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Motivados por los resultados obtenidos en el art́ıculo [1], respecto a la noción

de separación para un operador de interior en topoloǵıa, se introduce la noción

de I-coseparación para un operador de interior topológico I. Se presentan algunos

ejemplos que ilustran el comportamiento de esta noción de coseparación para op-

eradores de interior topológicos concretos. Posteriormente se determina bajo qué

propiedades topológicas esta noción es cerrada, de donde se obtiene en particular

que los espacios I-coseparados son cerrados bajo la imagen directa de funciones

continuas y bajo espacios cocientes, pero no son cerrados bajo suma topológica y

subspacios topológicos.

Se prueba que la noción de I-coseparación genera una conexión de Galois entre

la clase de todos los operadores de interior topológicos y el conglomerado de todas las

subclases de espacios topológicos y usando este resultado se presenta un diagrama

conmutativo de conexiones de Galois que muestra la relación entre las nociones de

I-separación e I-coseparación. Finalmente se prueba que una caracterización de los

espacios I-coseparados, en términos de separadores, análoga a la presentada en [1]

para la noción de I-separación, no es posible.
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Motivated by the results obtained in the paper [1], concerning the notion of

separation for an interior operator in topology, the notion of I-coseparation for an

interior operator I in topology is introduced. A few examples that illustrate the

behavior of this notion are presented for concrete interior operators in topology.

Subsequently, it is determined under which topological properties this notion is

closed. Later, it is obtained that in particular the I-coseparated topological spaces

are closed under direct images of continuous functions and under quotient spaces

but they are not closed under topological sums and topological subspaces.

It is proved that the notion of I-coseparation generates a Galois connection

between the class of all interior operators in topology and the conglomerate of all

the subclasses of topological spaces. Using this result, a commutative diagram of

Galois connections that shows the relationship between the notions of I-separation

and I-coseparation is presented. Finally, it is proved that a characterization of the

I-coseparated spaces in terms of separators, analogous to the one presented in [1]

for the notion of I-separation, is not possible.
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CHAPTER 1

INTRODUCTION

In general in mathematics, there is a tendency to always try to generalize or

extend basic concepts to more general ones. Due to the importance of Topology in

mathematics, it is natural to think about generalizing some topological concepts,

such as compactness, connectedness, separations axioms, among others. It is well

known that a topology on a set can be defined using the notion of closure operator,

or equivalently, the notion of interior operator.

In the books [8] and [12] some generalizations of topological concepts to an

arbitrary category, by means of categorical closure operators were shown.

On the other hand, the concept of interior operator was introduced in an ar-

bitrary category by Vorster [6] and subsequently some properties of general nature

were studied by Castellini ([3], [4] and [5]). Interior operators defined on the concrete

category Top of topological spaces and continuous functions were initially used in [2]

to introduce and study notions of connectedness and disconnectedness with respect

to a topological interior operator. Later, they have also been used to introduce a

notion of separation with respect to a topological interior operator [1].

This thesis intends to continue the work done in [1] and [2], by introducing a new

topological concept with respect to an interior operator in topology. Precisely the

notion of coseparation with respect to an interior operator in topology is introduced,

as the counterpart or dual of the notion of separation presented in [1]. More precisely,
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this work studies the notion of coseparation for a topological interior operator and

its relation with the notion of separation given in [1], via Galois connections.

This thesis starts by introducing some definitions and results of General Topol-

ogy, that are necessary for the development and understanding of this work. These

results can be found in [10] and [11].

In Chapter 3, the concept of interior operator on the categoryTop of topological

spaces is defined, a list of concrete examples of interior operators on the category

Top are shown and it is established that the class of all topological interior operators

(IN(Top)) forms a complete lattice (these results can be seen in [1] and [2]). This

chapter is completed by introducing the notion of I-open and I-isolated sets, the

latter being the concept by which the I-coseparated spaces are defined, with respect

to a topological interior operator I.

Finally in Chapter 4 the notion of coseparation with respect to an interior oper-

ator on the category Top is defined. With the help of the list of examples of interior

operators in topology, given in Chapter 3, several I-coseparated spaces are con-

cretely characterized for each specific interior operator. Then, it is proved that the

collection of all I-coseparated spaces is not closed under topological sums nor topo-

logical subspaces, but it is closed under direct images of continuous functions and

under quotient spaces. Furthermore, it is proved that the notion of I-coseparation

generates a Galois connection between the class of all interior operators in topology

and the conglomerate of all the subclasses of topological spaces. This Galois connec-

tion, together with the one found in the paper [1] for the I-separated spaces, relates

the notions of I-coseparation and I-separation through a commutative diagram of

Galois connections.

Finally, it is shown that when trying to characterize the I-coseparated spaces

in terms of separators, in an analogous way to the characterization presented for the



3

I-separated spaces in [1], a new notion of coseparation is introduced. We call this

new notion I-2ndcoseparation and its collection of objects is strictly contained in

the collection of the original I-coseparated objects. Moreover, it is proved that this

notion produces a Galois connection between the class of all interior operators in

topology and the conglomerate of all the subclasses of topological spaces that differs

from the Galois connection initially introduced for the notion of I-coseparation.



CHAPTER 2

PRELIMINARY CONCEPTS

This chapter introduces a few definitions and results that will be very useful for

the development and understanding of this theory. Some subcategories of topological

spaces are introduced together with a number of basic results of the concept of

connectedness that are later used. These definitions and proofs of the results can

be found in [10] and [11].

In order to clarify some terminology, a category is a mathematical entity that

consists of objects, usually denoted by X, Y, Z etc. and morphisms, denoted by

X
f✲ Y, Y

g✲ Z etc., with a partial operation of composition defined. There

are certain conditions to be satisfied but that is beyond the scope of this work and

consequently we refer the reader interested in the theory of categories to [7], for

instance.

Definition 2.1. A topology on a set X is a collection ℑ of subsets of X having the

following properties:

1. ∅ and X are in ℑ.

2. The union of the elements of any subcollection of ℑ is in ℑ.

3. The intersection of the elements of any finite subcollection of ℑ is in ℑ.

A set X for which a topology ℑ has been specified is called a topological space. One

says that a subset U of X is an open set of X if U belongs to the collection ℑ.

4
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Definition 2.2. Let X and Y be topological spaces. A function X
f✲ Y is said

to be continuous is for each open subset V of Y, the set f−1(V ) is an open subset of

X.

The category of topological spaces will be denoted by Top, in this category, the

objects are the topological spaces and the morphisms are the continuous functions.

Definition 2.3. X ∈ Top is said to be irreducible if for every pair of open disjoint

sets U and V , U = ∅ or V = ∅. Irred denotes the category of all irreducible

topological spaces.

Definition 2.4. X ∈ Top is said to be closed irreducible if for every pair of closed

disjoint sets C1 and C2, C1 = ∅ or C2 = ∅. CIrred denotes the category of all closed

irreducible topological spaces .

Definition 2.5. A topological space X is said to be indiscrete if the only open sets

in X are ∅ and X, Ind denotes the category of all indiscrete topological spaces.

Definition 2.6. Let X, Y ∈ Top and let X
q✲ Y be a surjective map. The map

q is said to be a quotient map if it satisfies that a subset U of Y is open in Y if and

only if q−1(U) is open in X.

Definition 2.7. Let X ∈ Top, let M be a set and let X
q✲ M be a surjective

map. Then, there exists exactly one topology ℑ on M such that q is a quotient map

relative to ℑ. ℑ is called the quotient topology induced by q and is defined by

ℑ =
{

U ⊂ M : q−1(U) is open in X
}

.

That is U ⊆ M is open with respect to ℑ if and only if q−1(U) is open in X.
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Definition 2.8. Let X ∈ Top. A separation of X is a pair U, V of disjoint nonempty

open subsets of X, such that X = U ∪ V. The space X is said to be connected if a

separation of X does not exist. The category of all connected topological spaces is

denoted by Conn.

Remark 2.9. Note that if U, V is a separation of X, then they are disjoint nonempty

open subsets of X, such that X = U ∪ V. So U = X − V and V = X − U. Hence U

and V are open and closed sets in X, that is they are clopen sets in X.

The following proposition shows another way of formulating the definition of

connectedness.

Proposition 2.10. A topological space X is connected if and only if the only subsets

of X that are clopen in X are ∅ and X.

Lemma 2.11. Let X ∈ Top and let Y be a connected subspace of X. If U and V

form a separation of X, then Y lies entirely within either U or V.

Theorem 2.12. Let X ∈ Top and let {Ai}i∈I be a family of connected subspaces of

X, such that
⋂

i∈I Ai 6= ∅. Then
⋃

i∈I Ai is connected.

Proposition 2.13. Let X ∈ Top, B ⊆ X and let A be a connected subspace of X.

If A ⊆ B ⊆ Ā then B is also connected.

Proposition 2.14. The direct image of a connected space under a continuous func-

tion is a connected space.

Theorem 2.15. The product of connected spaces is connected.
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Definition 2.16. Let X ∈ Top and let x, y ∈ X. An equivalence relation on X is

defined by setting x ∼ y if there is a connected subspace of X containing both of them.

The equivalence classes are called the components or the connected components of

X.

Remark 2.17. Note that from the definition, the components of a topological space

X are disjoint subsets of X whose union is X, since they are the equivalence classes

of an equivalence relation.

Proposition 2.18. Let X ∈ Top, then the following statement are true:

1. If A is a nonempty connected subspace of X, then A intersects only one com-

ponent of X.

2. The components are connected subspaces of X.

Remark 2.19. Note that the components are maximal connected subsets of X. In-

deed, let C be a component of X and let A be a connected subset of X, such that

C ⊆ A. Then by 2. of the previous proposition, C is a connected subspace of X, and

as A ∩ C 6= ∅, by 1. A ⊆ C. Hence A = C and therefore C is not a subset of some

other connected subspace of X.

The following proposition is a result of the previous Remark.

Proposition 2.20. A topological space X is connected if and only if X has only one

connected component.

Proposition 2.21. Let X ∈ Top and let a, b ∈ X. If C(a,b) is a connected component

containing (a, b) on X ×X, then

C(a,b) = Ca × Cb.
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Where Ca and Cb are connected components containing a and b, respectively on X.

Definition 2.22. Let {Xi}i∈I be a nonempty family of nonempty sets. The disjoint

union of this family is defined by the set

∐

i∈I

Xi =
⋃

i∈I

(Xi × {i})

where Xi × {i} = {(x, i) : x ∈ Xi}, for all i ∈ I. If X = Xi for all i ∈ I then

∐

i∈I

Xi = X × {i}i∈I .

Definition 2.23. Let {Xi}i∈I be a nonempty family of topological spaces and let

∐

i∈I

Xi

be the disjoint union of the family {Xi}i∈I . The canonical injection is defined by















ϕj : Xj
✲ ∐

i∈I Xi

ϕj(x) = (x, j)

The topological sum (disjoint union topology) is defined by

ℑ =

{

U ⊆
∐

i∈I

Xi : ϕ
−1
j (U) is open in Xj, for every j ∈ I

}

.

That is a subset U of
∐

i∈I Xi is open in
∐

i∈I Xi if and only if ϕ−1
j (U) is open in Xj

for every j ∈ I.

The example below relates the concepts of connectedness and topological sum,

which shows that connectedness is not closed under topological sums. This result

will be useful later when we introduce the concept of coseparation with respect to

an interior operator.
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Example 2.24. Let {Xi}i∈I be a family of connected topological spaces, it will be

proved that the topological sum
∐

i∈I Xi is not connected. To do this it will be proved

that there is a nonempty proper subset of
∐

i∈I Xi that is clopen and then Theorem

2.10 is applied. Indeed, consider the nonempty proper subset Xk × {k} of
∐

i∈I Xi,

for some k ∈ I. As

ϕ−1
j (Xk × {k}) =















Xj if j = k

∅ if j 6= k

and ∅, Xj are open sets in Xj, for some arbitrary j in I, then ϕ−1
j (Xk × {k})

is open set in Xj for every j ∈ I. So by definition of topological sum Xk ×{k} is an

open set in
∐

i∈I Xi.

Now it will proved that the set

∐

i∈I

Xi − (Xk × {k})

is open and hence that (Xk × {k}) is closed in
∐

i∈I Xi. We have that

ϕ−1
j

(

∐

i∈I

Xi − (Xk × {k})

)

=















Xj if j 6= k

∅ if j = k

Therefore

ϕ−1
j

(

∐

i∈I

Xi − (Xk × {k})

)

is a open set in Xj , for every j ∈ I. Hence the nonempty proper subset Xk × {k} is

clopen in
∐

i∈I Xi. In this manner by Theorem 2.10,
∐

i∈I Xi is not connected.



CHAPTER 3

INTERIOR OPERATORS

In this chapter the concept of interior operator in Top is defined, a few exam-

ples illustrating this concept are shown and the notion of isolated sets and open sets

with respect to a topological interior operator are also introduced. Subsequently,

the supremum and the infimum of a family of interior operators are defined and

a result is shown that proves that they are indeed interior operators. Finally, the

isolated sets with respect to the supremum of a family of interior operators in Top

are characterized.

Definition 3.1. Let I = (iX)X∈Top
be an indexed family of functions on the subset

lattices of Top, where every iX is a function defined by















S(X)
iX✲ S(X)

M ✲ iX(M),

and S(X) is the collection of all subsets of X, ordered by inclusion.

The family I is called an interior operator on the category Top, if for every X ∈

Top, iX satisfies the following properties

a. Contractiveness: For every M ∈ S(X), iX(M) ⊆ M.

b. Monotonicity: For every M1,M2 ∈ S(X) such that M1 ⊆ M2,

iX(M1) ⊆ iX(M2).

10
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c. Continuity: For every X, Y ∈ Top and continuous function X
f✲ Y with

N ∈ S(Y ), f−1(iY (N)) ⊆ iX(f
−1(N)).

The class of all interior operators on Top is denoted by IN(Top).

Definition 3.2. Let I = (iX)X∈Top
, J = (jX)X∈Top

be interior operators on Top.

A partial order ⊑ on IN(Top) is defined by:

I ⊑ J if and only if for every X ∈ Top and every M ⊆ X

iX(M) ⊆ jX(M).

Remark 3.3. Note that the pair (IN(Top),⊑) is a partially ordered class, since by

definition, the relation ⊑ is reflexive, antisymmetric and transitive.

Now a few examples of interior operators are presented, whose demonstrations

can be found in [1]. For every one of them, let X ∈ Top and let M ∈ S(X).

Examples 3.4.

1. K = (kX)X∈Top, where

kX(M) =
⋃

{O ⊆ M : O is open in X}.

2. L = (lX)X∈Top, where

lX(M) = {x ∈ X : Cx ⊆ M},

and Cx is the connected component of x in X.

3. Q = (qX)X∈Top, where

qX(M) =
⋃

{C ⊆ M : C is clopen in X}.
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4. B = (bX)X∈Top, where

bX(M) =
{

x ∈ X : ∃ Ux nbhd of x s.t. Ux ∩ {x} ⊆ M
}

.

5. Θ = (θX)X∈Top, where

θX(M) =
{

x ∈ M : ∃ Ux nbhd of x s.t. Ux ⊆ M
}

.

6. H = (hX)X∈Top, where

hX(M) =
⋃

{C ⊆ M : C is closed in X}.

The following proposition shows the existence of infima and suprema in IN(Top),

which together with Remark 3.3 proves that IN(Top) is a complete lattice and

whose demonstration can be found in [2].

Proposition 3.5. Let {Ik}k∈K be an indexed family of interior operators on Top,

with Ik = ((ik)X)X∈Top. For X ∈ Top and every M ⊆ X, one defines:

a.
∧

k∈K Ik =
(

(i∧Ik)X

)

X∈Top
, by

(i∧Ik)X (M) =
⋂

k∈K

(ik)X (M).

b.
∨

k∈K Ik =
(

(i∨Ik)X

)

X∈Top
, by

(i∨Ik)X (M) =
⋃

k∈K

(ik)X (M).

Then
∧

k∈K Ik and
∨

k∈K Ik are interior operators on Top, and they are the

infimum and supremum, respectively of the indexed family {Ik}k∈K .

Definition 3.6. Let I = (iX)X∈Top be an interior operator on Top. Let X ∈ Top

and let M ⊆ X. M is I-isolated if iX(M) = ∅, M is called I-open if iX(M) = M.
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The proof of the following result can be found in [2].

Proposition 3.7. Let {Ik}k∈K ⊆ IN(Top) with Ik = ((ik)X)X∈Top and X ∈ Top.

Then for every M ⊆ X one has that M is
∨

k∈K Ik-isolated if and only if M is

Ik-isolated for every k ∈ K.



CHAPTER 4

I-COSEPARATION

The notion of I-coseparation for an interior operator on the category Top is

introduced as the counterpart of the concept of I-separation developed in [1], which

emerges as a natural extension of the notion of Hausdorff spaces for an interior

operator on the category Top. For I-separation, the notion of the separator of two

continuous functions being open was used. Then, in [1] it is also shown that a

topological space X is I-separated if and only if the complement of the diagonal is

I-open, that is (iX)
(

∁∆X

)

= ∁∆X .

Following this idea, the notion of I-coseparation with respect to an interior

operator in Top is introduced as a topological space X such that the complement of

the diagonal is I-isolated, that is (iX)
(

∁∆X

)

= ∅. In this chapter some topological

properties of this notion and its relation with I-separation will be studied.

Definition 4.1. Let I be an interior operator on the category Top. X ∈ Top is

I-coseparated if ∁∆X = X×X−∆X is I-isolated, that is if iX2(∁∆X) = ∅. Cosep(I)

will denote all coseparated objects with respect to I.

In the following examples the interior operators defined in Examples 3.4 are

considered. M will always denote a subset of the topological space X and M will

denote the topological closure of M .

14
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Example 4.2. Let us consider the interior operator K, defined in Example 3.4(1),

by

kX(M) =
⋃

{O ⊆ M : O is open in X}.

It is claimed that Cosep(K) = Irred, that is, X ∈ Cosep(K) if only if for every

pair of disjoint open sets U, V, one has U = ∅ or V = ∅. Indeed, if X ∈ Cosep(K)

then X is K-coseparated or equivalently kX2(∁∆X) = ∅, where

kX2(∁∆X) =
⋃

{O ⊆ ∁∆X : O is open in X ×X}.

Let U, V be disjoint open sets in X, then U × V is also open in X × X and

U × V ⊆ ∁∆X . So, by definition of the interior operator K and the monotonicity, it

follows that

U × V = kX2(U × V ) ⊆ kX2(∁∆X) = ∅

therefore U × V = ∅. Hence U = ∅ or V = ∅. Thus Cosep(K) ⊆ Irred.

Suppose now that if U and V are any disjoint open sets in X, then U = ∅ or

V = ∅. It will be proved that kX2(∁∆X) = ∅. Assume that kX2(∁∆X) 6= ∅. Then, there

is a point (x, y) ∈ X×X such that (x, y) ∈ kX2(∁∆X), hence there is a neighborhood

U(x,y) of (x, y) such that U(x,y) ⊆ kX2(∁∆X). Since (x, y) ∈ U(x,y), there are open sets

U, V in X, such that x ∈ U, y ∈ V and

(x, y) ∈ U × V ⊆ U(x,y) ⊆ kX2(∁∆X) ⊆ ∁∆X .

Thus U, V are disjoint open sets in X and it follows that U = ∅ or V = ∅. This

implies that U × V = ∅, that is a contradiction since (x, y) ∈ U × V. Therefore

kX2(∁∆X) = ∅ or equivalently X ∈ Cosep(K). Thus Irred ⊆ Cosep(K).
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Example 4.3. Let us consider the interior operator L, defined in Example 3.4(2),

by

lX(M) = {x ∈ X : Cx ⊆ M},

where Cx denotes the connected component of x in X. It is claimed that

Cosep(L) = Conn, that is, X is connected if and only if lX2(∁∆X) = ∅, where

lX2(∁∆X) = {(x, y) ∈ X ×X : C(x,y) ⊆ ∁∆X}

and C(x,y) is a connected component of (x, y) in X ×X.

Let us prove that Cosep(L) ⊆ Conn. Note that by Proposition 2.20 a topological

space is connected if and only if it has only one connected component. Let X /∈ Conn

and let a, b ∈ X. Then, X has at least two disjoint connected components Ca, Cb such

that a ∈ Ca and b ∈ Cb. Since (a, b) ∈ X ×X then there is a connected component

C(a,b) of (a, b) in X ×X. Thus by Proposition 2.21

C(a,b) = Ca × Cb,

where Ca ∩Cb = ∅ and therefore C(a,b) ⊆ ∁∆X . This implies that (a, b) ∈ lX2

(

∁∆X

)

and so lX2

(

∁∆X

)

6= ∅. That is X /∈ Cosep(L) and by contrapositive Cosep(L) ⊆

Conn.

Now, in order to prove that Conn ⊆ Cosep(L). Suppose that X ∈ Conn

but X /∈ Cosep(L) i.e. lX2(∁∆X) 6= ∅ then there is (a, b) ∈ X × X such that

C(a,b) ⊆ ∁∆X , where C(a,b) is the connected component of (a, b) in X ×X. Since X

is connected, by Theorem 2.15, X ×X is also connected and thus X ×X has only

one connected component, namely C(a,b). In this manner (x, x) ∈ X × X implies

that (x, x) ∈ C(a,b) and hence C(a,b) ∩ ∆X 6= ∅. That is a contradiction, because

C(a,b) ⊆ ∁∆X . Therefore X ∈ Cosep(L).
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Example 4.4. Let us consider the interior operator Q, defined in Example 3.4(3),

by

qX(M) =
⋃

{C ⊆ M : C is clopen in X}.

It is claimed that Cosep(Q) = Conn, that is, X is connected if and only if qX2(∁∆X) =

∅, where

qX2(∁∆X) =
⋃

{C ⊆ ∁∆X : C is clopen in X ×X}.

To see that Cosep(Q) ⊆ Conn, we use the contrapositive approach. Assume

that X /∈ Conn. Then, there is a separation U, V of X, that is by Remark 2.9 U, V

are disjoint non empty clopen sets in X. This implies that U×V is clopen in X×X

and U × V ⊆ ∁∆X , since U and V are disjoint. Hence qX2(∁∆X) 6= ∅ and therefore

X /∈ Cosep(Q).

Now, in order to prove that Conn ⊆ Cosep(Q), assume that X is connected

but X /∈ Cosep(Q) that is qX2(∁∆X) 6= ∅. Then, there is a subset C ⊆ ∁∆X that is

not empty and such that C is clopen in X×X. Since X is connected, X×X is also

connected. By Proposition 2.10 this implies that C = ∅ or C = X ×X. However C

is not empty and thus

X ×X = C ⊆ ∁∆X .

This is a contradiction and therefore X ∈ Cosep(Q).

Example 4.5. Let us consider the interior operator B, defined in Example 3.4(4),

by

bX(M) =
{

x ∈ X : ∃ Ux nbhd of x s.t. Ux ∩ {x} ⊆ M
}

.

It is claimed that Cosep(B) = Ind, that is, X ∈ Ind if and only if bX2(∁∆X) = ∅,

where

bX2(∁∆X) =
{

(x, y) ∈ X ×X : ∃ U(x,y) nbhd of (x, y) s.t. U(x,y) ∩ {(x, y)} ⊆ ∁∆X

}

.
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To see that Ind ⊆ Cosep(B), suppose that X ∈ Ind but X /∈ Cosep(B), that

is bX2(∁∆X) 6= ∅. Then, there is (x, y) ∈ X ×X and a neighborhood U(x,y) of (x, y)

such that

U(x,y) ∩ {(x, y)} ⊆ ∁∆X .

Since X is an indiscrete topological space, then X × X is also an indiscrete

topological space and thus U(x,y) = X ×X is the only non-empty open set of X ×X.

On the other hand, since X ×X ∈ Ind, then

{(x, y)} = {x} × {y} = X ×X.

and this implies that

X ×X = (X ×X) ∩ (X ×X) = U(x,y) ∩ {(x, y)} ⊆ ∁∆X .

That is a contradiction and therefore X ∈ Cosep(B).

To check that Cosep(B) ⊆ Ind, the following will be proved:

a. If X ∈ Cosep(B), then for every (x, y) ∈ ∁∆X and every neighborhood Ux of

x and Vy of y, one has that y ∈ Ux and x ∈ Vy.

b. Let X ∈ Top satisfy that for any x, y ∈ X with x 6= y, every neighborhood Ux

of x contains y and every neighborhood Vy of y contains x, then X ∈ Ind.

Indeed,

a. Let X ∈ Cosep(B), that is bX2(∁∆X) = ∅, also for any (x, y) ∈ X × X and

every neighborhood U(x,y) of (x, y)

U(x,y) ∩ {(x, y)} * ∁∆X .

In particular for (x, y) ∈ ∁∆X , that is x 6= y, it follows that if Ux and Vy are

neighborhoods of x and y, respectively such that

Ux × Vy ∩ {(x, y)} ∩∆X 6= ∅,
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then there is (z, z) ∈ Ux × Vy, that is z ∈ Ux ∩ Vy. Moreover, (z, z) ∈ {(x, y)},

and thus (x, y) ∈ U(z,z) for every neighborhood U(z,z) of (z, z). This implies that

(x, y) ∈ Uz×Uz , that is x, y ∈ Uz for every neighborhood Uz of z. Since Ux∩Vy

is a neighborhood of z, then x, y ∈ Ux ∩ Vy. Hence y ∈ Ux and x ∈ Vy.

b. Suppose that X satisfies the hypothesis of b. If X were not an indiscrete

space, then there would be a non-trivial open set U in X. Now if x ∈ U and

y ∈ X − U , then (x, y) ∈ ∁∆X and x ∈ U , y ∈ X but y /∈ U. Therefore X

must be an indiscrete topological space. Thus from a. and b. Cosep(B) ⊆ Ind.

Example 4.6. Let us consider the interior operator Θ, defined in Example 3.4(5),

by

θX(M) =
{

x ∈ M : ∃ Ux, nbhd of x, s.t. Ux ⊆ M
}

.

It will be proved that X ∈ Cosep(Θ) if and only if for every pair of open sets U

and V such that U ∩ V = ∅, then U = ∅ or V = ∅.

Let X ∈ Cosep(Θ), then θx2

(

∁∆X

)

= ∅, where

θX
(

∁∆X

)

=
{

(x, y) ∈ ∁∆X : ∃ U(x,y), nbhd of (x, y), s.t. U (x,y) ⊆ ∁∆X

}

.

Assume that there are two non-empty open sets U and V, such that U ∩ V = ∅

but U 6= ∅ and V 6= ∅. Since U and V are not empty, there are elements x ∈ U and

y ∈ V, that is (x, y) ∈ U × V and consequently U × V is a neighborhood of (x, y).

Since by hypothesis U and V are disjoint sets, then

(x, y) ∈ U × V ⊆ U × V = U × V ⊆ ∁∆X .

This implies that (x, y) ∈ θx2(∁∆X) and therefore θx2(∁∆X) 6= ∅, that is a contra-

diction. This concludes the first implication.
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To prove the converse, suppose that X /∈ Cosep(Θ) that is θx2(∁∆X) 6= ∅. Thus,

there is (x, y) ∈ ∁∆X and a neighborhood U(x.y) of (x, y) such that U (x.y) ⊆ ∁∆X .

Since U(x,y) is a neighborhodd of (x, y), there are open sets U and V, such that

(x, y) ∈ U × V ⊆ U(x,y) and consequently,

(x, y) ∈ U × V ⊆ U × V = U × V ⊆ U (x,y) ⊆ ∁∆X .

Therefore U∩V = ∅ and by hypothesis U = ∅ or V = ∅. This implies that U×V = ∅,

but

(x, y) ∈ U × V ⊆ U × V = U × V = ∅,

that is a contradiction. Therefore θx2(∁∆X) = ∅ or equivalently X ∈ Cosep(Θ) and

consequently the desired result is proved.

Example 4.7. Let us consider the interior operator H, defined in Example 3.4(6),

by

hX(M) =
⋃

{C ⊆ M : C is closed in X}.

It is claimed that Ind ⊆ Cosep(H) ⊆ CIrred.

Assume that X is an indiscrete topological space. Then, X×X is also indiscrete and

thus the only closed subsets are ∅ and X×X. It follows that there are no non-empty

subsets of ∁∆X that are closed in X ×X. Therefore,

hx2(∁∆X) =
⋃

{C ⊆ ∁∆X : C is closed in X ×X} = ∅.

Hence, X ∈ Cosep(H), that is Ind ⊆Cosep(H).

To prove that Cosep(H) ⊆ CIrred. We assume that X ∈ Cosep(H), that is X

is H-coseparated or equivalently hX2(∁∆X) = ∅. Let C1, C2 be closed disjoint sets in

X, then C1 × C2 is also closed in X × X and C1 × C2 ⊆ ∁∆X . Consequently, by
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definition of the interior operator H and monotonicity, it follows that

C1 × C2 = hX2(C1 × C2) ⊆ hX2(∁∆X) = ∅

that is, C1 × C2 = ∅. Hence C1 = ∅ or C2 = ∅. Thus Cosep(H) ⊆ CIrred.

The following proposition shows that Cosep(I) is closed under the direct image

of a continuous function.

Proposition 4.8. The direct image of an I-coseparated space under a continuous

function is I-coseparated.

Proof. Let X, Y ∈ Top, with X ∈ Cosep(I), i.e. X is an I-coseparated space and

let X
f✲ Y be a continuous function. It will be proved that Z = f(X) is I-

coseparated. Since the surjective function X
g✲ Z obtained from f by restricting

its range to the space Z is also continuous, then without loss of generality, one

can assume that X
f ✲ Y is a surjective continuous function, and prove that

Y ∈ Cosep(I). Suppose otherwise, that is, iY 2(∁∆Y ) 6= ∅. Since X
f✲ Y is a

continuous and surjective map, then the function h defined by















h : X ×X ✲ Y × Y

h ((x1, x2)) = (f(x1), f(x2))

is also a continuous and surjective map. Let y ∈ iY 2(∁∆Y ) ⊆ ∁∆Y , then there

is x ∈ X ×X such that h(x) = y. Hence,

x ∈ h−1
(

iY 2(∁∆Y )
)

⊆ iX2

(

h−1(∁∆Y )
)

⊆ iX2

(

∁∆X

)

,

Where the first inclusion is obtained from the continuity property of interior

operators. Consequently, x ∈ iX2

(

∁∆X

)

and thus iX2

(

∁∆X

)

6= ∅. This contradicts
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the fact that X ∈ Cosep(I). Hence iY 2(∁∆Y ) = ∅ and therefore Y ∈ Cosep(I).

Note that in this proof

iX2

(

h−1(∁∆Y )
)

⊆ iX2

(

∁∆X

)

.

This is a consequence of h−1(∁∆Y ) ⊆ ∁∆X and this occurs because if h−1(∁∆Y )∩

∆X 6= ∅, there is (x, x) ∈ h−1(∁∆Y ) = (f × f)−1
(

∁∆Y

)

. Hence (f(x), f(x)) ∈ ∁∆Y

and this is a contradiction.

An immediate consequence of the previous proposition, shown in the follow-

ing corollary, is the fact that Cosep(I) is closed under quotient spaces. This is a

consequence of the fact that all quotient maps are continuous and surjective and

therefore if X
q✲ Y is a quotient map and X ∈ Cosep(I), then from Proposition

4.8, Y ∈ Cosep(I).

Corollary 4.9. Cosep(I) is closed under quotient spaces.

Remark 4.10. Notice that from Examples 4.3 and 4.4, one has that Cosep(L) =

Conn and Cosep(Q) = Conn, that is in both cases the coseparated spaces under

their respective interior operators are connected topological spaces. Moreover, Exam-

ple 2.24 shows that connected spaces are not closed under the formation of topological

sums (disjoint union topology or coproduct topology). This yields the important result

that Cosep(I) is not closed under topological sums.

From Examples 4.3 and 4.4 one can also conclude that Cosep(I) is not closed

under topological subspaces, since if one considers the topological space R with the

usual topology, then R is connected but Q ⊆ R is not a connected subspace.
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From now on S(Top) will denote the conglomerate of all subclasses of objects of

Top, ordered by inclusion and as already mentioned in Chapter 3, IN(Top) denotes

the class of all interior operators on Top ordered as in Definition 3.2. The following

lemma and proposition show a relationship between IN(Top) and S(Top)op, where

S(Top)op represents the same as S(Top) but with inverted order. That is for A,B ∈

S(Top)op then

A ≤ B, if and only if A ⊇ B.

Hence the union of elements of S(Top)op is seen as an intersection of elements

in S(Top) and the suprema of an indexed family in S(Top)op as the infima of the

indexed family in S(Top).

Lemma 4.11. The function IN(Top)
C✲ S(Top)op defined by

C(I) = Cosep(I) = {X ∈ Top : X is I- Coseparated}

is order preserving

Proof. Let I, J ∈ IN(Top) such that I ⊑ J, it will be proved that C(I) ≤ C(J).

Let X ∈ C(J), that is jX2(∁∆X) = ∅ and since

iX2(∁∆X) ⊆ jX2(∁∆X) = ∅

then iX2(∁∆X) = ∅, that is X ∈ C(I) and therefore C(I) ≤ C(J).

Proposition 4.12. The function IN(Top)
C✲ S(Top)op defined as in the previous

lemma, preserves suprema.

Proof. Let {Ik}k∈K be a family of interior operators in Top. It will be proved that

C





∨

k∈K

Ik



 =
∨

k∈K

C(Ik).
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By definition of supremum, Ik ⊑
∨

k∈K Ik, for every k ∈ K. From Lemma 4.11,

C(Ik) ≤ C





∨

k∈K

Ik





for every k ∈ K and therefore

∨

k∈K

C(Ik) =
⋂

k∈K

C(Ik) ≤ C





∨

k∈K

Ik





that is
∨

k∈K

C(Ik) ≤ C





∨

k∈K

Ik



 .

On the other hand ifX ∈ C (
∨

k∈K Ik) then by definitionX is
∨

k∈K Ik-coseparated

or equivalently ∁∆X is
∨

k∈K Ik-isolated. Thus from Proposition 3.7 this occurs if

and only if ∁∆X is Ik-isolated for every k ∈ K, thus (ik)X2

(

∁∆X

)

= ∅, for every

k ∈ K. Hence X ∈ C(Ik) for every k ∈ K and therefore

X ∈
⋂

k∈K

C(Ik) =
∨

k∈K

C(Ik).

This implies that

C





∨

k∈K

Ik



 ≤
∨

k∈K

C(Ik).

Therefore

C





∨

k∈K

Ik



 =
∨

k∈K

C(Ik).

Next, the concept of Galois connection is introduced together with a result that

will be very important for this theory, both recalled from [8].

Definition 4.13. For pre-ordered classes X = (X,≤) and Y = (Y,≤) a Galois

connection X
f✲✛
g

Y consists of order preserving functions f and g that satisfy

x ≤ g(f(x)) for every x ∈ X and f(g(y)) ≤ y for every y ∈ Y.
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Proposition 4.14. Let X and Y be two pre-ordered classes and assume that suprema

exist in X . Let X
f✲ Y be a function that preserves suprema. Define Y

g✲ X

as follows: for every y ∈ Y ,

g(y) =
∨

{x ∈ X : f(x) ≤ y}.

Then, X
f✲✛
g

Y is a Galois connection.

Proposition 4.15. Let X
f✲✛
g

Y be a Galois connection between partially ordered

classes X and Y . Then, the functions f and g uniquely determine each other.

Remark 4.16. We recall that:

i. From Remark 3.3, IN(Top), the class of all interior operators in Top, is a

pre-ordered class in which by Proposition 3.5 suprema exist, that is, if {Ik}

is a family of interior operators in Top, then the supremum of this family is

∨

k∈K Ik, the interior operator known from Proposition 3.5.

ii. S(Top)op denotes the conglomerate of all subclasses of objects of Top, ordered

by inverted inclusion.

iii. By Proposition 4.33 it is known that the function IN(Top)
C✲ S(Top)op,

defined as in Lemma 4.32, preserves suprema.

Therefore from Proposition 4.14 one obtains that there exists a function

S(Top)op
D✲ IN(Top), defined by

D(B) =
∨

{I ∈ IN(Top) : B ⊆ C(I)}

such that

IN(Top)
C✲✛
D

S(Top)op

is a Galois connection.
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Remark 4.17. We would like to observe that the fact that IN(Top)
C✲✛
D

S(Top)op

is a Galois connection is an important result, not only because it establishes a relation

between interior operators on Top and subclasses of topological spaces but also for

the following interesting consequence.

For any subclass of topological spaces A, we have that C(D(A)) ≤ A, in

S(Top)op, that is A ⊆ C(D(A)), in other words, all the topological spaces in A

are coseparated with respect to the interior operator (D(A)). This means that for

any class of topological spaces A, one can always find an appropriate interior oper-

ator (D(A)) with respect to which all the spaces in A are coseparated.

From now on, unless otherwise stated, the notation X
f✲ Y will always mean

that X, Y ∈ Top and that f is a continuous function from X to Y.

Now, the next objective consists in finding a more practical characterization of

the function D. To do this, the following definition is introduced.

Definition 4.18. Let B ∈ S(Top)op, Y ∈ Top andM ⊆ Y. Define IB = ((iB)Y )Y ∈Top
,

where

(iB)Y (M) =
⋃

{

N ⊆ M : ∀X ×X
f✲ Y with X ∈ B and f−1(M) ⊆ ∁∆X , f

−1(N) = ∅
}

.

X ×X
f ✲ Y

∁∆X

✻

✛ f−1(M) ✲ M

✻

✛
⋃

{N ⊆ M}

f−1(N)

✻

✲

✛

N

✻ ✲
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Lemma 4.19. For B ∈ S(Top)op, the assignment IB = ((iB)Y )Y ∈Top
, defined as in

the previous definition, is an interior operator on Top.

Proof. Clearly (iB)Y satisfies the contractiveness property, that is (iB)Y (M) ⊆ M

for every M ⊆ X with X ∈ Top, since by definition it is a union of subsets of M.

Let nowM1,M2 ⊆ Y, such thatM1 ⊆ M2 and assume that N ⊆ M1 occur in the

construction of (iB)Y (M1), it must be shown that N also occurs in the construction

of (iB)Y (M2). Since N ⊆ M1 then N ⊆ M2 and if X × X
f✲ Y is a continuous

function that satisfies X ∈ B and f−1(M2) ⊆ ∁∆X , then from

f−1(M1) ⊆ f−1(M2) ⊆ ∁∆X

it is concluded that f−1(N) = ∅, because X ∈ B, f−1(M1) ⊆ ∁∆X and N occur in

the construction of (iB)Y (M1). Thus N also occurs in the construction of (iB)Y (M2)

and therefore (iB)Y (M1) ⊆ (iB)Y (M2).

To show the continuity property, let Z ∈ Top, M ⊆ Z and let Y
g✲ Z be a

continuous function. It will be proved that

g−1 ((iB)Z (M)) ⊆ (iB)Y
(

g−1(M)
)

.

Indeed



28

g−1 ((iB)Z(M)) = g−1
(

⋃

{

N ⊆ M : ∀X ×X
f✲ Z with X ∈ B

and f−1(M) ⊆ ∁∆X , f
−1(N) = ∅

})

=
⋃

{

g−1(N), N ⊆ M : ∀X ×X
f✲ Z with X ∈ B

and f−1(M) ⊆ ∁∆X , f
−1(N) = ∅

}

⊆
⋃

{

g−1(N), N ⊆ M : ∀X ×X
h✲ Y with X ∈ B

and h−1
(

g−1(M)
)

⊆ ∁∆X , h
−1
(

g−1(N)
)

= ∅
}

⊆
⋃

{

H ⊆ g−1(M) : ∀X ×X
h✲ Y with X ∈ B

and h−1
(

g−1(M)
)

⊆ ∁∆X , h
−1 (H) = ∅

}

= (iB)Y
(

g−1(M)
)

.

Thus g−1 ((iB)Z(M)) ⊆ (iB)Y (g−1(M)) and therefore IB ∈ IN(Top).

In the following proposition a more practical characterization of the function D

of the Galois connection IN(Top)
C✲✛
D

S(Top)op is presented. Before, recall that

for B ∈ S(Top)op, S(Top)op
D✲ IN(Top) is defined by

D(B) =
∨

{I ∈ IN(Top) : B ⊆ C(I)} .

and IB = ((iB)Y )Y ∈Top
, is defined by

(iB)Y (M) =
⋃

{

N ⊆ M : ∀X ×X
f✲ Y with X ∈ B

and f−1(M) ⊆ ∁∆X , f
−1(N) = ∅

}

.
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Theorem 4.20. Let B ∈ S(Top)op and let Y ∈ Top. Then for every M ⊆ Y one

has that

D(B)(M) = (iB)Y (M).

Proof. First it will be proved that IB ≤ D(B). To see this note that

IB ∈ {I ∈ IN(Top) : B ⊆ C(I)} .

Indeed, from Lemma 4.19, IB ∈ IN(Top) and thus it only remains to prove that

B ⊆ C(IB). That is, if X ∈ B then for ∁∆X ⊆ X ×X, the existence of the function















X ×X
id

X2✲ X ×X

idX2((x1, x2)) = (x1, x2)

implies that the only subset N ⊆ ∁∆X that satisfies id−1
X2(N) = ∅ is N = ∅. Equiva-

lently, for every N ⊆ ∁∆X , the function idX2 is such that id−1
X2

(

∁∆X

)

⊆ ∁∆X , and

id−1
X2(N) 6= ∅. Hence, by definition of IB it is obtained that (iB)X2

(

∁∆X

)

= ∅ and

thus X ∈ C(IB). Therefore

IB ∈ {I ∈ IN(Top) : B ⊆ C(I)}

and this implies that

IB ≤
∨

{I ∈ IN(Top) : B ⊆ C(I)} = D(B).

On the other hand, for every M ⊆ Y and every continuous function

X × X
f✲ Y with X ∈ B and f−1(M) ⊆ ∁∆X , from the continuity and mono-

tonicity property of the interior operator D, it is obtained that

f−1 (D(B)(M)) ⊆ D(B)
(

f−1(M)
)

⊆ D(B)
(

∁∆X

)

.

Now, since X ∈ B, then X ∈ C(I) that is ∁∆X is I-isolated. Thus by definition

of D and Proposition 3.7, it is obtained that ∁∆X is D(B)-isolated or equivalently
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D(B)
(

∁∆X

)

= ∅. Hence

f−1 (D(B)(M)) ⊆ D(B)
(

∁∆X

)

= ∅.

That is f−1 (D(B)(M)) = ∅. Notice that by contractiveness D(B)(M) ⊆ M

and furthermore, X ∈ B and f−1(M) ⊆ ∁∆X imply f−1 ((D(B) (M)) = ∅. Then, by

definition of the interior operator IB, this implies that D(B)(M) is one of the N ’s

occurring in the construction of (iB)Y (M) and so,

D(B)(M) ⊆ (iB)Y (M), for every M ⊆ Y.

Therefore D(B) ≤ IB and thus it is concluded that D(B) = IB.
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Remark 4.21. From now on, denote

D (B) = ((dB)Y )Y ∈Top

where

(dB)Y (M) =
⋃

{

N ⊆ M : ∀X ×X
f✲ Y with X ∈ B

and f−1(M) ⊆ ∁∆X , f
−1(N) = ∅

}

.

Next, a few results whose contribution is essential for the main objective of this

theory are introduced. From [9] one has the following result

Proposition 4.22. Let S(Top)
∆✲ S(Top)op and S(Top)op

∇✲ S(Top) be

functions defined as follows:

• For all A ∈ S(Top)

∆(A) =
{

Y ∈ Top : ∀X ∈ A and X
f✲ Y, f is constant

}

• For all B ∈ S(Top)op

∇(B) = {X ∈ Top : ∀ Y ∈ B and X
f✲ Y, f is constant}.

Then S(Top)
∆✲✛
∇

S(Top)op is a Galois connection.

Now the concept of separation for an interior operator in topology is presented

together with a result that will be very useful in the context of this work (cf. [1]).

Definition 4.23. Let X, Y ∈ Top and let X
f✲
g
✲ Y be two functions. The separa-

tor of f and g is the set

sep(f, g) = {x ∈ X : f(x) 6= g(x)} .
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Definition 4.24. Let I be an interior operator on the category Top. Y ∈ Top

is I-separated if and only if for every X ∈ Top and for every pair of continuous

functions X
f✲
g
✲ Y, sep(f, g) is I-open.

A characterization of this concept is showed in the following proposition.

Proposition 4.25. Y is I-separated if and only if ∁∆Y is I-open.

Proposition 4.26. Let S(Top)
T✲ IN(Top) and let IN(Top)

S✲ S(Top) be

functions defined as follows:

• For all A ∈ S(Top), TA = ((tA)X)X∈Top
, where

(tA)X (M) =
⋃

{

sep(f, g) ⊆ M : X
f✲
g
✲ Y ; Y ∈ A

}

.

• For all I ∈ IN(Top)

S(I) = {X ∈ Top : X is I-separated}

Then S(Top)
T✲✛
S

IN(Top) is a Galois connection.

Furthermore, remember from Remark 4.16 and the characterization of Propo-

sition 4.20 that:

The functions IN(Top)
C✲ S(Top)op and S(Top)op

D✲ IN(Top) defined

by

• For all I ∈ IN(Top)

C(I) = {X ∈ Top : X is I − Coseparated}

• For all B ∈ S(Top)op D (B) = ((dB)Y )Y ∈Top
, where
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(dB)Y (M) =
⋃

{

N ⊆ M : ∀X ×X
f✲ Y with X ∈ B

and f−1(M) ⊆ ∁∆X , f
−1(N) = ∅

}

form the Galois connection IN(Top)
C✲✛
D

S(Top)op.

For the purpose of the following theorem the order of IN(Top) and S(Top)op

in the last two Galois connections is inverted. That is

S(Top)
D✲✛
C

IN(Top)op and IN(Top)op
S✲✛
T

S(Top)op

are used instead.

Notice that in order to simplify the notation the symbols C, D, S and T are

used instead of the more formally correct Cop, Dop, Sop and T op.

The following theorem shows that the Galois connection

S(Top)
∆✲✛
∇

S(Top)op

factors through the Galois connections

S(Top)
D✲✛
C

IN(Top)op and IN(Top)op
S✲✛
T

S(Top)op

Theorem 4.27. The following diagram of Galois connections is commutative.

S(Top)
∆ ✲✛
∇

S(Top)op

C D S T

IN(Top)op
✛

✲

✲

✛

That is ∇ = C ◦ T and ∆ = S ◦D.
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Proof. It will first be proved that ∇ = C ◦ T. To see this it must be proved that for

every B ∈ S(Top)op

C(T (B)) = ∇(B).

Indeed, ifX ∈ C(T (B)) then, X is T (B)-coseparated, where TB = ((tB)X)X∈Top
,

and

t(B)X(M) =
⋃

{

sep(f, g) ⊆ M : X
f✲
g
✲ Y ; Y ∈ B

}

Thus

t(B)X2

(

∁∆X

)

= ∅

Hence it must be proved that, if X ∈ Top satisfies for ∁∆X ⊆ X × X,

t(B)X2

(

∁∆X

)

= ∅ then X ∈ ∇(B).

This is going to be done by contradiction. Suppose that X /∈ ∇(B), then there

is a Y ∈ B and a function X
h✲ Y that is continuous but not constant. Thus,

there are at least two points y1, y2 ∈ Y and x1, x2 ∈ X with y1 6= y2 and x1 6= x2,

such that h(x1) = y1 and h(x2) = y2. Thus, from

X ×X
π1✲
π2

✲ X
h✲ Y,

where π1 and π2 are the projections on the first and second coordinates, the functions















X ×X
f✲ Y

f(x) = h(π1(x))
and















X ×X
g✲ Y

g(x) = h(π2(x))

are obtained. Notice that X ×X
f✲
g
✲ Y are continuous functions with Y ∈ B. On

the other hand sep(f, g) 6= ∅, since x′ = (x1, x2) ∈ X ×X is in sep(f, g), because

f(x′) = h(π1(x
′)) = h(x1) = y1 6= y2 = h(x2) = h(π2(x

′)) = g(x′),
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that is f(x′) 6= g(x′). Furthermore sep(f, g) ⊆ ∁∆X , because if sep(f, g)∩∆X 6=

∅ there is x′′ = (x, x) ∈ sep(f, g) and by definition of separator f(x′′) 6= g(x′′) but

f(x′′) = h(π1(x
′′)) = h(x) = h(π2(x

′′)) = g(x′′)

which is a contradiction. So, it is concluded that X × X
f✲
g
✲ Y are a pair of

continuous functions, where Y ∈ B and ∅ 6= sep(f, g) ⊆ ∁∆X . This implies that

(t (B))X2 (∁∆X) 6= ∅ that is X /∈ C(T (B)). Therefore C(T (B)) ⊆ ∇(B).

Now in order to prove that ∇(B) ⊆ C(T (B)), assume that X ∈ ∇(B). Then for

every Y ∈ B, if X
h✲ Y is a continuous function, then h is constant. Now suppose

that X /∈ C(T (B)) that is (tB)X2(∁∆X) 6= ∅. Then, there is a sep(f, g) ⊆ ∁∆X , such

that sep(f, g) 6= ∅ forX×X
f✲
g
✲ Y continuous functions with Y ∈ B. Consequently

there is at least x′ = (x1, x2) ∈ ∁∆X such that f(x′) 6= g(x′). So define the continuous

function














X
j✲ X ×X

j(x) = (x, x2)

where x2 is the second component of x′. And from

X
j✲ X ×X

f✲
g
✲ Y,

define














X
f̄✲ Y

f̄(x) = f(j(x))
and















X
ḡ✲ Y

ḡ(x) = g(j(x))
.

Since j, f y g are continuous functions then X
f̄✲
ḡ
✲ Y with Y ∈ B are also

continuous functions. Since X ∈ ∇(B), it follows by hypothesis that f̄ and ḡ are

constant functions, that is there are c, c′ ∈ Y, such that f̄(x) = c and ḡ(x) = c′ for

all x ∈ X. Since f̄ = f ◦ j and ḡ = g ◦ j are constant functions, j is injective and the

image of j is X × {x2} ⊆ X ×X, one obtains that f y g are constant on X × {x2},
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that is

f
∣

∣

∣X×{x2}(x) = c and g
∣

∣

∣X×{x2}(x) = c′

for all x ∈ X × {x2}. Now as x′ = (x1, x2) ∈ X × {x2} and f(x′) 6= g(x′), then

f
∣

∣

∣X×{x2}(x) 6= g
∣

∣

∣X×{x2}(x)

for all x ∈ X × {x2}. Hence

X × {x2} ⊆ sep(f, g) ⊆ ∁∆X

That is a contradiction, since (x2, x2) ∈ X ×{x2} ⊆ ∁∆X . Hence, if X ∈ ∇(B) then

X ∈ C(T (B)), that is ∇(B) ⊆ C(T (B)). So it is concluded that C(T (B)) = ∇(B).

Now, it will be proved that for every A ∈ S(Top).

S(D(A)) = ∆(A)

First it will be proved that S(D(A)) ≥ ∆(A) in S(Top)op. By definition, Y ∈

S(D(A)) if Y is D(A)-separated, i.e. if D(A)
(

∁∆Y

)

= ∁∆Y , where D (A) =

((dA)Y )Y ∈Top
, and

(dA)Y (M) =
⋃

{

N ⊆ M : ∀X ×X
f✲ Y with X ∈ A

and f−1(M) ⊆ ∁∆X , f
−1(N) = ∅

}

.

Thus, in particular

(dA)Y 2

(

∁∆Y

)

=
⋃

{

N ⊆ ∁∆Y : ∀X ×X
f✲ Y × Y with X ∈ A

and f−1
(

∁∆Y

)

⊆ ∁∆X , f
−1(N) = ∅

}

.

Suppose that Y ∈ S(D(A)) but Y /∈ ∆(A), then there is a topological space

X ∈ A and a continuous function X
f✲ Y that is not constant, i.e. there are at

least two points y1, y2 ∈ Y and x1, x2 ∈ X with y1 6= y2 and x1 6= x2, such that
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f(x1) = y1 and f(x2) = y2. Hence one defines the function















X ×X
F✲ Y × Y

F (x) = (f(x), f(x′))

for every x = (x, x′) in X ×X. Let x′ = (x1, x2) and let y′ = (y1, y2), so clearly

∅ 6= F−1
(

∁∆Y

)

⊆ ∁∆X .

This is true because x′ = (x1, x2) ∈ X ×X is in F−1
(

∁∆Y

)

, that is

F (x′) = (f(x1), f(x2)) = (y1, y2) = y′ ∈ ∁∆Y , since y1 6= y2.

Moreover, if x′′ = (x, x) ∈ F−1
(

∁∆Y

)

, then (f(x), f(x)) = F (x′′) ∈ ∁∆Y . This is a

contradiction, hence F−1
(

∁∆Y

)

⊆ ∁∆X .

Since X
f✲ Y is a continuous function then X ×X

F✲ Y × Y with X ∈ A

is also a continuous function, such that ∅ 6= F−1
(

∁∆Y

)

⊆ ∁∆X . It will be proved

that

(dA)Y 2

(

∁∆Y

)

6= ∁∆Y .

Since D(A) is an interior operator, then (dA)Y 2

(

∁∆Y

)

⊆ ∁∆Y , so it will be showed

that there is at least y ∈ ∁∆Y , such that y /∈ (dA)Y 2

(

∁∆Y

)

.

Let

N =
{

N ⊆ ∁∆Y : ∀X ×X
f✲ Y × Y with X ∈ A

and f−1
(

∁∆Y

)

⊆ ∁∆X , f
−1(N) = ∅

}

then y /∈ (dA)Y 2

(

∁∆Y

)

if and only if, for every N ∈ N , y /∈ N.

Note that y′ = (y1, y2) ∈ ∁∆Y but y′ /∈ (dA)Y 2

(

∁∆Y

)

. Indeed, if there isN ∈ N

such that y′ ∈ N, then the continuous function X ×X
F✲ Y × Y defined before

satisfies X ∈ A and F−1
(

∁∆Y

)

⊆ ∁∆X . However, F
−1(N) 6= ∅, since F (x′) = y′,



38

that is x′ ∈ F−1(N). This contradicts that N ∈ N . Thus y′ /∈ (dA)Y 2

(

∁∆Y

)

, hence

∁∆Y * (dA)Y 2

(

∁∆Y

)

and therefore (dA)Y 2

(

∁∆Y

)

6= ∁∆Y .

This contradicts the hypothesis that if Y ∈ S(D(A)) then (dA)Y 2

(

∁∆Y

)

=

∁∆Y . Therefore if Y ∈ S(D(A)), then Y ∈ ∆(A), that is S(D(A)) ⊆ ∆(A) and so

S(D(A)) ≥ ∆(A) in S(Top)op.

Now to prove that ∆(A) ≥ S(D(A)) in S(Top)op, let Y ∈ ∆(A) and assume

that Y /∈ S(D(A)). Then, Y is not D(A)-separated, that is (dA)Y 2

(

∁∆Y

)

6= ∁∆Y .

This means that there is at least a point y′ ∈ ∁∆Y , such that y′ /∈ (dA)Y 2

(

∁∆Y

)

,

since (dA)Y 2

(

∁∆Y

)

⊆ ∁∆Y is true because D(A) is an interior operator. Recall that

y′ /∈ (dA)Y 2

(

∁∆Y

)

if and only if, for every N ∈ N , y′ /∈ N, where N is defined as

in the previous case. Thus define the set

M =
{

y ∈ ∁∆Y : y /∈ (dA)Y 2

(

∁∆Y

)}

.

Clearly M 6= ∅, since y′ ∈ M, thus M ⊆ ∁∆Y but M /∈ N , since if M ∈ N

this would contradict that y′ /∈ (dA)Y 2

(

∁∆Y

)

. Since M /∈ N , then there is a

continuous function X ×X
G✲ Y × Y, with X ∈ A and G−1(∁∆Y ) ⊆ ∁∆X , such

that G−1(M) 6= ∅. Now M ⊆ ∁∆Y implies that

∅ 6= G−1(M) ⊆ G−1(∁∆Y )

that is G−1(∁∆Y ) 6= ∅.

Since X ×X
G✲ Y × Y is a continuous function, then G = (h, k), where X ×

X
h✲
k
✲ Y are continuous functions obtained by composing G with the projections

Y × Y
π1✲
π2

✲ Y, that is h = π1 ◦ G and k = π2 ◦ G. Consequently one has that

G−1(∁∆X) = sep(h, k). Now, since X ∈ A, G−1(∁∆Y ) 6= ∅ and G−1(∁∆Y ) ⊆ ∁∆X ,

written in terms of the separator of h and k, one obtains that ∅ 6= sep(h, k) ⊆ ∁∆Y ,

where X ×X
h✲
k
✲ Y are continuous function with X ∈ A.
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Let x′ = (x1, x2) ∈ sep(h, k), then h(x′) 6= k(x′). Reasoning as in the previous

case, one defines the continuous functions















X
j✲ X ×X

j(x) = (x, x2)

where x2 is the second component of x′ = (x1, x2) ∈ sep(h, k). And from

X
j✲ X ×X

h✲
k
✲ Y,

define














X
h̄✲ Y

h̄(x) = h(j(x))
and















X
k̄✲ Y

k̄(x) = k(j(x))
.

Since h̄ and k̄ are continuous functions, X ∈ A and Y ∈ ∆(A), then h̄ and k̄

are constant functions. One has that h̄ = h ◦ j and k̄ = k ◦ j are constant functions,

j is injective and the image of j is X × {x2} ⊆ X × X. This implies that h and k

are constant on X × {x2}, that is

h
∣

∣

∣X×{x2}(x) = c and k
∣

∣

∣X×{x2}(x) = c′

for all x ∈ X × {x2}. Now as x′ = (x1, x2) ∈ X × {x2} and h(x′) 6= k(x′), then

h
∣

∣

∣X×{x2}(x) 6= k
∣

∣

∣X×{x2}(x)

for all x ∈ X × {x2}. Hence

X × {x2} ⊆ sep(h, k) = G−1(∁∆Y ) ⊆ ∁∆X .

That is a contradiction, since (x2, x2) ∈ X × {x2} ⊆ ∁∆X . Hence if Y ∈ ∆(A)

then Y ∈ S(D(A)), that is ∆(A) ≥ S(D(A)) in S(Top)op. So one concludes that

S(D(A)) = ∆(A).
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Remark 4.28. Note that since Proposition 4.15 guarantees uniqueness of the two

functions that occur in a Galois connection, in the previous theorem it would have

been enough to prove either ∇ = C ◦ T or ∆ = S ◦D and the other equality would

automatically follow. However due to the importance of this theorem both results

were shown.

Remark 4.29. Recall that in the paper [1], the concept of I-separated topological

space was introduced. This has been formulated in Definition 4.24 where it is stated

that a space Y ∈ Top is separated with respect to an interior operator I if for every

X ∈ Top and for every pair of continuous functions X
f✲
g
✲ Y, sep(f, g) is I-open,

that is if (iX)(sep(f, g)) = sep(f, g). Later in Proposition 4.25, a characterization

of this concept is shown by means of the complement of the diagonal, that is a space

Y ∈ Top is I-separated if and only if ∁∆Y is I-open.

It is natural to ask whether a similar characterization in terms of sep(f, g) can

be given, in an analogous way, for the coseparated spaces with respect to a topological

interior operator. That is: is it true that a space Y ∈ Top is I-coseparated if and

only if for every X ∈ Top and for every pair of continuous functions X
f✲
g
✲ Y,

sep(f, g) is I-isolated?.

The answer to this question is no. To prove this fact one proceeds as follows.

Definition 4.30. Let I be an interior operator on the category Top. Y ∈ Top is

I-2ndcoseparated if and only if for every X ∈ Top and for every pair of continu-

ous functions X
f✲
g
✲ Y, sep(f, g) is I-isolated. 2nd -Cosep(I) will denote all 2nd

coseparated objects respect to I.

The following proposition shows that 2nd -Cosep(I) and Cosep(I) are different.
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Proposition 4.31. Let I be an interior operator on the category Top.

Then 2nd -Cosep(I) ⊆ Cosep(I), but 2nd -Cosep(I) 6= Cosep(I).

Proof. Let Y be an I-2ndcoseparated space. Then for every X ∈ Top and for

every pair of continuous functions X
f✲
g
✲ Y, (iX)(sep(f, g)) = ∅. In particular, for

X = Y × Y, f = π1 and g = π2 it is follows that

(iX)
(

∁∆Y

)

= (iX)(sep(π1, π1)) = ∅.

That is (iX)
(

∁∆Y

)

= ∅. This means that Y is an I-coseparated space.

Hence 2nd -Cosep(I) ⊆ Cosep(I).

Now it will be proved that there are I-coseparated spaces that not are I-2nd

coseparated. Consider the Example 4.5, where Cosep(B) = Ind.

Let Y ∈ Cosep(B) with at least two points, then Y ∈ Ind. Thus Y is an indiscrete

topological space that contains at least the points y1, y2 ∈ Y. Then for every non-

empty X ∈ Top, two functions X
f✲
g
✲ Y are defined by f(x) = y1 and g(x) = y2

for every x ∈ X. Clearly f and g are continuous functions, such that sep(f, g) = X,

but

bX(sep(f, g)) = bX(X) = X.

This means that bX(sep(f, g)) 6= ∅ and therefore Y /∈ 2nd -Cosep(B).

Next, a lemma and a proposition related to the concept of I-2ndcoseparated

space that are analogous to Lemma 4.32 and Proposition 4.33, are introduced.

Lemma 4.32. The function IN(Top)
C2✲ S(Top)op defined by

C2(I) = {X ∈ Top : X is I-2ndcoseparated}

is order preserving.
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Proof. Let I, J ∈ IN(Top) be such that I ⊑ J. It will be proved that C2(I) ≤ C2(J)

Let Y ∈ C2(J), thus for every X ∈ Top and for every pair of continuous functions

X
f✲
g
✲ Y, jX2(sep(f, g)) = ∅. Since

iX2(sep(f, g)) ⊆ jX2(sep(f, g)) = ∅

then iX2(sep(f, g)) = ∅, that is Y ∈ C2(I) and therefore C2(I) ≤ C2(J).

Proposition 4.33. The function IN(Top)
C2✲ S(Top)op defined as in the previous

lemma, preserves suprema.

Proof. Let {Ik}k∈K be a family of interior operators in Top. It will be proved that

C2





∨

k∈K

Ik



 =
∨

k∈K

C2(Ik).

By definition of supremum, Ik ⊑
∨

k∈K Ik, for every k ∈ K and from Lemma 4.32,

C2(Ik) ≤ C2





∨

k∈K

Ik





for every k ∈ K. Therefore,

∨

k∈K

C2(Ik) =
⋂

k∈K

C2(Ik) ≤ C2





∨

k∈K

Ik



 .

On other hand if Y ∈ C2 (
∨

k∈K Ik) then by definition Y is
∨

k∈K Ik-2ndcosepa-

rated or equivalently for every X ∈ Top and for every pair of continuous functions

X
f✲
g
✲ Y, sep(f, g) is

∨

k∈K Ik-isolated. Thus, from of Proposition, 3.7 this occurs

if and only if sep(f, g) is Ik-isolated for every k ∈ K and so (ik)X2 (sep(f, g)) = ∅,

for every k ∈ K. Hence Y ∈ C2(Ik) for every k ∈ K and therefore

Y ∈
⋂

k∈K

C2(Ik) =
∨

k∈K

C2(Ik).
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This implies that

C2





∨

k∈K

Ik



 ≤
∨

k∈K

C2(Ik).

Therefore

C2





∨

k∈K

Ik



 =
∨

k∈K

C2(Ik).

Since IN(Top)
C2✲ S(Top)op preserves suprema, from Proposition 4.14 one

obtains that there exists a function S(Top)op
D2✲ IN(Top), defined by

D2(B) =
∨

{I ∈ IN(Top) : B ⊆ C2(I)} .

Such that IN(Top)
C2✲✛
D2

S(Top)op is a Galois connection.

Remark 4.34. Proposition 4.31 and the previous Galois connection provide an im-

portant result for the theory of I-coseparated spaces in contrast with the I-separated

ones [1]. Precisely, the theory introduced in the latter is equivalent either presented by

means of the concept of the separator of two continuous functions being I-open or by

the complement of the diagonal being I-open. But on the contrary, the I-coseparated

spaces defined by the complement of the diagonal being I-isolated contain the ones

introduced by means of the I-isolated separators (I-2ndcoseparated) but there are

spaces whose complement of the diagonal is I-isolated (I-coseparated) that are not

I-2ndcoseparated.

As a consequence, the map IN(Top)
C2✲ S(Top)op which to each interior

operator I assigns its I-2ndcoseparated spaces, produces the Galois connection

IN(Top)
C2✲✛
D2

S(Top)op, that differs from the Galois connection
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IN(Top)
C✲✛
D

S(Top)op presented in Remark 4.16. However, in the theory devel-

oped in the paper [1] for the I-separated spaces, the corresponding Galois connections

are the same.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS:

A notion of coseparation with respect to an interior operator on Top was intro-

duced and it was proved that it is closed under direct images of continuous functions

and quotient spaces, but it is not closed under topological sums and topological sub-

spaces.

Examples of coseparated spaces for concrete interior operators in topology were

presented.

A commutative diagram of Galois connection was shown and through which

it was proved that the left-right constant Galois connection factorizes through the

I-coseparated and I-separated Galois connections.

A new notion of coseparation with respect to an interior operator on Top, called

I-2ndcoseparation, was introduced and it was proved that it is weaker than the

notion of I-coseparation. Moreover, it was shown that it produces a Galois connec-

tion that differs from the Galois connection initially introduced by I-coseparation.

However from the perspective of I-separation, the corresponding notions and Ga-

lois connections defined in term of separators or in term of the complement of the

diagonal are exactly the same.
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FUTURE WORK:

• Find a Galois connection between IN(Top) and S(Top) that together with

IN(Top)
C2✲✛
D2

S(Top)op factorizes the left-right constant Galois connection, in an

analogous way to what is presented in Theorem 4.27.

• Explore the possibility of introducing a notion of coseparation with respect to an

interior operator in the category Grp of groups, with the purpose of trying to

extend to that environment the results presented in this work.

We would like to anticipate that this idea presents an initial challenge. Precisely,

since an interior operator I onGrp acts on subgroups and for any non-trivial group

X, ∁∆X is not a subgroup of X × X, the notions of separation and coseparation

with respect to an interior operator I on Grp cannot be defined directly as in the

topological case. Consequently, in order to develop the ideas of this work in Grp,

one must look for a different approach.

• Obtain an explicit characterization of 2nd -Cosep(I), for every interior operator I

from Examples 3.4.
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