresListSize = scoresList.size();
double highestScore = scoresList.get(0);
double lowestScore = scoresList.get(scoresListSize - 1);
TreeSet<MorphemyzedWord> elite = scoresMap.get(highestScore);
int eliteSize = elite.size();
int totalSize = 0;
for (double score: scoresMap.keySet()) {

totalSize += scoresMap.get(score).size();
}
int halfSize = (int)Math.ceil(totalSize / (float)2);
int chromosomesFound = 0;
int highestPassingIndex = scoresListSize;
int newSize = 0;
for (int index = 0; index < scoresListSize; index++) {

double score = scoresList.get(index);
chromosomesFound += scoresMap.get(score).size();
if (chromosomesFound >= halfSize) {

highestPassingIndex = index;
newSize = (int)Math.floor((chromosomesFound + 1) /

(float)2) * 2 * 2 + eliteSize;
if (newSize > maximumPoolSize) {

newSize = maximumPoolSize;
if ((newSize - eliteSize) % 2 == 1) {

newSize--;
}

}
break;

}
}
if (newSize < size) {

newSize = size;
if ((newSize - eliteSize) % 2 == 1) {

newSize++;
if (newSize > maximumPoolSize) {

newSize -= 2;
}

}
}
while (newSize < 2) {

newSize += 2;
}
if (!automatic) {

System.out.println("New total size (after removal of
duplicates) = " + totalSize + ", halfSize = " + halfSize);

}
if (highestPassingIndex == 0) {

if (scoresListSize > 1) {
highestPassingIndex = 1;

}
}
//Got highestScore, lowestScore, halfSize, highestPassingIndex,

eliteSize, newSize
if (!automatic) {

65

System.out.println("highestScore = " + highestScore + ",
lowestScore = " + lowestScore);

}
int elementsToRemove = 0;
for (int index = highestPassingIndex + 1; index < scoresListSize;

index++) {
double score = scoresList.get(index);
scoresMap.remove(score);
elementsToRemove++;

}
for (int index = 0; index < elementsToRemove; index++) {

scoresList.remove(scoresList.size() - 1);
}
scoresListSize -= elementsToRemove;
//Got the top half in scoresMap and scoresList. Got newSize (it has

space for the elites).
if (!automatic) {

System.out.println("Passing distinct scores = " +
scoresList.size() + ", elite = " + eliteSize + ", non-elite = " + (newSize - eliteSize) + ",
newSize = " + newSize + "\n");

}
TreeMap<Double, Double> probabilitiesMap = new TreeMap<Double,

Double>();
double runningTotal = 0;
for (double score: scoresList) {

runningTotal += (score - lowestScore) *
scoresMap.get(score).size();

}
if (runningTotal > 0) {

for (double score: scoresList) {
probabilitiesMap.put(score, (score - lowestScore) *

scoresMap.get(score).size() / (float)runningTotal);
}

} else {
for (double score: scoresList) {

runningTotal += scoresMap.get(score).size();
}
for (double score: scoresList) {

probabilitiesMap.put(score, (double)
(scoresMap.get(score).size() / (float)runningTotal));

}
}
TreeMap<Double, Double> cumulativeProbabilitiesMap = new

TreeMap<Double, Double>();
double cumulativeProbability = 0;
for (int index = 0; index < scoresListSize; index++) {

double score = scoresList.get(index);
if (index < scoresListSize - 1) {

cumulativeProbability += probabilitiesMap.get(score);
} else {

cumulativeProbability = 1;
}
cumulativeProbabilitiesMap.put(cumulativeProbability, score);

}
ArrayList<Double> probabilitiesList = new

ArrayList<Double>(cumulativeProbabilitiesMap.keySet());
Collections.sort(probabilitiesList);
int probabilitiesListSize = probabilitiesList.size();
//Got probabilitiesList, cumulativeProbabilitiesMap
MorphemyzedWord[] newChromosomes = new MorphemyzedWord[newSize];
TreeSet<MorphemyzedWord> eliteList = scoresMap.get(highestScore);
int index = 0;
for (MorphemyzedWord word: eliteList) {

66

if (index == 0) {
newChromosomes[0] = word;

} else {
if (randomNumberGenerator.nextDouble() < 0.05) {

newChromosomes[index] = word.getMutation();
} else {

newChromosomes[index] = word;
}

}
index++;

}
MorphemyzedWord[] parents = new MorphemyzedWord[2];
for (int outerIndex = eliteSize; outerIndex < newSize; outerIndex += 2)

{ //Guaranteed to be even
for (int middleIndex = 0; middleIndex < 2; middleIndex++) {

double randomValue = randomNumberGenerator.nextDouble();
double previousCheckProbability = 0;
for (int innerIndex = 0; innerIndex <

probabilitiesListSize; innerIndex++) {
double checkProbability =

probabilitiesList.get(innerIndex);
if (randomValue < checkProbability) {

double checkScore =
cumulativeProbabilitiesMap.get(checkProbability);

ArrayList<MorphemyzedWord> checkList =
new ArrayList<MorphemyzedWord>(scoresMap.get(checkScore));

double intervalSize = (checkProbability -
previousCheckProbability) / (float)checkList.size();

randomValue -= previousCheckProbability;
int checkListIndex =

(int)Math.floor(randomValue / intervalSize);
MorphemyzedWord parentChromosome =

checkList.get(checkListIndex);
parents[middleIndex] = parentChromosome;
break;

}
previousCheckProbability = checkProbability;

}
}
MorphemyzedWordPair pair = parents[0].crossover(parents[1]);
if (randomNumberGenerator.nextDouble() < 0.05) {

newChromosomes[outerIndex] =
pair.getFirstChromosome().getMutation();

} else {
newChromosomes[outerIndex] = pair.getFirstChromosome();

}
if (randomNumberGenerator.nextDouble() < 0.05) {

newChromosomes[outerIndex + 1] =
pair.getSecondChromosome().getMutation();

} else {
newChromosomes[outerIndex + 1] =

pair.getSecondChromosome();
}

}
return new MorphemyzedWordPool(word, getter, newChromosomes,

generationNumber + 1, false, 0, false, 0, false, null, automatic);
}
public TreeSet<MorphemyzedWord> getWinners() {

if (computedWinners) {
return winners;

}
double eliteScore = getFitnessScore();
winners = new TreeSet<MorphemyzedWord>();

67

for (MorphemyzedWord chromosome: chromosomes) {
if (chromosome.getFitnessScore() == eliteScore) {

winners.add(chromosome);
}

}
computedWinners = true;
return winners;

}
public MorphemyzedWord getRandomFromWinners() {

ArrayList<MorphemyzedWord> winners = new
ArrayList<MorphemyzedWord>(getWinners());

return winners.get(randomNumberGenerator.nextInt(winners.size()));
}

}
private static class WordMorphemyzerGeneticAlgorithm implements

GeneticAlgorithm<TreeSet<MorphemyzedWord>> {
private String word;
private MorphemeDataGetter getter;
public WordMorphemyzerGeneticAlgorithm(String word, MorphemeDataGetter getter)

{
if (getter == null) {

throw new NullPointerException();
}
this.word = word;
this.getter = getter;

}
/*public String getWord() {

return word;
}
public MorphemeDataGetter getGetter() {

return getter;
}*/
public TreeSet<MorphemyzedWord> run() {

return run(false);
}
public TreeSet<MorphemyzedWord> run(boolean automatic) {

final int INITIAL_POOL_SIZE = 400; //Old=200
final int MAXIMUM_POOL_SIZE = 1000;
final int MAXIMUM_AMOUNT_OF_GENERATIONS = 150;
final int MAXIMUM_AMOUNT_OF_GENERATIONS_WITHOUT_IMPROVEMENT = 40;

//Old=20
final double MINIMUM_SCORE_TO_FINISH_IMMEDIATELY = 0.999; //Old=0.995
MorphemyzedWordPool pool = new MorphemyzedWordPool(word, getter,

INITIAL_POOL_SIZE, automatic);
boolean firstPool = true;
int consecutiveWithoutImprovement = 1;
double lastFitnessScore = 0;
boolean maxGenMessage = true;
do {

if (pool.getFitnessScore() >=
MINIMUM_SCORE_TO_FINISH_IMMEDIATELY) {

if (!automatic) {
System.out.println("Fitness score = " +

pool.getFitnessScore() + ", MINIMUM_SCORE_TO_FINISH_IMMEDIATELY = " +
MINIMUM_SCORE_TO_FINISH_IMMEDIATELY);

}
return pool.getWinners();

}
if (firstPool) {

lastFitnessScore = pool.getFitnessScore();
consecutiveWithoutImprovement = 1;
firstPool = false;

} else {

68

if (pool.getFitnessScore() > lastFitnessScore + 0.00001)
{

lastFitnessScore = pool.getFitnessScore();
consecutiveWithoutImprovement = 1;

} else {
lastFitnessScore = pool.getFitnessScore();
consecutiveWithoutImprovement++;
if (consecutiveWithoutImprovement >=

MAXIMUM_AMOUNT_OF_GENERATIONS_WITHOUT_IMPROVEMENT) {
maxGenMessage = false;
if (!automatic) {

System.out.println("Finished due
to MAXIMUM_AMOUNT_OF_GENERATIONS_WITHOUT_IMPROVEMENT = " +
MAXIMUM_AMOUNT_OF_GENERATIONS_WITHOUT_IMPROVEMENT);

}
break;

}
}

}
pool = pool.getNextGeneration(MAXIMUM_POOL_SIZE, automatic);

} while (pool.getGenerationNumber() < MAXIMUM_AMOUNT_OF_GENERATIONS);
if (maxGenMessage) {

if (!automatic) {
System.out.println("GenerationNumber = " +

pool.getGenerationNumber() + ", MAXIMUM_AMOUNT_OF_GENERATIONS = " +
MAXIMUM_AMOUNT_OF_GENERATIONS);

}
}
return pool.getWinners();

}
}
private static abstract class MorphemeDataGetter {

public abstract ArrayList<String> getCandidateMorphemes();
}
/*private static class TesterMorphemeDataGetter extends MorphemeDataGetter {

public ArrayList<String> getCandidateMorphemes() {
return new ArrayList<String>(Arrays.asList("super", "ultra", "gat",

"it", "ot", "o", "a", "es", "s", "ch", "iquit", "ic"));
}

}*/
private static class PlainLearningMorphemeDataGetter extends MorphemeDataGetter {

private TreeSet<String> morphemes = new TreeSet<String>();
public ArrayList<String> getCandidateMorphemes() {

return new ArrayList<String>(morphemes);
}
public void addCandidateMorpheme(String morpheme) {

morphemes.add(morpheme);
}
public boolean knowsCandidateMorpheme(String morpheme) {

return morphemes.contains(morpheme);
}

}
private static class FullLearningMorphemeDataGetter extends MorphemeDataGetter {

private TreeMap<String, TreeMap<Float, Integer>> morphemes = new
TreeMap<String, TreeMap<Float, Integer>>();

public ArrayList<String> getCandidateMorphemes() {
return new ArrayList<String>(morphemes.keySet());

}
public void addCandidateMorphemeData(String morpheme, float position) {

TreeMap<Float, Integer> positionData;
if (morphemes.containsKey(morpheme)) {

positionData = morphemes.get(morpheme);
} else {

69

positionData = new TreeMap<Float, Integer>();
morphemes.put(morpheme, positionData);

}
int newValue;
if (positionData.containsKey(position)) {

newValue = positionData.get(position) + 1;
} else {

newValue = 1;
}
positionData.put(position, newValue);

}
public boolean knowsCandidateMorpheme(String morpheme) {

return morphemes.containsKey(morpheme);
}
public TreeMap<Float, Integer> getPositionData(String morpheme) {

if (morphemes.containsKey(morpheme)) {
return morphemes.get(morpheme);

} else {
TreeMap<Float, Integer> positionData = new TreeMap<Float,

Integer>();
morphemes.put(morpheme, positionData);
return positionData;

}
}

}
private static boolean isVowel(char character) {

char lowercaseCharacter = Character.toLowerCase(character);
return (lowercaseCharacter == 'a' || lowercaseCharacter == 'á' ||

lowercaseCharacter == 'e' || lowercaseCharacter == 'é' ||
lowercaseCharacter == 'i' || lowercaseCharacter == 'í' ||
lowercaseCharacter == 'o' || lowercaseCharacter == 'ó' ||
lowercaseCharacter == 'u' || lowercaseCharacter == 'ú' ||
lowercaseCharacter == 'ü');

}
private static boolean isConsonant(char character) {

char lowercaseCharacter = Character.toLowerCase(character);
if ((lowercaseCharacter >= 'a' && lowercaseCharacter <= 'z') ||

lowercaseCharacter == 'ñ') {
return (!(isVowel(lowercaseCharacter)));

}
return false;

}
private static boolean isSpanishLetter(char character) {

return isVowel(character) || isConsonant(character);
}
private static boolean isSpanishLetterOrDash(char character) {

return character == '-' || isSpanishLetter(character);
}
private static boolean areCharactersSimilar(char character1, char character2) {

char lowercaseCharacter1 = Character.toLowerCase(character1);
char lowercaseCharacter2 = Character.toLowerCase(character2);
if (lowercaseCharacter1 == lowercaseCharacter2) {

return true;
}
return ((lowercaseCharacter1 == 'a' && lowercaseCharacter2 == 'á')

|| (lowercaseCharacter1 == 'á' && lowercaseCharacter2 == 'a')
|| (lowercaseCharacter1 == 'e' && lowercaseCharacter2 == 'é')
|| (lowercaseCharacter1 == 'é' && lowercaseCharacter2 == 'e')
|| (lowercaseCharacter1 == 'i' && lowercaseCharacter2 == 'í')
|| (lowercaseCharacter1 == 'í' && lowercaseCharacter2 == 'i')
|| (lowercaseCharacter1 == 'o' && lowercaseCharacter2 == 'ó')
|| (lowercaseCharacter1 == 'ó' && lowercaseCharacter2 == 'o')
|| (lowercaseCharacter1 == 'u' && lowercaseCharacter2 == 'ú')

70

|| (lowercaseCharacter1 == 'ú' && lowercaseCharacter2 == 'u')
|| (lowercaseCharacter1 == 'u' && lowercaseCharacter2 == 'ü')
|| (lowercaseCharacter1 == 'ü' && lowercaseCharacter2 == 'u')
|| (lowercaseCharacter1 == 'ú' && lowercaseCharacter2 == 'ü')
|| (lowercaseCharacter1 == 'ü' && lowercaseCharacter2 == 'ú')
|| (lowercaseCharacter1 == 'n' && lowercaseCharacter2 == 'ñ')
|| (lowercaseCharacter1 == 'ñ' && lowercaseCharacter2 == 'n'));

}
private static boolean areSegmentsSimilar(String segment1, String segment2) {

int segmentLength = segment1.length();
if (segment2.length() != segmentLength) {

return false;
}
if (segmentLength == 0) {

return true;
}
boolean[] used = new boolean[segmentLength];
for (int index = 0; index < segmentLength; index++) {

used[index] = false;
}
int usedCount = 0;
for (int index1 = 0; index1 < segmentLength; index1++) {

char character1 = segment1.charAt(index1);
for (int index2 = 0; index2 < segmentLength; index2++) {

if (!used[index2]) {
char character2 = segment2.charAt(index2);
if (areCharactersSimilar(character1, character2)) {

used[index2] = true;
usedCount++;
break;

}
}

}
}
return usedCount == segmentLength;

}
private static class SegmentPair {

private int word1SegmentIndex;
private int word2SegmentIndex;
private int wordSegmentLength;
public SegmentPair(int word1SegmentIndex, int word2SegmentIndex, int

wordSegmentLength) {
this.word1SegmentIndex = word1SegmentIndex;
this.word2SegmentIndex = word2SegmentIndex;
this.wordSegmentLength = wordSegmentLength;

}
public int getWord1SegmentIndex() {

return word1SegmentIndex;
}
public int getWord2SegmentIndex() {

return word2SegmentIndex;
}
public int getWordSegmentLength() {

return wordSegmentLength;
}

}
private static ArrayList<SegmentPair> getSegmentPairs(String word1, String word2) {

ArrayList<SegmentPair> segmentPairs = new ArrayList<SegmentPair>();
String largerWord;
int largerWordLength;
String shorterWord;
int shorterWordLength;
int word1Length = word1.length();

71

int word2Length = word2.length();
boolean word1Greater = word1Length >= word2Length;
if (word1Greater) {

largerWord = word1;
largerWordLength = word1Length;
shorterWord = word2;
shorterWordLength = word2Length;

} else {
largerWord = word2;
largerWordLength = word2Length;
shorterWord = word1;
shorterWordLength = word1Length;

}
for (int segmentLength = shorterWordLength; segmentLength >= 1;

segmentLength--) {
int shorterLimit = shorterWordLength - segmentLength;
for (int shorterStartIndex = 0; shorterStartIndex <= shorterLimit;

shorterStartIndex++) {
int largerLimit = largerWordLength - segmentLength;
for (int largerStartIndex = 0; largerStartIndex <= largerLimit;

largerStartIndex++) {
int shorterEndIndex = shorterStartIndex + segmentLength;
int largerEndIndex = largerStartIndex + segmentLength;
int word1SegmentIndex;
int word2SegmentIndex;
if (word1Greater) {

word1SegmentIndex = largerStartIndex;
word2SegmentIndex = shorterStartIndex;

} else {
word1SegmentIndex = shorterStartIndex;
word2SegmentIndex = largerStartIndex;

}
boolean potentiallyAddPair = true;
for (SegmentPair pair: segmentPairs) {

int pairWord1SegmentIndex =
pair.getWord1SegmentIndex();

int pairWord2SegmentIndex =
pair.getWord2SegmentIndex();

int pairWordSegmentLength =
pair.getWordSegmentLength();

if (word1SegmentIndex >= pairWord1SegmentIndex)
{

if (word1SegmentIndex + segmentLength <=
pairWord1SegmentIndex + pairWordSegmentLength) {

if (word2SegmentIndex >=
pairWord2SegmentIndex) {

if (word2SegmentIndex +
segmentLength <= pairWord2SegmentIndex + pairWordSegmentLength) {

potentiallyAddPair
= false;

break;
}

} else {
if (pairWord2SegmentIndex

+ pairWordSegmentLength <= word2SegmentIndex + segmentLength) {
potentiallyAddPair

= false;
break;

}
}

}
} else {

if (pairWord1SegmentIndex +

72

pairWordSegmentLength <= word1SegmentIndex + segmentLength) {
if (word2SegmentIndex >=

pairWord2SegmentIndex) {
if (word2SegmentIndex +

segmentLength <= pairWord2SegmentIndex + pairWordSegmentLength) {
potentiallyAddPair

= false;
break;

}
} else {

if (pairWord2SegmentIndex
+ pairWordSegmentLength <= word2SegmentIndex + segmentLength) {

potentiallyAddPair
= false;

break;
}

}
}

}
}
if (potentiallyAddPair) {

String segment1 =
shorterWord.substring(shorterStartIndex, shorterEndIndex);

String segment2 =
largerWord.substring(largerStartIndex, largerEndIndex);

if (areSegmentsSimilar(segment1, segment2)) {
segmentPairs.add(new

SegmentPair(word1SegmentIndex, word2SegmentIndex, segmentLength));
}

}
}

}
}
return segmentPairs;

}
/*private static float getPositionScore(String word1, String word2, SegmentPair pair)

{
int word1SegmentIndex = pair.getWord1SegmentIndex();
int word2SegmentIndex = pair.getWord2SegmentIndex();
int wordSegmentLength = pair.getWordSegmentLength();
int word1DistanceFromLeft = word1SegmentIndex;
int word1DistanceFromRight = word1.length() - word1SegmentIndex -

wordSegmentLength;
int word2DistanceFromLeft = word2SegmentIndex;
int word2DistanceFromRight = word2.length() - word2SegmentIndex -

wordSegmentLength;
return 1 - (Math.abs(word1DistanceFromLeft * word2DistanceFromRight -

word1DistanceFromRight * word2DistanceFromLeft) / (float)(((word1DistanceFromLeft +
word1DistanceFromRight) * (word2DistanceFromLeft + word2DistanceFromRight)) + 1));

}*/
private static float getOrderScore(String word1, String word2, SegmentPair pair) {

int word1SegmentIndex = pair.getWord1SegmentIndex();
int word2SegmentIndex = pair.getWord2SegmentIndex();
int wordSegmentLength = pair.getWordSegmentLength();
String segment1 = word1.substring(word1SegmentIndex, word1SegmentIndex +

wordSegmentLength);
String segment2 = word2.substring(word2SegmentIndex, word2SegmentIndex +

wordSegmentLength);
boolean[] used1 = new boolean[wordSegmentLength];
boolean[] used2 = new boolean[wordSegmentLength];
for (int index = 0; index < wordSegmentLength; index++) {

used1[index] = false;
used2[index] = false;

73

}
TreeMap<Integer, Integer> subsegmentMatchMap1 = new TreeMap<Integer,

Integer>();
for (int subsegmentLength = wordSegmentLength; subsegmentLength >= 1;

subsegmentLength--) {
for (int index1 = 0; index1 <= wordSegmentLength - subsegmentLength;

index1++) {
boolean unused1 = true;
for (int index = index1; index < index1 + subsegmentLength;

index++) {
if (used1[index]) {

unused1 = false;
break;

}
}
if (unused1) {

String subsegment1 = segment1.substring(index1, index1 +
subsegmentLength);

for (int index2 = 0; index2 <= wordSegmentLength -
subsegmentLength; index2++) {

boolean unused2 = true;
for (int index = index2; index < index2 +

subsegmentLength; index++) {
if (used2[index]) {

unused2 = false;
break;

}
}
if (unused2) {

String subsegment2 =
segment2.substring(index2, index2 + subsegmentLength);

boolean subsegmentMatch = true;
for (int index = 0; index <

subsegmentLength; index++) {
char character1 =

subsegment1.charAt(index);
char character2 =

subsegment2.charAt(index);
if (!

areCharactersSimilar(character1, character2)) {
subsegmentMatch = false;
break;

}
}
if (subsegmentMatch) {

for (int index = index1; index <
index1 + subsegmentLength; index++) {

used1[index] = true;
}
for (int index = index2; index <

index2 + subsegmentLength; index++) {
used2[index] = true;

}
subsegmentMatchMap1.put(index1,

index2);
}

}
}

}
}

}
TreeMap<Integer, Integer> subsegmentMatchMap2 = new TreeMap<Integer,

Integer>();

74

int newIndex = 0;
while (!(subsegmentMatchMap1.isEmpty())) {

int smallestIndex = 0x7fffffff;
for (int index: subsegmentMatchMap1.keySet()) {

if (index < smallestIndex) {
smallestIndex = index;

}
}
subsegmentMatchMap2.put(newIndex++,

subsegmentMatchMap1.get(smallestIndex));
subsegmentMatchMap1.remove(smallestIndex);

}
TreeMap<Integer, Integer> subsegmentMatchMap3 = new TreeMap<Integer,

Integer>();
newIndex = 0;
while (!(subsegmentMatchMap2.isEmpty())) {

int indexOfSmallestValue = -1;
int smallestValue = 0x7fffffff;
for (int index: subsegmentMatchMap2.keySet()) {

int value = subsegmentMatchMap2.get(index);
if (value < smallestValue) {

indexOfSmallestValue = index;
smallestValue = value;

}
}
subsegmentMatchMap3.put(indexOfSmallestValue, newIndex++);
subsegmentMatchMap2.remove(indexOfSmallestValue);

}
int subsegmentCount = subsegmentMatchMap3.size();
boolean[] usedIndex = new boolean[subsegmentCount];
boolean[] usedValue = new boolean[subsegmentCount];
for (int index = 0; index < subsegmentCount; index++) {

usedIndex[index] = false;
usedValue[index] = false;

}
int orderScore = 0;
for (int index = 0; index < subsegmentCount; index++) {

int value = subsegmentMatchMap3.get(index);
if (index == value) {

usedIndex[index] = true;
usedValue[index] = true;

}
}
for (int index = 0; index < subsegmentCount; index++) {

if (!usedIndex[index]) {
for (int valueIndex = 0; valueIndex < subsegmentCount;

valueIndex++) {
if (!usedValue[valueIndex]) {

int value = subsegmentMatchMap3.get(valueIndex);
if (index == value) {

usedIndex[index] = true;
usedValue[valueIndex] = true;
orderScore += Math.abs(index -

valueIndex);
break;

}
}

}
}

}
switch (formulaKind) {

case AVERAGE:
if (subsegmentCount % 2 == 0) {

75

return 1 - orderScore * 2 / (float)(subsegmentCount *
subsegmentCount);

}
if (subsegmentCount == 1) {

return 1;
} else {

return 1 - orderScore * 2 / (float)(subsegmentCount *
subsegmentCount - 1);

}
case PRODUCT:

if (subsegmentCount % 2 == 0) {
return 1 - orderScore * 2 / (float)(subsegmentCount *

subsegmentCount + 2);
}
return 1 - orderScore * 2 / (float)(subsegmentCount *

subsegmentCount + 1);
default:

return -1;
}

}
private static float getLetterSimilarityScore(String word1, String word2, SegmentPair

pair) {
int word1SegmentIndex = pair.getWord1SegmentIndex();
int word2SegmentIndex = pair.getWord2SegmentIndex();
int wordSegmentLength = pair.getWordSegmentLength();
int word1SegmentEndIndex = word1SegmentIndex + wordSegmentLength;
int word2SegmentEndIndex = word2SegmentIndex + wordSegmentLength;
boolean[] used = new boolean[wordSegmentLength];
for (int index = 0; index < wordSegmentLength; index++) {

used[index] = false;
}
int usedCount = 0;
for (int index1 = word1SegmentIndex; index1 < word1SegmentEndIndex; index1++)

{
char character1 = word1.charAt(index1);
for (int index2 = word2SegmentIndex; index2 < word2SegmentEndIndex;

index2++) {
int usedIndex = index2 - word2SegmentIndex;
if (!used[usedIndex]) {

char character2 = word2.charAt(index2);
if (character1 == character2) {

used[usedIndex] = true;
usedCount++;
break;

}
}

}
}
switch (formulaKind) {

case AVERAGE:
return usedCount / (float)wordSegmentLength;

case PRODUCT:
return (usedCount + 1) / (float)(wordSegmentLength + 1);

default:
return -1;

}
}
private static float getSizeScore(String word1, String word2, SegmentPair pair) {

return pair.getWordSegmentLength() * 2 / (float)(word1.length() +
word2.length());

}
private static float getSegmentPairScore(String word1, String word2, SegmentPair

pair) {

76

switch (formulaKind) {
case AVERAGE:

return (getOrderScore(word1, word2, pair) +
getLetterSimilarityScore(word1, word2, pair) + getSizeScore(word1, word2, pair)) / (float)3;

case PRODUCT:
return getOrderScore(word1, word2, pair) *

getLetterSimilarityScore(word1, word2, pair) * getSizeScore(word1, word2, pair);
default:

return -1;
}

}
private static float getSegmentPairsScore(String word1, String word2,

ArrayList<SegmentPair> segmentPairs) {
float highestSegmentPairScore = 0;
for (SegmentPair pair: segmentPairs) {

highestSegmentPairScore = Math.max(highestSegmentPairScore,
getSegmentPairScore(word1, word2, pair));

}
return highestSegmentPairScore;

}
/*private static float getCoverageScore(String word1, String word2,

ArrayList<SegmentPair> segmentPairs) {
int word1Length = word1.length();
int word2Length = word2.length();
boolean[] used1 = new boolean[word1Length];
boolean[] used2 = new boolean[word2Length];
for (int index = 0; index < word1Length; index++) {

used1[index] = false;
}
for (int index = 0; index < word2Length; index++) {

used2[index] = false;
}
for (SegmentPair pair: segmentPairs) {

int word1SegmentIndex = pair.getWord1SegmentIndex();
int word2SegmentIndex = pair.getWord2SegmentIndex();
int wordSegmentLength = pair.getWordSegmentLength();
for (int index = word1SegmentIndex; index < word1SegmentIndex +

wordSegmentLength; index++) {
used1[index] = true;

}
for (int index = word2SegmentIndex; index < word2SegmentIndex +

wordSegmentLength; index++) {
used2[index] = true;

}
}
int usedCount = 0;
for (int index = 0; index < word1Length; index++) {

if (used1[index]) {
usedCount++;

}
}
for (int index = 0; index < word2Length; index++) {

if (used2[index]) {
usedCount++;

}
}
return usedCount / (float)(word1Length + word2Length);

}
private static float getSegmentPairPairOrderScore(String word1, String word2,

SegmentPair pair1, SegmentPair pair2) {
int wordSegmentLength1 = pair1.getWordSegmentLength();
int topStartIndex1 = pair1.getWord1SegmentIndex();
int topEndIndex1 = topStartIndex1 + wordSegmentLength1 - 1;

77

int bottomStartIndex1 = pair1.getWord2SegmentIndex();
int bottomEndIndex1 = bottomStartIndex1 + wordSegmentLength1 - 1;
int wordSegmentLength2 = pair2.getWordSegmentLength();
int topStartIndex2 = pair2.getWord1SegmentIndex();
int topEndIndex2 = topStartIndex2 + wordSegmentLength2 - 1;
int bottomStartIndex2 = pair2.getWord2SegmentIndex();
int bottomEndIndex2 = bottomStartIndex2 + wordSegmentLength2 - 1;
float crossCheck1;
if (bottomStartIndex1 == bottomStartIndex2) {

crossCheck1 = 0;
} else {

crossCheck1 = (topStartIndex1 - topStartIndex2) / (float)
(bottomStartIndex1 - bottomStartIndex2);

}
float crossCheck2;
if (bottomStartIndex1 == bottomEndIndex2) {

crossCheck2 = 0;
} else {

crossCheck2 = (topStartIndex1 - topEndIndex2) / (float)
(bottomStartIndex1 - bottomEndIndex2);

}
float crossCheck3;
if (bottomEndIndex1 == bottomStartIndex2) {

crossCheck3 = 0;
} else {

crossCheck3 = (topEndIndex1 - topStartIndex2) / (float)(bottomEndIndex1
- bottomStartIndex2);

}
float crossCheck4;
if (bottomEndIndex1 == bottomEndIndex2) {

crossCheck4 = 0;
} else {

crossCheck4 = (topEndIndex1 - topEndIndex2) / (float)(bottomEndIndex1 -
bottomEndIndex2);

}
if (crossCheck1 > 0 && crossCheck2 > 0 && crossCheck3 > 0 && crossCheck4 > 0)

{
return 1;

}
int topOverlapScore = Math.max(topEndIndex1 - topStartIndex2, topEndIndex2 -

topStartIndex1) + 1;
if (topOverlapScore < 0) {

topOverlapScore = 0;
}
int bottomOverlapScore = Math.max(bottomEndIndex1 - bottomStartIndex2,

bottomEndIndex2 - bottomStartIndex1) + 1;
if (bottomOverlapScore < 0) {

bottomOverlapScore = 0;
}
return 1 - (topOverlapScore + bottomOverlapScore) / (float)((word1.length() +

word2.length()) * (wordSegmentLength1 + wordSegmentLength2));
}
private static float getSegmentPairsOrderScore(String word1, String word2,

ArrayList<SegmentPair> segmentPairs) {
int segmentPairsSize = segmentPairs.size();
if (segmentPairsSize <= 1) {

return 1;
}
float totalSegmentPairPairOrderScore = 0;
for (int index1 = 0; index1 < segmentPairsSize - 1; index1++) {

for (int index2 = index1 + 1; index2 < segmentPairsSize; index2++) {
SegmentPair pair1 = segmentPairs.get(index1);
SegmentPair pair2 = segmentPairs.get(index2);

78

totalSegmentPairPairOrderScore +=
getSegmentPairPairOrderScore(word1, word2, pair1, pair2);

}
}
return totalSegmentPairPairOrderScore * 2 / (float)(segmentPairsSize *

(segmentPairsSize - 1));
}*/
private static float getSimpleCheckWordSimilarityScore(String word1, String word2,

ArrayList<SegmentPair> segmentPairs) {
if (word1.equals(word2)) {

return 1;
}
return getSegmentPairsScore(word1, word2, segmentPairs);

}
private static TreeSet<String> getNewPronunciationAlternatives(String word, int

startIndex, String newPronunciationSegment, int lengthOfReplaced) {
int wordLength = word.length();
String newWord = word.substring(0, startIndex) + newPronunciationSegment +

word.substring(startIndex + lengthOfReplaced, wordLength);
TreeSet<String> result = getPronunciationAlternatives(word, startIndex + 1);

 result.addAll(getPronunciationAlternatives(newWord, startIndex + 1));
return result;

}
private static TreeSet<String> getPronunciationAlternatives(String word, int

startIndex) {
int wordLength = word.length();
if (startIndex >= wordLength) {

TreeSet<String> result = new TreeSet<String>();
result.add(word);
return result;

}
String substring1 = word.substring(startIndex, startIndex + 1);
String substring2;
if (startIndex + 2 <= wordLength) {

substring2 = word.substring(startIndex, startIndex + 2);
} else {

substring2 = word.substring(startIndex, wordLength);
}
String substring3;
if (startIndex + 3 <= wordLength) {

substring3 = word.substring(startIndex, startIndex + 3);
} else {

substring3 = word.substring(startIndex, wordLength);
}
if (substring1.equals("b")) {

return getNewPronunciationAlternatives(word, startIndex, "v", 1);
}
if (substring1.equals("v")) {

return getNewPronunciationAlternatives(word, startIndex, "b", 1);
}
if (substring1.equals("h")) {

boolean canChange;
if (startIndex > 0) {

canChange = word.charAt(startIndex - 1) != 'c';
} else {

canChange = true;
}
if (canChange) {

return getNewPronunciationAlternatives(word, startIndex, "",
1);

}
}
if (substring1.equals("s")) {

79

return getNewPronunciationAlternatives(word, startIndex, "z", 1);
}
if (substring1.equals("z")) {

return getNewPronunciationAlternatives(word, startIndex, "s", 1);
}
if (substring1.equals("u") || substring1.equals("ú") ||

substring1.equals("ü")) {
boolean canChange;
if (substring1.equals("u")) {

if (startIndex > 0) {
char previousCharacter = word.charAt(startIndex - 1);
canChange = previousCharacter != 'g' &&

previousCharacter != 'q';
} else {

canChange = true;
}

} else {
canChange = true;

}
if (canChange) {

return getNewPronunciationAlternatives(word, startIndex, "w",
1);

}
}
if (substring1.equals("w")) {

return getNewPronunciationAlternatives(word, startIndex, "u", 1);
}
if (substring2.startsWith("i") || substring2.startsWith("í")) {

boolean possiblyCanChange;
if (substring2.equals("i") || substring2.equals("í")) {

possiblyCanChange = true;
} else {

possiblyCanChange = isConsonant(substring2.charAt(1));
}
if (possiblyCanChange) {

boolean canChange;
if (startIndex > 1) {

String previousTwoCharacters = word.substring(startIndex
- 2, startIndex);

canChange = !(previousTwoCharacters.equals("gu")) && !
(previousTwoCharacters.equals("qu"));

} else {
canChange = true;

}
if (canChange) {

return getNewPronunciationAlternatives(word, startIndex,
"y", 1);

}
}

}
if (substring2.startsWith("y")) {

boolean canChange;
if (substring2.equals("y")) {

canChange = true;
} else {

canChange = isConsonant(substring2.charAt(1));
}
if (canChange) {

return getNewPronunciationAlternatives(word, startIndex, "i",
1);

}
}
if (substring2.equals("ll")) {

80

return getNewPronunciationAlternatives(word, startIndex, "y", 2);
}
if (substring2.startsWith("y")) {

boolean canChange;
if (substring2.equals("y")) {

canChange = false;
} else {

canChange = isVowel(substring2.charAt(1));
}
if (canChange) {

return getNewPronunciationAlternatives(word, startIndex, "ll",
1);

}
}
if (substring1.equals("x")) {

return getNewPronunciationAlternatives(word, startIndex, "cc", 1);
}
if (substring2.equals("cc")) {

return getNewPronunciationAlternatives(word, startIndex, "x", 2);
}
if (substring2.equals("ca")) {

return getNewPronunciationAlternatives(word, startIndex, "ka", 2);
}
if (substring2.equals("cá")) {

return getNewPronunciationAlternatives(word, startIndex, "ká", 2);
}
if (substring2.equals("ka")) {

return getNewPronunciationAlternatives(word, startIndex, "ca", 2);
}
if (substring2.equals("ká")) {

return getNewPronunciationAlternatives(word, startIndex, "cá", 2);
}
if (substring2.equals("ce")) {

return getNewPronunciationAlternatives(word, startIndex, "se", 2);
}
if (substring2.equals("cé")) {

return getNewPronunciationAlternatives(word, startIndex, "sé", 2);
}
if (substring2.equals("se")) {

return getNewPronunciationAlternatives(word, startIndex, "ce", 2);
}
if (substring2.equals("sé")) {

return getNewPronunciationAlternatives(word, startIndex, "cé", 2);
}
if (substring2.equals("ci")) {

return getNewPronunciationAlternatives(word, startIndex, "si", 2);
}
if (substring2.equals("cí")) {

return getNewPronunciationAlternatives(word, startIndex, "sí", 2);
}
if (substring2.equals("si")) {

return getNewPronunciationAlternatives(word, startIndex, "ci", 2);
}
if (substring2.equals("sí")) {

return getNewPronunciationAlternatives(word, startIndex, "cí", 2);
}
if (substring2.equals("co")) {

return getNewPronunciationAlternatives(word, startIndex, "ko", 2);
}
if (substring2.equals("có")) {

return getNewPronunciationAlternatives(word, startIndex, "kó", 2);
}
if (substring2.equals("ko")) {

81

return getNewPronunciationAlternatives(word, startIndex, "co", 2);
}
if (substring2.equals("kó")) {

return getNewPronunciationAlternatives(word, startIndex, "có", 2);
}
if (substring2.equals("cu")) {

return getNewPronunciationAlternatives(word, startIndex, "ku", 2);
}
if (substring2.equals("cú")) {

return getNewPronunciationAlternatives(word, startIndex, "kú", 2);
}
if (substring2.equals("ku")) {

return getNewPronunciationAlternatives(word, startIndex, "cu", 2);
}
if (substring2.equals("kú")) {

return getNewPronunciationAlternatives(word, startIndex, "cú", 2);
}
if (substring3.equals("que")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "ke", 3);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "qe",
3));

return result;
}
if (substring3.equals("qué")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "ké", 3);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "qé",
3));

return result;
}
if (substring2.equals("ke")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "que", 2);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "qe",
2));

return result;
}
if (substring2.equals("ké")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "qué", 2);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "qé",
2));

return result;
}
if (substring3.equals("qui")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "ki", 3);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "qi",
3));

return result;
}
if (substring3.equals("quí")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "kí", 3);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "qí",
3));

return result;
}
if (substring2.equals("ki")) {

return getNewPronunciationAlternatives(word, startIndex, "qui", 2);
}
if (substring2.equals("kí")) {

82

return getNewPronunciationAlternatives(word, startIndex, "quí", 2);
}
if (substring2.equals("ge")) {

return getNewPronunciationAlternatives(word, startIndex, "je", 2);
}
if (substring2.equals("gé")) {

return getNewPronunciationAlternatives(word, startIndex, "jé", 2);
}
if (substring2.equals("je")) {

return getNewPronunciationAlternatives(word, startIndex, "ge", 2);
}
if (substring2.equals("jé")) {

return getNewPronunciationAlternatives(word, startIndex, "gé", 2);
}
if (substring2.equals("gi")) {

return getNewPronunciationAlternatives(word, startIndex, "ji", 2);
}
if (substring2.equals("gí")) {

return getNewPronunciationAlternatives(word, startIndex, "jí", 2);
}
if (substring2.equals("ji")) {

return getNewPronunciationAlternatives(word, startIndex, "gi", 2);
}
if (substring2.equals("jí")) {

return getNewPronunciationAlternatives(word, startIndex, "gí", 2);
}
if (substring2.equals("qe")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "que", 2);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "ke",
3));

return result;
}
if (substring2.equals("qé")) {

TreeSet<String> result = getNewPronunciationAlternatives(word,
startIndex, "qué", 2);

result.addAll(getNewPronunciationAlternatives(word, startIndex, "ké",
3));

return result;
}
if (substring2.equals("qi")) {

return getNewPronunciationAlternatives(word, startIndex, "qui", 2);
}
if (substring2.equals("qí")) {

return getNewPronunciationAlternatives(word, startIndex, "quí", 2);
}
return getPronunciationAlternatives(word, startIndex + 1);

}
private static TreeSet<String> getPronunciationAlternatives(String word) {

return getPronunciationAlternatives(word, 0);
}
private static class WordSimilarityCacheInfo {

private float wordSimilarityScore;
public String previous;
public String next;
public WordSimilarityCacheInfo(float wordSimilarityScore, String previous,

String next) {
this.wordSimilarityScore = wordSimilarityScore;
this.previous = previous;
this.next = next;

}
public float getWordSimilarityScore() {

return wordSimilarityScore;

83

}
}
private static TreeMap<String, WordSimilarityCacheInfo> wordSimilarityCache = new

TreeMap<String, WordSimilarityCacheInfo>();
private static String firstCacheEntry = null;
private static String lastCacheEntry = null;
private static void memorizeWordSimilarityScore(String word1, String word2, float

wordSimilarityScore) {
final int CACHE_SIZE = 100000;
String wordToBeMemorized;
if (word1.compareTo(word2) < 0) {

wordToBeMemorized = word1 + "/" + word2;
} else {

wordToBeMemorized = word2 + "/" + word1;
}
if (wordSimilarityCache.containsKey(wordToBeMemorized)) {

WordSimilarityCacheInfo wordSimilarityCacheInfo =
wordSimilarityCache.get(wordToBeMemorized);

if (wordSimilarityCacheInfo.previous != null) {
wordSimilarityCache.get(wordSimilarityCacheInfo.previous).next

= wordSimilarityCacheInfo.next;
} else {

firstCacheEntry = wordSimilarityCacheInfo.next;
}
if (wordSimilarityCacheInfo.next != null) {

wordSimilarityCache.get(wordSimilarityCacheInfo.next).previous
= wordSimilarityCacheInfo.previous;

} else {
lastCacheEntry = wordSimilarityCacheInfo.previous;

}
wordSimilarityCache.get(lastCacheEntry).next = wordToBeMemorized;
wordSimilarityCacheInfo.previous = lastCacheEntry;
wordSimilarityCacheInfo.next = null;
lastCacheEntry = wordToBeMemorized;
return;

}
if (wordSimilarityCache.size() >= CACHE_SIZE) {

WordSimilarityCacheInfo wordSimilarityCacheInfo =
wordSimilarityCache.get(firstCacheEntry);

wordSimilarityCache.remove(firstCacheEntry);
firstCacheEntry = wordSimilarityCacheInfo.next;
wordSimilarityCacheInfo.next = null;

}
WordSimilarityCacheInfo wordSimilarityCacheInfo = new

WordSimilarityCacheInfo(wordSimilarityScore, lastCacheEntry, null);
wordSimilarityCache.put(wordToBeMemorized, wordSimilarityCacheInfo);
if (lastCacheEntry != null) {

wordSimilarityCache.get(lastCacheEntry).next = wordToBeMemorized;
}
lastCacheEntry = wordToBeMemorized;
if (firstCacheEntry == null) {

firstCacheEntry = lastCacheEntry;
}

}
private static float getWordSimilarityScore(String word1, String word2) {

if (word1.equals(word2)) {
return 1;

}
String wordToBeMemorized;
if (word1.compareTo(word2) < 0) {

wordToBeMemorized = word1 + "/" + word2;
} else {

wordToBeMemorized = word2 + "/" + word1;

84

}
if (wordSimilarityCache.containsKey(wordToBeMemorized)) {

return
wordSimilarityCache.get(wordToBeMemorized).getWordSimilarityScore();

}
TreeSet<String> word1Alternatives = getPronunciationAlternatives(word1);
TreeSet<String> word2Alternatives = getPronunciationAlternatives(word2);
float baseScore = 0;
float highestScore = 0;
for (String word1Alternative: word1Alternatives) {

for (String word2Alternative: word2Alternatives) {
ArrayList<SegmentPair> segmentPairs =

getSegmentPairs(word1Alternative, word2Alternative);
float simpleCheckWordSimilarityScore =

getSimpleCheckWordSimilarityScore(word1Alternative, word2Alternative, segmentPairs);
if (word1Alternative.equals(word1) &&

word2Alternative.equals(word2)) {
baseScore = simpleCheckWordSimilarityScore;

}
if (simpleCheckWordSimilarityScore > highestScore) {

highestScore = simpleCheckWordSimilarityScore;
}

}
}
float wordSimilarityScore = (baseScore + highestScore) / (float)2;
memorizeWordSimilarityScore(word1, word2, wordSimilarityScore);
return wordSimilarityScore;

}
private static float getMorphemeSimilarityScore(String checkMorpheme, float

checkPosition, String candidateMorpheme, TreeMap<Float, Integer>
candidateMorphemePositionData) {

float wordSimilarityScore = getWordSimilarityScore(checkMorpheme,
candidateMorpheme);

if (candidateMorphemePositionData.isEmpty()) {
return wordSimilarityScore;

}
if (candidateMorphemePositionData.containsKey(checkPosition)) {

return wordSimilarityScore;
}
Float ceilingPosition =

candidateMorphemePositionData.ceilingKey(checkPosition);
Float floorPosition = candidateMorphemePositionData.floorKey(checkPosition);
float ceilingFrequency;
float floorFrequency;
if (ceilingPosition == null) {

return wordSimilarityScore * ((checkPosition + floorPosition - 2) /
(float)((floorPosition - 1) * 2));

} else {
ceilingFrequency = candidateMorphemePositionData.get(ceilingPosition);

}
if (floorPosition == null) {

return wordSimilarityScore * (((checkPosition / ceilingPosition) + 1) /
(float)2);

} else {
floorFrequency = candidateMorphemePositionData.get(floorPosition);

}
if (checkPosition <= floorPosition + ((floorFrequency / (float)(floorFrequency

+ ceilingFrequency)) * (ceilingPosition - floorPosition))) {
return wordSimilarityScore * (

(
(float)0.5 * (floorPosition - checkPosition) / (float)(

(floorFrequency / (float)(floorFrequency +
ceilingFrequency)) * (ceilingPosition - floorPosition)

85

)
) + 1

);
} else {

return wordSimilarityScore * (
(

(float)0.5 * (checkPosition - ceilingPosition) / (float)
(

(ceilingFrequency / (float)(floorFrequency +
ceilingFrequency)) * (ceilingPosition - floorPosition)

)
) + 1

);
}

}
private static String lastChosenFilename = "";
private static ArrayList<String> getChooserFileLines() {

return getChooserFileLines("");
}
private static ArrayList<String> getChooserFileLines(String predefinedFilename) {

String filename;
if (predefinedFilename.equals("")) {

JFileChooser chooser = new JFileChooser();
FileNameExtensionFilter filter = new FileNameExtensionFilter("MGC

Corpus Files", "mgc");
chooser.setFileFilter(filter);
int result = chooser.showOpenDialog(null);
if (result != JFileChooser.APPROVE_OPTION) {

return null;
}
File file = chooser.getSelectedFile();
try {

filename = file.getCanonicalPath();
} catch (IOException e) {

System.out.println("I/O exception while trying to get canonical
path: \"" + e.getMessage() + "\"");

return null;
}

} else {
filename = predefinedFilename;

}
lastChosenFilename = filename;
FileReader reader;
try {

reader = new FileReader(filename);
} catch (FileNotFoundException e) {

System.out.println("File not found while attempting to open the chosen
file: \"" + e.getMessage() + "\"");

return null;
}
BufferedReader bufferedReader = new BufferedReader(reader);
ArrayList<String> readLines = new ArrayList<String>();
String line;
do {

try {
line = bufferedReader.readLine().trim();

} catch (IOException e) {
System.out.println("I/O exception while trying to read the

chosen file: \"" + e.getMessage() + "\"");
try {

bufferedReader.close();
} catch (IOException e2) {

System.out.println("...aaand another I/O exception while

86

trying to close the buffered reader: \"" + e2.getMessage() + "\"");
}
try {

reader.close();
} catch (IOException e2) {

System.out.println("...aaand another I/O exception while
trying to close the file: \"" + e2.getMessage() + "\"");

}
return null;

} catch (NullPointerException e) {
line = "";
int character;
do {

try {
character = bufferedReader.read();

} catch (IOException e2) {
System.out.println("I/O exception while trying

to read the chosen file: \"" + e2.getMessage() + "\"");
try {

bufferedReader.close();
} catch (IOException e3) {

System.out.println("...aaand another I/O
exception while trying to close the buffered reader: \"" + e3.getMessage() + "\"");

}
try {

reader.close();
} catch (IOException e3) {

System.out.println("...aaand another I/O
exception while trying to close the file: \"" + e3.getMessage() + "\"");

}
return null;

}
if (character >= 0) {

line += String.valueOf((char)character);
}

} while (character >= 0);
}
if (line != null) {

int semicolon = line.indexOf(';');
if (semicolon >= 0) {

line = line.substring(0, semicolon).trim();
}
if (!(line.equals(""))) {

readLines.add(line);
}

}
if (line.equals("")) {

line = null;
}

} while (line != null);
boolean closeOK = true;
try {

bufferedReader.close();
} catch (IOException e) {

System.out.println("I/O exception while trying to close the buffered
reader: \"" + e.getMessage() + "\"");

closeOK = false;
}
try {

reader.close();
} catch (IOException e) {

System.out.println((closeOK ? "" : "...aaand another ") + "I/O
exception while trying to close the chosen file: \"" + e.getMessage() + "\"");

87

closeOK = false;
}
if (!closeOK) {

return null;
}
if (predefinedFilename.equals("")) {

System.out.println("Read file \"" + filename + "\", " +
readLines.size() + " lines.");

}
return readLines;

}
private static String[] wordList50 = {"gatotes", "ultrafino",

"ultraconservador", "taxis", "beben", "cosedora", "repartirse", "recibido",
"recibís", "cuéntale", "silloncito", "ininterrumpido", "reinscribir", "inactivo",
"sobrepuesta", "preacuerdo", "exnovia", "vicepresidente", "vicedecanato",
"extracurricular", "anticonstitucionales", "observarán", "extensionalidad",
"principado", "tolerancia", "bienaventuranza", "incertidumbre", "torcedura",
"cabezota", "panezote", "villorrio", "colombiano", "vizcaína", "tepozteco",
"comías", "comiste", "cantaremos", "viviré", "vivirá", "viviríamos",
"vivirían", "cantásemos", "cantáremos", "cantareis", "vivieren", "librería",
"caserío", "jugaré", "superestadistas", "escogería" };

private static String[] morphemyzedWordList50 = {"gat-ot-es", "ultra-fin-o", "ultra-
conserv-a-dor", "taxi-s", "beb-e-n", "cos-e-dor-a", "repart-ir-se", "recib-id-o", "recib-í-
s", "cuént-a-le", "sill-on-cit-o", "in-interrump-id-o", "re-inscrib-ir", "in-act-iv-o",
"sobre-puest-a", "pre-acuerd-o", "ex-novi-a", "vice-presid-ente", "vice-decan-ato", "extra-
curricul-ar", "anti-constitu-cion-al-es", "observ-a-rá-n", "extension-al-i-dad", "princip-
ado", "toler-ancia", "bien-aventur-anza", "in-certi-dumbre", "torc-edura", "cabez-ot-a",
"pan-ezot-e", "vill-orri-o", "colombi-an-o", "vizca-ín-a", "tepoz-tec-o", "com-í-a-s", "com-
iste", "cant-a-re-mos", "viv-i-ré", "viv-i-rá", "viv-i-ría-mos", "viv-i-ría-n", "cant-á-se-
mos", "cant-á-re-mos", "cant-a-re-is", "viv-ie-re-n", "libr-ería", "cas-erío", "jug-a-ré",
"super-estad-ista-s", "escog-e-ría"};

private static void LearningSystem1(Scanner keyboard, PlainLearningMorphemeDataGetter
getter, boolean startingFromScratch, boolean automatic) {

int automaticCounter = -1; //100 <<< To begin at "with position data"
if (automatic) {

System.out.println("*** Without position data ***");
} else {

System.out.println("Learning system without learning position data.");
System.out.println("Enter a word to analyze it.");
System.out.println("Type an equals sign and a morphemyzed word to learn

it.");
if (startingFromScratch) {

System.out.println("Note: Starting from scratch.");
}

}
int phase = 1;
int dnl = 0;
int imnt = 0;
int imwt = 0;
int rtnt = 0;
int rtwt = 0;
while (true) {

boolean retry = false;
String input = "";
String automaticWord = "";
String automaticMorphemyzedWord = "";
if (automatic) {

if (phase == 1) {
automaticCounter++;
if (automaticCounter >= wordList50.length ||

automaticCounter >= morphemyzedWordList50.length) {
System.out.println("=== Summary of results

for \"without position data\" modality ===");

88

System.out.println("Did not learn: " + dnl);
System.out.println("Immediate result (no ties):

" + imnt);
System.out.println("Immediate result (with

ties): " + imwt);
System.out.println("Requires teaching (no ties):

" + rtnt);
System.out.println("Requires teaching (with

ties): " + rtwt);
return;

}
}
automaticWord = wordList50[automaticCounter];
automaticMorphemyzedWord =

morphemyzedWordList50[automaticCounter];
if (phase == 1) {

System.out.print(automaticWord + " ... " +
automaticMorphemyzedWord + " ... ");

input = automaticWord;
} else {

if (phase == 2) {
input = "=" + automaticMorphemyzedWord;

} else {
input = automaticWord;

}
}

} else {
System.out.print(">");
input = keyboard.nextLine().trim();
if (input.equals("")) {

System.out.print("Terminate system? (y/N)>");
input = keyboard.nextLine().trim().toLowerCase();
System.out.println();
if (input.equals("y") || input.equals("yes")) {

break;
} else {

retry = true;
}

}
}
if (!retry) {

int inputLength = input.length();
if (input.charAt(0) == '=') {

input = "=" + input.substring(1, inputLength).trim();
inputLength = input.length();
if (inputLength > 1) {

boolean morphemyzedSpanish = true;
for (int index = 1; index < inputLength; index+

+) {
if (!

isSpanishLetterOrDash(input.charAt(index))) {
morphemyzedSpanish = false;
break;

}
}
if (morphemyzedSpanish) {

MorphemyzedWord morphemyzedWord = null;
try {

morphemyzedWord = new
MorphemyzedWord(getter, input.substring(1, inputLength));

} catch (Exception e) {

System.out.println(e.getMessage());

89

}
if (morphemyzedWord != null) {

ArrayList<String> morphemes =
morphemyzedWord.getMorphemes();

for (String morpheme: morphemes)
{

getter.addCandidateMorpheme(morpheme);
}
if (automatic) {

phase = 3;
} else {

System.out.println("OK.");
}

}
} else {

System.out.println("Please only use
dashes or Spanish characters.");

}
}

} else {
boolean spanish = true;
for (int index = 0; index < inputLength; index++) {

if (!isSpanishLetter(input.charAt(index))) {
spanish = false;
break;

}
}
if (spanish) {

WordMorphemyzerGeneticAlgorithm geneticAlgorithm
= new WordMorphemyzerGeneticAlgorithm(input, getter);

TreeSet<MorphemyzedWord> morphemyzedWords =
geneticAlgorithm.run(automatic);

int morphemyzedWordsSize =
morphemyzedWords.size();

if (automatic) {
if (phase == 1) {

phase = 2;
for (MorphemyzedWord

morphemyzedWord: morphemyzedWords) {
if

(automaticMorphemyzedWord.equals(morphemyzedWord.getDisplayString())) {

System.out.println("Immediate result" + (morphemyzedWordsSize == 1 ? "" : ", ties
with " + (morphemyzedWordsSize - 1) + " other" + (morphemyzedWordsSize == 2 ? "" : "s")));

if
(morphemyzedWordsSize == 1) {

imnt++;
} else {

imwt++;
}
phase = 1;
break;

}
}

} else {
boolean didNotLearn = true;
for (MorphemyzedWord

morphemyzedWord: morphemyzedWords) {
if

(automaticMorphemyzedWord.equals(morphemyzedWord.getDisplayString())) {

System.out.println("Requires teaching" + (morphemyzedWordsSize == 1 ? "" : ", ties

90

with " + (morphemyzedWordsSize - 1) + " other" + (morphemyzedWordsSize == 2 ? "" : "s")));
if

(morphemyzedWordsSize == 1) {
rtnt++;

} else {
rtwt++;

}
didNotLearn =

false;
break;

}
}
if (didNotLearn) {

System.out.println("Did
not learn");

dnl++;
}
phase = 1;

}
} else {

System.out.print("Result" +
(morphemyzedWordsSize == 1 ? "" : "s") + " (" + morphemyzedWordsSize + "): ");

boolean firstWord = true;
for (MorphemyzedWord morphemyzedWord:

morphemyzedWords) {
if (firstWord) {

firstWord = false;
} else {

System.out.print(", ");
}

System.out.print(morphemyzedWord.getDisplayString());
}
System.out.println();
if (morphemyzedWords.size() == 1) {

MorphemyzedWord morphemyzedWord =
(new ArrayList<MorphemyzedWord>(morphemyzedWords)).get(0);

ArrayList<String> morphemes =
morphemyzedWord.getMorphemes();

boolean fullyKnown = true;
for (String morpheme: morphemes)

{
if (!

(getter.knowsCandidateMorpheme(morpheme))) {
fullyKnown =

false;
break;

}
}
if (!fullyKnown) {

System.out.print("Correct?
(y/N)>");

input =
keyboard.nextLine().trim().toLowerCase();

if (input.equals("y") ||
input.equals("yes")) {

for (String
morpheme: morphemes) {

getter.addCandidateMorpheme(morpheme);
}

}
}

91

}
}

} else {
System.out.println("Please only use Spanish

characters.");
}

}
if (!automatic) {

System.out.println();
}

}
}

}
private static void LearningSystem2(Scanner keyboard, FullLearningMorphemeDataGetter

getter, boolean startingFromScratch, boolean automatic) {
int automaticCounter = -1;
if (automatic) {

for (String line: morphemyzedWordList50) {
String input = line;
int inputLength = input.length();
if (input.charAt(0) == '-' || input.charAt(inputLength - 1) ==

'-') {
System.out.println("Should not begin or end with a

dash.");
System.exit(-1);

} else {
int wordLength = inputLength;
for (int index = 0; index < inputLength; index++) {

char character = input.charAt(index);
if (character == '-') {

wordLength--;
}

}
input += "-";
inputLength++;
int startIndex = 0;
int dashes = 0;
for (int index = 0; index < inputLength; index++) {

char character = input.charAt(index);
if (character == '-') {

String morpheme =
input.substring(startIndex, index);

int morphemeLength = morpheme.length();
float position = (startIndex - dashes) /

(float)(wordLength - morphemeLength);
startIndex = index + 1;
for (int index2 = 0; index2 <

LEARN_REPETITIONS - 1; index2++) {

getter.addCandidateMorphemeData(morpheme, position);
}
dashes++;

}
}

}
}
System.out.println("*** With position data ***");

} else {
System.out.println("Learning system while learning position data.");
System.out.println("Enter a word to analyze it.");
System.out.println("Type an equals sign and a morphemyzed word to learn

it.");
if (startingFromScratch) {

92

System.out.println("Note: Starting from scratch.");
}

}
int phase = 1;
int dnl = 0;
int imnt = 0;
int imwt = 0;
int rtnt = 0;
int rtwt = 0;
do {

while (true) {
boolean retry = false;
String input = "";
String automaticWord = "";
String automaticMorphemyzedWord = "";
if (automatic) {

if (phase == 1) {
automaticCounter++;
if (automaticCounter >= wordList50.length ||

automaticCounter >= morphemyzedWordList50.length) {
System.out.println("=== Summary of

results for \"with position data\" modality ===");
System.out.println("Did not learn: " +

dnl);
System.out.println("Immediate result (no

ties): " + imnt);
System.out.println("Immediate result

(with ties): " + imwt);
System.out.println("Requires teaching (no

ties): " + rtnt);
System.out.println("Requires teaching

(with ties): " + rtwt);
System.out.println();
return;

}
}
automaticWord = wordList50[automaticCounter];
automaticMorphemyzedWord =

morphemyzedWordList50[automaticCounter];
if (phase == 1) {

System.out.print(automaticWord + " ... " +
automaticMorphemyzedWord + " ... ");

input = automaticWord;
} else {

if (phase == 2) {
input = "=" + automaticMorphemyzedWord;

} else {
input = automaticWord;

}
}

} else {
System.out.print(">");
input = keyboard.nextLine().trim();
if (input.equals("")) {

System.out.print("Terminate system? (y/N)>");
input =

keyboard.nextLine().trim().toLowerCase();
System.out.println();
if (input.equals("y") || input.equals("yes")) {

break;
} else {

retry = true;
}

93

}
}
if (!retry) {

int inputLength = input.length();
if (input.charAt(0) == '=') {

input = "=" + input.substring(1,
inputLength).trim();

inputLength = input.length();
if (inputLength > 1) {

boolean morphemyzedSpanish = true;
for (int index = 1; index < inputLength;

index++) {
if (!

isSpanishLetterOrDash(input.charAt(index))) {
morphemyzedSpanish =

false;
break;

}
}
if (morphemyzedSpanish) {

input = input.substring(1,
inputLength);

inputLength--;
if (input.charAt(0) == '-' ||

input.charAt(inputLength - 1) == '-') {
System.out.println("Should

not begin or end with a dash.");
} else {

int wordLength =
inputLength;

for (int index = 0; index
< inputLength; index++) {

char character =
input.charAt(index);

if (character ==
'-') {

wordLength--;
}

}
input += "-";
inputLength++;
int startIndex = 0;
int dashes = 0;
for (int index = 0; index

< inputLength; index++) {
char character =

input.charAt(index);
if (character ==

'-') {
String

morpheme = input.substring(startIndex, index);
int

morphemeLength = morpheme.length();
float

position = (startIndex - dashes) / (float)(wordLength - morphemeLength);
startIndex

= index + 1;

getter.addCandidateMorphemeData(morpheme, position);
dashes++;

}
}

94

if (automatic) {
phase = 3;

} else {

System.out.println("OK.");
}

}
} else {

System.out.println("Please only
use dashes or Spanish characters.");

}
}

} else {
boolean spanish = true;
for (int index = 0; index < inputLength; index+

+) {
if (!

isSpanishLetter(input.charAt(index))) {
spanish = false;
break;

}
}
if (spanish) {

WordMorphemyzerGeneticAlgorithm
geneticAlgorithm = new WordMorphemyzerGeneticAlgorithm(input, getter);

TreeSet<MorphemyzedWord> morphemyzedWords
= geneticAlgorithm.run(automatic);

int morphemyzedWordsSize =
morphemyzedWords.size();

if (automatic) {
if (phase == 1) {

phase = 2;
for (MorphemyzedWord

morphemyzedWord: morphemyzedWords) {
if

(automaticMorphemyzedWord.equals(morphemyzedWord.getDisplayString())) {

System.out.println("Immediate result" + (morphemyzedWordsSize == 1 ? "" : ", ties
with " + (morphemyzedWordsSize - 1) + " other" + (morphemyzedWordsSize == 2 ? "" : "s")));

if
(morphemyzedWordsSize == 1) {

imnt++;
} else {

imwt++;
}
phase = 1;
break;

}
}

} else {
boolean didNotLearn =

true;
for (MorphemyzedWord

morphemyzedWord: morphemyzedWords) {
if

(automaticMorphemyzedWord.equals(morphemyzedWord.getDisplayString())) {

System.out.println("Requires teaching" + (morphemyzedWordsSize == 1 ? "" : ", ties
with " + (morphemyzedWordsSize - 1) + " other" + (morphemyzedWordsSize == 2 ? "" : "s")));

if
(morphemyzedWordsSize == 1) {

95

rtnt++;
} else {

rtwt++;
}
didNotLearn

= false;
break;

}
}
if (didNotLearn) {

System.out.println("Did not learn");
dnl++;

}
phase = 1;

}
} else {

System.out.print("Result" +
(morphemyzedWordsSize == 1 ? "" : "s") + " (" + morphemyzedWordsSize + "): ");

boolean firstWord = true;
for (MorphemyzedWord

morphemyzedWord: morphemyzedWords) {
if (firstWord) {

firstWord = false;
} else {

System.out.print(", ");
}

System.out.print(morphemyzedWord.getDisplayString());
}
System.out.println();
if (morphemyzedWords.size() == 1)

{
MorphemyzedWord

morphemyzedWord = (new ArrayList<MorphemyzedWord>(morphemyzedWords)).get(0);
ArrayList<String>

morphemes = morphemyzedWord.getMorphemes();
boolean fullyKnown = true;
for (String morpheme:

morphemes) {
if (!

(getter.knowsCandidateMorpheme(morpheme))) {
fullyKnown

= false;
break;

}
}
if (!fullyKnown) {

System.out.print("Correct? (y/N)>");
input =

keyboard.nextLine().trim().toLowerCase();
if

(input.equals("y") || input.equals("yes")) {
input =

morphemyzedWord.getDisplayString();
inputLength

= input.length();
int

wordLength = inputLength;

96

for (int
index = 0; index < inputLength; index++) {

char character = input.charAt(index);
if

(character == '-') {

wordLength--;
}

}
input +=

"-";

inputLength++;
int

startIndex = 0;
int dashes

= 0;
for (int

index = 0; index < inputLength; index++) {

char character = input.charAt(index);
if

(character == '-') {

String morpheme = input.substring(startIndex, index);

int morphemeLength = morpheme.length();

float position = (startIndex - dashes) / (float)(wordLength - morphemeLength);

startIndex = index + 1;

getter.addCandidateMorphemeData(morpheme, position);

dashes++;
}

}
}

}
}

}
} else {

System.out.println("Please only use
Spanish characters.");

}
}
if (!automatic) {

System.out.println();
}

}
}

} while (false);
}
public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);
boolean quit = false;
do {

boolean retry;
int selection = -1;
do {

System.out.println("Morphological analysis of Spanish words
using genetic algorithms");

97

switch (formulaKind) {
case AVERAGE:

System.out.println("Using average formula");
break;

case PRODUCT:
System.out.println("Using product formula");
break;

}
System.out.println();
System.out.println("1. Detailed comparison of two words");
System.out.println("2. Consecutive string of words");
System.out.println("3. Learning system without learning

position data, from scratch");
System.out.println("4. Learning system while learning position

data, from scratch");
System.out.println("5. Learning system without learning

position data, from corpus");
System.out.println("6. Learning system while learning position

data, from corpus");
System.out.println("7. Automatic pre-defined hundred test

run");
System.out.println("8. Quit");
String selectionAsString = keyboard.nextLine().trim();
retry = false;
try {

selection = Integer.valueOf(selectionAsString);
} catch (NumberFormatException e) {

retry = true;
}

} while (retry);
switch (selection) {

case 1:
while (true) {

System.out.print("Word #1>");
String word1 = keyboard.nextLine().trim();
if (word1.equals("")) {

break;
}
System.out.print("Word #2>");
String word2 = keyboard.nextLine().trim();
if (word2.equals("")) {

break;
}
ArrayList<SegmentPair> segmentPairs =

getSegmentPairs(word1, word2);
if (segmentPairs.size() == 0) {

System.out.println("There are no segment
pairs.");

System.out.println("Word similarity
score: " + (getWordSimilarityScore(word1, word2) * 100) + "%");

System.out.println();
} else {

System.out.println("Found " +
segmentPairs.size() + " segment pair" + (segmentPairs.size() == 1 ? "" : "s") + ".");

for (SegmentPair pair: segmentPairs) {
int word1SegmentIndex =

pair.getWord1SegmentIndex();
int word2SegmentIndex =

pair.getWord2SegmentIndex();
int wordSegmentLength =

pair.getWordSegmentLength();

System.out.println(word1.substring(0, word1SegmentIndex) + "[" +

98

word1.substring(word1SegmentIndex, word1SegmentIndex + wordSegmentLength) + "]" +
word1.substring(word1SegmentIndex + wordSegmentLength, word1.length()));

System.out.println(word2.substring(0, word2SegmentIndex) + "[" +
word2.substring(word2SegmentIndex, word2SegmentIndex + wordSegmentLength) + "]" +
word2.substring(word2SegmentIndex + wordSegmentLength, word2.length()));

float orderScore =
getOrderScore(word1, word2, pair);

System.out.println("Order score:
" + (orderScore * 100) + "%");

float letterSimilarityScore =
getLetterSimilarityScore(word1, word2, pair);

System.out.println("Letter
similarity score: " + (letterSimilarityScore * 100) + "%");

float sizeScore =
getSizeScore(word1, word2, pair);

System.out.println("Size score: "
+ (sizeScore * 100) + "%");

float segmentPairScore =
getSegmentPairScore(word1, word2, pair);

System.out.println("Segment pair
score: " + (segmentPairScore * 100) + "%");

System.out.println();
}
float segmentPairsScore =

getSegmentPairsScore(word1, word2, segmentPairs);
System.out.println("Segment pairs score:

" + (segmentPairsScore * 100) + "%");
System.out.println();
float simpleCheckWordSimilarityScore =

getSimpleCheckWordSimilarityScore(word1, word2, segmentPairs);
System.out.println("Simple check word

similarity score (without pronunciation checks): " + (simpleCheckWordSimilarityScore * 100) +
"%");

float wordSimilarityScore =
getWordSimilarityScore(word1, word2);

System.out.println("Final word similarity
score: " + (wordSimilarityScore * 100) + "%");

System.out.println();
}

}
break;

case 2:
ArrayList<String> words2 = new ArrayList<String>();
while (true) {

words2.clear();
int number = 1;
while (true) {

System.out.print("Word #" + (number++) +
">");

String word = keyboard.nextLine().trim();
if (word.equals("")) {

break;
} else {

words2.add(word);
}

}
if (words2.isEmpty()) {

break;
}
int wordsSize = words2.size();
float[][] scoresMatrix = new float[wordsSize]

[wordsSize];

99

for (int index = 0; index < wordsSize; index++)
{

scoresMatrix[index][index] = 1;
}
for (int outerWordIndex = 0; outerWordIndex <=

wordsSize - 2; outerWordIndex++) {
String outerWord =

words2.get(outerWordIndex);
for (int innerWordIndex = wordsSize - 1;

innerWordIndex > outerWordIndex; innerWordIndex--) {
String innerWord =

words2.get(innerWordIndex);
System.out.println("Comparing \""

+ outerWord + "\" and \"" + innerWord + "\".");
float wordSimilarityScore =

getWordSimilarityScore(outerWord, innerWord);
scoresMatrix[outerWordIndex]

[innerWordIndex] = wordSimilarityScore;
scoresMatrix[innerWordIndex]

[outerWordIndex] = wordSimilarityScore;
}

}
float highestWordSimilarityScore = -1;
int highestIndex = -1;
for (int outerIndex = 0; outerIndex < wordsSize;

outerIndex++) {
float totalSimilarityScore = 0;
for (int innerIndex = 0; innerIndex <

wordsSize; innerIndex++) {
totalSimilarityScore +=

scoresMatrix[innerIndex][outerIndex];
}
if (totalSimilarityScore >

highestWordSimilarityScore) {
highestWordSimilarityScore =

totalSimilarityScore;
highestIndex = outerIndex;

}
}
boolean[] used = new boolean[wordsSize];
for (int index = 0; index < wordsSize; index++)

{
used[index] = false;

}
while (true) {

String highestWord =
words2.get(highestIndex);

System.out.println(highestWord);
used[highestIndex] = true;
boolean done = true;
for (int index = 0; index < wordsSize;

index++) {
if (!used[index]) {

done = false;
break;

}
}
if (done) {

System.out.println();
break;

}
float highestSimilarityScore = -1;
int previousHighestIndex = highestIndex;

100

highestIndex = -1;
for (int index = 0; index < wordsSize;

index++) {
if (!used[index]) {

float similarityScore =
scoresMatrix[index][previousHighestIndex];

if (similarityScore >
highestSimilarityScore) {

highestSimilarityScore = similarityScore;
highestIndex =

index;
}

}
}
used[highestIndex] = true;

}
}
break;

case 3:
do {

PlainLearningMorphemeDataGetter getter = new
PlainLearningMorphemeDataGetter();

LearningSystem1(keyboard, getter, true, false);
} while (false);
break;

case 4:
do {

FullLearningMorphemeDataGetter getter = new
FullLearningMorphemeDataGetter();

LearningSystem2(keyboard, getter, true, false);
} while (false);
break;

case 5:
PrefixLearningSystem1(keyboard, false);
break;

case 6:
PrefixLearningSystem2(keyboard, "", false);
break;

case 7:
lastChosenFilename = "";
PrefixLearningSystem1(keyboard, true);
if (!(lastChosenFilename.equals(""))) {

PrefixLearningSystem2(keyboard,
lastChosenFilename, true);

}
break;

case 8:
quit = true;
break;

default:
break;

}
} while (!quit);
keyboard.close();

}
private static void PrefixLearningSystem1(Scanner keyboard, boolean automatic) {

do {
ArrayList<String> readLines = getChooserFileLines();
if (readLines == null) {

break;
}
boolean breakAgain = false;

101

boolean breakYetAgain = false;
for (String line: readLines) {

int lineLength = line.length();
for (int i = 0; i < lineLength; i++) {

char character = line.charAt(i);
if (!isSpanishLetterOrDash(character)) {

System.out.println("Error: Data must only
contain Spanish characters or dashes.");

System.out.println("Offending entry: \"" + line
+ "\".");

breakAgain = true;
break;

}
}
if (breakAgain) {

breakYetAgain = true;
break;

}
}
if (breakYetAgain) {

break;
}
PlainLearningMorphemeDataGetter getter = new

PlainLearningMorphemeDataGetter();
for (String line: readLines) {

String input = "=" + line;
int inputLength = input.length();
MorphemyzedWord morphemyzedWord = null;
try {

morphemyzedWord = new MorphemyzedWord(getter,
input.substring(1, inputLength));

} catch (Exception e) {
System.out.println(e.getMessage());
breakAgain = true;

}
ArrayList<String> morphemes = morphemyzedWord.getMorphemes();
for (String morpheme: morphemes) {

getter.addCandidateMorpheme(morpheme);
}

}
if (breakAgain) {

break;
}
LearningSystem1(keyboard, getter, false, automatic);

} while (false);
}
private static void PrefixLearningSystem2(Scanner keyboard, String

predefinedFilename, boolean automatic) {
do {

ArrayList<String> readLines = getChooserFileLines(predefinedFilename);
if (readLines == null) {

break;
}
boolean breakAgain = false;
boolean breakYetAgain = false;
for (String line: readLines) {

int lineLength = line.length();
for (int i = 0; i < lineLength; i++) {

char character = line.charAt(i);
if (!isSpanishLetterOrDash(character)) {

System.out.println("Error: Data must only
contain Spanish characters or dashes.");

System.out.println("Offending entry: \"" + line

102

+ "\".");
breakAgain = true;
break;

}
}
if (breakAgain) {

breakYetAgain = true;
break;

}
}
if (breakYetAgain) {

break;
}
FullLearningMorphemeDataGetter getter = new

FullLearningMorphemeDataGetter();
for (String line: readLines) {

String input = line;
int inputLength = input.length();
if (input.charAt(0) == '-' || input.charAt(inputLength - 1) ==

'-') {
System.out.println("Should not begin or end with a

dash.");
breakAgain = true;
break;

} else {
int wordLength = inputLength;
for (int index = 0; index < inputLength; index++) {

char character = input.charAt(index);
if (character == '-') {

wordLength--;
}

}
input += "-";
inputLength++;
int startIndex = 0;
int dashes = 0;
for (int index = 0; index < inputLength; index++) {

char character = input.charAt(index);
if (character == '-') {

String morpheme =
input.substring(startIndex, index);

int morphemeLength = morpheme.length();
float position = (startIndex - dashes) /

(float)(wordLength - morphemeLength);
startIndex = index + 1;
for (int index2 = 0; index2 <

LEARN_REPETITIONS; index2++) {

getter.addCandidateMorphemeData(morpheme, position);
}
dashes++;

}
}

}
}
if (breakAgain) {

break;
}
LearningSystem2(keyboard, getter, false, automatic);

} while (false);
}

}

103

APPENDIX B. CORPUS USED FOR EXPERIMENTATION

The corpus used for experimentation consists of over 640 spanish words that have

been morphologically divided. Fifty words were chosen at random and used to perform the

tests. They are listed at the end of this appendix. The remaining words, over 590, were used

to train the system prior to running the tests. The list follows:

gat-it-o-s
gat-it-a-s
gat-ot-a-s
perr-it-o-s
conej-it-o-s
elefant-it-o-s
animal-it-o-s
ch-ic-o
ch-iquit-ic-a
super-ch-iquit-it-o
super-ch-ic-a
super-pájar-o-s
super-pajar-it-o-s
super-duper-tortug-a-s
super-duper-caball-o-s
super-ultra-yegu-a
super-ultra-giraf-a
ultra-soni-d-o
ultra-efect-iv-o
casa-s
café-s
pared-es
reloj-es
ley-es
rey-es
rubí-es
tabú-es
análisis
crisis
déficit
salta-monte-s
superávit
extend-er
extens-ión
imprim-ir
impres-ión
eléctric-o
electric-idad
electric-ista
permit-ir
permis-iv-o
trans-atlántic-o-s

cosmeto-logí-a
sill-a
sill-ón
in-ac-ción
inter-nacion-al
sub-yac-e-nte
sub-suel-o
re-imprim-ir
re-con-stru-ir
re-ac-ción
des-ment-ir
des-alent-ar
des-mont-ar
des-dicha
re-introduc-ir
introduc-ción
sub-conscien-te
sub-secuen-te
sub-sigu-ie-n-te
sub-estim-ar
in-decis-o
in-discut-id-o
in-co-heren-te
im-bu-ír
in-satisf-ech-o
in-saci-a-ble
imagin-a-ble
im-pens-a-ble
in-cont-a-ble
contra-indic-ad-o
contra-cep-tiv-o
contra-dic-ción
contra-puest-a
contra-posici-ón
inter-cambi-ar
inter-comunic-a-ción
inter-relacion-ad-o
abol-i-cion-ista
public-ista
cuchar-ón
caj-ón
lagrim-ón

nutr-ición
mal-dad
seri-edad
rival-idad
leal-tad
at-adura
viñ-edo
arbol-eda
libr-ería
flor-ero
guant-era
rigid-ez
bell-eza
cortes-ía
atlet-ismo
art-ista
lent-itud
llama-miento
jura-mento
profes-or
dulz-ura
barril-et-e
histori-et-a
maestr-ic-o
duend-ecic-o
chiqu-ill-o
amor-cill-o
red-ecill-a
madr-in-a
camp-iñ-a
cas-it-a
terron-cit-o
luc-ecit-a
chic-uel-o
ca-zuel-a
perr-az-o
mujer-on-a
mach-ot-e
pajarr-ac-o
popul-ach-o
mig-aj-a
poet-astr-a

com-e-ré
com-e-rás
com-e-rá
com-e-re-mos
com-e-ré-is
com-e-rá-n
viv-i-rás
viv-i-re-mos
viv-i-ré-is
viv-i-rá-n
cant-a-ría-s
cant-a-ría
cant-a-ría-mos
cant-a-ría-is
cant-a-ría-n
com-e-ría
com-e-ría-s
com-e-ría-mos
com-e-ría-is
com-e-ría-n
viv-i-ría-s
viv-i-ría
viv-i-ría-is
cant-e-s
cant-e
cant-e-mos
cant-é-is
cant-e-n
com-a-s
com-a
com-a-mos
com-á-is
com-a-n
viv-a
viv-a-s
viv-a-mos
viv-á-is
viv-a-n
cant-a-ra-s
cant-a-se-s
cant-a-ra
cant-a-se

104

rápida-mente
feliz-mente
lenta-mente
nueva-mente
actr-iz
emperatr-iz
habl-a-dor
habl-a-dor-a
habl-ar
habl-ar-se
habl-ar-le
habl-ad-o
habl-a-d-a
habl-a-ndo
habl-o
habl-a-s
habl-a
habl-a-mos
habl-á-is
habl-a-n
observ-a-dor
observ-a-dor-a
observ-ar
observ-ar-se
observ-ar-le
observ-ad-o
observ-a-d-a
observ-a-ndo
observ-o
observ-a-s
observ-a
observ-a-mos
observ-á-is
observ-a-n
beb-e-dor
beb-e-dor-a
beb-er
beb-er-se
beb-er-le
beb-id-o
beb-i-d-a
beb-ie-ndo
beb-o
beb-e-s
beb-e
beb-e-mos
beb-é-is
cos-e-dor
cos-er
cos-er-se
cos-er-le
cos-id-o
cos-i-d-a
cos-ie-ndo
cos-o
cos-e-s
cos-e
cos-e-mos
cos-é-is
cos-e-n
repart-i-dor
repart-i-dor-a

trans-géner-o
trans-vers-al
trans-sex-u-al
trans-curs-o
trans-port-ar
sobre-estimul-a-da
sobre-maner-a
sobre-mes-a
pre-dich-o
pre-conceb-id-o
pre-vist-o
semi-coc-id-o
semi-educ-a-tiv-o
semi-instruc-tiv-o
semi-curios-a
caprich-os-o
cautel-os-o
gelatin-os-o
respet-u-os-o
a-sintomá-t-ic-o
a-fónic-o
a-soci-al
a-ton-al
ex-presid-ente
ex-novi-o
ex-comulg-ar
vice-decan-o
vice-secretari-a
extra-pol-ar
extra-fin-o
extra-larg-o
retro-visor
retro-aliment-a-ción
retro-act-iv-o
retro-tra-er
america-n-iz-ar
ridicul-iz-ar
mone-t-iz-ar
memor-iz-ar
amen-iz-ar
nuestr-a-s
im-pre-vist-a
sub-mar-in-a
re-analiz-ad-o
des-leal-mente
im-posib-le
real
i-rreal
canción
cancion-cit-a
café
cafe-cit-o
flor-e-cit-a
buen-o
mejor
ten-í-a
tuv-e
agu-a
acu-os-o
duerm-o
dorm-i-mos
árbol

calent-orr-o
mujer-uc-a
cas-uch-a
gent-uz-a
vener-able
toler-able
acces-ible
color-ad-a
grup-al
edit-or-i-al
equival-ente
durm-iente
human-it-ari-a
eleccion-ari-o
perece-der-a
quebr-ad-iz-a
hu-idiz-a
pesqu-er-o
azucar-er-a
picar-esc-a
detectiv-esc-a
hambr-ient-o
harap-ient-o
varon-il
estudiant-il
estad-ista
box-ístic-o
patr-ístic-a
paj-iz-o
quebr-ad-iz-o
espum-os-o
honr-os-a
borr-os-o
pel-ud-o
panz-ud-o
austri-ac-o
pol-ac-a
eslov-ac-o
peru-an-a
bolivi-an-a
moneg-asc-o
chil-en-o
asunc-en-a
nacianc-en-o
cartagin-ense
bonaer-ense
flumin-ense
puertorriqu-eñ-o
madril-eñ-a
caraqu-eñ-o
franc-es-a
ingl-és
portugu-es-a
israel-í
marroqu-í
iran-í
argent-in-o
salmant-in-a
vietnam-ita
isreal-ita
selen-ita
yuca-tec-o

cant-á-ra-mos
cant-a-ra-is
cant-a-se-is
cant-a-ra-n
cant-a-se-n
com-ie-ra
com-ie-se
com-ie-ra-s
com-ie-se-s
com-ié-ra-mos
com-ié-se-mos
com-ie-ra-is
com-ie-se-is
com-ie-ra-n
com-ie-se-n
viv-ie-se
viv-ie-ra-s
viv-ie-se-s
viv-ie-ra
viv-ié-ra-mos
viv-ié-se-mos
viv-ie-ra-is
viv-ie-se-is
viv-ie-ra-n
viv-ie-se-n
cant-a-re-s
cant-a-re
cant-a-re-n
com-ie-re
com-ie-re-s
com-ié-re-mos
com-ie-re-is
com-ie-re-n
viv-ie-re
viv-ie-re-s
viv-ié-re-mos
viv-ie-re-is
cant-a
cant-ad
com-e
com-ed
viv-e
viv-id
usted
usted-es
super-mercad-o
deficit-ari-o
ajedrez
deficien-te
deficien-cia
gent-í-o
pond-ré
pond-ría
excelent-ísim-o
hermos-ísim-o
bell-ísim-o
alt-ísim-o
barat-ísim-o
pro-mov-er
pro-cre-ar
super-intendente
morf-o-logí-a

105

repart-ir
repart-ir-le
repart-id-o
repart-i-d-a
repart-ie-ndo
repart-o
repart-e-s
repart-e
repart-i-mos
repart-é-is
repart-e-n
recib-i-dor
recib-i-dor-a
recib-ir
recib-ir-se
recib-ir-le
recib-i-d-a
recib-ie-ndo
recib-o
recib-e-s
recib-e
recib-i-mos
recib-e-n
cuénta-se-lo
am-ar-se
viéndo-la
dí-se-lo
reloj-er-o
mes-er-a
anti-soci-al
univers-al-ista
univers-o
uni-cicl-o
uni-later-al
uni-celul-ar
uni-corni-o
partid-ista
anti-repet-itiv-o
institu-ción
parti-ción
institu-cion-al-es
anti-bió-tic-o-s
bio-logí-a
bio-físic-a
bio-ritm-o

arbór-e-o
hag-o
hic-e
tierr-a
terr-estre
fuerte
fort-ísim-o
v-oy
fu-i
mal-o
peor
jardin-er-a
am-á-ba-mos
contra-produc-ente
honr-os-o
encant-a-dor-a
traduc-ción-es
con-ti-go
pro-pus-e
re-form-a-dor-es
econom-ista-s
intencion-al-mente
re-produc-ción
inter-nacion-al-es
sub-atóm-ic-o
novat-ada
estoc-ada
sal-ida
decan-ato
lav-ad-o
encend-id-o
ronqu-id-o
aprend-iz-aje
a-terr-iz-aje
cafet-al
palm-ar
viol-encia
deline-ante
presid-ente
sirvi-ente
botic-ari-o
biblio-tec-ari-a
vist-azo
reduc-ción
abdic-ación

guatemal-tec-a
norueg-o
polinesi-o
uruguay-a
rus-a
amarill-it-o
bonit-ill-o
ric-ach-ón
bon-it-ísim-a-s
cant-a-ba
cant-a-ba-s
cant-á-ba-mos
cant-a-ba-is
cant-a-ba-n
com-í-a
com-í-a-mos
com-í-a-is
com-í-a-n
viv-í-a
viv-í-a-s
viv-í-a-mos
viv-í-a-is
viv-í-a-n
cant-é
cant-aste
cant-ó
cant-a-mos
cant-aste-is
cant-aro-n
com-í
com-ió
com-i-mos
com-iste-is
com-iero-n
viv-í
viv-iste
viv-ió
viv-i-mos
viv-iste-is
viv-iero-n
cant-a-ré
cant-a-rás
cant-a-rá
cant-a-réis
cant-a-rá-n

consider-a-ción
robust-o
marci-an-o
mar-in-o
ós-e-o
ultra-mar
higién-ic-o
serv-i-ci-al
sever-ísim-o
anti-cuerp-o
continent-al
inter-continent-al
arbol-ed-a
dent-al
dent-ríf-ic-o
artíst-ic-o
contest-a-ción
orto-grafí-a
carto-grafí-a
hidrául-ic-o
person-ific-a-ción
re-accion-ar
exhaust-iv-o
fosil-iz-a-ción
fosil-iz-ad-o
im-par
procrastin-ar
juici-os-o
bosc-os-ísim-a
dens-ísim-o
ultra-nacion-al-ista
pint-a-ría
estacion-ar-se
estacion-ó
termin-a-ría
termin-ó
matricul-ar-se
circum-naveg-ó
des-alent-a-ba
emocion-ad-o
control-a-dor
absurda-mente
aboli-cion-ista

The 50 words that were randomly selected in order to perform tests are listed below:

gat-ot-es
ultra-fin-o
ultra-conserv-a-dor
taxi-s
beb-e-n
cos-e-dor-a
repart-ir-se
recib-id-o
recib-í-s
cuént-a-le
sill-on-cit-o
in-interrump-id-o
re-inscrib-i-r

in-act-iv-o
sobre-puest-a
pre-acuerd-o
ex-novi-a
vice-presid-ente
vice-decan-ato
extra-curricul-ar
anti-constitu-cion-al-es
observ-a-rá-n
extension-al-i-dad
princip-ado
toler-ancia
bien-aventur-anza

in-certi-dumbre
torc-edura
cabez-ot-a
pan-ezot-e
vill-orri-o
colombi-an-o
vizca-ín-a
tepoz-tec-o
com-í-a-s
com-iste
cant-a-re-mos
viv-i-ré
viv-i-rá

viv-i-ría-mos
viv-i-ría-n
cant-á-se-mos
cant-á-re-mos
cant-a-re-is
viv-ie-re-n
libr-ería
cas-erío
jug-a-ré
super-estad-ista-s
escog-e-ría

106

APPENDIX C. MAXIMUM DISORDER SCORES

This program, written in Java, produces a table such that the amount of segment pairs

are shown in the left column, starting at 1, and the maximum disorder score for the given

amount of segment pairs is shown in the right column. The program stops due to excessive

memory usage when it is going to compute the maximum disorder score of 11 segment pairs,

because the program computes all possible permutations of length n, where n is the amount

of segment pairs.

package maximumDisorderScores;

import java.util.ArrayList;

public class MaximumDisorderScores {

 public static String getOrderedString(int size) {

 //Assumes size >= 1

 String result = "";

 for (int index = 1; index <= size; index++) {

 result += Character.valueOf((char)(index + 64));

 }

 return result;

 }

 public static ArrayList<String> getAllStringPermutations(String source) {

 //Assumes source.length() >= 1

 ArrayList<String> result = new ArrayList<String>();

 if (source.length() == 1) {

 result.add(source);

 } else {

 for (int index = 0; index < source.length(); index++) {

 Character character = source.charAt(index);

 String left = source.substring(0, index);

107

 String right = source.substring(index + 1, source.length());

 String remainder = left + right;

 ArrayList<String> remainderPermutations =

 getAllStringPermutations(remainder);

 for (String permutation: remainderPermutations) {

 result.add(character + permutation);

 }

 }

 }

 return result;

 }

 public static int getDisorderScore(String s1, String s2) {

 //Assumes s1.length() == s2.length()

 int Result = 0;

 for (int index1 = 0; index1 < s1.length(); index1++) {

 Character character = s1.charAt(index1);

 int index2 = s2.indexOf(character);

 Result += Math.abs(index1 - index2);

 }

 return Result;

 }

 public static int getMaximumDisorderScore(int subsegmentPairs) {

 //Assumes subsegmentPairs >= 1

 String source = getOrderedString(subsegmentPairs);

 ArrayList<String> permutations = getAllStringPermutations(source);

 int result = 0;

 for (String permutation: permutations) {

 int score = getDisorderScore(source, permutation);

 if (score > result) {

 result = score;

 }

 }

 return result;

 }

 public static void main(String[] args) {

 int index = 1;

 while (true) {

 int score = getMaximumDisorderScore(index);

 System.out.println(index + " --> " + score);

108

 index++;

 }

 }

}

109

REFERENCES

[1] O'Grady, William; Archibald, John; Aronoff, Mark; Rees-Miller Janie. Contemporary
Linguistics: An Introduction. 5th edition. Bedford/St. Martin's. 2005.

[2] Tchoukalov, Tzvetan; Monson, Christian; Roark, Brian. Morphological Analysis by
Multiple Sequence Alignment. Stanford University; Center for Spoken Language
Understanding, Oregon Health & Science University. 2010.

[3] Alers Valentín, Hilton. Morfología. Mayagüez Campus, Puerto Rico University, Puerto
Rico. http://ece.uprm.edu/docs/Morfolog%C3%ADa%20%28Dr.%20Hilton%20Alers
%20Valent%C3%ADn%29.pdf

[4] Honrado, Asunción; Leon, Ruben; O'Donnel, Ruairi; Sinclair, Duncan. A Word
Stemming Algorithm for the Spanish Language. Universidad Autónoma de Madrid.
University of Strathclyde. 2000.

[5] Smirnov, Ilia. Overview of Stemming Algorithms. DePaul University. 2008.

[6] Willett, Peter. The Porter Stemming Algorithm: Then and Now. University of
Sheffield. 2006.

[7] van den Bosch, Antal; Daelemans, Walter. Memory-Based Morphological Analysis.
ILK / Computational Linguistics, Tilburg University. 1999.

[8] Ak, Koray; Taner Yıldız, Olcay. Unsupervised Morphological Analysis Using Tries.
Dept. of Computer Science and Engineering, Işık University, Turkey. 2011.

[9] van den Bosch, Antal; Daelemans, Walter; Weijters, Ton. Morphological Analysis as
Classification: an Inductive-Learning Approach. Dept. of Computer Science, University
of Limburg; Computational Linguistics, Tilburg University. 1996.

110

[10] Internet Archive. Google Help Center. 2006.
http://web.archive.org/web/20060322142522/http://google.com/support/bin/static.py?
page=searchguides.html&ctx=basics

[11] de Gispert, A.; Mariño, J.B. On the Impact of Morphology in English to Spanish
Statistical MT. Universitat Politècnica de Catalunya. Spain. 2008.

[12] Tang, Xuri. English Morphological Analysis with Machine-learned Rules. Dept.
Foreign Languages, Wuhan University of Science and Engineering, China. 2006.

[13] Tzoukermann, Evelyne; Liberman, Mark Y. A Finite-State Morphological Processor
for Spanish. AT&T Bell Laboratories. 1990.

[14] Velásquez, Francisco; Gelbukh, Alexander; Sidorov, Grigori. AGME: Un Sistema de
Análisis y Generación de la Morfología del Español. Centro de Investigación en
Computación, Instituto Politécnico Nacional, México. 2006.

[15] Moreno, Antonio; Goñi, José M. GRAMPAL: A Morphological Processor for
Spanish Implemented in Prolog. Universidad Autónoma de Madrid. Universidad
Politécnica de Madrid. 1995.

[16] Zapata, Carlos Mario; Edison Mesa, Jhon. Una Propuesta para el Análisis
Morfológico de Verbos del Español. Universidad Nacional de Colombia. 2008.

[17] Al-Sughaiyer, Imad A.; Al-Kharashi, Ibrahim A. Arabic Morphological Analysis
Techniques: A Comprehensive Survey. Computer and Electronics Research Institute, King
Abdul Aziz City for Science and Technology, Saudi Arabia. 2003.

[18] Monson, Christian; Carbonell, Jaime; Lavie, Alon; Levin, Lori. ParaMor: Minimally
Supervised Induction of Paradigm Structure and Morphological Analysis. Carnegie
Mellon University. 2007.

[19] Haupt, Randy L.; Haupt, Sue Ellen. Practical Genetic Algorithms. Wiley-Interscience.
1998.

111

http://web.archive.org/web/20060322142522/http://google.com/support/bin/static.py?page=searchguides.html&ctx=basics
http://web.archive.org/web/20060322142522/http://google.com/support/bin/static.py?page=searchguides.html&ctx=basics

[20] Russell, Stuart; Norvig, Peter. Artificial Intelligence: A Modern Approach. Prentice
Hall. 1995.

[21] Tiedemann, Jörg. Automatic Construction of Weighted String Similarity Measures.
Department of Linguistics, Uppsala University. 1999.

[22] Lopresti, Daniel; Tomkins, Andrew. Block Edit Models for Approximate String
Matching. Panasonic Technologies, Inc. 1996.

[23] Mackay, Wesley; Kondrak, Grzegorz. Computing Word Similarity and Identifying
Cognates with Pair Hidden Markov Models. Page 40. Department of Computing Science,
University of Alberta, Canada. 2005.

[24] Gelbukh, Alexander; Alexandrov, Mikhail; Han, SangYong. Detecting Inflection
Patterns in Natural Language by Minimization of Morphological Model. National
Polytechnic Institute, Mexico; Chung-Ang University, Korea. 2004.

[25] Kazakov, Dimitar. Unsupervised Learning of Naïve Morphology with Genetic
Algorithms. Czech Technical University, Prague. 1997.

[26] Kazakov, Dimitar; Manandhar, Suresh. A Hybrid Approach to Word Segmentation.
University of York, Heslington, York. 1998.

[27] Grice, J. Alicia; Hughey, Richard; Speck, Don. Reduced Space Sequence Alignment.
CABIOS, Oxford University Press. 1997.

[28] Morgenstern, Burkhard; Dress, Andreas; Werner, Thomas. Multiple DNA and Protein
Sequence Alignment Based on Segment-to-Segment Comparison. GSF, National
Research Center for Environment and Health, Institute of Mammalian Genetics; Fakultät für
Mathematik, Universität Bielefeld. Germany. 1996.

[29] Beasley, David; Bull, David R.; Martin, Ralph R. An Overview of Genetic Algorithms:
Part 2, Research Topics. University of Wales College of Cardiff; University of Bristol.
United Kingdom. 1993.

112

	Abstract
	Resumen
	Acknowledgements
	Table of Contents
	Table List
	Figure List
	Listing List
	1. Introduction
	1.1 System overview
	1.2 Thesis contribution

	2. Methodology
	3. The System And The Genetic Algorithm
	3.1 The chromosomes
	3.2 The fitness function
	3.3 The selection process
	3.4 The next generation
	3.5 Mutations
	3.6 The overall process
	3.7 An alternative to the genetic algorithm

	4. The word similarity measure algorithm
	4.1 The order score
	4.2 The letter similarity score
	4.3 The size score
	4.4 The segment pair and segment pairs scores
	4.5 The word similarity score
	4.6 Testing the similarity algorithm
	4.7 Discarded prototype scores
	4.8 The cache system
	4.9 Other languages
	4.10 Comparison against sequence alignment

	5. Experimentation
	5.1 Corpus experimentation
	5.2 Reinforcement learning
	5.3 Benchmarking
	5.4 Results For The Alternative Formula
	5.5 Morpheme Learning
	5.6 Suppletive Words

	6. Conclusions
	Appendix A. Java Code With Algorithms
	Appendix B. Corpus Used For Experimentation
	Appendix C. Maximum Disorder Scores
	References

