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ABSTRACT

Modeling of electric drives coupled to complex mageical loads may be a challenging task.
Since the electric drives are commonly used in itidustry, for many applications is
desirable to have the capability of self-tuning ttentroller parameters to drive different
mechanical load. A possible solution consists ofrectly identify the drive and the
mechanical load. For that reason, gray-box modalsing neural networks is presented as a
possible solution for the identification of the rhaaical loads and the drive system. In the
proposed gray-box modeling, the drive system isddi into the known part governed by
the physical laws, which in our case was the atsdtisubsystem, and an unknown part,
which in our case was the mechanical subsystenis type of approach is known as a two
stage identification process. At each stage, #iameters are estimated using the method of
linear and recursive linear least squares. Toda#di the effectiveness of this approach,

simulations and experiments were perform and tiesults are presented in this work.



RESUMEN

El modelar los sistemas de accionamiento eléctacoplados a cargas mecanicas complejas
pude ser una tarea muy retadora. Ya que los sistala accionamientos eléctricos son
comunmente usados en la industria; para muchasaajnes es deseable poder tener la
capacidad de poder auto ajustar los parametrosatdtolador para asi poder manejar
diferentes cargas mecanicas. Una posible solwmasiste en identificar correctamente el
sistema de accionamiento eléctrico y la carga megarPor esa razén es que el modelo de
caja gris usando redes neurales es presentado eoraoposible solucion para la
identificacion de cargas mecanicas y de sistemasod@namientos eléctricos. En el
propuesto modelo de cajas grises, el sistema denaciento eléctrico es dividido en una
parte conocida que es gobernada por las leyesadjsitie en nuestro caso era el subsistema
eléctrico, y en una parte desconocida, que en mueaso era el subsistema mecanico. A
este tipo de enfoque se le conoce como el métoddeddificacion en dos etapas. En cada
etapa, los parametros son estimados usando el onééolds cuadrados minimos en su forma
lineal y recursiva. Para validar la efectividaded#e enfoque se realizaron simulaciones y

experimentos y sus resultados son presentadogestrasjo.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Since a fast development in automation technolieggccurring in our times, an
urgent demand for high performance motor drivesliesn increasing. To meet these high
performance requirements, it has become necesesadgvelop control schemes that can
overcome the influence of varying motor's parangténe influence of nonlinear friction,
and especially the influence of load variation sashinertia, viscous friction and unknown
loads. Commissioning is one of the most commomvarsto the tuning of high performance
motor drives. Self commissioning automates thentpiof a control system for a specified
motor and load system. The tuning of the contrabguires accurate models of the motor
drive system. In the design of a typical motovérithe dynamics of electric machines are
well understood and accurate models for controkaaly exits. On other hand, the
mechanical loads depend on the application and limgdmight be a complex task.

Here we propose to study gray-box modeling asppnoach to develop identification
methods for drive systems that can be used forde wange of mechanical loads in a self-
commissioning scheme. In our case, we know theeiofithe electric subsystem of the
drive, but we don’t know the exact model for thechmmnical load. Gray-box modeling is a
good alternative for modeling electric drives besmaiut takes advantage of the available

system knowledge while leaving flexibility to attethe mechanical load.



1.2 Objectives
The main objective of this work is to develop arioanated methodology for the
identification of mechanical loads models that barused for tuning the controller of electric
drive systems.
The specific objectives of this work are:
* To develop an identification algorithm for a motsive system using a gray-
box model.
* To implement a control scheme with a recurisve tifieation algorithm for
DC motor drive.

* To validate the proposed scheme using simulatiodsaperiments.

1.3 Contribution

The contribution of this work is the developmentl aalidation of a two-stage linear
least square parameter estimation method for thetification of a DC permanent magnet
motor drive. This method separates the systemvansubsystems, the physical and empirical
part. The physical part is the electrical and na@atal model of the motor drive without the
mechanical load. This part is also known as aevbdx model. The empirical part or black-
box is the mechanical load of the system. Thisesyss represented with a parallel gray-box

model:

X (t) = h(x(t),ut))+g (x(t),u(t)) (1.1)



where:h(x(t),u(t)) is the white box model angl(x(t),u(t)) is the black box model. This
model is called a gray-box model because is a ofatdetween the two individual subsystem

models. In our workh will be associated with the electrical subsystehilevg will be

associated with the mechanical subsystem.

Previous works [1-7] in the field of motor contrahd load identification, the load
separation from the known physical system into rmpigcal model had been presented. In
this work, we not only separate and estimate thehan@cal load with a black-box model,
but also we are estimating the physical model Vuitbar least squares. This kind of method
is the main contributions of this work, becausedtld be easily implemented on a self-

commissioning scheme of a motor drive.

1.4 Thesis Outline

The thesis is organized as follows. Chapter Zqmts the literature review. In
Chapter 3, we present the Two-Stage parameter agiimmethod. Chapter 4 presents
simulation and validation results. Chapter 5 pnesexperimental and validation results.

Chapter 6 conclusions and future work.



CHAPTER 2
BACKGROUND

This chapter presents basic concept of motor danelsgray box models using neural
networks. Also the concepts of linear and recerparameter estimation as well as the

control scheme used in this work are discussed.

2.1 Concepts in Motor Drives

About 65 % of the total electric energy producedhe US is consumed by electric
motor drives. An electric drive converts electriemergy to mechanical (rotational or
kinetic) energy for many applications in the indysand almost everywhere around us.
Electric drives are an integral part of many indest Motors drives are responsible for
running large pumps, air compressors, and elevatasin small applications such the hard
disk drive from a computer. The combination ofedectric motor, a controller, the sensors, a
power electronics unit and the mechanical loadhatvis called electric drives (Figure 2.1).

Motor Dri\_/_e_

Energy :  Power Electronics & .: Electric Motor = Mechanical
. Unit . . + Loac
‘Illlllllflllllllll: ‘Illlllllllllllllll.

I EEEEEEEER Illllllll. .lllllllll EEEEEEEN

[
I Controllers '4— Sensors I
| ]

I L L] I L] L] I L] L] J

Input
Commani

Figure 2.1 Electric Drive System Block Diagram
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Since electric drives are being used in almostyhirg that needs to be moved or
drived is very important to have an efficient drive a particular system. In order to have an
efficient electric drives, all of its componentseddo be properly designed. The controller in
conjunction with the power electronics units witbduce the necessary input signal to the
electric motor to drive the mechanical load to niketrequired specifications. Significant
attention is paid to the operation and the efficieaf the system. This is the reason why on

this work we present a methodology to obtain a gonodel for high performance drives.

2.1.1 DC Motor Drives

In [1,8], the capability of the gray-box approafdr motor drive modeling was
studied. Their work showed identification of a slated drive system. The simulated
system was a permanent magnet Direct Current (PMDGIpr driving a nonlinear static
load. The PMDC motor is used in the test-bed arpent of this work. The nameplate data
of the DC motor used are the following:

* Horse Power: %2 HP

* Voltage: 90 V

 Current: 5.2 A

* Rated Speed: 2500 RPM

* Wound: Permanent Magnet

* Manufacturer: General Electric Company



This nameplate data was used in the simulatiodg@evaluate experimental results.

In Figure 2.2, a schematic of the simulated syssepnesented.

Ra La
0—/\/\/\/ YTV
—s
T Tait) + Jin Bm  T.(t)
Va Ea=Ka m{1)

\EiCy g

Imft)=Kala(t)

Figure 2.2 Schematic for a DC Motor and Load System

The general equations of the electrical and mechparts of the system are:

AU

= =V, (0~ Ri, (0 - Kot @
3,940 =7 - 8,60 -7, (@) 2
Tem(t) = Ko (1) (2.3)

where:L, is the armature inductandg, is the armature resistand&(t) is the input voltage,
Ka is the induced emf constagdt, is the combined load and motor inertia of the mdsg, is

the damping coefficienip(t) is the rotor speedg(t) is the armature current, ardis the
speed depend load torque. Table 2.1 summarizgshirscal parameters values used for the
simulations and the experiments. These parameters obtained using the procedure

described in Chapter 4.



Table 2.1 Parameters of the DC Motor Drive

Parameter Value
I 0.002387 Kg.mh
Ka 0.3409 Nm.A"
Ra 1.587Q
La 0.409 H
Bm 0.00086

In this work, we also consider a nonlinear staiechanical load. The basic load to
be used on the work is a fan. In real life thsdas a 16 inch blade with 26 degrees of pitch

fan. The fan torque load had the following equatio

7. = psign(aft))w’ (t) (2.4)
wherep (Nm*s?) is a constant value and the function is set so tie direction of the fan
torque always opposes the direction of motion [Ehe fan load equation and its parameter
values are presented in Table 2.

Table 2.2 Case Study Load Torque
Load Case Torque Equation Parameter Valug

Fan Load 7, (w) = sigr(et))w? (1) £=0.000063 N-m

2.1.2 Mechanical Load Identification for Electriaii2es

Identification of a mechanical load using prior piwal knowledge has been
extensively studied. In [3], a method for comnossng the speed and position control
system of an electric drive is presented. It idek the identification of the nonlinear
mechanical load on the system. The identificatmin the mechanical system was

7



implemented assuming it behaves like a one massvor mass, then using extracted
characteristics features from acquired data tordete which system to use. The key
features used in this case for structure seleearerbased on knowledge of ideal response of
the system when it is assumed to be one mass or two

In [4], the authors develop models for nonlineachanical loads in electric drive
system. Radial basis function networks are integravith a physics-based model for the
load. An EKF is used to estimate position and dpaed the friction as a nonlinear load.
Implementation on a real system is presented. bBlsec feature of this work is the modeling

of the mechanical part. The following model repraation was used:

X(t) = Ax+ Bu+ NL(x,u) (2.5)
whereNL(x,u) is the nonlinear representation of the mecharfieetion. The work found
that EKF integrated with the radial basis functisna powerful algorithm for online
parameter and state estimation. Our work use #asimodel structure as equation (2.5).

The work on [5] describes experiments whose objecis to estimate dynamic
friction without relying on measured friction foram a structured friction model. The
method addresses friction characterization in thesgnce of variable and uncontrollable
factors; including, wear, environmental conditioh#ricant condition, and normal force
variation. The method also used the EKF to deteenfiiiction force without relying on a
priori friction model. The method relies on acdardynamic modeling of the system and
measured motion to extract the unknown frictiorcéor A very similar concept as the one
presented in this thesis. This is the importarfcthis work because friction force is often

8



difficult or expensive to measure on-line; estimatican provide data from which locally
valid dynamic models can be constructed. The vats& presented that their estimate can be
used for friction-based diagnostics by monitorimigtion force variations during various
operating conditions and, also friction force estiimn can be used for friction compensation.
Finally, on [6], two gray-box models are presentednbining a white-box with a
black-box model. The authors used Neural Netwarkd a polytopic model as black-box
models that are capable of identifying friction dweristics that are left unexplained by the
first principles modeling (white-box model). Theayso introduced an experimental case-
study where both gray-box models are applied tatifjea rotating arm subject to friction.
The authors performed an experiment where the peteamof the two proposed models are
estimated with experimental data obtained from nbiating arm. Later a closed-loop
nonlinear state feedback friction compensation,civhs a control loop for the friction, was

used to verify if the proposed method was effectorean on-line application.

2.2 System ldentification: Gray-Box Modeling

Models help us understand and describe our knowleflg system in a mathematical
sense. For that reason, modeling of physical sysie the basis of physical principles is
widely used and implemented. This implementatibphysical laws that are governing the
physical systems provides a mathematical model tbguires the estimation of key
parameters. System identification is concern enddétermination of a system, on the basis

of input and output data samples. The estimafghk ts to determine at each instant time a
9



suitable estimate of the parameters which, oncecifspd completely describe or
characterize the system.

For the case of gray-box modeling, the system maslepartitioned into two
components. One component is based on the knowletighysical principles that govern
the system dynamics (white-box). That is the aafsthe electric subsystem in the motor
drive. In this electric subsystem all the paramsetthe signals and the model equations are
available. This white box models required a goodvidedge of the system in order to
represent the physical system correctly.

When the structure of a system is not known oidéta available is insufficient to use
a physical modeling, a black box or empirical modeused. A black-box model tries to
estimate both the functional form of relations betw parameters and all the unknown
variables affecting the physical equations of theitevbox model. If there is no priori
information of the model, we would try to use fuoos as general as possible to cover all
different models. An often used approach for blaok models are neural networks. The
problem with using large set of functions to ddsera system is that estimating accurately
the parameters becomes increasingly difficult wttenamount of parameters increases. In
our case, the unknown mechanical load is approxichatith a radial basis function neural
network. The problems of estimating all of thegmaeters of the neural network are partially
solved with the assumptions made when implementiagadial basis function. This topic is

described in the Section 4.1.
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A gray-box model represents the tradeoff betwdenvihite box and the black box
models [8]. The gray-box models structure relies pyior knowledge and the model
parameters are mainly determined using measured ddtat is the case when a part of the
system can be represented with the prior knowledgehysical principles but another part
remains to be determined from observed data. herotvords, with gray-box models we
have partial knowledge of the model structure ih#d be identified.

The parallel gray box model is given by:
X (t) = h(x(t),u(t))+g (x(t).u (1)) (2.6)
where:h(x(t),u(t)) is the white box model angl(x(t),u(t)) is the black box model. In our

work, h will be associated with the electrical subsystehilevg will be associated with the

mechanical subsystem.

2.3 Self Commissioning of Electric Drives

Due to the fast development in automation techmglthe urgent demand for high
performance electrical drives has been increasifjg [To meet these high performance
drives requirements, it has become necessary tel@ewontrollers that can overcome the
influence of nonlinear friction, the influence dianging motor’'s parameters and especially
the influence of load variation, to keep the perfance of the overall drive system
unchanged. An important problem in drive systesthe controller tuning prior to system

operation or commissioning. In a conventional madove, commissioning is usually
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performed using analytical design and experimeetts based on given or measured motor
parameters. The steps during the drive commigsgoaie the following [7]:

* Initial setting of necessary control parameters

* ldentification of electrical and mechanical paraengt

» Selection of controllers

* Tuning of control parameters

Self-commissioning is the automation of the consmising process. This process is
usually performed by a trained technician or enginevhich involve costs and time. With
self-commissioning, the system itself determines ¢hectrical parameters of the machine
during the commissioning and sets the control patara accordingly [9]. Some of the
issues in self-commissioning are the load iderdtfan and the controller tuning. In this
work a solution for load identification is presahteased on a gray box model.

The advances in computers made possible the eneati sophisticated control
algorithms. The auto-tuning self commissioning §0) control of an electric drive
becomes a new issue in the design of a universad tbr various applications with unknown
motor parameters and load dynamics. The two bagugirements of this ATSC are the self
commissioning and auto-tuning. The self commigsi@rhas been explained but the auto
tuning concerns the automatic tuning of the conpatameters when the motor drive is
operating to achieve a satisfactory drive perforoean This kind of tuning eliminates the
necessity of constantly tuning the control schemben the loads on an electric drive

changes. In [7], Beineke presents a computer aidetbr drive commissioning tool.
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Basically they design a software tool which perntite identification of the mechanical
system and the selection commissioning of sev@etd and position controllers for a two-
mass systems with mechanical imperfections sudni@®n and backlash. They design a
tool that was easy to use for the industry commimseg personnel, which is one of the

objectives of developing auto-tuning self-commisgig control schemes for electric drives.

2.4 Radial Basis Function Neural Networks

Radial Basis Functions are a type of Artificialud@ Network. The Artificial Neural
Networks (ANN) models are based on our present nstaleding of biological nervous
systems. One of the most important attributeshef meural networks is the ability to
generalize. What this mean is the ability to sasfidly interpret data which it has not
previously been encountered and provide a senmldt on the data. Naturally, there are
limits to the generalizing ability of the networksd it is essential for the network to have
been trained on information or data which is clpselated to that on which the network is
expected to generalize. In the generalizations ibetter to consider the network as an
interpolator within the multidimensional space @astrained.

Artificial neural networks have high computatioatas provided by their basic
features:

* High parallelism on the approach

13



* The ability to distribute memory over a large numloeé components within the
network
* Learning features from the training data.

They are useful for approximating nonlinear mappiagd for extracting
characteristics from noise corrupted signals irdeem environment [10]. The type of ANN
used on [8] to emulate load behavior is a layerstforward network. In this type of
network, there can be many hidden layers in betwieemnnput and the output but every unit
must send its output to layers higher than its awth must receive its input from layer lower
than its own.

In this work, a certain type of neural network wiagd to approximate the load torque
characteristic of a motor drive system. Figure @@&sents the block diagram of the actual
motor drive system. In this case we used the @t (t)) to represent a static load like.
One of the objective of this work was the used rifieial neural network (black-box) to
model the load. For that reason we used an aatifreural network instead of the fan load
torque equations. This substitution is presenteBigure 2.4. On this figure the system is
separated in two divisions, the physical known pathe system, which is compound of the
electrical parameters, and the black box part wiiadomposed by some parameters and the

neural networks.
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In this work, as in [8], the radial basis functi(lRBF) neural network was used to
model the unknown load on the mechanical equation (2.7). The RBF usesradial

construction presented in Figure 2.5.

da(t)

‘Jm T = Z-em(t) - Bma(t) —I (w(t)) (2.7)

The output of the radial basis function neuralwek is given by:

§=gmﬁw—ﬂu (2.8)

whereF( ) is the basis function. For the Gaussian cas@) (hanges to:

yzuw:imgﬁgﬁ) 29

where:x(t) is the input datay; is the weight of the functiorj is the center of th& node and

o is the variance of thé' node.
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N

Figure 2.5 Structure of a Radial Basis Function Netal Network
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The radial basis function has three types of pararse
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* Output layer weightsy: that are linear parameters and they determinartihaitude

of the basis function.
» Centersc;: are nonlinear parameters of the hidden layerarejrand they determine
the position or location of the RBF as well asweghtso;.

« Standard deviatigr;*: are the nonlinear parameters of the hidden Iagerons, and

they determine the width of the RBF.

In an RBF the ith input variable is linked to ttie RBF via the center component
The ith output component of the network is relatethe ith RBF via the weiglt. Solving
for the weights is equivalent to solving a systdr® tinear equations with unknowns.

Here much attention is given to the RBF neuralpets because in this work the
black-box model representation of the load is basedhis type of network. The main
attraction of RBF is that the model parameters beygalculated using linear methods. This
assumes that the locations, or centers, of theoappating functions are predetermined or
selected in priori and fixed. In this situatiohgterror function is quadratic in the model
parameters, a fact that has the effect of communtakieffort simplification. There is a global
minimum which may be attained by solving a leastasgs problem or adaptively using a
descent method [11]. Another major attraction BFRs their flexibility. The basis function
may be chosen to be either local or global, ang thay or may not incorporate shape
parameters, which can be tuned to reflect the eattithe data. Moreover, RBF train rapidly
without local minima problems and approximate awytmuous function with accuracy.

Their rapid training makes them suitable for siuad where on-line learning is necessary
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which is going to be the case of this work. Momgaied information on Radial Basis

Function neural network is presented on [6 and 11].

2.5 Parameter Estimation

All of the presented models have parameters thed e be estimated. Generally the
model parameters are estimated using the leastesquathod. The technique of least
squares was developed independently by A.M. Legeadd Carl Friedrich Gauss in 1806
and 1797 respectively. The objective of the lsgstares method is to find estimates of the
model parameters that best fit to measured datgolSince the data may include errors in
measurement or experiment inaccuracies, we doeuptine the model to fit through all the
data points. Instead, we require the model toigeoan optimal approximation in the sense
that the sum of squares of errors between the satithe data points and the corresponding
estimates of the model are minimized [12]. Foednmodels, the least squares parameter
estimates can be found easily, but for nonlineadet®the estimation of parameters becomes
a more difficult problem to solve. In that cad®e use of iterative or recursive methods to
compute estimates of the parameters is neededoudncase, we take advantage of the

nonlinear model structure to solve the problem sscaience of linear least square problems.

2.5.1 Linear Least Squares
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The least square method finds the parameterstiatithe model outpuy that best
approximate the measured outguty minimizing the sum of squared errors. Forlthear
case,

y(t)=a'(t)o +e(t) (2.10)
t is discrete time indexa(t) is the mxn regressor vectory(t) represents the available
measurement, andlis a vector of the parameters to be estimatednFsm,and Rank (t))
=n, in general, there will be no solution to (2.169, in the linear least squares method the

parameters are optimizing by minimizing the squacem of the errore=A@# -y, as

follows:
é:argmin”Aia— vil, (2.11)
eoon
yl aj (t)
wherey|], is the Euclidian normy, =|: | and A =|
Yi a/ (t)

The solution to (2.11) is given by:

6= (ATATATY (2.12)
The linear least squares have several importamarfes for system identification [13].
For example, with least squares large errors aawilyepenalized. Also the linear least
squares estimates can be obtained by straightfdrmatrix algebra. Finally in many cases
the linear least squares criterion is related &distical variance and the properties of the

solution can be analyzed according to statistigenia.
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2.5.2 Recursive Least Square Algorithm

The purpose of this work is to provide a tool forlme identification of the electric
drive. For that reason we used the recursive Nesaphson algorithm applied to scalar
linear predictor with a least squares identificatoiterion..

The Newton-Raphson algorithm [14] generates a esszpi of parameter valués

given a starting valué(NY, by means of the recursion:

(0,(N -1)) (2.13)

Al
0,(N)=0,(N -1) —{%(&(N —1))} Y.

Here the row vectod V/d 6 denotes, as usual, the gradien\ofd v/ 6* is the matrix of
second partial derivative® ¢V/d 6, ;) or the Hessian o¥. Now modifying the Newton-
Raphson algorithm applied to scalar predictor modehen a least squares identification

criterion

V(a) =%Hei @ (N =;i§i:eﬁ 6.(N)) (2.14)
is adopted. Herg(6#(N)) are the prediction errors associated to the model:

e (B(N) =y, -a;(N)"6;(N) , (2.15)
wherea is the model inputy is the model output artlare the model parameters.

Given datayi(N), a(N-1) and an estimat#;(N-1), the algorithm supplies an updated estimate,

0;(N), according to the rule:
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oV, (N)

0,(N)=0,(N-1)-aH,(6,(N-1)" 0.(N-7)  (2.16)

where the gradient &fy with respect to the parameters given by:

oV, (N)

_25
7(6’)—N§ei (O(N))J; (0(N)) (2.17)

In this expression, the row vectiis defined by the equation:
of,
Ji(N) ==L (% (N-D,8(N-D), (2.18)
Hi(A(N)), is an approximation to the HessianJgN) atd given by:
H, (B(N)) :ﬁza (6(N))J; (6(N)) (2.19)
anda is a suitable positive number acting as the faomggfactor.

The introduction of); provides us with a convenient new approximati®nto the Hessian,

where:

R(6(N) =~ 3" 37 (NI, (BN)) (2.20)

Now we have to apply the matrix inversion lemmasprged in [14] and it results in a
recursive equations fét(N) = (NRi(N))*, namely:
P.(N)=[1 - @+ 3, (N)P(N-1)J"(N)) "R (N-DJIT(N)J;(N)IP(N -1 (2.21)
After the corresponding approximations and deroradi we come with a new updating
formula (2.16) in terms d®y:
6,(N)=6,(N -1 - aP,(N)J| (N)e, (N) (2.22)
The equations (2.15), (2.18), (2.21) and (2.22neethe recursive algorithm.
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2.6 State Variable Filters

On the equations established in the Section 24, dérivative of the armature
currents and rotor speed are required. This ioged a problem because the direct

differentiation of analog or digital quantities camplify the noise of the measure signals.

One possible solution for this problem consistsh® use of state variable filters
(SVF). The state-variable filter method is basadhe block diagram representation used in
the so-called phase-variable description of lir@atems that use the outputs of a chain of

cascaded integrators as state variables [15].
The transfer function of the system of interegiven by:

H(9=— K (2.23)
s"+a, ,S+...+as+a,

where n is the order of the highest desired devea The state variable filter is

realized in the controllable canonical form in artieobtain the necessary derivative terms.

The figure 2.6 shows a block diagram of a firstesrstate variable filter. This filter
was implemented in our work because we only ne¢dedirst derivative of the armature
current and the rotor speed. Notice that therfiuteiable and its derivative are available. In

the processing, we use the filtered variables austd the real ones.
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Figure 2.6 First Order State Variable Filter

The most difficult part in the design of such fiteis the selection of the filter
bandwidth. The optimal bandwidth is a compromiséenMeen the noise rejection properties
of the filter and the quality of the input signatsthe estimation algorithm. Filters of this

kind can be easily designed using techniques léssBl, Butterworth or Chebyschev.
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CHAPTER 3
TWO STAGE PARAMETER ESTIMATION

Parameter estimation is one of the main issuegstes identification. The goal is to
find the parameters that best describes or chaiaethe data used for the system model.
On this chapter a linear least square and a reeulisiear least square two stage parameter

estimation ARE presented.

3.1 Gray-Box Model

In Chapter 2, we mentioned that the torque loathefpermanent magnet DC motor
is going to be assumed unknown and is going tgopeoximate with a neural network. This
decision was made base on the results presentg] and [8], where the same issue were
addressed. In those previous works, neural nesvadee implemented to approximate the
load. In our case, we used Radial Basis Func{iBBs-) as the neural network for the load.
The following equations describe the RBF structiged on this work.

RBFNN:EN:ai F.(x.co) (3.1)

i=1

[_(w(tz]—zq)z]
where: F=e % (3.2)

The load used in this work was a fan. The fagueris a nonlinear function of speed.

Knowing this matter, we substitute the Radial BaSismction (3.1) in the mechanical
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equation (3.3) of the DC motor. This new matheoatmodel for the mechanical equation

of the motor is now given by

de(t) _ K, . B., 1
o 3 la(t)‘J—mw(t)‘J—mTL(w(t)) (3.3)
(w(t)-g )’
dat) _K,. .. B, 1S [ 20¢ J
T_ila(t)—iw(t)—ﬂ iZ:;,aie (3.4)

In this work, we decide not to estimate the viscénction factorBn,. In [8], they
conclude that the error without the viscous frictiwhere lower than the case when the
viscous friction was included. They concluded ttinegt radial basis function was absorbing
the effect of the viscous friction factor. Followitheir recommendations, we eliminated the

viscous friction from equation (3.4) resulting in

()= )’
dart) _ K, . 1| [ 207 ]

—2=2j t)-—| Y a.e |

Pl a(t) 3 le. (3.5)

m m

for the mechanical load.
Now we have the complete mathematical model f@& gnay-box model of the

permanent magnet DC motor.

3.2 Linear Regression Model for Electrical and Mechnical
Subsystems
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Here we show two linear regressor models derivenh f(3.3) and (3.4) used for the
design of the estimator. These models made tim@aigin process easy to solve, because it
reduces the problem from a complex nonlinear ate itwo linear simple estimation
problems [8]. The most important advantage of thisthod is avoiding the use of the
iterative Gauss Newton method which is computatipneomplex and time consuming.
Instead the problem is simplified to solve it by thse of linear least squares which is less
complex and than the Gauss Newton method.

From equation (3.3), the electrical equation caarpanged into the linear regression

form as follows:

Ye(t) =a.(t)" 0, (3.6)
where:

ae(t):[va —i, —w} (3.7)

ée:[eel 6,, eeQI (3.8)
and Yo (t) = ot (3.9)

The electrical parameters are obtained as follows:

L, = 1 (3.10)
O
. 4,
= e (3.11)
A O



>
D>

K =Oe (3.12)

Now considering the mechanical equation (3.13heit the explicit viscositB, , it

can be arranged as follows:

I df;ft) Py ae I 0 (3.13)

[ (@(t)-c,

The corresponding linear regression model is given:

Ym = an(t)" 0, (3.14)
where

adw%ﬁf E@»~FM@} (3.15)

0, =[am 6, ---emz} (3.16)
and y, =7, (t) =K,i,(t) (3.17)

The mechanical parameters are estimated as follows:
J =6, (3.18)
[a, - e, = |6+ ) (3.19)
As is presented in (3.17) the electromagneticuensg estimated using the estimated
K, obtained from the electrical regression model.

The Figure 3.1 summarizes the two-stage algorithplemented on this work.
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Figure 3.1 Two Stage Algorithm Summary for both Identification Cases

3.3 Recursive Algorithm for Electrical and Mechanial
Subsystems

The recursive algorithm implemented on this worla isvo-stage method similar to
the batch case. The gray-box model introduces rpargmeters because of the radial basis
function used to estimate the nonlinear load. Bxjpey the algorithm in electrical
parameter#)e and mechanical parametets made the algorithm faster to converge than in
the case with all of the parameter being estimasmlrsively at the same time. This
technique is similar to the separable nonlineastlsguares introduce on [16]. In that work,
they estimate a Hammerstein model separating thenmeders. The Hammerstein model
consists of a static nonlinear block that is pateneed by a feed-forward or radial basis
function neural network in cascade with a lineacklthat is parameterized by a linear ARX.
They separated the nonlinear parameters of thec statural network and the linear

parameters of the ARX model.
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Now implementing the two-stage recursive methoth@Newton-Raphson algorithm
we first arranged the updating equation (2.22}lierelectrical parameters as follows
0,(N)=0,(N -1) —aP (N)J[ (N)e (N) (3.20)
(3.21)

0.(N)=0,(N -1) - aP,(N)J; (N)e,(N)
wherePen, Jen andrey are the recursive Hessian approximation, Jacadmanprediction
(3.22)

errors respectively for the electrical parameters,
R T
0e = l:gel 6e2 663:|

and
The original electrical parameters are estimatefolasvys:
[, = 1 R- % and K, = bes (3.23)
O O O
Similarly, the updating equation (2.22) can beragesd for the mechanical parameters as
0,,(N)=0,,(N -2 -aP,(N)J(N)e,(N) (3.24)

follows:
whereP,(N), Jn(N) andey(N) are the recursive Hessian approximation, Jaccdman

(3.25)

prediction errors respectively for the mechanicabmeters,
R T
0m :|:9ml Hmz:l

(3.26)

ml62]

D>

and
The original mechanical parameters are estimatéollas/s:
J,= éml and [ai "'alal]T = [émz”
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J.. in this case is the motor inertia mechanical patamnot the Jacobian matrix of

the recursive algorithm equations. This is theursiwe algorithm presented for this work.

The results of the simulations and the experimarggresented on Chapter 5 of this work.

3.4 ldentification Process Algorithm

Figure 3.2 presents the identification process uisdatis work. In the first step we
began with the selection of the model structureour case, radial basis functions were used
to model the mechanical load as a black-box. értbxt step, we proceed to estimate the
parameters. For this part a simulation and an raxeat were performed. The two-stage
method was used to estimate the parameters withdifferent algorithms. In the first
algorithm the system parameters are estimated Uisiegr least squares and in the second
algorithm they were estimated with a recursive dméeast squares. In both algorithms
simulations were done by substituting the estimagr@meters into the model and running it
with the same input as the real system. The simounka results were compare with the real
results. No the next step would be the validatbrihe results. For this step, we used a
different input signals as the one used for theumater estimation step. Then we perform
simulations by substituting into the model the reatied parameters from the parameter
estimation step. Then we run the model with the mgut signals from the validation step
to corroborate if the estimated parameters are wgnkith a different set of input signals. If
this validation is correct then we stop the procbss if it is not correct then we return to the

model structure step to verify or change the model.
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CHAPTER 4
SIMULATION RESULTS

This chapter presents the simulation results fer two proposed algorithms for
parameter estimation. The validation is also presk on this chapter for all of the

algorithms. The experimental result are presem¢ide next chapter.

4.1 Initialization

Before any simulation was performed, it was verpamant to initialize the data and
the radial basis neural network. First of allsitviery important to assume that the motor is
going to be operated over the entire nominal opegatange. In real life, this would limit the
operating range in which you could operate the matad could introduce errors to the
system identification process. Another importagrnark is using the neural network for

modeling the load.

The input data used for training the model was ramagure voltage\(s) signal that
would result in a speed response within a rang@ raid/s, to approximately, 150 rad/s. For
the radial basis function model, 161 points wetecied priori. These 161 points simulated
the speed from 0O rad/s to 160 rad/s were selest¢ldeacenter of the NN. The variance was
also selected in priori and fixed to a value offhe armature voltage used for this system is

presented on Figure 4.1.
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4.2 Simulation Results for Batch Two Stage Method

Table 4.1 show the estimation results for the nfise case.

Table 4.1 Parameter Estimates from Simulation for he Batch Two State Method

Parameters Real Value Estimated value %Error
La 0.4094 0.4094 0 %
R. 1.587 1.587 0%
Ka 0.3409 0.3409 0%
JIn 0.002387 0.002387 0%
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The parameter estimates are presented in TableThése simulation parameters are

noise free. From the results it could be seentb®méstimates have no error.

The Figure 4.2 presents the load torque estimatomparison with the real load
torque vs. speed characteristic. From the FiguBeittcould be seen that the error is small.
The only big difference occurs when the velocitpatees about 155 rad/s. This happens
because the radial basis was trained with a spaegerbetween 0 to 150 rad/s and also the
speed input to the network was about a maximum4of rad/s (Figure 4.6). These results
demonstrate that the approximation of the loadautaristic is very good inside the training
range, but not outside. As mentioned before the &M good interpolators but not

extrapolators.
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Figure 4.3 Estimated and Real Fan Load Torque Chareteristic Estimation Error

Figure 4.4 compares the estimated and real cuimemt the simulations. It could be
seen from the figure that the curves are almostsdme. Furthermore from Figure 4.5 it
could be seen that the error is in the order of0IxA in the highest error which is on the
transition from one step to the other during theveu The rest of the curve shows good

agreement. These demonstrate the good performainttee identification model for the

noise free case as expected.
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Figure 4.6 presents the real and estimated spleetthis figure the estimated speed is
behaving almost identical as the real speed fromsiimulation. Figure 4.7 presents the
speed estimation error. The highest error mageitsdn the order of 1x1% rad/s, which is
negligible. Again, as in the armature currents giror occurs in the transition between steps
on the speed curve. This demonstrates that tlaender estimation algorithm works in ideal

conditions.
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Figure 4.6 Real and Estimated Speed
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4.3 Validation Results for the Batch Two Stage Method

The validation process performed in this work waging the model with one set of
data and using another set of data to validatenth@el. For validation, the second data set
was selected inside the identification speed rangbis action was implemented to make
sure that the model performs correctly without agdsome new errors because of not

operating the model inside the training data range.

For the validation test, a new voltage input wanafavas selected for this purpose.

This new voltage input is presented in Figure 4.8.

38



I

N
a
T
L

Voltage (Volt.)
8
Il

&

5
T
L

Time (sec.)

Figure 4.8 Input Armature Voltage used for Validation

The real and validation current is presented onrei@.9. Here the validation current
curve behaves almost as the real simulated curiém.error between the validation and real
current is presented on Figure 4.10. The error drasaverage of almost zero with the
exception of the initial transient of the step.isltnansient error was between -0.03 Amperes

and 0.02 Amperes, which is less than 1 % of theimax current.
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Figure 4.10 Current Estimation Error: Validation

The Figure 4.11 presents the validation and reallated speed. Here both curves

are almost identical. Moreover the Figure 4.13f firesents the error between the validation
40



and real simulated speed, shows that the errorahagverage of zero rad/s and with the

highest error on the steps inside the curve.
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Figure 4.12 Validation Error from Real and Estimated Speed
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4.4 Simulation Results for Batch Two Stage Method: Nois Case

Table 4.2 show the estimation results with GausNiaise of 0.| dB.

Table 4.2 Parameter Estimates from Simulation for he Batch Two State Method

Parameters Real Value Estimated value %Error
La 0.4094 0.4094 0 %
R, 1.587 1.586 0.06 %
Ka 0.3409 0.34085 0.014 %
JIn 0.002387 0.002385 0.083 %

The parameter estimates are presented in TableFdin the results it could be seen

that the estimates have no error.

The Figure 4.13 presents the load torque estinmt®inparison with the real load
torque vs. speed characteristic. From the Figuré,4t could be seen that the error is small.
The only big difference occurs when the velocitgalees about 155 rad/s. This happens
because the radial basis was trained with a spEegerbetween 0 to 150 rad/s and also the
speed input to the network was about a maximumd6frad/s (Figure 4.17). These results
demonstrate that the approximation of the loadauttaristic is very good inside the training

range, but not outside.
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Figure 4.15 compares the estimated and real cuin@mtthe simulations. It could be

seen from the figure that the curves are almoss#me. Furthermore from Figure 4.16 it
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could be seen that the error is in the order ofx2®’ A in the highest error which is on the
transition from one step to the other during theveu The rest of the curve shows good
agreement. These demonstrate the good performainttee identification model for the

noise free case as expected.
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Figure 4.15 Real and Estimated Current with Noise
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Figure 4.16 Current Estimation Error with Noise

Figure 4.17 presents the real and estimated spkethis figure the estimated speed
is behaving almost identical as the real speed tlwmsimulation. Figure 4.18 presents the
speed estimation error. The highest error mageitsdn the order of 3x1 rad/s, which is
negligible. Again, as in the armature currents #iror occurs in the transition between steps

on the speed curve.

This results compare with the results without nodemonstrate the good

performance of the two-stage method.
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4.5 Validation Results for the Batch Two Stage MethodNoise

Case

For the validation test, a new voltage input wawef@resented in Figure 4.8 was
used for this purpose. The real and validatiomenris presented on Figure 4.19. Here the
validation current curve behaves almost as thesieallated current. The error between the
validation and real current is presented on Figug®. The error has an average of almost
zero with the exception of the initial transienttloé step. This transient error was between -

0.03 Amperes and 0.005 Amperes, which is less tHanof the maximum current.
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Figure 4.19 Real and Estimated Current Validation fom Simulations with Noise
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Figure 4.20 Current Estimation Error: Validation

The Figure 4.21 presents the validation and reallated speed. Here both curves
are almost identical. Moreover the Figure 4.23f firesents the error between the validation
and real simulated speed, shows that the erroamaserage of approximately 0.02 rad/s and

with the highest error on the steps inside theeurv
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4.6 Simulation Results for Recursive Two Stage Method

Table 4.3 Parameter Estimates for the Recursive TwStage Method using Simulated

Data
Parameters Real Value Estimated value %Error
La 0.4094 0.4279 4.52 %
Ra 1.587 1.564 1.44 %
Ka 0.3409 0.3423 0.41 %
Jn 0.002387 0.002357 1.26 %

The parameter estimates using the recursive meginedpresented in Table 4.3.
These parameters are estimated using the inpuageolin Figure 4.1. From the results it
could be seen that all the estimates have errgsstlean 5 %, being the highest error of
4.52% on the armature resistangg)( Figure 4.23 show the time response of the etatt
parameter estimates. On this figure the respoh#ieedinear regression model parameters
are presented. The blue lineRgL,, the Red line id/L,, and the green line K, /L, It
could be seen that the estimated parameters cant@ig value near the nominal parameters
values (dashed lines). These nominal values &#&3or theR./L, line, 2.4425 for thd/L,
line and 0.8326 for thK,/L, line. In steady state, the estimation errors W@seas the Table
4.3 shows. The Figure 4.24 shows the estimatés/adf. The parameter almost converges
to the nominal value of 142.815 (Blue dotted lind)he estimated parameter is the dotted

blue line. The error is almost zero as could s Table 4.3.
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Figure 4.25 presents a comparison between thetwade characteristic estimated
with the recursive algorithm and the real one. nirfeigure 4.26, it could be seen that the
error is small, but is higher than in the batchecpsesented in Section 4.2. The largest
difference occurs when the velocity reaches ab®& rad/s. This is because the neural
network was trained for a velocity range betwedn @50 rad/s. These results demonstrate

that the approximation of the load characterigtieary good inside the training range.
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Figure 4.25 Real and Estimate Fan Load Torque: Recsive Estimator
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Figure 4.26 Real and Estimate Fan Load Torque Errofrom Recursive Simulation

Figure 4.27 shows the estimated and real currem the recursive simulations. It
could be seen that the curves are almost the s&mehermore, from Figure 4.28, the mean
error is -0.1 Amperes. The highest errors occuinduthe step changes in the curve, which
is something normal. The overall performance efdbktimator is good because the value of
0.1 Amperes is low compared with the maximum cur@n3.2 Amperes. These results

demonstrate the good performance of the recursivanpeter estimation algorithm.
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In Figure 4.29, the real and estimated speed ftenrecursive method is presented.
On this figure the estimated speed is behaving stitiee same as the real speed from the
simulation. In Figure 4.30, the estimation eropresented. The maximum error magnitude
is about -0.2 rad/s. This is good because theeBigépeed is about 140 rad/s. Highest errors
occur during fast changes in speed. In the stesidie regions the average error is

approximately -0.2 rad/s.
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Figure 4.29 Real and Estimated Speed from RecursiEstimator
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4.7 Validation Results for the Recursive Two Stage Metbd

For the validation test, the same voltage inpuduse the validation of the batch

method was selected for the recursive case. Tiage input is presented on Figure 4.8.

The real and estimated current from the recursase is presented on Figure 4.31.
Here the estimated current behaves almost as #@dectgrent. The error between the
validation and real current is presented on FiguB2. The error has an average of almost
zero Amperes with the exception of the period betweach step, but it was less that 0.25
Amperes. The error varies between +0.05 and -Ar@peres. This error is minimum when
compare with the current highest value of 2.5 Ampefhe identified model shows good

performance with the validation data.
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Figure 4.32 Validation error from Real and Estimatel Current from Recursive
Estimator

The Figure 4.33 presents the validation and res¢dgdor the recursive case. Figure

4.34, presents the error between the validationtaedeal simulated current. The average
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error is -0.2 rad/s with the highest error durinmeexd changes. This again shows good

performance for the identified model.
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From this validation results and the validatioasults of the batch two-stage method,
we could say that the identified model shows goedgomance to reproduce the response of
the system to an input different from training dafdso the proposed recursive algorithm is
good for identifying the system although there slightly large errors in the estimated

physical parameters.

4.8 Simulation Results for Recursive Two Stage MethodNoise

Case

Table 4.4 Parameter Estimates for the Recursive TwStage Method using Simulated

Data
Parameters Real Value Estimated value %Error
La 0.4094 0.4279 452 %
R, 1.587 1.563 151 %
Ka 0.3409 0.3422 0.38 %
Jm 0.002387 0.002371 0.67 %

The parameter estimates using the recursive metinedpresented in Table 4.4.
These parameters are estimated using the inpugeolin Figure 4.1. From the results it
could be seen that all the estimates have errsstlean 5 %, being the highest error of
4.52% on the armature resistangg)( Figure 4.35 show the time response of the etatt

parameter estimates. On this figure the respoh#eedinear regression model parameters
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are presented. The blue lineRgL,, the Red line id/L,, and the green line i€ /La It
could be seen that the estimated parameters cant@i@ value near the nominal parameters
values (dashed lines). These nominal values &#3Jor theR./L, line, 2.4425 for thd/L,

line and 0.8326 for thK,/L, line. In steady state, the estimation errors @seas the Table
4.4 shows. The Figure 4.36 shows the estimat&s/df. The parameter almost converges
to the nominal value of 142.815 (Blue dashed lin€he estimated parameter is the dotted

blue line. The error is almost zero as could s Table 4.4.
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Figure 4.37 presents a comparison between thettogde characteristic estimated
with the recursive algorithm and the real one. nfrieigure 4.38, it could be seen that the
error is small, but is higher than in the noisefoase presented in Section 4.6. The largest
difference occurs when the velocity reaches ab®& rad/s. This is because the neural
network was trained for a velocity range betwedn @50 rad/s. These results demonstrate

that the approximation of the load characterigtieary good inside the training range.
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Figure 4.38 Real and Estimate Fan Load Torque Errofrom Recursive Simulation
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Figure 4.39 shows the estimated and real currem the recursive simulations. It
could be seen that the curves are almost the safuethermore, from Figure 4.40, the
average error is 0.01 Amperes. The highest eawar during the step changes in the curve,
which is something normal. The overall performant¢he estimator is good because the
value of 0.01 Amperes is low compared with the mmn current of almost 4.0 Amperes.
These results demonstrate the good performancéneofrécursive parameter estimation

algorithm.
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Figure 4.39 Real and Estimated Current from Recursie Simulation: Noise Case
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Figure 4.40 Real and Estimated Current Error from Recursive Simulation

In Figure 4.41, the real and estimated speed ftenrecursive method is presented.
On this figure the estimated speed is behaving stitiee same as the real speed from the
simulation. In Figure 4.42, the estimation eropresented. The maximum error magnitude
is about 2 rad/s. This is good because the higlpestd is about 140 rad/s. Highest errors
occur during fast changes in speed. In the stestdie regions the average error is

approximately -0.2 rad/s.

This recursive results compare with the recursesuits without noise demonstrate

the good performance of the two-stage method.
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4.9 Validation Results for the Recursive Two Stage Metbd:

Noise Case

For the validation test, the same voltage inpuduse the validation of the batch

method was selected for the recursive case. Tiage input is presented on Figure 4.8.

The real and estimated current from the recursage is presented on Figure 4.43.
Here the estimated current behaves almost as #ilectgrent. The error between the
validation and real current is presented on Figudd. The error has an average of almost
zero Amperes with the exception of the period betweach step, but it was less that 0.3
Amperes. The error varies between +0.05 and -Ar@peres. This error is minimum when
compare with the current highest value of almo#n3pere. The identified model shows

good performance with the validation data.
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The Figure 4.45 presents the validation and rea¢dgor the recursive case. Figure
4.46, presents the error between the validationthedeal simulated current. The average
error is -0.1 rad/s with the highest error durinmeexd changes. This again shows good

performance for the identified model.
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Figure 4.45 Real and Estimated Speed Validation fdrecursive Estimator with Noise
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Figure 4.46 Error between Real and Estimated Speedor Recursive Estimation:
Validation

From this validation results and the validatioesults of the batch two-stage method
with noise, we could say that the identified mostedbws good performance to reproduce the
response of the system to an input different fromming data. Also the proposed recursive
algorithm is good for identifying the system altigbuthere are slightly large errors in the

estimated physical parameters.
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CHAPTER 5
EXPERIMENTAL RESULTS

This chapter presents the experimental work to @est validate the identification
algorithms. A block diagram of the experimentdupes presented on Figure 5.1. Each of

these components is going to be explained in dedsxi.

Current

Velocity

Analog and
Digital I/O
Board

A 4

Figure 5.1 Experimental Setup

5.1 Experimental Setup Overview

The experimental setup consists of a Personal @mmpvith a dSPACE data
acquisition board, signal conditioning modules,VENP power driver amplifier with power

supply for the motor drive, and a permanent maf@imnotor with a tachometer. Figure 5.1
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shows the block diagram of this system. The charatics of the individual components are

as follows:

PM DC Motor: The motor is a %2 HP, 90 Volts, PM DC motor of Gahé&lectric
Company with an speed of 2500 RPM and an armaturertt of 5.2 A.

Computer: The Computer is a personal computer that is ergeiciread the voltage,
current, and speed feedback, then calculate tlameders of the motor.

Analog and Digital I/O Board: The analog/input channels are used to sample
discrete values of armature current and outputgeltfrom the tachometer and store
them into the computer memory.

PWM Driver: Is a Copley 421 PWM servo amplifier, which pro\dde 5 Amperes
continuous, 10 Amperes peak at switching frequexib kHz. The servo amplifier
is configured to work as a DC voltage amplifieriwét gain of 10.

Power Input: The power input to the PWM driver is an uncon#dlirectifier that
produces 135 Volts at 6 Amperes.

Load: A fan of 16” with 26 degrees of pitch was used.

Tachometer: Instrument to measure the speed of the motor.

5.1.1 DSPACE Data Acquisition Board

As mentioned at the beginning of this chapter aAdSP data acquisition board is

used for obtain the measurements needed from thermdhe dSPACE board used on this

work was the DS1103 board.
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Special attention must be taken when loading ayheawmputational process to the
DS1103. If the test is too complex, the simulatsd@p time must be increase in order to
avoid overloading of the control board, but incregghe step time too much will introduce
convergence related problems. The main reasomedause of the computer used for this

work, which is a Gateway Computer with a 200 MHntRem 2 microprocessor.

The dSPACE system consists of the DS1103 contratcband MatlaB software.
DS1103 main processing unit is Texas InstrumenWsS320C31 DSP with 60Mhz system
clock. It also includes a second Texas InstrunsemMS320P14 with 25Mhz clock slave

DSP used as a co-processing unit.

DS1103 provide twenty ADC (for data acquisition)jghe DAC, fifteen
programmable digital 1/0 and ISA bus interface (fonnect the board to a personal
computer). For a more detailed description of 81103 please refer to dSSPACE Manual
[17]. The DS1103 board is installed in a persamoahputer used to control the drive system,

through an ISA bus.

Matlab® Real-Time workshop and Simulifik is the main software tools used to

program the DS1103.

Once the simulation is started, data can be steréda software called Trace. Any
signal from the simulation model can be stored iepldyed with this software. On a test
simulation, the DS1103 will basically receive vgkasignals representing armature currents,
armature voltage and rotor speed from the DC mo#dso it will produce the input voltage

control signals to the PWM driver. The MaffaBimulink block diagram used for control
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and data collection from the DC motor is presemteBigure 5.2. Inside this figure is also
presented the state variable filters used to catleuhe derivatives of the armature current
and the rotor speed. These derivatives are needeh implementing the two-stage
algorithm to estimate the system parameters. TBEBACLCE blocks that interface the

computer and the drive to read and input datalacesiown in this figure.
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Figure 5.2 dSPACE Matlab Simulink Block Diagram

5.1.2 Signal Conditioning for Data Acquisition

Several signal conditioning circuits are built ier to read the armature current, the
rotor speed, and the armature voltage of the D@nuive.

Armature Current Measurement:
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The circuit presented on Figure 5.3 was used tasome the armature current. We
used a resistoR=0.01Q in series with the motor to sense the voltage ditogt is
proportional to the armature current. The outputhe sensor is given by the following
equation:

Vi=R*i, (5.1)

The range of this voltage drop is in the ordemdfivolts. An amplifier circuit was
used to amplify this sensor voltage. One thingake into consideration when designing this
amplifier is the isolation of this circuit. To sel this, a ground loop isolation stage in the
drive system is used to reduce noise on the signalsctromagnetic interference (EMI) is
very common on drive systems because of the swigcbf the power inverters. This EMI
can affect all parts of the drive system if it @ ©onsidered during design. The ground loop
isolator stage was build to break a ground loopvbeh the dSPACE stage and the co-
processing stage. The ground loop isolator cineset a low distortion Operational Amplifier
and isolation amplifiers. This approach helpsas®lthe voltage level difference between
grounds of both stages.

The low distortion operational amplifier used dmstwork was the Burr-Brown
OPA2604. This amplifier was used at the outputhef Isolation amplifier and on the Post
Amplification Stage.

The isolation is done with Agilent Technologieslamn amplifier HCPL-7840. The
HCPL-7840 consists of a sigma-delta analog-to-digdonverter optically coupled to a

digital-to-analog converter. Analog signals likenature Currentif) and armature Voltage
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(Va) are decoupled using these amplifiers to breakletitrical connections between stages.
The isolation circuit presented on Figure 5.3 ve&®h from the HCPL-7840 manual [18] for

motor signal sensing. Some modifications to fit aork were made, like adding a post

amplification stage.

Also its to reduce the effect of the EMI, all compats are enclosed in metal cases
and shielded cable was plenty used. Electronicpoomnts were selected with a high
immunity to EMI, and circuit design was also dongwnoise reduction in mind.

On each isolation circuit a post-amplificationggawith a gain of 2 was used. This
stage used the low distortion amplifier OPA2604owNncluding all of the gains the circuit
stage, the total gain of this circuit is describeth:

V, = 0.915%i_ (5.2)
This voltage V) was measured by the dSPACE board and convertéaebyomputer

to the corresponding armature current.
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Figure 5.3 Current Measurement Circuit
The implemented passive low pass filter in the O80Ramplifiers was a capacitor

C in parallel with a resistor R. The cutoff freqog of the filters is calculated with

equationf. = Zi For this armature current circuit we used a®atiR = 10K and C =

150pf, for a cutoff frequency of 106 kHz.

Armature Voltage Measurement:

The Figure 5.4 presents the Armature Voltage nreasent circuit implemented. For
the measurement of the Armature Voltage, a sinsitauit for the current was used. To step
dowm the voltage, to input it to the dSPACE cardoftage divider was used. The input

voltage to the conditioning circuit given by:
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v :[RTR}% (5.3)

whereR=3.9 KQ andR=4.7 MQ. The rest of the circuit is the same as the dsedhe
armature current. The post amplification circusisithe same structure presented for the
current measurement but with a gain of 1.68. Namluining all of the gains, of this
amplifier the total gain of this circuit is givey:b
V, = 0.0513FV, (5.4)
This voltage Vi) was measured by the dSPACE board and converteth liie

computer as a the armature voltage.

+5V

0.1

pF
RS 2 -5V

A‘A'A' 1
68 _L(;g u -
Thot 3 g + Vour
3 0PA2E0L o
MOTOR ‘ ( 7 -
10K
ATV SV 4 +—] Lo}
15V

o WA AW
ﬁ 4.7Tm 39K
\EE[ Rj Ri

Ré&
A —
680

HCPL-7840

1——

Post Amplification Circuit

Isolation Circuit

Figure 5.4 Voltage Measurement Circuit
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The implemented active low pass filter was a cdpe€ in parallel with a resistor R.

The cutoff frequency of the filters is calculatedhnequationf. = ﬁic For this armature

voltage circuit we used a value of R = @Whknd C = 150pf, for a cutoff frequency of 106

kHz.

Speed Measurement:

The rotor angular speed is measured by a tachoic@ipled to the shaft of the motor.
The tachometer employed is a servo DC motor wigfaia of 5V/900RPM. The Figure 5.5
shows the circuit used for the speed measuremehdsremove the noise of this signal, a
filter with a cutoff frequency at 723 Hz was usedstale the input voltage since the data
acquisition system input voltage is limited to 106It¢. A voltage divider using=330 KQ
in series with another resistig=1.5 MQ was used.

The total DC gain for this circuit is equal to:

V, = 03607V, (5.5)

This voltage Y¥;) was measure by the dSPACE board and converteldebyomputer

to speed.
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Figure 5.5 Speed Measurement Circuit

The implemented active low pass filter was a cdpa€i8 in parallel with R1. The

cutoff frequency of the filters is calculated wehuationf. = ﬁ: For this speed circuit,

a value of R1 = 22R and C8 = 0.0df, for a cutoff frequency of 723 Hz was used.

5.2 Permanent Magnet DC Motor

Before any simulation was performed we have tonktite physical parameter of the
DC motor model. The motor is a ¥2 HP, 90 Volts, P& motor from the General Electric
Company with a maximum speed of 2500 RPM and aratam® current of 5.2 A. The
following experimental methods were for the deteration of the physical parameters.

The resistancer, was measured by the voltmeter-ammeter method [1%he
resistanceRr, can be obtained by measuring the DC resistanaessthe motor terminals.
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When the motor is running on steady state, turnh&ffpower and repeat this procedure more
than five times, then take the average of the measents to obtain the resistariRevalue.

The induced emf constaKt, is determined by measuring the open circuit teamin
voltage when the motor is operated as a generdtoe. back emf of the motor is given by:

E, . = K,a(t) (5.6)

Eemt (back emf) vsw(t) (angular velocity) is collected and linear leagtiare fit is used to
determine the value &..
The self inductancé, is calculated from the electric equation 2.1 dyriransient

step. Then this equation would became:

di_(t) .
Lamgp = Vo)~ Riio (1) K D) (5.7)
Since the value of the resistarfRgand the back en, constant was previously calculated,
then using linear least squares the inductdga®uld be obtain.

The viscous friction coefficienBy, is calculated by running the motor at constant

speed unloaded. By doing this in equation 2.128dd« _,, di _, andT, = 0 so,
dt o dt

K,.
Ia

a(t) = B

(5.8)

m
and linear least square can be used to deterfa/Bg.

The motor inertiaJ, is determined by the retardation test speed vetsus
characteristic [19] due to switching off the motaiter steady state is reached. Using

equation 2.2 and considering that ndw= 0 andrem = 0, results in
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Jm%+ B c(t) =0 (5.9)

and the solution of the above linear differengiqliation give the following:

nt

ot = wO)e = ax0)e (5.10)

J, . . ,
wherer :B—m is the mechanical time constant of the motor.nyshe curve of» (angular

speed) vs. time the value &f can be obtained. We can obtain the mechanical tiomstant

solving equation 5.10, using logarithms, to obtais time constant.

5.3 Mechanical Load

A fan load model presented in (5.13) has a pammpetNm*s?). We used a 16 inch
fan with 26 degrees of pitch as the load torquettice work. To estimate the fan torque, a
simple test was made. The motor speed is incr@@besmall steps from zero rad/s to a
value of at least 160 rad/s. At every step theaist is left constant for at least 5 seconds
before applying a new step and the armature cumes measured. By doing this to

equation 2.2%‘; -0, during that period with constant velocity (2.2cbmes (5.12):

Te = psign(at))e’ (t) (5.11)

Tem(t) = Kaio () = Brad(t) = 7 (a(t)) (5.12)
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Now taking current and speed measurements pomntsigl steady state, we can
calculate the load torque of the fan from O to t&d/s. The resulting curve is presented on
Figure 5.6. This curve was used to evaluate thienates from the linear and recursive
parameter estimation methods presented in this.work
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Figure 5.6 Load Torque for the Fan used in this Wark

5.4 Experiment Initialization

The input data used for training the system waslage signal that would produce a
speed velocity of a range between 0 rad/s to appedrly 150 rad/s. This signal was

produce with voltage steps using the Matl&mulink interface with dSPACE. This voltage
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steps should produce the same voltage signal usedax the simulation tests. The voltage
steps for this experimental test are different friti@ voltage curve used in the simulation.
The difference resides in the initial shaving o¢ tturve between each voltage step as is
presented in Figure 5.7. This initial shaved gsatcurs because of the Copley 421 PWM
amplifier used to control the motor. This amplifiroduced a signal that resembled a DC
voltage signal produce by switching signals andnduthis process it introduces some delay
of about 1.5s and that is why the signal is diiféeom the simulation curve. Besides this
difference the radial basis function model wasdebwith 160 points as in the simulations

cases.
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Figure 5.7 Input Voltage used for Training the Expeimental Model
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5.5 Experimental Results for the Batch Two Stage Method

Table 5.1 Experimental Results for the Batch Two $ige Method

Parameters Real Value Estimated value %Error
La 0.4094 0.4868 18.9 %
Ra 1.587 1.414 109 %
Ka 0.3409 0.3381 0.82 %
Im 0.002387 0.006062 NO FAN INERTIA

The experimental parameter estimates are presgnieble 5.1. From the results on
the table, we can see that the torque coefficigg} s estimated with good results. The
inertiaJy has an error of 154% but this is because the waded in the simulations does not
include the fan inertia. The only problem with thgtimates comes from the resistafge
and the inductanck,. The real values were calculated without load iandeal conditions.
The change in the resistance and the inductandd beua result of wire heating due to the
addition of the fan and also to the effect of thesa from the PWM amplifier. Besides these
results, the algorithm is identifying the load dcweristics with the radial basis functions

with good precision as is shown in Figure 5.8.

Figure 5.8 compares the load torque estimate \wihréal load torque. From Figure
5.9 it could be seen that the error is less th&nNdm and -0.1N-m in the training range.

These demonstrate the results obtained from thelaiion, where the approximation of the
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load characteristic is very good inside the nomioération range, but begin to loss the

characteristic outside it.
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Figure 5.8 Real and Estimated Fan Load Torque
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Figure 5.9 Estimated and Real Fan Load Torque Error

85



Figure 5.10 compares the estimated and real cuin@ntthe simulations. It could be
seen from the figure that the curves are almoss#ime. Furthermore, from Figure 5.11, it
could be seen that the error in magnitude is less 0.1 Ampere. The highest error is on the
transition from one step to the other. The resthefcurve shows good results because the
error was almost zero. The current has some spikeause of the noise produce by the
PWM switching. This noise was greatly reduce bseanf the analog filters and the state

variable filters used for the current data acqiaisit
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Figure 5.10 Real and Estimated Current from Experinent
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Figure 5.11 Real and Estimated Current Error from Experiment

In Figure 5.12, the real and estimated speed tr@mrexperiment are presented. On
this figure, the measured speed is almost identicdie simulation speed. Figure 5.13 show
the speed estimation error. The highest error madmis between 5 to 10 rad/s and occurs
in the transition between steps on the speed curhe. rest of the curve has an average error

of almost zero rad/s.

If we compare the experimental batch with the satiahs, we could see that error
has increase. It is still small but the simulasi@mrors were in the order of 1x16r less for
the current and the speed curves. This is beaafuge errors in the armature resistaige
and the armature inductancg We would see the same behavior in the recutsreestage

method which is presented later in this Chapter.
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5.6 Validation Results for the Batch Two Stage Method

For the validation test, a new voltage input wdsaed for this purpose. This new
voltage input has the same shape as the voltage used for the simulations. This curve is
different from that used in the simulations for teason explained in Section 5.4.

45

Voltage (Volts)

Time (sec.)

Figure 5.14 Input Armature Voltage used for Validaion

The real and validation current are presented gurEi5.15. Here the validation
current curve behaves almost as the real simutate@nt but with some errors. The error
between the validation and real current is preseateFigure 5.16. The error has an average
of almost -0.086 Amperes with the exception ofithigal transient of the step. In the initial

transient the error was less than 0.2 Amperes.
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Figure 5.16 Validation error from Real and Estimated Current
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Figure 5.17 presents the validation results foredpeHere both curves had similar
shapes but with an average error of 2.265 rad/srebVer, Figure 5.18 presents the error
between the validation and simulated speed, shioaighe error is having an average of less

than 4 rad/s with the highest error occurring andteps of the curve.
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Figure 5.17 Real and Estimated Speed Validation fra Experiment
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Figure 5.18 Validation Error from Real and Estimated Speed

We could see that besides the two stage methodifiddnthe R, and thelL, with
some error the model is showing an acceptable atadia. Later on this chapter a solution

for this error is presented.

5.7 Experimental Results for the Recursive Two Stage Mkod

Table 5.2 Parameter Estimates from Experiment fortie Recursive Two Stage Method

Parameters Real Value Estimated value %Error
La 0.4094 0.5120 25.06 %
Ra 1.587 1.408 11.28 %
Ka 0.3409 0.3401 0.23 %
Im 0.002387 0.005702 NO FAN INERTIA
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The steady state experimental parameters estimateg the recursive method are
presented in Table 5.2. These parameters areagstinusing the input armature voltage in
Figure 5.7. From the results it could be seen thatestimates have high errors on the
armature resistanc®&d{) and the armature inductandg)( These errors are higher than the
10.9 % and the 18.9% error from tRg and thel,, respectively, from the batch two-stage
case. On Figure 5.19 the time response of elatjp@rameter estimates are presented. We
could see the high error on the resistance andnthectance. The blue dashed line is the
R./L, parameter, the Red dashed line is 1Hg parameter and the green dashed line is the
Kd/La parameter. It could be seen that the estimatednpeters don’t converge to the
parameters values obtained from off-line tests tanithe batch values (dotted dashed lines).
These values are 3.876 for the dotRed_, line, 2.4425 for the dottetV/L, line and 0.8326
for the dottedK4/L, line. We could see that the highest error ocouhe Ra/La parameter.
The figure shows that it never converge to a cotigtarameter. This points out telling us
that there are problem to identify the resistafg. (This problem was also seen in [18] for
induction motor. Figure 5.20 shows the time respgofor theK,/J,». The neural network

parameters are not presented because they are 161.
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Figure 5.21 presents the load torque characterestomated using the recursive
algorithm in comparison with the real load torquerom Figure 5.22, it could be seen that
the error is higher than the batch experiment pasgented in Section 5.6.
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Figure 5.21 Real and Estimated Fan Load Torque fronRecursive Experiment
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Figure 5.22 Real and Estimated Fan Load Torque Errofrom Recursive Experiment
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Figure 5.23 compares the measured and simulate@ntuusing the parameters
estimated with the recursive algorithm. It couldeen from the figure that the curves have
some errors especially on the transition betweepsst In Figure 5.24, it could be seen that
the errors on this steps transitions had a valualmbst -1 Ampere. This current error

happens because of the estimation error on thetéwgde.
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Figure 5.23 Real and Estimated Current from Recursie Experiment
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Figure 5.24 Real and Estimated Current Error from Recursive Experiment

In Figure 5.25, the real and simulated speed fiteenrecursive method is presented.
In Figure 5.26, the difference between the sinealand real speed is presented. The mean
error magnitude is about 1 rad/s, which is lesa th&o since the highest speed is about 140

rad/s. Also during step changes is when the higiresrs occur.

97



160

140 /~£ﬁﬁ o i

Speed (rad/s)
3
\K
|

—— Real Speed with load
-201 — — Estimated Speed with Estimated Parameters B

Figure 5.25 Real and Estimated Speed from RecursiExperiment

15

Speed (rad/s)

30 I I I I I I I I
(o] 2 4 6 8 10 12 14 16 18 20

Time (sec.)

Figure 5.26 Real and Estimated Speed Error from Regsive Experiment
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5.8 Validation Results for the Recursive Two Stage Methd

For the validation test, the same armature voltaget used for the validation of the
experiment batch method was selected for the reeursase. This voltage input was

presented in Figure 5.14.

The measured and validation current from the saeercase are presented in Figure
5.27. Here the validation current curve has sinel@ors as the estimated current presented
in the previous section. The error between thedatibn and real current is presented on
Figure 5.28. The error has an average of almdstAperes with the exception of the
period during the transients between steps thatlesssthan 0.25 Amperes. This error is
10% of the current peak values of 2.5 Ampere. dentified model shows acceptable

performance with the validation data set.
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Figure 5.27 Real and Estimated Current Validation fom Recursive Experiment
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Figure 5.28 Validation error from Real and Estimatal Current from Recursive

Experiment

The Figure 5.29 presents the validation and medsspeed from the recursive case.
Here both curves are almost identical. Moreovegue 5.30 presents the error between the
validation and the real simulated current; it shdlet the error has an average of 2 rad/s.
The highest error occurs on the steps of the culilreese results are similar to those in batch

two stage method.
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From the results on Section 5.5-5.8, we can comch@t the armature resistance
errors is causing problems with the overall sysi@entification. A solution for this problem
is presented in the next section. The solutiaggoiag to be implemented on both algorithms,

the batch and the recursive two stage methods.

5.9 Experimental Results for Batch Two Stage Method wit

Fixed Armature Resistance

The performance of the parameter estimation algost is affected by different
aspects of system modeling and quality of measungneElectric drives models are created
from the analysis of the physical phenomena thatrilge the system behavior. But many
times the measurements are not often good enougbritectly reflect all of the parameters
effects. This difference between high detail med®id low richness in the measurements

leads to very sensitive or ill-conditioned paramet&imation problems [20]

To solve this problem, in [19] they reduce the ordethe system by fixing the ill-
conditioned or sensitive parameters. Also in [2&fimation of resistance from operational
data is an ill-conditioned problem for the induatimotor. In this work, the ill-conditioned
parameter was also believed to be the armaturstaese R,). We arrive to this conclusion
from the results on the recursive and also batplemment presented on Section 5.7. From a

brief analysis of the DC permanent magnet equivatécuit presented in Figure 2.2 we
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could see what is causing this problem with esiimgeR,. In this work, the nominal value of
the resistance is 1.5&Y and if the nominal current of this motor is 5.2 panes, the voltage
drop on the resistance would be 8.25 V. Sincevtiiiage drop in the inductdr, with a DC
current is zero, the rest of the 90 Volts nominatan voltage drop would be in the back emf
voltage. The emf voltage would be 81.7476 V. Tikis 9.16 % from the nominal motor
voltage of 90 V. If for example, the resistancarge because of heating to a value of(2.0
the voltage drop on the resistance would be 10.4T¥ie back emf voltage would now be
79.6 V, resulting in a resistance voltage drop bb% % from the nominal value. As you
could see the resistance is not so sensitive tcetteet of the voltage and this made the
resistance difficult to identify from the measuremeFor this reason, the armature resistance
became an ill-conditioned parameter. If the pestimation of the ill-conditioned parameter
is incorporated into the estimation process wowlsult in the sensitive reduction and the
numerical performance of the estimation processlavouprove [21]. Figure 5.13 showed
that the parameters Ra/La and 1/La do not convergeconstant value. We decide to fix the
parametelR, to the off-line measured value of 1.5875 ohms thasethe results from [19]
and [21]. Here we present the estimation resultenwfixing R, for the batch two-stage

algorithm.

We need to rearrange the linear regression equimidhe electrical parameters (5.13)

as follows:

di,(® _ R . K, A
L O

(5.13)
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y.(t) =a,(t)" o, (5.14)

where:
al {(va “Rii,) —w(t)} (5.15)
ée:[eel eeZT (5.16)
di, (t)
= Ja A7
and Ye = =4t (5.17)

The remaining electrical parameters are obtainddliasvs:

L, = 1 (5.18)
0.
K =Y (5.19)

Table 5.3 Results from Experiment for the Batch Twdtage Method with Fixed R

Parameters Real Value Estimated value %Error
Fixed R 1.587 N/A N/A %
La 0.4094 0.4506 10.06 %
Ka 0.3409 0.3357 1.52 %
Im 0.002387 0.006017 NO FAN INERTIA

In Table 5.3, the results from the batch two stagghod with fixedR, are shown.
We could notice that the armature inductabgéas an error of 10.06%. When we compare

this result with the inductance estimate shown abl& 5.1 for the full-parameter estimator
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we see a reduction of 8.9%. The induced emf cahga) increases his error from 0.82 %
to 1.52 %. This increase is small and has no fogimt effect. The inertid, change less
than 1% from that in Table 5.1. In Figure 5.31, soeld see that the estimated load torque
characteristic is very close to the real torquéne Error which is presented in Figure 5.32

shows that the error is less than 0.1 N-m insiddithining speed range.
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Figure 5.31 Real and Estimated Fan Load Torque witlrixed R,
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Figure 5.32 Estimated and Real Fan Load Torque Errowith Fixed R,

Figure 5.33 shows the measured and estimated turréve could see that the
estimated current is behaving almost as the raaticuas the error presented in Figure 5.34
shows. Here the error has an average of almostA&eperes and maximum error is 0.05
Ampere. Figure 5.35 presents the real and estdngpeed with fixedR, and Figure 5.36
presents the estimation error. It could be seanttie estimated speed error is less than 2

rad/s except during transients.

From this figures we could conclude that the idesdi model is good and that the

estimated parameters are close to the real values.
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Figure 5.34 Real and Estimated Current Error from Experiment with Fixed R,
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5.10 Validation Results for the Batch Two Stage Method wh

Fixed R,

In this section, the validation results from theécbatwo stage method with fixed Ra
are presented. The same input armature voltagesasibed in Section 5.6 was used. Here
it could be seen that the estimated armature duffégure 5.37) and the speed (figure 5.39)
are behaving very close to the measured signalyolf compare these figures with the
validation figure from Section 5.6, you could neesnuch difference. In the full parameter
validation case, besides the error on the parasettee system was identified fairly well.
But the only big difference is that with the fix&d, the parameter estimates had improved,
especially the inductance La.
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Figure 5.37 Real and Estimated Current Validation fom Experiment with Fixed R,
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Figure 5.39 Real and Estimated Speed Validation fra Experiment with Fixed R,

110



Speed (rad/s)
(4]

Time (sec.)

Figure 5.40 Validation Error from Real and Estimated Speed with Fixed R

5.11 Results for the Recursive Two Stage Method with Fed R,

On this section we present the results from tharsaee two stage method with fixed
Ra. For this case we did the same modificationtier Newton-Raphson recursive least
square method, as in the batch two stage meth8edaifon 5.9. The results were even better

than in the batch results presented in Section 5.9.
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Table 5.4 Parameter Estimates from Experiment fortie Recursive Two Stage Method

with Fixed Rz
Parameters Real Value Estimated value %Error
Fixed R, 1.587 N/A N/A %
La 0.4094 0.4158 1.56 %
Ka 0.3409 0.3397 0.35%
Im 0.002387 0.005783 NO FAN INERTIA

In Table 5.4, we could see the steady state rekultdhis case. The inductante
was estimated with an error of 1.56%. The indugledtric emf was estimated with an error
of 0.35%. When you compare thg parameter obtained with fixel, with thelL, obtained
from full parameter estimation, the difference sacly noticeable. In the full parameter
recursive versiorl,, estimate was 0.5120 H with an error of 25.06 %e &uld see that the

error was almost eliminated by fixing the resis&anc

Also it could be noticed in Figure 5.40 how fast #ectrical parameters converge to
a value near the nominal value. This is a biged#hce when comparing the convergence
results for the full parameter version describedSiection 5.7. In that section, most
parameters convergence slowly and By, parameter does not never converge. In the
fixed R, estimator, thdR,/L, converges very fast to a value near the nominakvawhat this
is telling us is that the resistanBg parameter was ill-conditioned or non observabtemf
from the measurements. Fixing this parameter lyreéaiproves the estimation results in

terms of faster convergence and more accuratetsesul
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Figure 5.43 presents the estimated and real loagué characteristic. When this
figure is compare with the corresponding figure ®ection 5.7, it could be seen that the
estimated torque is better identified with the é®. The torque error (figure 5.44) shows
that in this case the error has an average of almewe N-m. This is a big improvement over
the full parameter case. This could be the redfutist convergence, fd€, where in the full

parameter case convergence is slow and had sontlatast through the time.

Also the current presented on Figure 5.45 showsetéer estimate than the full
parameter case. With the fix&y, the current error (Figure 5.46) has an averagdmbst O
amperes. In this simulation, the estimated curpehiaves almost identical as the real current

including the transition between the steps. Thas & problem in the full parameter case.

This tendency continues with the estimated spEgplife 5.47). The estimated speed
was almost similar to the real speed and the €Rigure 5.48) was almost the same as in the
full parameter version. In the full parameter \@nsthe speed was estimated fairly good and
the differences between the cases are minimal. tiuigreat difference has come on the
estimated current which results in improved torgstimation when compared with the

simulations results from the Chapter 4.
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5.12 Validation Results for the Recursive Two Stage Metbd

Experiment with Fixed R,

The validation of the recursive two stage methothwhne fixed Ra confirms the
excellent ability of this algorithms to estimate tharameters and identify the system. Here
the estimated and real currents are presentedyurd-b.49 and the error in Figure 5.50. We
could say that the system was correctly identifigaen the estimated parameters are tested

with a new set of data.

The estimated and real speed is presented in Figbfieand the error in Figure 5.52
corroborates the results obtained with the bataddfiRa case. What we could conclude now
is that the overall identification and estimationtime system improves with fixing the ill-

conditioned parameter, which in our case was tir@ature resistance.

118



251

" At g
Py i ey
S 15 i b 4
B
o}
7
1 |
051 f 4
—— Real Current Validation
— — Estimated Qurrent Validation with Fixed Ra
0 L L

[} 5 10 15
Time (sec.)

Figure 5.49 Real and Estimated Current Validation fom Recursive Experiment with

Fixed R,

01

0.05- B

Time (sec.)

Figure 5.50 Validation error from Real and Estimated Current from Recursive

Experiment with Fixed R,

119



140

— Real Speed Validation
— — Estimated Speed Validation with Fixed Ra

Il Il
(0] 5 10 15
Time (sec.)

Figure 5.51 Real and Estimated Speed Validation fra Recursive Experiment with

Fixed R,

10+

o
T

Speed (rad/s)

o]

-10

Time (sec.)

Figure 5.52 Validation Error from Real and Estimated Speed from Recursive

Experiment with Fixed R,

120



CHAPTER 6
FEEDBACK LINEARIZATION

This chapter presents an application of the prepasheme to an adaptive feedback
linearization controller. Here we present the dgwment of the feedback linearization

motor control scheme and the simulations results.

6.1 Feedback Linearization Theory

In this work we want to control the motor speeatmeference speed. If we want to
develop a self-commissioning scheme for the motoredwe need a control scheme that
would be adaptive. Also to control the motor speeel need to design a control scheme that
would be adequate for the gray-box model strucpuesented in this work. The feedback
linearization control scheme was selected for thsposes. In this method, the state
equations could be completely linearized (full-stdinearization) or the input-output is
linearized, while the state equation may be onlytiglly linearized (input-output
linearization) [21]. In this work, we would demdrsde that our system state equations are
completely linearized. Now we will introduce sog@ncepts that would help understand the

development of the feedback linearization conal.!

6.1.1 Lie Derivatives Notation
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The first concept we need to define is called tiee Derivatives. To introduce the
concept of a Lie Derivative first we have to intuoe the following simple-input-single-

output (SISO) system:
x=f(x)+g(xX)u (6.1)
y = h(x) (6.2)

wheref(x) is the system plant equation and the g(x) is theagon related to the system input

and theh(x) is the output equations. If we want the firstickive of the output ¥), we

define the following notion:

/= %[f (X) + g(x)u]d;f Lh(x) + Lyh(x) (6.3)

where: L.h(x) = Z—: f(x) (6.4)

which is called a Lie Derivative. The Lie derivetiis the directional derivative afwith the
direction off. This notation is convenient for repeated cakiotaof the derivative with

respect to the same vector field. For convenid¢inedollowing notation is mostly used:

a(L,h)
L,Lih(x) = g(x) (6.5)
1)

2 a(Lh)

Lih(x) = L,L;h(x) = f(X) (6.6)
1)

y - o(L™h)

Lih(x) = L,L;"h(x) = f(X) (6.7)

o0x
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and L°h(x) = h(X) (6.8)

6.1.2 Feedback Linearization for Nonlinear Systems

If we consider the system presented in (6.1) an#),(6ve first have to define the relative
degree of this (SISO) system. The relative degrée equal to the number of times the
outputy has to be differentiated in order to have the ealfithe input explicitly appearing.

In other words, to find the relative degree we tm@erform the following procedure. First

we calculate the first derivative gf denoted in this case b{"yinstead ofy :
@ _ oh B
y® =210+ 9(gu] = L;h(x + L;h(x)u (6.9)

If the relative degree is larger than 1 we have th#(x) =0.

Now we calculate the second derivativey@d obtain the following:
a(L,h)
Y@ ==2={109+9(xu] = Lih() + L, L h()u (6.10)

If the termLyLsh(x) = 0, it mean thay® is independent of the input We have to repeat this

process until we find thdi(x) satisfies the following:

L,Lth(x) =0, fori=1,2,..p-1 (6.11)
L,L5™h(x) # 0 (6.12)

This means that the inputdoes not appear in the equationy,of , ..., y” Y and appears in

the equatiory®:
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y¥' = L7h(x) + L L7 *h(x)u (6.13)

Equation 6.13 shows that the system is input-oulipearizable using the following state

feedback control law to cancel the nonlinearitiethe system

1

u-= W[_ L/f)h(X) +V] (614)

Substituting (6.14) into (6.13) reduces the inputipat map to;
y@ =y (6.15)

This is similar to connect a chain pfintegrators to the system. This integeis what is

called the relative degree of the system [21].

Now the next step is to develop a nonlinear verforthe nonlinear system presented in (6.1)
— (6.2) that would had a relative degregp.ofWe have to find a transformatian= T(x) that
would be a diffeomorphism on the domain of interel$twould change the system into the
normal form. This means that the change of vaembl= T(x) had to be invertible and
differentiable. In other words, it must have awneirse mapr(.) such thax=T"(z) for all z

in the domain ofT, and sincex and z are continuous, botff(.) and T(.) have to be

continuously differentiable. The following theoresmimmarize this concepts [21].

Theorem 6.1: Consider the system 6.1 — 6.2, and suppose itdhaisve degree < nin the
domain of interesD. If p =n, then for every, € D a neighborhood\ of xy exists such that

the map
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[h(x)
L+ h(x)

2=T(9=|, = (€] (6.16)

_.Lr}‘lh(x)_
restricted td\, is a diffeomorphism ohl.
For the case whenm< n please refer to [21] for more information.
Now we can linearized the system via the statdlfaek equation:
u=[a(x)+Bx)V] (6.17)

where B(x) = y(x) and from (6.14) we have that:

L7h(x)
y(x) =L, L7 h(x) anda(x) = —W (6.18)
They can be expressed in the new coordinates bgigset
2,(7,6) = alT™(2)) and y,(7.6) = T (2)) (6.19)
Whenp =n, and we used the transformation in (6.16) theesyseduces to to:
2= Az+By(u-a(x)] (6.20)
y=C.z (6.21)

wherez = [h(x), ..., L7*h(x)1".
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In summary, the system (6.1) to (6.2) is feedbaxarizable if and only if a function
h(x) exists such that the system (6.1) to (6.2) hadivel degree n (equal to the degree of the
system) or equivalent, h satisfies the partialedéhtial equations (6.11) when= n, subject
to the condition of (6.12). For this case wher n, the system is said to be full-state

linearizable. This means that the system statateans are completely linearizable.

These concepts about feedback linearization wepéemented in the gray-box model

of the electric drive system. The procedure inigao be presented in the next section.

6.1.3 Feedback Linearization for Gray-Box Modelofd:lectric Drive

Now we are going to apply the feedback linearizatstheme to the permanent
magnet DC drive. First, we define the nonlineactlc and mechanical equations as were

presented in Chapter 3.

di, (t) _ V. (1) _R.. () - K
dt L, L, °

a

2 ot
Laa() (6.22)

(w(t)-¢ )?
2

d(l.(t) Ka . 1 N [_ 20
— = I (t) — a.e '
dt Jma() J Z;'

(6.23)

m

On this work we want to control the speed of theéaneo we define the output as follows:

y =aft) (6.24)
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Now we have to arrange the equations as are psssé@nequations (6.1) and (6.2) in order
to proceed with the feedback linearization analy$ier this purpose we define thatia(t),

xo=(t) andVy(t) = u, then we could definix), g(x) andh(x):

Ra Ka
_L_axl_ La X5
f = X,—G; )
(X) Ko, 1 ZN:ae[_(z"iZ)] (6.25)
J.H o |1g!
1
| L
g(x)=| ~a (6.26)
0
h(x) =[x, ] (6.27)

Now the first procedure we performed was to fin@ tielative degree of the system.

Performing the first derivative, we arrive to tledldwing expression:

-_Ka _i & [_ 20
y_J X 3 iZ:l:ai

m

(6.28)

Since on this equation is independent of the impaihad to derivate for a second time to see

if was dependent of the output. We arrive withfti®wing:
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(6.29)

(=, )2]

8oz 23045
i=1

J

m m

We find that the second derivative of the outpudapendent on the input. This means that
= 2 since the order of the derivative is 2. For tieigson, the system has a relative degree of
2. Because the order of the system is 2, the mysealso input-state linearizable. Now

using equation (6.13) and (6.14), we could prodeezhlculate the corresponding linearizing

control law as follows.

K
L, L h(x)=—= (6.30)
m—a
(XZ CI)
R.K K2 K, | c —x2 [‘ 2]
L2h —_"aMa _ a _ Na | 20
f (X) L 1 \]ml—a XZ an1 ; a||: a_i i| Xl
(6.31)

Now substituting equation (6.30) and (6.31) intoaepn (6.14), we arrive to the linearizing

control law:

128



(6.32)

wherev are the two gain for the control law that wouldbslized the linear state feedback.

The input (6.32) and the following change of valeatvould transform the system to the

normal form.
h(x)
:Zi CT(x) = Lh(¥) | Thx) |
=T =, Tl ho |
~ L9 |

X,

m

(6.33)

m

The normal form is presented in (6.34). This fasnobtained when the variables in

the system are changed to theariables presented in (6.33). This is the reagemsert the

input with the control law calculated in equatiof.32).

With this procedure the

nonlinearities are eliminated, but with the oridgiraariables this could not be performed.

Z2
2] _| K| R, Ko, 1 ]
|:22:| ‘]m La Xl La 21 La u:|1

where,
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(Zl_cl )2

xl:‘ll_m zZ+Ji iaie[_ 2 J (6.35)

a m| i=1l

Figure 6.1 presents the feedback linearizationraehelt could be seen that the control law
receive inputs from the output signals of the motafith this control input the system would
linearize completely and would behave like a casaafdintegrators, a double integrator in
our case, as is presented in Figure 6.2. If yoplieg this analysis with the recursive
parameter estimation algorithm (Figure 6.3) presgnh Section 3.3 the system would be
adaptive. The electrical and mechanical paramaténe equation (6.32) are going to be
estimated with the recursive linear least squafdis converts the feedback linearization
control law into an adaptive one because the pammesed for controlling the system are

being estimated in every step time. The step tisezl for the simulations was 0.01 seconds.

= @
ufx) =o + fv Real Motor

\J

A 4

I 3

A

=Tx)

Z;=0

A

Figure 6.1 Feedback Linearization with the Motor Diive
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Figure 6.3 Feedback Linearization Diagram with Rectsive Linear Least Squares

These methods were implemented on a M&t@imulink™ mode. In the Simulink
model, thez transformation used the same speed from the mamokr for the speed

acceleration a state variable filter was used toveethe speed. The Simulink Model

implemented for this work is presented here:
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Recursive Parameter Estimator

Electrical and Mechanical Estimated Parameter

Figure 6.4 Matlab Simulink Model for the Feedback Linearization of the System

6.2 Feedback Linearization Simulation Results

Figure 6.2 shows that the linearized system behlgkes double integrator. Since in
our case the system has an order of two, it coaldepresented as a second order system.

From that figure we find that the transfer functadrthe system would be:

G(s) = Kik,

= 6.36
s* +k,s+ kK, (6.36)

wherek; andk; are the control gain of the system. A generabséorder system has the
following transfer function:

_ 2
G(S) = 5, TR (6.37)
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wherewn is the natural frequency of the system &nd the damping ratio of the system.

With this values, we could design the control gafithe system. In our case we decide that
the natural frequency of the system would be 17a#ls and the damping ratio would be

0.87 s/rad. With this the gains for this systemmerMeund to be approximateli; = 10 and

k2 = 30.

These gains were implemented in the Matlab Simuieadback linearization scheme
without noise. Figure 6.5 presents the speed ouwmonpared with the speed output of an
ideal double integrator scheme as in Figure 6tZoulld be seen that the system is behaving
almost identical as the ideal case. Figure 6.86gnts the results from the speed output
versus the reference signal used to control thedspdt could be seen that the reference
speed is been track by the speed output with sena@is. These results demonstrate that the

adaptive feedback linearization scheme is gooddotrolling the motor drive.
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Figure 6.5 Simulated Motor Speed and Double Integitar Output
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Figure 6.6 Motor Speed Output and Reference Speed
Figure 6.7 presents the speed output of the systempared with the ideal double
integrator. In this case, an approximately 0.1mniBse is added to the system. It could be
seen that the system is behaving almost as theddsa. Figure 6.8 presents the results from
the speed output versus the reference signal wsedntrol the speed. It could be seen that
the reference speed is been tracked by the speedtowith small errors. These results
corroborate the results found without noise denratisg that the feedback linearization

scheme is good for controlling the motor drive.
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Figure 6.7 Simulated Motor Speed and Double Integtar Output with Noise
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These results demonstrate that the feedback lzsgBnn scheme can effectively
control an electric motor drive. This adaptivesinizing controller can be easy applied to an

on-line self-commissioning control scheme.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The main objective of this work was to develop atomated methodology for the
identification of electric motor drives that candmed in a self commissioning scheme. This
methodology had to be flexible and simple enoughdocommodate a wide variety of loads
for it eventual implementation in the industry. ifdsthe two-stage modeling approach the

identification of mechanical loads meets theserddsobjectives.

The two-stage modeling approach presented in tioik Wiustrates the potential of
gray-box modeling for the identification of electdrives with unknown mechanical loads.
The convenience of this model are that the idettipphysical parameters give information
about the physical system and can be use to eedlatgoodness of the model. The neural
network based black-box model would allow to madiéferent types of loads independently
of their actual form. The recursive algorithm itBes the system correctly and therefore, it

can be implemented on-line and later used fortselifag or self-calibration of electric drives.

The radial basis functions neural networks usedrfodeling the load demonstrated

excellent results and validations.

The results from the simulations demonstrate tifecg¥eness of the methodologies

presented in this work. Some problems were eneoedtduring the implementation of the
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methodologies. This is because conditions thaewet affecting the simulations decreased
the estimation performance during the test-bed emgintation. The solution proposed in
this work was to fix the parameter that was lesseolmble from the measurements. In our
case, was the armature resistari®g. ( Fixing this parameter, improves the performaote
the estimation methodologies, especially for theurgive two-stage method. For example
the estimated inductanck,j error was reduced from 25.06 %, in the full pagtan case, to
1.56 %, in the fixingRa. This is important because eventually this metisaithe one that is

going to be implemented on a self-commissioninge s

It was also observed that the noise created bywhiehing frequency of the PWM
had to be taken into consideration when designimg éxperimental setup. Since the
methodologies presented on this work identify tleeteic drives the quality of them is very
important. Adding analog and digital filters (%atariable Filters) to reduce the noise of the

measurement is very important and almost mandabooyptained precise and accurate results.

The simulations results, also demonstrate thafdabdback linearization scheme can
be effectively applied to control electric motonveys. This proposed adaptive linearizing

controller can be later applied to a self-commissig control scheme.

The work shows that gray-box the methodologies Hasl potential for drive
identification with unknown load and its applicatylfor later implementation in a self-

commissioning drive.
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7.2 Future Work

Our interest is to continue this work by looking ather types of loads, including
dynamic loads. Also is very important to impleméné models on-line. We are also
interested in using these schemes in other typesobdr, for example the induction motor

that is also commonly used in the industry.

We also want to pursue on-line implementation ef fikledback linearization control

scheme.

We are also interested in studying schemes to gmvprune the neural network to

improve modeling flexibility while keeping a smdiimension.
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APPENDIX

Appendix A —Matlab File for the Experiment Batch Linear Least Square

Case

%%% This code calculate the model parameters%%%

%%% as well as the system responses %%%

%%% without the damping factor %%%

%%% The Data is obtained by the Experimental Set-up %%%

load motorvaldcsalll

t2=zeros(1,2051);
t2(1,:)=motorvaldcsalll.X.Data(116:2166);
t2=t2-motorvaldcsalll.X.Data(116);

speed=zeros(1,2051);
speed(1,:)=motorvaldcsalll.Y(4).Data(116:2166);

speed2=zeros(1,2051);
speed2(1,:)=motorvaldcsalll.Y(3).Data(116:2166);

voltage=zeros(1,2051);
voltage(1,:)=motorvaldcsal11.Y(6).Data(116:2166);

current=zeros(1,2051);
current(1,:)=motorvaldcsalll.Y(1).Data(116:2166);

current2=zeros(1,2051);
current2(1,:)=motorvaldcsalll.Y(2).Data(116:2166);

dspeed=zeros(1,2051);
dspeed(1,:)=motorvaldcsalll.Y(8).Data(116:2166);

dcurrent=zeros(1,2051);
dcurrent(1,:)=motorvaldcsalll.Y(7).Data(116:2166);

Vol=|[voltage];
Vel=[speed]’;
Cor=[current];
didt=[dcurrent]’;
dwdt=[dspeed];
Cor2=[current2]’;
Vel2=[speed?]’

%%% Parameter initialization %%%

14z



centro=0:160;

L =720.19997;

sig=4;

Rae=1.587

%% % Electrical Parameter Estimation %%%

y1 = didt;
Xel=Vol-Rae*Cor;

Xe =[Xel -Vel];

thetal = Xe \ y1;

Kae = thetal(2) / thetal(1)
Lae =1 /thetal(l)

Tem = Kae* Cor;

for b=1:length(Vel)
for k=1:161
phi (b,k)= exp(-((Vel(b) - centro(k))."2) /(8ig"2)));
end
end

%%% Mechanical Parameter Estimation %%%
Xm=[dwdt phi];

theta2 = Xm\ Tem;

Jme = theta2(1)

alpha_estim = theta2(2:162);

vel = centro;
for j=1:161
for h=1:161
phi_fan (j,h)= exp(-((vel(j) - centro(h)). 2§2*(sig"2)));
end
end
%
TL_fan_estim = phi_fan*alpha_estim;

iae=(Jme/Kae)*dwdt + (1/Kae)*phi*alpha_estim ;

%Estimated velocity

wme = (1/Kae)*Vol-(Rae/Kae)*Cor-(Lae/Kae)*didt;
%%% Real Torque %%%

load torque

t9=zeros(1,5287);
t9(1,:)=torque.X.Data(446:5732);
t9=t9-torque.X.Data(446);
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speedt=zeros(1,5287);
speedt(1,:)=torque.Y(4).Data(446:5732);

speed2t=zeros(1,5287);
speed2t(1,:)=torque.Y(3).Data(446:5732);

voltaget=zeros(1,5287);
voltaget(1,:)=torque.Y(6).Data(446:5732);

currentt=zeros(1,5287);
currentt(1,:)=torque.Y(1).Data(446:5732);

current2t=zeros(1,5287);
current2t(1,:)=torque.Y(2).Data(446:5732);

dspeedt=zeros(1,5287);
dspeedt(1,:)=torque.Y(8).Data(446:5732);

dcurrentt=zeros(1,5287);
dcurrentt(1,:)=torque.Y(7).Data(446:5732);

Volt=[voltaget]’;
Velt=[speedt]’
Cort=[currentt]’;
didtt=[dcurrentt]’;
dwdtt=[dspeedt];
Cor2t=[current2t]’;
Vel2t=[speed?2t]’;

sig=4;
centro=0:160;

Velft=zeros(1,18);

pos=290;
ii=2;
while ii < 19

Velft(ii)=Velt(pos);
pos=pos+300;
ii=ii+1;

end

Corft=zeros(1,18);

pos=290;

ji=2;

while jj < 19
Corft(jj)=Cort(pos);
pos=pos+300;
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=i+
end
miui=0.000033;

Bme=0.0008599;

TL=Kae*Corft-Bme*Velft;

=1

pos=1;

TLfan=zeros(1,18);

while jj < 19
TLfan(jj)=TL_fan_estim(pos);
pos=pos+9;
=i+,

end

%Errors
e_fan=(TLfan-TL);
e_ifan=(iae-Cor);
e_wfan=(wme-Vel);

%%% Results Plots %%%

figure(1);

plot(Velft, TL,--";

hold on;

plot(vel, TL_fan_estim,"r")

legend ('Real Load Torque (Fan)','Estimated Load Torqug'JFan

figure(2);
plot(Velft,e_fan);

figure(3);

plot(t2,Cor,'--");

hold on;

plot(t2,iae,"r"

legend ('Real Current with load','Estimated Current witkedriRa');

figure(4);
plot(t2,e_ifan);
figure(5);
plot(t2,Vel,'--";
hold on;

plot(t2,wme,"r");
legend ('Real Speed with load','Estimated Speed with Fixed Ra’)
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figure(6);
plot(t2,e_wfan);

figure(7);
plot(t2,Vol);
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Appendix B - Matlab File for the Experiment Recursive Batch Linear
Least Square Case

% This file implements the Recursive Newton-Raphson algofithimparameter

% estimation with separated Parameters, a fan as

% a load and RBF as a Nonlinear Load.

% The Data is obtained by the Experimental Set-up

%%%%6%%%% %% %% %%%%%6%6%% %% % % % %% %% %% %6 %% %0 %0 % % %% %% %% %0 %0 %0 Ve
%%%%6%%%% %% % %%%%%%%%% %%

load motorvaldcsalll

t2=zeros(1,2051);
t2(1,:)=motorvaldcsalll.X.Data(116:2166);
t2=t2-motorvaldcsalll.X.Data(116);

speed=zeros(1,2051);
speed(1,:)=motorvaldcsalll.Y(4).Data(116:2166);

speed2=zeros(1,2051);
speed2(1,:)=motorvaldcsalll.Y(3).Data(116:2166);

voltage=zeros(1,2051);
voltage(1,:)=motorvaldcsal11.Y(6).Data(116:2166);

current=zeros(1,2051);
current(1,:)=motorvaldcsalll.Y(1).Data(116:2166);

current2=zeros(1,2051);
current2(1,:)=motorvaldcsalll.Y(2).Data(116:2166);

dspeed=zeros(1,2051);
dspeed(1,:)=motorvaldcsalll.Y(8).Data(116:2166);

dcurrent=zeros(1,2051);
dcurrent(1,:)=motorvaldcsalll.Y(7).Data(116:2166);

Vol=[voltage];
Vel=[speed]’;
Cor=[current];
didt=[dcurrent]’;
dwdt=[dspeed];
Cor2=[current2]’;
Vel2=[speed?]’
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Rai=1.41388;
Lai=0.48680;
Kai=0.33816;
Jmi=0.00606;
miui=0.000019;

alpha=1.0e+007 *[-0.00010822140508

0.00038620111603
0
-0.00209538190804
0.00359578304453
0
-0.00512996005802
0
0.01137316641420
0
-0.04136899213133
0.05794999345755
0
-0.06620031636389
0
0.21507951822246
-0.39536901135816
0.36147825257340
-0.16235576638670
0
0.02825563608850
0
0
-0.01171613692283
0
0.01202218434448
0
-0.01069762083173
0
0.00804710137676
0
0
-0.01045433937233
0
0.02041034356443
0
-0.03814818651615
0
0.10425995156697
-0.12280819875728
0
0.09023170114954
0
-0.13744549978376
0.11518509196788
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0
0
-0.06864876014350
0
0.10946631226116
0
0
-0.99542143046008
3.08405800035408
-4.73277604033409
4.21244861535349
-1.87174445759372
0
0
0.62498435928445
0
-1.17611326515839
0
4.59167025463039
-9.40207447140170
9.91812076927363
-5.42652682043403
0
1.92072308162285
0
-2.49963946294102
2.85274480194947
-1.37173020990126
0
0.28154597812890
0
-0.11013558537336
0
0.05171735354867
0
-0.02403591478512
0
0
0.02516924924257
-0.02412648847713
0
0.00799274451480
0
0
-0.00469104404858
0
0.00523733279599
0
-0.00483173895297
0
0.00375121518192
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0
0
-0.00731818005445
0.00845972408847
0
-0.00403060044804
0
0
0.00411409956702
0
-0.00686978566212
0
0.01009844251366
0
-0.01476869427395
0
0.02318702069817
0
-0.05171681319189
0.05146432844019
0
0
-0.07711474668470
0.10454149086181
0
-0.11904812006401
0.10374756064118
0
-0.04081285392470
0
0.02162192362869
0
0
-0.02140540884878
0
0.04976864681874
-0.04849572408032
0
0.01860626583943
0
0
-0.01425023696082
0
0.01857509263244
0
-0.01919885758832
0
0.01619873628611
0
-0.00934979190759
0
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0

0
0.00681873535022

0

0
-0.01138675931051

0

0
0.01481652113959

0

0

0

0

0l;

po=[Kai/Lai 1/Lai Kai/Jmi miui/Jmi]’;
%%% Initialization Parameters
pobe=zeros(2,2050);
pobm=zeros(162,2050);

% Initial Parameters

Raii=2.0045;
Laii=0.58126;
Kaii=0.4736;
Jmii=0.00583;
alphai=0.9*alpha’;
sig=4;

%Parameter Separation

pE=[Raii/Laii Kaii/Laii 1/Laii]’;

pM=[Jmii
alphai(1)
alphai(2)
alphai(3)
alphai(4)
alphai(5)
alphai(6)
alphai(7)
alphai(8)
alphai(9)
alphai(10)
alphai(11)
alphai(12)
alphai(13)
alphai(14)
alphai(15)
alphai(16)
alphai(17)
alphai(18)
alphai(19)
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alphai(20)
alphai(21)
alphai(22)
alphai(23)
alphai(24)
alphai(25)
alphai(26)
alphai(27)
alphai(28)
alphai(29)
alphai(30)
alphai(31)
alphai(32)
alphai(33)
alphai(34)
alphai(35)
alphai(36)
alphai(37)
alphai(38)
alphai(39)
alphai(40)
alphai(41)
alphai(42)
alphai(43)
alphai(44)
alphai(45)
alphai(46)
alphai(47)
alphai(48)
alphai(49)
alphai(50)
alphai(51)
alphai(52)
alphai(53)
alphai(54)
alphai(55)
alphai(56)
alphai(57)
alphai(58)
alphai(59)
alphai(60)
alphai(61)
alphai(62)
alphai(63)
alphai(64)
alphai(65)
alphai(66)
alphai(67)
alphai(68)
alphai(69)
alphai(70)
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alphai(71)
alphai(72)
alphai(73)
alphai(74)
alphai(75)
alphai(76)
alphai(77)
alphai(78)
alphai(79)
alphai(80)
alphai(81)
alphai(82)
alphai(83)
alphai(84)
alphai(85)
alphai(86)
alphai(87)
alphai(88)
alphai(89)
alphai(90)
alphai(91)
alphai(92)
alphai(93)
alphai(94)
alphai(95)
alphai(96)
alphai(97)
alphai(98)
alphai(99)
alphai(100)
alphai(101)
alphai(102)
alphai(103)
alphai(104)
alphai(105)
alphai(106)
alphai(107)
alphai(108)
alphai(109)
alphai(110)
alphai(111)
alphai(112)
alphai(113)
alphai(114)
alphai(115)
alphai(116)
alphai(117)
alphai(118)
alphai(119)
alphai(120)
alphai(121)

153



alphai(122)
alphai(123)
alphai(124)
alphai(125)
alphai(126)
alphai(127)
alphai(128)
alphai(129)
alphai(130)
alphai(131)
alphai(132)
alphai(133)
alphai(134)
alphai(135)
alphai(136)
alphai(137)
alphai(138)
alphai(139)
alphai(140)
alphai(141)
alphai(142)
alphai(143)
alphai(144)
alphai(145)
alphai(146)
alphai(147)
alphai(148)
alphai(149)
alphai(150)
alphai(151)
alphai(152)
alphai(153)
alphai(154)
alphai(155)
alphai(156)
alphai(157)
alphai(158)
alphai(159)
alphai(160)
alphai(161)];

alph =1;

n=1;

xn=ones(2,1);
xn2=ones(332,1);

xn=0.01*xn;

cw=zeros(2,2051);

cw(1,:)=didt’;

cw(2,:)=0.3409*Cor’;
xn2=0.01*xn2;
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uu=zeros(1,2051);
tt=zeros(1,2051);
JJ=zeros(3,2051);
t=t2;

% Voltage Input
Va=zeros(1,2001);

t3=0;

h=1;

u=Vol;

thel=po(1); % 1. parameter to be estimated
the2=po(2); % 2. parameter to be estimated

the3=po(3); % 3. parameter to be estimated
thed=po(4); % 4. parameter to be estimated
the5=po(5); % 5. parameter to be estimated

didt;%=1/Lai*Vol-Rai/Lai*Cor-Kai/Lai*Vel;
dwdt;%=Kai/Jmi*Cor-miui/Jmi*(sign(Vel).*(Vel));
Xnn=cw;

cwv=zeros(3,2051);

cwv(1,:)=Cor";

cwv(2,:)=Vel

cwv(3,:)=Vol

mear=cwv;

el=0;

sal=zeros(2,2051);

%%% Beginning of recursive algorithm

while(n<2051)

%%% Recursive Newton-Raphson

y2=xnn",
mea=mear",

XN=Xn;
XN2=Xn2;
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i=1;
change=100000;

if n <2052

[ee,em,xn,yxx] = errerdnew(pE,pM,u,t,y2,xn,n);

YXXZYXX;

[Je,dm,xn2]= regradnew(pE,pM,u,t,y2,xn2,mea,yxx,n)
% uu(1,n)=u(l1,n);

tt(1,n)=t(1,n);

XN=xn;

sal(:,n)=xn;

XN2=xn2;

Je=Je’;

Jm=Jm’,

ee=ee;

em=em;

end

if n==1
PNe=4*[100;010;001];
PNm=0.2*eye(162);

end

PNoe=PNe;

PNom=PNm;

if n>1

PNe=(PNoe-(PNoe*Je*Je*PNoe)/(1+Je*PNoe*Je");
PNm=(PNom-(PNom*Jm*Jm*PNom)/(1+Jm*PNom*jim
end
i=i+1;

h=1;
if n>0

alphe=0.0068;
alphm=0.000508;

pE=pE - (alphe/1)*PNe*Je*ee;
pM=pM - (alphm/1)*PNm*Jm*em;

h=h+1;
end

156



p_prevelec=pE
p_prevmech=pM;

Jme = pM(1)
pobe(:,n)=p_prevelec;
pobm(:,n)=p_prevmech;

n=n+1;
end
% figure(1)
% plot(tt(1:2050),pobe);
% figure(2)
% plot(tt(1:2050),pobm);
thel=pE(1); % 1. parameter to be estimated
the2=pE(2); % 2. parameter to be estimated

the3=pE(3); % 3. parameter to be estimated
thed=pM(1); % 4. parameter to be estimated

Rai
Lai
Kai
Jmi

Rae = thel/the3

Lae = 1/the3

Kae = the2/the3

Jme = (the4d)

alphae=zeros(161,1);

ss=1

while ss < 162
alphae(ss)=pM(ss+1);
SS=ss+1;

end

alphae=[alphae];
alphaee=zeros(161,2);
alphaee(:,1)=alphae;
alphaee(;,2)=alpha;
%alphaee=[alphaee]

centro=0:160;
for b=1:length(Vel)
for k=1:161
phi (b,k)= exp(-((Vel(b) - centro(k))."2) /(8ig"2)));
end

end
didt=didt;
dwdt=dwdt;
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%Estimated current

iaee=sal(1,:);%(IJme/Kae)*dwdt + (1/Kae)*phi*alphae;
iae=(Jme/Kae)*dwdt + (1/Kae)*phi*alphae;

%Estimated velocity

wmee = sal(2,:);%(1/Kae)*Vol-(Rae/Kae)*Cor-(Lae/Kae)*didt;
wme = (1/Kae)*Vol-(Rae/Kae)*Cor-(Lae/Kae)*didt;

vel = centro;
for j=1:161
for h=1:161
phi_fan (j,h)= exp(-((vel(j) - centro(h))."2§2*(sig"2)));
end
end
%
TL_fan_estim = phi_fan*alphae;

%%% Real Torque %%%
load torque

t9=zeros(1,5287);
t9(1,:)=torque.X.Data(446:5732);
t9=t9-torque.X.Data(446);

speedt=zeros(1,5287);
speedt(1,:)=torque.Y(4).Data(446:5732);

speed2t=zeros(1,5287);
speed2t(1,:)=torque.Y(3).Data(446:5732);

voltaget=zeros(1,5287);
voltaget(1,:)=torque.Y(6).Data(446:5732);
currentt=zeros(1,5287);

currentt(1,:)=torque.Y(1).Data(446:5732);

current2t=zeros(1,5287);
current2t(1,:)=torque.Y(2).Data(446:5732);

dspeedt=zeros(1,5287);
dspeedt(1,:)=torque.Y(8).Data(446:5732);

dcurrentt=zeros(1,5287);
dcurrentt(1,:)=torque.Y(7).Data(446:5732);
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Volt=[voltaget]’;
Velt=[speedt]’
Cort=[currentt]’;
didtt=[dcurrentt]’;
dwdtt=[dspeedt]’;
Cor2t=[current2t]’;
Vel2t=[speed?2t]’;

sig=4;
centro=0:160;

Velft=zeros(1,18);

pos=290;
ii=2;
while ii < 19

Velft(ii)=Velt(pos);
pos=pos+300;
ii=ii+1;
end
Corft=zeros(1,18);
pos=290;
ii=2;
while jj < 19
Corft(jj)=Cort(pos);
pos=pos+300;
=it
end
miui=0.000063;
Bme=0.0008599;
% TL=(miui*sign(vel).*((vel).*2));
TL=0.3409*Corft-Bme*Velft;
=L
pos=1,;
TLfan=zeros(1,18);
while jj <19
TLfan(jj)=TL_fan_estim(pos);
pos=pos+9;
ii=ii+1;
end
e_fan=(TLfan-TL);
e_ifan=(iae-Cor);
e_wfan=(wme-Vel);
% e_fullfan=(fulltorque-fullfan);

%%% Results Plots %%%

figure(1);
plot(Velft, TL,--";
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hold on;
plot(vel, TL_fan_estim,"r")
legend ('Real Load Torque (Fan)','Estimated Load Torqug'JFan

figure(2);
plot(Velft,e_fan);

figure(3);

plot(t,Cor,"--");

hold on;

plot(t,iae,"r"

legend ('Real Current with load','Estimated Current witintsged Parameters);

figure(4);

plot(t,e_ifan);

%

figure(5);

plot(t,Vel,'--");

hold on;

plot(t,wme,"r");

legend ('Real Speed with load','Estimated Speed with EstirRaredneters’);

figure(6);
plot(t,e_wfan);

pob2e=zeros(3,2050);
pob2e(1,1:2050)=3.876;
pob2e(2,1:2050)=0.8326;
pob2e(3,1:2050)=2.4426;

figure(7)

plot(tt(1:2050),pobe);

hold on;

plot(tt(1:2050),pob2e,"");

legend (‘Estimated Ra/La’,'Estimated Ka/La','Estimated 1/bA'&R'Ka/La’,'1/La");

pobml=zeros(1,2050);
pobm1(1:2050)=pobm(1,1:2050);
pob2m=zeros(1,2050);
pob2m(1:2050)=142.81525;

figure(8)

plot(tt(1:2050),pobm1);

hold on;

plot(tt(1:2050),pob2m,"";

legend (‘Estimated Ka/Jm','Ka/Jm");

Fkkkkkkkk @ rred new Fu n Ctionk********

%This function computes the error function of the receraigorithm
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%between the measurements and the prediction model for the exsyamm.

%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %%%% %% %% Y% Y Y i
%%%%%% %% %% %% %%

function [ee,em,xc,yxx] = errerdnew(pe,pm,u,t,y,Xx,n);

thel=pe(1); % 1. parameter to be estimated
the2=pe(2); % 2. parameter to be estimated
the3=pe(3); % 3. parameter to be estimated
thed=pm(1); % 4. parameter to be estimated
Kaet=the2/the3;

B = [the3;0];
C=[11];
D =[0];

cen=0:160;
XN=X;
th=0.01;
t1=t(1,n);

ul=u(1,n);

sig=4;

c=1;

A22=0;

while ¢ < 162
A20=(pm(c+1)/thed)*exp(-((xn(2,1)-cen(c))"2)/(2*sig)2)
A22=A22+A20;

c=c+1,

end

A22=A22;

A=[-thel -the2
Kaet/the4 -A22/((xn(2,1))];
xn=(eye(2,2)+th*A)*xn+th*B*(ul);

yx=C*xn;

diidt=-the1*xn(1,1)-the2*xn(2,1)+ul*the3;
dwwdt=(Kaet/the4)*xn(1,1)-A22;

t2=Kaet*xn(2,1);
ee=y(n,1)-diidt;
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em=y(n,2)-t2;

yxx=zeros(3,1);
yxx(1,1)=diidt;
yxx(2,1)=t2;
yxx(3,1)=dwwdt;
YXX=YXX;

XC=Xn;

*kkkkkkkkk reg rad n evvk********

%This function calculates the Jacobian of the recursive algorithm
%for the system with fixed Ra.

%%%%%% %% %% %%%%%% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% Y% Y Y i
%%%%%%% %% %%

function [Je,Jm,xn3]=regradnew(pe,pm,u,t,y,x,me,yx,n);

thel=pe(1); % 1. parameter to be estimated
the2=pe(2); % 2. parameter to be estimated
the3=pe(3); % 3. parameter to be estimated
thed=pm(1); % 4. parameter to be estimated

xb=me;
yxXn=yx;

cen=0:160;
XN=X;
sig=4;

h=2;

Jfm=zeros(162,1);

9=1;

cv=1;

while g < 162
Jfm(h,1)=exp(-((xn(2,1)-cen(cv))"2)/(2*sig"2));
cv=cv+1;
9=g+1;
h=h+1;

end

Jim(1,1)=yxn(3,1);

Jm=-Jfm;

uu=u(l1,n);
xn3=zeros(162,1);
Je=zeros(3,1);
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Je(1,1)=-xn(1,1);
Je(2,1)=-xn(2,1);
Je(3,1)=uu;
Je=-Je;
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