

PERFORMANCE OF A NOVEL ALGORITHM FOR CLUSTERING
(HDBSCAN) APPLIED TO COVARIANCE MATRICES

By

Raúl Orlando Valerio Martínez

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

MATHEMATICS STATISTICS

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2018

Approved by:

Pedro Torres Saavedra, Ph.D.
President, Graduate Committee

Date

Dámaris Santana Morantn, Ph.D.
Member, Graduate Committee

Date

Wolfang Rolke, Ph.D.
Member, Graduate Committee

Date

José Santivañez, Ph.D.
Representative of Graduate Studies

Date

Victor Ocasio, Ph.D.
Chairperson of the Department

Date

i

Abstract of Dissertation Presented to the Graduate School

of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

PERFORMANCE OF A NOVEL ALGORITHM FOR CLUSTERING

(HDBSCAN) APPLIED TO COVARIANCE MATRICES

By

Raúl Orlando Valerio Martínez

July 2018

Chair: Pedro Torres Saavedra

Major Department: Mathematics

The use of grouping algorithms to divide and classify information in some phenomena is

much easier in these modern times due to the advances in computing. However, measuring

the efficiency and performance of these algorithms is necessary to identify the best methods

to achieve the clustering. There exist several clustering or classification algorithms in

literature such as KNN and k-means. More recently, the HDBSCAN, a density-based

spatial hierarchical clustering algorithm, has been proposed. This algorithm has the ability

to detect arbitrarily shaped clusters and it requires the specification of fewer parameters for

achieving the best possible classification when compared to its competitors. Simulation

studies have shown that this algorithm outperforms its competitors when clustering objects

with several features. Nonetheless, the HDBSCAN algorithm has not been used for

clustering of covariance matrices. Hence, this thesis proposes the use of the HDBSCAN

 ii

algorithm for clustering covariance matrices, a task that could have applications in different

areas such as time series, image processing, among others.

A comparison of the performance of HDBSCAN with DBSCAN, K-NN and k-means is

done using simulation studies. The scenarios of the simulation studies focus mainly on the

sample size (number of matrices), number of clusters, size of the matrices, and distance

metric. The relevance of this study is that, to our best knowledge, the HDBSCAN has not

been implemented for clustering of covariance matrices. One of the factors having a large

influence in the performance of a clustering algorithm is the distance metric. In this work,

a revision of distance metrics between matrices is given. In particular, this thesis considers

an affine invariant transformation (AIRM) to the calculate distance between symmetric

positive definite matrices (SPD). This metric is compared with some popular distance

metrics for matrices.

Simulation studies suggest that the combination of distance metric AIRM and HDBSCAN

exhibit the higher computational cost for large arrays of matrices. Nonetheless, this

combination is effective for clustering high-dimensional matrices. K-means and

HDBSCAN have comparable results for small number of clusters and high-dimensional

covariance matrices. However, when the input parameters of the algorithms change, purity

values for HDBSCAN do not change considerably (i.e., HDBSCAN is more robust to

changes of input parameters). K-means algorithm suffers when the input parameters are

manipulated, a sensitive issue when dealing with real problems. These findings

 iii

demonstrate that HDBSCAN offers the highest robustness and performance for the four

analyzed algorithms, a result that is consistent with previous finding for vectors.

iv

Resumen de Disertación Presentado a Escuela Graduada

de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de maestría en Ciencias

DESEMPEÑO DE UN NUEVO ALGORITMO DE AGRUPAMIENTO

(HDBSCAN) EN MATRICES DE COVARIANZA

Por

Raúl Orlando Valerio Martínez

Julio 2018

Consejero: Pedro Torres - Saavedra

Departamento: Matemática

El uso de algoritmos de agrupamiento para dividir y clasificar información en algunos

fenómenos es mucho más fácil en estos tiempos modernos debido al avance en la

computación. Sin embargo, medir la eficiencia y el desempeño de estos algoritmos es

necesario para identificar los mejores métodos para lograr el agrupamiento. Existen

muchos algoritmos de agrupamiento o de clasificación en la literatura tales como KNN y

K-means. Mas recientemente, HDBSCAN, un algoritmo jerárquico espacial basado en

densidad ha sido propuesto. Este algoritmo tiene la habilidad de detector clústeres de

densidad arbitraria y requiere la especificación de menos parámetros para lograr la mejor

clasificación posible comparado con sus competidores. Los Estudios de simulación han

mostrado que este algoritmo supera a sus competidores cuando se agrupan objetos con

muchas características. Sin embargo, el algoritmo HDBSCAN no ha sido usado para

 v

agrupar matrices de covarianza. Por tanto, esta tesis propone el uso de HDBSCAN para

agrupar matrices de covarianza, una tarea que podría tener aplicaciones en diferentes áreas

como ser series de tiempo, procesamiento de imágenes, entre otros.

Una comparación de desempeño de HDBSCAN con DBSCAN, K-NN y K-means es hecha

usando estudios de simulación. Los escenarios se enfocan principalmente en el tamaño de

muestra (número de matrices), numero de clústeres, tamaño de matrices, y la métrica de

distancia. La relevancia de este estudio es que, a nuestro saber, HDBSCAN no ha sido

implementado para el agrupamiento de matrices de covarianza. Uno de los factores que

tiene una gran influencia en el desempeño de los algoritmos de agrupamiento es la métrica

de distancia. En este trabajo, una revisión de las métricas de distancia entre matrices es

hecho. En particular, esta tesis considera la transformación invariante afín (AIRM) para

calcular la distancia entre matrices definidas positivas simétricas (SPD). Esta métrica es

comparada con algunas métricas de distancia para matrices muy populares.

Los estudios de simulación sugieren que la combinación de la métrica de distancia AIRM

y HDBSCAN exhiben un mayor costo computacional para largos arreglos de matrices. En

todo caso, esta combinación es efectiva para matrices de alta dimensión. K-means y

HDBSCAN tienen resultados comparables para bajo número de clústeres y matrices de alta

dimensión.

Sin embargo, cuando el parámetro de entrada de los algoritmos cambia, los valores de

pureza para HDBSCAN no cambian considerablemente (i.e. HDBSCAN es más robusto

 vi

para cambios en los parámetros de entrada). K-means sufre cuando el parámetro de entrada

es manipulado, un asunto delicado cuando se trata con problemas de la vida. Estos

hallazgos demuestran que HDBSCAN ofrece la mayor robustez y desempeño para los

cuatro algoritmos analizados, un resultado consistente con previos hallazgos para vectores.

 vii

Dedicated to:

To the Creator, my wife Sara and my kids Paolo and Alessandro with everlasting love.

Los amo.

 viii

Copyright © 2018

by

Raúl Orlando Valerio

 ix

ACKNOWLEDGEMENTS

o I wish to express my gratitude to my advisor Pedro A. Torres – Saavedra, Ph.D.,

for his exceptional guidance, constructive comments and patience during my

studies.

o I am very grateful to Santiago Velasco – Forero, Ph.D., for his ideas and advice

for the development of this work.

o My deepest gratitude to my wife Sara for being my support, for her patience and

her unconditional love.

o My Kids, Paolo and Alessandro, the ones who I took time from and gave me their

energy without hesitation.

o Thanks to my parents Raúl (R.I.P) and Mery Olinda for their care, endless love,

support and tremendous sacrifices through all these years. And all my family who

encourage me to take every step to achieve my goals.

o I am also grateful to all the staff of the Department of Mathematical Sciences for

their collaboration in these years.

o To all my unforgettable friends I met during my studies in Puerto Rico,

Thank you !!

 x

TABLE OF CONTENTS

LIST OF TABLES ... XI

LIST OF FIGURES .. XII

GLOSSARY OF TERMS ... XIV

1. INTRODUCTION ... 1

2. LITERATURE REVIEW ... 6

2.1 DBSCAN ALGORITHM .. 8
2.1.1 Definitions for DBSCAN .. 9
2.1.2 Advantages and disadvantages of DBSCAN .. 13

2.2 HDBSCAN ALGORITHM ... 13
2.2.1 Definitions from DBSCAN ... 15
2.2.2 Conceptual HDBSCAN .. 16
2.2.3 Algorithm of HDBSCAN .. 19

2.3 K – NEAREST NEIGHBOR .. 22
2.4 K-MEANS ALGORITHM ... 23

2.4.1 Algorithm description .. 24
2.4.2 Limitations of k-means .. 24

2.5 COVARIANCE MATRICES ... 26
2.5.1 Definitions ... 27
2.5.2 Properties of covariance matrices ... 28

2.6 DISTANCE BETWEEN MATRICES ... 28
2.6.1 Euclidean distance ... 29
2.6.2 Log-Euclidean distance ... 29
2.6.3 Non- Euclidean size-and-shape metric .. 30
2.6.4 Affine - Invariant Riemannian distance ... 30

3 METHODOLOGY .. 35

3.1 DATA GENERATION .. 35
3.2 CLUSTERING ALGORITHMS ... 38
3.3 SIMULATION SCENARIOS .. 38

4 SIMULATION STUDIES ... 42

4.1 COMPARISON OF OUTPUTS FOR METRICS .. 43
4.2 COMPARISON OF EXECUTION TIME IN DISTANCE METRICS AND ALGORITHMS 46
4.3 COMPARING CLUSTERING ALGORITHM .. 49

4.3.1 Scenario 1: Two groups ... 49
4.3.2 Scenario 2: Four groups.. 60
4.3.3 Scenario 3: Eight groups ... 68
4.3.4 Summary .. 71

5 REAL DATA PROBLEMS ... 79

5.1 LETTER RECOGNITION PROBLEM ... 79

6 CONCLUSIONS .. 84

REFERENCES .. 87

 xi

LIST OF TABLES

Table 1 Summary of Clustering Algorithms (Pedregosa et al, 2016) 25
Table 2 Form of Metrics on Covariance matrices 32
Table 3 Properties of Metrics on covariance 32

Table 4 Characteristics of generated data with two groups 38
Table 5 Characteristics for generated data with 4 groups 39
Table 6 Characteristics for generated data with eight groups 40

Table 7 Comparative of distances by metric for first element in 𝟐 × 𝟐 matrices 43

Table 8 Distance comparative by metric for first element in 𝟓𝟎 × 𝟓𝟎 matrices 44

Table 9 Comparison of ordering distance for each metric 45
Table 10 Comparison of ordering based in distance by metrics for 1000 covariance

matrices. 45

Table 11 Execution time for an array of 1000 matrices with size 𝟓 × 𝟓 48

Table 12 Execution time for an array of 40 matrices with size 𝟐𝟎𝟎 × 𝟐𝟎𝟎. 48

Table 13 Purity results for two groups sets. Part I 52
Table 14 Purity results for two groups sets. Part II 53

Table 15 Purity results for two groups sets. Part III 54
Table 16 Purity results for clustering algorithms, four clusters. Part I 62
Table 17 Purity results for clustering algorithms, four clusters. Part II 63

Table 18 Purity results for clustering algorithms, eight groups 68
Table 19 ANOVA type III for purity when the true number of clusters is provided to k-

means. 75
Table 20 ANOVA type III for all the data 76

Table 21 ANOVA test type III for high dimensional covariance matrices 78
Table 22 Letter recognition problem 79

Table 23 Classification comparison for each clustering algorithm with AIRM 81
Table 24 Classification comparison for each distance metric with HDBSCAN 82

 xii

LIST OF FIGURES

Figure 1. Proposed framework for hierarchical nonhierarchical density-based clustering,

global/local outlier (Campello et al 2015) .. 7
Figure 2. Two points in a dataset .. 9

Figure 3. 𝒑 is a core point and 𝒒 is border point for 𝒎𝒑𝒕𝒔 = 4. ... 9

Figure 4. 𝒑 is directly density reachable from 𝒒 (with 𝒎𝒑𝒕𝒔= 6) but 𝒒 is not directly

density – reachable from 𝒑. .. 10

Figure 5. 𝒑 is density reachable from 𝒒 (with 𝒎𝒑𝒕𝒔= 6) but 𝒒 is not density reachable

from 𝒑. .. 11

Figure 6. 𝒑 is connected with 𝒒 through 𝒐 ... 11
Figure 7. Core distances for two points (McInnes, L.Healy, J.Astels, S.,2016) 17
Figure 8. Example for mutual reachability distance between red and green points

(McInnes et al, 2016) .. 18

Figure 9. Example of Minimun Spanning Tree (MST) (McInnes et al, 2016). 20
Figure 10 Example of dendrogram for a HDBSCAN application (McInnes, L.Healy,

J.Astels, S., 2016) ... 21

Figure 11 A qualitative comparison of clustering algorithm (Mc Innes et al. 2017). 26
Figure 12 Example of purity measure. (Manning, 2009) .. 34

Figure 13 Comparative of execution time for the distance metrics varying the size of the

array .. 46
Figure 14 Comparative of execution time for the distance metrics varying the size of the

matrix .. 47

Figure 15 Set 1 for two groups comparison .. 50

Figure 16 Set 2 for two groups comparison ... 51
Figure 17 Set 3 for two groups comparison ... 51

Figure 18 Comparison of Purity in Metrics by Matrix size, with two clusters 56
Figure 19 Comparison of Purity in metrics in every set using HDBSCAN 56
Figure 20 Comparison of Purity in metrics in every set using K-means with k=2. 57

Figure 21 Comparison of Purity by Matrix size and Sets for Clustering Algorithms, with

two clusters. .. 58

Figure 22 Comparison of Purity by matrix size for clustering Algorithms in data with two

clusters, k=2 and 𝒎𝒑𝒕𝒔= 4. .. 59
Figure 23 Four groups with 2x2 covariance matrices, set 1 ... 60

Figure 24 Four groups 2x2 matrices, set 2 .. 61

Figure 25 Comparison of Purity by Matrix size for K-means (k=4) 64

Figure 26 Comparison of Purity by Matrix size for HDBSCAN (𝒎𝒑𝒕𝒔 = 𝟒) 65
Figure 27 Comparison of Purity by Matrix size for clustering Algorithms (Four clusters)

 ... 66
Figure 28 Comparison of Purity by Matrix size and Set for clustering Algorithms (four

clusters). .. 67

Figure 29 Comparison of Purity by Metric and Matrix size for HDBSCAN (𝒎𝒑𝒕𝒔 = 𝟒),

eight groups. .. 69

 xiii

Figure 30 Comparison of Purity by Clustering Algorithms (𝑚𝑝𝑡𝑠 = 4, k = 5 for KNN

and k=8 for k-means) .. 70
Figure 31 Box Plot - Purity by metric for HDBSCAN (All groups) 71

Figure 32 Comparison of Purity by metric using HDBSCAN ... 72
Figure 33 Purity for clustering algorithms (All groups) ... 73
Figure 34 Interaction plot: Matrix Size – Algorithm with true number of cluster 75
Figure 35 Interaction plot: Matrix size - distance metric for all input parameters 77
Figure 36 Interaction plot for distance metric and algorithm with high dimensional

covariance matrices. .. 78

Figure 37 Dendrogram for HDBSCAN and 𝒎𝒑𝒕𝒔=2 .. 83
Figure 38 Cluster tree for letter recognition problem ... 83

 xiv

GLOSSARY OF TERMS

AIRM Affine Invariant Riemannian Metric

Cpp C++ programming language

DBSCAN Density Based Spatial Clustering of Application with Noise

μ Mean of a random variable (location parameter)

𝜖 Minimum distance between two points to become neighbors

HDBSCAN Hierarchical Density Based Spatial of Clustering Application with Noise

KNN k- Nearest Neighbor

NN Nearest Neighbor

𝑚𝑝𝑡𝑠 Minimum points of neighbors

LERM Logarithm Euclidean Riemannian Metric

R2 Pearson correlation coefficient or coefficient of determination

R R statistical programming language

𝑝 Purity measure

𝜎 Standard deviation of a random variable (scale parameter)

Σ Variance Matrix

𝜎2 Variance of a random variable

𝜎𝑝 Standard error of proportion

w.r.t. With respect to

1

1. INTRODUCTION

HDBSCAN (Hierarchical Density - Based Spatial Clustering of Applications with Noise),

was developed by Campello, Moulavi, Zimek and Sander (2015), and it is a robust

hierarchical version of DBSCAN (Density Based Spatial Clustering of Applications with

Noise), a density-based clustering algorithm.

McInnes, L. Healy and Astels (2016) compared the performance between many clustering

implementations (for example, K-means, Sklearn and FastCluster linkage) where the

number of data points and the time taken to complete the clustering were evaluated. This

comparison concluded that the HDBSCAN algorithm outperforms most of widely used

clustering methods in terms of time. They have demonstrated that the HDBSCAN

algorithm detects various density clusters, a task in which the DBSCAN algorithm falls

short.

HDBSCAN was built for the real-world scenario of having data with varying density. It is

relatively fast and allows to define which clusters are important for users based on size by

manipulating the minimum number of neighbors. (𝑚𝑝𝑡𝑠). For some clustering algorithms,

such as K-means, users must provide the number of clusters k to detect. Other density-

based algorithms for clustering, such as DBSCAN, do not require the specification of this

parameter, while hierarchical clustering avoids the problem completely.

 2

This research assesses the performance and some well-known requirements of density–

based algorithm, summarized by Matteucci (2014), such as:

o scalability,

o discovering clusters with arbitrary shape,

o minimal requirements for domain knowledge to determine input parameters,

o high dimensionality; dealing with considerable number of dimensions and

substantial number of data items can be problematic because of time complexity,

o the effectiveness of the method depends on the definition of “distance”.

This thesis examines the performance of HDBSCAN through simulation studies

discussions and applications. The effectiveness of HDBSCAN is compared with other

clustering algorithms, namely K-means, DBSCAN and the classifier KNN.

The goal of this work is to assess the effectiveness of HDBSCAN. However, instead of

working with n-dimensional vectors, it considers the objects as n × n matrices, using from

low-dimensional matrices (2 × 2) to high-dimensional matrices (200 × 200). Precisely,

clustering algorithm are applied to positive-definite symmetric matrices (covariance

matrices) by computing distances between these entities, the metrics on distances are

analyzed and compared how they affect the performance of the algorithms.

 3

The interest of working with this type of mathematical structure is to identify objects with

the same or at least with the closest covariance matrix, as well as to test the dissimilarity

of the covariance matrices of the distinct groups. This comparison is possible by estimating

for each object its covariance matrix of size 𝑛 × 𝑛 in the raw data, where 𝑛 means the

number of variables or characteristics that are analyzed of the phenomenon under study, in

addition to the object itself.

The importance of working with covariance matrices is discussed by Yger, Lotte and

Sugiyama (2015) where they pointed out that covariance matrices are key in the brain-

computer interface based on spatial pattern methods. In addition, they indicated that the

non-Euclidean structure of the covariance matrices should be considered, taking for

example, the Riemannian geometry that is effective handling such data. Moreover, the

calculation of the distance between the covariance matrices before applying the clustering

algorithm itself, avoids the use of Euclidean distance and its problems with the

dimensionality of the data (Aggarwal et al, 2001).

Clustering matrices is used to analyze real world outcomes, such as:

o Marketing:

Identify groups of stocks with similar Buy – Sell behavior in the Stock Market;

Find groups of customers with similar behavior given a large database of customer

data containing their properties and past buying records;

 4

o Biology: classification of plants and animals given their features;

o Crime Analysis: Identifying areas with similar incidences of crime.

o Image Detection: Identify the similarity of objects; from the recognition of patterns

in writing, behavior of traffic in a city to the patterns of anomalies in medical

scanners.

The main objective on this thesis is utilize the new algorithm HDBSCAN for clustering

covariance matrices in the programming language R.

Some secondary objectives of this work are:

1. Determine the most adequate metric used for calculating distances between

covariance matrices.

2. Compare the performance of different supervised classifiers for clustering.

3. Compare the performance of different unsupervised classifiers for clustering

4. Evaluate the performance for the proposed algorithm HDBSCAN and compare it

with its competitors.

5. Apply the HDBSCAN algorithm to describe and analyze a real data set using the

covariance matrices approach.

 5

This document is organized as follow: Chapter 2 features the four clustering algorithms

employed in this work; Chapter 3 outlines the methodology applied for the simulation

studies; Chapter 4 provides some experimental results. In Chapter 5, a pattern recognition

problem is shown to prove the applicability of the HDBSCAN algorithm; finally, the main

ideas and conclusions are discussed in Chapter 6.

 6

2. LITERATURE REVIEW

The notion of density plays a significant role in statistics and in many data mining tasks.

The fundamental idea behind density-based techniques for data analysis is that the dataset

of interest represents a sample from an unknown probability density function (PDF),

which describes the mechanism or mechanisms responsible for producing the observed

data. The construction of an estimate of such a PDF from the observed data is a problem

of relevance, for example, for analyzing and understanding the corresponding generating

mechanism(s).

The density-based clustering approach is a methodology that is capable of finding

arbitrarily shaped clusters, where clusters are defined as dense regions separated by low-

density regions. Density-based algorithms need only one scan of the original data set and

handle noise in the data. The number of clusters is not required in advanced since

density-based clustering algorithms can automatically detect the clusters, along with the

natural number of clusters (El-Sonbaty et al., 2004).

This thesis is based on the work of Campello et al (2015), which provides the definitions

and structure of the HDBSCAN (hierarchical density-based spatial of clustering and

applications with noise), as shown in Figure 1. The authors proposed a framework for

hierarchical and nonhierarchical density-based clustering, global/local outlier detection

and data visualization.

 7

 Besides, this work demonstrates the advancement that the framework represents in the

areas of density-based clustering and unsupervised outlier detection through extensive

experiments on a variety of synthetic and real-world datasets, where among some of its

applications includes the grouping of objects such as covariance matrices by previously

calculating their distances.

Figure 1. Proposed framework for hierarchical nonhierarchical density-based

clustering, global/local outlier (Campello et al 2015)

In this section, a brief review of the literature related to each of the components of the

proposed work is provided. First, the definitions of some important concepts related to

density-based algorithms are given. Second, a discussion of the existing algorithms is

provided to understand the differences with respect to HDBSCAN: these algorithms

include: DBSCAN, K-means, HDBSCAN and KNN. Third, the theory of covariance

matrices and the most used metrics to calculate distance between covariance matrices is

presented. Finally, the definition of the purity measure and how to assess the

 8

performance of clustering algorithms based in internal or external evaluations are

discussed.

Ester et al. (1996) proposed a density-based clustering algorithm called DBSCAN

(Density- Based Spatial Clustering of Applications with Noise) to discover arbitrarily

shaped clusters. Only one input parameter is required, and the algorithm also supports the

user in determining an appropriate value for this input parameter. They defined a cluster as

a connected dense component which can grow in any direction that density leads.

The nonparametric method DBSCAN implements an algorithm to cluster based on density,

and it can be used to identify groups with different shape in any dataset containing noise

and outliers.

Some important characteristics of the DBSCAN algorithm are summarized as follow:

1. Clusters are defined as density – connected sets of points.

2. Density and connectivity are measured by local distribution of nearest neighbor

3. Target low dimensional spatial data

2.1 DBSCAN Algorithm

 9

2.1.1 Definitions for DBSCAN

Figure 2 shows an example of two points 𝑝 and 𝑞 in a dataset. Definitions for DBSCAN

are present below:

Definition 2.1.1. ε-neighborhood of a point 𝑝 is defined as 𝑁 (𝑝) = {𝑞 ∈ 𝐷 | 𝑑(𝑝, 𝑞)} ≤

 𝜀 }.

Figure 2. Two points in a dataset

Definition 2.1.2. A point 𝑞 is called Core point if | 𝑁 (𝑞)| ≥ 𝑚𝑝𝑡𝑠

Figure 3. 𝒑 is a core point and 𝒒 is border point for 𝒎𝒑𝒕𝒔 = 4.

 10

Definition 2.1.3. Border point: A point 𝑞 is called border point if | 𝑁 (𝑝)| < 𝑚𝑝𝑡𝑠 but it

belongs to the ε-neighborhood for some core point 𝑝. (See Figure 3)

Definition 2.1.4. Directly density -reachable: A point 𝑝 is directly – reachable from a point

𝑞 if 𝑝 ∈ 𝑁 (𝑞) and | 𝑁 (𝑞)| ≥ 𝑚𝑝𝑡𝑠. (See Figure 4)

Figure 4. 𝒑 is directly density reachable from 𝒒 (with 𝒎𝒑𝒕𝒔= 6) but 𝒒 is not

directly density – reachable from 𝒑.

Definition 2.1.5. Density reachable: A point 𝑞 is density reachable from a point 𝑞 if there

is a chain of points 𝑝1,𝑝2 , … , 𝑝𝑛 = 𝑞, 𝑝𝑛 = 𝑝 such that 𝑝𝑖+1 is directly density – reachable

from 𝑝𝑖. (See Figure 5)

 11

Figure 5. 𝒑 is density reachable from 𝒒 (with 𝒎𝒑𝒕𝒔= 6) but 𝒒 is not density

reachable from 𝒑.

Definition 2.1.6. Density Connected: A point p is density – connected to a point q if there

is a point 𝑜 such that both, 𝑝 and 𝑞 are density – reachable from 𝑜. (See Figure 6)

Definition 2.1.7. Cluster: Let D be a database of points. A cluster C is a non-empty subset

of D satisfying the following conditions:

a) ∀ 𝑝 , 𝑞 ∶ if p ∈ 𝐶 and 𝑞 is density – reachable from 𝑞 then 𝑞 ∈ 𝐶. (Maximality)

b) ∀ 𝑝, 𝑞 ∈ 𝐶: 𝑝 is density- connected to 𝑞. (Connectivity)

Figure 6. 𝒑 is connected with 𝒒 through 𝒐

 12

Definition 2.1.8. Noise: Let 𝐶1, 𝐶2, … , 𝐶𝑘 be clusters of the database D. Then we define the

noise as the set of points in the database D not belonging to any cluster 𝐶𝑖 , i.e. noise =

{𝑝 ∈ 𝐷 |∀𝑖 ∶ 𝑝 ∉ 𝐶𝑖 }.

The main steps or pseudocode for DBSCAN are shown in the next Algorithm 1.

DBSCAN(𝑋 , ℰ, 𝑚𝑝𝑡𝑠)

1. Cluster = 0

2. For each unvisited point 𝑝 in 𝑋

 2.1 Mark 𝑝 as visited

 2.2 Obtain all neighbors for 𝑝

 2.3 If size of neighbors 𝑝 < 𝑚𝑝𝑡𝑠

 Mark 𝑝 as noise

2.4 else

C= nextcluster

Expandcluster(𝑝, neighbors, C, ℰ, 𝑚𝑝𝑡𝑠)

 Expandcluster(𝑝, neighbors of 𝑝, C, ℰ, 𝑚𝑝𝑡𝑠)

1. Add 𝑝 to cluster C

2. For each 𝑞 in neighbors

2.1 If 𝑞 is not visited

 Mark 𝑞 as visited

 Obtain neighbors for 𝑞

2.1.1 If size of neighbors of 𝑞 ≥ 𝑚𝑝𝑡𝑠

Neighbors of 𝑝 = neighbors of 𝑝 joined with neighbors

of 𝑞

2.2 If 𝑞 is not member of any cluster

 Add 𝑞 to cluster c

Algorithm 1: DBSCAN main steps

 13

2.1.2 Advantages and disadvantages of DBSCAN

Some advantages and disadvantages discussed by Dang (2015) for this algorithm are

summarized as follow:

Advantages

1. It detects outliers or noise in the data.

2. It requires only two parameters and it is robust to the input order of the data in the

database (ε and 𝑚𝑝𝑡𝑠).

3. It does not require specifying the number of clusters in advance.

4. DBSCAN can find groups with arbitrary shapes.

Disadvantages

1. It depends on the function of the density measure used.

2. DBSCAN cannot cluster datasets very well with big differences in densities in

the cloud of points, because the combinations of ε, 𝑚𝑝𝑡𝑠 cannot be chosen

adequately for all groups (See Figure 12).

3. When the data dimension increases, it becomes more difficult to choose the

optimal ε (curse of dimensionality).

Hard clustering algorithms are subdivided into hierarchical and partitional algorithms. A

partitional algorithm divides a data set into a single partition, whereas a hierarchical

algorithm divides a data set into a sequence of nested partitions (Gan, Guojun. Ma,

2.2 HDBSCAN Algorithm

 14

Chaoqun. Wu, Jianhong. , 2007).Similarly, hierarchical algorithms are subdivided into

agglomerative hierarchical and divisive hierarchical algorithms. Agglomerative

hierarchical clustering starts with every single object in a single cluster. Then it continues

merging the closest pair of clusters according to some similarity criteria until all the data

are in a single cluster.

In the same way, Gan et al (2007) summarizes some disadvantages for agglomerative

hierarchical clustering, such as (a) data points that have been incorrectly grouped at an

early stage cannot be reallocated and (b) different similarity measures for measuring the

similarity between clusters may lead to different results. If we treat agglomerative

hierarchical clustering as a bottom-up clustering method, then divisive hierarchical

clustering can be viewed as a top-down clustering method. Divisive hierarchical

clustering starts with all objects in one cluster and repeats splitting large clusters into

smaller pieces.

HDBSCAN stands for Hierarchical Density-Based Spatial Clustering of Application with

Noise. It generalizes and improves existing density-based clustering techniques with

respect to several aspects (Campello et al., 2015):

o It provides a complete hierarchy that comprises all possible density-based clusters

following the nonparametric model adopted. The resulting hierarchy can be easily

processed.

 15

o It post-processes data: a normalized score of outlierness can be assigned to each

data object.

o A (nonhierarchical) clustering solution composed of clusters extracted from local

cuts through the cluster tree can be obtained.

o HDBSCAN is a divisive hierarchical clustering algorithm.

o HDBSCAN is an unsupervised clustering, since it does not need training step.

o It does not label any point as border points as DBSCAN does.

2.2.1 Definitions from DBSCAN

In the following, some definitions required to define HDBSCAN are presented, the density-

based clustering algorithm DBSCAN* is defined, which differs from DBSCAN (see

definitions 2.1.1 to 2.1.8) where the clusters are defined based on the core objects alone.

Definition 2.4.1. (Core and Noise objects): An object 𝑥𝑝 is called a core object with

respect to 𝜖 and 𝑚𝑝𝑡𝑠 if its 𝜖- neighborhood contains at least 𝑚𝑝𝑡𝑠 many objects, that is, if

| 𝑁𝜖(𝑥𝑝)| ≥ 𝑚𝑝𝑡𝑠, where 𝑁𝜖(𝑥𝑝) = {𝑥 ∈ 𝑋|𝑑(𝑥, 𝑥𝑝) ≤ 𝜖} and |.| denotes cardinality.

An object is called noise if it is not a core object.

Definition 2.4.2. (𝜖 - reachable): Two core objects 𝑥𝑝 and 𝑥𝑞 are 𝜖- reachable with

respect to 𝑚𝑝𝑡𝑠 if 𝑥𝑝 ∈ 𝑁𝜖(𝑥𝑞) and 𝑥𝑞 ∈ 𝑁𝜖(𝑥𝑝).

 16

Definition 2.4.3. (Density Connected): Two core objects 𝑥𝑝 and 𝑥𝑞 are density –

connected with respect to 𝑚𝑝𝑡𝑠 if they are directly or transitively 𝜖-reachable.

Definition 2.4.4. (Cluster): A cluster w.r.t. 𝜖 and 𝑚𝑝𝑡𝑠 is a non-empty maximal subset

such that every pair of objects in C is density-connected.

Based on these definitions, we can devise an algorithm DBSCAN* (similar to DBSCAN)

that conceptually finds clusters as the connected components of a graph in which the

objects of X are vertices and every pair of vertices is adjacent if and only if the

corresponding objects are 𝜖-reachable with respect to user defined parameters 𝜖 and 𝑚𝑝𝑡𝑠.

Noncore objects are labeled as noise. Border objects could also be included in a simple

linear time postprocessing step (tracking and assigning each border object to, e.g., its

closest core).

2.2.2 Conceptual HDBSCAN

This method requires a simple input parameter 𝑚𝑝𝑡𝑠. Campello et al. (2015) provide the

definitions for the hierarchical method, HDBSCAN in addition to definitions for

DBSCAN*:

 17

Definition 2.4.5 (core distance): The core distance of an object 𝑥𝑝 ∈ 𝑋 with respect to

𝑚𝑝𝑡𝑠 , 𝑑𝑐𝑜𝑟𝑒(𝑥𝑝), is the distance from 𝑥𝑝 to its 𝑚𝑝𝑡𝑠 – nearest neighbor (including 𝑥𝑝).

(See Figure 8).

Figure 7. Core distances for two points (McInnes, L.Healy, J.Astels, S.,2016)

Definition 2.4.6 (Mutual reachability distance). The mutual reachability distance between

two objects 𝑥𝑝 and 𝑥𝑞 in X with respect to 𝑚𝑝𝑡𝑠 is defined as 𝑑𝑚𝑟𝑒𝑎𝑐ℎ(𝑥𝑝, 𝑥𝑞) =

max { 𝑑𝑐𝑜𝑟𝑒(𝑥𝑝), 𝑑𝑐𝑜𝑟𝑒(𝑥𝑞), 𝑑(𝑥𝑝, 𝑥𝑞)}.

Definition 2.4.7 (Mutual reachability graph). The mutual reachability graph is a complete

graph, 𝐺𝑚𝑝𝑡𝑠
, in which the objects of X are vertices and the weight of each edge is the

 18

mutual reachability distance (with respect to 𝑚𝑝𝑡𝑠) between the respective pair of objects.

(See Figure 9)

Figure 8. Example for mutual reachability distance between red and green

points (McInnes et al, 2016)

Let 𝐺𝑚𝑝𝑡𝑠,𝜖 ⊆ 𝐺𝑚𝑝𝑡𝑠
 be the graph be the graph obtained by removing all edges from 𝐺𝑚𝑝𝑡𝑠

having weights greater than some value of 𝜖 . From Definitions 2.4.4 and 2.4.7, it is

straightforward to infer that clusters according to DBSCAN* with respect to 𝑚𝑝𝑡𝑠 and 𝜖

are then the connected components of core objects in 𝐺𝑚𝑝𝑡𝑠,𝜖 ; and the remaining objects

are noise. Consequently, all DBSCAN* clustering’s for any 𝜖 ∈ [0,∞] can be produced in

a nested, hierarchical way by removing edges in decreasing order of weight from 𝐺𝑚𝑝𝑡𝑠
.

 19

Proposition 2.4.1: Let X be a set of n objects described in a metric space by 𝑛 × 𝑛 pairwise

distances. The clustering of this data obtained by DBSCAN* with respect to 𝑚𝑝𝑡𝑠 and

some value 𝜖 is identical to the one obtained by first running Single - Linkage over the

transformed space of mutual reachability distances (with respect to 𝑚𝑝𝑡𝑠), then, cutting the

resulting dendrogram at level 𝜖 of its scale, and treating all resulting singletons with

𝑑𝑐𝑜𝑟𝑒(𝑥𝑝) > 𝜖 as a single class representing "Noise".

2.2.3 Algorithm of HDBSCAN

The fastest way to compute a Single-Linkage hierarchy is possibly by using a divise

algorithm based on the Minimum Spanning Tree (𝑀𝑆𝑇), as shown in Figure 9.

McInnes et al (2016) pointed out that it is necessary to consider the data as weighted

graph with the data points as vertices and an edge between any points with weight equal

to the mutual reachability distance of those points, then removing edges from a 𝑀𝑆𝑇 in

decreasing order of weights starting from a threshold value and steadily lowering.

Eventually, it will result a hierarchy of connected components at varying threshold levels,

in practice, this is very expensive because there are 𝑛2 edges.

The correct step to follow is to find a minimal set of edges such that dropping any edge

from the set causes a disconnection of components. These disconnections form islands on

the data and they may have different densities. To achieve this, the minimum spanning

tree can be built very efficiently via Prim’s algorithm, as McInnes et al (2016) argued.

 20

Figure 9. Example of Minimun Spanning Tree (MST) (McInnes et al, 2016).

HDBSCAN (𝑚𝑝𝑡𝑠; 𝑋)

1. Compute the core distance w.rt. 𝑚𝑝𝑡𝑠 for all data objects in 𝑋.

2. Compute an 𝑀𝑆𝑇 of 𝐺𝑚𝑝𝑡𝑠
, the Mutual Reachability Graph.

3. Extend the 𝑀𝑆𝑇 to obtain 𝑀𝑆𝑇𝑒𝑥𝑡, by adding for each vertex a "self

edge" with the core distance of the corresponding object as weight.

4. Extract the HDBSCAN hierarchy as a dendrogram from 𝑀𝑆𝑇𝑒𝑥𝑡.

4.1 For the root of the tree assign all objects the same label (single

"cluster").

4.2 Iteratively remove all edges from 𝑀𝑆𝑇𝑒𝑥𝑡 in decreasing order of

weights (in case of ties, edges must be removed simultaneously):

4.2.1 Before each removal, set the dendrogram scale value of the

current hierarchical level as the weight of the edge(s) to be removed.

4.2.2 After each removal, assign labels to the connected component(s)

that contain(s) the end vertex(-ices) of the removed edge(s), to obtain

the next hierarchical level: assign a new cluster label to a component if

it still has at least one edge, else assign it a null label ("noise").

Algorithm 2: HDBSCAN main steps (Campello et al. , 2015)

 21

Given the minimal spanning tree, the next step is to convert this tree into the hierarchy of

connected components. This is most easily done in the reverse order: sort the edges of the

tree by distance (in increasing order) and then iterate through, creating a new merged

cluster for each edge. The only difficult part here is to identify the two clusters each edge

will join together, but this is easy enough via a union-find data structure. The result is a

dendrogram as shown in Figure 10:

Figure 10 Example of dendrogram for a HDBSCAN application (McInnes,

L.Healy, J.Astels, S., 2016)

 22

K- nearest neighbors algorithm (KNN) is a non-parametric supervised algorithm method

used for classification and regression. The input parameters consist of the k-closest

elements in data training set (feature space). This algorithm is said to be a simple and lazy

learning algorithm, because of its minimal or nonexistent training phase. It means, this

technique does not use training points to perform any generalization. And it is non-

parametric because there are no any data distribution assumptions.

Some k-NN characteristics are summarized below:

o The output is a class membership. The object element is classified by majority vote

of its neighbors, with this element assigned to the most common class.

o It is a supervised classifier. The initial set or training set is a paired set consisting

of input object (feature vector) and class labels values.

o It is affected by the curse of dimensionality, especially when it is used the Euclidean

distance. It is high recommended to use dimension reduction techniques prior to

applying k-NN algorithm.

o In k-NN regression, the output is the value for the element and it represents the

average of the k-nearest neighbors values.

o The most common distances used are Euclidean’s distance, Manhattan’s distance

and Minkowski’s distance.

2.3 K – nearest neighbor

 23

o It requires a lot of CPU and memory due to all data points are involved in the

decision. It is the better choice for applications where predictions are not requested

frequently but where accuracy is important (IBM 2018).

Some common applications for k-NN algorithm are:

o Identifying persons by comparing faces.

o Recommending related items to users in products consume.

o Handwritting recognition.

o Medical data mining. Find similarity between patients and reduce error of

diagnosis. (Khamis, Kipruto. Kimani (2014))

2.4 K-means Algorithm

k - means is an unsupervised center-based clustering algorithm with a partitional

approach where centroids become a component - wise means of data points in clusters.

This algorithm aims to divide n observations into k clusters where each observation

belongs to one cluster with the nearest mean (centroid). It starts randomly selecting the k

centroids in data points and then refine the positions of centers until reaching a local

optimum or satisfying initial conditions to stop.

 24

2.4.1 Algorithm description

• k – means is a partitional clustering approach.

• The number of cluster k is an input parameter, it must be specified.

• A centroid (center point) defines a cluster, in other words, each cluster is

associated with a centroid.

• Each point is in one exactly subset and is assigned to the cluster with the closest

centroid.

The algorithm 3 presents the main steps for k-means,

K-means (number of clusters k)

1. Select K points as initial center points.

2. Repeat

3. Assign each observation to the clusters with the closest centroid.

4. Recompute the new centroids to be the intrinsic means of the observations

 in the new clusters.

5. Until Assignments cease to change.

Algorithm 3. K – means

2.4.2 Limitations of k-means

Some limitations of k – means are summarized by Zhang (2012) as follows:

• k – means algorithm exhibits problems when clusters are of differing on sizes,

densities or non-globular shapes.

 25

• k – means algorithm has problems when data contains outliers

• The algorithm must be run several times with different values of k.

Table 1 presents a summary of the most important characteristics for all clustering

algorithm considered in this thesis:

Algorithm Parameters Scalability Usecase
Geometry

(metric used)

K-Means

Number of

clusters

Very large number of

samples,

medium number of

clusters

General-purpose,

even cluster size,

flat geometry, not

too many clusters

Distances

between points

DBSCAN

Neighborhood

size and eps

Very large number of

samples,

medium number of

clusters

Non-flat geometry,

uneven cluster sizes

Distances

between

nearest points

KNN
Neighborhood

size

Small number of

training data

Supervised

scenarios

Distances

between points

HDBSCAN
Neighborhood

size

Very large number of

samples,

medium number of

clusters

Non-flat geometry,

uneven cluster sizes

Mutual

reachability

distance

Table 1 Summary of Clustering Algorithms (Pedregosa et al, 2016)

Figure 11 shows the clustering differences for some algorithms using synthetic data with

6 groups. It can be seen that even providing k = 6 (see 6 different colors in the image), k-

means cannot detect the clusters appropriately and does not discover the noise or outliers

present in the data. DBSCAN fails to detect the right number of clusters and the varying

density shapes. HDBSCAN outperforms these algorithms, because it is able to detect the

right number of varying density shapes as well as the noise existing in the data.

http://scikit-learn.org/stable/modules/clustering.html#k-means
http://scikit-learn.org/stable/modules/clustering.html#dbscan

 26

Figure 11 A qualitative comparison of clustering algorithm (Mc Innes et al.

2017).

2.5 Covariance Matrices

A covariance matrix (also called dispersion matrix or variance-covariance matrix) refers to

the symmetric square matrix that contains the variances and covariances associated with

several variables. Many statistical applications calculate the variance-covariance matrix for

the estimators of parameters in a statistical model. Covariance is a measure of how much

two random variables move together in the same direction; hence the covariance describe

the unidirectional and bidirectional influences of several variables on each other.

A variance-covariance matrix is a square matrix that contains the variances and covariances

associated with several variables, where the element in the i, j position is the covariance

 27

between the ith and jth elements of a random vector contain the covariances between, having

this for all possible pairs of variables.

2.5.1 Definitions

X and Y denote to random vectors, and Xi and Yi denote to random variables. If the

entries in the column vector

𝑿 =

[

𝑋1

.

.

.
𝑋𝑛]

are random variables, each with finite variance, then the covariance matrix Σ

 is the matrix whose (i, j) entry is the covariance

Σ𝑖,𝑗 = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸 [(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] = 𝐸[𝑋𝑖𝑋𝑗] − 𝜇𝑖𝜇𝑗

where 𝜇𝑖 = 𝐸(𝑋𝑖) < ∞ is the expected value of the ith entry in the vector X. In other

words,

Σ = [
𝐸 [(𝑋1 − 𝜇1)(𝑋1 − 𝜇1)] ⋯ 𝐸 [(𝑋1 − 𝜇1)(𝑋𝑛 − 𝜇𝑛)]

⋮ ⋱ ⋮
𝐸 [(𝑋𝑛 − 𝜇𝑛)(𝑋1 − 𝜇1)] ⋯ 𝐸 [(𝑋𝑛 − 𝜇𝑛)(𝑋𝑛 − 𝜇𝑛)]

]

 28

2.5.2 Properties of covariance matrices

Following Taboga’s (2010) definitions, for Σ = 𝐸 [(𝑿 − 𝐸[𝑿])(𝑿 − 𝐸[𝑿])𝑇] and

𝜇 = 𝐸(𝑿), the following basic properties apply to a covariance matrix Σ:

1. Σ = 𝐸(𝑿𝑿𝑇) − 𝝁𝝁𝑇

2. Σ is a positive - semidefinite and symmetric. This is, 𝑋∗Σ 𝑋 > 0, where 𝑋 ∈ 𝑪𝑛

and 𝑋∗ is the conjugate transpose of X.

3. If 𝑿 and 𝒀 are independent, then 𝑐𝑜𝑣(𝑿, 𝒀) = 𝟎.

Dryden, Koloydenko and Zhou (2009) summarize the most commonly matrix distances

used as follow:

“If a sample of covariance matrices is available, we wish to estimate an average covariance

matrix, or we may wish to interpolate in space between two or more estimated covariance

matrices, or we may wish to carry out tests for equality of mean covariance matrices in

diverse groups.”

The usual approach to estimating mean covariance matrices in statistics is to assume a

scaled Wishart distribution for the data, and then the maximum likelihood estimator (MLE)

of the population covariance matrix is the arithmetic mean of the sample covariance

matrices. The estimator can be formulated as a least squares estimator using Euclidean

distance. However, since the space of positive semi-definite symmetric matrices is a non-

Euclidean space, it is more natural to use alternative distances.

2.6 Distance between matrices

 29

2.6.1 Euclidean distance

Consider 𝑛 sample covariance matrices (symmetric and positive semidefinite 𝑘 × 𝑘

matrices) 𝑆1, … , 𝑆𝑛. We assume that the 𝑆𝑖 are independent and identically distributed

(i.i.d.) from a distribution with mean covariance matrix Σ.

The Euclidean distance between two matrices is given by:

𝑑𝐸(𝑆1, 𝑆2) = ‖𝑆1 − 𝑆2‖ = √𝑡𝑟𝑎𝑐𝑒{ (𝑆1 − 𝑆2)𝑇(𝑆1 − 𝑆2)}, where ‖𝑿‖ =

 √𝑡𝑟𝑎𝑐𝑒(𝑿𝑇𝑿) is the Euclidean norm (also known as the Frobenius norm).

A drawback of the Euclidean distance is when extrapolating beyond the data, nonpositive

semi-definite estimates can be obtained.

2.6.2 Log-Euclidean distance

Let 𝑆 = 𝑈 ΛUT be the usual spectral decomposition, with 𝑈 ∈ 𝑂(𝑘) and log Λ be a

diagonal matrix with logarithm of the diagonal elements of Λ on the diagonal. The

logarithm of S is given by log 𝑆 = 𝑈 (log Λ) UT and likewise the exponential of the

matrix S is exp 𝑆 = 𝑈(expΛ) 𝑈𝑇 .

𝑑𝐸(𝑆1, 𝑆2) = ‖log(𝑆1) − log(𝑆2)‖

Using this metric avoids extrapolation problems into matrices with negative eigenvalues,

but it cannot deal with positive semi-definite matrices of deficient rank, this is, when one

column is a linear combination of others.

 30

2.6.3 Non- Euclidean size-and-shape metric

The non-Euclidean size-and-shape metric between two 𝑘 × 𝑘 covariance matrices 𝑆1 and

𝑆2 is defined as 𝑑𝑆(𝑆1, 𝑆2) = inf‖𝐿1 − 𝐿2𝑅‖
𝑅∈𝑂(𝑘)

, where 𝐿𝑖 is the decomposition of 𝑆𝑖 such

that 𝑆𝑖 = 𝐿𝑖𝐿𝑖
𝑇 and 𝐿𝑖 = 𝑐ℎ𝑜𝑙(𝑆𝑖) is lower triangular matrix in the Cholesky’s

decomposition.

For example, the Cholesky decomposition could be used, since𝑆 = 𝐿𝐿𝑇, then the

decomposition is represented by an equivalence class{𝐿𝑅 = 𝑅 ∈ 𝑂(𝑘)}. For practical

computation it is often needed to choose representative from this class, called an icon,

and in our computations, we shall choose the Cholesky decomposition. This metric has

been used previously in the analysis of point set configurations where invariance under

translation, rotation and reflection is required.

2.6.4 Affine - Invariant Riemannian distance

This metric was written by Forstner and Moonen (2003). They presented a metric for

positive definite covariance matrices. It is a natural expression involving traces and joint

eigenvalues of the matrices. It is shown to be the distance coming from a canonical

invariant Riemannian metric on the space 𝑆𝑦𝑚+(𝑛, ℝ) of real symmetric positive definite

matrices. In contrast to known measures (Grafarend, 1972), the metric is invariant under

affine transformations and inversion. It can be used for evaluating covariance matrices or

for optimization of measurement designs.

 31

Forstner and Moonen (2003) proposed the next definition for the new metric:

𝑑(𝑨,𝑩) = √∑ln2 𝜆𝑖(𝑨,𝑩)

𝑛

𝑖=1

between symmetric positive definite matrices, A and B, with the eigenvalues 𝜆𝑖(𝑨,𝑩)

from |𝜆𝑨 − 𝑩|.

Some properties for this metric are summarized next:

Let for all 𝑀(𝑛,𝑹) ≔ {𝑨 = (𝑎𝑖𝑗)|1 ≤ 𝑖, 1 ≤ 𝑛, 𝑎𝑖𝑗 ∈ 𝑹} be the space of real 𝑛 × 𝑛

matrices, and let 𝑆+ ≔ 𝑆𝑦𝑚+(𝑛, 𝑅) ≔ {𝑨 ∈ 𝑀(𝑛, 𝑅)|𝑨 = 𝑨𝑇 , 𝑨 > 0}. For all 𝑨,𝑩, 𝑪 ∈

𝑆𝑦𝑚+(𝑛, 𝑹).

1. d is invariant with respect to affine transformations of the coordinate system.

𝑑(𝑨,𝑩) = 𝑑(𝑿𝑨𝑿𝑻, 𝑿𝑩𝑿𝑻)

 𝑿 ∈ 𝐺𝐿(𝑛, 𝑹), where GL means General Linear Group.

2. d is invariant with respect to an inversion of the matrices.

𝑑(𝑨,𝑩) = 𝑑(𝑨−1, 𝑩−1)

3. It is claimed that d is a metric.

a) Positivity: 𝑑(𝐴,𝑩) ≥ 0, and 𝑑(𝑨,𝑩) = 0 only if 𝑨 = 𝑩.

b) Symmetry: 𝑑(𝑨,𝑩) = 𝑑(𝑩, 𝑨)

c) Triangle inequality: 𝑑(𝑨,𝑩) + 𝑑(𝑨, 𝑪) ≥ 𝑑(𝑩, 𝑪)

 32

A summary of the most used metrics to calculate covariance matrices distances is given

in Table 2:

Name Notation Form

Euclidean 𝑑𝐸(𝑆1, 𝑆2) ‖𝑆1 − 𝑆2‖

Log – Euclidean (LERM) 𝑑𝐿(𝑆1, 𝑆2) ‖log (𝑆1) − log (𝑆2)‖

Cholesky 𝑑𝐶(𝑆1, 𝑆2) ‖𝑐ℎ𝑜𝑙(𝑆1) − 𝑐ℎ𝑜𝑙(𝑆2)‖

Riemannian (AIRM) 𝑑𝑅(𝑆1, 𝑆2)
‖ log (𝑆1

−
1
2 𝑆2𝑆1

−
1
2)‖

Table 2 Form of Metrics on Covariance matrices

Table 3 provides the common properties discussed for SPD. AIRM is the metric with

more invariance properties, while Cholesky’s metric does not meet any of these

properties.

Table 3 Properties of Metrics on covariance

Distance

Affine

invariance

Scale

invariance

Rotation

invariance

Inversion

invariance

Euclidean No No Yes No

Log – Euclidean (LERM) No Yes Yes Yes

Cholesky No No No No

Riemannian (AIRM) Yes Yes Yes Yes

 33

2.7 Purity Measure

There exist different methods to measure the effectiveness of a clustering algorithm.

However, before applying some of these performance measures, it is necessary to

indicate what criteria evaluation will be used. There are two kinds of clustering

evaluation:

• Internal evaluation: based in data that was clustered itself, this is, considering the

information intrinsic to the data alone.

• External evaluation: consisting in using data not used for clustering (e.g. class

labels), this is, based on previous knowledge about the data.

When simulated data is used knowing a priori the class labels for each dataset then the

use of an external criteria index to evaluate performance or effectiveness is the

appropriate option.

Purity is a simple and transparent external evaluation where each cluster is assigned to

the class which is most frequent in the cluster, and then the accuracy of this assignment is

measured by counting the number of correctly assigned documents and dividing

by 𝑁 (Manning C., 2009). In addition, Purity is a measure used for many authors to

assess and validate the performance of clustering algorithms based in existing known of

set of ground truth or class labels (Satya et al, 2011).

 34

The formula to purity is defined as

𝑃𝑢𝑟𝑖𝑡𝑦(Ω, 𝐶) =
1

𝑁
 ∑ max

𝑗
|𝜔𝑘 ∩ 𝑐𝑗|𝑘 ,

where Ω = {𝜔1, 𝜔2, … , 𝜔𝑘} is the set of clusters and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑗} is the set of

classes.

Some characteristics of the purity measure are:

• When the clustering is perfect (perfect matching between comparing pairs) then

purity is equal to 1.

• When no matching between compared pairs is obtained (bad clustering) then purity

is equal to 0.

• It is not recommended for unbalanced (nonequal number of elements per group)

data.

Figure 12 provides an example of the calculation of Purity.

Figure 12 Example of purity measure. (Manning, 2009)

 35

3 METHODOLOGY

This chapter discusses with the methodology used to measure the performance of the

proposed algorithm HDBSCAN in different situations and to compare it with other known

clustering methods like K-means and DBSCAN and the supervised classifier KNN. In

addition, the input parameters for each algorithm are varied to verify their consistency.

To assess the high performance of HDBSCAN, different sets of covariance matrices are

used. The size of the matrices varies from low dimensional to high dimensional covariance

matrices. After generating the set of matrices, the distance between each pair of matrices

is calculated choosing the desired metric (AIRM, LERM, Cholesky or Euclidean), as

presented in section 2.6. Synthetic data is generated to obtain diverse situations varying

from 2, 4 and 8 groups. The different datasets were simulated to mimic different scenarios

based on the difficulty to cluster the matrices. The characteristics of every dataset is

described in Tables 3,4 and 5.

3.1 Data Generation

The statistical programming language R is used to generate artificial data to assess and

implement the clustering algorithms. Using package CovTools (Lee et al, 2018) to generate

covariance matrices where Samplecovs function generates a 3d array of stacked sample

covariances where in 3rd dimension, the first half are sample covariances of samples

generated independently from normal distribution with identity covariance, where the latter

 36

half consists of samples covariances from random population covariance. The same

package is used to call the function covDist, which is used to calculate the distance between

covariance metrics in an array by selecting the metric AIRM, Euclidean, LERM or

Cholesky.

The Wishart distribution 𝑊(𝑑𝑓, Σ) and the multivariate normal distribution 𝒩(𝜇, Σ) are

used to generate 𝑛 × 𝑛 dimensional covariance matrices, where their parameters are

modified or altered to generate the datasets of covariance matrices to implement in the

simulation studies. For the Wishart distribution the covariance matrix Σ is called the Scale

matrix where the degree of freedom (𝑑𝑓) is set as 𝑑𝑓 = 𝑛 + 1, where 𝑛 is the matrix size;

𝑛 ∗ Σ stands for the expected mean value in this probability distribution.

The rWishart package (Barnard, 2017) is used to generate a 3d array of covariance matrices

from Wishart distributions. Here, it is necessary to provide the degrees of freedom, number

of covariance matrices and the scale covariance matrix.

Some covariance structures used in the simulation studies are summarized next:

• First order autoregressive covariance matrix:

𝜎2 ∗

(

1 𝜌 𝜌2 … 𝜌𝑛

 ρ 1 𝜌 … 𝜌𝑛−1

𝜌2 𝜌 1 … 𝜌𝑛−2

… … … … …
𝜌𝑛 𝜌𝑛−1 𝜌𝑛−2 … 1)

 37

• Banded main diagonal covariance matrix:

(

𝜎1
2 0 0 … 0

 0 𝜎2
2 0 … 0

0 0 𝜎3
2 … 0

… … … … …
0 0 0 … 𝜎𝑛

2)

• The method, denoted by “eigen”, first randomly generates eigenvalues (𝜆1, … , 𝜆𝑝)

for the covariance matrix (Σ) , then uses columns of a randomly generated

orthogonal matrix (𝑄 = (𝛼1, … , 𝛼𝑝)) as eigenvectors. The covariance matrix (Σ)

is then contructed as 𝑄 ∗ 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆2) ∗ 𝑄𝑇 (Qiu, 2015).

• Randomly generated covariance matrices from normal population are obtained

through generating random arrays of n-dimensional vectors with 𝝁 = 𝟎𝒏 and 𝜎2 =

1, binding them with other random n-dimensional vectors with 𝝁 = 𝟓𝒏 and 𝜎2 =

1. Finally, the covariance matrix of the array is obtained.

The ClusterGeneration package (Qiu et al, 2015) is used to generate a covariance matrix

by using genPositiveDefMat with the option “eigen”. The package mvtnorm (Genz et al,

2018) is also used to generate synthetic covariance matrices coming from multivariate

normal distribution data, where using the function rmvnorm it is possible to modify the

mean and standard deviation for the n-dimensional vectors employed to generate the

covariance matrices.

 38

3.2 Clustering Algorithms

HDBSCAN and DBSCAN algorithm are called using the package dbscan (Hahsler,

Piekenbrock, Arya and Mount, 2017), whereas k-means algorithm is called with the

package stats. The package class (Ripley et al, 2015) is used for calling KNN algorithm.

3.3 Simulation scenarios

For the first scenario, three different datasets are generated each one varying its parameters

and consisting of two separated groups as shown in table 4.

Set

Number

Group Mean 𝝁 Covariance 𝚺 Probability Distribution

1

1 𝟎𝒏 Identity Multivariate Normal

2 𝟎𝒏

Randomly generated from

 normal population

Multivariate Normal

2

1 𝟏𝒏 Identity Multivariate Normal

2 𝟏𝒏

First order Autoregressive (𝜌 =

0.2, 𝜎2 = 2)

Multivariate Normal

3

1 𝑛 ∗ Σ Identity Wishart

2 𝑛 ∗ Σ

First order Autoregressive (𝜌 =

0.6, 𝜎2 = 2)

Wishart

Table 4 Characteristics of generated data with two groups

 39

Identically, the parameter for scenario four is shown in table 5.

Set

Number

Group Mean 𝝁 Covariance 𝚺 Probability Distribution

1

1 𝑛 ∗ Σ Generated using eigenvalues (𝜇 = 𝟏𝒏) Singular Wishart

2 𝑛 ∗ Σ

Generated from normal population (𝜇 =

𝟎𝒏)

Wishart

3 𝑛 ∗ Σ

Randomly generated from normal

population

Wishart

4 𝑛 ∗ Σ

Randomly generated from normal

population

Singular Wishart

2

1 𝟏𝒏

First order Autoregressive (𝜎2 = 2, 𝜌 =

0.6)

Normal

2 𝟒𝒏

First order Autoregressive (𝜎2 = 2, 𝜌 =

0.2)

Normal

3 𝟏𝒏 Identity Normal

4 𝟏𝒏

Banded Main Diagonal (Generated from

random normal population with 𝜇 = 3

and 𝜎2 = 0)

Normal

Table 5 Characteristics for generated data with 4 groups

 40

Table 6 shows the parameters for scenario 3.

Set

Number

Group Mean 𝝁 Covariance 𝚺 Probability Distribution

1

1 𝑛 ∗ Σ Generated using eigenvalues (𝜇 = 𝟏𝒏) Singular Wishart

2 𝑛 ∗ Σ

Banded Main Diagonal (Generated from

random normal population with 𝜇 = 4 and

𝜎2 = 0)

Wishart

3 𝑛 ∗ Σ Identity (𝑰𝒏) Wishart

4 𝑛 ∗ Σ Randomly generated from normal population Singular Wishart

5 𝟏𝒏 First order Autoregressive (𝜎2 = 2, 𝜌 = 0.6) Normal

6 𝟖𝒏 First order Autoregressive (𝜎2 = 2, 𝜌 = 0.2) Normal

7 𝟏𝒏 Identity (𝑰𝒏) Normal

8 𝟏𝒏

Banded Main Diagonal (Generated from

random normal population with 𝜇 = 4 and

𝜎2 = 0)

Normal

Table 6 Characteristics for generated data with eight groups

To avoid drawbacks of the purity measure, this study will consist of generated balanced

synthetic data to evaluate the performance of the clustering algorithms.

A summarized version of the procedure used to simulate data, implement the clustering

algorithms and measure their performance is given next.

 41

Steps for generating synthetic data

1. Set the size of the covariance matrix to generate (2 × 2, 5 × 5,10 × 10,50 ×

50, 200 × 200)

2. Select the true number of cluster k in the set of covariance matrices (2,4, 8)

3. Choose the dataset with N-covariance matrices samples (N/k per group) by the

difficulty of the separation between each group in the set (1, 2, and 3)

3.1Select the metric on distance to use (AIRM, LERM, Cholesky, Euclidean)

3.2 Pick the clustering algorithm to apply (k-means, HDBSCAN, DBSCAN,

KNN)

3.3 Calculate the purity measure to the resulting clustering comparing with the

true grouping of the data.

4. Repeat this simulation m times and calculate the average �̅� of the purity measures

and the sampling error 𝜎𝑝
= √�̅� ∗

1−�̅�

𝑁
 of the m purity measures.

5. Go back to step 1 and repeat the steps 3-4 modifying some characteristics of the

covariance matrices to generate.

 42

4 SIMULATION STUDIES

This simulation studies are limited by the computational resources. Therefore, it is

necessary to evaluate the execution time for calculating the distance between matrices, and

the clustering procedure. Because of this preliminary analysis, a relatively small number

of matrices per group and number of repetitions is considered in each scenario of the

simulation studies.

An array of N covariance matrices (20 matrices by group in every set) is generated to

calculate the purity measure for each algorithm. Then using a sample size of 50 repetitions

per set, the mean and standard error of proportion 𝜎𝑝 for all purity results are calculated

and summarized in Tables 13-15, 17-19. It is worth mentioning that KNN was trained

before to be applied and then the result for testing are shown in the comparative tables for

the purity measure. DBSCAN was chosen with the same number of neighbors (𝑚𝑝𝑡𝑠) than

HDBSCAN but a 𝜖 − minimum neighbors distance value only was chosen to show how

selecting this parameter affects the performance of the algorithm.

Sections 4.1 to 4.5 provide the results for execution time and accuracy with purity measure

for four different clustering algorithms varying the size of the covariance matrices as well

as the predefined number of clusters.

 43

Consider an example of an array of 20 covariance matrices with size 2 × 2 displayed in

Table 7. The first element belongs to Group 1 in set 1 with two clusters.

No. Group AIRM Euclidean LERM Cholesky
2 1 1.53 0.51 1.24 0.51

3 1 3.32 0.98 3.16 0.90

4 1 3.01 1.37 2.97 1.19

5 1 2.68 1.55 2.64 1.41

6 1 0.62 0.14 0.59 0.20

7 1 3.14 2.10 3.12 1.89

8 1 2.63 1.15 2.54 0.99

9 1 2.06 1.15 1.72 1.10

10 1 2.47 1.42 2.45 1.31

11 2 5.39 32.32 5.24 32.21

12 2 5.15 30.34 4.86 30.24

13 2 5.49 34.88 5.31 34.75

14 2 4.97 35.06 4.70 35.01

15 2 3.69 7.56 3.50 7.47

16 2 2.30 0.86 2.29 0.66

17 2 4.61 29.24 4.31 29.20

18 2 3.99 10.58 3.85 10.51

19 2 5.63 17.63 4.92 17.57

20 2 4.38 15.75 4.24 15.69

Table 7 Comparative of distances by metric for first element in 𝟐 × 𝟐 matrices

If the distances between the first element and the other elements are ordered, it is possible

to find some errors in all metrics, that is, some distances between element 1 from group 1

to other element in group 2 could be less than the other element in the same group 1. For

example, consider the distance between element 1 with the element 7 (3.14 with AIRM)

and with the element 16 (2.30 with AIRM) respectively, as shown in Table 7. However, if

4.1 Comparison of outputs for metrics

 44

the size of the matrices is increased, the errors are reduced for all metrics, as shown in

Table 8.

Now, if an array of covariance matrices with size 50 × 50 from set 1 with 2 clusters is used

then the accuracy to calculate distance for elements in the same group is increased in all

metrics:

No. Group AIRM Euclidean LERM Cholesky

2 1 8.79 7.16 8.54 6.21

3 1 8.80 7.20 8.57 6.23

4 1 9.07 7.24 8.83 6.32

5 1 8.72 7.21 8.47 6.41

6 1 8.82 7.17 8.59 6.34

7 1 8.91 7.01 8.67 6.16

8 1 9.11 7.42 8.87 6.52

9 1 9.16 7.55 8.94 6.61

10 1 9.00 7.40 8.77 6.40

11 2 12.00 333.91 11.56 334.02

12 2 11.71 238.26 11.29 238.37

13 2 11.65 237.85 11.23 237.94

14 2 11.74 271.26 11.30 271.36

15 2 11.63 382.90 11.20 383.02

16 2 11.90 278.93 11.49 279.03

17 2 11.93 413.54 11.51 413.65

18 2 11.50 251.24 11.10 251.34

19 2 11.78 241.93 11.35 242.03

20 2 11.48 374.59 11.47 374.70

Table 8 Distance comparative by metric for first element in 𝟓𝟎 × 𝟓𝟎 matrices

Table 9 shows 100 repetitions to calculate a true percent to order an array with 20

covariance matrices based in the distance offered for each metric, taking in consideration

not only the first element but all the elements in the array.

 45

Metric
Ordering based in distance

2 × 2 3 × 3 50 × 50

AIRM 0.772 0.857 1.0

Euclidean 0.904 0.979 1.0

LERM 0.764 0.849 1.0

Cholesky 0.922 0.985 1.0

Table 9 Comparison of ordering distance for each metric

Table 9 shows that, when the size of the matrices is increased all the distance in each

metrics tend to be more precise as it was shown in table 7 and table 8 when the first element

is used as reference. Now, consider increasing the length of the array of covariance

matrices. Group 1 with 500 covariance matrices and 500 covariance matrices for group 2

in set 1 with two clusters. Simulation of 100 arrays with 1,000 covariance matrices varying

their size were repeated.

Method
Order based in distance

2 × 2 50 × 50

AIRM 0.760 1.0

Euclidean 0.892 1.0

LERM 0.750 1.0

Cholesky 0.904 1.0

Table 10 Comparison of ordering based in distance by metrics for 1000

covariance matrices.

Tables 9 and 10 show equivalent results: for low dimensional covariance matrices the

accuracy to divide the array in two differentiate sets is less precise than for high

dimensional covariance matrices sets. This result will be very important when the

algorithm is taken into consideration because the less precise the metric is, the less

precise will the algorithm be cluster correctly.

 46

In this section, an analysis of the execution times of distance metrics and the clustering

algorithms is presented. This analysis considers the implications in the computational cost

of the number of simulations, the size of the matrix and the length of the set of covariance

matrices to execute the simulation studies.

Consider varying the size of the array to examine the execution time for each distance

metric, as shown in Figure 13.

Figure 13 Comparison of execution times for the distance metrics varying the

size of the array

4.2 Comparison of execution time in distance metrics and algorithms

 47

The data evidences that AIRM takes considerably more time to calculate the distance

between the covariance metrics when the size of the array is significantly large. However,

if the size of the matrix is small, the LERM metric takes more time to calculate the distances

than the other metrics.

Now, if the size of the covariance matrix is increased, the LERM metric takes more time

to calculate the distances between the covariance matrices as shown in Figure 14.

Figure 14 Comparative of execution times for the distance metrics varying

the size of the matrix

 48

Consider calculating the time to cluster the array of covariance matrices, first applying the

distance metric and then the clustering algorithm. Tables 11 and 12 summarize the worst

scenarios in both cases, varying the size of the matrix and the size of the array of covariance

matrices, where the time in seconds spent on calculations seen by the user is labeled as

user.self.

Metric user.self (seg) Algorithm user.self(seg) Total time (seg)

AIRM 103.67 HDBSCAN 9.98 113.65

Euclidean 11.14 K-means 0.145 11.285

Table 11 Execution times for an array of 1000 matrices with size 𝟓 × 𝟓

The AIRM - HDBSCAN pair is the worst combination in terms of runtime when using

large array of covariance matrices, as shown in Table 11. However, if a small array with

high-dimensional matrices is used for the grouping, then the LERM-HDBSCAN pair

results in the worst combination, as shown in Table 12.

Metric user.self (seg) Algorithm user.self(seg) Total time (seg)

LERM 620.09 HDBSCAN 0.009 620.099

Euclidean 2.27 K-means 0.001 2.271

Table 12 Execution times for an array of 40 matrices with size 𝟐𝟎𝟎 × 𝟐𝟎𝟎.

It is evident that Euclidean and Cholesky’s methods exhibit faster execution times in all

scenarios. This is very simple to understand due to the definitions of each metric, as it

was discussed it in Section 2.4. Similarly, the HDBSCAN clustering algorithm implies a

higher computational cost for its execution regardless the number of matrices. Note,

 49

however, that KNN is not considered in the calculation in the computational cost because

of it requires additional time for training.

Sections 4.3.1 – 4.3.3 are organized according to the predefined number of clusters. A

comparison of the resulting clustering using the purity measure calculated for each

algorithm is presented.

4.3.1 Scenario 1: Two groups

The covariance matrices sets used in the simulation studies for this scenario can be

appreciated in Figures 15, 16 and 17, where a detailed description of the different sets is

given in Table 4. To obtain a graph for a covariance matrix 𝐴, it is necessary to use

Cholesky Decomposition for the matrix (𝑐ℎ𝑜𝑙(𝐴)) and then scaling it by factor 1 to convert

it into an ellipse centered at the data centroid ellCtr in (0,0). These plots of ellipses are

representation of the eigenvalues for each 2 × 2 covariance matrices in every group.

4.3 Comparing clustering algorithm

 50

Figure 15 Set 1 for two groups comparison

Dataset 1 (Set 1) was generated to have more separated groups and being easier to cluster

than datasets 2 and 3, as shown in Figure 15. The difficulty for clustering is increasing as

it is observed in Tables 13-15 for all purity means of clustering algorithms based on 50

simulations, where the values in parenthesis represents standard error of the mean purity

𝜎𝑝 .

 51

Figure 16 Set 2 for two groups comparison

Figure 17 Set 3 for two groups comparison

 52

Matrix

Size Metric SET

HDBSCAN DBSCAN KNN Kmeans

𝑚𝑝𝑡𝑠 = 4 𝑚𝑝𝑡𝑠 = 10
𝑚𝑝𝑡𝑠 = 4

Eps=45
K=3 K=5 K=2 K=3

2
×

2

AIRM

Set1

0.557(0.078) 0.179(0.061) 0.500(0.079) 0.908(0.046) 0.912(0.045) 0.842(0.058) 0.733(0.070)

Set2

0.254(0.069) 0.0(0.0) 0.500(0.079) 0.585(0.078) 0.596(0.078) 0.542(0.077) 0.516(0.079)

Set3

0.265(0.069) 0.0(0.0) 0.500(0.079) 0.619(0.077) 0.622(0.077) 0.545(0.079) 0.539(0.079)

Euclidean

Set1

0.585(0.078) 0.0(0.0) 0.526(0.079) 0.748(0.069) 0.761(0.067) 0.700(0.072) 0.726(0.070)

Set2

0.249(0.068) 0.0(0.0) 0.500(0.079) 0.647(0.076) 0.638(0.076) 0.633(0.076) 0.591(0.078)

Set3

0.394(0.077) 0.0(0.0) 0.503(0.079) 0.649(0.075) 0.637(0.076) 0.639(0.076) 0.610(0.077)

LERM

Set1

0.507(0.079) 0.546(0.079) 0.500(0.079) 0.915(0.044) 0.920(0.043) 0.872(0.053) 0.765(0.067)

Set2

0.330(0.074) 0.242(0.068) 0.500(0.079) 0.592(0.078) 0.605(0.077) 0.537(0.079) 0.511(0.079)

Set3

0.336(0.075) 0.233(0.067) 0.500(0.079) 0.621(0.077) 0.619(0.077) 0.555(0.079) 0.455(0.079)

Cholesky

Set1

0.607(0.077) 0.079(0.043) 0.572(0.078) 0.700(0.072) 0.721(0.071) 0.692(0.073) 0.744(0.069)

Set2

0.522(0.079) 0.030(0.027) 0.500(0.079)

0.619(0.077) 0.634(0.076) 0.659(0.075) 0.735(0.070)

Set3

0.651(0.075) 0.031(0.027) 0.500(0.079) 0.596(0.078) 0.616(0.077) 0.657(0.075) 0.777(0.066)

5
×

5

AIRM

Set1

0.963(0.030) 0.941(0.037) 0.500(0.079) 0.996(0.010) 0.996(0.010) 0.999(0004) 0.824(0.060)

Set2

0.205(0.064) 0.058(0.037) 0.500(0.079) 0.910(0.045) 0.900(0.047) 0.653(0.075) 0.658(0.075)

Set3

0.260(0.069) 0.098(0.047) 0.500(0.079) 0.900(0.047) 0.885(0.050) 0.523(0.077) 0.605(0.077)

Euclidean

Set1

0.765(0.067) 0.842(0.058) 0.788(0.064) 0.945(0.036) 0.943(0.037) 0.861(0.055) 0.797(0.063)

Set2

0.450(0.079) 0.062(0.038) 0.500(0.079) 0.933(0.040) 0.925(0.042) 0.807(0.062) 0.790(0.064)

Set3

0.619(0.077) 0.259(0.069) 0.506(0.079) 0.878(0.052) 0.902(0.047) 0.763(0.067) 0.756(0.068)

LERM

Set1

0.955(0.033) 0.962(0.030) 0.500(0.079) 1.0(0.0) 1.0(0.0) 0.998(0.007) 0.875(0.052)

Set2

0.313(0.073) 0.037(0.030) 0.500(0.079) 0.917(0.044) 0.905(0.046) 0.711(0.072) 0.655(0.075)

Set3

0.292(0.072) 0.016(0.020) 0.500(0.079) 0.925(0.042) 0.917(0.043) 0.620(0.077) 0.642(0.076)

Cholesky

Set1

0.828(0.060) 0.826(0.060) 0.575(0.078) 0.975(0.025) 0.975(0.025) 0.863(0.054) 0.820(0.061)

Set2

0.716(0.071) 0.421(0.078) 0.500(0.079) 0.988(0.017) 0.985(0.019) 0.880(0.051) 0.815(0.061)

Set3

0.701(0.072) 0.416(0.078) 0.498(0.079) 0.826(0.060) 0.867(0.053) 0.810(0.062) 0.796(0.064)

Table 13 Mean purity results based on 50 simulations. The number on parenthesis are the Monte Carlo

standard error of the mean purity. Two groups. Part I

 53

Matrix

Size
Metric SET

HDBSCAN DBSCAN KNN Kmeans

𝑚𝑝𝑡𝑠 = 4 𝑚𝑝𝑡𝑠 = 10
𝑚𝑝𝑡𝑠 = 4

Eps=45
K=3 K=5 K=2 K=3

1
0

×
1
0

AIRM

Set1
1.0(0.0) 1.0(0.0) 0.500(0.079) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.837(0.058)

Set2
0.662(0.075) 0.398(0.077) 0.500(0.079) 0.998(0.007) 0.998(0.007) 0.998(0.007) 0.848(0.057)

Set3
0.317(0.074) 0.160(0.058) 0.500(0.079) 0.976(0.024) 0.978(0.023) 0.575(0.078) 0.747(0.069)

Euclidean

Set1
0.852(0.056) 0.937(0.038) 0.752(0.068) 0.998(0.007) 0.998(0.007) 0.979(0.022) 0.846(0.057)

Set2
0.579(0.078) 0.426(0.078) 0.500(0.079) 0.996(0.001) 0.993(0.013) 0.988(0.017) 0.775(0.066)

Set3
0.739(0.069) 0.591(0.078) 0.000(0.079) 0.993(0.013) 0.995(0.011) 0.923(0.042) 0.838(0.058)

LERM

Set1
1.0(0.0) 1.0(0.0) 0.500(0.079) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.845(0.057)

Set2
0.642(0.076) 0.503(0.079) 0.500(0.079) 0.998(0.007) 0.998(0.007) 0.992(0.014) 0.835(0.059)

Set3
0.475(0.079) 0.226(0.066) 0.500(0.079) 0.983(0.020) 0.985(0.019) 0.979(0.023) 0.798(0.063)

Cholesky

Set1
0.953(0.033) 0.946(0.036) 1.0(0.0) 0.998(0.007) 0.998(0.007) 0.982(0.021) 0.857(0.055)

Set2
0.941(0.037) 0.916(0.044) 0.500(0.079) 1.0(0.0) 1.0(0.0) 0.991(0.015) 0.826(0.060)

Set3
0.771(0.066) 0.730(0.070) 0.0(0.0) 0.998(0.007) 0.998(0.007) 0.916(0.044) 0.850(0.056)

5
0

×
5
0

AIRM

Set1
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.825(0.060)

Set2
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.850(0.056)

Set3
0.845(0.057) 0.835(0.059) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.911(0.045)

Euclidean

Set1
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.815(0.061)

Set2
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.782(0.065)

Set3
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.852(0.056)

LERM

Set1
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.800(0.063)

Set2
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.842(0.058)

Set3
0.917(0.043) 0.910 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.907(0.046)

Cholesky

Set1
0.955(0.033) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.785(0.065)

Set2
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.835(0.059)

Set3
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.842(0.058)

Table 14 Mean purity results based on 50 simulations. The number on parenthesis are the Monte Carlo standard

error of the mean purity. Two groups. Part I. Two groups. Part II

 54

Matrix

size
Metric SET

HDBSCAN DBSCAN KNN Kmeans

𝑚𝑝𝑡𝑠 = 4 𝑚𝑝𝑡𝑠 = 10
𝑚𝑝𝑡𝑠 = 4

Eps=45
K=3 K=5 K=2 K=3

2
0
0

×
2
0
0

AIRM

Set1
1.0(0.0) 1.0(0.0) 0.500(0.079) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.816(0.061)

Set2
1.0(0.0) 1.0(0.0) 0.500(0.079) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.815(0.061)

Set3
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.935(0.039)

Euclidean

Set1
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.818(0.061)

Set2
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.837(0.058)

Set3
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.822(0.060)

LERM

Set1
1.0(0.0) 1.0(0.0) 0.500(0.079) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.805(0.063)

Set2
1.0(0.0) 1.0(0.0) 0.500(0.079) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.787(0.065)

Set3
1.0(0.0 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.936(0.037)

Cholesky

Set1
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.826(0.060)

Set2
1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.832(0.059)

Set3
1.0(0.0) 1.0(0.0) 0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 0.825(0.060)

Table 15 Mean purity results based on 50 simulations. The number on

parenthesis are the Monte Carlo standard error of the mean purity. Two

groups. Part I. Two groups. Part III

Notice that all the algorithms are able to detect the groups in dataset 1 better than for other

datasets. In addition, the Cholesky’s metric performs much better than AIRM for low

dimensions covariance matrices (less or equal than 10 × 10), with a higher mean purity

(0.565) when HDBSCAN is used for clustering. However, the purity means for the LERM

metric and the AIRM metric are higher when k-means is used to cluster, 0.736 and 0.714,

respectively, compared to 0.699 for the Cholesky’s metric.

 55

k-means and KNN work much better than HDBSCAN for two groups in low dimensions

regardless the distance metric used, however, when the size of the matrices increases the

purity measure is almost the same: when varying the input parameters HDBSCAN keeps

the purity value, but k-means fails when the true number of clusters is not given. KNN has

a very high accuracy value for testing (it was trained before as mentioned in the beginning

of Section 4) with a mean purity of 0.809 in low dimensional matrices and 0.982 for high

dimensional covariance matrices. Meanwhile, HDBSCAN has a purity mean of 0.975 for

high dimension matrices, the purity mean of k-means is 0.86 in the same case.

 56

Figure 18 Comparison of Purity by distance metrics and Matrix size for two

clusters.

Some results are presented in Figure 18 for 𝑚𝑝𝑡𝑠 = 4, k = 5 for KNN and k=2 for k-means.

Cholesky’s metric performs much better than other metrics under low dimensions, but once

the size of the covariance matrices is increased this difference disappears.

Figure 19 Mean purity of HDBSCAN by metric and matrix (two groups)

 57

Mean purities by set for the HDBSCAN algorithm are shown in Figure 19. Cholesky’s

metric seems the best option for low dimensions as it has the same purity’s average for all

datasets. On the other hand, Figure 20 shows the same comparison for k-means, where

mean purity for AIRM metric decays for low dimensional matrices.

Figure 20 Mean purity of K-means by metric and matrix size (two groups and

k=2).

 58

Figures 21 and 22 show the mean purity for all clustering algorithms. An algorithmic

tendency line is imposed when the covariance matrices size changes. Comparison of these

algorithms by set is shown in Figure 23.

Figure 21 Comparison of purity by Matrix size and Sets for Clustering

Algorithms (two groups).

 59

Figure 22 Comparison of Purity by matrix size for clustering Algorithms in

data with two clusters, k=2 and 𝒎𝒑𝒕𝒔= 4.

It is evident that HDBSCAN works better when for high-dimensional covariance matrices,

although scenarios with two clusters vary, as shown in Figure 21. In general , no difference

between the algorithms can be appreciated when the data consists of two clusters, as shown

in Figure 22.

 60

4.3.2 Scenario 2: Four groups

Tables 17 and 18 show the means of purity measure, where following the characteristics

of the sets summarized in Table 5, the input parameters vary and arrays of 20 covariance

matrices per group were used. An example of using HDBSCAN with the AIRM metric to

obtain clusters for set 1 consisting of 4 distinct groups is shown in Figure 23.

Figure 23 Four groups with 2x2 covariance matrices, set 1

The elements of set 1 were easy to identify by representing ellipses, however, there is no

clear identification of the groups when set 2 is used, as shown in Figure 24.

 61

Figure 24 Four groups 2x2 matrices, set 2

Although KNN was already trained, it still has problems identifying groups in dataset 2

for each distance metric when using low dimensions covariance matrices (10 or less

attributes), as shown in Table 17. The purity means for KNN, K-means and HDBSCAN

are 0.692, 0.613 and 0.281, respectively, when the set 2 is used. However, the

HDBSCAN’s mean purity is 0.956 when the size of the covariance matrices in the set 2 is

increased to high dimensions, while the mean purity of k-means is 0.81.

In addition, AIRM and LERM metrics have higher mean purity when distances between

high-dimensional covariance matrices are used and the data set consists of four clusters,

as shown in Figures 25 and 26.

 62

Matrix

size
Metric SET

HDBSCAN DBSCAN KNN K-means

𝑚𝑝𝑡𝑠=4 𝑚𝑝𝑡𝑠=10
𝑚𝑝𝑡𝑠 = 4 eps=

8.8
K=3 K=5 K=4 K=5

2
×

2

AIRM

Set1
0.836(0.041) 0.761(0.048) 0.808(0.044) 0.908(0.032) 0.916(0.031) 0.888(0.035) 0.869(0.038)

Set2
0.178(0.043) 0.0 (0.0) 0.249(0.048) 0.319(0.052) 0.322(0.052) 0.361(0.054) 0.338(0.053)

Euclidean

Set1
0.430(0.055) 0.052(0.025) 0.047(0.024) 0.477(0.056) 0.489(0.056) 0.362(0.054) 0.391(0.055)

Set2
0.251(0.048) 0.00 (0.00) 0.261(0.059) 0.299(0.051) 0.309(0.052) 0.370(0.054) 0.397(0.055)

LERM

Set1
0.644(0.053) 0.755(0.048) 0.677(0.058) 0.886(0.035) 0.891(0.035) 0.887(0.035) 0.853(0.040)

Set2
0.201(0.045) 0.181(0.043) 0.245(0.048) 0.324(0.052) 0.334(0.053) 0.392(0.055) 0.378(0.054)

Cholesky

Set1
0.576(0.055) 0.220(0.032) 0.186(0.043) 0.564(0.055) 0.591(0.055) 0.364(0.054) 0.380(0.054)

Set2
0.441(0.055) 0.196(0.044) 0.304(0.051) 0.355(0.053) 0.368(0.054) 0.501(0.056) 0.597(0.055)

5
×

5

AIRM

Set1
0.599(0.055) 0.507(0.056) 0.187(0.044) 0.999(0.004) 0.999(0.004) 0.836(0.041) 0.836(0.041)

Set2
0.171(0.042) 0.022(0.016) 0.241(0.048) 0.849(0.04) 0.846(0.040) 0.607(0.055) 0.575(0.055)

Euclidean

Set1
0.627(0.054) 0.415(0.055) 0.0(0.0) 0.590(0.055) 0.578(0.055) 0.586(0.055) 0.541(0.056)

Set2
0.243(0.048) 0.0(0.0) 0.248(0.048) 0.752(0.048) 0.772(0.047) 0.515(0.056) 0.563(0.055)

LERM

Set1
0.643(0.053) 0.605(0.055) 0.426(0.055) 0.995(0.008) 0.995(0.008) 0.822(0.043) 0.834(0.042)

Set2
0.202(0.045) 0.007(0.009) 0.245(0.048) 0.862(0.039) 0.852(0.040) 0.594(0.055) 0.595(0.055)

Cholesky

Set1
0.641(0.054) 0.512(0.056) 0.0(0.0) 0.932(0.028) 0.950(0.024) 0.611(0.054) 0.654(0.053)

Set2
0.493(0.056) 0.398(0.055) 0.329(0.052) 0.725(0.050) 0.712(0.051) 0.629(0.054) 0.671(0.052)

Table 16 Mean purity results based on 50 simulations. The number on

parenthesis are the Monte Carlo standard error of the mean purity. Four

clusters. Part I

 63

Matrix

size
Metric SET

HDBSCAN DBSCAN KNN K-means

𝑚𝑝𝑡𝑠=4 𝑚𝑝𝑡𝑠=10
𝑚𝑝𝑡𝑠=4

eps= 8.8
K=3 K=5 K=4 K=5

1
0

×
1
0

AIRM

Set1
0.993(0.009) 0.976(0.017) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.896(0.034) 0.887(0.035)

Set2
0.496(0.056) 0.391(0.055) 0.248(0.048) 0.994(0.008) 0.992(0.010) 0.914(0.031) 0.844(0.041)

Euclidean

Set1
0.735(0.049) 0.826(0.042) 0.0(0.0) 0.875(0.037) 0.886(0.035) 0.665(0.053) 0.771(0.047)

Set2
0.458(0.056) 0.177(0.043) 0.250(0.048) 0.968(0.027) 0.966(0.020) 0.749(0.048) 0.737(0.049)

LERM

Set1
0.967(0.020) 0.936(0.027) 0.0(0.0) 0.996(0.007) 0.995(0.008) 0.816(0.043) 0.875(0.037)

Set2
0.562(0.055) 0.434(0.055) 0.249(0.048) 0.995(0.008) 0.993(0.009) 0.932(0.028) 0.867(0.038)

Cholesky

Set1
0.876(0.037) 0.787(0.046) 0.0(0.0) 0.994(0.008) 0.991(0.010) 0.600(0.055) 0.715(0.050)

Set2
0.696(0.051) 0.551(0.055) 0.290(0.051) 0.877(0.035) 0.853(0.040) 0.815(0.043) 0.782(0.046)

5
0

×
5
0

AIRM

Set1
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.767(0.047) 0.834(0.042)

Set2
0.998(0.005) 0.998(0.005) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.828(0.042) 0.870(0.038)

Euclidean

Set1
0.875(0.037) 0.998(0.005) 0.0(0.0) 0.994(0.008) 0.992(0.010) 0.841(0.041) 0.775(0.047)

Set2
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.785(0.046) 0.795(0.045)

LERM

Set1
1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.833(0.042) 0.849(0.04)

Set2
0.999(0.003) 0.999(0.003) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.795(0.045) 0.798(0.045)

Cholesky

Set1
0.999(0.003) 0.996(0.007) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.817(0.043) 0.787(0.046)

Set2
0.776(0.046) 0.768(0.047) 0.160(0.041) 0.938(0.027) 0.925(0.029) 0.690(0.051) 0.845(0.04)

2
0
0

×
2
0
0

AIRM Set1 1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.856(0.039) 0.809(0.044)

Set2 1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.811(0.044) 0.855(0.039)

Euclidean Set1 0.890(0.035) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.818(0.043) 0.801(0.044)

Set2 1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.792(0.045) 0.841(0.041)

LERM Set1 1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.785(0.046) 0.895(0.034)

Set2 1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.793(0.045) 0.875(0.037)

Cholesky Set1 1.0(0.0) 1.0(0.0) 0.0(0.0) 1.0(0.0) 1.0(0.0) 0.860(0.039) 0.827(0.042)

Set2 1.0(0.0) 0.987(0.012) 0.0(0.0) 0.996(0.007) 0.996(0.007) 0.810(0.044) 0.803(0.044)

Table 17 Mean purity results based on 50 simulations. The number on parenthesis are the Monte Carlo

standard error of the mean purity. Four clusters. Part II

 64

Figure 25 Comparison of Purity by Matrix size for K-means (k=4)

Using 𝑚𝑝𝑡𝑠 = 4, k = 5 for KNN and k=4 for k-means, the Cholesky’s metric appears to

keep the same mean Purity for each matrix size, as shown in Figure 25 for K-means and

Figure 26 for HDBSCAN. Moreover, it is notable that AIRM and LERM have better

performance than Cholesky’s metric in high dimensional matrices using K-means or

HDBSCAN.

 65

Figure 26 Comparison of Purity by Matrix size for HDBSCAN (𝒎𝒑𝒕𝒔 = 𝟒)

 66

Figure 27 Comparison of Purity by Matrix size and clustering Algorithms

(Four clusters)

 67

Figure 28 Comparison of Purity by Matrix size and Set for clustering

Algorithms (four clusters).

The K-means algorithm manifests problems to detect the 4 clusters in the array for each

dataset, as shown in Figure 27 and 28. In addition, HDBSCAN and KNN exhibit higher

mean purity when using distances from high dimensional matrices. Although, KNN has

excellent results, it was necessary a training step before, while HDBSCAN did not.

 68

4.3.3 Scenario 3: Eight groups

Table 19 presents the purity results when arrays with 20 covariance matrices per group

were used to simulate the data, as detailed in table 6.

Matrix

size
Metric Dataset

HDBSCAN DBSCAN KNN K-means

𝑚𝑝𝑡𝑠=4 𝑚𝑝𝑡𝑠=10
𝑚𝑝𝑡𝑠=4

eps=45
K=3 K=5 K=8 K=9

2
×

2

AIRM Set1
0.289(0.036) 0.206(0.032) 0.125(0.026) 0.557(0.039) 0.581(0.039) 0.483(0.039) 0.474(0.039)

Euclidean Set1
0.204(0.032) 0.006(0.006) 0.143(0.027) 0.322(0.037) 0.315(0.037) 0.293(0.036) 0.282(0.035)

LERM Set1
0.326(0.037) 0.195(0.031) 0.125(0.027) 0.558(0.039) 0.574(0.039) 0.480(0.039) 0.474(0.039)

Cholesky Set1
0.411(0.038) 0.279(0.035) 0.256(0.034) 0.569(0.039) 0.567(0.039) 0.434(0.039) 0.463(0.039)

5
×

5

AIRM Set1
0.252(0.034) 0.260(0.035) 0.147(0.028) 0.838(0.029) 0.830(0.029) 0.628(0.038) 0.654(0.037)

Euclidean Set1
0.316(0.036) 0.073(0.021) 0.124(0.026) 0.394(0.038) 0.387(0.038) 0.415(0.038) 0.416(0.039)

LERM Set1
0.263(0.035) 0.261(0.035) 0.135(0.027) 0.843(0.028) 0.837(0.029) 0.676(0.037) 0.672(0.037)

Cholesky Set1
0.510(0.039) 0.351(0.037) 0.249(0.034) 0.727(0.035) 0.718(0.035) 0.522(0.039) 0.502(0.039)

1
0

×
1
0

AIRM Set1
0.554(0.039) 0.550(0.039) 0.125(0.027) 0.995(0.005) 0.992(0.007) 0.787(0.032) 0.863(0.027)

Euclidean Set1
0.660(0.037) 0.499(0.039) 0.125(0.027) 0.598(0.038) 0.603(0.038) 0.733(0.034) 0.806(0.031)

LERM Set1
0.563(0.039) 0.526(0.039) 0.125(0.027) 0.994(0.006) 0.993(0.006) 0.851(0.028) 0.842(0.028)

Cholesky Set1
0.724(0.035) 0.614(0.038) 0.128(0.026) 0.936(0.019) 0.935(0.019) 0.670(0.037) 0.696(0.036)

5
0

×
5
0

AIRM Set1
1.0(0.0) 1.0(0.0) 0.625(0.038) 1.0(0.0) 1.0(0.0) 0.781(0.032) 0.752(0.034)

Euclidean Set1
0.993(0.006) 0.996(0.005) 0.237(0.033) 0.613(0.038) 0.615(0.038) 0.802(0.031) 0.797(0.032)

LERM Set1
1.0(0.0) 1.0(0.0) 0.625(0.038) 1.0(0.0) 1.0(0.0) 0.693(0.036) 0.795(0.032)

Cholesky Set1
0.879(0.025) 0.870(0.026) 0.248(0.034) 0.987(0.008) 0.983(0.010) 0.736(0.034) 0.768(0.033)

2
0
0

×
2
0
0

AIRM Set1
1.0(0.0) 1.0(0.0) 0.500(0.039) 1.0(0.0) 1.0(0.0) 0.744(0.034) 0.795(0.032)

Euclidean Set1
0.990(0.007) 1.0(0.0) 0.375(0.038) 0.609(0.038) 0.617(0.038) 0.830(0.029) 0.833(0.029)

LERM Set1
1.0(0.0) 1.0(0.0) 0.500(0.039) 1.0(0.0) 1.0(0.0) 0.741(0.034) 0.738(0.034)

Cholesky Set1
0.875(0.026) 0.875 0.250(0.034) 0.998(0.003) 0.999(0.002) 0.726(0.035) 0.817(0.030)

Table 18 Mean purity results based on 50 simulations. The number on

parenthesis are the Monte Carlo standard error of the mean purity. Eight

groups

 69

The comparison of purities in Figure 29 shows that, Cholesky’s metric still has higher mean

purity at low dimensional covariance matrices, however, LERM and AIRM metrics have

better evaluations when high-dimensional covariance matrices are used. It is important to

note that in this scenario with high dimensional matrices, Cholesky’s metric did not achieve

a perfect purity value, Euclidean distance shows higher purity mean value when compared

to Cholesky’s metric, as shown in Table 19.

Figure 29 Comparison of Purity by Metric and Matrix size for HDBSCAN

 (𝒎𝒑𝒕𝒔 = 𝟒), eight groups.

 70

HDBSCAN overperforms k-means when covariance matrices sizes are increased, as

shown in Figure 30. Notice, even with a training step, KNN has a lower mean purity than

HDBSCAN. In this scenario, k-means has the lowest values.

Figure 30 Mean Purity by Clustering Algorithms (𝒎𝒑𝒕𝒔 = 𝟒, k = 5 for KNN

and k=8 for k-means)

 71

4.3.4 Summary

The comparison between distance metrics is shown in Figures 31 and 32. Cholesky’s

metric evidences better performance in low dimensions than the other metrics.

Figure 31 Purity by metric for HDBSCAN (All groups)

Even though AIRM and LERM metrics manifest to have higher mean purity for high-

dimensional covariance matrices when HDBSCAN is used, as shown in Figure 32, an

 72

ANOVA test is necessary to confirm and to generalize this proposition for other

algorithms.

Figure 32 Comparison of Purity by metric using HDBSCAN

 73

Figure 33 Purity for clustering algorithms (All groups)

If the number of clusters present in the data is increased, the purity for the k-means

algorithm decreases, it is more difficult to detect appropriately to what group each

covariance matrix belongs to, as shown Figure 33. Moreover, Figure 33 shows that

HDBSCAN can achieve the performance of KNN for high dimensions, without any

training steps.

 74

In order to determine the significant factors associated to the performance of the clustering

algorithms according to the simulation studies, a linear model involving the main factors

in the simulation studies as well as some interaction terms are presented next.

Consider the following linear model to explain the mean purity in terms of the simulation

factors:

𝑃𝑢𝑟𝑖𝑡𝑦𝑖 𝑗 𝑘 𝑙 ∼ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖 + 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑗 ∗ 𝑀𝑎𝑡𝑟𝑖𝑥 𝑆𝑖𝑧𝑒𝑘 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠𝑙 + 𝜖𝑖𝑗𝑙𝑘 ,

where 𝑣𝑎𝑟(𝜖𝑖𝑗𝑘𝑙) = 𝜎2(|𝑣𝑘|
𝛿𝑗).

𝑖 = 1. 𝐴𝐼𝑅𝑀, 2. 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦, 3. 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛, 4. 𝐿𝐸𝑅𝑀.

𝑗 = 1.𝐻𝐷𝐵𝑆𝐶𝐴𝑁, 2. 𝐾 − 𝑚𝑒𝑎𝑛𝑠, 3. 𝐾𝑁𝑁

𝑘 = 2, 5, 10, 50, 200

𝑙 = 2, 4, 8

The heterogeneous variance for the error was tested and Table 19 presents the sum of

squares Type III for the model described previously, when K-means takes k = true number

of clusters (2,4 and8), k = 5 for KNN and 𝑚𝑝𝑡𝑠=4 for HDBSCAN.

 75

Response: Purity Df Chisq Pr(>Chisq)

(Intercept) 1 1187.888 <2.20E-16***

Algorithm 2 31.010 1.84E-13***

Matrix Size 1 84.880 <2.20E-16***

Metric 3 3.805 0.1468

Number of groups 1 63.652 1.483E-15***

Algorithm*Matrix size 2 25.673 1.03E-05***

Table 19 ANOVA type III for purity when the true number of clusters is

provided to k-means.

The distance metric is not significant in the performance of clustering, however, the

interaction between matrix size and clustering algorithm is significant as shown in Table

19. This is, the interaction between these variables is significative and their choice affects

the purity measure as shown in Figure 34.

Figure 34 Interaction plot: Matrix Size – Algorithm with true number of

cluster

 76

Even though, K-means is provided with the true number of clusters, HDBSCAN has

better results when the data is consisting of high-dimensional matrices.

Consider now varying the parameters for the clustering algorithms. Table 20 presents the

results of ANOVA type III for the all data from Tables 13 -18, except for DBSCAN. The

analysis evidences that all variables and interaction are significant for the model.

Response: Purity Df Chisq Pr(>Chisq)

(Intercept) 1 2245.5688 < 2.2E-16***

Algorithm 2 69.7561 7.123E-16***

Matrix Size 1 166.3418 < 2.2E-16***

Metric 3 8.8679 0.0311*

Number of groups 1 66.2438 3.98E-16***

Algorithm*Matrix size 2 62.3771 2.85E-14***

Table 20 ANOVA type III for all the data

The results now provide evidence for the fact that the choice of a distance metric is

significant for the quality of the clustering, as shown in table 20. In addition, the interaction

term between the clustering algorithm and the size of the covariance matrices is significant

in the results of the purity measure. Hence, no algorithm evidences better purity results if

the size of the covariance matrices is not take in account.

 77

Identically, the number of groups or clusters present in the synthetic data used in the

simulation studies are significant of the performance for clustering. These findings are

directly in line with previous studies discussed in the Section 2.4. The interaction

between the size of the covariance matrices and the distance metric is shown in Figure

35. Notice, that the choice of the Euclidean metric derives in lower mean purity.

Figure 35 Interaction plot: Matrix size - distance metric for all input

parameters

The implications of high covariance matrices are shown in Figure 36, where the K-means

algorithm manifests the lowest mean purity for all distance metrics used to calculate the

distance between the covariance metrics.

 78

Figure 36 Interaction plot for distance metric and algorithm with high

dimensional covariance matrices.

The result of the ANOVA test confirms the importance of the choice of the clustering

algorithm for arrays consisting of high dimensional matrices, as shown in table 21.

Furthermore, the selection of the distance metric is significant in the performance of the

clustering, where the mean purity is lowest when the Cholesky’s metric is used for

HDBSCAN and for K-means, as shown in Figure 36 and Table 21.

Response: Purity Df Chisq Pr(>Chisq)

(Intercept) 1 4367.8582 < 2.2e-16***

Algorithm 2 57.8413 2.53E-13***

Matrix Size 1 2.7282 0.16714

Metric 3 7.0265 0.07106.

Number of groups 1 59.85 1.02E-14***

Algorithm*Matrix size 2 0.911 0.6339

Table 21 ANOVA test type III for high dimensional covariance matrices

 79

5 REAL DATA PROBLEMS

A real data problem is presented to show the applicability of the algorithms in daily life

phenomena.

For this example, provided by (Frey and Slate, 1991), the objective was to identify each of

a large number of black-and-white rectangular pixel displays as one of the 26 capital letters

in the English alphabet. The character images were based on 20 different fonts and each

letter within these 20 fonts was randomly distorted to produce a file of 20,000 unique

stimuli. Each stimulus was converted into 16 primitive numerical attributes (statistical

moments and edge counts) which were then scaled to fit into a range of integer values from

0 through 15. Table 19 shows the variables used in the study and the first 10 rows of data.

No. lettr x.box y.box Width high onpix x.bar y.bar x2bar y2bar

1 T 2 8 3 5 1 8 13 0 6

2 I 5 12 3 7 2 10 5 5 4

3 D 4 11 6 8 6 10 6 2 6

4 N 7 11 6 6 3 5 9 4 6

5 G 2 1 3 1 1 8 6 6 6

6 S 4 11 5 8 3 8 8 6 9

7 B 4 2 5 4 4 8 7 6 6

8 A 1 1 3 2 1 8 2 2 2

Table 22 Letter recognition problem

5.1 Letter Recognition Problem

 80

That is, this problem involved the clustering of matrices to identify the groups of letters by

their form of writing in the English alphabet. First, the covariance matrices of each letter

must me calculated using the 16 variables or attributes.

Using three different algorithms with the AIRM distance, the letters were clustered and the

obtained results are shown in Table 23.

No. Letter

HDBSCAN DBSCAN K - means

𝑚𝑝𝑡𝑠=2 𝑚𝑝𝑡𝑠=3 eps=8, 𝑚𝑝𝑡𝑠=2 eps=10, 𝑚𝑝𝑡𝑠=3 k=7 k=10

1 B 7 2 1 1 7 4

2 R 7 2 1 1 7 4

3 P 6 2 2 1 7 1

4 F 6 2 2 1 7 1

5 C 5 2 3 1 2 3

6 G 5 2 3 1 2 3

7 I 2 2 0 0 3 10

8 J 2 0 0 0 3 10

9 U 1 1 0 2 4 6

10 V 1 1 0 2 4 6

11 M 3 2 4 1 5 2

12 N 3 2 4 1 5 2

 81

13 O 5 2 3 1 2 3

14 E 5 2 0 1 6 8

15 Q 5 2 0 1 2 9

16 T 1 1 0 2 1 7

17 K 4 2 5 1 6 5

18 X 4 2 5 1 6 5

19 Y 1 1 0 2 4 6

20 S 0 2 0 1 6 5

21 H 4 2 5 1 5 2

Table 23 Classification comparison for each clustering algorithm with AIRM

Table 23 shows how the choice of the input parameter significantly modifies the number

of clusters and the clustering of the letters. DBSCAN has several problems to cluster I

and J, and it labeled them as noise, but it clustered the letters K, X and H in the same

group. In addition, K-means presents problems to detect noise and sensitivity to changes

of the input parameter k.

HDBSCAN offers a better performance when grouping the letters by their shape. This is

confirmed by observing how the letter S is classified, for example. It was much more

consistent to clustering than K-means, given that the true number of clusters is not

known. Now, consider if the distance metric is varied and using HDBSCAN algorithm

with 𝑚𝑝𝑡𝑠 = 2, the results are shown in Table 24.

 82

No. Letter AIRM LERM Euclidean Cholesky

1 B 7 7 3 3

2 R 7 7 3 3

3 P 6 6 3 3

4 F 6 6 3 3

5 C 5 5 3 3

6 G 5 5 3 3

7 I 2 2 3 2

8 J 2 2 0 0

9 U 1 1 1 0

10 V 1 1 3 2

11 M 3 3 1 0

12 N 3 3 1 0

13 O 5 5 3 1

14 E 5 5 3 1

15 Q 5 5 3 1

16 T 1 1 2 0

17 K 4 4 3 0

18 X 4 4 3 1

19 Y 1 1 2 0

20 S 0 0 3 1

21 H 4 4 1 0

Table 24 Classification comparison for each distance metric with HDBSCAN

From Table 24, AIRM and LERM metrics offer better clustering than other metrics based

in number of clusters and the letters classified to each group. For example, letter C cannot

be in the same group than R, as Euclidean and Cholesky metrics predicted.

Figure 37 offers a dendrogram for the recognition problem using HDBSCAN and AIRM

metric. Figure 38 shows a cluster tree for this problem, where y axis indicates the 𝜖 -

value chosen to have each form group.

 83

Figure 37 Dendrogram for HDBSCAN and 𝒎𝒑𝒕𝒔=2

Figure 38 Cluster tree for letter recognition problem

 84

6 CONCLUSIONS

• AIRM and HDBSCAN is the most expensive running time combination for long

arrays, but it is worth due to its effectiveness for high dimensional matrices.

• LERM and AIRM metrics have similar purity evaluations in all scenarios, but

AIRM exhibits more computational costs for larger arrays, however the LERM

metric needs more execution time when the size of the matrices increases. The

choice of a distance metric depends of the application and resources available to

the analyst.

• K-means and HDBSCAN have comparable results for small number of clusters and

high dimension covariance matrices, however when the input parameters vary,

HDBSCAN’s purity values do not change considerable; k-means suffers when the

input parameters are manipulated, this is a very important issue when dealing with

real problems. These findings demonstrate that HDBSCAN offers the highest

robustness for the four analyzed algorithms, and it is consistent with previous

finding for n-dimensional vectors (McInnes et al, 2016).

• Cholesky and AIRM distance metrics present diverse results: Cholesky’s distance

metric is more effective at low dimensions but AIRM distance is recommended for

high dimensional matrices (more than 10 × 10).

• HDBSCAN is the most effective unsupervised algorithm; K-means is also

effective, but the number of clusters must be known in advance, besides K-means

should not be used for considerable number of clusters. This is a problem when we

are dealing with real problems application as it was illustrated in the letter

recognition example.

 85

• When using high dimensional matrices, HDBSCAN is slightly affected by the

metric chosen, however DBSCAN yields different results by choosing 𝜖 with the

same 𝑚𝑝𝑡𝑠, where it is necessary to scan different distance results before selecting

the right 𝜖 value. For example, with DBSCAN when changing from set 1 to set 2

in any number of groups, it was necessary to change the value of the parameter 𝜖

but it was not necessary with HDBSCAN.

• K-means presents difficulties to cluster multi group datasets, HDBSCAN

outperformed it in purity evaluations for 3 different datasets. For matrices with low

dimensions there are no noticeable differences between these algorithms. When the

dimensions of the covariance matrices dimensions were increased, these

differences were remarkable as shown in Figures 34 and 36.

• The crucial aspect in clustering problems is that there is no optimal solution, the

analyst should decide or not if the solution is appropriated for the problem.

RECOMMENDATIONS

• Given the considerable execution time the HDBSCAN takes to clustering, the

implementing of the new Accelerated HDBSCAN (McInnes et al 2017) in R is

recommended. It provides comparable performance to DBSCAN in time but

superior results in qualitative clustering.

• Use high performance cluster computers to increase the number of simulations

and increase the precision when comparing the performance of the algorithm.

• Future implementations should consider the second-order approximation to AIRM

(SOA-AIRM) to reduce execution time while keeping its performance.

 86

• Propose different scenarios to generate synthetic data with multiple groups, for

instance, comparing Auto Regressive SPD varying the 𝜌 value only.

 87

REFERENCES

Aggarwal C.C., Hinneburg A., Keim D.A. (2001) On the Surprising Behavior of Distance

Metrics in High Dimensional Space. In: Van den Bussche J., Vianu V. (eds) Database

Theory — ICDT 2001. ICDT 2001. Lecture Notes in Computer Science, vol 1973.

Springer, Berlin, Heidelberg

Barnard, Ben (2017). rWishart: random wishart matrix generation. https://cran.r-

project.org/web/packages/rWishart/index.html Last visit: 12/29/2017

Campello, R. Moulavi, D. Zimek, A. Sander, J. (2015) Hierarchical Density Estimates for

Data Clustering, Visualization, and Outlier Detection. ACM Transactions on Knowledge

Discovery from Data,New York : ACM,v. 10, n. 1, p. 5:1-5:51, Jul.2015.

Dang, Shilpa. (2015). Performance Evaluation of Clustering Algorithm Using Different

Datasets. IJARCSMS. 3. 167-173.

Dryden, Ian. Koloydenko, Alexey. Zhou, Diwei (2009) Non-euclidean statistics for

covariance matrices with application to diffusion tensor imaging. The Annals of statistics

Vol. 3 No. 3. 1102-1123.Institute of Mathematicals statisticas. 2009

El-Sonbaty, Y., Ismail, M., and Farouk, M. (2004). An efficient density-based clustering

algorithm for large databases. In 16th IEEE international conference on tools with

artificial intelligence, pages 673 - 677. Boca Raton FL: IEEE Computer Society.

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Second international

 88

conference on knowledge discovery and data mining, pages 226 - 231. Portland, OR:

AAAI Press.

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Second international

conference on knowledge discovery and data mining, pages 226 - 231. Portland, OR:

AAAI Press.

Förstner, Wolfgang. Moonen,Boudewijn (2003). A metric on covariance matrices. In

Geodesy-The Challenge of the 3rd Millennium, pages 299 $-$ 309. Publisher: Springer

Berlin Heidelberg. Online ISBN 978-3-662-05296-9.

Gan, Guojun. Ma, Chaoqun. Wu, Jianhong. (2007) Data clustering: theory, algorithms,

and applications. ASA-SIAM series on statistics and applied probability. Pages 219 - 220.

ISBN: 978-0-898716-23-8.

Grafarend, E. W. (1972): Genauigkeitsmasse geodätischer Netze. DGK A 73, Bayerische

Akademie der Wissenschaften, München, 1972.

Genz, Alan. Bretz, Frank. Miwa, Tetsuhisa. Mi, Xuefei (2015). Mvtnorm: multivariate

normal and t distributions. https://cran.r-project.org/web/packages/mvtnorm/index.html

Last visit 5/30/2018

Hahsler, Michael. Piekenbrock, Matthew. Arya, Sunil. Mount, David (2017). Package

‘dbscan’. https://cran.r-project.org/web/packages/dbscan/dbscan.pdf

Last visit: 3/29/2017

 89

Lee, Kyoungjae. Lin, Lizhen. You, Kisung (2018). Statistical tools for covariance

analysis. https://cran.r-project.org/web/packages/CovTools/index.html Last visit:

5/30/2018.

Matteucci, Matteo (2014) A tutorial on clustering algorithm.

https://home.deib.polimi.it/matteucc/clustering/tutorial_html/ Last visit: 1/24/2018.

McInnes, L.Healy, J.Astels, S.(2016). The HDBSCAN clustering library.

http://hdbscan.readthedocs.io/en/latest/index.html Last visit: 3/28/2017.

McInnes, Leland. Healy, John (2017). Accelerated Hierarchical Density Clustering. 2017

IEEE International Conference on Data Mining Workshops (ICDMW). 18-21 Nov. 2017.

Page(s):33 – 42. Electronic ISSN: 2375-9259

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research 12 (2011), 2825-2830.

P. W. Frey and D. J. Slate (1991). "Letter Recognition Using Holland-style Adaptive

Classifiers".Machine Learning Vol 6 #2 March 91.

Piekenbrock, Matt. Hahsler, Michael (2016). HDBSCAN with the dbscan package.

https://cran.r-project.org/web/packages/dbscan/vignettes/hdbscan.html. Last visit:

9/30/2017.

Ripley, Brian (2015). Functions and classification. https://cran.r-

project.org/web/packages/class/index.html Last visit 5/30/2018

 90

Qiu, Weiliang. Joe, Harry (2015). Random cluster generation (with specified degree of

separation). https://cran.r-project.org/web/packages/clusterGeneration/index.html. Last

visit: 12/30/2017.

Satya, Chaitanya & , Sripada & M Sreenivasa Rao, Dr. (2011). Comparison of purity and

entropy of k-means clustering and fuzzy c means clustering. Indian Journal of Computer

Science and Engineering. 2.

Taboga, M. (2010) "Lectures on probability and statistics", https://www.statlect.com.

Scikit-learn: Machine Learning in Python, Pedregosa et al., Journal of machine learning

research. 12, pp. 2825-2830, 2011.

Thanh N. Tran, Klaudia Drab, Michal Daszykowski (2015), "Revised DBSCAN

algorithm to cluster data with dense adjacent clusters", Chemometrics and Intelligent

Laboratory Systems, 120:9296. DOI: 10.1016/j.chemolab.2012.11.006

Yger, Florian. Lotte, Fabian. Sugiyama, Masashi (2015). Averaging covariance matrices

for EGG signal classification based on the CSP: An empirical study. Signal Processing

Conference (EUSIPCO), 2015 23rd European. Electronic ISSN: 2076-1465

Zhang, Zijun (2012). K- means algorithm (Online). Available:

http://user.engineering.uiowa.edu/~ie_155/lecture/K-means.pdf

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7362053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7362053

