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ABSTRACT 
 

Modeling of electric drives coupled to complex mechanical loads may be a challenging task.  

Since the electric drives are commonly used in the industry, for many applications is 

desirable to have the capability of self-tuning the controller parameters to drive different 

mechanical load.  A possible solution consists of correctly identify the drive and the 

mechanical load.  For that reason, gray-box modeling using neural networks is presented as a 

possible solution for the identification of the mechanical loads and the drive system.  In the 

proposed gray-box modeling, the drive system is divided into the known part governed by 

the physical laws, which in our case was the electrical subsystem, and an unknown part, 

which in our case was the mechanical subsystem.  This type of approach is known as a two 

stage identification process.  At each stage, the parameters are estimated using the method of 

linear and recursive linear least squares.  To validate the effectiveness of this approach, 

simulations and experiments were perform and their results are presented in this work. 
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RESUMEN 
 

El modelar los sistemas de accionamiento eléctricos acoplados a cargas mecánicas complejas 

pude ser una tarea muy retadora.  Ya que los sistemas de accionamientos eléctricos son 

comúnmente usados en la industria; para muchas aplicaciones es deseable poder tener la 

capacidad de poder auto ajustar los parámetros del controlador para así poder manejar 

diferentes cargas mecánicas.  Una posible solución consiste en identificar correctamente el 

sistema de accionamiento eléctrico y la carga mecánica.  Por esa razón es que el modelo de 

caja gris usando redes neurales es presentado como una posible solución para la 

identificación de cargas mecánicas y de sistemas de accionamientos eléctricos.  En el 

propuesto modelo de cajas grises, el sistema de accionamiento eléctrico es dividido en una 

parte conocida que es gobernada por las leyes físicas, que en nuestro caso era el subsistema 

eléctrico, y en una parte desconocida, que en nuestro caso era el subsistema mecánico.  A 

este tipo de enfoque se le conoce como el método de identificación en dos etapas.  En cada 

etapa, los parámetros son estimados usando el método de los cuadrados mínimos en su forma 

lineal y recursiva.  Para validar la efectividad de este enfoque se realizaron simulaciones y 

experimentos y sus resultados son presentados en este trabajo. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 Motivation 
 

 Since a fast development in automation technology is occurring in our times, an 

urgent demand for high performance motor drives has been increasing.  To meet these high 

performance requirements, it has become necessary to develop control schemes that can 

overcome the influence of varying motor’s parameters, the influence of nonlinear friction, 

and especially the influence of load variation such as inertia, viscous friction and unknown 

loads.  Commissioning is one of the most common answers to the tuning of high performance 

motor drives.  Self commissioning automates the tuning of a control system for a specified 

motor and load system.  The tuning of the controller requires accurate models of the motor 

drive system.  In the design of a typical motor drive, the dynamics of electric machines are 

well understood and accurate models for control already exits.  On other hand, the 

mechanical loads depend on the application and modeling might be a complex task. 

 Here we propose to study gray-box modeling as an approach to develop identification 

methods for drive systems that can be used for a wide range of mechanical loads in a self-

commissioning scheme.  In our case, we know the model of the electric subsystem of the 

drive, but we don’t know the exact model for the mechanical load.  Gray-box modeling is a 

good alternative for modeling electric drives because it takes advantage of the available 

system knowledge while leaving flexibility to attend the mechanical load. 
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1.2 Objectives 
 
 The main objective of this work is to develop an automated methodology for the 

identification of mechanical loads models that can be used for tuning the controller of electric 

drive systems. 

 The specific objectives of this work are: 

• To develop an identification algorithm for a motor drive system using a gray-

box model. 

• To implement a control scheme with a recurisve identification algorithm for 

DC motor drive. 

• To validate the proposed scheme using simulations and experiments. 

 

1.3 Contribution 
 
 

The contribution of this work is the development and validation of a two-stage linear 

least square parameter estimation method for the identification of a DC permanent magnet 

motor drive.  This method separates the system in two subsystems, the physical and empirical 

part.  The physical part is the electrical and mechanical model of the motor drive without the 

mechanical load.  This part is also known as a white-box model.  The empirical part or black-

box is the mechanical load of the system.  This system is represented with a parallel gray-box 

model: 

   ( ) ( ))(),()(),()( ttxttxt uguhx +=&    (1.1) 
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where: ( ))(),( ttx uh  is the white box model and ( ))(),( ttx ug  is the black box model.  This 

model is called a gray-box model because is a tradeoff between the two individual subsystem 

models.  In our work, h will be associated with the electrical subsystem while g will be 

associated with the mechanical subsystem.   

 Previous works [1-7] in the field of motor control and load identification, the load 

separation from the known physical system into an empirical model had been presented.  In 

this work, we not only separate and estimate the mechanical load with a black-box model, 

but also we are estimating the physical model with linear least squares.  This kind of method 

is the main contributions of this work, because it could be easily implemented on a self-

commissioning scheme of a motor drive. 

1.4 Thesis Outline 
 
 
 The thesis is organized as follows.  Chapter 2 presents the literature review.  In 

Chapter 3, we present the Two-Stage parameter estimation method.  Chapter 4 presents 

simulation and validation results.  Chapter 5 presents experimental and validation results.  

Chapter 6 conclusions and future work. 



 
 
 

 
 

 4 

CHAPTER 2 
BACKGROUND  

 
This chapter presents basic concept of motor drives and gray box models using neural 

networks.  Also the concepts of linear and recursive parameter estimation as well as the 

control scheme used in this work are discussed. 

2.1 Concepts in Motor Drives 
 
 

About 65 % of the total electric energy produced in the US is consumed by electric 

motor drives.  An electric drive converts electrical energy to mechanical (rotational or 

kinetic) energy for many applications in the industry and almost everywhere around us.  

Electric drives are an integral part of many industries.  Motors drives are responsible for 

running large pumps, air compressors, and elevators and in small applications such the hard 

disk drive from a computer.  The combination of an electric motor, a controller, the sensors, a 

power electronics unit and the mechanical load is what is called electric drives (Figure 2.1). 

 

Figure 2.1 Electric Drive System Block Diagram 

Power Electronics 
Unit 

Electric Motor 

Controllers Sensors 

Mechanical 
Load 

Energy 

Input 
Command 

Motor Drive 
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Since electric drives are being used in almost everything that needs to be moved or 

drived is very important to have an efficient drive on a particular system.  In order to have an 

efficient electric drives, all of its components need to be properly designed.  The controller in 

conjunction with the power electronics units will produce the necessary input signal to the 

electric motor to drive the mechanical load to meet the required specifications.  Significant 

attention is paid to the operation and the efficiency of the system.  This is the reason why on 

this work we present a methodology to obtain a good model for high performance drives. 

 

2.1.1 DC Motor Drives 
 
 
 In [1,8], the capability of the gray-box approach for motor drive modeling was 

studied.  Their work showed identification of a simulated drive system.  The simulated 

system was a permanent magnet Direct Current (PMDC) motor driving a nonlinear static 

load.  The PMDC motor is used in the test-bed experiment of this work.  The nameplate data 

of the DC motor used are the following: 

• Horse Power: ½ HP 

• Voltage: 90 V 

• Current: 5.2 A 

• Rated Speed: 2500 RPM 

• Wound: Permanent Magnet 

• Manufacturer: General Electric Company 
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 This nameplate data was used in the simulations and to evaluate experimental results.  

In Figure 2.2, a schematic of the simulated system is presented. 

 

Figure 2.2 Schematic for a DC Motor and Load System 

 The general equations of the electrical and mechanical parts of the system are: 

   )()()(
)(

tKtiRtV
dt

tdi
L aaaa

a
a ω−−=    (2.1) 

   ))(()()(
)(

ttBt
dt

td
J Lmemm ωτωτω −−=    (2.2) 

    )()( tiKt aaem =τ      (2.3) 

where: La is the armature inductance, Ra is the armature resistance, Va(t) is the input voltage, 

Ka is the induced emf constant, Jm is the combined load and motor inertia of the motor, Bm is 

the damping coefficient, ω(t) is the rotor speed, ia(t) is the armature current, and τL is the 

speed depend load torque.  Table 2.1 summarizes the physical parameters values used for the 

simulations and the experiments.  These parameters were obtained using the procedure 

described in Chapter 4. 
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Table 2.1 Parameters of the DC Motor Drive 
Parameter Value 

Jm 0.002387 Kg.m2 
Ka 0.3409 Nm.A-1 
Ra 1.587 Ω 
La 0.409 H 
Bm 0.00086 

 

 In this work, we also consider a nonlinear static mechanical load.  The basic load to 

be used on the work is a fan.  In real life this load is a 16 inch blade with 26 degrees of pitch 

fan.  The fan torque load had the following equation: 

     )())(( 2 ttsignF ωωµτ =    (2.4) 

where µ (Nm*s2) is a constant value and the function is set so that the direction of the fan 

torque always opposes the direction of motion [2].  The fan load equation and its parameter 

values are presented in Table 2. 

Table 2.2 Case Study Load Torque 
Load Case Torque Equation Parameter Value 

Fan Load ( ) ( )( ) ( )ttsignL
2ωωµωτ =  µ=0.000063 N-m 

 

2.1.2 Mechanical Load Identification for Electric Drives 

 
 Identification of a mechanical load using prior physical knowledge has been 

extensively studied.  In [3], a method for commissioning the speed and position control 

system of an electric drive is presented.  It includes the identification of the nonlinear 

mechanical load on the system.  The identification of the mechanical system was 
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implemented assuming it behaves like a one mass or two mass, then using extracted 

characteristics features from acquired data to determine which system to use.  The key 

features used in this case for structure selection are based on knowledge of ideal response of 

the system when it is assumed to be one mass or two. 

 In [4], the authors develop models for nonlinear mechanical loads in electric drive 

system.  Radial basis function networks are integrated with a physics-based model for the 

load.  An EKF is used to estimate position and speed, and the friction as a nonlinear load.  

Implementation on a real system is presented.  The basic feature of this work is the modeling 

of the mechanical part.  The following model representation was used: 

    ),()(
.

uxNLBuAxtx ++=     (2.5) 

where NL(x,u) is the nonlinear representation of the mechanical friction.  The work found 

that EKF integrated with the radial basis function is a powerful algorithm for online 

parameter and state estimation.  Our work use a similar model structure as equation (2.5). 

 The work on [5] describes experiments whose objective is to estimate dynamic 

friction without relying on measured friction force or a structured friction model.  The 

method addresses friction characterization in the presence of variable and uncontrollable 

factors; including, wear, environmental conditions, lubricant condition, and normal force 

variation.  The method also used the EKF to determine friction force without relying on a 

priori friction model.  The method relies on accurate dynamic modeling of the system and 

measured motion to extract the unknown friction force.  A very similar concept as the one 

presented in this thesis.  This is the importance of this work because friction force is often 
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difficult or expensive to measure on-line; estimation can provide data from which locally 

valid dynamic models can be constructed.  The work also presented that their estimate can be 

used for friction-based diagnostics by monitoring friction force variations during various 

operating conditions and, also friction force estimation can be used for friction compensation. 

 Finally, on [6], two gray-box models are presented combining a white-box with a 

black-box model.  The authors used Neural Networks and a polytopic model as black-box 

models that are capable of identifying friction characteristics that are left unexplained by the 

first principles modeling (white-box model).  They also introduced an experimental case-

study where both gray-box models are applied to identify a rotating arm subject to friction.  

The authors performed an experiment where the parameters of the two proposed models are 

estimated with experimental data obtained from the rotating arm.  Later a closed-loop 

nonlinear state feedback friction compensation, which is a control loop for the friction, was 

used to verify if the proposed method was effective for an on-line application. 

 

2.2 System Identification: Gray-Box Modeling  
 
 

Models help us understand and describe our knowledge of a system in a mathematical 

sense.  For that reason, modeling of physical system on the basis of physical principles is 

widely used and implemented.  This implementation of physical laws that are governing the 

physical systems provides a mathematical model that requires the estimation of key 

parameters.  System identification is concern on the determination of a system, on the basis 

of input and output data samples.  The estimation task is to determine at each instant time a 
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suitable estimate of the parameters which, once specified, completely describe or 

characterize the system. 

 For the case of gray-box modeling, the system model is partitioned into two 

components.  One component is based on the knowledge of physical principles that govern 

the system dynamics (white-box).  That is the case of the electric subsystem in the motor 

drive.  In this electric subsystem all the parameters, the signals and the model equations are 

available.  This white box models required a good knowledge of the system in order to 

represent the physical system correctly. 

 When the structure of a system is not known or the data available is insufficient to use 

a physical modeling, a black box or empirical model is used.  A black-box model tries to 

estimate both the functional form of relations between parameters and all the unknown 

variables affecting the physical equations of the white-box model.  If there is no priori 

information of the model, we would try to use functions as general as possible to cover all 

different models.  An often used approach for black-box models are neural networks.  The 

problem with using large set of functions to describe a system is that estimating accurately 

the parameters becomes increasingly difficult when the amount of parameters increases.  In 

our case, the unknown mechanical load is approximated with a radial basis function neural 

network.  The problems of estimating all of the parameters of the neural network are partially 

solved with the assumptions made when implementing the radial basis function.  This topic is 

described in the Section 4.1. 
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 A gray-box model represents the tradeoff between the white box and the black box 

models [8].  The gray-box models structure relies on prior knowledge and the model 

parameters are mainly determined using measured data.  That is the case when a part of the 

system can be represented with the prior knowledge of physical principles but another part 

remains to be determined from observed data.  In other words, with gray-box models we 

have partial knowledge of the model structure that is to be identified.   

 The parallel gray box model is given by: 

   ( ) ( ))(),()(),()( ttxttxt uguhx +=&    (2.6) 

where: ( ))(),( ttx uh  is the white box model and ( ))(),( ttx ug  is the black box model.  In our 

work, h will be associated with the electrical subsystem while g will be associated with the 

mechanical subsystem. 

 

2.3 Self Commissioning of Electric Drives 

 
 Due to the fast development in automation technology, the urgent demand for high 

performance electrical drives has been increasing [8].  To meet these high performance 

drives requirements, it has become necessary to develop controllers that can overcome the 

influence of nonlinear friction, the influence of changing motor’s parameters and especially 

the influence of load variation, to keep the performance of the overall drive system 

unchanged.  An important problem in drive systems is the controller tuning prior to system 

operation or commissioning.  In a conventional motor drive, commissioning is usually 
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performed using analytical design and experimental tests based on given or measured motor 

parameters.  The steps during the drive commissioning are the following [7]: 

• Initial setting of necessary control parameters 

• Identification of electrical and mechanical parameters 

• Selection of controllers 

• Tuning of control parameters 

 Self-commissioning is the automation of the commissioning process.  This process is 

usually performed by a trained technician or engineer, which involve costs and time.  With 

self-commissioning, the system itself determines the electrical parameters of the machine 

during the commissioning and sets the control parameters accordingly [9].  Some of the 

issues in self-commissioning are the load identification and the controller tuning.  In this 

work a solution for load identification is presented based on a gray box model. 

 The advances in computers made possible the creation of sophisticated control 

algorithms.  The auto-tuning self commissioning (ATSC) control of an electric drive 

becomes a new issue in the design of a universal drive for various applications with unknown 

motor parameters and load dynamics.  The two basic requirements of this ATSC are the self 

commissioning and auto-tuning.  The self commissioning has been explained but the auto 

tuning concerns the automatic tuning of the control parameters when the motor drive is 

operating to achieve a satisfactory drive performance.  This kind of tuning eliminates the 

necessity of constantly tuning the control schemes when the loads on an electric drive 

changes.  In [7], Beineke presents a computer aided motor drive commissioning tool.  
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Basically they design a software tool which permits the identification of the mechanical 

system and the selection commissioning of several speed and position controllers for a two-

mass systems with mechanical imperfections such as friction and backlash.  They design a 

tool that was easy to use for the industry commissioning personnel, which is one of the 

objectives of developing auto-tuning self-commissioning control schemes for electric drives. 

 

2.4 Radial Basis Function Neural Networks 

 

 Radial Basis Functions are a type of Artificial Neural Network.  The Artificial Neural 

Networks (ANN) models are based on our present understanding of biological nervous 

systems.  One of the most important attributes of the neural networks is the ability to 

generalize.  What this mean is the ability to successfully interpret data which it has not 

previously been encountered and provide a sensible result on the data.  Naturally, there are 

limits to the generalizing ability of the networks and it is essential for the network to have 

been trained on information or data which is closely related to that on which the network is 

expected to generalize.  In the generalization, it is better to consider the network as an 

interpolator within the multidimensional space it was trained.   

 Artificial neural networks have high computation rates provided by their basic 

features:  

• High parallelism on the approach 
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• The ability to distribute memory over a large number of components within the 

network 

• Learning features from the training data. 

They are useful for approximating nonlinear mapping and for extracting 

characteristics from noise corrupted signals in random environment [10].  The type of ANN 

used on [8] to emulate load behavior is a layered feedforward network.  In this type of 

network, there can be many hidden layers in between the input and the output but every unit 

must send its output to layers higher than its own and must receive its input from layer lower 

than its own.   

In this work, a certain type of neural network was used to approximate the load torque 

characteristic of a motor drive system.  Figure 2.3 presents the block diagram of the actual 

motor drive system.  In this case we used the torque τL(ω(t)) to represent a static load like.  

One of the objective of this work was the used of artificial neural network (black-box) to 

model the load.  For that reason we used an artificial neural network instead of the fan load 

torque equations.  This substitution is presented in Figure 2.4.  On this figure the system is 

separated in two divisions, the physical known part of the system, which is compound of the 

electrical parameters, and the black box part which is composed by some parameters and the 

neural networks. 
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Figure 2.3 Actual Motor Drive System 

 

 

 

 Figure 2.4 Gray-Box Model Structure 
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 In this work, as in [8], the radial basis function (RBF) neural network was used to 

model the unknown load τL on the mechanical equation (2.7).  The RBF uses the radial 

construction presented in Figure 2.5. 

   ))(()()(
)(

ttBt
dt

td
J Lmemm ωτωτω −−=    (2.7) 

 The output of the radial basis function neural network is given by: 
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where F( ) is the basis function.  For the Gaussian case, (2.8) changes to: 
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where: x(t) is the input data, αi is the weight of the function, ci is the center of the i th node and 

σi is the variance of the i th node. 

 

 

Figure 2.5 Structure of a Radial Basis Function Neural Network 

The radial basis function has three types of parameters: 
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• Output layer weights, αi: that are linear parameters and they determine the amplitude 

of the basis function. 

• Centers, ci: are nonlinear parameters of the hidden layer neurons, and they determine 

the position or location of the RBF as well as the weights αi. 

• Standard deviation, σi
2: are the nonlinear parameters of the hidden layer neurons, and 

they determine the width of the RBF. 

 In an RBF the ith input variable is linked to the ith RBF via the center component ci.  

The ith output component of the network is related to the ith RBF via the weight αi.  Solving 

for the weights is equivalent to solving a system of P linear equations with N unknowns. 

 Here much attention is given to the RBF neural networks because in this work the 

black-box model representation of the load is based on this type of network.  The main 

attraction of RBF is that the model parameters may be calculated using linear methods.  This 

assumes that the locations, or centers, of the approximating functions are predetermined or 

selected in priori and fixed.  In this situation, the error function is quadratic in the model 

parameters, a fact that has the effect of computational effort simplification.  There is a global 

minimum which may be attained by solving a least squares problem or adaptively using a 

descent method [11].  Another major attraction of RBF is their flexibility. The basis function 

may be chosen to be either local or global, and they may or may not incorporate shape 

parameters, which can be tuned to reflect the nature of the data.  Moreover, RBF train rapidly 

without local minima problems and approximate any continuous function with accuracy.  

Their rapid training makes them suitable for situations where on-line learning is necessary 
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which is going to be the case of this work.  More detailed information on Radial Basis 

Function neural network is presented on [6 and 11]. 

 

2.5 Parameter Estimation 

 

 All of the presented models have parameters that need to be estimated.  Generally the 

model parameters are estimated using the least square method.  The technique of least 

squares was developed independently by A.M. Legendre and Carl Friedrich Gauss in 1806 

and 1797 respectively.  The objective of the least squares method is to find estimates of the 

model parameters that best fit to measured data points.  Since the data may include errors in 

measurement or experiment inaccuracies, we do not require the model to fit through all the 

data points.  Instead, we require the model to provide an optimal approximation in the sense 

that the sum of squares of errors between the values of the data points and the corresponding 

estimates of the model are minimized [12].  For linear models, the least squares parameter 

estimates can be found easily, but for nonlinear models the estimation of parameters becomes 

a more difficult problem to solve.  In that case, the use of iterative or recursive methods to 

compute estimates of the parameters is needed.  In our case, we take advantage of the 

nonlinear model structure to solve the problem as a sequence of linear least square problems. 

 

2.5.1 Linear Least Squares 
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 The least square method finds the parameters such that the model output ŷ  that best 

approximate the measured output y by minimizing the sum of squared errors.  For the linear 

case, 

     (t)(t)y(t) T eθa +=     (2.10) 

t is discrete time index, a(t) is the nm×  regressor vector, y(t) represents the available 

measurement, and θ is a vector of the parameters to be estimated. For ,nm > and Rank (a(t)) 

= n, in general, there will be no solution to (2.10), so in the linear least squares method the 

parameters are optimizing by minimizing the square norm of the error ii yθAe −=  as 

follows: 
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The solution to (2.11) is given by: 

    yAAA TT 1)( −=
^

θ      (2.12) 

 The linear least squares have several important features for system identification [13].  

For example, with least squares large errors are heavily penalized.  Also the linear least 

squares estimates can be obtained by straightforward matrix algebra.  Finally in many cases 

the linear least squares criterion is related to statistical variance and the properties of the 

solution can be analyzed according to statistical criteria. 
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2.5.2 Recursive Least Square Algorithm 

 

The purpose of this work is to provide a tool for on-line identification of the electric 

drive.  For that reason we used the recursive Newton-Raphson algorithm applied to scalar 

linear predictor with a least squares identification criterion.. 

 The Newton-Raphson algorithm [14] generates a sequence of parameter values θi, 

given a starting value θi(N)), by means of the recursion: 
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Here the row vector ∂ V/ ∂ θ denotes, as usual, the gradient of V. ∂ 2V/ ∂ θ2 is the matrix of 

second partial derivatives (∂ 2V/ ∂ θi θj) or the Hessian of V. Now modifying the Newton-

Raphson algorithm applied to scalar predictor models when a least squares identification 

criterion 
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is adopted. Here ei(θ(N)) are the prediction errors associated to the model: 

    )((N)-))(( T NN iiii θaye =θ ,    (2.15) 

where a is the model input , y is the model output and θ are the model parameters. 

Given data yi(N), ai(N-1) and an estimate, θi(N-1), the algorithm supplies an updated estimate, 

θi(N), according to the rule: 
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where the gradient of VN with respect to the parameter θ is given by: 
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In this expression, the row vector Ji is defined by the equation: 
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Hi(θ(N)), is an approximation to the Hessian of Ji(N) at θ given by: 
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and α is a suitable positive number acting as the forgetting factor. 

The introduction of Ji provides us with a convenient new approximation, Ri, to the Hessian, 

where: 
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Now we have to apply the matrix inversion lemma presented in [14] and it results in a 

recursive equations for Pi(N) = (NRi(N))-1, namely: 

 )1()]()()1())()1()(1([)( 1 −−−+−= − NNNNNNNIN ii
T
ii

T
iiii PJJPJPJP  (2.21) 

After the corresponding approximations and derivations we come with a new updating 

formula (2.16) in terms of PN: 

   )()()()1()( NNNNN i
T
iiii eJPθθ α−−=    (2.22) 

The equations (2.15), (2.18), (2.21) and (2.22) define the recursive algorithm. 



 
 
 

 
 

 22 

2.6 State Variable Filters 

 

On the equations established in the Section 2.1, the derivative of the armature 

currents and rotor speed are required.  This introduces a problem because the direct 

differentiation of analog or digital quantities can amplify the noise of the measure signals.   

One possible solution for this problem consists of the use of state variable filters 

(SVF).  The state-variable filter method is based on the block diagram representation used in 

the so-called phase-variable description of linear systems that use the outputs of a chain of 

cascaded integrators as state variables [15]. 

The transfer function of the system of interest is given by: 

011
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n ++++

=
− K

   (2.23) 

 where n is the order of the highest desired derivative.  The state variable filter is 

realized in the controllable canonical form in order to obtain the necessary derivative terms. 

 The figure 2.6 shows a block diagram of a first order state variable filter.  This filter 

was implemented in our work because we only needed the first derivative of the armature 

current and the rotor speed.  Notice that the filter variable and its derivative are available.  In 

the processing, we use the filtered variables instead of the real ones. 
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Figure 2.6 First Order State Variable Filter 

 

The most difficult part in the design of such filters is the selection of the filter 

bandwidth.  The optimal bandwidth is a compromise between the noise rejection properties 

of the filter and the quality of the input signals to the estimation algorithm.  Filters of this 

kind can be easily designed using techniques like Bessel, Butterworth or Chebyschev. 
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CHAPTER 3 
TWO STAGE PARAMETER ESTIMATION 

 
Parameter estimation is one of the main issues in system identification.  The goal is to 

find the parameters that best describes or characterize the data used for the system model.  

On this chapter a linear least square and a recursive linear least square two stage parameter 

estimation ARE presented. 

3.1 Gray-Box Model 
 

 In Chapter 2, we mentioned that the torque load of the permanent magnet DC motor 

is going to be assumed unknown and is going to be approximate with a neural network.  This 

decision was made base on the results presented on [1] and [8], where the same issue were 

addressed.  In those previous works, neural networks were implemented to approximate the 

load.  In our case, we used Radial Basis Functions (RBF) as the neural network for the load.  

The following equations describe the RBF structure used on this work. 
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 The load used in this work was a fan.  The fan torque is a nonlinear function of speed.  

Knowing this matter, we substitute the Radial Basis Function (3.1) in the mechanical 
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equation (3.3) of the DC motor.  This new mathematical model for the mechanical equation 

of the motor is now given by 
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 In this work, we decide not to estimate the viscous friction factor Bm.  In [8], they 

conclude that the error without the viscous friction where lower than the case when the 

viscous friction was included.  They concluded that the radial basis function was absorbing 

the effect of the viscous friction factor.  Following their recommendations, we eliminated the 

viscous friction from equation (3.4) resulting in 
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for the mechanical load. 

 Now we have the complete mathematical model for the gray-box model of the 

permanent magnet DC motor. 

 

3.2 Linear Regression Model for Electrical and Mechanical 
Subsystems 
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 Here we show two linear regressor models derived from (3.3) and (3.4) used for the 

design of the estimator.  These models made the estimation process easy to solve, because it 

reduces the problem from a complex nonlinear are into two linear simple estimation 

problems [8].  The most important advantage of this method is avoiding the use of the 

iterative Gauss Newton method which is computationally complex and time consuming.  

Instead the problem is simplified to solve it by the use of linear least squares which is less 

complex and than the Gauss Newton method.   

From equation (3.3), the electrical equation can be arranged into the linear regression 

form as follows: 

e
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The electrical parameters are obtained as follows: 
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 Now considering the mechanical equation (3.13) without the explicit viscosity Bm , it 

can be arranged as follows: 
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The corresponding linear regression model is given: 
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The mechanical parameters are estimated as follows: 
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 As is presented in (3.17) the electromagnetic torque is estimated using the estimated 

aK̂  obtained from the electrical regression model. 

The Figure 3.1 summarizes the two-stage algorithm implemented on this work.   
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Figure 3.1 Two Stage Algorithm Summary for both Identification Cases 

 

3.3 Recursive Algorithm for Electrical and Mechanical 
Subsystems 
 

The recursive algorithm implemented on this work is a two-stage method similar to 

the batch case.  The gray-box model introduces many parameters because of the radial basis 

function used to estimate the nonlinear load.  Separating the algorithm in electrical 

parameters θe and mechanical parameters θm made the algorithm faster to converge than in 

the case with all of the parameter being estimated recursively at the same time.  This 

technique is similar to the separable nonlinear least squares introduce on [16].  In that work, 

they estimate a Hammerstein model separating the parameters.  The Hammerstein model 

consists of a static nonlinear block that is parameterized by a feed-forward or radial basis 

function neural network in cascade with a linear block that is parameterized by a linear ARX.  

They separated the nonlinear parameters of the static neural network and the linear 

parameters of the ARX model. 
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Now implementing the two-stage recursive method in the Newton-Raphson algorithm 

we first arranged the updating equation (2.22) for the electrical parameters as follows: 
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where PeN, JeN and reN are the recursive Hessian approximation, Jacobian and prediction 

errors respectively for the electrical parameters, 
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The original electrical parameters are estimated as follows: 
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Similarly, the updating equation (2.22) can be arranged for the mechanical parameters as 

follows: 
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where Pm(N), Jm(N) and em(N) are the recursive Hessian approximation, Jacobian and 

prediction errors respectively for the mechanical parameters, 
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The original mechanical parameters are estimated as follows: 
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 mĴ  in this case is the motor inertia mechanical parameter not the Jacobian matrix of 

the recursive algorithm equations.  This is the recursive algorithm presented for this work.  

The results of the simulations and the experiments are presented on Chapter 5 of this work. 

 

3.4 Identification Process Algorithm 
 

 Figure 3.2 presents the identification process used in this work.  In the first step we 

began with the selection of the model structure.  In our case, radial basis functions were used 

to model the mechanical load as a black-box.  In the next step, we proceed to estimate the 

parameters.  For this part a simulation and an experiment were performed.  The two-stage 

method was used to estimate the parameters with two different algorithms.  In the first 

algorithm the system parameters are estimated using linear least squares and in the second 

algorithm they were estimated with a recursive linear least squares.  In both algorithms 

simulations were done by substituting the estimated parameters into the model and running it 

with the same input as the real system.  The simulations results were compare with the real 

results.  No the next step would be the validation of the results.  For this step, we used a 

different input signals as the one used for the parameter estimation step.  Then we perform 

simulations by substituting into the model the estimated parameters from the parameter 

estimation step.  Then we run the model with the new input signals from the validation step 

to corroborate if the estimated parameters are working with a different set of input signals.  If 

this validation is correct then we stop the process, but if it is not correct then we return to the 

model structure step to verify or change the model. 
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Figure 3.2 Diagram for the Identification Process Algorithm 
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CHAPTER 4 

SIMULATION RESULTS 

 
 This chapter presents the simulation results for the two proposed algorithms for 

parameter estimation.  The validation is also presented on this chapter for all of the 

algorithms.  The experimental result are presented in the next chapter. 

4.1 Initialization 

Before any simulation was performed, it was very important to initialize the data and 

the radial basis neural network.  First of all it is very important to assume that the motor is 

going to be operated over the entire nominal operating range.  In real life, this would limit the 

operating range in which you could operate the motor and could introduce errors to the 

system identification process.  Another important remark is using the neural network for 

modeling the load. 

The input data used for training the model was an armature voltage (Va) signal that 

would result in a speed response within a range of 0 rad/s, to approximately, 150 rad/s.  For 

the radial basis function model, 161 points were selected priori.  These 161 points simulated 

the speed from 0 rad/s to 160 rad/s were selected as the center of the NN.  The variance was 

also selected in priori and fixed to a value of 4.  The armature voltage used for this system is 

presented on Figure 4.1. 
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Figure 4.1 Input Voltage used for training the model 

 

4.2 Simulation Results for Batch Two Stage Method 

Table 4.1 show the estimation results for the noise free case. 

Table 4.1 Parameter Estimates from Simulation for the Batch Two State Method 

Parameters Real Value Estimated value %Error 

La 0.4094 0.4094 0 % 

Ra 1.587 1.587 0 % 

Ka 0.3409 0.3409 0 % 

Jm 0.002387 0.002387 0 % 
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The parameter estimates are presented in Table 4.1.  These simulation parameters are 

noise free.  From the results it could be seen that the estimates have no error.   

The Figure 4.2 presents the load torque estimate in comparison with the real load 

torque vs. speed characteristic.  From the Figure 4.3, it could be seen that the error is small.  

The only big difference occurs when the velocity reaches about 155 rad/s.  This happens 

because the radial basis was trained with a speed range between 0 to 150 rad/s and also the 

speed input to the network was about a maximum of 140 rad/s (Figure 4.6).  These results 

demonstrate that the approximation of the load characteristic is very good inside the training 

range, but not outside.  As mentioned before the NN are good interpolators but not 

extrapolators. 
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Figure 4.2 Real and Estimate Fan Load Torque Characteristic 
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Figure 4.3 Estimated and Real Fan Load Torque Characteristic Estimation Error 

 Figure 4.4 compares the estimated and real current from the simulations.  It could be 

seen from the figure that the curves are almost the same.  Furthermore from Figure 4.5 it 

could be seen that the error is in the order of 1x10-7 A in the highest error which is on the 

transition from one step to the other during the curve.  The rest of the curve shows good 

agreement.  These demonstrate the good performance of the identification model for the 

noise free case as expected. 
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Figure 4.4 Real and Estimated Current  
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Figure 4.5 Current Estimation Error 
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 Figure 4.6 presents the real and estimated speed.  In this figure the estimated speed is 

behaving almost identical as the real speed from the simulation.  Figure 4.7 presents the 

speed estimation error.  The highest error magnitude is in the order of 1x10-12 rad/s, which is 

negligible.  Again, as in the armature current, this error occurs in the transition between steps 

on the speed curve.  This demonstrates that the parameter estimation algorithm works in ideal 

conditions. 
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Figure 4.6 Real and Estimated Speed 
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Figure 4.7 Speed Estimation Error 

 

4.3 Validation Results for the Batch Two Stage Method 

The validation process performed in this work was training the model with one set of 

data and using another set of data to validate the model.  For validation, the second data set 

was selected inside the identification speed range.  This action was implemented to make 

sure that the model performs correctly without adding some new errors because of not 

operating the model inside the training data range. 

For the validation test, a new voltage input waveform was selected for this purpose.  

This new voltage input is presented in Figure 4.8.   
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Figure 4.8 Input Armature Voltage used for Validation 

 The real and validation current is presented on Figure 4.9.  Here the validation current 

curve behaves almost as the real simulated current.  The error between the validation and real 

current is presented on Figure 4.10.  The error has an average of almost zero with the 

exception of the initial transient of the step.  This transient error was between -0.03 Amperes 

and 0.02 Amperes, which is less than 1 % of the maximum current. 
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Figure 4.9 Real and Estimated Current Validation from Simulations 
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Figure 4.10 Current Estimation Error: Validation 

 The Figure 4.11 presents the validation and real simulated speed.  Here both curves 

are almost identical.  Moreover the Figure 4.12, that presents the error between the validation 
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and real simulated speed, shows that the error has an average of zero rad/s and with the 

highest error on the steps inside the curve. 
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Figure 4.11 Real and Estimated Speed Validation from Simulations 
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Figure 4.12 Validation Error from Real and Estimated Speed 
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4.4 Simulation Results for Batch Two Stage Method: Noise Case 

Table 4.2 show the estimation results with Gaussian Noise of 0.l dB. 

Table 4.2 Parameter Estimates from Simulation for the Batch Two State Method 

Parameters Real Value Estimated value %Error 

La 0.4094 0.4094 0 % 

Ra 1.587 1.586 0.06 % 

Ka 0.3409 0.34085 0.014 % 

Jm 0.002387 0.002385 0.083 % 

 

The parameter estimates are presented in Table 4.2.  From the results it could be seen 

that the estimates have no error.   

The Figure 4.13 presents the load torque estimate in comparison with the real load 

torque vs. speed characteristic.  From the Figure 4.14, it could be seen that the error is small.  

The only big difference occurs when the velocity reaches about 155 rad/s.  This happens 

because the radial basis was trained with a speed range between 0 to 150 rad/s and also the 

speed input to the network was about a maximum of 140 rad/s (Figure 4.17).  These results 

demonstrate that the approximation of the load characteristic is very good inside the training 

range, but not outside. 
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Figure 4.13 Real and Estimate Fan Load Torque Characteristic with Noise 
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Figure 4.14 Estimated and Real Fan Load Torque Characteristic Estimation Error 

 Figure 4.15 compares the estimated and real current from the simulations.  It could be 

seen from the figure that the curves are almost the same.  Furthermore from Figure 4.16 it 
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could be seen that the error is in the order of 2.5 x10-7 A in the highest error which is on the 

transition from one step to the other during the curve.  The rest of the curve shows good 

agreement.  These demonstrate the good performance of the identification model for the 

noise free case as expected. 
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Figure 4.15 Real and Estimated Current with Noise 
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Figure 4.16 Current Estimation Error with Noise 

 Figure 4.17 presents the real and estimated speed.  In this figure the estimated speed 

is behaving almost identical as the real speed from the simulation.  Figure 4.18 presents the 

speed estimation error.  The highest error magnitude is in the order of 3x10-13 rad/s, which is 

negligible.  Again, as in the armature current, this error occurs in the transition between steps 

on the speed curve.   

This results compare with the results without noise demonstrate the good 

performance of the two-stage method. 
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Figure 4.17 Real and Estimated Speed with Noise 
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Figure 4.18 Speed Estimation Error with Noise 
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4.5 Validation Results for the Batch Two Stage Method: Noise 

Case 

For the validation test, a new voltage input waveform presented in Figure 4.8 was 

used for this purpose.  The real and validation current is presented on Figure 4.19.  Here the 

validation current curve behaves almost as the real simulated current.  The error between the 

validation and real current is presented on Figure 4.20.  The error has an average of almost 

zero with the exception of the initial transient of the step.  This transient error was between -

0.03 Amperes and 0.005 Amperes, which is less than 1 % of the maximum current. 
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Figure 4.19 Real and Estimated Current Validation from Simulations with Noise 
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Figure 4.20 Current Estimation Error: Validation 

 The Figure 4.21 presents the validation and real simulated speed.  Here both curves 

are almost identical.  Moreover the Figure 4.22, that presents the error between the validation 

and real simulated speed, shows that the error has an average of approximately 0.02 rad/s and 

with the highest error on the steps inside the curve. 
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Figure 4.21 Real and Estimated Speed Validation from Simulations with Noise 
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Figure 4.22 Validation Error from Real and Estimated Speed 
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4.6 Simulation Results for Recursive Two Stage Method 

Table 4.3 Parameter Estimates for the Recursive Two Stage Method using Simulated 
Data 

Parameters Real Value Estimated value %Error 

La 0.4094 0.4279 4.52 % 

Ra 1.587 1.564 1.44 % 

Ka 0.3409 0.3423 0.41 % 

Jm 0.002387 0.002357 1.26 % 

 

The parameter estimates using the recursive method are presented in Table 4.3.  

These parameters are estimated using the input voltage in Figure 4.1.  From the results it 

could be seen that all the estimates have errors less than 5 %, being the highest error of 

4.52% on the armature resistance (Ra).  Figure 4.23 show the time response of the electrical 

parameter estimates.  On this figure the response of the linear regression model parameters 

are presented.  The blue line is Ra/La, the Red line is 1/La, and the green line is Ka/La.  It 

could be seen that the estimated parameters converge to a value near the nominal parameters 

values (dashed lines).  These nominal values are 3.876 for the Ra/La line, 2.4425 for the 1/La 

line and 0.8326 for the Ka/La line.  In steady state, the estimation errors were low as the Table 

4.3 shows.  The Figure 4.24 shows the estimates of Ka/Jm.  The parameter almost converges 

to the nominal value of 142.815 (Blue dotted line).  The estimated parameter is the dotted 

blue line.  The error is almost zero as could be seen on Table 4.3. 
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Figure 4.23 Real and Estimated Electrical Parameters: Recursive Estimator 
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Figure 4.24 Real and Estimated Mechanical Parameters: Recursive Estimator 
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Figure 4.25 presents a comparison between the load torque characteristic estimated 

with the recursive algorithm and the real one.  From Figure 4.26, it could be seen that the 

error is small, but is higher than in the batch case presented in Section 4.2.  The largest 

difference occurs when the velocity reaches about 155 rad/s.  This is because the neural 

network was trained for a velocity range between 0 to 150 rad/s.  These results demonstrate 

that the approximation of the load characteristic is very good inside the training range. 
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Figure 4.25 Real and Estimate Fan Load Torque: Recursive Estimator 
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Figure 4.26 Real and Estimate Fan Load Torque Error from Recursive Simulation 

 Figure 4.27 shows the estimated and real current from the recursive simulations.  It 

could be seen that the curves are almost the same.  Furthermore, from Figure 4.28, the mean 

error is -0.1 Amperes.  The highest errors occur during the step changes in the curve, which 

is something normal.  The overall performance of the estimator is good because the value of 

0.1 Amperes is low compared with the maximum current of 3.2 Amperes.  These results 

demonstrate the good performance of the recursive parameter estimation algorithm. 
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Figure 4.27 Real and Estimated Current from Recursive Simulation 

 

0 5 10 15 20 25
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Time (sec.)

C
ur

re
nt

 (
A

m
ps

)

 

Figure 4.28 Real and Estimated Current Error from Recursive Simulation 
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 In Figure 4.29, the real and estimated speed from the recursive method is presented.  

On this figure the estimated speed is behaving almost the same as the real speed from the 

simulation.  In Figure 4.30, the estimation error is presented.  The maximum error magnitude 

is about -0.2 rad/s.  This is good because the highest speed is about 140 rad/s.  Highest errors 

occur during fast changes in speed.  In the steady state regions the average error is 

approximately -0.2 rad/s. 
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Figure 4.29 Real and Estimated Speed from Recursive Estimator 
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Figure 4.30 Speed Error from Recursive Estimator 

 

4.7 Validation Results for the Recursive Two Stage Method 

For the validation test, the same voltage input used for the validation of the batch 

method was selected for the recursive case.  This voltage input is presented on Figure 4.8. 

 The real and estimated current from the recursive case is presented on Figure 4.31.  

Here the estimated current behaves almost as the real current.  The error between the 

validation and real current is presented on Figure 4.32.  The error has an average of almost 

zero Amperes with the exception of the period between each step, but it was less that 0.25 

Amperes.  The error varies between +0.05 and -0.05 Amperes.  This error is minimum when 

compare with the current highest value of 2.5 Ampere.  The identified model shows good 

performance with the validation data. 
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Figure 4.31 Real and Estimated Current Validation from Recursive Estimator 
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Figure 4.32 Validation error from Real and Estimated Current from Recursive 
Estimator 

 

The Figure 4.33 presents the validation and real speed for the recursive case.  Figure 

4.34, presents the error between the validation and the real simulated current.  The average 
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error is -0.2 rad/s with the highest error during speed changes.  This again shows good 

performance for the identified model. 
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Figure 4.33 Real and Estimated Speed Validation for Recursive Estimation 
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Figure 4.34 Error between Real and Estimated Speed for Recursive Estimation: 
Validation 
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 From this validation results and the validations results of the batch two-stage method, 

we could say that the identified model shows good performance to reproduce the response of 

the system to an input different from training data.  Also the proposed recursive algorithm is 

good for identifying the system although there are slightly large errors in the estimated 

physical parameters. 

 

4.8 Simulation Results for Recursive Two Stage Method: Noise 

Case 

Table 4.4 Parameter Estimates for the Recursive Two Stage Method using Simulated 

Data 

Parameters Real Value Estimated value %Error 

La 0.4094 0.4279 4.52 % 

Ra 1.587 1.563 1.51 % 

Ka 0.3409 0.3422 0.38 % 

Jm 0.002387 0.002371 0.67 % 

 

The parameter estimates using the recursive method are presented in Table 4.4.  

These parameters are estimated using the input voltage in Figure 4.1.  From the results it 

could be seen that all the estimates have errors less than 5 %, being the highest error of 

4.52% on the armature resistance (Ra).  Figure 4.35 show the time response of the electrical 

parameter estimates.  On this figure the response of the linear regression model parameters 
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are presented.  The blue line is Ra/La, the Red line is 1/La, and the green line is Ka/La.  It 

could be seen that the estimated parameters converge to a value near the nominal parameters 

values (dashed lines).  These nominal values are 3.876 for the Ra/La line, 2.4425 for the 1/La 

line and 0.8326 for the Ka/La line.  In steady state, the estimation errors were low as the Table 

4.4 shows.  The Figure 4.36 shows the estimates of Ka/Jm.  The parameter almost converges 

to the nominal value of 142.815 (Blue dashed line).  The estimated parameter is the dotted 

blue line.  The error is almost zero as could be seen on Table 4.4. 
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Figure 4.35 Real and Estimated Electrical Parameters: Recursive Estimator with Noise 
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Figure 4.36 Real and Estimated Mechanical Parameters: Recursive Estimator with 

Noise 

Figure 4.37 presents a comparison between the load torque characteristic estimated 

with the recursive algorithm and the real one.  From Figure 4.38, it could be seen that the 

error is small, but is higher than in the noise free case presented in Section 4.6.  The largest 

difference occurs when the velocity reaches about 155 rad/s.  This is because the neural 

network was trained for a velocity range between 0 to 150 rad/s.  These results demonstrate 

that the approximation of the load characteristic is very good inside the training range. 
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Figure 4.37 Real and Estimate Fan Load Torque: Recursive Estimator with Noise 
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Figure 4.38 Real and Estimate Fan Load Torque Error from Recursive Simulation 
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 Figure 4.39 shows the estimated and real current from the recursive simulations.  It 

could be seen that the curves are almost the same.  Furthermore, from Figure 4.40, the 

average error is 0.01 Amperes.  The highest errors occur during the step changes in the curve, 

which is something normal.  The overall performance of the estimator is good because the 

value of 0.01 Amperes is low compared with the maximum current of almost 4.0 Amperes.  

These results demonstrate the good performance of the recursive parameter estimation 

algorithm. 
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Figure 4.39 Real and Estimated Current from Recursive Simulation: Noise Case 
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Figure 4.40 Real and Estimated Current Error from Recursive Simulation 

 In Figure 4.41, the real and estimated speed from the recursive method is presented.  

On this figure the estimated speed is behaving almost the same as the real speed from the 

simulation.  In Figure 4.42, the estimation error is presented.  The maximum error magnitude 

is about 2 rad/s.  This is good because the highest speed is about 140 rad/s.  Highest errors 

occur during fast changes in speed.  In the steady state regions the average error is 

approximately -0.2 rad/s. 

This recursive results compare with the recursive results without noise demonstrate 

the good performance of the two-stage method. 
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Figure 4.41 Real and Estimated Speed from Recursive Estimator with Noise 
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Figure 4.42 Speed Error from Recursive Estimator 
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4.9 Validation Results for the Recursive Two Stage Method: 

Noise Case 

For the validation test, the same voltage input used for the validation of the batch 

method was selected for the recursive case.  This voltage input is presented on Figure 4.8. 

 The real and estimated current from the recursive case is presented on Figure 4.43.  

Here the estimated current behaves almost as the real current.  The error between the 

validation and real current is presented on Figure 4.44.  The error has an average of almost 

zero Amperes with the exception of the period between each step, but it was less that 0.3 

Amperes.  The error varies between +0.05 and -0.05 Amperes.  This error is minimum when 

compare with the current highest value of almost 3 Ampere.  The identified model shows 

good performance with the validation data. 
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Figure 4.43 Real and Estimated Current Validation from Recursive Estimator with 

Noise 
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Figure 4.44 Validation error from Real and Estimated Current from Recursive 
Estimator 

 



 
 
 

 
 

 68 

The Figure 4.45 presents the validation and real speed for the recursive case.  Figure 

4.46, presents the error between the validation and the real simulated current.  The average 

error is -0.1 rad/s with the highest error during speed changes.  This again shows good 

performance for the identified model. 
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Figure 4.45 Real and Estimated Speed Validation for Recursive Estimator with Noise 
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Figure 4.46 Error between Real and Estimated Speed for Recursive Estimation: 
Validation 

 

 From this validation results and the validations results of the batch two-stage method 

with noise, we could say that the identified model shows good performance to reproduce the 

response of the system to an input different from training data.  Also the proposed recursive 

algorithm is good for identifying the system although there are slightly large errors in the 

estimated physical parameters. 
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CHAPTER 5 
EXPERIMENTAL RESULTS 

 

This chapter presents the experimental work to test and validate the identification 

algorithms.  A block diagram of the experimental setup is presented on Figure 5.1.  Each of 

these components is going to be explained in detail next. 

 

Figure 5.1 Experimental Setup 

5.1 Experimental Setup Overview 

 The experimental setup consists of a Personal Computer with a dSPACE® data 

acquisition board, signal conditioning modules, a PWM power driver amplifier with power 

supply for the motor drive, and a permanent magnet DC motor with a tachometer.  Figure 5.1 
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shows the block diagram of this system.  The characteristics of the individual components are 

as follows: 

• PM DC Motor:  The motor is a ½ HP, 90 Volts, PM DC motor of General Electric 

Company with an speed of 2500 RPM and an armature current of 5.2 A. 

• Computer: The Computer is a personal computer that is expected to read the voltage, 

current, and speed feedback, then calculate the parameters of the motor. 

• Analog and Digital I/O Board: The analog/input channels are used to sample 

discrete values of armature current and output voltage from the tachometer and store 

them into the computer memory. 

• PWM Driver:  Is a Copley 421 PWM servo amplifier, which provides a 5 Amperes 

continuous, 10 Amperes peak at switching frequency of 25 kHz.  The servo amplifier 

is configured to work as a DC voltage amplifier with a gain of 10. 

• Power Input: The power input to the PWM driver is an uncontrolled rectifier that 

produces 135 Volts at 6 Amperes. 

• Load: A fan of 16” with 26 degrees of pitch was used. 

• Tachometer: Instrument to measure the speed of the motor. 

5.1.1 DSPACE Data Acquisition Board 

As mentioned at the beginning of this chapter a dSPACE data acquisition board is 

used for obtain the measurements needed from the motor.  The dSPACE board used on this 

work was the DS1103 board. 
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Special attention must be taken when loading a heavy computational process to the 

DS1103.  If the test is too complex, the simulation step time must be increase in order to 

avoid overloading of the control board, but increasing the step time too much will introduce 

convergence related problems.  The main reason is because of the computer used for this 

work, which is a Gateway Computer with a 200 MHz Pentium 2 microprocessor. 

The dSPACE system consists of the DS1103 control board and Matlab® software.  

DS1103 main processing unit is Texas Instrument’s TMS320C31 DSP with 60Mhz system 

clock.  It also includes a second Texas Instrument’s TMS320P14 with 25Mhz clock slave 

DSP used as a co-processing unit. 

DS1103 provide twenty ADC (for data acquisition), eight DAC, fifteen 

programmable digital I/O and ISA bus interface (to connect the board to a personal 

computer).  For a more detailed description of the DS1103 please refer to dSPACE Manual 

[17].  The DS1103 board is installed in a personal computer used to control the drive system, 

through an ISA bus. 

Matlab® Real-Time workshop and SimulinkTM is the main software tools used to 

program the DS1103. 

 Once the simulation is started, data can be stored with a software called Trace.  Any 

signal from the simulation model can be stored or displayed with this software.  On a test 

simulation, the DS1103 will basically receive voltage signals representing armature currents, 

armature voltage and rotor speed from the DC motor.  Also it will produce the input voltage 

control signals to the PWM driver.  The Matlab® Simulink block diagram used for control 
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and data collection from the DC motor is presented in Figure 5.2.  Inside this figure is also 

presented the state variable filters used to calculate the derivatives of the armature current 

and the rotor speed.  These derivatives are needed when implementing the two-stage 

algorithm to estimate the system parameters.  The dSPACE blocks that interface the 

computer and the drive to read and input data are also shown in this figure. 

 

Figure 5.2 dSPACE Matlab Simulink Block Diagram 

 

5.1.2 Signal Conditioning for Data Acquisition 

 

Several signal conditioning circuits are built in order to read the armature current, the 

rotor speed, and the armature voltage of the DC motor drive. 

Armature Current Measurement: 
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 The circuit presented on Figure 5.3 was used to measure the armature current.  We 

used a resistor Ri=0.01Ω in series with the motor to sense the voltage drop that is 

proportional to the armature current.  The output of the sensor is given by the following 

equation: 

     aii iRV *=      (5.1) 

 The range of this voltage drop is in the order of millivolts.  An amplifier circuit was 

used to amplify this sensor voltage.  One thing to take into consideration when designing this 

amplifier is the isolation of this circuit.  To solve this, a ground loop isolation stage in the 

drive system is used to reduce noise on the signals.  Electromagnetic interference (EMI) is 

very common on drive systems because of the switching of the power inverters.  This EMI 

can affect all parts of the drive system if it is not considered during design.  The ground loop 

isolator stage was build to break a ground loop between the dSPACE stage and the co-

processing stage.  The ground loop isolator circuit use a low distortion Operational Amplifier 

and isolation amplifiers.  This approach helps isolate the voltage level difference between 

grounds of both stages. 

 The low distortion operational amplifier used on this work was the Burr-Brown 

OPA2604.  This amplifier was used at the output of the Isolation amplifier and on the Post 

Amplification Stage. 

The isolation is done with Agilent Technologies isolation amplifier HCPL-7840.  The 

HCPL-7840 consists of a sigma-delta analog-to-digital converter optically coupled to a 

digital-to-analog converter.  Analog signals like armature Current (ia) and armature Voltage 
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(Va) are decoupled using these amplifiers to break all electrical connections between stages.  

The isolation circuit presented on Figure 5.3 was taken from the HCPL-7840 manual [18] for 

motor signal sensing.  Some modifications to fit our work were made, like adding a post 

amplification stage. 

Also its to reduce the effect of the EMI, all components are enclosed in metal cases 

and shielded cable was plenty used.  Electronic components were selected with a high 

immunity to EMI, and circuit design was also done with noise reduction in mind. 

 On each isolation circuit a post-amplification stage with a gain of 2 was used.  This 

stage used the low distortion amplifier OPA2604.  Now including all of the gains the circuit 

stage, the total gain of this circuit is described with: 

     at iV *915.0=      (5.2) 

 This voltage (Vt) was measured by the dSPACE board and converted by the computer 

to the corresponding armature current. 
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Figure 5.3 Current Measurement Circuit 

The implemented passive low pass filter in the OPA2604 amplifiers was a capacitor 

C in parallel with a resistor R.  The cutoff frequency of the filters is calculated with 

equation
RC

fC π2

1= .  For this armature current circuit we used a value of R = 10kΩ and C = 

150pf, for a cutoff frequency of 106 kHz. 

 

Armature Voltage Measurement: 

 The Figure 5.4 presents the Armature Voltage measurement circuit implemented.  For 

the measurement of the Armature Voltage, a similar circuit for the current was used.  To step 

dowm the voltage, to input it to the dSPACE card a voltage divider was used.  The input 

voltage to the conditioning circuit given by: 
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    a
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








+
=      (5.3) 

where Ri=3.9 KΩ and Rj=4.7 MΩ.  The rest of the circuit is the same as the used for the 

armature current.  The post amplification circuit has the same structure presented for the 

current measurement but with a gain of 1.68.  Now combining all of the gains, of this 

amplifier the total gain of this circuit is given by: 

     at VV *05131.0=     (5.4) 

 This voltage (Vt) was measured by the dSPACE board and converted by in the 

computer as a the armature voltage. 

 

 

Figure 5.4 Voltage Measurement Circuit 
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The implemented active low pass filter was a capacitor C in parallel with a resistor R.  

The cutoff frequency of the filters is calculated with equation
RC

fC π2

1= .  For this armature 

voltage circuit we used a value of R = 10kΩ and C = 150pf, for a cutoff frequency of 106 

kHz. 

 

Speed Measurement: 

 The rotor angular speed is measured by a tachometer coupled to the shaft of the motor.  

The tachometer employed is a servo DC motor with a gain of 5V/900RPM.  The Figure 5.5 

shows the circuit used for the speed measurements.  To remove the noise of this signal, a 

filter with a cutoff frequency at 723 Hz was used to scale the input voltage since the data 

acquisition system input voltage is limited to 10 Volts.  A voltage divider using Ri=330 KΩ 

in series with another resistor Rj=1.5 MΩ was used. 

 The total DC gain for this circuit is equal to: 

     Tacht VV *3607.0=     (5.5) 

 This voltage (Vt) was measure by the dSPACE board and converted by the computer 

to speed. 



 
 
 

 
 

 79 

 

Figure 5.5 Speed Measurement Circuit 

The implemented active low pass filter was a capacitor C8 in parallel with R1.  The 

cutoff frequency of the filters is calculated with equation
RC

fC π2

1= .  For this speed circuit, 

a value of R1 = 22kΩ and C8 = 0.01µf, for a cutoff frequency of 723 Hz was used. 

 

5.2 Permanent Magnet DC Motor 

 

 Before any simulation was performed we have to know the physical parameter of the 

DC motor model.  The motor is a ½ HP, 90 Volts, PM DC motor from the General Electric 

Company with a maximum speed of 2500 RPM and an armature current of 5.2 A.  The 

following experimental methods were for the determination of the physical parameters. 

 The resistance Ra was measured by the voltmeter-ammeter method [19].  The 

resistance Ra can be obtained by measuring the DC resistance across the motor terminals.  
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When the motor is running on steady state, turn off the power and repeat this procedure more 

than five times, then take the average of the measurements to obtain the resistance Ra value. 

 The induced emf constant Ka is determined by measuring the open circuit terminal 

voltage when the motor is operated as a generator.  The back emf of the motor is given by: 

     )(tKE aemf ω=     (5.6) 

Eemf (back emf) vs. ω(t) (angular velocity) is collected and linear least square fit is used to 

determine the value of Ka. 

 The self inductance La is calculated from the electric equation 2.1 during transient 

step.  Then this equation would became: 

   )()()(
)(

tKtiRtV
dt

tdi
L aaaa

a
a ω−−=    (5.7) 

Since the value of the resistance Ra and the back emf Ka constant was previously calculated, 

then using linear least squares the inductance La could be obtain. 

 The viscous friction coefficient Bm is calculated by running the motor at constant 

speed unloaded.  By doing this in equation 2.1 and 2.2, 0=
dt

dω , 0=
dt

di  and TL = 0 so, 

     a
m

a i
B

K
t =)(ω      (5.8) 

and linear least square can be used to determine Ka/Bm. 

 The motor inertia Jm is determined by the retardation test speed versus time 

characteristic [19] due to switching off the motor after steady state is reached.  Using 

equation 2.2 and considering that now TL = 0 and τem = 0, results in  
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     0)( =+ tB
dt

d
J mm ωω

   (5.9) 

 and the solution of the above linear differential equation give the following: 

    mm

m t
J

tB

eet τωωω
−−

== )0()0()(   (5.10) 

where 
m

m
m B

J
=τ  is the mechanical time constant of the motor.  Using the curve of ω (angular 

speed) vs. time the value of Jm can be obtained.  We can obtain the mechanical time constant 

solving equation 5.10, using logarithms, to obtain this time constant. 

 

5.3 Mechanical Load 

 

 A fan load model presented in (5.13) has a parameter µ (Nm*s2).  We used a 16 inch 

fan with 26 degrees of pitch as the load torque for this work.  To estimate the fan torque, a 

simple test was made.  The motor speed is increase with small steps from zero rad/s to a 

value of at least 160 rad/s.  At every step the velocity is left constant for at least 5 seconds 

before applying a new step and the armature current was measured.  By doing this to 

equation 2.2, 0=
dt

dω , during that period with constant velocity (2.2) becomes (5.12): 

    )())(( 2 ttsignF ωωµτ =     (5.11) 

    ))(()()()( ttBtiKt Lmaaem ωτωτ =−=    (5.12) 
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 Now taking current and speed measurements points during steady state, we can 

calculate the load torque of the fan from 0 to 160 rad/s.  The resulting curve is presented on 

Figure 5.6.  This curve was used to evaluate the estimates from the linear and recursive 

parameter estimation methods presented in this work. 
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Figure 5.6 Load Torque for the Fan used in this Work 

 

5.4 Experiment Initialization 

 

The input data used for training the system was a voltage signal that would produce a 

speed velocity of a range between 0 rad/s to approximately 150 rad/s.  This signal was 

produce with voltage steps using the Matlab® Simulink interface with dSPACE.  This voltage 
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steps should produce the same voltage signal used also for the simulation tests.  The voltage 

steps for this experimental test are different from the voltage curve used in the simulation.  

The difference resides in the initial shaving of the curve between each voltage step as is 

presented in Figure 5.7.  This initial shaved rising occurs because of the Copley 421 PWM 

amplifier used to control the motor.  This amplifier produced a signal that resembled a DC 

voltage signal produce by switching signals and during this process it introduces some delay 

of about 1.5s and that is why the signal is different from the simulation curve.  Besides this 

difference the radial basis function model was selected with 160 points as in the simulations 

cases. 
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Figure 5.7 Input Voltage used for Training the Experimental Model 
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5.5 Experimental Results for the Batch Two Stage Method 

Table 5.1 Experimental Results for the Batch Two Stage Method 

Parameters Real Value Estimated value %Error 

La 0.4094 0.4868 18.9 % 

Ra 1.587 1.414 10.9 % 

Ka 0.3409 0.3381 0.82 % 

Jm 0.002387 0.006062 NO FAN INERTIA 

 

The experimental parameter estimates are presented in Table 5.1.  From the results on 

the table, we can see that the torque coefficient (Ka) is estimated with good results. The 

inertia Jm has an error of 154% but this is because the value used in the simulations does not 

include the fan inertia.  The only problem with the estimates comes from the resistance Ra 

and the inductance La.  The real values were calculated without load and in ideal conditions.  

The change in the resistance and the inductance could be a result of wire heating due to the 

addition of the fan and also to the effect of the noise from the PWM amplifier.  Besides these 

results, the algorithm is identifying the load characteristics with the radial basis functions 

with good precision as is shown in Figure 5.8.  

Figure 5.8 compares the load torque estimate with the real load torque.  From Figure 

5.9 it could be seen that the error is less than 0.1 N-m and -0.1N-m in the training range.  

These demonstrate the results obtained from the simulation, where the approximation of the 
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load characteristic is very good inside the nominal operation range, but begin to loss the 

characteristic outside it. 
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Figure 5.8 Real and Estimated Fan Load Torque  
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Figure 5.9 Estimated and Real Fan Load Torque Error 
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 Figure 5.10 compares the estimated and real current from the simulations.  It could be 

seen from the figure that the curves are almost the same.  Furthermore, from Figure 5.11, it 

could be seen that the error in magnitude is less than 0.1 Ampere.  The highest error is on the 

transition from one step to the other.  The rest of the curve shows good results because the 

error was almost zero.  The current has some spikes because of the noise produce by the 

PWM switching.  This noise was greatly reduce because of the analog filters and the state 

variable filters used for the current data acquisition. 
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Figure 5.10 Real and Estimated Current from Experiment 
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Figure 5.11 Real and Estimated Current Error from Experiment 

 In Figure 5.12, the real and estimated speed from the experiment are presented.  On 

this figure, the measured speed is almost identical to the simulation speed.  Figure 5.13 show 

the speed estimation error.  The highest error magnitude is between 5 to 10 rad/s and occurs 

in the transition between steps on the speed curve.  The rest of the curve has an average error 

of almost zero rad/s.   

If we compare the experimental batch with the simulations, we could see that error 

has increase.  It is still small but the simulations errors were in the order of 1x10-7 or less for 

the current and the speed curves.  This is because of the errors in the armature resistance Ra 

and the armature inductance La.  We would see the same behavior in the recursive two stage 

method which is presented later in this Chapter. 
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Figure 5.12 Real and Estimated Speed from Experiment 
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Figure 5.13 Real and Estimated Speed Error from Experiment 
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5.6 Validation Results for the Batch Two Stage Method 

For the validation test, a new voltage input was selected for this purpose.  This new 

voltage input has the same shape as the voltage input used for the simulations.  This curve is 

different from that used in the simulations for the reason explained in Section 5.4.   
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Figure 5.14 Input Armature Voltage used for Validation 

 The real and validation current are presented on Figure 5.15.  Here the validation 

current curve behaves almost as the real simulated current but with some errors.  The error 

between the validation and real current is presented on Figure 5.16.  The error has an average 

of almost -0.086 Amperes with the exception of the initial transient of the step.  In the initial 

transient the error was less than 0.2 Amperes. 
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Figure 5.15 Real and Estimated Current Validation from Experiment 
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Figure 5.16 Validation error from Real and Estimated Current 
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Figure 5.17 presents the validation results for speed.  Here both curves had similar 

shapes but with an average error of 2.265 rad/s.  Moreover, Figure 5.18 presents the error 

between the validation and simulated speed, shows that the error is having an average of less 

than 4 rad/s with the highest error occurring on the steps of the curve. 
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Figure 5.17 Real and Estimated Speed Validation from Experiment 
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Figure 5.18 Validation Error from Real and Estimated Speed 

 We could see that besides the two stage method identified the Ra and the La with 

some error the model is showing an acceptable validation.  Later on this chapter a solution 

for this error is presented. 

 

5.7 Experimental Results for the Recursive Two Stage Method 

Table 5.2 Parameter Estimates from Experiment for the Recursive Two Stage Method 

Parameters Real Value Estimated value %Error 

La 0.4094 0.5120 25.06 % 

Ra 1.587 1.408 11.28 % 

Ka 0.3409 0.3401 0.23 % 

Jm 0.002387 0.005702 NO FAN INERTIA 
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The steady state experimental parameters estimates using the recursive method are 

presented in Table 5.2.  These parameters are estimated using the input armature voltage in 

Figure 5.7.  From the results it could be seen that the estimates have high errors on the 

armature resistance (Ra) and the armature inductance (La).  These errors are higher than the 

10.9 % and the 18.9% error from the Ra and the La, respectively, from the batch two-stage 

case.  On Figure 5.19 the time response of electrical parameter estimates are presented.  We 

could see the high error on the resistance and the inductance.  The blue dashed line is the 

Ra/La parameter, the Red dashed line is the 1/La parameter and the green dashed line is the 

Ka/La parameter.  It could be seen that the estimated parameters don’t converge to the 

parameters values obtained from off-line tests and to the batch values (dotted dashed lines).  

These values are 3.876 for the dotted Ra/La line, 2.4425 for the dotted 1/La line and 0.8326 

for the dotted Ka/La line.  We could see that the highest error occur in the Ra/La parameter.  

The figure shows that it never converge to a constant parameter.  This points out telling us 

that there are problem to identify the resistance (Ra).  This problem was also seen in [18] for 

induction motor.  Figure 5.20 shows the time response for the Ka/Jm.  The neural network 

parameters are not presented because they are 161. 
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Figure 5.19 Real and Estimated Electrical Parameters from Recursive Experiment 
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Figure 5.20 Real and Estimated Mechanical Parameters from Recursive Experiment 
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Figure 5.21 presents the load torque characteristic estimated using the recursive 

algorithm in comparison with the real load torque.  From Figure 5.22, it could be seen that 

the error is higher than the batch experiment case presented in Section 5.6.  
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Figure 5.21 Real and Estimated Fan Load Torque from Recursive Experiment 
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Figure 5.22 Real and Estimated Fan Load Torque Error from Recursive Experiment 
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 Figure 5.23 compares the measured and simulated current using the parameters 

estimated with the recursive algorithm.  It could be seen from the figure that the curves have 

some errors especially on the transition between steps.  In Figure 5.24, it could be seen that 

the errors on this steps transitions had a value of almost -1 Ampere.  This current error 

happens because of the estimation error on the load torque. 
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Figure 5.23 Real and Estimated Current from Recursive Experiment 
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Figure 5.24 Real and Estimated Current Error from Recursive Experiment 

 In Figure 5.25, the real and simulated speed from the recursive method is presented.  

In Figure 5.26,  the difference between the simulated and real speed is presented.  The mean 

error magnitude is about 1 rad/s, which is less than 1 % since the highest speed is about 140 

rad/s.  Also during step changes is when the highest errors occur. 

 



 
 
 

 
 

 98 

0 5 10 15 20 25
-40

-20

0

20

40

60

80

100

120

140

160

Time (sec.)

S
pe

ed
 (
ra

d/
s)

Real Speed with load
Estimated Speed with Estimated Parameters

 

Figure 5.25 Real and Estimated Speed from Recursive Experiment 
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Figure 5.26 Real and Estimated Speed Error from Recursive Experiment 
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5.8 Validation Results for the Recursive Two Stage Method 

For the validation test, the same armature voltage input used for the validation of the 

experiment batch method was selected for the recursive case.  This voltage input was 

presented in Figure 5.14. 

 The measured and validation current from the recursive case are presented in Figure 

5.27.  Here the validation current curve has similar errors as the estimated current presented 

in the previous section.  The error between the validation and real current is presented on 

Figure 5.28.  The error has an average of almost 0.1 Amperes with the exception of the 

period during the transients between steps that was less than 0.25 Amperes.  This error is 

10% of the current peak values of 2.5 Ampere.  The identified model shows acceptable 

performance with the validation data set. 
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Figure 5.27 Real and Estimated Current Validation from Recursive Experiment 



 
 
 

 
 

 100 

0 5 10 15
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (sec.)

C
ur

re
nt

 (
A

m
ps

)

 

Figure 5.28 Validation error from Real and Estimated Current from Recursive 

Experiment 

The Figure 5.29 presents the validation and measured speed from the recursive case.  

Here both curves are almost identical.  Moreover, Figure 5.30 presents the error between the 

validation and the real simulated current; it shows that the error has an average of 2 rad/s.  

The highest error occurs on the steps of the curve.  These results are similar to those in batch 

two stage method. 
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Figure 5.29 Real and Estimated Speed Validation from Recursive Experiment 
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Figure 5.30 Validation Error from Real and Estimated Speed from Recursive 

Experiment 
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From the results on Section 5.5-5.8, we can conclude that the armature resistance 

errors is causing problems with the overall system identification.  A solution for this problem 

is presented in the next section.  The solution is going to be implemented on both algorithms, 

the batch and the recursive two stage methods. 

 

5.9 Experimental Results for Batch Two Stage Method with 

Fixed Armature Resistance 

 

The performance of the parameter estimation algorithms is affected by different 

aspects of system modeling and quality of measurements.  Electric drives models are created 

from the analysis of the physical phenomena that describe the system behavior.  But many 

times the measurements are not often good enough to correctly reflect all of the parameters 

effects.  This difference between high detail models and low richness in the measurements 

leads to very sensitive or ill-conditioned parameter estimation problems [20] 

To solve this problem, in [19] they reduce the order of the system by fixing the ill-

conditioned or sensitive parameters.  Also in [21] estimation of resistance from operational 

data is an ill-conditioned problem for the induction motor.  In this work, the ill-conditioned 

parameter was also believed to be the armature resistance (Ra).  We arrive to this conclusion 

from the results on the recursive and also batch experiment presented on Section 5.7.  From a 

brief analysis of the DC permanent magnet equivalent circuit presented in Figure 2.2 we 
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could see what is causing this problem with estimating Ra.  In this work, the nominal value of 

the resistance is 1.587 Ω and if the nominal current of this motor is 5.2 Amperes, the voltage 

drop on the resistance would be 8.25 V.  Since the voltage drop in the inductor La with a DC 

current is zero, the rest of the 90 Volts nominal motor voltage drop would be in the back emf 

voltage.  The emf voltage would be 81.7476 V.  This is a 9.16 % from the nominal motor 

voltage of 90 V.  If for example, the resistance change because of heating to a value of 2.0 Ω, 

the voltage drop on the resistance would be 10.4 V.  The back emf voltage would now be 

79.6 V, resulting in a resistance voltage drop of 11.55 % from the nominal value.  As you 

could see the resistance is not so sensitive to the effect of the voltage and this made the 

resistance difficult to identify from the measurement.  For this reason, the armature resistance 

became an ill-conditioned parameter.  If the prior estimation of the ill-conditioned parameter 

is incorporated into the estimation process would result in the sensitive reduction and the 

numerical performance of the estimation process would improve [21].  Figure 5.13 showed 

that the parameters Ra/La and 1/La do not converge to a constant value.  We decide to fix the 

parameter Ra to the off-line measured value of 1.5875 ohms based on the results from [19] 

and [21].  Here we present the estimation results when fixing Ra for the batch two-stage 

algorithm. 

We need to rearrange the linear regression equation for the electrical parameters (5.13) 

as follows: 
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The remaining electrical parameters are obtained as follows: 
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Table 5.3 Results from Experiment for the Batch Two Stage Method with Fixed Ra 

Parameters Real Value Estimated value %Error 

Fixed Ra 1.587 N/A N/A % 

La 0.4094 0.4506 10.06 % 

Ka 0.3409 0.3357 1.52 % 

Jm 0.002387 0.006017 NO FAN INERTIA 

 

In Table 5.3, the results from the batch two stage method with fixed Ra are shown.  

We could notice that the armature inductance La has an error of 10.06%.  When we compare 

this result with the inductance estimate shown in Table 5.1 for the full-parameter estimator 
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we see a reduction of 8.9%.  The induced emf constant (Ka) increases his error from 0.82 % 

to 1.52 %.  This increase is small and has no significant effect.  The inertia Jm change less 

than 1% from that in Table 5.1.  In Figure 5.31, we could see that the estimated load torque 

characteristic is very close to the real torque.  The error which is presented in Figure 5.32 

shows that the error is less than 0.1 N-m inside the training speed range. 
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Figure 5.31 Real and Estimated Fan Load Torque with Fixed Ra 
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Figure 5.32 Estimated and Real Fan Load Torque Error with Fixed Ra 

Figure 5.33 shows the measured and estimated current.  We could see that the 

estimated current is behaving almost as the real current as the error presented in Figure 5.34 

shows.  Here the error has an average of almost zero Amperes and maximum error is 0.05 

Ampere.  Figure 5.35 presents the real and estimated speed with fixed Ra and Figure 5.36 

presents the estimation error.  It could be seen that the estimated speed error is less than 2 

rad/s except during transients.   

From this figures we could conclude that the identified model is good and that the 

estimated parameters are close to the real values. 
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Figure 5.33 Real and Estimated Current from experiment with Fixed Ra 
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Figure 5.34 Real and Estimated Current Error from Experiment with Fixed Ra 
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Figure 5.35 Real and Estimated Speed from Experiment with Fixed Ra 
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Figure 5.36 Real and Estimated Speed Error from Experiment with Fixed Ra 

 



 
 
 

 
 

 109 

5.10 Validation Results for the Batch Two Stage Method with 

Fixed Ra 

 

In this section, the validation results from the batch two stage method with fixed Ra 

are presented.  The same input armature voltage as described in Section 5.6 was used.  Here 

it could be seen that the estimated armature current (Figure 5.37) and the speed (figure 5.39) 

are behaving very close to the measured signal.  If you compare these figures with the 

validation figure from Section 5.6, you could not see much difference.  In the full parameter 

validation case, besides the error on the parameters, the system was identified fairly well.  

But the only big difference is that with the fixed Ra, the parameter estimates had improved, 

especially the inductance La. 
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Figure 5.37 Real and Estimated Current Validation from Experiment with Fixed Ra 
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Figure 5.38 Validation error from Real and Estimated Current with Fixed Ra 
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Figure 5.39 Real and Estimated Speed Validation from Experiment with Fixed Ra 
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Figure 5.40 Validation Error from Real and Estimated Speed with Fixed Ra 

 

5.11 Results for the Recursive Two Stage Method with Fixed Ra 

 

On this section we present the results from the recursive two stage method with fixed 

Ra.  For this case we did the same modification for the Newton-Raphson recursive least 

square method, as in the batch two stage method of Section 5.9.  The results were even better 

than in the batch results presented in Section 5.9. 
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Table 5.4 Parameter Estimates from Experiment for the Recursive Two Stage Method 
with Fixed Ra 

Parameters Real Value Estimated value %Error 

Fixed Ra 1.587 N/A N/A % 

La 0.4094 0.4158 1.56 % 

Ka 0.3409 0.3397 0.35 % 

Jm 0.002387 0.005783 NO FAN INERTIA 

  

In Table 5.4, we could see the steady state results for this case.  The inductance La 

was estimated with an error of 1.56%.  The induced electric emf was estimated with an error 

of 0.35%.  When you compare the La parameter obtained with fixed Ra, with the La obtained 

from full parameter estimation, the difference is clearly noticeable.  In the full parameter 

recursive version, La estimate was 0.5120 H with an error of 25.06 %.  We could see that the 

error was almost eliminated by fixing the resistance.   

Also it could be noticed in Figure 5.40 how fast the electrical parameters converge to 

a value near the nominal value.  This is a big difference when comparing the convergence 

results for the full parameter version described in Section 5.7.  In that section, most 

parameters convergence slowly and the Ra/La parameter does not never converge.  In the 

fixed Ra estimator, the Ra/La converges very fast to a value near the nominal value.  What this 

is telling us is that the resistance Ra parameter was ill-conditioned or non observables from 

from the measurements.  Fixing this parameter greatly improves the estimation results in 

terms of faster convergence and more accurate results. 
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Figure 5.41 Real and Estimated Electrical Parameters from Recursive Experiment with 

Fixed Ra 
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Figure 5.42 Real and Estimated Mechanical Parameters from Recursive Experiment 

with Fixed Ra 
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 Figure 5.43 presents the estimated and real load torque characteristic.  When this 

figure is compare with the corresponding figure on Section 5.7, it could be seen that the 

estimated torque is better identified with the fixed Ra.  The torque error (figure 5.44) shows 

that in this case the error has an average of almost zero N-m.  This is a big improvement over 

the full parameter case.  This could be the result of fast convergence, for Ka where in the full 

parameter case convergence is slow and had some oscillation through the time. 

 Also the current presented on Figure 5.45 shows a better estimate than the full 

parameter case.  With the fixed Ra, the current error (Figure 5.46) has an average of almost 0 

amperes.  In this simulation, the estimated current behaves almost identical as the real current 

including the transition between the steps.  This was a problem in the full parameter case. 

 This tendency continues with the estimated speed (Figure 5.47).  The estimated speed 

was almost similar to the real speed and the error (Figure 5.48) was almost the same as in the 

full parameter version.  In the full parameter version, the speed was estimated fairly good and 

the differences between the cases are minimal.  But the great difference has come on the 

estimated current which results in improved torque estimation when compared with the 

simulations results from the Chapter 4. 
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Figure 5.43 Real and Estimated Fan Load Torque from Recursive Experiment with 

Fixed Ra 
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Figure 5.44 Real and Estimated Fan Load Torque Error from Recursive Experiment 

with Fixed Ra 
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Figure 5.45 Real and Estimated Current from Recursive Experiment with Fixed Ra 
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Figure 5.46 Real and Estimated Current Error from Recursive Experiment with Fixed 

Ra 
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Figure 5.47 Real and Estimated Speed from Recursive Experiment with Fixed Ra 
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Figure 5.48 Real and Estimated Speed Error from Recursive Experiment with Fixed Ra 
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5.12 Validation Results for the Recursive Two Stage Method 

Experiment with Fixed Ra 

 

The validation of the recursive two stage method with the fixed Ra confirms the 

excellent ability of this algorithms to estimate the parameters and identify the system.  Here 

the estimated and real currents are presented in Figure 5.49 and the error in Figure 5.50.  We 

could say that the system was correctly identified when the estimated parameters are tested 

with a new set of data. 

The estimated and real speed is presented in Figure 5.51 and the error in Figure 5.52 

corroborates the results obtained with the batch fixed Ra case.  What we could conclude now 

is that the overall identification and estimation of the system improves with fixing the ill-

conditioned parameter, which in our case was the armature resistance.   
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Figure 5.49 Real and Estimated Current Validation from Recursive Experiment with 

Fixed Ra 
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Figure 5.50 Validation error from Real and Estimated Current from Recursive 

Experiment with Fixed Ra 
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Figure 5.51 Real and Estimated Speed Validation from Recursive Experiment with 

Fixed Ra 
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Figure 5.52 Validation Error from Real and Estimated Speed from Recursive 

Experiment with Fixed Ra 
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CHAPTER 6 

FEEDBACK LINEARIZATION 

 
 This chapter presents an application of the proposed scheme to an adaptive feedback 

linearization controller.  Here we present the development of the feedback linearization 

motor control scheme and the simulations results. 

6.1 Feedback Linearization Theory 

In this work we want to control the motor speed to a reference speed.  If we want to 

develop a self-commissioning scheme for the motor drive we need a control scheme that 

would be adaptive.  Also to control the motor speed, we need to design a control scheme that 

would be adequate for the gray-box model structure presented in this work.  The feedback 

linearization control scheme was selected for this purposes.  In this method, the state 

equations could be completely linearized (full-state linearization) or the input-output is 

linearized, while the state equation may be only partially linearized (input-output 

linearization) [21].  In this work, we would demonstrate that our system state equations are 

completely linearized.  Now we will introduce some concepts that would help understand the 

development of the feedback linearization control law. 

6.1.1 Lie Derivatives Notation 
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The first concept we need to define is called the Lie Derivatives.  To introduce the 

concept of a Lie Derivative first we have to introduce the following simple-input-single-

output (SISO) system: 

uxgxfx )()( +=&     (6.1) 

)(xhy =      (6.2) 

where f(x) is the system plant equation and the g(x) is the equation related to the system input 

and the h(x) is the output equations.  If we want the first derivative of the output (y& ), we 

define the following notion: 
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∂=     (6.4) 

which is called a Lie Derivative.  The Lie derivative is the directional derivative of h with the 

direction of f.  This notation is convenient for repeated calculation of the derivative with 

respect to the same vector field.  For convenience the following notation is mostly used: 
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and    )()(0 xhxhL f =       (6.8) 

6.1.2 Feedback Linearization for Nonlinear Systems 

If we consider the system presented in (6.1) and (6.2), we first have to define the relative 

degree of this (SISO) system.  The relative degree ρ is equal to the number of times the 

output y has to be differentiated in order to have the value of the input explicitly appearing.  

In other words, to find the relative degree we had to perform the following procedure.  First 

we calculate the first derivative of y, denoted in this case by y(1), instead of y& : 

[ ] uxhLxhLuxgxf
x

h
y gf )()()()()1( +=+

∂
∂=    (6.9) 

If the relative degree is larger than 1 we have that 0)( =xhLg . 

Now we calculate the second derivative of y to obtain the following: 

   [ ] uxhLLxhLuxgxf
x

hL
y fgf

f )()()()(
)( 2)2( +=+

∂
∂

=   (6.10) 

If the term LgLfh(x) = 0, it mean that y(2) is independent of the input u.  We have to repeat this 

process until we find that h(x) satisfies the following: 

   0)(1 =− xhLL i
fg , for i = 1,2,…,ρ – 1    (6.11) 

0)(1 ≠− xhLL fg
ρ      (6.12) 

This means that the input u does not appear in the equations of y, y& , …, y(ρ – 1) and appears in 

the equation y(ρ): 
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    uxhLLxhLy fgf )()( 1)( −+= ρρρ     (6.13) 

Equation 6.13 shows that the system is input-output linearizable using the following state 

feedback control law to cancel the nonlinearities of the system 

    [ ]vxhL
xhLL

u f
fg

+−= − )(
)(

1
1

ρ
ρ     (6.14) 

Substituting (6.14) into (6.13) reduces the input-output map to; 

     vy =)(ρ      (6.15) 

This is similar to connect a chain of ρ integrators to the system.  This integer ρ is what is 

called the relative degree of the system [21].   

Now the next step is to develop a nonlinear version for the nonlinear system presented in (6.1) 

– (6.2) that would had a relative degree of ρ.  We have to find a transformation z = T(x) that 

would be a diffeomorphism on the domain of interest.  It would change the system into the 

normal form.  This means that the change of variables z = T(x) had to be invertible and 

differentiable.  In other words, it must have an inverse map T-1(.) such that x=T-1(z) for all z 

in the domain of T, and since x and z are continuous, both T(.) and T-1(.) have to be 

continuously differentiable.  The following theorem summarize this concepts [21]. 

Theorem 6.1:  Consider the system 6.1 – 6.2, and suppose it has relative degree ρ ≤  n in the 

domain of interest D.  If ρ = n, then for every x0 Є D a neighborhood N of x0 exists such that 

the map  



 
 
 

 
 

 125 

    ][

)(

)(

)(

)(

1

ξ=





















==

− xhL

xhL

xh

xTz

n
f

f

M
    (6.16) 

restricted to N, is a diffeomorphism on N.   

For the case when ρ < n please refer to [21] for more information. 

 Now we can linearized the system via the state feedback equation: 

    [ ]vxxu )()( βα +=      (6.17) 

where )(xβ = )(1 x−γ  and from (6.14) we have that: 

  )()( 1 xhLLx fg
−= ργ  and 

)(

)(
)(

1 xhLL

xhL
x

fg

f

−−= ρ

ρ

α     (6.18) 

They can be expressed in the new coordinates by setting: 

  ( ))(),( 1
0 zT −= αξηα  and ( ))(),( 1

0 zT −= γξηγ    (6.19) 

When ρ = n, and we used the transformation in (6.16) the system reduces to to: 

    [ ])()( xuxBzAz cc αγ −+=&     (6.20) 

    zCy c=       (6.21) 

where z = [h(x), …, )(1 xhLn
f
− ] T. 
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 In summary, the system (6.1) to (6.2) is feedback linearizable if and only if a function 

h(x) exists such that the system (6.1) to (6.2) has relative degree n (equal to the degree of the 

system) or equivalent, h satisfies the partial differential equations (6.11) when ρ = n, subject 

to the condition of (6.12).  For this case when ρ = n, the system is said to be full-state 

linearizable.  This means that the system state equations are completely linearizable. 

 These concepts about feedback linearization were implemented in the gray-box model 

of the electric drive system.  The procedure is going to be presented in the next section. 

 

6.1.3 Feedback Linearization for Gray-Box Modeling of Electric Drive 

 

Now we are going to apply the feedback linearization scheme to the permanent 

magnet DC drive.  First, we define the nonlinear electric and mechanical equations as were 

presented in Chapter 3.   
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On this work we want to control the speed of the motor so we define the output as follows: 

     )(ty ω=      (6.24) 
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Now we have to arrange the equations as are presented in equations (6.1) and (6.2) in order 

to proceed with the feedback linearization analysis.  For this purpose we define that x1=ia(t) , 

x2=ω(t) and Va(t) = u, then we could define f(x), g(x) and h(x): 
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    [ ]2)( xxh =       (6.27) 

Now the first procedure we performed was to find the relative degree of the system.  

Performing the first derivative, we arrive to the following expression: 
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Since on this equation is independent of the input we had to derivate for a second time to see 

if was dependent of the output.  We arrive with the following: 
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We find that the second derivative of the output is dependent on the input.  This means that ρ 

= 2 since the order of the derivative is 2.  For this reason, the system has a relative degree of 

2.  Because the order of the system is 2, the system is also input-state linearizable.  Now 

using equation (6.13) and (6.14), we could proceed to calculate the corresponding linearizing 

control law as follows. 
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Now substituting equation (6.30) and (6.31) into equation (6.14), we arrive to the linearizing 

control law: 
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where v are the two gain for the control law that would stabilized the linear state feedback.  

The input (6.32) and the following change of variable would transform the system to the 

normal form. 
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The normal form is presented in (6.34).  This form is obtained when the variables in 

the system are changed to the z-variables presented in (6.33).  This is the reason we insert the 

input with the control law calculated in equation (6.32).  With this procedure the 

nonlinearities are eliminated, but with the original x variables this could not be performed. 
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where,    
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Figure 6.1 presents the feedback linearization scheme.  It could be seen that the control law 

receive inputs from the output signals of the motor.  With this control input the system would 

linearize completely and would behave like a cascade of integrators, a double integrator in 

our case, as is presented in Figure 6.2.  If you applied this analysis with the recursive 

parameter estimation algorithm (Figure 6.3) presented in Section 3.3 the system would be 

adaptive.  The electrical and mechanical parameter in the equation (6.32) are going to be 

estimated with the recursive linear least square.  This converts the feedback linearization 

control law into an adaptive one because the parameters used for controlling the system are 

being estimated in every step time.  The step time used for the simulations was 0.01 seconds. 

 

 

Figure 6.1 Feedback Linearization with the Motor Drive 
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Figure 6.2 Linearize System with Double Integrator 

 

Figure 6.3 Feedback Linearization Diagram with Recursive Linear Least Squares 

 

These methods were implemented on a Matlab® SimulinkTM mode.  In the Simulink 

model, the z transformation used the same speed from the motor and for the speed 

acceleration a state variable filter was used to derive the speed.  The Simulink Model 

implemented for this work is presented here: 
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Figure 6.4 Matlab Simulink Model for the Feedback Linearization of the System 

 

6.2 Feedback Linearization Simulation Results 

Figure 6.2 shows that the linearized system behaves like a double integrator.  Since in 

our case the system has an order of two, it could be represented as a second order system.  

From that figure we find that the transfer function of the system would be: 
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where k1 and k2 are the control gain of the system.  A general second order system has the 

following transfer function: 
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where ωn is the natural frequency of the system and ζ is the damping ratio of the system.  

With this values, we could design the control gain of the system.  In our case we decide that 

the natural frequency of the system would be 17.32 rad/s and the damping ratio would be 

0.87 s/rad.  With this the gains for this system were found to be approximately: k1 = 10 and 

k2 = 30. 

These gains were implemented in the Matlab Simulink feedback linearization scheme 

without noise.  Figure 6.5 presents the speed output compared with the speed output of an 

ideal double integrator scheme as in Figure 6.2.  It could be seen that the system is behaving 

almost identical as the ideal case.  Figure 6.6 presents the results from the speed output 

versus the reference signal used to control the speed.  It could be seen that the reference 

speed is been track by the speed output with small errors.  These results demonstrate that the 

adaptive feedback linearization scheme is good for controlling the motor drive. 
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Figure 6.5 Simulated Motor Speed and Double Integrator Output 
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Figure 6.6 Motor Speed Output and Reference Speed 

 Figure 6.7 presents the speed output of the system compared with the ideal double 

integrator.  In this case, an approximately 0.1 dB noise is added to the system.  It could be 

seen that the system is behaving almost as the ideal case.  Figure 6.8 presents the results from 

the speed output versus the reference signal used to control the speed.  It could be seen that 

the reference speed is been tracked by the speed output with small errors.  These results 

corroborate the results found without noise demonstrating that the feedback linearization 

scheme is good for controlling the motor drive. 
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Figure 6.7 Simulated Motor Speed and Double Integrator Output with Noise 
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Figure 6.8 Motor Speed Output and Reference Speed with Noise 
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 These results demonstrate that the feedback linearization scheme can effectively 

control an electric motor drive.  This adaptive linearizing controller can be easy applied to an 

on-line self-commissioning control scheme. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 
7.1 Conclusions 

The main objective of this work was to develop an automated methodology for the 

identification of electric motor drives that can be used in a self commissioning scheme.  This 

methodology had to be flexible and simple enough to accommodate a wide variety of loads 

for it eventual implementation in the industry.  Using the two-stage modeling approach the 

identification of mechanical loads meets these desired objectives. 

The two-stage modeling approach presented in this work illustrates the potential of 

gray-box modeling for the identification of electric drives with unknown mechanical loads.  

The convenience of this model are that the identified physical parameters give information 

about the physical system and can be use to evaluate the goodness of the model.  The neural 

network based black-box model would allow to model different types of loads independently 

of their actual form.  The recursive algorithm identifies the system correctly and therefore, it 

can be implemented on-line and later used for self-tuning or self-calibration of electric drives. 

The radial basis functions neural networks used for modeling the load demonstrated 

excellent results and validations. 

The results from the simulations demonstrate the effectiveness of the methodologies 

presented in this work.  Some problems were encountered during the implementation of the 
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methodologies.  This is because conditions that were not affecting the simulations decreased 

the estimation performance during the test-bed implementation.  The solution proposed in 

this work was to fix the parameter that was less observable from the measurements.  In our 

case, was the armature resistance (Ra).  Fixing this parameter, improves the performance of 

the estimation methodologies, especially for the recursive two-stage method.  For example 

the estimated inductance (La) error was reduced from 25.06 %, in the full parameter case, to 

1.56 %, in the fixing Ra.  This is important because eventually this method is the one that is 

going to be implemented on a self-commissioning scheme. 

It was also observed that the noise created by the switching frequency of the PWM 

had to be taken into consideration when designing the experimental setup.  Since the 

methodologies presented on this work identify the electric drives the quality of them is very 

important.  Adding analog and digital filters (State Variable Filters) to reduce the noise of the 

measurement is very important and almost mandatory to obtained precise and accurate results.   

The simulations results, also demonstrate that the feedback linearization scheme can 

be effectively applied to control electric motor drives. This proposed adaptive linearizing 

controller can be later applied to a self-commissioning control scheme. 

The work shows that gray-box the methodologies had the potential for drive 

identification with unknown load and its applicability for later implementation in a self-

commissioning drive. 
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7.2 Future Work 

Our interest is to continue this work by looking at other types of loads, including 

dynamic loads.  Also is very important to implement the models on-line.  We are also 

interested in using these schemes in other types of motor, for example the induction motor 

that is also commonly used in the industry.   

We also want to pursue on-line implementation of the feedback linearization control 

scheme. 

We are also interested in studying schemes to grow and prune the neural network to 

improve modeling flexibility while keeping a small dimension. 
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APPENDIX 
Appendix A –Matlab File for the Experiment Batch Linear Least Square 
Case 
%%% This code calculate the model parameters%%% 
%%% as well as the system responses %%% 
%%% without the damping factor %%% 
%%% The Data is obtained by the Experimental Set-up %%% 
 
load motorvaldcsa111 
 
 
t2=zeros(1,2051); 
t2(1,:)=motorvaldcsa111.X.Data(116:2166); 
t2=t2-motorvaldcsa111.X.Data(116); 
 
speed=zeros(1,2051); 
speed(1,:)=motorvaldcsa111.Y(4).Data(116:2166); 
 
speed2=zeros(1,2051); 
speed2(1,:)=motorvaldcsa111.Y(3).Data(116:2166); 
 
voltage=zeros(1,2051); 
voltage(1,:)=motorvaldcsa111.Y(6).Data(116:2166); 
 
 
current=zeros(1,2051); 
current(1,:)=motorvaldcsa111.Y(1).Data(116:2166); 
 
current2=zeros(1,2051); 
current2(1,:)=motorvaldcsa111.Y(2).Data(116:2166); 
 
dspeed=zeros(1,2051); 
dspeed(1,:)=motorvaldcsa111.Y(8).Data(116:2166); 
 
 
dcurrent=zeros(1,2051); 
dcurrent(1,:)=motorvaldcsa111.Y(7).Data(116:2166); 
 
 
 
Vol=[voltage]'; 
Vel=[speed]'; 
Cor=[current]'; 
didt=[dcurrent]'; 
dwdt=[dspeed]'; 
Cor2=[current2]'; 
Vel2=[speed2]'; 
 
 
%%% Parameter initialization %%% 
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centro=0:160; 
L = 720.19997; 
sig=4; 
Rae=1.587 
%%% Electrical Parameter Estimation %%% 
 
y1 = didt; 
Xe1=Vol-Rae*Cor; 
Xe = [Xe1 -Vel]; 
theta1 = Xe \ y1; 
Kae = theta1(2) / theta1(1) 
Lae = 1 / theta1(1)  
 
Tem = Kae* Cor; 
 
for b=1:length(Vel) 
    for k=1:161 
        phi (b,k)= exp(-((Vel(b) - centro(k)).^2) / (2*(sig^2))); 
    end 
end 
 
%%% Mechanical Parameter Estimation %%% 
Xm=[dwdt phi]; 
theta2 = Xm \ Tem; 
Jme = theta2(1) 
 
alpha_estim = theta2(2:162); 
 
 
vel = centro; 
for j=1:161 
    for h=1:161 
        phi_fan (j,h)= exp(-((vel(j) - centro(h)).^2) / (2*(sig^2))); 
    end 
end 
%  
TL_fan_estim = phi_fan*alpha_estim; 
 
iae=(Jme/Kae)*dwdt  + (1/Kae)*phi*alpha_estim ; 
 
%Estimated velocity 
 wme = (1/Kae)*Vol-(Rae/Kae)*Cor-(Lae/Kae)*didt; 
%%% Real Torque %%% 
load torque 
 
 
t9=zeros(1,5287); 
t9(1,:)=torque.X.Data(446:5732); 
t9=t9-torque.X.Data(446); 
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speedt=zeros(1,5287); 
speedt(1,:)=torque.Y(4).Data(446:5732); 
 
speed2t=zeros(1,5287); 
speed2t(1,:)=torque.Y(3).Data(446:5732); 
 
voltaget=zeros(1,5287); 
voltaget(1,:)=torque.Y(6).Data(446:5732); 
 
 
currentt=zeros(1,5287); 
currentt(1,:)=torque.Y(1).Data(446:5732); 
 
current2t=zeros(1,5287); 
current2t(1,:)=torque.Y(2).Data(446:5732); 
 
dspeedt=zeros(1,5287); 
dspeedt(1,:)=torque.Y(8).Data(446:5732); 
 
 
dcurrentt=zeros(1,5287); 
dcurrentt(1,:)=torque.Y(7).Data(446:5732); 
 
 
 
Volt=[voltaget]'; 
Velt=[speedt]'; 
Cort=[currentt]'; 
didtt=[dcurrentt]'; 
dwdtt=[dspeedt]'; 
Cor2t=[current2t]'; 
Vel2t=[speed2t]'; 
 
 
sig= 4; 
centro=0:160; 
 
Velft=zeros(1,18); 
pos=290; 
ii=2; 
while ii < 19 
    Velft(ii)=Velt(pos); 
    pos=pos+300; 
    ii=ii+1; 
end 
Corft=zeros(1,18); 
pos=290; 
jj=2; 
while jj < 19 
    Corft(jj)=Cort(pos); 
    pos=pos+300; 
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    jj=jj+1; 
end 
miui=0.000033; 
 
Bme=0.0008599; 
 
 TL=Kae*Corft-Bme*Velft; 
 jj=1; 
 pos=1; 
 TLfan=zeros(1,18); 
 while jj < 19 
    TLfan(jj)=TL_fan_estim(pos); 
    pos=pos+9; 
    jj=jj+1; 
end 
 
%Errors 
e_fan=(TLfan-TL); 
e_ifan=(iae-Cor); 
e_wfan=(wme-Vel); 
 
 
%%% Results Plots %%% 
 
figure(1); 
plot(Velft,TL,'--'); 
hold on; 
plot(vel,TL_fan_estim,':r') 
legend ('Real Load Torque (Fan)','Estimated Load Torque (Fan)'); 
 
figure(2); 
plot(Velft,e_fan); 
 
 
 
 
 
figure(3); 
plot(t2,Cor,'--'); 
hold on; 
plot(t2,iae,':r') 
legend ('Real Current with load','Estimated Current with Fixed Ra'); 
 
figure(4); 
plot(t2,e_ifan); 
 
figure(5); 
plot(t2,Vel,'--'); 
hold on; 
plot(t2,wme,':r'); 
legend ('Real Speed with load','Estimated Speed with Fixed Ra'); 
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figure(6); 
plot(t2,e_wfan); 
 
 
figure(7); 
plot(t2,Vol); 
 



 
 
 

 
 

 147 

Appendix B - Matlab File for the Experiment Recursive Batch Linear 
Least Square Case 
  
% This file implements the Recursive Newton-Raphson algorithm for parameter 
% estimation with separated Parameters, a fan as  
% a load and RBF as a Nonlinear Load.  
% The Data is obtained by the Experimental Set-up 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
 
load motorvaldcsa111 
 
 
t2=zeros(1,2051); 
t2(1,:)=motorvaldcsa111.X.Data(116:2166); 
t2=t2-motorvaldcsa111.X.Data(116); 
 
speed=zeros(1,2051); 
speed(1,:)=motorvaldcsa111.Y(4).Data(116:2166); 
 
speed2=zeros(1,2051); 
speed2(1,:)=motorvaldcsa111.Y(3).Data(116:2166); 
 
voltage=zeros(1,2051); 
voltage(1,:)=motorvaldcsa111.Y(6).Data(116:2166); 
 
 
current=zeros(1,2051); 
current(1,:)=motorvaldcsa111.Y(1).Data(116:2166); 
 
current2=zeros(1,2051); 
current2(1,:)=motorvaldcsa111.Y(2).Data(116:2166); 
 
dspeed=zeros(1,2051); 
dspeed(1,:)=motorvaldcsa111.Y(8).Data(116:2166); 
 
 
dcurrent=zeros(1,2051); 
dcurrent(1,:)=motorvaldcsa111.Y(7).Data(116:2166); 
 
 
 
Vol=[voltage]'; 
Vel=[speed]'; 
Cor=[current]'; 
didt=[dcurrent]'; 
dwdt=[dspeed]'; 
Cor2=[current2]'; 
Vel2=[speed2]'; 
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Rai=1.41388;  
Lai=0.48680;  
Kai=0.33816;  
Jmi=0.00606;  
miui=0.000019; 
alpha=1.0e+007 *[-0.00010822140508 
   0.00038620111603 
                  0 
  -0.00209538190804 
   0.00359578304453 
                  0 
  -0.00512996005802 
                  0 
   0.01137316641420 
                  0 
  -0.04136899213133 
   0.05794999345755 
                  0 
  -0.06620031636389 
                  0 
   0.21507951822246 
  -0.39536901135816 
   0.36147825257340 
  -0.16235576638670 
                  0 
   0.02825563608850 
                  0 
                  0 
  -0.01171613692283 
                  0 
   0.01202218434448 
                  0 
  -0.01069762083173 
                  0 
   0.00804710137676 
                  0 
                  0 
  -0.01045433937233 
                  0 
   0.02041034356443 
                  0 
  -0.03814818651615 
                  0 
   0.10425995156697 
  -0.12280819875728 
                  0 
   0.09023170114954 
                  0 
  -0.13744549978376 
   0.11518509196788 
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                  0 
                  0 
  -0.06864876014350 
                  0 
   0.10946631226116 
                  0 
                  0 
  -0.99542143046008 
   3.08405800035408 
  -4.73277604033409 
   4.21244861535349 
  -1.87174445759372 
                  0 
                  0 
   0.62498435928445 
                  0 
  -1.17611326515839 
                  0 
   4.59167025463039 
  -9.40207447140170 
   9.91812076927363 
  -5.42652682043403 
                  0 
   1.92072308162285 
                  0 
  -2.49963946294102 
   2.85274480194947 
  -1.37173020990126 
                  0 
   0.28154597812890 
                  0 
  -0.11013558537336 
                  0 
   0.05171735354867 
                  0 
  -0.02403591478512 
                  0 
                  0 
   0.02516924924257 
  -0.02412648847713 
                  0 
   0.00799274451480 
                  0 
                  0 
  -0.00469104404858 
                  0 
   0.00523733279599 
                  0 
  -0.00483173895297 
                  0 
   0.00375121518192 



 
 
 

 
 

 150 

                  0 
                  0 
  -0.00731818005445 
   0.00845972408847 
                  0 
  -0.00403060044804 
                  0 
                  0 
   0.00411409956702 
                  0 
  -0.00686978566212 
                  0 
   0.01009844251366 
                  0 
  -0.01476869427395 
                  0 
   0.02318702069817 
                  0 
  -0.05171681319189 
   0.05146432844019 
                  0 
                  0 
  -0.07711474668470 
   0.10454149086181 
                  0 
  -0.11904812006401 
   0.10374756064118 
                  0 
  -0.04081285392470 
                  0 
   0.02162192362869 
                  0 
                  0 
  -0.02140540884878 
                  0 
   0.04976864681874 
  -0.04849572408032 
                  0 
   0.01860626583943 
                  0 
                  0 
  -0.01425023696082 
                  0 
   0.01857509263244 
                  0 
  -0.01919885758832 
                  0 
   0.01619873628611 
                  0 
  -0.00934979190759 
                  0 
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                  0 
                  0 
   0.00681873535022 
                  0 
                  0 
  -0.01138675931051 
                  0 
                  0 
   0.01481652113959 
                  0 
                  0 
                  0 
                  0 
                  0]; 
 
po=[Kai/Lai  1/Lai  Kai/Jmi  miui/Jmi]'; 
%%% Initialization Parameters 
pobe=zeros(2,2050); 
pobm=zeros(162,2050); 
 
% Initial Parameters 
 
Raii=2.0045;  
Laii=0.58126;  
Kaii=0.4736;  
Jmii=0.00583;  
alphai=0.9*alpha'; 
sig=4; 
 
%Parameter Separation 
pE=[Raii/Laii  Kaii/Laii  1/Laii]'; 
pM=[Jmii  
    alphai(1)  
    alphai(2)  
    alphai(3)  
    alphai(4)  
    alphai(5)  
    alphai(6)  
    alphai(7)  
    alphai(8) 
    alphai(9)  
    alphai(10)  
    alphai(11)  
    alphai(12)  
    alphai(13)  
    alphai(14)  
    alphai(15)  
    alphai(16) 
    alphai(17)  
    alphai(18)  
    alphai(19)  
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    alphai(20)  
    alphai(21)  
    alphai(22)  
    alphai(23)  
    alphai(24)  
    alphai(25)  
    alphai(26)  
    alphai(27)  
    alphai(28)  
    alphai(29)  
    alphai(30)  
    alphai(31)  
    alphai(32) 
    alphai(33)  
    alphai(34)  
    alphai(35)  
    alphai(36)  
    alphai(37)  
    alphai(38)  
    alphai(39)  
    alphai(40) 
    alphai(41)  
    alphai(42)  
    alphai(43)  
    alphai(44)  
    alphai(45)  
    alphai(46)  
    alphai(47)  
    alphai(48) 
    alphai(49)  
    alphai(50)  
    alphai(51)  
    alphai(52)  
    alphai(53)  
    alphai(54)  
    alphai(55)  
    alphai(56) 
    alphai(57) 
    alphai(58)  
    alphai(59)  
    alphai(60)  
    alphai(61)  
    alphai(62)  
    alphai(63)  
    alphai(64) 
    alphai(65)  
    alphai(66)  
    alphai(67)  
    alphai(68)  
    alphai(69)  
    alphai(70)  
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    alphai(71)  
    alphai(72) 
    alphai(73)  
    alphai(74)  
    alphai(75)  
    alphai(76)  
    alphai(77)  
    alphai(78)  
    alphai(79)  
    alphai(80) 
    alphai(81)  
    alphai(82)  
    alphai(83)  
    alphai(84)  
    alphai(85)  
    alphai(86)  
    alphai(87)  
    alphai(88) 
    alphai(89)  
    alphai(90)  
    alphai(91)  
    alphai(92)  
    alphai(93)  
    alphai(94)  
    alphai(95)  
    alphai(96) 
    alphai(97)  
    alphai(98)  
    alphai(99)  
    alphai(100)  
    alphai(101) 
    alphai(102) 
    alphai(103) 
    alphai(104) 
    alphai(105) 
    alphai(106) 
    alphai(107) 
    alphai(108) 
    alphai(109) 
    alphai(110) 
    alphai(111) 
    alphai(112) 
    alphai(113) 
    alphai(114) 
    alphai(115) 
    alphai(116) 
    alphai(117) 
    alphai(118) 
    alphai(119) 
    alphai(120) 
    alphai(121) 
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    alphai(122) 
    alphai(123) 
    alphai(124) 
    alphai(125) 
    alphai(126) 
    alphai(127) 
    alphai(128) 
    alphai(129) 
    alphai(130) 
    alphai(131) 
    alphai(132) 
    alphai(133) 
    alphai(134) 
    alphai(135) 
    alphai(136) 
    alphai(137) 
    alphai(138) 
    alphai(139) 
    alphai(140) 
    alphai(141) 
    alphai(142) 
    alphai(143) 
    alphai(144) 
    alphai(145) 
    alphai(146) 
    alphai(147) 
    alphai(148) 
    alphai(149) 
    alphai(150) 
    alphai(151) 
    alphai(152) 
    alphai(153) 
    alphai(154) 
    alphai(155) 
    alphai(156) 
    alphai(157) 
    alphai(158) 
    alphai(159) 
    alphai(160) 
    alphai(161)]; 
 
alph =1; 
 
n=1; 
xn=ones(2,1); 
xn2=ones(332,1); 
xn=0.01*xn; 
cw=zeros(2,2051); 
cw(1,:)=didt'; 
cw(2,:)=0.3409*Cor'; 
xn2=0.01*xn2; 
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uu=zeros(1,2051); 
tt=zeros(1,2051); 
JJ=zeros(3,2051); 
t=t2; 
 
% Voltage Input 
Va=zeros(1,2001); 
 
t3=0; 
h=1; 
 
u=Vol'; 
 
 
 
 
the1=po(1); % 1. parameter to be estimated 
the2=po(2); % 2. parameter to be estimated 
the3=po(3);  % 3. parameter to be estimated 
the4=po(4);  % 4. parameter to be estimated 
the5=po(5);  % 5. parameter to be estimated 
 
 
didt;%=1/Lai*Vol-Rai/Lai*Cor-Kai/Lai*Vel; 
dwdt;%=Kai/Jmi*Cor-miui/Jmi*(sign(Vel).*(Vel)); 
xnn=cw; 
cwv=zeros(3,2051); 
cwv(1,:)=Cor'; 
cwv(2,:)=Vel'; 
cwv(3,:)=Vol'; 
mear=cwv; 
e1=0; 
sal=zeros(2,2051); 
 
%%%  Beginning of recursive algorithm 
while(n<2051) 
 
 
%%%  Recursive Newton-Raphson 
 
 
 
 
 
y2=xnn'; 
mea=mear'; 
 
xn=xn; 
xn2=xn2; 
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    i=1; 
    change=100000; 
 
    if n < 2052  
    [ee,em,xn,yxx] = errerdnew(pE,pM,u,t,y2,xn,n); 
    yxx=yxx; 
    [Je,Jm,xn2]= regradnew(pE,pM,u,t,y2,xn2,mea,yxx,n); 
%   uu(1,n)=u(1,n); 
    tt(1,n)=t(1,n); 
    xn=xn; 
    sal(:,n)=xn; 
    xn2=xn2; 
    Je=Je'; 
    Jm=Jm'; 
    ee=ee; 
    em=em; 
     
    end 
 
 
   
     
    if n==1 
        PNe=4*[1 0 0 ;0 1 0 ;0 0 1]; 
        PNm=0.2*eye(162); 
    end 
    PNoe=PNe; 
    PNom=PNm; 
    if n>1 
         
         PNe=(PNoe-(PNoe*Je'*Je*PNoe)/(1+Je*PNoe*Je')); 
         PNm=(PNom-(PNom*Jm'*Jm*PNom)/(1+Jm*PNom*Jm')); 
    end 
     
    i=i+1; 
 
     h=1; 
 if n>0 
      
      alphe=0.0068; 
      alphm=0.000508; 
 
      pE=pE - (alphe/1)*PNe*Je'*ee; 
      pM=pM - (alphm/1)*PNm*Jm'*em; 
 
 
      h=h+1; 
 end 
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    p_prevelec=pE 
    p_prevmech=pM; 
    Jme =  pM(1) 
    pobe(:,n)=p_prevelec; 
    pobm(:,n)=p_prevmech; 
    n=n+1; 
     
end 
% figure(1) 
% plot(tt(1:2050),pobe); 
% figure(2) 
% plot(tt(1:2050),pobm); 
 
the1=pE(1); % 1. parameter to be estimated 
the2=pE(2); % 2. parameter to be estimated 
the3=pE(3);  % 3. parameter to be estimated 
the4=pM(1);  % 4. parameter to be estimated 
 
Rai 
Lai 
Kai 
Jmi 
 
 
Rae =  the1/the3 
Lae =  1/the3 
Kae =  the2/the3 
Jme =  (the4) 
alphae=zeros(161,1); 
ss=1 
while ss < 162 
    alphae(ss)=pM(ss+1); 
    ss=ss+1; 
end 
 
alphae=[alphae]; 
alphaee=zeros(161,2); 
alphaee(:,1)=alphae; 
alphaee(:,2)=alpha; 
%alphaee=[alphaee] 
 
centro=0:160; 
for b=1:length(Vel) 
    for k=1:161 
        phi (b,k)= exp(-((Vel(b) - centro(k)).^2) / (2*(sig^2))); 
    end 
end 
 
 
didt=didt; 
dwdt=dwdt; 
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%Estimated current 
iaee=sal(1,:);%(Jme/Kae)*dwdt  + (1/Kae)*phi*alphae; 
iae=(Jme/Kae)*dwdt  + (1/Kae)*phi*alphae; 
%Estimated velocity 
wmee = sal(2,:);%(1/Kae)*Vol-(Rae/Kae)*Cor-(Lae/Kae)*didt; 
wme = (1/Kae)*Vol-(Rae/Kae)*Cor-(Lae/Kae)*didt; 
 
 
 
vel = centro; 
for j=1:161 
    for h=1:161 
        phi_fan (j,h)= exp(-((vel(j) - centro(h)).^2) / (2*(sig^2))); 
    end 
end 
%  
TL_fan_estim = phi_fan*alphae; 
 
 
%%% Real Torque %%% 
load torque 
 
 
t9=zeros(1,5287); 
t9(1,:)=torque.X.Data(446:5732); 
t9=t9-torque.X.Data(446); 
 
speedt=zeros(1,5287); 
speedt(1,:)=torque.Y(4).Data(446:5732); 
 
speed2t=zeros(1,5287); 
speed2t(1,:)=torque.Y(3).Data(446:5732); 
 
voltaget=zeros(1,5287); 
voltaget(1,:)=torque.Y(6).Data(446:5732); 
 
 
currentt=zeros(1,5287); 
currentt(1,:)=torque.Y(1).Data(446:5732); 
 
current2t=zeros(1,5287); 
current2t(1,:)=torque.Y(2).Data(446:5732); 
 
dspeedt=zeros(1,5287); 
dspeedt(1,:)=torque.Y(8).Data(446:5732); 
 
 
dcurrentt=zeros(1,5287); 
dcurrentt(1,:)=torque.Y(7).Data(446:5732); 
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Volt=[voltaget]'; 
Velt=[speedt]'; 
Cort=[currentt]'; 
didtt=[dcurrentt]'; 
dwdtt=[dspeedt]'; 
Cor2t=[current2t]'; 
Vel2t=[speed2t]'; 
 
 
sig= 4; 
centro=0:160; 
 
Velft=zeros(1,18); 
pos=290; 
ii=2; 
while ii < 19 
    Velft(ii)=Velt(pos); 
    pos=pos+300; 
    ii=ii+1; 
end 
Corft=zeros(1,18); 
pos=290; 
jj=2; 
while jj < 19 
    Corft(jj)=Cort(pos); 
    pos=pos+300; 
    jj=jj+1; 
end 
miui=0.000063; 
Bme=0.0008599; 
% TL=(miui*sign(vel).*((vel).^2)); 
TL=0.3409*Corft-Bme*Velft; 
 jj=1; 
 pos=1; 
 TLfan=zeros(1,18); 
 while jj < 19 
    TLfan(jj)=TL_fan_estim(pos); 
    pos=pos+9; 
    jj=jj+1; 
end 
e_fan=(TLfan-TL); 
e_ifan=(iae-Cor); 
e_wfan=(wme-Vel); 
% e_fullfan=(fulltorque-fullfan); 
 
%%% Results Plots %%% 
 
figure(1); 
plot(Velft,TL,'--'); 
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hold on; 
plot(vel,TL_fan_estim,':r') 
legend ('Real Load Torque (Fan)','Estimated Load Torque (Fan)'); 
 
figure(2); 
plot(Velft,e_fan); 
 
figure(3); 
plot(t,Cor,'--'); 
hold on; 
plot(t,iae,':r') 
legend ('Real Current with load','Estimated Current with Estimated Parameters'); 
 
figure(4); 
plot(t,e_ifan); 
%  
figure(5); 
plot(t,Vel,'--'); 
hold on; 
plot(t,wme,':r'); 
legend ('Real Speed with load','Estimated Speed with Estimated Parameters'); 
 
figure(6); 
plot(t,e_wfan); 
 
pob2e=zeros(3,2050); 
pob2e(1,1:2050)=3.876; 
pob2e(2,1:2050)=0.8326; 
pob2e(3,1:2050)=2.4426; 
 
 
figure(7) 
plot(tt(1:2050),pobe); 
hold on; 
plot(tt(1:2050),pob2e,':'); 
legend ('Estimated Ra/La','Estimated Ka/La','Estimated 1/La','Ra/La','Ka/La','1/La'); 
 
pobm1=zeros(1,2050); 
pobm1(1:2050)=pobm(1,1:2050); 
pob2m=zeros(1,2050); 
pob2m(1:2050)=142.81525; 
 
figure(8) 
plot(tt(1:2050),pobm1); 
hold on; 
plot(tt(1:2050),pob2m,':'); 
legend ('Estimated Ka/Jm','Ka/Jm'); 
 
********* errednew Function********* 
 
%This function computes the error function of the recursive algorithm 
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%between the measurements and the prediction model for the example system. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
 
function [ee,em,xc,yxx] = errerdnew(pe,pm,u,t,y,x,n); 
 
the1=pe(1); % 1. parameter to be estimated 
the2=pe(2); % 2. parameter to be estimated 
the3=pe(3);  % 3. parameter to be estimated 
the4=pm(1);  % 4. parameter to be estimated 
Kaet=the2/the3; 
 
 
 
 
B = [the3;0]; 
C = [1 1]; 
D = [0]; 
 
cen=0:160; 
xn=x; 
th=0.01; 
t1=t(1,n); 
 
u1=u(1,n); 
 
sig=4; 
c=1; 
A22=0; 
while c < 162 
A2o=(pm(c+1)/the4)*exp(-((xn(2,1)-cen(c))^2)/(2*sig^2)); 
A22=A22+A2o; 
c=c+1; 
end 
A22=A22; 
 
 
    A = [ -the1    -the2 
       Kaet/the4        -A22/((xn(2,1)))]; 
    xn=(eye(2,2)+th*A)*xn+th*B*(u1); 
 
 
yx=C*xn; 
 
diidt=-the1*xn(1,1)-the2*xn(2,1)+u1*the3; 
dwwdt=(Kaet/the4)*xn(1,1)-A22; 
 
t2=Kaet*xn(2,1); 
ee=y(n,1)-diidt; 
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em=y(n,2)-t2; 
 
yxx=zeros(3,1); 
yxx(1,1)=diidt; 
yxx(2,1)=t2; 
yxx(3,1)=dwwdt; 
yxx=yxx; 
xc=xn; 
 
********** regradnew********* 
 
%This function calculates the Jacobian of the recursive algorithm 
%for the system with fixed Ra. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
 
function [Je,Jm,xn3]=regradnew(pe,pm,u,t,y,x,me,yx,n); 
 
the1=pe(1); % 1. parameter to be estimated 
the2=pe(2); % 2. parameter to be estimated 
the3=pe(3);  % 3. parameter to be estimated 
the4=pm(1);  % 4. parameter to be estimated 
 
xb=me; 
yxn=yx; 
    
cen=0:160; 
xn=x; 
sig=4; 
h=2; 
 
Jfm=zeros(162,1); 
g=1; 
 cv=1; 
while g < 162      
    Jfm(h,1)=exp(-((xn(2,1)-cen(cv))^2)/(2*sig^2));   
    cv=cv+1; 
    g=g+1; 
    h=h+1; 
end 
Jfm(1,1)=yxn(3,1); 
Jm=-Jfm; 
 
 
 
 
uu=u(1,n); 
 xn3=zeros(162,1); 
Je=zeros(3,1); 
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Je(1,1)=-xn(1,1); 
Je(2,1)=-xn(2,1); 
Je(3,1)=uu; 
Je=-Je; 
 
 
 
 


