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ABSTRACT

In this work, multiple criteria in conflict are considered simultaneously to determine a
process window for injection molding (IM). The best compromises between criteria
are identified through the direct application of the concept of Pareto-dominance in
multiple criteria optimization. With previous information, the translation of the
solutions to a graphical representation is carried out for build multiple criteria
process window for IM process. This representation will be easier to handle and
understand for molders in manufacturing plants. The aim with this work is to provide
a formal and realistic strategy to set processing conditions in IM operations. In order
to keep the main ideas manageable, the development of the strategy is constrained
to two controllable variables in computer simulated parts. As an extension of the
method three criteria are incorporated to assess the feasibility. The method
proposed here in comparison with other optimization technique such as DEA have a
better performance, not required hard programming and computational effort. With
the direct application of the dominance and Pareto-optimal concept we have the
certain of the correct efficient solutions. Based on the results this strategy is feasible,
effective and efficient to find the Pareto-efficient frontier and on prescribing

competitive processing conditions in IM operations.
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RESUMEN

En este trabajo, multiples criterios en conflicto son considerados simultaneamente
para determinar una ventana de proceso para el moldeo por inyeccion (Ml). Los
mejores compromisos entre los criterios se identifican a través de la aplicacién
directa del concepto de Dominancia y Pareto-optimalidad en la optimizacién de
criterios multiples. Con la informacion anterior, se lleva a cabo la traduccién de las
soluciones a una representacion grafica para construir ventanas de procesamiento
multicriterio para el proceso de MI. Esta representacion sera de utilidad y facil
manejar para los moldeadores en plantas de manufactura. El objetivo de este
trabajo es proporcionar una estrategia formal y realista para establecer las
condiciones de procesamiento en las operaciones de mensajeria instantanea. A fin
de mantener las ideas principales de su uso, el desarrollo de la estrategia se ve
limitada a dos variables controlables de las piezas de ordenador de simulacion.
Como una extension del método, tres criterios se incorporan para evaluar su
viabilidad. EI método aqui propuesto en comparacion con otra técnica de
optimizacién tal como DEA muestra un mejor rendimiento, no se requiere gran
esfuerzo computacional ni de programacion. Debido a la aplicacién directa del

concepto de Dominancia y Pareto-optimalidad tenemos seguridad de las soluciones

il



eficientes encontradas. Basandose en los resultados, esta estrategia es factible,
eficaz y eficiente para encontrar la frontera Pareto-eficiente asi como en la

prescripcion de las condiciones competitivas de procesamiento en operaciones de

MI.

v



ACKNOWLEDGEMENTS

| would like to express my sincere gratitude to my advisor Dr. Mauricio Cabrera Rios
for his support, motivation, knowledge and for trust on me and let me be part of this
awesome research group. Thanks for helped me and guidance me during all this

process. | could not have a better advisor.

| would like to thank for the rest of my thesis committee: Dra. Viviana Cesani, Dr.
Marcelo Suarez and Dr. Jose M Castro for be part of this work and for their feedback
and comments. Also | want to thank to Dr. Castro for the research internship

opportunities in his research group.

Thanks to the University of Puerto Rico, especially to the Industrial Engineering
department for their sponsorship. To CREST (center of research in engineering,
science and technology) and thanks to the Applie optimization group and BIO-IE

Lab.

| sincerely like to thanks with all my heart and love to the best advisers of my life, my

parents: Silvia Yanez Saucedo and Everardo Rodriguez Loc. Thanks for being my



parents, for your love, support and guidance, for trust on me and teach me to make
my own decisions in my life. Thanks also, for helped me to be the woman and

professional that | am now. | love you both so much.

Thanks to the best friends of my life, my brothers: Silvia Karina Rodriguez Yanez,
Marlene Carolina Rodriguez Yanez and Everardo Rodriguez Yanez. Thanks for be
there always that | need and give me your advice, for trust on me, for your support
and for to be the best brothers ever! | love you so much and | have not words to

express how much | love you.

During these years | had the opportunity to met wonderful people, especially my
masters partners who which | share study, funny and special memories: Patricia,
Karla, Alma Paola, Magaly, Melitza, Cynthia, Marioly, Leemary, Katia, Oscar,
Orlando, Irving, Gabriel, Rafael, Andy, Joymariel, Matilde, Esmeralda, The BIO-IE
lab girls: Jaileen, Raisa, Jorlys, Marilya, Nicole, Joseira, Paloma, Grace, my smaller
friends: Anita and Emilio. Thank you all and the rest of the people that | had the
pleasure to meet. Thanks for be part of these great years of my life. Paty thanks for
your friendship and share special moments with me. Karla thanks for bring me more
than your friendship to be there always and for let me met your wonderful family “my

Boricua family“. Alma thanks you so much for be my friend and be there always.

vi



Maga thanks for your friendship and your advice (and don’t worry | always toke
notes and for sure | will be your best student, also, Orlando and Alma made part of
this knowledgment). Mely thanks also for your friendship and the special memories.
Katia thanks for your friendship and your advice always. Cynthia and Marioly thanks
for your friendship and for all the special moments. Karen and Luz, thanks to be
more than my first housemates, for be my friends and to be there and shared

especial and unforgettable moments with me.

vil



Table of Contents

ABSTRACT ..coeeeeeeeccccrereetttrsscnneeestessesessssnnssessssssssssessasssssssssssnnnsessssssssssstasasssssssssnnnsessesessssssssnsassssssssnnnnnans Il
RESUMEN ....cceiiiiiiiiiiiiiiineneeetiesssneeeetsessessssssssnsesssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnsessssssssssssssssssesssssnns ]|
ACKNOWLEDGEMENTS .....teiiiiiiiiccrnenneeeieccsnnneeeesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnes V
TABLE OF CONTENTS....cccuuuteiiiiimennnnsintimeanimmssessssssrsssssssssstsrssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnssss Vil
TABLE LIST ... cceeeettttscccneetetesseccsssnnnseeseeesesssssssesssssssssnnnnssssssssssssssnsssssssssssnnnsessssessssssssnnssssssssssnnnnans X
FIGURE LIST ... cceetetttiecccsteeteteesecsessssnnneesesssssssssssssssssssssssnnnsssssssssssssssasssssssssssnnnsssssssssssssssssesssssssnnnn XI
1 CHAPTER ... eeetttttteeccccsreteeccsesssnnnsessesessesssssssessssssssssnnsessesssssssssssssssssssssssnnsssssssssssssssnnnsssssssnnnn 14
1.1 INTRODUCTION ...ccuuuiiiiiiiennnnisiniiimesssmsssssssssssessssssssstmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssanses 14
1.2 IMIOTIVATION ...ciiiieeiiiiiiiiennnnieniiteniiesssssssssisessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnssssssssssssnsssssssssssssns 23
1.3 OBJECTIVE.....ciiiiiuuuiiiiiiinnnnnsismnisssiissssssssssisssssssssssssssssssssssssssssssssssssssssssssstesssssssssssssnssssssssssssssssssssssssssas 23
2 CHAPTER......ciitttiiiiiiinnniiiitiieeiiiesneeissittessssssssteessteesssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnns 24
2.1  LITERATURE REVIEW......cuuuiiiiiiiinnnniiiiiiieniiissmeiiiiiiesssssisiiissssssmssssssssssssssssssssssssssssssssssssssssssssssssssssnsensss 24
3 CHAPTER......ciitttiiiiiiiinutiiiiiieniitesneissiiissssssissstsessteesssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnns 30
TECHNICAL BACKGROUND ....ccuuiiiteuieimmneieimmeieremmmesiirsesimsssisimsssierssssiitrssssstssssstsssssersssssssssmssssssssssssassssssssssssas 30
3.1 INTRODUCTION ..cuuiiiiueiireniiimneienmanmnsenmasssersssssrssssstssssssrssmsssssrssssssssssstssssssrssssstsssasssssssssstsssssssassssssnssnss 30
3.2 DESIGN OF EXPERIMENTS (DOE) .....uceeeeeeerieeeesrsnnneeeeessssnnseeseessessssssssssssssssssssnsssssesssssssssssnssssssssssssnsssnns 30
[3.2.1 Central Composite Design (CCD) ..o 31
3.3 RESPONSE SURFACE METHODOLOGY (RSIM)...ccueeetierieeerrrrnneeeeeeesssnneeeeeesssssssssssnsssssssssssnssssssssssssssssnnnans 33
3.4 MULTIPLE CRITERIA OPTIMIZATION.....ccuceitttuiiiimneicimnnssnmenmaesssmassssnsnsssrsssssssssssssssssssssssssssrssssssssssssssnsanss 34
4 L0 72 I N 37
PROPOSED METHOD .....ccuciittuuiiiimniiiinniiiiiiemiiiieiiimeiisneimisssimssstmssstiansietmsesstasmsssstsssssttassistsassssssssssssssas 37
L T |V 1 20 T 0 15 I 10 37
4.2 PERFORM AN INITIAL DESIGN OF EXPERIMENTS.....ccccciitttiiiimniiiianiiiminianisiiesisimneiiissssssssssssssssssnnss 38
4.3 SCALE THE CONTROLLABLE VARIABLES (CVS) AND PERFORMANCE MEASURES (PMS) TO FALL WITHIN -
T AND d..oiiiiiiiiiiiiiteiiiineitieenaeitteeieressstenssssrasssstersssssssssssssssssstessssssssssssssssssssssssssssassssssssssssansssssssnsssssasssssenes 38
4.4 FIT AMETAMODEL PER PM....ccuuiiituiiiiniiiineiiiinneeiiiiaiiimeiismiiissimisssstssssisisnssssrssssssssssssssnsssssnnnss 39




4.5 USE THE METAMODELS TO GENERATE PMS’ PREDICTIONS IN THE EXPERIMENTAL REGION OF THE CVS. |

39
4.6 FIND THE EFFICIENT FRONTIER USING THE PMS’ PREDICTIONS........ccccoverisurersnerssensesssseessssnessnesessenes 41
4.7  VALIDATION.....ouetiiiiittieiiinettiicsaissntessssastsssssansessssassssassssssssssesssssansasssssnsasssssesssssssassessassesssssnsassasaness 45

THE SETTINGS PRESCRIBED IN THE PREVIOUS STEP SHOULD BE VALIDATED EXPERIMENTALLY WHEN
POSSIBLE TO ESTABLISH THE PREDICTION QUALITY OF THE METAMODELS. FOR THE PURPOSE OF THIS
THESIS, VALIDATION WAS CARRIED OUT THROUGH COMPUTER SIMULATION USING MOLDFLOW INSIGHT
2011. THE EQUIDISTANCE POINTS TO SIMULATION WILL BE SELECTED BASED ON THE NUMBER OF POINTS
SUITABLE FOR EACH SIMULATION CASE. FOR A REAL EXPERIMENTAL CASE THE CALCULATION VALIDATION
ERROR WILL BE CONSTRAINED IN LESS THAN 10% OF ERROR, USING THE NEXT EQUATION: ERROR =Y (REAL

VALUE) = ¥ (PREDICTED VALUES) .....e.cvecvreerecesesrcssessssssessesssssssssssssassssssassssessasssssssssssssasssessassassssnsssssassasssnsees 45
4.8 MULTIPLE CRITERIA PROCESS WINDOW. ......ououurvecesrseesssacsssessesssssasssssesssessassssssssssssesssessessasssassans 46
5 CHAPTER...cuuceecteesstecnsessssssssesssessassssssasssssasssessassssessassssssessssssasssessasssnessassasssessasesassssssassassssessassassans a7
RESULTS ..evcveveuesrecesessessesssssssssssssessasssessssssssassssssansssessanssessanssessasssessassssessassssssasssessasssssssssssssssssessassessanssssses a7
5.1 ASTIM STUDY PART....cocveetrcreesecesssessssssssssssessssssessssssasssssasssssssessssssssssssassasssassasessassasssasssessassassassans a7
52 CASE 1: MINIMIZE SHRINKAGE AND MINIMIZE TOTAL WEIGHT «..u.oovvvevevreecreecrecssessensesssessensssssessaeeens 50
5.3 CASE 2: MINIMIZE TOTAL WEIGHT AND MINIMIZE CYCLE TIME «..u.vvvvveveereecreeescrseesensenssensensssssessseeens 60

5.4 CASE 3: MINIMIZE TOTAL WEIGH, MINIMIZE VOLUMETRIC SHRINKAGE AND MINIMIZE CYCLE TIME .. 69

5.5 COMPARISON OF THE PROPOSED METHOD VERSUS DATA ENVELOPMENT ANALYSIS.........cccceeenneene 79
6 00 1 I RN 82
CONCLUSION AND FUTURE WORK......cciiiimmmmiiiiiiiinninniiiiinnnniieieiiimmmimmmmsiesiismmmmsmmmsse. 82
7 REFERENCES.....ouuuueiiiiiiiiiiinintitinnenenniennninssseanssssissaensssseesssssssssssssssssssnssssssssssssssssssssnsssssssssssnnsanses 85
8 APPENDIX A ...ttt sssenssnetsssssssssns s e s sssss s ssannsaeessssssssssnessesssssssssnnnnasessssssssssnsssssns 89
9 APPENDIX B ....cciiiiiiiiiiinniiiiiiiiiiinnieininssseesenitesiessssinseessssssssssssssssesssesssssssnsssssssssssssssnsasssssssssssssnssssssss 97
Lo N PN 97
Lo 8 0 N - RN 100
10 APPENDIX D.ucceeeeiiiiiiiininiinintiinieesniisninssssensssssesssssssssssssssssssssssnsnsssssssssssssasssssssssssssnnssssessssssssnnsanes 103
11 APPENDIX Ducceeeeiiiiiiiiinneiiittiineeenincennnssssenseestssssssasssssssssssssssnsnnsssssssssssssssssssssssssssnsnnssessssssssnnsanes 107
12 APPENDIX D.cceeeeiiiiiiciitneinitciineeeeiiceninsssseesssstesssssassssssssss s s ssasnnsssssesssssssssssssssssssssnnnnssessssssssnnsanes 109
T 4 Y G 0 RS 111

X



Table List

Figure 4.3-1. Example of a linear transformation. .................ooouueviiiiueeeiiiinneeiiiiieeeieiinnnnn. 38
Table 5.2-1. Initial experimental design for the case 1. .......cocoouuviieeiiiueiiimiiieesiieeaeaeaaaannn... 51
Table 5.3-1. Experimental design for Case 2...........coouueviiiiuniiiiiiiiiiiiiieeiiiiieeeeieieeeeeeeeaaaens 61
Table 5.4-1. Experimental deSiZn fOI CASE 3. ....couuiiiuniiiieiiieeiieseeeeeeeeeeeeeeeeeeaeeeeeeeeaaeanee 70
Table 8-1. Predicted efficient solutions and simulated efficient solutions of Case 1. ............ 89
Table 8-2. Predicted efficient solutions and simulated efficient solutions of Case 2. ............ 91
Table 8-3. Predicted efficient solutions and simulated efficient solutions of Case 3. ............ 93



file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense.docx%23_Toc324614911
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense.docx%23_Toc324614912
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense.docx%23_Toc324614913
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense.docx%23_Toc324614914

Figure List

Figure 1.1-1. Flow of injection MOIdINg ProCess. ........covvvueeiiiieneeiiiiieeiiiiieeeeeiieeeeeeiaeaeeen. 16
Figure 1.1-2. Conflicting betWeen CITEEIIA. ..........ceevvueeiiiieeeiiiiieeeeeiee e eeeeeeeeeeieeeeeenns 17
Figure 1.1-3. Trade off DEtWEen CIItEIIa. ......ccovuuniiiiineiiiiiieeiiiieee e 19
Figure 1.1-4. Single criteria process window representation................eeevveeenveeennnnnnnnnn.... 20
Figure 1.1-5. Multiple criteria process window representation. ..................ceeeeeeeeneieennnnnnennn.. 21
Figure 1.1-6. Graphical representation of efficient frontier thought a multiple criteria process

WINAOW ..ot eeeee et e eeeeeeeetteeeeseaseseeeessnnneseesesseeessnnnnnsssssssenssnnnnnnsessesenssnsnnn 22
Figure 3.2-1. Face-centered central composite deSIZN. ...........couuueiiviuueiiiiineiiiiieeeieiinnnnnn. 32
Figure 3.4-1. Optimization problem considering only one objective. .............cccoceeeeveunnn....... 35
Figure 4.1-1. Proposed Method. ..........oooouueiiiiiiniiiiiiiiiiiiiieiiiiiieesiieeeeeeeeeeeeeeeeeeeeeeeaaa 37
Figure 4.5-1. Process to find the predicted feasible region. ............ccooceevvvveeeiiiiincceiennnnnnnnnn... 40
Figure 4.6-1. Individual pairwise comparison considering the optimization direction in the

0bjective TUNCHON F1. ....ooouiiiiiiiiiiiiiiiiiiiiiiii i 42
Figure 4.6-2. Individual pairwise comparison considering the optimization direction in the

0bJectiVe TUNCHON F2. ...oooouuiiiiiiiiiiiiiiiiiiiiieii e 43
Figure 4.6-3. Dominance cone with the decision direction for Min-Max case. ..................... 43
Figure 4.6-4. Pairwise comparison considering simultaneously both objective function F1

ANA F2. oottt nnnnnnnnnnnnnnnnnnnnnnes 44
Figure 4.6-5. Classification of Dominated Set and Efficient Set of solutions. ....................... 45
Figure 5.1-1. ASTM MOId DAL, ..oooovuiiiiinisiiiiieiiiiieeeeieees e eeeeeeeeeeeeaaaennn 47
Figure 5.2-1. Graph of principal effect of CVs on Total weight for case 1..............cco........... 52
Figure 5.2-2. Graph of principal effect of CVs on Volumetric shrinkage for case 1.............. 52
Figure 5.2-3. Experimental region of CV's for case 1............coouueviiiiueiiiiinaiiiiinaasiannnnenn.. 54
Figure 5.2-4. Predicted feasible region for case 1..........oouueviiieneiiieinaiiiiieaaiieieaesieeaanenn.. 55
Figure 5.2-5. Predicted Non-Dominated (squares) and dominated set (empty circles) for case

L ettt ettt ettt et ettt e ettt et eeeeeeete et eeeeenneneeeneeennnnnnnnnnennnnnnnen 56
Figure 5.2-6. Predicted efficient set (full circles) and dominated set (empty circles) for case

| PP OO P P PP PPPPPPPPPPRt 56

Figure 5.2-7. Predicted values (empty circles) vs. simulated values (full circles) for case 1..57

Figure 5.2-8. Graph with simulated values classified in efficient (full circles) and dominated
VAIUES (EIMPLY CITCIES). tevvveiiiieeeiiies e eeeeeeeaeeeeaasseeenaaaeeenns 58

Figure 5.2-9. Multiple criteria process window classified in three areas for case 1............... 59

xi



file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966271
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966247
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966248
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966249
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966250
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966251
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966252
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966252
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966253
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966254
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966255
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966256
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966257
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966257
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966258
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966258
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966259
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966260
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966260
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966261
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966262
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966263
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966264
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966265
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966266
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966267
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966267
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966268
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966268
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966269
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966270
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966270

Figure 5.3-1. Graph of principal effect of CVs in Cycle Time for case 2.......cccccceeuunnn........ 62

Figure 5.3-2. Graph of principal effect of CVs in Total Weight for case 2. .......................... 62
Figure 5.3-3. Experimental region 0f CVS fOr CaS€ 2. ......uuuenennnnneeeeeeeeeeeeeeeeeeeeeeennnn. 64
Figure 5.3-4. Predicted feasible re2ion fO1 CASE 2........uueennnnnnneneeeeeeeeeeeeeeeeeeeeeeeeeeeeannns 65
Figure 5.3-5. Predicted Non-Dominated (squares) and dominated set (empty circles) for case

D ettt e e et teeeeeetuteeeeeeatreee e e ntaeeeeeetrneeeeennreeeeeennrnseseennrneeeeennrrreeeeanrrreeeennrrees 66

Figure 5.3-6. Predicted efficient set (squares) and dominates set (empty circles) for case 2..66
Figure 5.3-7. Predicted values (empty circles) vs. Simulation validation values (squares) for

CASC 2.iiieeeeteeeeeeeeeeeeeeeeeeeeeeeeeetuaeeeeeeeeeeeetbeeeseeeenttnnaaaeeeteenntnnnnaeeesterrnnnnnnneeeeseres 67
Figure 5.3-8. Multiple criteria process window classified in three areas for Case 2. ............. 68
Figure 5.4-1. Graph of principal effect of CVs in Total weight for case 3. ...........cccvvuuunnn.... 71
Figure 5.4-2. Graph of principal effect of CVs in Volumetric shrinkage for case 3. ............. 71
Figure 5.4-3. Graph of principal effect of CVs in Cycle time for case 3. ......ccceeevvvvvvvvunnnn.... 72
Figure 5.4-4. Experimental region of CVs for case 3. .........ccoovvueeiiiiieciiiiiiaiiiiieeeieiiannnnn. 74
Figure 5.4-5. Predicted feasible region for case 3..........coouvviiiiuuiiiiiiiiiiiiiaiiiiieeeieiinnn. 75
Figure 5.4-6. Predicted Non-Dominated set (full circles) and dominated set (empty circles)

FOT CASE 3. vttt eeeeeeeeeeeataeessasssseeessnnnnnsesssssesnnnnnnnssssesees 76
Figure 5.4-7. Predicted efficient set (full circles) and dominated set (empty circles) for case

B ettt ettt ettt n e e e e e e e e e e e e e e e e e e e nnnnnnnnnnnnnnnnnnnnnnne 76
Figure 5.4-8. Predicted values (empty circles) vs. simulated values (full circles) for case 3..77
Figure 5.4-9. Multiple criteria process window classified in three areas for Case 3. ............. 78
Figure 5.5-1. Efficient frontier using DEA SOIVE...........cooueiiiiiiiiiiiiiiiiiiiieiiiiiieeciiaiiaann. 80
Figure 5.5-2. Efficient frontier using Proposed method. ..............ccooovueeiiiiiniiiiiinaiiiinnnnnnnnn.. 81
Figure 9.1-1. CVs classification by 4 pOSItION STOUDS. .......uuevereneiieieeeeeeiieeeeeieeeeeeeenaaaaannn. 98
Figure 9.1-2. Dominate CVs after applied the proposed method. ............................... 98
Figure 9.1-3. Efficient frontier after applied the proposed method. ............................. 99
Figure 9.1-4. Efficient frontier classified in4 areas. ................................................... 100
Figure 9.2-1. . CVs classification by 4 position groups. ................cccoeeevuuuuveeeeieeennnnnn.. 101
Figure 9.2-2. Dominate CVs after applied the proposed method case 2.................. 101
Figure 9.2-3. Efficient frontier after applied the proposed method case 2................ 102
Figure 9.2-4. Efficient frontier classified in4 areas. .................................................... 102

Figure 53. Residual plots of Total weight for case 1. The normal probability plot in the up
left side shows that the points are adjusted at the line. The Residual versus fit plot in the
up right side, shows that the points are randomly dispersed around the horizontal axis. In
the down right side the residual versus order plot shows an independency between runs.

Figure 54. Residual plot of Volumetric shrinkage for case 1. The normal probability plot in
the up left side shows that the points are adjusted at the line. The Residual versus fit plot
in the up right side, shows that the points are randomly dispersed around the horizontal

xii


file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966300
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966272
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966273
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966274
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966275
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966276
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966276
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966277
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966278
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966278
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966279
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966280
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966281
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966282
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966283
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966284
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966285
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966285
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966286
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966286
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966287
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966288
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966289
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966290
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966291
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966292
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966293
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966294
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966295
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966296
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966297
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966298
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966299
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966299
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966299
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966299
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966299
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966300
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966300

axis. In the down right side the residual versus order plot shows an independency
DEEWEETL TUIS. ...ttt ettt et eeeeeareeane 108

Figure 55. Residual plot for Cycle time. The normal probability plot in the up left side shows
a good adjusted of the points considering the line. The Residual versus fit plot in the up
right side, shows that the points are randomly dispersed around the horizontal axis. In
the down right side the residual versus order plot shows an independency between runs
around the hOTIZONTAL AXIS. ........uuuuuueeiiiiiiiiiiiieeeeeeeii e eeeeeeeeeeeeeeeeeeeeeeennnneeeass 110

Figure 56. Residual plot for Total weight. The normal probability plot in the up left side
shows that the points are adjusted at the line. The Residual versus fit plot in the up right
side, shows that the points are randomly dispersed around the horizontal axis. In the
down right side the residual versus order plot shows an independency between runs..110

Figure 57. Residual plot for Total weight. The normal probability plot in the up left side
shows that the points are adjusted at the line. The Residual versus fit plot in the up right
side, shows that the points are randomly dispersed around the horizontal axis. In the
down right side the residual versus order plot shows an independency between runs..112

Figure 58. Residual plot for Volumetric shrinkage. The normal probability plot in the up left
side shows that the points are adjusted at the line. The Residual versus fit plot in the up
right side, shows that the points are randomly dispersed around the horizontal axis, and
a not linear distribution, based on the test this data met the equal variance. In the down
right side the residual versus order plot shows an independency between runs. .......... 112

xiil



file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966304
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966301
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966301
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966301
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966301
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966301
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966302
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966302
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966302
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966302
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966303
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966303
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966303
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966303
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966304
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966304
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966304
file:///C:/Documents%20and%20Settings/Berenice.Rodriguez/Desktop/Thesis-with%20corrections-after%20Defense-GC.docx%23_Toc324966304

1 CHAPTER

1.1 Introduction

Injection molding (IM) is the most important process for the manufacture of polymer
product. A critical challenge in this process is how to set the molding conditions to
meet multiple quality criteria such as cycle time, shrinkage, total weight, surface
roughness, as many others [1-12] [1], [13], [3—12][1], [13], [3—12][1], [13], [3-12][1],
[13], [3—12]. Setting molding conditions is further complicated by the fact that the
flow of molten polymers is influenced simultaneously by multiple variables. Setting
IM process variables is not trivial, since the physics and chemistry of polymers are
tightly coupled and one change in a particular controllable variable geared to
improve one quality criterion is often detrimental to another one, i.e. a conflict exists.
A process window is a graphical representation that typically involves two
processing controllable variables and a response or criterion. The idea is to have a
map to determine processing conditions to achieve a desired level of performance
by the selected criterion. In this work, two criteria in conflict are considered

simultaneously to determine a process window for injection molding. The best

X1V



compromises between both criteria are identified through the direct application of the
concept of Pareto-dominance. In order to build the proposed strategy, computer
simulation of the IM process is used, and real experiments using an IM machine

available in The Ohio State University.

The IM process is, indeed, the most important and versatile process for mass-
producing thermoplastic products [14], [15]. Injection molded parts can be found
everywhere in daily life in automotive parts, packing products, household articles,
electronics, and toys-among many others. In general, in IM, plastic pellets are fed
into a heated barrel with a reciprocating screw inside that transports the material
along the barrel while melting occurs, as shown in Figure 1-1. Under pressure and
high temperature, the material is forced into a mold cavity (i). When the plastic parts
cools off and solidifies (ii, iii, iv), the mold is open to finally eject the part (v). The five
basic stages of the molding cycle are: (i) filling (ii) packing (iii) holding (iv) cooling

and (v) ejection as shown in Figure 1-1-1.
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Figure 1.1-1. Flow of injection molding process.
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IM parts are typically evaluated considering multiple criteria that are frequently in

conflict. This thesis considers two of them simultaneously.

Out of the many possible criteria to consider, cycle time is important in terms of
economics, while others like part shrinkage, part thickness and total weight are
common proxies for part quality. The effect of different processing conditions on
shrinkage, warpage, cycle time and weight of the part have been reviewed in [5],
[10], [16-21]. These works mostly consider a single criterion for process
improvement. This however, is not realistic in presence of conflict, as it happens in
IM and several other manufacturing processes. A conflict between two criteria is
illustrated in Figure 1.1-2. Notice that if both criteria are to be minimized, the dark
(blue) areas in Figure 1.1-2 must be targeted. This will lead to regions containing

combinations of controllable variables that do not overlap, thus evidencing a conflict.
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Figure 1.1-2. Conflicting between criteria.
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Although it is possible to establish a path from one attractive region to the other, the
number of possible combinations is infinite if the controllable variables are

continuous or possibly very large if they are discrete.

The information on Figure 1.1-2 can be presented also in the space defined by the
criteria under consideration as schematically shown in Figure 1.1-3. In this figure,
the desired criterion of both criteria minimization of F1-(cycle time) and F2-
(shrinkage), are respectively shown with arrows. The cone formed by the linear
convex combinations of the desired directions establishes a region of dominance.
Any solution in that region dominates a solution situated in the origin of the cone. A
Pareto-efficient (or simply, efficient) solution is found when it originates an empty
cone. The set of efficient solutions of the two-criteria optimization problem forms its
efficient frontier. Moving from one efficient solution to another implies improving in
one criterion but necessarily losing in the other one. In Figure 1.1-3, notice that
improving in both criteria is possible only if the cone defining the region of

dominance is honempty.
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Figure 1.1-3. Trade off between criteria.

In this work, it is proposed to solve bicriteria optimization problems associated to IM
to determine their efficient frontier, aiming to make this information available for

pertinent decision-making regarding the control of the process.

The results associated with the efficient frontier need to be easily available to the
molder for it to be usable. The typical representation of a process window is a graph
where one can observe the response surface of a performance measure (PM) of
interest and the associated controllable variable values, as shown in Fig. 1.1-4
considering a single criterion and Figure 1.1-5 shown the PW considering multiple
criteria. The representation of a multiple criteria process window in IM is not

common in the literature review [22], [23]. In this work, the process window is
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presented considering two controllable variables and two performance measures as

a first approach.
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Figure 1.1-4. Single criteria process window representation.
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Figure 1.1-5. Multiple criteria process window representation.

Figure 1.1-5 shows two contour plots superimposed one on top of the other. Each
contour plot corresponds to a particular PM. Each PM is to be minimized. The axes
represent the controllable variables in the IM machine. The efficient frontier, in this
particular case, is located in the right hand side of the window, spanning solutions

between the attractive areas to each PM.

With the representation shown in Figure 1.1-5, a molder can setup the process

knowing the kind of compromise attained in the performance measures involved. An

easier-to-read version of the process window is shown in Figure 1.1-6.
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Figure 1.1-6. Graphical representation of efficient frontier thought a multiple

criteria process window

It is clear that having more than two performance measures would complicate a
representation similar to Figure 1.1.5, however, this work presents a first approach

to organize multiple criteria information relying in the fact that cases with two

performance measures and two controllable variables abound in reality.
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1.2 Motivation

Manufacturing plants with IM machines everywhere in the world need to meet all
parts’ specifications while keeping the operation cost-effective. This challenge is
often left to the experience and intuition of process engineers and operators. This
process is often cumbersome, lengthy and nonrepeatable, as it heavily relies on
trial-and-error. Furthermore, controlling an IM process is complicated by the
existence of conflict between multiple performance criteria. This complication makes
it unrealistic to consider solely one criterion to set up the IM process. A multiple
criteria process window, with clear trade-off information between these criteria,

would help circumvent many of the difficulties described here.

1.3 Objective

Develop a method to build process windows under multiple and conflicting criteria to
set the processing conditions in IM operations in a consistent and competitive
manner. It will also be seeked to use a conservative number of runs in the
construction of such process window. The aim of this thesis is start such
development by considering the two criteria and two controllable variables case in

injection molding through the use of simulations.
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2 CHAPTER

2.1 Literature review

Many process variables have effects on the quality characteristics of an IM part.
When varied simultaneously, not all of these effects are desirable, thereby creating
conflicts. The four basic categories in which IM process variables are usually
grouped are: temperature-related, pressure-related, time-related and distance-
related [15]. IM is used for high production volume of complex parts with potentially
tight tolerances. Applications are common in toys, automotive parts, electronic
components, and medical and pharmaceutical devices, among others. Several
works in the literature present interesting analysis of IM conditions as discussed

next.

Design of Experiments (DOE) has become a popular tool to set IM process
conditions. DOE is a methodology aimed to carry out an experiment in a way such
that appropriate data can be collected to be analyzed through statistical methods,
resulting in valid, repeatable and objective conclusions [24]. A DOE can be used to
determine the effect of process settings in different IM performance measures (PMs)
such as shrinkage, warpage, process cycle time, maximum injection pressure inside
the mold, total part weight, among others. The fractional factorial design, for

example, has been applied as an initial screening approach to determine which
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process variables are important to control relevant PMs in IM [21], [25], [26], as well
as in several other manufacturing process [27], [28]. To the same end, the
orthogonal array design has been used by the practitioners of Taguchi methods in
IM [5], [10], [17], [18], [29]. DOE has also been used to carry out material
characterization as in the studies presented in [29], [30]. It is sound to use DOE as a
means to detect important process variables. Especial care, however, must be
exercised on selecting an adequate design to a particular objective because it plays

an important role on the capabilities of any DOE study.

Optimization is another concern associated with IM process. Optimization in the
related literature is widely understood as the manipulation of controllable variables to
improve the performance of a system. In its most complete sense, optimization
entails providing evidence of the dominance of a particular configuration of the
system over all possible configurations. Several IM optimization endeavors can be
found in the literature approached with several kinds of techniques [3], [5], [6], [9],

[11], [13], [23].These works are further categorized below.

IM optimization is often times approached focusing on a single criterion or PM. Using
a sequence of an initial experimental design and an empirical model such as a
regression equation, an artificial neural network or a kriging model are also
frequently used strategies. In [5], an optimization methodology based on Artificial

Neural Networks (ANNs) and genetic algorithms (GA) aims to minimize the warpage
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of an injection molding part using Moldflow simulations. The ANN is used to model
part warpage as a function of mold and melt temperature, packing pressure, packing
time, cooling time as well as gate location and runner type. A GA is then used to find
the minimum warpage based on the ANN approximation. A somewhat similar
approach using ANNs and GAs was presented in [16] focusing on the optimization of
part weight. Minimizing a part’s volumetric shrinkage through the use of regression
and steepest descent was the subject of a study presented in [3] based on
simulations and experimental validation runs. A strategy with a kriging model and
global optimization techniques is presented in [31] to reduce part warpage. From
these works, it is notorious how the use of empirical models —fit through a well-
crafted DOE-can be advantageous to expedite an optimization procedure. The fact
that IM involves many PMs that show conflict, however, renders the use of a single
criterion insufficient to realistically represent the decision making involved on setting

process conditions.

When considering multiple conflicting criteria in simultaneous optimization, there is
not a single optimum solution, but rather, a series of best compromises or trade-off
solutions [32]. These solutions are called Efficient solutions (Pareto-efficient,
formally), and form the efficient frontier of a multiple criteria optimization problem.
Multiple criteria optimization has actually been considered in various works,
including [6], [9], [11], [23], [33—38]. One particularly interesting coincidence in these
works is the use of artificial intelligence methods to approach the optimization task.
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Several variations of multiple-objective GAs and Evolutionary Algorithms (EAs) are
used across these works to determine the best compromises on a number of criteria.
GAs and EAs fall into the category of metaheuristics and have, indeed, showed to
be very competitive in finding efficient solutions. Their effective use, however, does
imply setting a series of parameters by the user that affect the final solution. The
challenge of choosing a particular efficient solution over another is not approached
in many of these works, irrespectively of the technique used. A process window that
captures at least two PMs and helps to choose a particular set of conditions would

be an initial way to cover this area.

In recognition of the Ilimitations of several multiple criteria optimization
representations [39] and the not-completely solved task of selecting among several
efficient solutions, in [40] an approach to involve the preferences in an evolutionary
algorithm is presented to then make use of Pareto-optimality conditions to arrive to a
final decision. Because the output of a multiple criteria optimization problem is
multidimensional, its representation is difficult and thus, its use might not be
straightforward. For this reason, a multiple criteria process window could prove

useful too.

Our research group has advocated the use of Data Envelopment Analysis (DEA) for
multiple criteria optimization in polymer processes [9], [22], [33], [36], [41]. The
analyses strategies capitalize on DOE, empirical modeling and DEA. DEA has the
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advantage of finding efficient solutions through the use of a series of linear
optimization problems, which is very computationally convenient. Furthermore, the
solutions found through DEA are undoubtedly Pareto-efficient, which makes it an
exact method (non-heuristic). The efficient frontier identified through DEA, however,
is often times constrained to convexity. If the true efficient frontier of a multiple
criteria optimization problem is not convex, then several efficient solutions might
escape detection through DEA. An idea proposed previously in our group entailed
using additional optimization problems to detect the efficient solutions lying in
nonconvex regions with success, however, it is still a somewhat elaborated process
[22]. The work in [22], along with its graphical representation of multiple criteria
process window in IM process set the basis for the method proposed in this thesis.
For completeness, a review of single-criterion process window works can be found

in [42].

In summary, from the literature review it is clear that setting the process conditions in
IM is truly a multiple criteria optimization problem that requires, however, a
representation that allows translating its solution to information that is easy to handle
for molders in manufacturing plants. This challenge motivates the work in this thesis,
where the proposed method to build process windows under multiple and conflicting
criteria to set the processing conditions in IM operations in a consistent and
competitive manner is presented. Previous works in literature review used different

optimization techniques that required hard computational and programing work and
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due the heuristic predictions the certain of the optimal solution is not 100%. The
method proposed here in comparison with other optimization technique such a DEA
have a better performance, not required hard programing and computational effort
and also, due the direct application of the dominance and Pareto-optimal concept we

have the certain of the correct efficient solutions.
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3 CHAPTER

TECHNICAL BACKGROUND

3.1 Introduction

In this chapter, a brief explanation of the different techniques that integrate the
proposed method is presented. First, the focus is on design of experiments as a
central technique to obtain data that is statistically valid. Then, regression

metamodeling is described to finally introduce the concept of Pareto-efficiency.

3.2 Design of experiments (DOE)

DOE has become a popular tool to set IM process conditions. Researches perform
experiments usually to study the performance of a particular process or system
under controlled conditions. DOE is defined as series of tests in which purposeful
changes are made to the controllable variables of a process or system so that we
may observe and identify the reasons for changes that may characterize and model

their effect on response variables of interest [24].

DOE involves all phases of experimentation: planning, execution, analysis and

conclusion. Planning and experiment includes defining the objective of the study as
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well as establishing all parts of the system under consideration. With knowledge
about the system and objective, then it is possible to choose a statistical design with
an adequate number of runs, replicates, and combination on the levels of the factors

to be controlled and measured in the experiment.

The execution of the experiment is supposed to follow the plan as close as possible,
or else to make any deviation explicit for accounting purposes. Once with the
experiment, the plan also dictates the statistical analysis associated to the objective.
The results are finally translated into conclusions. This is usually followed by a new
experiment round with a new objective. In this work, a DOE is used to build
regression models (metamodels). To this end, the central composite design (CCD) is

introduced next as a preferable design of choice.

3.2.1 Central Composite Design (CCD)

For the purposes of the proposed method, a central composite design or CCD is
recommended. CCD is the most popular design used to fit a second-order
regression model. The CCD for k factors consists of a 2 factorial design with 2%
runs, 2k axial or star runs, and n. center runs (nqis usually between 3 and 6). An

example of face-centered central composite design is shown in Figure 3.2-1.
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Figure 3.2-1. Face-centered central composite design.

The CCD needs can be carried out sequentially or in “one shot”. The CCD is an
economic design with proven qualities for metamodeling including balance, keeping
similar variance in regression coefficients, and capability to estimate curvature.
When a CCD cannot be used, Z-level or 3-level factorials are alternatives, although

these should not be the first choices.

In general, if a single dependent or response variable y that depends on k
independent or controllable variables, x7, x2,...,xx the relationship between these
variables can be characterized by a mathematical model called regression model.
This model expresses the results of an experiment quantitatively in terms of
statistical model that facilitates understanding, interpretation, and implementation
of particular solutions. To this end, it is important to know some basics on response

surface methodology.
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3.3 Response surface methodology (RSM)

Response surface methodology or RSM is a collection of mathematical and
statistical techniques useful for the modeling and analysis of problems in which a
response of interest is influenced by several variables and the objective is to
optimize this response [24]. In most RSM problems, the form of the relationship
between the response and the independent variables are unknown. RSM is used
first to find the suitable approximation for the true functional relationship between y

and the set of independent variables.

For the purposes of this thesis, a polynomial of second degree must be used, such

as the second-order regression model. Let us consider the model represented by:

(2-1)

The parameters ’s represent the regression coefficients. represent the values of
the variable ( at the eth experimental point. And the represent the

uncorrelated random error with mean zero and variance o2,

The second order regression metamodels are used to approximate performance

measures. The quality of these metamodels is very important. In the proposed
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method, having an R? value of at least 90% is a good rule of thumb for each

metamodel.

3.4 Multiple criteria optimization

Optimization is an important technique to make any process more effective and
efficient. An optimization problem refers to finding one or more feasible solutions that
correspond to the best possible values for one or more criteria. In the real world is
common to find optimization problems with more than one criterion that must be
satisfied simultaneously. Thus, considering only one criterion when multiple criteria

exist as in Figure 3.4-1, is not realistic.
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Figure 3.4-1. Optimization problem considering only one objective.

Considering more than one objective function to find optimal solutions is known as
multi-objective optimization. This kind of problems is considered part of multicriteria

optimization and then of multicriteria decision-making (MCDM).

In this kind of problems, the goal is to find the set of best compromises or “trade-

offs” between the different criteria as shown in Figure 3.4-2.
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Figure 3.4-2. Optimization problem considering simultaneously two objectives.

The best compromises, as it was said previously, are called Efficient solutions

(Pareto-efficient, formally) and form the efficient frontier of multiple criteria

optimization problem.
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4 CHAPTER

PROPOSED METHOD

4.1 Introduction

The method proposed to build a multiple criteria process window for IM is shown in

Figure 4.1-1.

[ 1.—Perform an Initial Design of Experiments. ]

v

[ 2.—Scalethe controllablevariables (CVs) and performance J

measures (PMs) to fall within -1 and 1.

\

3.—Fita Metamodel per PM. ]

v

[ 4.-Use the metamodels to generate PMs predictionsin the ]

experimentalregion of the CVs.

v

5. - Find the Efficient Frontier using the
PMs predictions.

v

[ 6.-vatidation. |

)

[ 7. —Multiple Criteria Process Window ]

Figure 4.1-1. Proposed method.
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This method integrates different techniques such as Design of Experiments and

Multiple Criteria Optimization. The organization is described in the following steps:

4.2 Perform an initial design of experiments.

The initial design of experiments must be able to provide data to correctly build a
second order regression model. For the purpose of this method, the use of a central
composite design is highly advised. In the case presented here the responses will be
obtained through computer simulations, however, it is envisioned that experimental

runs be used in the near future.

4.3 Scale the controllable variables (CVs) and performance measures (PMs)
to fall within -1 and 1.
Each CV and PM must be in the same scale. This is accomplished through suitable

linear transformations, as shown in Figure 4.3-1.

Transformed scale

] 2 Naturalscale
227 243 260
Min Max

Figure 4.3-1. Example of a linear transformation.
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4.4 Fit a Metamodel per PM.
The scaled data are used to generate second order regression metamodels. It is

important that the fit corresponds to an R-Sq = 90% on each metamodel.

4.5 Use the metamodels to generate PMs’ predictions in the experimental
region of the CVs.

PMs’ predictions are obtained following a factorial grid on the experimental region of

the CVs. Each point in the grid corresponds to a particular combination of

CVs'values. Figure 4.5-1 shows the process used in this thesis to map-out the

feasible region as explained below:

(1) Varying from -1 to 1 in increments of 0.01 on each CVs, the total number of
combinations are (21 values per CV = 21%) = 441 combinations. (2) The values of
each combination are used to generate PM predictions. (3)The predictions, which
are also pairs of values, are plotted. Finally the feasible region between two

conflicting criteria is apparent.
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Figure 4.5-1. Process to find the predicted feasible region.
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4.6 Find the Efficient Frontier using the PMs’ predictions.
The PMs’ predictions are used to make pairwise comparisons among all grid points.
The best compromises between the two criteria are identified through the application

of two conditions as described next.

The operator = is used to denote (no worse than), and the operator < to denote

(better than).

Definition 1) The solution X(1) is no worse than X(2) in all objectives, or fj(X(1))

+(X(2)) for all j=1, 2,..., M.

Definition 2) The solution X(1) is strictly better than X(2) in at least one objective, or

fi(X(1)) <fj(X(2)) for atleastone j {1, 2,..., M}.

The points that meet conditions 1 and 2 are considered Pareto efficient and are thus
the best compromises between the PMs. The combinations of values of the CVs
associated to the efficient solutions are said to dominate the rest of the set. After this

step, the Efficient Frontier and their associated processing conditions are identified.
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To illustrate the application of the concept represented by definitions (1) and (2),
Figures 4.6-1 and 4.6-2 are considered. Seven solutions are presented in the space
defined by two criteria, F1 and F2, the first which is to be maximized while the
second one must be minimized. In Figure 4.6-1, the solution with maximum value in
F1 is found, and in Figure 4.6-2 the solution with the minimum value in F2 is found.
The process to find these solutions is to perform an exhaustive pairwise comparison

among all solutions.

Mon-dominated

5 | o’ in F1
o

[

3T , *° s
. @}
3 ]
1 | L |
I i I i : T
2 5 10 14

18
>

F1 — (Maximize)

Figure 4.6-1. Individual pairwise comparison considering the optimization direction
in the objective function F1.
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Figure 4.6-2. Individual pairwise comparison considering the optimization direction
in the objective function F2.

In order to find the best compromises between F1 and F2, the cone defined by the
optimization direction of these criteria is considered. This cone is illustrated in Figure
4.6-3. A solution resting at the origin of this cone is dominated by any solution within
the cone. A solution resting at the origin of this cone is efficient if and only if this

cone is empty. Thus, this cone is, conceptually, a dominance cone.

(Maximize)

-

(Minimize)

Figure 4.6-3. Dominance cone with the decision direction for Min-Max case.
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Figure 4.6-4 shows the application of definitions (1) and (2). If solution 2 is placed at
the origin of a dominance cone, many solutions are found within it and, therefore
solution 2 is a dominated solution. In the other hand, when solution 5 is analyzed, an
empty dominance cone is found. Solution 5 is, then an efficient solution. Figure 4.6-5

shows the sets of dominated and efficient solutions in this example.
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Figure 4.6-4. Pairwise comparison considering simultaneously both objective function
F1and F2.
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Figure 4.6-5. Classification of Dominated Set and Efficient Set of solutions.

Once the efficient set has been identified, these solutions can be traced back to their
corresponding processing conditions. This process effectively ties IM performance to

the controllable variables.

4.7 Validation.

The settings prescribed in the previous step should be validated experimentally
when possible to establish the prediction quality of the metamodels. For the purpose
of this thesis, validation was carried out through computer simulation using Moldflow
Insight 2011. The equidistance points to simulation will be selected based on the
number of points suitable for each simulation case. For a real experimental case the
calculation validation error will be constrained in less than 10% of error, using the

next equation: error = y (real value) - y (predicted values)
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4.8 Multiple criteria process window.

The final step shows the results through a graphic tool. The typical representation of

a process window is a graph where one can observe the response surface of a

performance measure (PM) of interest and the associated controllable variable

values as illustrated in Chapter 1. The corresponding figure is reproduced here for

convenience Figure 1.1-6.
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Figure 1.1-6. Graphical representation of efficient frontier thought a multiple

criteria process window

The application of the proposed method is illustrated through three case studies in

the following chapters. The third case evidences the capability of the method to

include more than two performance measures. Additionally, a comparison to a well-

known multicriteria optimization technique, Data Envelopment Analysis, is presented

towards the end of this thesis.
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5 CHAPTER

RESULTS

5.1 ASTM study part.

Scale (100 mm)

Figure 5.1-1. ASTM mold part.

A mold to produce a part for ASTM (American Society for Testing and Materials)
destructive tests, Figure 5.1-1, as an extension, real experiments were carried out at

The Ohio State University. The real experiments results are not included in this
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thesis. In the meantime, at UPRM the strategy is under development using the finite
element mesh of this part and polymer flow simulation software (Moldflow). This part
is selected for the simulation and real experiments due the geometric complexity that
make more interesting the analysis. The components of ASTM mold part are
identified with numbers 1-3: Tensile bar, Thin flex and Thick flex, respectively. To
evaluate volumetric shrinkage we consider the percent of the hold mold part. In
order to estimate Total Weight3, we considered the entire mold part excluding the
sprue, which is the main channel for feeding material into the mold. The Cycle Time
was estimated as through the time at which the part was finally demolded. The PMs

evaluated in the case studies are explained as follows:

Shrinkage: defined as the difference between the dimension of a molded part and its

associated mold dimension. It occurs when polymers cool off.

Volumetric Shrinkage is a fundamental part of the shrinkage calculations. The main

factors affecting volumetric shrinkage are pressure and the melt temperature.

Based on the Moldflow software the volumetric shrinkage is calculated as follows:

— (5.1)
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where is specific volume of polymer at the time when either the polymer in
element becomes completely frozen or melt pressure in the element becomes
atmospheric; is the specific volume of polymer at atmospheric pressure and room
temperature. Specific volume at a particular pressure and temperature is calculated

using the PVT relationship.

Cycle Time: as it is known high cycle times reduce the productivity and increase the

manufacturing costs. Is calculated as follows:

- + o+ o+ (5.2)

where: gpenciose IS the time required to open or close the mold before and after part
ejection, respectively; : =is the mold fill time including the packing and holding
stages: . is the part cooling time after the mold has been filled; and . is the part

ejection time, [44].

Total Weight: it is known to be a good estimator of part quality but also a cost driver,

thus it is considered in the analyses presented here.
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5.2 Case 1: Minimize Shrinkage and Minimize Total Weight

The PMs considered in this first case are Total Weight (g) and Volumetric shrinkage
(%). Both impact dimensional stability and the quality of molded parts and both must
be minimized. The CVs are Packing Pressure and Melt Temperature. These are
varied in the ranges [227,260] °C and [13.79, 41.36] MPa respectively. Experimental
ranges for the CVs were determined using the recommended values from the

material database in Moldflow Insight 2011.

The material chosen was D21148 LyondelBassel Advanced Polyolefin USA Inc. For
the case 1 Mold temperature is let constant at 32°C, injection time at 1 sec, V/P
Switch at 80%, packing time at 10 sec, and cooling time at 20 sec. In order to obtain

a multiple criteria process window the proposed method is followed.
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Step 1: Perform an initial design of experiments.
A central composite design involving both variables and both PMs was carried out.

The initial experimental design is shown in Table 5.2-1.

Table 5.2-1. Initial experimental design for the case 1.

33.6981
227 27.58 33.9983 15.24
227 41.36 34.2365 15.10
243 13.79 33.3561 16.40
243 27.58 33.0962 16.13
243 41.36 33.9141 16.01
260 13.79 33.0058 17.33
260 27.58 33.3884 17.17
260 41.36 33.6225 17.05

The Figures 5.2-1 and 5.2-2 shows the simulation experimental results graphically.
The following can be observed: an increase in Pp results in an increase in total
weight while in volumetric shrinkage, and an increase in melt temperature results in
a decrease total weight and an increase in Volumetric shrinkage. Indeed, an
increase of Pp seems to benefit Shrinkage while moving Total weight in an
undesired direction. An increase of Tm seems benefit total weight but not for
volumetric shrinkage because of less material inside the mold, thereby evidencing a

conflict.
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Figure 5.2-1. Graph of principal effect of CVs on Total weight for case 1.
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Figure 5.2-2. Graph of principal effect of CVs on Volumetric shrinkage for
case 1.
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Step 2: Scale the controllable variables (CVs) and performance measures
(PMs) to fall within -1 and 1.
Each CV and PM must be between -1 and 1 to avoid dimensionality problem. This is

accomplished through a linear transformations.

Step 3: Fit a Metamodel per PM.

The scaled data are used to generate second order regression metamodels. The
metamodels were obtained through a response surface regression using Minitab 16.
It is important that the fit corresponds to R-Sq = 90% on each metamodel. In this

case both metamodels met this condition and are presented next:

Total Weight= 0.1158 - 0.5190Tm + 0.4640Pp + 0.0046Tm? —0.0901Pp? +
0.0318TmPp (5.1-1)
R-Sq = 99.93%

R-Sq (adj) = 99.81%

Volumetric shrinkage = - 0.0693 + 0.8430Tm - 0.1704Pp + 0.0568Tm? +

0.0568Pp? + 0.0426 TmPp (5.1-2)

R-Sq = 99.96%

R-Sq (adj) = 99.90%
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Where Tm is Melt Temperature and Pp is Packing Pressure. The analysis of

variance (ANOVA) of this case study is presented in Appendix 10.

Step 4: Use the metamodels to generate PMs Predictions in the experimental
region of the CVs.

The previous second order regression metamodels and 441 combinations of CVs
shown in Figure 5.2-3 as a grid were used to predict the values of the PMs and this

to find Predicted Feasible Region (PFR) in the space of the criteria.

1.0
0.8
0.6 1
0.4
0.2 4
0.0
-0.2 4
-0.4 1

Packing pressure

-0.6 -
-0.8 1

-1.0 4

-1.0 -08 -0.6 -04 -02 0.0 02 04 06 08 1.0
Melt temperature

Figure 5.2-3. Experimental region of CV's for case 1.

54



The 441 combinations correspond to a sampling of 21 levels per CV, which is an
arbitrary number at this point. The previous second order regression metamodels
and the 441 combinations of CVs were used to predict the values per PMs and find

Predicted Feasible Region. The PFR is show in Figure 5.2-4.
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F2- Volumetric shrinkage

-0.6 1
-0.8 -

-1.0 -
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F1- Total weight

Figure 5.2-4. Predicted feasible region for case 1.

Step 5: Find the Efficient Frontier using the PMs’predictions.

In order to find the Predicted Efficient Solutions (PES) and their associated values of
CVs definitions (1) and (2) are applied. The pairwise comparisons were carried out
using an Excel spreadsheet. Figure 5.2-5 shows the predicted Non-Dominated set of

solutions while Figure 5.2-6 shows the shape of the PFR and the location of PES.
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Step 6: Validation.
All PES were used to perform validation runs. These results are shown in Figure 5.2-
7. The associated values of CVs, Predicted Solutions and the results of simulations

validations are shown in Table 8.1 in Appendix A.

17.5 1

17.0 +

Volumetric shrinkage (%)

33.0 33.2 334 33.6 33.8 34.0 34.2
Total weight (g)

Figure 5.2-7. Predicted values (empty circles) vs. simulated values (full
circles) for case 1.

In Figure 5.2-7 shows that there are values within less than 1% of error and there
are many others within less than 10% of error. As can observe in figure above the
simulated volumetric shrinkage values are higher than the predicted, this

performance because of the variable cooling time set at 20 sec.
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For other side, if we compared the simulated values, a new real efficient frontier is
found. For this particular case, the simulated values were classified in efficient and

dominated values as can observe in Figure 5.2-8.
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Figure 5.2-8. Graph with simulated values classified in efficient (full
circles) and dominated values (empty circles).
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Step 7: Multiple Criteria Process Window.

Figure 5.2-9 shows the efficient set classified in three areas, depending on the

different level of compromise between PMs with the associated IM settings.
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Figure 5.2-9. Multiple criteria process window classified in three areas for case 1.
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5.2.1 Conclusion of case 1

The best compromises case 1 are found in two areas: (1) setting Melt Temperature
at 227 °C and varying Packing pressure in the range of [13.79, 41.36] MPa and (2)
setting Packing pressure in 13.79 MPa while varying Melt Temperature in the range
of [227, 260] °C. The predicted values for the associated PMs are all within less than

10% error of the simulated values.

5.3 Case 2: Minimize Total Weight and Minimize Cycle Time

The PMs considered for the case 2 are Cycle Time (sec) and Total Weight (g). Cycle
Time is important in economics terms and Total Weight is important for the quality of
molded part. Both were to be minimized. The CVs are Melt Temperature and Mold
Temperature. Both CVs were selected due their known effect on the PMs
considered for the case. These are varied in the ranges [227, 260] °C and [13, 49]
°C respectively. The chosen material was D21148 Lyondel Bassel Advanced
Polyolefin USA Inc. Injection time was set at 1 sec, V/P Switch at 80%, packing time
at 10sec, frozen at ejection set to 100%, and cooling time was set to be determined
automatically. The results were obtained using Polymer Simulator Insight Moldflow

software 2011. The application of the proposed method is described next.
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Step 1: Perform an initial design of experiments.
A central composite design involving both variables and both PMs was carried out.

The initial results are shown in Table 5.3-1.

Table 5.3-1. Experimental design for Case 2

202.8211 33.7279
227 31 255.3170 | 33.7064
227 49 AD8.5735 33.6704
244 13 207.8219 33.3848
244 31 260.5720 | 33.3582
244 49 A412.8269 33.3288
260 13 212.5729 33.0336
260 31 265.3207 | 33.007%
260 49 A415.5613 32.9792

The Figures 5.3-1 and 5.3-2 graphically shows that melt temperature have a larger
effect on total weight than a cycle time: while mold temperature affects cycle time
more. An increase in mold temperature results in a decrease in total weight but in an
increase on cycle time. In the other hand, decreasing melt temperature decreases

total weight.
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Figure 5.3-1. Graph of principal effect of CVsin Cycle Time for case 2.
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Step 2: Scale the controllable variables (CVs) and performance measures
(PMs) to fall within -1 and 1.
As in the previous case each CV and PM must be between -1 and 1. This is

accomplished through the usual method of using a linear transformation.

Step 3: Fit a Metamodel per PM.
The scaled data were used to generate second order regression metamodels. The

ones corresponding to this case are shown next:

Cycle Time = -0.4563 + 0.0419Tm + 0.9617Tw - 0.0036Tm? + 0.4665Tw” -
0.0065TmTw (5.2-1)
R-Sq = 100%

R-Sq (adj) = 100%

Total Weight = 0.0157 - 0.9280Tm - 0.0748Tw - 0.0083Tm? -0.0087Tw? +
0.0021TmTw (5.2-2)
R-Sq = 100%

R-Sq (adj) = 99.99%

Notice that both metamodels were above 90% in their R? values. The analysis of

variance (ANOVA) of this case study is presented in Appendix 11.
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Step 4: Use the metamodels to generate PMs Predictions in the experimental
CVs shown in Figure 5.3-3 as a grid, were used to predict the values of the PMs and

The previous second order regression metamodels and the 441 combinations of
thus to find Predicted Feasible Region (PFR) in the space of the criteria shows in

region of the CVs.

Figure 5.3-4.

0.4 0.6 0.8 1.0

0.2

0.0
64

-0.8 -06 -04 -0.2
Mold Temperature
Figure 5.3-3. Experimental region of CVs for case 2.
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Figure 5.3-4. Predicted feasible region for case 2

Step 5: Find the Efficient Frontier using the PMs’predictions.
In order to find the Predicted Efficient Solutions (PES) and their associated
CVs'values definitions (1) and (2) were used. The pairwise comparisons were

carried out using Excel. Figure 5.3-5 shows the predicted Non-Dominated set of

solutions while Figure 5.3-6 shows the shape of the PFR and the location of PES.
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Step 6: Validation.
All PES, were validated with the simulation software. These results are shown in
Figure 5.3-7. The associated values of CVs, Predicted Solutions and simulation

validations are shown in Table 8.2 Appendix A.

The results shows the good performance of the method, predicted runs, indeed,
were never off by more than 5% of error. And all predicted solutions were indeed in

the true efficient frontier.
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Figure 5.3-7. Predicted values (empty circles) vs. Simulation validation
values (squares) for case 2.
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Step 7: Multiple Criteria Process Window.
Figure 5.3-8 shows the efficient set classified in three areas, depending in the
different level of compromise between PMs. The associated final process settings

for case 2 are shown in this figure.
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Figure 5.3-8. Multiple criteria process window classified in three areas for Case 2.
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5.3.1 Conclusions for case 2

The best compromises case 2 are found in two areas: (1) setting Mold Temperature
at 13 °C and varying Melt Temperature in the range of [227, 260] °C and (2) setting
Melt Temperature in 260 °C while varying Mold Temperature in the range of [13, 49]
°C. The predicted values for the associated PMs are all within less than 5% error of

the simulated values.

5.4 Case 3: Minimize Total Weigh, Minimize Volumetric shrinkage and

Minimize Cycle Time

Case 3 considers the simultaneous optimization of three PMs. All of them must be
minimized: Volumetric shrinkage (%), Total Weight (g) and Cycle Time (sec). Two
CVs were selected: packing pressure and melt temperature. These are varied in the
ranges [13.79, 41.36] MPa and [227, 260] °C. Experimental ranges for the CVs were
determined using the recommended values from Moldflow 2011 material’'s database.
The chosen material was: D21148 LyondelBassel Advanced Polyolefin USA Inc.
The settings were: Mold temperature at 32°C, Injection time at 1 sec, V/P Switch-
over at 80%, packing time at 10 sec and cooling time was set in automatic as in the

previous case. The application of the proposed method is described next.
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Step 1: Perform an initial design of experiments.
A central composite design involving both variables and both PMs was carried out.

The initial experimental design is shown in Table 5.4-1.

Table 5.4-1. Experimental design for case 3.

33.6978 254.3238
227 27.58 33.9739 15.24 254.3238
227 41.36 34.2130 15.11 234.3238
243 13.79 33.3561 16.21 259.5714
243 27.58 33.6953 16.16 259.5714
243 41.36 33.9110 15.99 259.5714
260 13.79 33.0058 17.34 264.3239
260 27.58 33.3910 17.21 264.3239
200 41.36 33.6307 16.91 204.3239

The Figures 5.4-1, 5.4-2 and 5.4-3 graphically show that the melt temperature has a
good effect on total weigh a negative effect on volumetric shrinkage and cycle time.
An increase in melt temperature results in a decrease on total weight but in an
increase on volumetric shrinkage and cycle time. In the other hand, an increase in
packing pressure results in an increase on total weight while in a decrease on

volumetric shrinkage and apparently has no effect on cycle time.
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Melt temperature =117, -0.0 1.0

Figure 5.4-1. Graph of principal effect of CVs in Total weight for case 3.
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Figure 5.4-2. Graph of principal effect of CVs in Volumetric shrinkage
for case 3.
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Cycle Time
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Figure 5.4-3. Graph of principal effect of CVsin Cycle time for case 3.
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Step 2: Scale the controllable variables (CVs) and performance measures
(PMs) to fall within -1 and 1.

Each CV and PM was scaled to fall within -1 and 1.

Step 3: Fit a Metamodel per PM.

The scaled data were used to generate the following second order regression

metamodels:
Total Weight = 0.1147 -0.5128Pp +0.4685Tm +0.0121Pp? -0.0843Tm?
+0.0456PpTm (5.3-1)

R-Sq = 99.89%

R-Sq (adj) = 99.71%

Volumetric shrinkage = -0.0475 +0.8176Pp -0.1911Tm +0.0545Pp? +0.0119Tm’
+0.0217PpTm (5.3-2)
R-Sq = 99.52%

R-Sq (adj) = 98.72%

Cycle Time = 0.0799 +1.0000Pp +0.0000Tm -0.0799Pp> +0.0000Tm?
+0.0000PpTm (5.3-3)
R-Sq = 100.00%

R-Sq(adj) = 100.00%
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where Tm is Melt Temperature and Pp is Packing Pressure. All metamodels
achieved R? values of more than 90%. The analysis of variance (ANOVA) of this

case study is presented in Appendix 12.

Step 4: Use the metamodels to generate PMs Predictions in the experimental
region of the CVs.

The previous second order regression metamodels and the 441 combinations of
CVs shown in Figure as a grid, were used to predict the values of the PMs and thus
to find Predicted Feasible Region (PFR) in the space of the criteria shows in Figure

5.4-4.
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Figure 5.4-4. Experimental region of CVs for case 3.
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Figure 5.4-5. Predicted feasible region for case 3.

Step 5: Find the Efficient Frontier using the PMs’predictions.

In order to find the Predicted Efficient Solutions (PES) and their associated
CVs'values definitions (1) and (2) were applied as before. Figure 5.4-6 shows the
predicted Non-Dominated set of solutions while Figure 5.4-7shows the shape of the

PFR and the location of PES.
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Step 6: Validation.
All PES, were validated with the simulation software. These results are shown in
Figure 5.4-8. The associated values of CVs, Predicted Solutions and simulation

validations are shown in Table 8.3 Appendix A.
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Figure 5.4-8. Predicted values (empty circles) vs. simulated values (full circles)
for case 3.
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The results of this case also show that the proposed method is effective to predict
the EF. The approximation in this case is within less than 1 % of error. And all

predicted solutions were indeed in the true efficient frontier.

Step 7: Multiple Criteria Process Window.
Figure shows the efficient set classified in three areas, depending in the different
level of compromise between PMs. The associated final process settings for case 3

are shown in this figure.
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Figure 5.4-9. Multiple criteria process window classified in three areas for Case 3.
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5.4.1 Conclusions of case 3

The best compromises for case 3 are found in two areas: (1) setting Melt
Temperature at 227 °C and varying Packing pressure in the range of [13.79, 41.36]
MPa and (2) setting Packing pressure in 13.79 MPa while varying Melt Temperature
in the range of [227, 260] °C. The predicted values for the associated PMs are all

within less than 1% error of the simulated values.

5.5 Comparison of the proposed method versus data envelopment analysis

As discussed in the literature review section of this thesis, there are many different
methods to find the efficient frontier in IM problems. In our research group, Data
Envelopment Analysis (DEA) has been used to solve multiple criteria optimization
problems in polymer processes [9], [22], [33], [36], [41]. DEA has the advantage of
finding efficient solutions through the use of a series of linear optimization problems,
which is very computationally convenient. The efficient frontier identified through
DEA, however, is often times constrained to convexity. If the true efficient frontier of
a multiple criteria optimization problem is not convex, then several efficient solutions
might escape detection through DEA as shown in the following comparison of

efficient frontier, using the proposed method and DEA. The reader interested in
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solving multiple criteria optimization problem using DEA can consult the previous

works of our research group [46-47]. The results are shown in Figure 5.5-1.
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Figure 5.5-1. Efficient frontier using DEA solve.

Figure 5.5-1 illustrates the result with DEA. Only two efficient solutions are detected.
Applying multiple criteria optimization concepts as shown in the proposed method,

the completed characterization of EF is made, as it can be verified in Figure 5.5-2.
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Figure 5.5-2. Efficient frontier using Proposed method.

From this comparison, an obvious combination of the strengths of both methods
could be to use DEA to find the location of the efficient frontier with computational
convenience to then finely characterize the efficient frontier through the use of the
method proposed here. This integration will be pursued in our research group in the

future.
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6 CHAPTER

CONCLUSION AND FUTURE WORK

The performance of the strategy was demonstrated through three case studies.

In the first two cases, the optimization problem was defined considering two
conflicting criteria and two controllable variables, while a third case involved three
PMs and two controllable variables evidencing the capabilities of the strategy in

finding the efficient frontiers.

The strategy is feasible, effective and efficient on prescribing competitive processing
conditions in injection molding operations, and provides important information on the

tradeoffs of quality criteria in conflict with a modest number of runs.

An experimental validation of the method is currently being undertaken at The Ohio
State University. It is expected that these results follow the performance shown with

simulations.

We are also currently working on improving the usability in the process window to

make the method more applicable in the industry.
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When compared to DEA, it is clear that the proposed strategy provides a better
characterization of the efficient frontier, although at the cost of a larger
computational burden mainly arising from requiring extensive pairwise comparisons.
A strategy that combines the strength of DEA and the method proposed here will be

developed in our group in the future.

Another idea that needs to be explored is the use of clustering techniques to make
pairwise comparisons less numerous and therefore to provide the possibility to

expand the application of the proposed method to several additional PMs.

Finally, a deeper look into how to transfer the concept of multiple criteria process

window to the actual manufacturing site will be critical.

As a future work, we are also currently working on improving the usability in the

process window to make the method more applicable in the industry in higher

dimensionality.

Develop more industry-friendly process window. Then apply the methodology for

more complicate problems such as:
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8 APPENDIX A

This appendix contains all the data associated to the efficient solutions in all cases

studies.

Table 8-1. Predicted efficient solutions and simulated efficient solutions of Case 1.

Controllable variables Predicted - Efficient Validated - Efficient
Solutions Solutions

Melt Packing Total | Volumetric | Total Volumetric

Run Temperature Pressure Weight | shrinkage | Weight shrinkage
(°C) (MPa) (g) (mm) () (mm)
1 227 13.79 33.6932 15.56 33.6983 15.57
2 228 13.79 33.6588 15.64 33.6760 15.39
3 230 13.79 33.6244 15.72 33.6337 15.87
4 232 13.79 33.5901 15.80 33.5902 15.6
5 233 13.79 33.5558 15.88 33.5685 16.03
6 235 13.79 33.5216 15.96 33.5216 15.82
7 237 13.79 33.4875 16.04 33.4832 16.29
8 238 13.79 33.4534 16.13 33.4618 15.89
9 240 13.79 33.4194 16.22 33.4199 16.13
10 242 13.79 33.3854 16.30 33.3775 16.28
11 243 13.79 33.3515 16.39 33.3567 16.4
12 245 13.79 33.3176 16.48 33.3155 16.54
13 247 13.79 33.2838 16.57 33.2726 16.81
14 248 13.79 33.2500 16.66 33.2525 16.66
15 250 13.79 33.2163 16.76 33.2108 16.76
16 252 13.79 33.1827 16.85 33.1690 16.82
17 253 13.79 33.1491 16.95 33.1485 16.92
18 255 13.79 33.1156 17.05 33.1077 17.05
19 257 13.79 33.0821 17.15 33.0665 17.16
20 258 13.79 33.0487 17.25 33.0464 17.23
21 260 13.79 33.0153 17.35 33.0069 17.33
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Controllable variables

Predicted - Efficient

Validated - Efficient

Solutions Solutions

Melt Packing Total | Volumetric | Total Volumetric
Run Temperature Pressure Weight | shrinkage | Weight shrinkage

(°C) (MPa) (g) (mm) (g) (mm)
23 227 16.55 33.7664 15.49 33.7574 15.57
24 227 17.93 33.8013 15.46 33.7881 15.56
25 227 19.30 33.8351 15.43 33.8189 15.24
26 227 20.68 33.8678 15.40 33.8504 15.56
27 227 22.06 33.8994 15.37 33.8813 15.58
28 227 23.44 33.9298 15.34 33.9112 15.5
29 227 24.82 33.9592 15.31 33.8630 15.52
30 227 26.20 33.9875 15.29 33.9340 15.5
31 227 27.58 34.0146 15.26 33.9726 15.22
32 227 28.95 34.0406 15.24 34.0268 15.39
33 227 30.33 34.0656 15.22 34.0543 15.41
34 227 31.71 34.0894 15.20 34.0856 15.44
35 227 33.09 34.1121 15.18 34.1201 15.4
36 227 34.47 34,1337 15.16 34.1508 15.19
37 227 35.85 34.1542 15.14 34.1765 15.6
38 227 37.22 34.1736 15.13 34.2051 15.13
39 227 38.60 34,1919 15.11 34.2225 15.14
40 227 39.98 34.2090 15.10 34.2127 15.13
41 227 41.36 34.2251 15.09 34.2229 15.08

90




Table 8-2. Predicted efficient solutions and simulated efficient solutions of Case 2.

Controllable variables

Predicted - Efficient

Validated - Efficient

Solutions Solutions
Run Temlreil::ture Teml\::::ture Cycle Time T'otal Cycle Time T'otal
o N (sec) Weight (g) (sec) Weight (g)
(°C) (°C)
1 227 13 202.4640 33.7292 202.8211 33.7279
2 229 13 203.0509 33.6950 203.327 33.6914
3 230 13 203.6302 33.6607 203.8236 33.6556
4 232 13 204.2019 33.6264 204.3212 33.62
5 234 13 204.7660 33.5920 204.8262 33.584
6 235 13 205.3225 33.5575 205.5661 33.5492
7 237 13 205.8715 33.5229 206.0727 33.5144
8 239 13 206.4128 33.4883 206.5703 33.479
9 240 13 206.9466 33.4537 207.0663 33.4444
10 242 13 207.4728 33.4190 207.5726 33.4089
11 244 13 207.9914 33.3842 208.0675 33.3747
12 245 13 208.5025 33.3493 208.3251 33.3401
13 247 13 209.0059 33.3144 208.8233 33.3059
14 248 13 209.5018 33.2794 209.3261 33.2705
15 250 13 209.9900 33.2444 209.8251 33.2363
16 252 13 210.4707 33.2093 210.3194 33.2023
17 253 13 210.9438 33.1741 210.8182 33.1681
18 255 13 211.4094 33.1389 211.3256 33.1344
19 257 13 211.8673 33.1036 211.8183 33.101
20 258 13 212.3177 33.0683 212.0735 33.067
21 260 13 212.7605 33.0329 212.5729 33.0336
22 260 15 213.4914 33.0308 216.5723 33.0312
23 260 17 215.2150 33.0286 220.8155 33.0285
24 260 18 217.9310 33.0264 225.0759 33.0266
25 260 20 221.6396 33.0241 229.8162 33.0232
26 260 22 226.3407 33.0217 234.8173 33.0208
27 260 24 232.0343 33.0193 240.0635 33.0192
28 260 26 238.7204 33.0168 245.569 33.0163
29 260 27 246.3991 33.0142 251.5715 33.0126
30 260 29 255.0703 33.0116 258.0772 33.0108
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Controllable variables

Predicted - Efficient

Validated -

Solutions Efficient Solutions
Melt Mold Cycle Total Cycle Total
Run Temperature | Temperature Time Weight Time Weight
(°C) (°C) (sec) (g) (sec) (g)
31 260 31 264.7341 | 33.0089 | 265.3207 | 33.0075
32 260 33 275.3903 | 33.0062 | 273.0679 | 33.004
33 260 35 287.0391 | 33.0034 | 281.3291 | 33.0015
34 260 36 299.6804 | 33.0005 | 290.8255 | 32.9993
35 260 38 313.3143 | 32.9975 | 301.3164 | 32.9963
36 260 40 327.9406 | 32.9945 | 313.0744 | 32.9932
37 260 42 343.5595 | 32.9914 | 326.5683 | 32.9904
38 260 44 360.171 | 32.9883 | 342.3226 | 32.9875
39 260 45 377.7749 | 32.9851 | 361.5669 | 32.9848
40 260 47 396.3714 | 32.9818 | 385.0742 | 32.9821
41 260 49 415.9604 | 32.9785 | 416.5613 | 32.9792
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Table 8-3. Predicted efficient solutions and simulated efficient solutions of Case 3.

Predicted - Efficient Solutions Validated - Efficient Solutions

Total Volumetric Cycle Total Volumetric Cycle

Run Weight | shrinkage . Weight | shrinkage time

time (sec)

() (mm) (g) (mm) (sec)
1 33.6893 15.57 254.3238 | 33.6931 15.56 254.3239
2 33.6542 15.65 254.8997 | 33.6568 15.64 254.8999
3 33.6193 15.73 255.4676 | 33.6208 15.73 255.4679
4 33.5845 15.81 256.0275 | 33.5850 15.81 256.0279
5 33.5498 15.89 256.5795 | 33.5495 15.90 256.5799
6 33.5153 15.97 257.1234 | 33.5142 15.98 257.1240
7 33.4809 16.05 257.6594 | 33.4792 16.07 257.6600
8 33.4467 16.14 258.1873 | 33.4444 16.15 258.1882
9 33.4127 16.22 258.7073 | 33.4099 16.24 258.7083
10 33.3787 16.31 259.2193 | 33.3756 16.33 259.2204
11 33.3450 16.40 259.7233 | 33.3416 16.42 259.7246
12 33.3113 16.49 260.2193 | 33.3078 16.51 260.2208
13 33.2779 16.58 260.7073 | 33.2743 16.60 260.7090
14 33.2445 16.67 261.1873 | 33.2410 16.69 261.1893
15 33.2113 16.76 261.6594 | 33.2080 16.78 261.6616
16 33.1783 16.86 262.1235 | 33.1752 16.87 262.1259
17 33.1454 16.95 262.5795 | 33.1427 16.97 262.5822
18 33.1126 17.05 263.0276 | 33.1104 17.06 263.0305
19 33.0800 17.15 263.4677 | 33.0783 17.16 263.4709
20 33.0475 17.25 263.8998 | 33.0466 17.25 263.9033
21 33.0152 17.35 264.3239 | 33.0150 17.35 264.3277
22 33.7245 15.55 254.3238 | 33.7302 15.53 254.3239
23 33.7587 15.52 254.3238 | 33.7662 15.49 254.3239
24 33.7918 15.49 254.3238 | 33.8011 15.46 254.3238
25 33.8240 15.47 254.3238 | 33.8349 15.43 254.3238
26 33.8551 15.44 254.3238 | 33.8676 15.40 254.3238
27 33.8852 15.42 254.3238 | 33.8992 15.37 254.3238
28 33.9143 15.39 254.3238 | 33.9297 15.34 254.3238
29 33.9424 15.37 254.3238 | 33.9591 15.31 254.3239
30 33.9694 15.35 254.3238 | 33.9873 15.29 254.3239
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Predicted - Efficient Solutions

Validated - Efficient Solutions

Total | Volumetric Cycle Total | Volumetric Cycle

Run Weight | shrinkage time Weight | shrinkage time

() (mm) (sec) (g) (mm) (sec)
31 33.9955 15.32 254.3238 | 34.0145 15.26 254.3239
32 34.0205 15.30 254.3238 | 34.0405 15.24 254.3240
33 34.0445 15.27 254.3238 | 34.0655 15.22 254.3240
34 34.0675 15.25 254.3238 | 34.0893 15.20 254.3241
35 34.0894 15.23 254.3238 | 34.1121 15.18 254.3242
36 34.1104 15.21 254.3238 | 34.1337 15.16 254.3242
37 34.1303 15.18 254.3238 | 34.1542 15.14 254.3243
38 34.1492 15.16 254.3238 | 34.1736 15.13 254.3244
39 34.1671 15.14 254.3238 | 34.1919 15.11 254.3245
40 34.1840 15.12 254.3238 | 34.2091 15.10 254.3246
41 34.1999 15.10 254.3238 | 34.2252 15.09 254.3247
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Table 8-4. Predicted efficient settings for Case 3.

Controllable variables
Melt Packing
Run Temperature | Pressure
(°c) (MPa)
1 227 13.79
2 228.65 13.79
3 230.3 13.79
4 231.95 13.79
5 233.6 13.79
6 235.25 13.79
7 236.9 13.79
8 238.55 13.79
9 240.2 13.79
10 241.85 13.79
11 243.5 13.79
12 245.15 13.79
13 246.8 13.79
14 248.45 13.79
15 250.1 13.79
16 251.75 13.79
17 253.4 13.79
18 255.05 13.79
19 256.7 13.79
20 258.35 13.79
21 260 13.79
22 227 15.1685
23 227 16.547
24 227 17.9255
25 227 19.304
26 227 20.6825
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Controllable variables

Melt Packing
Run Temperature | Pressure

(°c) (MPa)
27 227 22.061
28 227 23.4395
29 227 24.818
30 227 26.1965
31 227 27.575
32 227 28.9535
33 227 30.332
34 227 31.7105
35 227 33.089
36 227 34.4675
37 227 35.846
38 227 37.2245
39 227 38.603
40 227 39.9815
41 227 41.36
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9 APPENDIXB

In this appendix, a way of validation of the proposed method is presented. Through
two case studies the methodology to generate multiple criteria process windows is
validated. These cases are studied and presented in a previous chapter. The way to
validate the results obtained is classified in 4 areas the CV’s to confirm if after the
application of the proposed method the efficient frontier and the associated values of

CVs are in the same expected area.

First we have to identify the 4 areas of CVs. After that, make a graph with CVs
classification as well the feasible region. As that way, we map-out the values of CVs
that are in the efficient frontier. If the dominate values of CVs map-out to the same
efficient frontier area, the validation indicate that the method to identified the EF is

effective and efficient.

9.1 Case A
The case 1: Minimize Shrinkage and Minimize Total Weight, presented in the section
5.1, is now validated using a method of classification. For this purpose here present

the CVs classified

97



Case A
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Figure 9.1-1. CVs classification by 4 position groups.

For this aim, the grid of combination of CV’s is classified in 4 areas. After the

application of the method, the efficient frontier is found as well the associated values

3 respectively.

of CVs and is shown in the follow Figure 9.1-2 and Figure 9.1
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Figure above shows the dominate set of CVs are found setting the Melt Temperature
in the high values. Base on previous classification the values of CVs are in the
square 2 and 4. In addiction we expect that the efficient frontier have to be in the

Same squares.

ll_l ll_l o [} [} o o [
I [} [} M iy [m)] o0 [}
o}
[a}8]
o}
lele
s} 8]
o}
o}
o] o0
oo 50
coood
oo foXe3e]
goQooool
coooooo
[$]s]¢]s]ele]e’
¢]s]s] oY s)sYe]
CoooOnoo
go oo
o] [¢]s)s]e]
FEoodad
i lefeleye
Coddog
Oooo
Hldooa
OOOOO o
o
o
epep ety
ég%?b o

Min. F2-Shrinkage

1 ! !

= o o

] wm
1 1 1

-0 -08 -086 —EII.4 —EII.2 D.IEI D.I2 D.I4 0.6 0.8 1.0
Min. F1-Total Weight

Figure 9.1-3. Efficient frontier after applied the proposed method.

Figure 9.1-4 shown the EF classified in base in the first classification of CVs.
According to the first classification, in the previous Figures the dominate area is in

the square 2 and 4. Now we expect that the EF is in the same squares.
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In addition, when the total of combination is high, the classification or clustering will

be an option. For this case if we only want to work with the square 2 and 4 we can

obtain the result using less number of predictions.
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Figure 9.1-4. Efficient frontier classified in 4 areas.

9.2 CaseB

The case 2: Minimize Total Weight and Cycle Time, presented in the section 5.2, is

now evaluated using the same method for validation.
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10 APPENDIXD

This appendix shows different optimization cases considering simultaneously three criteria.
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11 APPENDIX D

This appendix shows the analysis of variance for case study 1.

Response Surface Regression: Total Weight versus Melt tempera, Packing pressure

Estimated Regression Coefficients for Total Weight (g)

Term Coef SE Coef T P
Constant 0.09993 0.01939 5.155 0.014
Melt temperature -0.51900 0.01061 -48.912 0.000
Packing pressure 0.46431 0.01061 43.755 0.000
Melt temperature*Melt temperature 0.02030 0.01840 1.103 0.351
Packing pressure*Packing pressure -0.08994 0.01838 -4.894 0.016
Melt temperature*Packing pressure 0.03197 0.01299 2.460 0.091

S = 0.0259914 PRESS = 0.0241289
R-Sg = 99.93% R-Sqg(pred) = 99.18% R-Sg(adj) = 99.82%

Based on P-values, Total weight is significant affected by Melt temperature, Packing
pressure and Packing pressure”2. The significant effect is selected based on the P-
value < .05. The R-sq value is more than 99%.

Response Surface Regression: Volumetric S versus Melt tempera, Packing presure

Estimated Regression Coefficients for Volumetric Shrinkage (mm)

Term Coef SE Coef T P
Constant -0.04368 0.017522 -2.493 0.088
Melt temperature 0.84304 0.009591 87.903 0.000
Packing pressure -0.16997 0.009591 -17.721 0.000
Melt temperature*Melt temperature 0.03128 0.016629 1.881 0.157
Packing pressure*Packing pressure 0.05674 0.016611 3.416 0.042
Melt temperature*Packing pressure 0.04266 0.011744 3.632 0.036

S = 0.0234922 PRESS = 0.0198997
R-Sq = 99.96% R-Sq(pred) = 99.55% R-Sqg(adj) = 99.90%

Based on P-values, Volumetric shrinkage is significant affected by Melt temperature,
Packing pressure, Packing pressure®2 and the interaction between Melt temperature
and Packing pressure. The R-sq value is more than 99%.
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Figure 53. Residual plots of Total weight for case 1. The normal probability
plot in the up left side shows that the points are adjusted at the line. The
Residual versus fit plot in the up right side, shows that the points are
randomly dispersed around the horizontal axis. In the down right side the
residual versus order plot shows an independency between runs.
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Figure 54. Residual plot of Volumetric shrinkage for case 1. The normal
probability plot in the up left side shows that the points are adjusted at the
line. The Residual versus fit plot in the up right side, shows that the points are
randomly dispersed around the horizontal axis. In the down right side the
residual versus order plot shows an independency between runs.
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12 APPENDIXD

This appendix shows the analysis of variance for case study 2.

Response Surface Regression: Cycle Time ( versus Melt Tempera, Mold Tempera

Estimated Regression Coefficients for Cycle Time (sec)

Term Coef SE Coef T P

Constant -0.456286 0.004126 -110.595 0.000

Melt Temperature °C 0.041903 0.002260 18.543 0.000

Mold Temperature °C 0.961652 0.002260 425.556 0.000

Melt Temperature °C* -0.003565 0.003914 -0.911 0.430
Melt Temperature °C

Mold Temperature °C* 0.466544 0.003914 119.199 0.000
Mold Temperature °C

Melt Temperature °C* -0.006496 0.002768 -2.347 0.101
Mold Temperature °C

S = 0.00553524 PRESS = 0.00111391

R-Sg = 100.00% R-Sg(pred) = 99.98% R-Sg(adj) = 100.00%

Based on P-values, Cycle time is significant affected by Melt temperature, Mold
temperature and Mold temperature”®2. The R-sq value is more than 99%.

Response Surface Regression: Total Weight versus Melt Tempera, Mold Tempera

Estimated Regression Coefficients for Total Weight (g)

Term Coef SE Coef T P

Constant 0.015716 0.004603 3.415 0.042

Melt Temperature °C -0.928009 0.002521 -368.119 0.000

Mold Temperature °C -0.074752 0.002521 -29.652 0.000

Melt Temperature °C* -0.008281 0.004366 -1.897 0.154
Melt Temperature °C

Mold Temperature °C* -0.008682 0.004366 -1.988 0.141
Mold Temperature °C

Melt Temperature °C* 0.002070 0.003088 0.671 0.551
Mold Temperature °C

S = 0.00617504 PRESS = 0.00127854

R-Sg = 100.00% R-Sg(pred) = 99.98% R-Sg(adj) = 99.99%

Based on P-values, Total weight is significant affected by Melt temperature and
Packing pressure. The R-sq value is more than 99%.
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Figure 55. Residual plot for Cycle time. The normal probability plot in the up
left side shows a good adjusted of the points considering the line. The Residual
versus fit plot in the up right side, shows that the points are randomly dispersed
around the horizontal axis. In the down right side the residual versus order plot
shows an independency between runs around the horizontal axis.
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Figure 56. Residual plot for Total weight. The normal probability plot in the up
left side shows that the points are adjusted at the line. The Residual versus fit
plot in the up right side, shows that the points are randomly dispersed around
the horizontal axis. In the down right side the residual versus order plot shows
an independency between runs.
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13 APPENDIXD

This appendix shows the analysis of variance for case study 3.

Response Surface Regression: Total Weight versus Melt tempera, Packing pressure

Estimated Regression Coefficients for Total Weight (g)

Term Coef SE Coef T P
Constant 0.11472 0.02426 4.728 0.018
Melt temperature -0.51282 0.01328 -38.617 0.000
Packing pressure 0.46849 0.01328 35.276 0.000
Melt temperature*Melt temperature 0.01207 0.02303 0.524 0.636
Packing pressure*Packing pressure -0.08432 0.02300 -3.666 0.035
Melt temperature*Packing pressure 0.04555 0.01626 2.801 0.068

S = 0.0325283 PRESS = 0.0367368
R-Sq = 99.89% R-Sq(pred) = 98.74% R-Sq(adj) = 99.71%

Based on P-values, Total weight is significant affected by Melt temperature, Packing
pressure and Packing pressure”2. The R-sq value is more than 99%.

Response Surface Regression: Volumetric S versus Melt tempera, Packing pressure

Estimated Regression Coefficients for Volumetric Shrinkage (mm)

Term Coef SE Coef T P
Constant -0.04745 0.06151 -0.771 0.497
Melt temperature 0.81764 0.03367 24.284 0.000
Packing pressure -0.19111 0.03367 -5.676 0.011
Melt temperature*Melt temperature 0.05450 0.05838 0.933 0.419
Packing pressure*Packing pressure 0.01189 0.05832 0.204 0.852
Melt temperature*Packing pressure 0.02170 0.04123 0.526 0.635

S = 0.0824726 PRESS = 0.245544
R-Sq = 99.52% R-Sq(pred) = 94.24% R-Sq(adj) = 98.72%

Based on P-values, Volumetric shrinkage is significant affected by Melt temperature
and Packing pressure. The R-sq value is more than 98%.
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Figure 57. Residual plot for Total weight. The normal probability plot in the up
left side shows that the points are adjusted at the line. The Residual versus fit plot
in the up right side, shows that the points are randomly dispersed around the
horizontal axis. In the down right side the residual versus order plot shows an
independency between runs.
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Figure 58. Residual plot for Volumetric shrinkage. The normal probability plot in
the up left side shows that the points are adjusted at the line. The Residual versus fit
plot in the up right side, shows that the points are randomly dispersed around the
horizontal axis, and a not linear distribution, based on the test this data met the
equal variance. In the down right side the residual versus order plot shows an
independency between runs.
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