


Abstract

Design techniques for analog fuzzy integrated circuits (ICs) and control imple-

mentations are used to develop a programmable and modular analog fuzzy controller.

It improves flexibility and accuracy of analog fuzzy systems and makes them suitable

for diverse applications.

Programmability of the gaussian-type function fuzzifier as well as current mode

designs both for an n-input “minimum extracting” circuit with 4n+1 transistors and

for an analog multiplier-divider circuit based on operational transconductance ampli-

fiers are presented.

The designed circuitry consists solely of Metal-Oxide-Semiconductor (MOS) tran-

sistors compatible with standard Complementary-Metal-Oxide-Semiconductor (CM-

OS) fabrication processes of the MOSIS company.



Compendio

Las técnicas de diseño para circuitos integrados analógicos difusos y para im-

plementaciones en control son usadas para desarrollar un controlador analógico di-

fuso programable y modular. Este mejora la flexibilidad y precisión de los sistemas

analógicos difusos haciéndolos más convenientes para diversas aplicaciones.

Se presenta un fuzificador cuya función de membreśıa tipo gausiana es program-

able, un circuito en modo de corriente que calcula el mı́nimo de n-entradas con 4n+1

transistores y un circuito en modo de corriente multiplicador-divisor analógicos basado

en amplificadores de transconductancia.

Los circuitos diseñados están compuestos sólo por semiconductores de óxidos

metálicos, los cuales son compatibles con la tecnoloǵıa estándar de semiconductores

complementarios de óxidos metálicos del proceso de fabricación de circuitos integrados

de la compáıa MOSIS.
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Chapter 1

Introduction

Control theory deals with the behavior of dynamical systems over time. A system

model is a mathematical representation of an engineering phenomenon that involves

an input signal, an output signal, and a state function. When one or more output

variables of a plant need to show certain behavior over time, a controller may be able

to manipulate the plant inputs to realize this behavior at its output, in which case a

control system is created.

Figure 1.1 shows a block diagram of an open-loop control system. The system is

called open-loop because the output of the plant is not used to modify the controller’s

input. One of the main disadvantages of this type of control system is its sensitivity

to the dynamics of the system under control. To solve this problem, control theory

introduces feedback or closed-loop control system (Figure 1.2). For these control

system the output of the plant is used by the controller to determine the input to

the plant. The control problem is then of synthesizing a controller such that the

closed-loop system meets the behavior objectives. General control objectives include:

stability of the state function, performance optimization, robustness with respect to

1
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signals noise and poorly modeled dynamics, and avoidance of unsafe states.

Input
 Controller
 Plant
 Output

Reference


Figure 1.1: Open-loop control system

Reference
  
 Controller
 Plant
 Output


Sensor


_


Figure 1.2: Closed-loop control system

Classical control theory has been successfully applied to a large variety of control

processes. However, complex, nonlinear, time varying systems or systems suffering

from noisy measurements are very difficult to control because of the mathematics

involved.

The main idea behind fuzzy control is to build a model capable of controlling the

plant without necessarily having a mathematical model as those in modern control

theory. Instead, a set of rules is used to control the plant. These rules can be derived

in different ways [1].

Fuzzy control is useful when a workable mathematical model for a plant is very

difficult or impossible to derive or the mathematical model is very complex and com-

puting it in real time is not an option.

Fuzzy controllers are conceptually simple. They consist of an input stage, a rule
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processing stage, and an output stage. The input stage maps inputs from sensor or

other devices to generate an appropriate membership function or truth value which

are fed into the processing stage. The processing stage invokes rules and generates

a result calculated from the rules’ outputs. Finally, the output stage converts the

combined result back into a specific control output value.

Practical Fuzzy Logic Systems (FLS) realizations may be implemented with soft-

ware and/or hardware systems. Hardware implementation of fuzzy logic have shorter

response times, and are preferred in applications demanding real time performance

and/or low area occupation and power consumption [2]. The hardware realization

may be either digital or analog. In most cases, digital implementations have greater

flexibility through their external memory, although they are usually slower than their

analog counterparts, for similar logic performance. The main drawback of analog

hardware implementations is limited complexity and modifiability of the system. This

characteristic makes most realizations limited to specific applications. Another draw-

back is the higher cost of developing analog circuitry.

On the other hand, analog realizations are preferred for their high speed and

low area, and power consumption, when designing fully parallel and multivalued

systems. Furthermore, since sensors and actuators employed in many applications

are continuous, analog fuzzy controller chips look more attractive than their digital

counterpart because the latter requires Analog-to-digital (A/D) and Digital-to-Analog

(D/A) converters.
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1.1 Objectives

The goal of this work is to design a programmable analog fuzzy controller to

improve the flexibility of analog fuzzy systems, and hence to make them adaptable

to different applications or plant control.

Programmability is achieved at the input and output stages through voltage or

current levels. The circuits that provide these voltages i.e., Low Dropout Regulators

(LDO), voltage regulators, and so on are not treated in this work.

In addition, a Sugeno’s inference engine [3] and a regular and modular minimum

extracting circuit structure are combined to provide the expandability needed to ac-

commodate multiple inputs. Furthermore, the single-stage structure used minimizes

accumulated errors and maximizes operation speed.

The methodology used in the design follows a combination of top-down and

bottom-up approaches. The design tasks at each level consisted of sequences of

synthesis, analysis, and verification steps. Synthesis steps were devoted to finding

solutions to the problems that appeared at each level. Analysis tasks measured the

system characteristics according to each design level goal, and finally, the verifica-

tion steps were applied to the set of testing methods (simulations) that evaluated if

the solutions proposed at each level met the specifications and whether or not they

altered the global system behavior.

The analog design styles adopted for the building blocks and final implementation

fall in the following categories:

• Analog design style : Conventional continuous time schemes[2]

• Building blocks
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1. Fuzzification stage : Transconductance-mode Membership Function Cir-

cuits

2. Rule processing stage : Current-mode Minimum Operator

3. Output : Sugeno’s defuzzifier

1.2 Thesis overview

A review of the mathematical underpinnings of fuzzy logic and fuzzy sets is given

in Chapters 2, to provide a backdrop to present research. This chapter provide details

on the areas of fuzzy sets and logic that are relevant to the work presented in later

chapters.

Chapter 3 introduces the field of fuzzy Logic Systems. The structure of this system

is analyzed in order to identify the various stages and building blocks considered in

its hardware implementation. In addition a very brief review of control system theory

is provided.

Chapter 4 explains analysis and synthesis steps devoted to the design of each

Fuzzy Logic System stage.

Chapter 5 presents circuit synthesis of the system and its PSpice simulation re-

sults. Furthermore, an application example illustrates the performance of the pro-

posed fuzzy controller and Matlab simulations validate these results.

Finally, Chapter 6 presents a summary and conclusions from this research and

introduces directions for future work.



Chapter 2

Fuzzy Sets and Logic

2.1 Historical overview of fuzzy sets

The precision of mathematics owes its success in large part to the efforts of

Aristotle and the philosophers who preceded him. In their efforts to devise a concise

theory of logic and mathematics, the so-called “Laws of Thought”were posited [4].

One of these, the “ Law of the Excluded Middle,”states that every proposition must

either be True or False. When Parminedes proposed the first version of this law

around 400 B.C., there were already strong and immediate objections; for example,

Heraclitus proposed that things could be simultaneously True and not True.

Plato laid the foundation for what would become fuzzy logic, indicating that there

was a third region beyond True and False where these opposites “tumbled about”.

But it was Lukasiewicz who first proposed a systematic alternative to the bi-valued

logic of Aristotle [5].

In the early 1900’s, Lukasiewicz described a three-valued logic, along with the

6
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mathematics to accompany it. The third value he proposed can best be translated as

the term “possible,” and he assigned it a numeric value between True and False [5].

Eventually, he proposed an entire notation and an axiomatic system from which he

hoped to derive modern mathematics.

Later, he explored four-valued and five-valued logics, and then declared that

in principle there was nothing to prevent the derivation of an infinite-valued logic.

Lukasiewicz felt that three- and infinite-valued logics were the most intriguing, but

he ultimately settled on a four-valued logic because it seemed to be the most easily

adaptable to Aristotelian logic [5].

Knuth proposed a three-valued logic, similar to Lukasiewicz’s, from which he

speculated that mathematics would become even more elegant than in traditional

two-values logic [6]. His insight, apparently missed by Lukasiewicz, was to use the

integral values {-1, 0, +1} rather than {0, 1, 2}. Nonetheless, this alternative failed

to gain acceptance and has passed into relative obscurity.

The notion of fuzzy set appears for the first time in a memo from the University

of California at Berkeley written by Lotfi A. Zadeh in 1964 . It was later published

in The Information and Control Journal [7]. From that time on, it has served as the

foundation for numerous papers on fuzzy sets from authors all over the world and set

the basis for fuzzy logic. Fuzzy logic is basically a logic with multiple values, that

allows values between the conventional evaluations of the precise logic 1 and 0. It

also includes operations for ‘and’, ‘or’, ‘not’ and ‘if-then’.

Hence, fuzzy logic extends conventional Boolean logic to handle the concept of

the partial truth – the values falling between “ totally true” and “ totally false ”.

These values are dealt with using degree of membership of an element to a set. The

degree of membership can take any real value in the interval [0,1]. Fuzzy logic makes
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it possible to imitate the behavior of human logic, which tends to work with “fuzzy”

concepts of truth.

Although fuzzy control was not the first engineering application of fuzzy logic, it

was the first application that drew huge attention to the practical potential of fuzzy

set theory [1]. It uses many elements of fuzzy logic to define a rule-base for the

controller .

2.2 Elements of Fuzzy Sets

2.2.1 Basic Concepts

In classical or crisp sets, an element in the universe has a well defined membership

or non membership to a given set. Membership to a crisp set F can be defined through

a membership function defined for every element x of the universe as

µF (x) =





1 x ∈ F

0 x /∈ F
(2.1)

An example of a graphic for the membership function of a crisp set is illustrated in

Figure 2.1. Here, scanning the universe, there is an abrupt and well-defined transition

from membership to non membership and vice versa. It is said to be “crisp”.

For an element in a universe with fuzzy sets, the membership transition can be

gradual. So the membership function can take any value between 0 and 1. This

transition among various degrees of membership can be thought of as conforming

to the fact that the boundaries of the fuzzy sets are vague and ambiguous. Fuzzy

membership counterpart for Figure 2.1 would be the Figure 2.2. Hence, membership

of an element from the universe in this set is measured by a function that attempts to
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Figure 2.1: Classic sets

describe vagueness and ambiguity. In fuzzy logic, linguistic variables take on linguistic

values which are words (linguistic terms) with associated degrees of membership in

the set. Thus, instead of a variable height assuming a numerical value of 1.75 meters,

it is treated as a linguistic variable that may assume, for example, linguistic values of

tall with a degree of membership of 0.92, ”very short” with a degree of 0.06, or ”very

tall” with a degree of 0.7. Each linguistic term is associated with a fuzzy set, each of

which has a defined membership function (MF).

1


Universe
Fuzzy


Figure 2.2: Fuzzy sets

Formally, a fuzzy set, is defined as a set of pairs where each element in the universe
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U has a degree of membership associated with it:

F = {(x, µF (x)) | x ∈ U, µF (x) ∈ [0, 1]} (2.2)

µF (x) is known as the membership function of the set F. Most often, one refers to the

fuzzy set just by mentioning the membership function, the universe being implicit.

The value µF (x) is the degree of membership of object x to the fuzzy set F.

µF (x) = 0 means that x does not belong at all to the set, while µF (x) = 1 means

that the element is totally within the set [7].

As an example consider the ambient temperature with the concepts of hot and

cold. The characteristic functions in the classical logic for this example are given by

µHot(x) =





1 if x ≥ 30◦C

0 if x < 30◦C
(2.3)

and

µcold(x) = 1 − µHot(x) =





1 if x ≤ 30◦C

0 if x > 30◦C
(2.4)

The 30 ◦C boundary in this example is arbitrary. Independently of this boundary

value, classical logic cannot interpret intermediate values. A graph of the membership

function for the classic temperature variable is shown in Figure 2.3.

On the other hand, fuzzy logic solves the crisp problem with membership functions

such as given by

µHot(x) =





0 if x ≤ 29◦C

X−29

2
if 29◦C < x < 31◦C

1 if x ≥ 31◦C

(2.5)
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Figure 2.3: Classic temperature set

and

µCold(x) = 1 − µHot(x) =






0 if x ≥ 31◦C

31−X
2

if 29◦C < x < 31◦C

1 if x ≤ 29◦C

(2.6)

Figure 2.4 shows a representation of a fuzzy set using these membership functions.

In this set, a 30.5◦C temperature belongs 25% to cold and 75% to hot.
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Figure 2.4: Fuzzy temperature set

Further refinements, such as introducing an intermediate warm temperature, can

be made. A graph of the membership functions for the classic and fuzzy temperature

sets are shown in Figure 2.5. In this Figure, temperature values between 29 and

31◦C are represented by other classic and fuzzy sets. Values from 29 to 30◦C belong,

with different extent, both to cold and warm membership functions. Similarly, values

from 30 to 31◦C belong, with different extent, both to warm and hot membership
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Figure 2.5: Fuzzy temperature set with more precision

In any case, the crisp nature is always present in classical sets, while fuzzy sets

allow gradual membership to better adapt to our subjective criteria.

The membership function µF (u) describes, therefore, the degree of membership

of the different elements of the speech universe from fuzzy set. The selection of the

form of membership function is subjective and depends on the context. However,

for practical reasons, triangular, trapezoidal and bell shape functions are the most

commonly used in engineering applications. These are shown in Figure 2.6.

2.2.2 Basic operations on Fuzzy Sets

Fuzzy Sets can be operated with each other in the same way as classical sets.

Classical sets will be denoted by simple capital letters, like A, B, C, whereas fuzzy

sets by adding a tilde underneath these letters, i.e. A
˜
, B

˜
, C

˜
.
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Figure 2.6: Different types of fuzzy set membership functions

Empty and Universal Fuzzy Sets

A fuzzy set is empty iff µφ(x) = 0 and universal iff µx(x) = 1 ∀x ∈ U .

Equal Sets

Two fuzzy sets A
˜

and B
˜

are equal iff

µA
˜
(x) = µB

˜
(x) ∀x ∈ U. (2.7)

Absolute and Relative Complements

The absolute complement(NOT) of a fuzzy set A
˜

is denoted by A
˜

and is defined

by

µA
˜
(x) = 1 − µA

˜
(x) ∀x ∈ U. (2.8)

Figure 2.7 shows absolute complements of fuzzy set.
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Figure 2.7: The Absolute Complement of a fuzzy set

The relative complement of A
˜

with respect to B
˜
, denoted by B

˜
- A

˜
, is defined by

µB
˜
−A

˜
(x) = µB

˜
(x) − µA

˜
(x) (2.9)

provided that

µB
˜
(x) ≥ µA

˜
(x) (2.10)

Figure 2.8 shows relative complements of fuzzy set.

B


      A


B - A


Figure 2.8: Relative complement of a fuzzy set

The Union of fuzzy sets

The Union of Fuzzy Sets A
˜

and B
˜

is a fuzzy set whose membership function for

an element of the speech universe is the greatest or maximum of the membership
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functions of A
˜

and B
˜
.

µA
˜
∪B

˜
(x) = max(µA

˜
(x), µB

˜
(x)) (2.11)

Figure 2.9 shows union of fuzzy sets.

A               B

A U B


Figure 2.9: The Union on fuzzy sets

The intersection of fuzzy Sets

The intersection of fuzzy sets A
˜

and B
˜

is a fuzzy set whose membership function

for an element of the speech universe is the lowest or minimum of the membership

functions of A
˜

and B
˜
.

µA
˜
∩B

˜
(x) = min(µA

˜
(x), µB

˜
(x)) (2.12)

Figure 2.10 shows intersection of fuzzy sets.

A
       B


U


A     B


Figure 2.10: The Intersection of fuzzy Sets
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Min and max operations for the intersection and union are not the only definitions

that have been used. There are other possibilities that can be found in [8].

Cartesian Product

The previous operations assumed that the fuzzy sets are defined in the same

universe. Cartesian Product does not require this hypothesis.

The Cartesian product of a fuzzy sets A
˜

on universe X and fuzzy set B
˜

on universe

Y is a fuzzy set C
˜
, which is contained within the full Cartesian product space of the

universe, or

A
˜
× B

˜
= C

˜
⊂ X × Y (2.13)

where the fuzzy set C
˜

has a membership function defined as

µC
˜
(x, y) = µA

˜
×B

˜
(x, y) = min(µA

˜
(x), µB

˜
(y)) (2.14)

2.3 Other algebraic operations

Algebraic Product

The product of two fuzzy sets A
˜

y B
˜

in the same universe of discourse is the new

fuzzy set A
˜
· B

˜
with a membership function that equals product of the membership

function of A
˜

and the membership function of B
˜
.

µA
˜
·B
˜

= µA
˜
(x) · µB

˜
(x) (2.15)
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Figure 2.11 shows algebraic product of fuzzy sets.
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Figure 2.11: The Algebraic Product of Fuzzy Sets

Algebraic Sum

The algebraic sum of fuzzy sets A
˜

and B
˜

is a fuzzy set C
˜
,

C
˜

= A
˜

+ B
˜
, (2.16)

where

µC
˜
(x) = µA

˜
(x) + µB

˜
(x) − µA

˜
(x)µB

˜
(x) (2.17)

Figure 2.12 shows algebraic sum of fuzzy sets.
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Figure 2.12: The Algebraic Sum of Fuzzy Sets

Bounded Sum

The bounded sum of two fuzzy sets A
˜

and B
˜

is denote by

C
˜

= A
˜
⊕ B

˜
(2.18)

where

µc
˜
(x) = min(1, µA

˜
(x) + µB

˜
(x)) (2.19)

Figure 2.13 shows bounded sum of fuzzy set.

Bounded Difference

The bounded difference of two fuzzy sets A
˜

and B
˜

is denote by

C
˜

= A
˜
	 B

˜
(2.20)
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Figure 2.13: The Bounded Sum of Fuzzy Sets

where

µc
˜
(x) = min(1, µA

˜
(x) − µB

˜
(x)) (2.21)

Figure 2.14 shows bounded difference of fuzzy set. The bounded-difference op-

eration is particularly useful because operations such as intersection, union, comple-

ment, absolute difference, implication, and equivalence can be expressed by bounded-

difference operations and arithmetic sums [9].

2.3.1 Fuzzy Relations

Fuzzy relations map elements of one universe to those of another universe, through

the Cartesian product of the two universes. However, the “strength” of the relation

between ordered pairs of the two universes, say X and Y, is not measured with the

characteristic function, but rather with a membership function expressing various
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Figure 2.14: The Bounded Difference of Fuzzy Sets

“degrees” of strength of the relation on the unit interval [0,1]. Hence, a fuzzy relation

R
˜

is a mapping from the Cartesian space X × Y to the interval [0,1], where the

strength of the mapping is expressed by the membership function of the relation for

ordered pairs from the two universes, or µR
˜
(x, y).

R
˜

= X × Y = {(x, y) | x ∈ X, y ∈ Y } (2.22)

When X = Y, R
˜

is known as a fuzzy relation on X.

For finite universe X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} and the fuzzy sets

A
˜

and B
˜
, then a fuzzy relation A

˜
× B

˜
can be expressed by an m × n matrix:
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MR
˜

=




µR
˜
(x1, y1) µR

˜
(x1, y2) . . . µR

˜
(x1, yn)

µR
˜
(x2, y1) µR

˜
(x2, y2) . . . µR

˜
(x2, yn)

...
...

...
...

µR
˜
(xm, y1) µR

˜
(xm, y2) . . . µR

˜
(xm, yn)




(2.23)

This matrix is referred to as a fuzzy matrix. The elements of the fuzzy matrix

have values within the interval [0,1], since µR has values within that range.

Fuzzy relations play an important role in fuzzy modeling, fuzzy diagnosis, and

fuzzy control. They also have applications in fields such as psychology, medicine,

economics, and sociology [8].

2.3.2 Composition of Fuzzy Relations

Consider two fuzzy relations R
˜

on A
˜
× B

˜
and S

˜
on B

˜
× C

˜
. Contrary to crisp

relations, fuzzy R
˜

and S
˜

may be composed in various ways, since µR
˜

and µS
˜

can

assume values in the range [0,1], not just 0 or 1. Their composition is denoted by

R
˜
◦S

˜
and is also a fuzzy relation on A

˜
×C

˜
[8]. The best known and the most frequently

used is the so-called “max-min” composition. It is defined by

µR
˜
◦S

˜
(a, c) = {max

b∈B
min (µR

˜
(a, b), µS

˜
(b, c)) | (a, c)} (2.24)

Symbolically as

µR
˜
◦S

˜
(a, c) = ∨

b
{ µR

˜
(a, b) ∧ µS

˜
(b, c)} (2.25)

where, ∧ and ∨ are the symbolic representation for minimum and maximum operators

respectively.
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2.4 Fuzzy Logic

2.4.1 Crisp Logic

Logic can be a means to compel us to infer correct answers, but it cannot by

itself be responsible for our creativity or for our ability to remember. In other words,

Logic can assist us in organizing words to make clear sentences, but it cannot help

us determine what sentences to use in various contexts. The interest in Logic arise

from the study of truth in logical propositions; in classical predicate logic this truth

is of binary nature: -a proposition is either true or false [8].

Rules are a form of proposition. A proposition is an ordinary statement involving

terms which have been defined. In traditional propositional logic, a proposition must

be meaningful to call it “true” or “false,” whether or not we know which of these

terms properly applies [10].

Logical reasoning is the process of combining given propositions into other propo-

sitions, and then doing this over and over again. A new proposition can be obtained

from a given one by prefixing the clause “it is false that · · · ”. This is the operation

of negation (denoted ∼ p). Propositions can be combined in many ways, all of which

are derived from three fundamental operations: Conjunction (denoted p ∧ q), where

we assert the simultaneous truth of two separate propositions p and q; Disjunction

(denoted p ∨ q) where we assert the truth of either or both of two separate proposi-

tions; and, Implication (denoted p → q) which usually takes the form of an IF-THEN

rule. The IF part of an implication is called the Antecedent, Whereas the THEN part

is called the Consequent. Additionally, p ↔ q is the equivalence relation; it means

that p and q are both true or false.
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A tautology is a proposition formed by combining other propositions (p, q, r,...)

which is valid regardless of the truth or falsehood of p, q, r,... . Tautologies are

important because they represent valued reasonings. In traditional propositional

logic there are two very important inference rules, Modus Ponens and Modus Tollens.

These rules are tautologies and works with two premises:

Modus Ponens-Premise 1: “x is A”; Premise 2: “IF x is A THEN y is B”; Con-

sequence; “y is B.” Modus Ponens is associated with the implication “A implies

B” [A → B]. In terms of propositions p and q, Modus Ponens is expressed as

(p ∧ (p → q)) → q [10]. The rule is summarized as

Modus Ponens

if x is A then y is B

x is A

∴ y is B

(2.26)

Modus Tollens-Premise 1: “IF x is A THEN y is B”; Premise 2:“y is not B”

; Consequence: “x is not A.” in terms of propositions p and q, Modus Tollens is

expressed as (q̄ ∧ (p → q)) → p̄ [10].

Modus Tollens

if x is A then y is B

y is not B

∴ x is not A

(2.27)

Whereas Modus Ponens plays a central role in engineering applications of logic,

due in large part to cause and effect, Modus Tollens does not seem to have yet played

much of a role. This could be due to the causal nature of the engineering applications.
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2.4.2 Fuzzy Logic

Dr Lotfi Zadeh from UC/Berkeley introduced Fuzzy Logic in the 60’s as a means to

model uncertainty in natural language [7]. Fuzzy logic extends conventional Boolean

logic to handle the concept of the partial truth – with values really between “ totally

true ” and “ totally false ” truths, making it easier to imitate the behavior of the

human reasoning.

The extension of crisp logic to fuzzy logic is made by replacing the bivalent mem-

bership functions of crisp logic with fuzzy membership functions. Fuzzy values are

assigned to evaluate the truth of propositions, and operations with these values are

applied to evaluate composite propositions.

The meaning of a fuzzy proposition such as “x is A” is defined by the membership

function that represents fuzzy set A. Assigning a meaning for compound fuzzy propo-

sitions, such as “x is A and y is B” or “(x is A or x is B) and y is C”, implies the

calculation of the membership function that characterizes the fuzzy relation induced

by the proposition. In order to do so, it is necessary to define the interpretation for

the linguistic connectives “and” and “or” and for the operator “not”.

The logical connectives of negation, disjunction, conjunction, and implication are

also defined for fuzzy logic. These connectives are given in the followings equations

for two simple propositions: proposition P
˜

defined on fuzzy set A
˜

an proposition Q
˜

defined on fuzzy set B
˜
. T(P

˜
) denotes the truth value of proposition P

˜
.

Basic connectives operations:

Negation

T (P̄
˜
) = 1 − T (P

˜
) (2.28)
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Disjunction

P
˜
∨ Q

˜
: x is A

˜
or B

˜
T (P

˜
∨ Q

˜
) = max (T (P

˜
), T (Q

˜
)) (2.29)

Conjunction

P
˜
∧ Q

˜
: x is A

˜
and B

˜
T (P

˜
∧ Q

˜
) = min (T (P

˜
), T (Q

˜
)) (2.30)

The main differences among the different inference schemes presented by different

authors come from the interpretation of implication, that is, substituting the above

mentioned operators by c-norms, s-norms, and t-norms, respectively more about these

operators can be found in [2].

Implication

P
˜

→ Q
˜

: if x is A
˜
, then x is B

˜
(2.31)

The most commonly interpretations that have been adopted are:

• Zadeh

T (P
˜

→ Q
˜
) = T (P̄

˜
) ∨ Q

˜
) = max (T (P̄

˜
), T (Q

˜
)) (2.32)

• Mamdani

T (P
˜

→ Q
˜
) = min (T (P

˜
), T (Q

˜
)) (2.33)

• Larsen

T (P
˜

→ Q
˜
) = T (P

˜
) · T (Q

˜
) (2.34)

Engineers usually prefer Mamdani’s or Larsen’s formulas, while Zadeh’s interpre-

tation, derived directly from classical logic, is used in social sciences.
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The implication connective is more useful when modeled in rule-based form: In

this interpretation P
˜

→ Q
˜
, “IF x is A

˜
, THEN y is B

˜
” is equivalent to the fuzzy

relation, R
˜

= (A
˜
× B

˜
) ∪ (Ā

˜
× Y ), where Y is the universe of discourse of B

˜
. The

membership function of R
˜

is expressed by the following formula:

µR
˜
(x, y) = ∨[(µA

˜
(x) ∧ µB

˜
(y)), (1 − µA

˜
(x))] (2.35)

Modus Ponens is a rule of inference pertaining to the if / then operator. Modus

Ponens states that if the antecedent of a conditional is true, then the consequent

must also be true. Modus Tollens also is a rule of inference pertaining to the if / then

operator. Modus Tollens states that if the consequent of a conditional is false, then

the antecedent must also be false.

Fuzzy inference refers to computational procedures used for evaluating fuzzy lin-

guistic descriptions. There are two important inferencing procedures: generalized

Modus Ponens (GMP) and generalized Modus Tollens (GMT).

In fuzzy logic, Modus Ponens is extended to generalized Modus Ponens- Premise

1:“IF u is A THEN v is B”; Premise 2: “u is A
′

”; Consequence: “v is B
′

”.

Compare Modus Ponens and Generalized Modus Ponens to see their subtle differ-

ences. Namely, in the latter, fuzzy set A
′

is not necessarily the same as rule antecedent

fuzzy set A, and fuzzy set B
′

is not necessarily the same as rule consequent B.

GMP allows us to compute the consequent B
′

. It is formally stated as

Modus Ponens Generalized Modus Ponens

if x is A then y is B if x is A then y is B

x is A x is A
′

∴ y is B ∴ y is B
′

(2.36)
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Let’s consider a linguistic description involving only a simple if / then rule with

known implication relation R
˜
(x, y) and a fuzzy value A

′

approximately matching

the antecedent of the rule. Consequent can be obtained by taking the composition

of fuzzy set A
′

and fuzzy relation R
˜
(x, y), and in general is symbolically given as

follows:

µB
′ (y) = ∨

x
{ µA

′ (x) ∧ µR
˜
(x, y)} (2.37)

In GMT a rule and a fuzzy value approximately matching its consequent are given

and it is desired to infer antecedent that is

Modus Tollens Generalized Modus Tollens

if x is A then y is B if x is A then y is B

y is not B y is B
′

∴ x is not A ∴ x is A
′

(2.38)

Since Modus Tollens is seldom used, no further insight is needed for the purpose of

this work.

2.4.3 Hedges

Another important feature of fuzzy systems is the ability to define “hedges,” or

modifiers of fuzzy values. These operations are provided in an effort to maintain

close ties to natural language, and to allow for the generation of fuzzy statements

through mathematical calculations. As such, the initial definition of hedges and

operations upon them will be quite a subjective process and may vary from one

project to another. Nonetheless, the system ultimately derived operates with the

same formality as classic logic.
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The simplest example is in which one transforms the statement “Jane is old” to

“Jane is very old.” The hedge “very” is usually defined as follows:

m“very”A(x) = mA(x)2 (2.39)

Thus, if mOLD(Jane) = 0.8, then mVERYOLD(Jane) = 0.64. Other common hedges

are “more or less” typically mA(x)0.5, “somewhat,” “rather,” “sort of,” and so on.

Again, their definition is entirely subjective, but their operation is consistent: they

serve to transform membership/truth values in a systematic manner according to

standard mathematical functions.

Each of these functions is frequently used in fuzzy set theory, in order to represent

a wide range of linguistic hedges of type I. For example, Zimmermann follows Zadeh

when he proposes [11]

veryA = Con(A) = A2, (2.40)

moreorlessA = Dil(A) = A0.5, (2.41)

plusA = A1.25, (2.42)



Chapter 3

Control and Fuzzy Logic System

3.1 Basic Control Systems

The purpose of control is to influence the behavior of a system by changing an

input or inputs to that system according to a rule or set of rules that model how the

system operates. The system being controlled may be mechanical, electrical, chemical

or any combination of these.

Basic control theory uses a mathematical model to define a relationship that

transforms the desired state (requested) and observed state (measured) of the system

into an input or inputs that will alter the future state of that system. The Figure 3.1

shows a basic closed-loop control system.

Once the mathematical model is known (which is the hardest part of it), one can

determine if the system is stable and characterize its dynamical behavior. Systems

are usually classified according to the variables involved and to the equations that

specify their dynamics. Thus there are linear, bilinear, polynomial, and stochastic

29
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Figure 3.1: Basic Closed-Loop Control System

systems depending on the character of the transition map.

The control problem for a system is then to synthesize a controller such that the

closed-loop system meets the control objectives. General control objectives include:

stability of the state function, optimization of performance, robustness with respect

to noise signals and poorly modeled dynamics, and avoidance of unsafe states [8].

As the complexity of the system increases, as when multi-input/multi-output is

required, it becomes more difficult to formulate the mathematical model needed for

classical control. Fuzzy technology can alleviate these problems for the following

reasons.

Nonlinear characteristics are realized in fuzzy logic by partitioning the rule space,

but weighting the rules, and by the nonlinear membership function. Rule-based sys-

tems compute their output by combining results from different parts of the partition,

each part being governed by separate rules. In fuzzy reasoning, the boundaries of

these parts overlap, and the local results are combined by weighting them appro-

priately. That is why the output in a fuzzy system is a smooth, nonlinear function

[2].
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3.2 Fuzzy Logic Systems

A FLS receives a crisp input and may deliver either a fuzzy set or a crisp value. The

basic FLS contains four components: a rule set, a fuzzifier, an inference engine, and

a defuzzifier. Rules may be provided by experts or can be extracted from numerical

data. In either case, the engineering rules are expressed as a collection of IF-THEN

statements. These statements are related to fuzzy sets associated with linguistic

variables [10].

The fuzzifier maps the input crisp numbers into the fuzzy sets to obtain degrees

of membership. It is needed in order to activate rules, which are in terms of the

linguistic variables. The inference engine of the FLS maps the antecedent fuzzy (IF

part) sets into consequent fuzzy sets (THEN part). This engine handles the way in

which the rules are combined. In practice, only a very small number of rules are

actually used in engineering applications of Fuzzy Logic (FL) [12].

In most applications, crisp numbers must be obtained at the output of an FLS.

The defuzzifier maps output fuzzy sets into a crisp number, which becomes the output

of the FLS. In a control application, for example, such a number corresponds to a

control action.

3.2.1 Fuzzification

The first step in fuzzy logic processing involves a domain transformation called

fuzzification (Figure 3.2). Crisp inputs are transformed into fuzzy inputs. To trans-

form crisp input into fuzzy input, membership functions must first be defined for each

input.
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Once membership functions are defined, fuzzification takes a real time input value,

such as temperature, and compares it with the stored membership function informa-

tion to produce fuzzy input values.

Input Membership 

Function 


Crisp Inputs 


Fuzzification 


Fuzzy Inputs 


A 


CRISP 

INPUT 


MEMBERSHIP 

FUNCTION 


DEGREE OF 

MEMBERSHIP 


Figure 3.2: Fuzzification

The first step in fuzzification is to assign fuzzy labels in the Universe of discourse

of each of the crisp inputs. So for temperature, we might assign a range of labels like

those shown in Figure 3.3.

Each crisp input into a fuzzy system can have multiple labels assigned to it. In
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Figure 3.3: Temperature Membership Functions

general, the greater the number of labels assigned to describe an input variable, the

higher the resolution of the resultant fuzzy control system, resulting in a smoother

control response.

However, a large number of labels requires added computation time. Moreover,

an excessive number of labels can lead to an unstable fuzzy system [1]. As a result,

the most common number of labels for each variable in a fuzzy system fall between 3

and 9 [1]. The number is usually Taken to be an odd number 3, 5, 7, 9, though this

is not a requirement, but something that has been seen in applications [1].

The control surface fuzzy sets on each side of the zero (or normal) action set should

be balanced and symmetric. Thus if you have a variable, Temperature, a fuzzy region

LOW should also have a corresponding region HIGH as well as a normal temperature

set of NORMAL.

Next, membership functions are defined to give numerical meaning to each label.

Each membership function identifies the range of inputs values that corresponds to a

label.

Unlike Boolean logic, the membership function of a label does not define bound-

aries where the label applies fully on one side of a cutoff and not at all on the other

side of the cutoff. Instead there is a region where input values gradually change from
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being fully applicable to completely inapplicable.

Membership functions can have several different shapes, like those shown to the

Figure 2.6. Trapezoidal, bell, and triangular are the most frequently used. Although

other shapes may be more representative of natural occurring phenomena, they re-

quire more complicated equations or large look-up tables to be represented accurately.

A Fuzzy singleton is a fuzzy set whose support is a single point in U with a member-

ship function of one.

Singletons are easily represented in a computer and allow for simpler defuzzifica-

tion algorithms. They are, therefore, frequently used to describe fuzzy outputs.

An input membership function is created by specifying a number, that is, the

degree of membership, for each possible input value for a given label. The y-axis

{µ} values refer to the degree to which the crisp input value (temperature) applies to

each of the membership function labels (cool, warm, etc.). Input values can belong

to more than one fuzzy set. Describing crisp inputs in fuzzy terms allows the system

to gracefully respond to gradual change in input temperature.

3.2.2 Fuzzy Inference

Fuzzy logic based systems use RULES to represent the relationship between ob-

servations and actions. These rules consist of a precondition (IF-part) and a con-

sequence (THEN-part). The precondition can consist of multiple conditions linked

together with AND or OR conjunctions. Conditions may be negated with a NOT.

The computation of fuzzy rules is called Fuzzy Inference.

Fuzzy rule inference consists of two steps:
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• Inferencing, which determines the fuzzy subset of each output variable for each

rule. Usually only MIN or PRODUCT are used as inference rules. In MIN

inferencing, the output membership function is clipped off at a height corre-

sponding to the rule premises’s computed degree of truth (fuzzy logic AND). In

PRODUCT inferencing, the output membership function is scaled by the rule

premises’s computed degree of truth.

• Composition, which combines the fuzzy subsets for each output variable into a

single fuzzy subset. Usually MAX or SUM are used. In MAX composition, the

combined output fuzzy subset is constructed by taking the point wise maximum

over all of the fuzzy subsets assigned to variable by the inference rule (fuzzy logic

OR). In SUM composition, the combined output fuzzy subset is constructed by

taking the point wise sum over all of the fuzzy subsets assigned to the output

variable by the inference rule.

IF-THEN rules are a common way of representing and communicating knowledge

in everyday conversation. Anyone who has written a program or machine code knows

how complicated (and difficult to debug, read, and maintain) the if-then lines can get.

Fuzzy rules offer a way of getting around that trading the precise representation of the

values that variables must assume with much more intuitive fuzzy representations.

In binary logic the consequent is either true or false. In fuzzy logic partial truths

are allowed so the consequent is as partially true as the antecedent allows it to be.

In general a rule by itself doesnt do much. Whats needed are a set of rules that

can play off one another. The fuzzy inference methodology allows “fair” competition

between these rules to produce sophisticated answers using seemingly simple premises.
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3.2.3 Defuzzification

This stage is used to convert the fuzzy output set to a crisp number. Two of the

more common techniques are the Centroid and Maximum methods. In the Centroid

method, the crisp value of the output variable is computed by finding the value of

the center of gravity of the membership function. In the Maximum method, one of

the variable values at which the fuzzy subset has its maximum truth-value is chosen

as the crisp value for the output variable. Figure 3.5 illustrates the complete process

with an example.
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Figure 3.5: Fuzzy Logic System

3.3 Fuzzy Logic System Implementation

A fuzzy logic controller can be implemented using software, on microprocessors,

DSP board computers, or using special purpose hardware. Each implementation has

its advantage and drawbacks.
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Practical FLS realizations may be implemented with software and/or hardware

systems. Hardware implementations of fuzzy logic are attracting more and more

the attention of system designers for cases where the controller requires very short

response times [12]. Also, hardware realizations of fuzzy controllers are demanded in

those applications demanding real time performance and/or low area occupation and

power consumption. The hardware realization may be either digital or analog. In

most cases, the digital implementations have greater flexibility through their external

memory although they are usually slower than their analog counterpart, for similar

logic performance. Besides speed, other advantages of analog realizations relate to

the limitations of sampling theorem (not applicable to analog circuits) and to the

interface limitations. For example, analog-to-digital conversion may limit speed.

The main drawback of analog hardware implementations is the limited complexity

and modifiability of the system [13]. This problem has been partially dealt with by

the implementation of reconfigurable and adaptive controllers [12][14][15]. Yet there

are still many problems to be solved in this direction.

Another approach contemplates using mixed signal circuitry, realizing the fuzzy

processing itself in the analog domain employing digital circuitry for programmability

and reconfigurability. Generally speaking, this approach is expected to feature higher

operation speed, lower power consumption, and smaller area occupation than the

traditional digital realization with digital FLS requiring A/D, D/A converter. These

techniques fully exploit the functional capabilities of the MOS transistor (MOST) to

realize the fuzzy operators with very simple circuitry. Now, one advantage of a fuzzy

system is that its precision has usually more tolerance when compared with non-

fuzzy systems, and therefore the design phase is not so restrictive in what concerns

to precision. Yet, this tolerance has a limit. Their output signal may hence become

largely erroneous. Post-fabrication tuning of some critical parameters, guided by
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learning processes, can attenuate these errors; but they must still remain bounded

for convergence [15].

The design of dedicated fuzzy integrated circuits is of great interest, because of

the increasing number of fuzzy applications requiring highly parallel and high-speed

fuzzy processing. They attempt to give a concrete expression to the idea of “fuzzy

computers” (sometimes called computers of the sixth generation), which deal with

analog values or some digital representation of them. Fuzzy processors are designed

to optimize fuzzy logic functions in terms of their implementation size and execution

speed. Practical systems often require a large number of rule evaluations per sec-

ond. This requires in turn, a large amount of real- time data processing, making the

speed of fuzzy circuits of prime importance. The architectures of fuzzy processors

are generally suited to the structure of approximate reasoning and decision- making

algorithms and typically include three distinct parts: proceeding fuzzification, infer-

ence and defuzzification. Fuzzy controllers are made on one hand of a knowledge

base, which contains rules and membership functions outlines, as well as other con-

figuration parameters of the system. An inference mechanism based on interpolative

reasoning interfaces the controller to a real process in a feedback loop configuration.
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Figure 3.6: Fuzzy Logic Based Processing Unit
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The structure of dedicated fuzzy circuits is characterized by the number and shape

range of input and output variables, the number of simultaneous rules they can eval-

uate, the type(s) of inference(s) (size of premises, operators, consequences,...) and

the type(s) of defuzzification method(s). Their performance is evaluated according

to their processing speed, that is the number of fuzzy logic inferences per second

(FLIPS). Their precision is evaluated by the error and noise generation in analog

circuits and number of bit representing fuzzy values in digital ones). Fast response is

required for non-linear functions such as MIN and MAX where output signals can be

subject to sudden discontinuities.

Fuzzy chips can be efficiently used in expert systems and in control and command

field applications to achieve real-time performance. They are, however, less efficient

for applications that deal with a large amount of data because of the limited I/O. A

solution has been suggested, consisting in the interconnection of compatible circuits,

and splitting the large number of input variable [16].

Fuzzy software is useful when an application can be modeled to simulate and cal-

culate in advance a multidimensional response characteristic. They give the different

parameters relative to an optimal characteristic in order to design or program a fuzzy

dedicated circuit. Some of these parameters (fuzzy sets and inference rules) have to

be adjusted in the real implementation. In some cases, the numeric response charac-

teristic can be stored as a look-up table, providing then response values for real-time

processing without any more inference calculations. The stored values are provided

by fuzzy software, when a model exists, by the measure of an operator’s action or

by an adaptive system with a retroactive learning scheme (which comes close to the

principle of fuzzy dedicated neural networks)[17].

Software implementations [18] of fuzzy systems provide higher flexibility. Further-
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more, they usually support fuzzy systems with an arbitrary number of rules, without

any limitations concerning the number and type of membership functions, and with

a wide range of inference mechanisms.

On the other hand, since these systems are usually on a computer platform not

working in real time, software approaches are not adequate for applications demanding

fuzzy systems with a small size, low power consumption, and high inference speed [2].

For these applications, hardware approaches are more appropriate.

Among the benefits of using hardware instead of software are the speed and com-

pactness that the system can achieve. These limitations preclude its use in important

applications areas such as robotics, aeronautics, voice and image processing, auto-

motive electronic and so on. The main drawback of hardware implementation is the

complexity and the limited modifiability of the system [13].

Design and implementation of fuzzy system obviously depends on the requirements

of the application towards which it is addressed. Three requirements are particularly

relevant to decide how to implement the fuzzy system:

1. The time available for rule processing.

2. The size it can occupy and

3. The power it can consume.

There are two basic procedures for developing fuzzy hardware. One employs

general-purpose microprocessors, occasionally expanded with new instructions or new

circuitry. The other approach is based on application-specific integrated circuits

(ASICs), optimized for fuzzy logic-based inference systems.
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General-purpose microelectronic systems are not efficient in terms of cost, size,

and inference speed, even considering the modifications mentioned above, as has been

shown by several authors [2][19].

Implementations of fuzzy systems with dedicated hardware are highly influenced

by several facts.

• Choice of a realization strategy conditions the storage and computing resources

that will be required.

• Implementation technique and the design methodology employed to realize the

integrated circuits.

• Realization of the basic building block of the fuzzy system depends greatly on

the analog or digital design style employed.

There are three different strategies that can be followed when considering the

microelectronic implementation of a fuzzy system.

1. Off-line strategy.

Consist of precomputing all the output values that should be provided by the

system for every possible combination of the input signals. The microelec-

tronic circuits suitable to this strategy are standard digital memories and pro-

grammable logic devices (PLDs). The response time in this approach is very

short because only one data has to be retrieved from a memory and this can be

performed in a few nanoseconds.

2. Semi-off-line strategy.
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The use of this strategy also eliminated the problems of parallelism and non-

standard operations of the fuzzy systems. Besides, it reduces the memory size

(the number of data to store) if compared with the previous strategy. The

cost of this reduction is an increase in hardware complexity because additional

blocks have to be included not only to perform the operations required but also

to identify the grid cell activated by the inputs.

3. On-line strategy.

This strategy is usually employed to implement generic and complex fuzzy sys-

tems, in which the inference process is concurrently performed as the input

changes. The input stage should contain operators to fuzzify the inputs. The

rule processing stage should contain operators that implement antecedent con-

nectives so as to obtain the activation degrees of the rules. The membership

function or the singleton value of the rule consequents has to be generated. The

output stage should contain operators that implement the rule aggregation and

the defuzzification operator.

The analog domain is characterized by a high number of possible design styles for

the same functionality. In continuous-time analog design styles, circuits work with

continuous voltages, transconductance or currents in the time domain and whose

amplitudes can take on continuous value within a defined range. In the discrete

time analog design style, signals are discrete in time and their amplitudes maintain a

continuous range of values. Continuous or discrete-time techniques can be employed

depending on the nature of the signal that holds information [20].

Conventional continuous time schemes can be classified according to their opera-

tion mode:
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Figure 3.7: Fuzzy Logic Circuits

A Voltage mode

• RC active: based on resistors (R), capacitors (C) and singled-ended am-

plifiers.

• MOSFET-C: employs MOS transistors, capacitors (C) and fully differential

amplifiers as basic elements.

B Current mode

• The basic elements in the current mode design are the MOS transistor

mainly grouped into current mirrors.

C Transconductance mode

• GM-C: relies on capacitors (C) and Operational Transconductance Ampli-

fiers (OTAs).
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Current-mode circuits are especially suitable for realizing fuzzy systems because

the basic fuzzy logic operators can be implemented with very few transistors.

The two discrete-time techniques most commonly employed are switched capacitor

circuits in voltage mode techniques, and switched current limits in current mode

techniques.

Continuous-time Analog Techniques offer a very good relation between area occu-

pation and inference speed. This is achieved by eliminating the need for controlling

the signals and by fully exploiting the potentiality of the basic element of a MOS

integrated circuit, which is the MOS transistor [13][20]. MOS transistors technology

offers in addition better results in terms of space and power [21].

The first microelectronic realizations of fuzzy logic-based systems with analog

techniques were carried out by Yamakawa [22][23]. These ICs implement Min-Max

Mamdani’s method with the Center-of-Area defuzzification method. Hence, they

manage fuzzy sets to represent both the antecendets and consequents of the rules. The

response time of the rule and defuzzification chip is slow. The silicon area occupied

by both is very large due to the lines that handle the discrete output universe of

discourse [2]. This is why the solutions to solve control problems reported in [24] rely

on the connection of several rule chip.

To avoid the needed of sweeping the points of the output universe of discourse

most analog fuzzy ICs implements a Zero-Order Takagi-Sugeno or singleton fuzzy

system [3].

From an architectural point of view, a relevant feature of fuzzy systems is their

inherent parallelism. That is, several rules are activated for each input combination

so data can be processed in parallel within each rule. Besides parallelism, another
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important issue at the system level is the chip programmability. The parameters that

can be programmed in a fuzzy IC include:

• The number of fuzzy sets to cover the rule antecedent;

• The parameters that define their membership functions;

• The number of fuzzy sets employed for the output variable;

• The parameters that outline the rule base.

In a custom IC implementation all these parameters are fixed during the fab-

rication process. General purpose fuzzy ICs require programmable circuitry whose

complexity increases with the number of programmable parameters [19][25].

The main architectures most commonly considered at present are: Rule-by-Rule,

Circuitry Sharing and Active Rule-driven [2]. The characteristics of each approach

are summarized in Table 3.1. The first analog fuzzy ICs employ Rule-by-Rule ar-

chitecture and also later realizations, such as [26]. A Circuitry Sharing architecture

was proposed in [27] to implement current-mode fuzzy ICs that work with the Fuzzy

Mean as defuzzification method and the minimum operator as antecedent connective.

This circuit again occupied a large area. A fully parallel architecture to implement

programmable fuzzy ICs following the idea of active rules was proposed in [28]. This

circuits shows be most efficient of the others, but require on line normalization cir-

cuits, thereby adding complexity and space in the system.

All three architectures process the rules in parallel and their processing core can

be realized with analog or digital techniques.

The main advantage of using continuous-time analog techniques is that the oper-

ations to be performed within each rule can be realized in parallel in a very efficient
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Architecture Action Advantages Drawbacks

Characteristics

Rule-by-Rule Contains a data path

for each rule.

High flexibility to de-

fine the rule base.

Very modular

Managing redundant

information. The

programming circui-

try have a very large

area.

Circuitry Sharing Solves the problem of

area and power con-

sumption for non pro-

grammable ICs sharing

circuitry among differ-

ent rules.

Reduces the number

of MFC and Member-

ship Function Gener-

ators

Programmable fuzzy

ICs increase complex-

ity.

Active Rule-driven Contains the circuitry

to identify only the ac-

tive sets and the com-

puting blocks need for

processing only the ac-

tive rules.

The number of MFCs

is reduced. The num-

ber connective cir-

cuits and MFGs re-

quired are also re-

duced.

This is more efficient

in order to implement

a complex fuzzy sys-

tem with an IC.

Table 3.1: Characteristics, advantages, and drawbacks of different architectures
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way thanks to the use of multiple input circuits that offer low area and power con-

sumption.



Chapter 4

Programmable and Modular

Analog Fuzzy Controller

4.1 Hardware Implementation

Basically, a fuzzy logic controller (FLC) can be divided into two main blocks:

1. Fuzzification

2. Fuzzy inference

In fuzzification, the input data are crisp values obtained from various sensors. There-

fore, a fuzzification interface is needed to calculate the membership of the observed

inputs to the defined linguistic terms in the preconditions of the fuzzy rules [29].

This functional correspondence can be realized by an analog fuzzification circuit or

so-called membership function circuit (MFC). The output of a MFC gives the grade

of membership of the input to a related linguistic term in current or voltage mode.

49
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Fuzzy inference is the process of formulating the mapping from a given input to

an output using fuzzy logic. The mapping provides a basis from which decisions can

be made. There are two main types of fuzzy inference systems (FIS) here: Mamdani-

type and Sugeno-type [2]. These two types of inference systems vary somewhat in

the way outputs are determined.

1. Mamdani’s FIS

Mamdani-inference systems employ consequents described by fuzzy sets in each

rule, i.e, it expects the output inference to be also a fuzzy set. The resulting

consequent fuzzy sets are agregatted to form the output fuzzy set of the system.

If a crisp output is required, defuzzification is done with arithmetic operations

such as centroid. An example of a Mamdani inference system is shown in Figure

4.1. To compute the systems output, given a set of inputs, one must go through

six steps:

(a) Determining a set of fuzzy rules

(b) Fuzzifying the inputs using the input membership functions,

(c) Combining the fuzzified inputs according to the fuzzy rules to establish a

rule strength,

(d) Finding the consequence of each rule by combining the rule strength and

the output membership function,

(e) Combining the consequences to get an output distribution, and

(f) Defuzzifying the output distribution if a crisp output is needed.

A block diagram illustrating the circuits necessary to realize these steps is shown

in Figure 4.2.
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Figure 4.1: A two input, two rule Mamdani’s FIS

2. Sugeno’s FIS

Sugeno’s FIS is quite similar to Mamdani’s FIS [3]. The primary difference

is that the crisp output consequence is not computed by clipping an output

membership function at the rule strength. In fact, in Sugeno’s method there is

no output membership function at all. Instead, the output is a crisp number

called singleton, computed by multiplying the output of each rule by a constant

and then adding up the results. This is illustrated in Figure 4.3. “Rule strength”

in this example is referred to as “degree of applicability” and the output is

referred to as the “action”. Also notice that there is no output distribution,

only a “resulting action” which is the mathematical combination of the rule

strengths (degree of applicability) and the outputs (actions).

One of the large problems with the Sugeno’s FIS is that there is no good intuitive

method for determining the coefficients, λ.

Figure 4.4 shows a block diagram for Sugeno’s FIS. The functionality and ar-

chitecture of these three blocks are presented below.

In this work, Sugeno’s FIS was chosen, because it requires less circuits and is
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Figure 4.3: A two input, two rule Sugeno’s FIS

faster for a crisp output.

To design fuzzy analog circuits, the following factorsmust be considered.

1. Since shallow stages of fuzzy logic are processed in parallel, the accumulation of

errors in the fuzzy circuits does not become a serious problem. This is a merit

of the fuzzy process in terms of its hardware implementation.

2. Since the fuzzy process enjoys high speed, thanks to its shallowness in logic

stages, it is very important to design the fuzzy analog circuits for high speed

operation.
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4.2 Proposed Fuzzy Logic Controller

This thesis proposes a programmable and modular fuzzy logic controller based on

the basic Sugeno structure. the novelties of this controller are mainly in the fuzzi-

fication and defuzzification stages. Immediate benefits introduced by the approach

adopted here are the reduction in circuit complexity by the elimination of the normal-

ization circuit, as well as the reduction in the number of arithmetic circuits required

in the defuzzification stage. Moreover, this controller has full programmability in

both the fuzzification and the defuzzification stages with voltage or bias currents.

Previous approaches only emphasized one of them.

The circuit used in the fuzzification stage for this work stems from the Ota-

Wilamowski circuit [30] [31]. The original circuit operates fully in voltage mode,

but has been modified here to obtain full ”voltage input - current output” mode

operation. This eliminates the need of feedback from the defuzzification stage as

proposed in the original work. Moreover, the theoretical discrepancies that appeared

in Ota and Wilamowski work have been corrected in this thesis. This circuit allows

full programmability in both shape and position of the membership function.

For the minimum inference stage, Huang’s circuit [32] was adopted. This circuit

offers great modularity as per the number of rules, and offers the best performance

when compared with other circuits, both in space and in power.

The defuzzifciation stage utilizes a multiplier-divider circuit based on Kaewdang

et al.’s work [33], originally proposed for bipolar technology. This technology allows

a linear dependence on bias currents. The assumption in [33] that the results are di-

rectly extendable to CMOS technology are shown to be false, since the dependence is

now on the square root values. Yet, the circuit proposed here with CMOS technology
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has been adapted to operate as a programmable multiplier-divider circuit to conform

to the needs of the weighted sum required in Sugeno’s algorithm. This approach has

provided the added benefit of eliminating the divider required in previous controllers,

as well as the need for a normalization circuit between the inference and the defuzzi-

fication stages, since the weight for each rule is tuned independently of the other rule

outputs.

In conclusion, the proposed fuzzy controller offers programmability at both the

fuzzification and defuzzification stages by modification of previous circuits, and mod-

ularity at the rules stage by the selection of Huang’s circuit.

The following sections describe the circuits and performance.

4.3 Fuzzification circuit

The analog membership function circuit (MFC) generate a membership function

with their input/output transfer characteristic, so that they are arithmetic MFCs.

A transconductance-mode MFCs work with a voltage as the input signal and pro-

vide current as the output signal. In a current-mode MFCs the input and output

are currents. An input signal represented by a voltage can be drawn to several

transconductance-mode MFCs with the same wire, without need of replication. On

the contrary, an input signal represented by a current only can drive a single current-

mode MFC, that is, the fan-out is 1. In order to connect a current-mode input signal

to L MFCs the current should be replicated L times.

Various approaches have been proposed to generate analog nonlinear membership

functions in either current, voltage or transconductance mode. As a general case in

the solutions reported in [24] [34] [35] [36] [37]. J. Choi et al. [34] introduced a voltage-



57

input/current-output programmable Gaussian function network with capacitors for

the programmability. Therefore, periodic refreshing is necessary to maintain an accu-

rate programmed value on the capacitors. Also, a membership function circuit which

can realize several types of membership functions using bipolar transistors was pro-

posed in [24]. However, a disadvantage of this design is that it needs emitter-follower

arrays for impedance transformation and level/temperature compensation.

An approach to realize MFC consist of two stages: the first for S- and Z- sub-

functions generation, and the second for the combination of these sub-functions [38].

The positive and negative slopes of the generated membership function are regulated

within the S- and Z- sub-function circuits, while the position and the type of the

function are assigned with reference voltages or currents in the combination part[29].

S-shape function, Z-shape function, triangular-shaped function can be considered as

special shapes of the trapezoidal-shaped function.

The approach taken for the design of the circuit used in this work biases the

MOS transistor in the strong-inversion region, where its current has a power-law

dependence on the gate bias voltages [30]. The strong-inversion region of the MOS

circuits provides the features of high current driving, large dynamic range, and high

noise immunity. The transistors with large channel lengths are used to avoid the

channel-length modulation effect. A block diagram of the implementation of the

Gaussian-type membership function circuit is shown in Figure 4.5.

A circuit schematic of the membership block is shown on Figure 4.6. Reference

voltages are applied.
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Figure 4.5: Block diagram of a Gaussian Membership function circuit
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4.3.1 Theory of operation

Two reference voltages are applied to one of the inputs of each differential ampli-

fier. The average of these two reference voltages determines the mean of a Gaussian-

type curve, and the input voltage is applied to the other input of each differential

amplifier. The active load was designed using two MOS transistors [39].

A circuit realization for the block diagram of Figure 4.5 is given in Figure 4.6
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Figure 4.6: Circuit schematic of the membership function circuit

For a transistor operating in the saturation region, its drain currents are given by

a quadratic approximation, i.e.

ID =
K ′W

2L
(VGS − Vth)

2 (4.1)
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where K’ is the transconductance parameter. From this equation the drain currents

for the differential amplifiers shown in Figure 4.6 can be derived as

ID1 =
I

2
+ VID1

k′W1

4L1

√
4I

K′W1

L1

− V 2

ID1
(4.2)

ID1 =
I

2
+ VID1

β1

2

√
2I

β1

− V 2

ID1
(4.3)

where

VIDi = VIN − VREFi, βi =
K ′Wi

2Li

, (i = 1, 2) (4.4)

and

ID2 =
I

2
− VID1

β2

2

√
2I

β2

− V 2

ID1
(4.5)

and similarly,

ID3 =
I

2
+ VID2

β3

2

√
2I

β3

− V 2

ID2
(4.6)

ID4 =
I

2
− VID2

β4

2

√
2I

β4

− V 2

ID2
(4.7)

The parameters used by N-MOS and P-MOS transistors have typical values used

in a standard MOSIS technology. VREF1 must be greater than VREF2 in order to

generate the Gaussian-type curve. Drain current equations are valid when voltage

VGS is higher than Vth. Hence, the following condition must be met.

−
√

2I

βi

< VIDi <

√
2I

βi

; i = 1, 2 (4.8)

If this is true, the output current IOUT is then given by

IOUT = ID2 + ID4 (4.9)
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IOUT = I − VID1
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Figure 4.7: Simulation result of the output current IOUT

4.3.2 Simulation results

Simulated characteristics of the output current IOUT are shown in Figure 4.7. The

output current is shifted up because two currents ID2 and ID4 are added.

The values of the control parameters αi and βi are chosen to obtain the desired

shape of Gaussian-type curves. As the ratio of Wi/Li increases the value of βi increases

and so does the slope of the edges in the Gaussian-type curve. Figure 4.8 shows the

output characteristic of the Gaussian-type curves for different W/L ratios. When

symmetrical curves are desired, transistors sizes on both differential amplifiers must

match.
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Programmability of the output current shape is also obtained by varying the

difference between the reference voltages. Simulation results in Figure 4.9 show that

the output current curve approaches a trapezoidal shape as the difference between

the reference voltages becomes large.

4.4 Fuzzy Inference circuits

Much effort has been devoted by many researchers to hardware implementation of

fuzzy logic, and specially to the application of fuzzy logic inference method to real time

systems [25][31]. Among the fundamental fuzzy logic functions the most popular ones

to implement logical “AND” and logical “OR” are minimum of (MIN) and maximum

of (MAX), respectively. To design a fuzzy logic controller that uses MIN and MAX

operations, these must be performed over multiple inputs. The current mode 2-

input MIN and MAX circuits for fuzzy logic controllers developed by Yamakawa

[38] are shown in Figures 4.10 and 4.11. Here, it should be emphasized that both

circuits can handle only two inputs. Theoretically, by taking advantage of the 2-input

MIN/MAX circuit, the binary tree structure can be used to implement the multiple

input MIN/MAX circuits. In fact, when the number of inputs is large, accumulation

of errors of multistage circuits cannot be neglected and overall operation speeds can

become low [40].

To reduce the accumulated errors caused by the tree structure of the multi-input

MAX/MIN circuit, Sasaki proposed a one-stage current mode multi-input MAX cir-

cuit. Based on De Morgan’s laws, Sasaki used two’s complement circuits and a

multi-input MAX circuit to implement each multi-input MIN cell [40].

A block diagram of the MAX circuit is shown in Figure 4.12. This circuit consists
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Figure 4.10: Yamakawa’s MIN circuit
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Figure 4.11: Yamakawa’s MAX circuit
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of NMOS current mirrors connected to form positive-feedback loops. When the cur-

rent mirrors are assumed ideal, the gain of each feedback loop becomes one. Detailed

circuit operation is described in [40].

N-MOS

Current

Mirror


N-MOS

Current

Mirror


N-MOS

Current

Mirror


I1
 I2
 In


      Iout


Figure 4.12: Block diagram of Sasaki’s n-input MAX circuit

Many dual logic-function pairs have been introduced in fuzzy logic and it has been

proved that De Morgan law’s hold for several such pairs, including MIN and MAX

functions [40]. As a result a multi-input MIN circuit can be synthesized by applying

those rules. An n-input MIN circuit can be implemented with n-input MAX circuit

and n+1 complement circuits. The complement function can be defined by

Ī = MV 	 I (4.11)

where MV is the maximum logical value.

The MIN circuit realization is shown in Figure 4.13. This circuit realizes the logic

operation

Out = (1 − min(1 − I1, 1 − I2, ..., 1 − In)) = max(I1, I2, ..., In) (4.12)
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Figure 4.13: Block diagram of Sasaki’s n-input MIN circuit
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Operating speed and accuracy of these circuits are higher than those from binary

tree realizations that use two-input MAX/MIN circuits [38]. However, since this kind

of MIN circuit is still a three stage structure. Accumulated errors and slow operating

speed induced problems have not been solved yet [32].

According to the concept of the loser-take-all circuit Huang et al. [41], proposed

a one stage architecture for the current mode multi-input MIN circuit. The circuit

shown in Figure 4.14 is designed with MOS transistors that operate in the saturation

region. Each single input MIN cell is made of four transistors. Two of them constitute

a basic current mirror to transmit the input current to the MIN cell, another one acts

as a current limiter, and the last one forms the multi-input source-couple circuit. The

circuit is shown in Figure 4.14. The detail circuit’s theory of operation is described

in [32].

Ib


Iout


I1
 I2
 I3


VDD

Minimum cell


Current

limit


Current

Mirror


Source

Couple


Figure 4.14: Circuit schematic of Huang’s Minimum circuit

Table 4.1 shows that the proposed circuit exhibits the advantages of low power



68

dissipation 1. Since, this structure is regular and modular, it can be easily expanded

to accommodate any number of inputs. Furthermore, its one-stage architecture avoids

the problem of accumulated errors and allows high operating speed.

Author Number of transistors for n-input Power Dissipation

minimum circuit

Yamakawa [38] 7(n − 1) 1.34mW (2 inputs)

Sasaki [40] (n + 1)2 + 2n 0.2mW (3 inputs)

Huang [32] 4n + 1 0.125mW (3 inputs)

Table 4.1: Comparison of various multi-input MIN circuits

4.4.1 Simulation results

PSpice simulations have been performed in order to verify the performance of each

architecture. A two-input MIN circuit (Figure 4.10), and three-input MIN circuits

(Figures 4.13 and 4.14) were design with MOS transistor arrays. The DC output

current characteristics are shown in Figures 4.15, 4.16 and 4.17. They agree very

well with the theoretical prediction and they indicate that Huang’s three-input MIN

circuit is the most accurate.

In order to estimate the speed of response of these circuits, PSpice transient

simulations of the each architecture were conducted. The results for the output

current (IOUT ) are given in Figures 4.18, 4.19 and 4.20. They show that Huang’s

MIN circuit has the fastest response, and that it tracks very more closely changes in

the minimum of the inputs.

1Power dissipation for 3-input, except 2-input Yamakawa’s MIN circuit
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Figure 4.16: DC Characteristic of Sasaki’s three-input Minimum circuit
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Figure 4.17: DC Characteristic of Huang’s three-input Minimum circuit
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Figure 4.18: Transient response of Yamakawa’s two-input Minimum circuit
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Figure 4.19: Transient response of Sasaki’s three-input Minimum circuit
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Figure 4.20: Transient response of Huang’s three-input Minimum circuit
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4.5 Defuzzification circuit

Defuzzification produces a crisp output for our FLS from the fuzzy set that is

the output of the inference block. The immediate payoff is simplified defuzzification

process. A Takagi-Sugeno type system was chosen to generate the crisp output. The

global output is a crisp number computed by multiplying each input by a constant

and then adding up the results, i.e,

y =

∑I

i=1
λixi∑I

i=1
λi

(4.13)

Which can be implemented with wide band current mode Operational Transcon-

ductance Amplifier (OTA) based analog multiplier-dividers. Some characteristics of

a realization that solely used OTA are: simplicity, low cost, single high impedance

input node, wide range current controlled transconductance and passive component

independent integrability and programmability [33].

Figure 4.21 shows a circuit schematic of the CMOS basic OTA used here. When

the OTA operate in the linear range, its transconductance gain is given by

gm =

√
2K ′

W

L
IBias (4.14)

which can be tuned by adjusting the DC bias current IBias.

4.5.1 Theory of operation

Circuit schematic of the proposed current-mode analog multiplier-divider is shown

in Figure 4.22. The input signal current Iin1 is applied to OTA1, which behaves as

a current-controlled grounded resistor due to the unity feedback loop around itself.
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Figure 4.21: Circuit schematic of the OTA

This loop in turn forces IOUT to be equal to IIN1. The voltage produced by OTA1

is then applied both to OTA2 and OTA3. An input signal current Iin2 is added with

IBias2 to form the bias current IBias for OTA2. For reasons to be seen later. Output

currents IO2 and IO3 from OTA2 and OTA3, respectively, can be derived as follows

VO1 =
Iin1

gm1

, (4.15)

IO2 = gm2VO1 =
gm2

gm1

Iin1, (4.16)

IO2 =

√
(IBias2 + Iin2)√

IBias1

Iin1, (4.17)

and

IO3 = −gm3VO1 = −gm3

gm1

Iin1, (4.18)

IO3 = −
√

IBias3√
IBias1

Iin1, (4.19)
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Figure 4.22: Current mode analog multiplier-divider circuit

where gm1 =
√

2K ′ W
L

IBias1, gm2 =
√

2K ′ W
L

(IBias2 + Iin2) and gm3 =
√

2K ′ W
L

IBias3

are the transconductance gains for OTA1, OTA2 and OTA3, respectively. The

multiplier-divider output current IOUT given by the sum of IO2 and IO3, and can

be expressed as

IOUT = IO2 + IO3 =

√
(IBias2 + Iin2)√

IBias1

Iin1 −
√

IBias3√
IBias1

Iin1 (4.20)

IOUT =
Iin1√
IBias1

(
√

IBias2 + Iin2 −
√

IBias3), (4.21)

which is in the form of a current mode analog multiplication-division function. The

circuit can work as a four-quadrant multiplier if Iin1 and (
√

IBias2 + Iin2 −
√

IBias3)

are the input signals. On the other hand, the circuit can work as a two-quadrant

divider if Iin1 (or
√

IBias2 + Iin2 −
√

IBias3) and IBias1 are the input signals.

If IBias1 = IBias2 = IBias3 = IBias, then IOUT can be expressed as

IOUT = Iin1

{√
IBias + Iin2

IBias

− 1

}
(4.22)
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4.5.2 Simulation results

PSpice simulations have been conducted to characterize the performance of the

multiplier-divider, which was designed with MOS transistors arrays. The DC transfer

characteristics of the presented multiplier-divider shown in Figure 4.23 indicate high

linearity within the following ranges:

−10µA ≤ Iin ≤ 10µA (4.23)

25µA ≤ IBias ≤ 355µA (4.24)

−18µA ≤ Iout ≤ 18µA (4.25)

Simulation results and theoretical predictions agree with 3% error.
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Figure 4.23: DC Characteristic of the multiplier-divider

Figure 4.24 shows the input and output wave-forms when IIN1 is a 1MHz 20µAp−p

sine wave, and Iin1, IBias1, IBias2 + Iin2 are 25µA, 81µA and 100µA dc values respec-

tively.
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Figure 4.24: Input-Output wave-forms of the multiplier-divider

Separate analog implementation of multiplication and division in equation (4.13)

requires a bigger area than that used by our multiplier-divider design.

In this work the following approach is used:

If IBias in equation (4.22) is fixed, then from equation (4.13) results

λi∑I

i=1
λi

xi =

√
IBias + Iin2 −

√
IBias√

IBias

Iin1 (4.26)

where λ can be tuned by the input current Iin2, under the constraint

I∑

i=1

λi =
√

IBias (4.27)
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Implementation and simulation

results

Performance of the proposed approach is assessed here by implementing a three-

input single-output Analog Fuzzy Controller with two rules. It has been simulated

and compared with the mathematical simulation provided by Matlab Fuzzy Tool.

Antecedent part consists of three linguistic terms where each is characterized by a

membership function. The shapes of these membership functions were programmed

through control voltages (two for each membership function).

The structure of the inference engine can be expanded by joining n basic cells in

order to implement an n-input MIN circuit. The weight for each rule can be changed

by modifying the input bias current of the respective multiplier according to equations

(4.26) and (4.27).

Block diagram of the complete fuzzy controller is presented in Figure 5.1, where

MFC and MIN blocks represent the membership function and minimum extraction

77
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function respectively. Since this outputs of the multiplier-divider circuits are currents,

they are added by hard-wiring them together.

Figure 5.1: Block diagram of the Analog Fuzzy Controller

5.1 Application

To make a controller for the water level in a tank work at least the current water

level must be known and the valve opening must be adjusted (to regulate the amount

of water coming), Figure 5.2. The controller’s inputs are water level error (desired

water level minus actual water level) and water level rate of change. The controller

decides the valve’s rate of movement from its current position. The commands for

the valve’s movement can be: “no changes”,“open fast” to allow more water flow or

“close fast” to reduce water flow. Similarly, commands for the level can be “low”,

“okay” or “high” and the level rate can be “negative”, “zero or none” or “positive”.
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Figure 5.2: Water Level Control
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With these terms a first set of rules might be:

1. If (level is okay) then (valve position unchanged)

2. If (level is low) then (valve opens fast)

3. If (level is high) then (valve closes fast)

4. If (level is okay) and (level rate negative), then (valve closes slowly)

5. If (level is okay) and (rate is positive), then (valve open slowly)

5.1.1 Matlab fuzzy controller

The block diagram shown in Figure 5.3 corresponds to a water level control system

application in the demostration example section of Matlab [42]. The example is

called sltank [42]. Figure 5.4 shows the internal structure of the fuzzy logic controller

included in the block diagram of Figure 5.3. The controller’s membership functions

are depicted in Figures 5.5 and 5.6, whereas its transfer characteristics are displayed

as a surface plot, valve command versus water level and its rate of change, in Figure

5.7.

Table 5.1 shows normalized input value range for each linguistic variable used in

this matlab example.

Linguistic Variable Range

Level ± 1

Rate ± 0.1

Valve ± 1

Table 5.1: Matlab input values
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Figure 5.5: Matlab level’s fuzzy set

Figure 5.6: Matlab Rate’s fuzzy set
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Figure 5.7: Output of Matlab Fuzzy Logic Controller

5.1.2 Proposed Analog Fuzzy Controller

The proposed Analog Fuzzy Controller consists solely of MOS transistors that

are compatible with standard CMOS fabrication processes. Structure diagram of

the fuzzy controller to regulate the water level in a tank is shown in Figure 5.8.

Simulations for this controller were conducted in PSpice at level-3, where AMI06N

and AMI06P were used for the CMOS transistor models.

Due to circuit constraints the linear range, for the linguistic variables, in our

analog fuzzy controller got limited to those values shows in Table 5.2.

To convert these ranges to the normalized ones used in the Matlab simulation the

followings transformations are applied:

Normalized level = level − 1.5V (5.1)
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Figure 5.8: Fuzzy controller to regulate the water level in a tank

Linguistic Variable Range

Level 0.5V to 2.5V

Rate 0.5V to 2.5V

Valve -2.8µA to 4µA

Table 5.2: Analog fuzzy Controller input voltages and output current
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Normalized rate = (rate − 1.5V )/10 (5.2)

Normalized valve = 0.2941(valve) − 0.1765µA (5.3)

Figure 5.9 and 5.10 show the membership functions used in this example. Table

5.3 shows reference voltage values for each membership function. Shapes of the curves

used in the fuzzification stage were heuristically matched to those in the Matlab model

by varying the ratio W/L mentioned above.
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Figure 5.9: Fuzzy sets assigned to the variable Level

Figures 5.11 show contours controller’s output from 0.5V to 2.5V in Level for

different rates. Comparing these contours with those sketched from the matlab surface

of Figure 5.7 we can appreciate a good agreement in the expected results.
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Figure 5.10: Fuzzy sets assigned to the variable Rate

Fuzzy set Reference voltage 1 Reference voltage 2

High/Negative 0.9V 0V

Okay/None 1.9V 1.1V

Low/Positive 3V 2.1V

Table 5.3: Reference voltages for each membership function
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Table 5.4 shows weights used with each of these rule, where each weights represent

the rule activation degrees.

Rule Weight

1 0

2 10

3 -10

4 -5

5 3

Table 5.4: Weights used with each rule

Simulations results in Figures 5.7 and 5.11 prove that the analog fuzzy controller

performs the same tasks as the fuzzy controller in Matlab; and hence that the former

can replace the latter in simple control system applications such as the one discussed.

Tables 5.5, 5.7 and 5.6 show the currents and voltages values used in Analog Fuzzy

Controller.

Membership Function Circuit

Fuzzy References Voltages

Sets VREF1 VREF2 IBIAS

Okay 1.9V 1.1V 4.5µA

Low 3V 2.1V 4.5µA

High 0.9V 0V 4.5µA

Negative 1.9V 1.1V 4.5µA

None 3V 2.1V 4.5µA

Positive 0.9V 0V 4.5µA

Table 5.5: Currents and voltages values used in Membership Function Circuit
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3-input Minimum Circuit

IBIAS=10µA

Table 5.6: Currents and voltages values used in 3-input Minimum Circuit

Multiplier-Divider Circuit

Rule IBIAS

No.: 1 2 3 IIN2

1 100µA 100µA 100µA 0

2 100µA 100µA 100µA 224µA

3 100µA 100µA 100µA -96µA

4 100µA 100µA 100µA -75µA

5 100µA 100µA 4µA 189µA

Table 5.7: Currents and voltages values used in Multiplier-Divider circuit
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Conclusions and future work

An analog CMOS based fuzzy controller whose membership function can be pro-

grammed via reference dc voltages has been developed. The transfer characteristics

represent the controller’s fuzzy set. Each input generates, according to its degree of

membership within the set, its respective output and the slopes of the edges in the

membership curves are determined by the CMOS transistor’s ratio W/L.

The inference stage uses Sugeno’s FIS and it is implemented in CMOS technology

with an n-input minimum (MIN) extracting circuit. The n-input minimum (MIN)

extracting circuit can handle as many fuzzy sets or variables as needed, (hot, warm,

cold, chilly, etc.) and it only requires 4n+1 transistors.

The defuzzification stage utilizes an efficient CMOS based multiplier-divider that

also exhibits small size (area) and programmability. The programming can be done

through dc (bias) currents that set the weighing factors for the respective rules. Orig-

inally, this circuit was design with bipolar-based OTA as the active circuit element

[33] and the assumed that a CMOS-based OTA which can be linearly tuned by the

external DC current bias current can also be used. According with simulations and
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derived equations, it depends on the square root of the bias currents.

Simulations for the fuzzy controller were conducted both in Matlab with its fuzzy

toolbox and in PSpice at level-3. In PSpice AMI06N and AMI06P were used for the

CMOS transistors models. Results from the circuit simulator of the analog fuzzy

controller agree very well with those from Matlab.

Some directions for future work are:

• Controller’s circuit layout and thorough behavior analysis through CAD tools

such as Cadence.

• Physical implementation and testing.

• Since each stage topology is fixed, possible development of an analog HDL

program to systematically improve programmability and modularity.

• To incorporate the elements of programming control, i.e., the circuits that pro-

vide the reference voltages, bias current, and so on.
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