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ABSTRACT 

 

In this thesis, structural damage identification methods based on changes in the 

dynamic characteristics of the structure are examined and new methodologies are also 

developed. These are based on the modal curvature matrix, the Frequency Response 

Function (FRF) curvature and the Discrete Wavelet Transform. Damage indices based on 

the concept of Receptance-Energy are presented to predict the damage location and to 

estimate the severity of the damage directly from the measured FRF. The methods are 

evaluated for several damage scenarios in a simply-supported beam and a plane frame. 

The damage is simulated by reducing the stiffness of assumed elements and by 

introducing cracked elements at different locations. The results of the analyses indicate 

that the proposed method based on the Receptance-Energy performs well in detecting, 

locating and quantifying damage in single and multiple damage scenarios. The numerical 

examples show that the Wavelets Transform analysis is capable of detecting the 

discontinuities in the FRF signal to locate damage.  
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RESUMEN  

 

 Esta tesis examina los métodos de identificación de daño estructural que se basan 

en cambios de las características dinámicas de la estructura. También se formulan nuevos 

métodos de identificación de daño basados, respectivamente, en la matriz de curvatura 

modal, la curvatura de la Función Respuesta en Frecuencia y en la aplicación de la 

Transformada Discreta de “Wavelets” para indicar la localización del daño mediante la 

detección de discontinuidades en la señal de la respuesta. Los índices del daño basados en 

el concepto de Energía de Receptancia, se conciben para localizar y estimar la severidad 

del daño en una estructura directamente de la Función Respuesta en Frecuencia. Para 

evaluar la efectividad de los métodos propuestos se realizaron simulaciones numéricas 

mediante modelos de elementos finitos de una viga simplemente apoyada y un pórtico 

plano. Para cada estructura se investigan varios escenarios de daño, en los cuales el daño 

estructural se simula mediante la reducción de la rigidez de algunos elementos y la 

introducción de elementos agrietados. Los resultados indican que el método propuesto 

basado en la Energía de Receptancia es efectivo para localizar y cuantificar el daño en 

escenarios de daño múltiple. Asimismo, los ejemplos muestran que el método basado en 

la Transformada Discreta de “Wavelets” puede localizar efectivamente las zonas con 

daño y como esta metodología no requiere la respuesta de la estructura sin daño, puede 

proporcionar una alternativa a los métodos de identificación de daño basados en el 

análisis modal. 
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CHAPTER I 

 

INTRODUCTION 

 
 

The condition assessment of existing civil infrastructures such as buildings, 

highway and railways bridges and structures of airports, ports, and water treatment plants 

is crucial to prevent potential catastrophic events and for planning the future investments 

in repair and rehabilitation of this infrastructure. Also, the rapid assessment after strong 

earthquakes and hurricanes of critical structures like hospitals, fire stations, power 

stations and major bridges, is imperative for the concerned government agencies. Many 

infrastructure components are now decaying because of age, deterioration, and lack of 

maintenance or repair. Additionally, some of the existing structures were not designed for 

the current provisions specified in modern design codes.  

Current nondestructive damage detection (NDD) techniques are either visual or 

are based on experimental methods such as acoustic or ultrasonic techniques, magnetic 

field procedures, radiography, etc. In general, many experimental methods require that 

the damaged region be identified a priori, and that the segment of the structure being 

examined must be easily accessible. Subjected to these constraints, these methods can 

detect damage on or near the surface of the structure.   

The civil engineering community is especially aware of the limitations of the 

condition assessment based on visual inspections frequently used in the current practice. 

1 
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Typical routine applications of condition assessment are applied to bridges, dams, and 

buildings for evaluating seismic vulnerability or post-earthquake damage, and other types 

of structures after overloadings, accidents, or when new and more severe environmental 

loads are expected.  

One way to overcome the previously mentioned limitations is by using global 

damage detection methods. Structural damage identification based on changes in 

dynamic characteristics provides a global way to evaluate the structural condition. These 

methods are based on the premise that modal parameters (i. e., natural frequencies, mode 

shapes, modal damping ratios, etc.) are a function of the physical properties of the 

structure (stiffness, damping, mass and boundary conditions). Therefore, changes in the 

stiffness or flexibility of the structure will cause changes in the modal properties. The 

need for new structural damage detection methods that can be applied to complex 

structures has led to the development of methodologies that examine changes in the 

vibration characteristics of the structure. In view of the above, it is important to examine 

some of the global damage detection methodologies for the structural damage 

identification currently in use. 

1.1 PREVIOUS WORKS 

During the last three decades a variety of dynamics-based damage identification 

methods have been proposed. Doebling et al. (1996) provided an extensive review on the 

subject.  
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1.1.1 Classification of damage. 

The effects of damage on a structure can be classified as linear or nonlinear. A 

linear damage situation is defined as a case where an initially linear-elastic structure 

remains linear-elastic after damage. The changes in modal properties are the result of 

changes in the geometry and/or the material properties of the structure, but the structural 

response can still be modeled using linear equations of motion.  

Nonlinear damage refers to a case when an initially linear elastic structure 

behaves in a nonlinear manner after the damage has occurred (Doebling et al. 1996). In 

this work only the problem of linear damage detection is studied.  

A different classification scheme for damage-identification methods defines four 

levels of damage identification, as follows (Rytter 1993): 

• Level 1: Only whether damage is present in the structure is determined. 

• Level 2: Level 1 plus determination of the geometric location of the damage. 

• Level 3: Level 2 plus quantification of the severity of the damage. 

• Level 4: Level 3 plus prediction of the remaining service life of the structure.  

 

The modal-based damage identification methods that do not make use of some 

structural model primarily provide Level 1 and Level 2 damage identification. When 

modal-based methods are coupled with a structural model, a Level 3 damage detection 
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can be obtained in some cases. Level 4 prediction is generally associated with the fields 

of fracture mechanics, fatigue life analysis and structural design assessment. 

1.1.2. Methods based on frequency and mode shape changes. 

One of the approaches in detecting damage has been to use changes in the modal 

parameters, mainly changes in the modal frequencies. Cawley and Adams (1979) 

provided a formulation to detect damage in composite materials from frequency shifts. A 

number of mode pairs is considered for each potential damage location, and the pair 

giving the lowest error indicates the location of the damage. The formulation does not 

account for possible multiple-damage locations.  

Yuen (1985) presented a systematic study of the relationship between damage 

location, damage size, and the changes in the eigenvalues and eigenvectors of a cantilever 

subjected to damage. A finite element model of a cantilever with uniform cross-section 

was chosen to provide data for the analysis. In this study it was assumed that damage in 

the structure would affect only the stiffness matrix but not the inertia matrix in the 

eigenproblem formulation. The changes in the eigenvalues and eigenvectors were shown 

to follow a definite trend in relation to the location and extent of damage.  

Stubbs and Osegueda (1990a, 1990b) presented a method for damage 

identification based on changes in modal characteristics. Expressions relating variations 

in stiffnesses of structural members to the variations in modal stiffness were generated 

using matrix structural analysis. Damage was defined as a reduction in the stiffness of 
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one of the elements forming the structure. The stiffness reductions were located by 

solving a general inverse problem. The authors demonstrated that the damage locations in 

structural elements and the magnitudes could be predicted. Damage was predicted at 

single and multiple locations in a simply-supported beam. For the damage cases 

investigated the formulation predicted the damage 91 percent of the time.  

Salawu and Williams (1993) investigated the performance of four damage 

detection methods. One method is based on changes in the eigenparameters and the 

others use system identification and model updating procedures. The results showed that 

the eigenparameter method is the best, although it was incapable of locating the damage 

in a lightly stressed zone.  

Ko et al. (1994) proposed a damage detection method combining Sensitivity 

Analysis and Modal Assurance Criterion (MAC)/Coordinate Modal Assurance Criterion 

(COMAC) for a steel frame. Before and after the structure was damaged, six sets of 

vibration data were measured under two different joint conditions (rigid and pinned) and 

two different damage locations (beam-column and column-base connections). The 

sensitivities of the modal vectors obtained analytically to particular damage conditions 

were computed to determine which DOFs are most significant. Then a MAC analysis is 

applied between the measured modes from the undamaged frame and damaged frame to 

find the correlated mode pairs. Using the modes selected with the above analysis, the 

COMAC is computed and used as an indicator of damage. The results demonstrate that 

particular mode pairs can indicate damage, but when all available mode pairs are used, 

the COMAC results cannot indicate the right damage location.  
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Ren and De Roeck (2002) proposed a damage identification method based on 

changes in frequencies and mode shapes of vibration for predicting damage location and 

severity. The method is applied at an element level with a finite-element model. The 

element damage equations were established through the eigenvalue equations that 

characterized the dynamic behavior. Several solution techniques are discussed and 

compared. The method was verified by simulating a number of damage scenarios in 

beams and it predicted the exact location and severity of damage. It was demonstrated 

that by multiplying the damaged eigenvalue equations with the undamaged or damaged 

mode shapes provides more equations and guarantees the damage localization.  

1.1.3. Methods based on modal curvature/modal strain energy. 

Kim et al. (2003) presented a methodology to locate and estimate the size of 

damage in structures for which a few natural frequencies or a few mode shapes are 

available. A frequency-based damage detection (FBDD) method and a mode-shape-based 

damage detection (MBDD) method are presented. A damage index algorithm to localize 

and estimate the severity of damage from monitoring changes in modal strain energy is 

formulated. The FBDD method and the MBDD method were evaluated for several 

damage scenarios by locating and sizing damage in numerically simulated prestressed 

concrete beams. The result of the analyses indicates that the methods correctly localize 

the damage and accurately estimate the sizes of the cracks simulated in the test beam.  

Salawu and Williams (1994) evaluated the performance of the curvature mode 

shape method and the mode shape relative difference method. They found that the 
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performance using experimental data was poor. The results showed that the procedures 

were unsatisfactory in predicting the most severe damage case, and were unable to 

satisfactorily differentiate between damage cases with close degrees of severity.  

Dong et al. (1994) carried out a systematic analytical study and experiments to 

correlate the crack of a beam with changes in its modal parameters. The sensitivity to 

both crack location and crack size was developed for each modal parameter. They 

examined a parameter which is based on the change in the strain mode shape and another 

one that depends on natural frequency. The authors showed that the strain eigenparameter 

is more sensitive to the size of the crack than the frequency eigenparameter.  

Pandey et al. (1991) proposed a parameter called curvature mode shape to identify 

and locate damage in a structure. By using a cantilever and a simply supported analytical 

beam models, they showed that the absolute changes in the curvature mode shapes are 

localized in the region of damage and hence they can be used to detect damage in a 

structure. The changes in the curvature mode shape increase with the increasing size of 

damage and this information can be used to obtain the amount of damage in the structure. 

A finite element analysis was used to obtain the displacement mode shapes of the two 

models. By using a central difference approximation, curvature mode shapes were 

calculated from the displacement mode shapes.   
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1.1.4. Methods based on changes in flexibility. 

Pandey et al. (1994) presented a method to detect the presence and location of 

structural damage based on changes in the measured flexibility of the structure. The 

authors showed that the flexibility matrix can be accurately estimated from a few of the 

lower frequency modes of vibration of the structure, which can be easily measured. First, 

the effect of damage in a structure on its flexibility was studied with simple analytical 

beam models. By using these analytical models, the effectiveness of using changes in the 

flexibility matrix in detecting and locating damages is demonstrated. The procedure 

formulated was tested with experimental data collected on a wide-flange steel beam.  

Raghavendrachar and Aktan (1992)  presented a multireference impact testing of 

a bridge in which frequency-response functions (FRF) were measured and a large number 

of modal parameters were reliably identified. The mode shape coefficients obtained by 

processing the measured FRF were directly transformed into flexibility of the test bridge. 

The authors presented analytical studies using a calibrated analytical model to 

demonstrate that the flexibility coefficients are more sensitive to local damage than either 

the frequencies or mode shapes.  

Mannan and Richardson (1992) proposed a method for determining the mass, 

stiffness, and damping properties of the structure from the measured Frequency Response 

Functions (FRFs). They used an approach that involves curve fitting the FRFs directly to 

estimate the mass, stiffness, and damping matrices. The authors found that the higher 

frequency modes are most important for detecting faults which cause stiffness changes.  
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  Park et al. (1988) introduced a method to detect stiffness damages based on 

the error matrix. This matrix is defined as the difference between the stiffness matrices of 

the damaged and undamaged structures. This method proved to be useful when the 

stiffness changes were large, but it was not effective for searching out small local defects. 

The weighted-error-matrix (WEM) method was tested to magnify the effect of small 

stiffness reduction in the error matrix. Through the WEM the damaged area in the error 

matrix was magnified by adding the information from the eigenproperties changing 

patterns through sensitivity analysis. By applying this formulation to beam and plate 

models, they concluded that the WEM is a better method than the error-matrix method 

for identifying defects.  

 Gysin (1986) tested the error matrix method on a 9 degrees of freedom 

spring-mass-system and on a beam in bending. Three different reduction techniques were 

used to reduce the stiffness or mass matrix. It was demonstrated that the efficiency of the 

method depends on the type of matrix reduction used and on the number of modes 

utilized to form the flexibility matrices.  

1.1.5. Methods based on the Frequency Response Function. 

Lee and Shin (2002) proposed a structural damage identification method based on 

the frequency response function for beam structures. The damage within a beam structure 

was characterized by introducing a damage distribution function. It was shown that 

damage may induce coupling between vibration modes. They investigated the effects the 

accuracy of the predicted vibration characteristics of damaged beams of the damage-
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induced coupling of vibration modes and the higher vibration modes omitted in the 

analysis on were numerically investigated. The feasibility of the proposed method was 

verified through numerically simulated damage identification tests.  

Sampaio et al. (1999) reported a frequency response function curvature method 

that covers three steps of the process of damage detection, namely existence, localization, 

and extent. The technique is based on the measured data without the need for any modal 

identification. The method was described theoretically and compared with two methods: 

the mode shape curvature method and the damage index method. Numerically generated 

data from a lumped-mass system and experimental data from a real bridge were used to 

illustrate the application of the proposed procedure.  

1.1.6. Methodologies based on the Wavelet Transform. 

Ovanesova and Suarez (2004) applied the wavelet transform to detect cracks in 

single structural frameworks, such as beams and plane frames. They showed that the 

procedure can detect the localization of the cracks by using a response signal from either 

static or dynamic loads. The results show that if a suitable wavelet is selected, the method 

is capable to extract damage information from these response signals.  

Hou et al. (2000) used a simple structural model with multiple breakable springs 

subjected to a harmonic excitation and showed that the wavelets transform can be 

successfully used to identify both abrupt and cumulative damages.   
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Wang and Deng (1999) presented a structural damage detection technique based 

on wavelet analysis of spatially distributed structural response measurements. In the  

numerical examples, the displacement response was analyzed with the wavelet transform, 

and the presence of the crack was detected by a sudden change in the spatial variation of 

the transformed response. This damage detection technique may be used for structural 

health monitoring in situations where spatially distributed measurements of structural 

response in regions of critical concern can be obtained with networks of distributed 

sensors and optical fibers.  

Liew and Wang (1998) also reported the application of the wavelet theory for 

crack identification in structures. The crack identification makes use of the wavelet 

theory applied to a simply supported beam with a transverse on-edge open crack. A 

mathematical model of the cracked beam was derived and the wavelet expressions in the 

space domain were proposed. For comparison purposes, the simply supported cracked 

beam was analyzed using both the eigentheory and the wavelet-based method.  

1.1.7. Modeling of cracked beam elements. 

Qian et al. (1990) derived an element stiffness matrix of a beam with a crack by 

first integrating the stress intensity factors, and then used this to develop a finite element 

model of a cracked beam. This model was applied to a cantilever beam with an edge-

crack, and their eigenfrequencies were determined for different crack lengths and 

locations. The results were compared with experimental data. In order to consider the 

effect of crack closure, the modal parameters were identified by means of an 
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identification technique in the time domain. The authors proposed a direct method for 

determining the crack position, based on a relationship between the crack and the 

eigencouple (eigenvalue and eigenvector) of a beam.  

Haisty and Springer (1988) derived a general beam element which contains a 

symmetric discontinuity in the form of a double-sided open crack. The finite element 

model was developed by determining the force-displacement relationships for two 

undamaged beams connected by a set of springs. They argued that the element may be 

used to model damage in complex structures. The method used to determine the stiffness 

terms necessary to model the damage in an element was explained.  

Gounaris and Dimarogonas (1988) developed a finite element for a cracked beam 

that can be used to model structures for finite element analysis. Strain energy 

concentration arguments lead to the development of a compliance matrix for the behavior 

of the beam in the vicinity of the crack. This matrix was used to develop the stiffness 

matrix for the cracked beam element and the consistent mass matrix. The element 

developed was used to evaluate the dynamic response of a cracked cantilever beam to a 

harmonic point force excitation.   

1.2 RESEARCH OBJECTIVES 

The main objective of this research is to implement, compare and evaluate the 

global methods currently proposed for damage identification that use changes in the 

modal properties of the structure (i.e. modal frequencies and  mode shapes) and to 
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provide an assessment of the effectiveness of the methodologies studied by applying 

them to the same structures. Another important objective is to formulate new structural 

damage identification methodologies based on the methods examined that can be used for 

damage assessment of existing structures. 

 Two plane structures are considered in this work:  a simply-supported beam 

and a plane frame modeled using the Euler-Bernoulli beam theory. Several damage 

scenarios are investigated. The structural damage is simulated by reducing the stiffness of 

specific elements and by introducing cracks at different locations using specially 

formulated finite elements. A comparison of the results obtained with the different 

damage localization methods analyzed is carried out in order to establish their limitations 

for use in structural damage detection. This work is limited only to the analytical and 

numerical simulation aspects of the damage identification problem. It is expected that by 

screening the most promising methods for damage identification, the number of 

techniques that must be experimentally verified in a next stage can be reduced 

substantially.    

1.3 SIGNIFICANCE OF THE RESEARCH WORK  

The results of this research will provide an evaluation of the effectiveness of the 

global damage identification methods selected. Moreover, original contributions to the 

damage identification field will be made. The first damage identification methodology 

developed in this thesis is based on the modal curvature matrix. The second proposed 

methodology is based on a new concept, called the Receptance-Energy. Damage indices 
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are presented to predict the damage location and to estimate the severity of the damage in 

a structure directly from its Frequency Response Function (FRF). The third method 

proposed is based on the curvature of the FRF and the fourth damage identification 

methodology is based on the application of the Discrete Wavelet Transform to indicate 

the location of damage by detecting the discontinuities in the FRF signal.  

1.4 ORGANIZATION OF THE THESIS 

Chapter I is a general introduction to the thesis. The justification and problem 

description is discussed. The chapter continues with a literature review of the previous 

works on the subject of structural damage identification and crack modeling. The 

objectives and the significance of the research work presented in the thesis are defined. 

Chapter II presents the finite element model used to model the crack-like damage 

in frame structures. The stiffness matrix of the cracked beam element is formulated for 

elements with rectangular cross section.  

Chapter III contains a brief introduction to the modal analysis theory. The 

structures considered in the thesis are described and the damage scenarios used to 

compare the damage identification methods are defined. Next, a direct comparison of the 

natural frequencies and mode shapes of the selected undamaged and damaged structures 

is presented.  

Chapter IV introduces several structural damage identification methods based on 

changes in displacement mode shapes. The methodologies studied are coded in 
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MATLAB and numerical simulations are performed to compare the effectiveness of the 

procedures to locate damage in different damage scenarios simulated in a simply-

supported beam and in a plane frame.  

Chapter V presents the application of the damage identification methods that use a 

flexibility matrix defined in terms of experimentally measured modal properties. 

Numerical examples are prepared to illustrate the effectiveness of the procedure to locate 

damage. The same damage scenarios and structures analyzed in the previous chapter are 

considered.  

Chapter VI examines several damage identification methods based on the modal 

curvature and modal strain energy. The modal curvatures are numerically generated. A 

structural damage identification method that is based on a new modal matrix referred to 

as the “curvature-energy matrix” is proposed. The proposed and existing methodologies 

studied are implemented in MATLAB and numerical simulations are performed to 

compare the effectiveness of the procedures to locate damage for the same damage 

scenarios described in Chapter III.  

Chapter VII contains the formulation of several damage identification methods 

based on the FRF-curvature.  A new structural damage identification method based on the 

concept of Receptance-Energy is proposed. The damage location and the severity of the 

damage are estimated by means of proposed damage indices. At the end of the chapter 

several examples are presented to verify the effectiveness of the proposed methodology.  
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Chapter VIII begins with a review of the continuous and discrete wavelet 

transforms. Next, a damage identification method based on the discrete wavelet transform 

is formulated. In this methodology the Receptance FRF and the FRF-first derivative are 

used as the response signal. The applicability of this new procedure is illustrated with 

numerical examples. It is shown that the proposed method does not require to know the 

response or the dynamic properties of the undamaged structure.   

The last chapter of the thesis, chapter IX, contains conclusions and 

recommendations for future research. 
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CHAPTER II 

 

MODELING OF CRACK-LIKE DAMAGE 
 

2.1 INTRODUCTION 

In most cases, the damage to a structure is due to the presence of cracks.  

Vibration monitoring has been a very feasible way to detect damage in the structure. This 

kind of monitoring work is based on a better understanding of the relationship between 

crack location, crack size and the corresponding changes in modal parameters, such as 

natural frequencies and vibration modes. A crack on a beam element introduces 

considerable local flexibility due to the strain energy concentration in the vicinity of the 

crack tip. In this chapter the finite element model for the cracked prismatic beam with an 

on-edge open crack proposed by Qian et al. (1990) is presented. This model was also 

evaluated by Dong et al. (1994). The numerical results obtained with this model agree 

well with the experimental results. Herein, this finite element model is adopted to 

simulate the crack-like damage in the elements. 

2.2 THE STIFFNESS MATRIX OF THE CRACKED ELEMENT 

According to the principle of Saint-Venant, the stress field is affected only in the 

region adjacent to the crack. It is very difficult to find an appropriate shape function to 

approximate the kinetic energy and elastic potential energy approximately, because of the 

discontinuity of deformation in the cracked element. The calculation of the additional 
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stress energy of a crack, however, has been studied in fracture mechanics and the 

flexibility coefficient expressed by a stress intensity factor can be easily derived by 

applying the Castigliano's theorem in the linear-elastic range.  

As an example, a beam can be divided into elements and the behavior of the 

elements located to the right of the cracked element may be regarded as external forces 

applied to the cracked element, while the behavior of elements situated to its left as 

constraints (see Figure 2.1). Thus, the flexibility matrix of a cracked element with 

constraints may be calculated. From the condition of equilibrium, the stiffness matrix of 

the cracked element in the free-free state can be easily derived.  

Neglecting shear action, the strain energy of an undamaged element is 

( )(0) 2 2 2 31 / 3
2

W M L MPL P L
EI

= + +                                                                              (2.1) 

 

Where E is the elastic modulus, P and M are the shear and bending internal forces at the 

right node, I the moment of inertia of the undamaged element and L the length of the 

finite element. For a rectangular beam having width b and thickness h the additional 

strain energy due to the crack can be written as 

 

( ) ( )2 2 2
(1)

0

1a I II III

p

K K v K
W b da

E E

⎡ ⎤+ +
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∫                                                                          (2.2) 
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where KI ,KII, KIII are stress intensity factors for opening type, sliding type and tearing 

type cracks, respectively. Ep=E for plane stress, Ep=E/(1-ν²) for plane strain, and a is the 

crack depth. Taking into account only bending, equation (2.2) becomes   

 

( ){ }2(1) 2

0
/

a

IM IP IIP pW b K K K E da⎡ ⎤= + +⎣ ⎦∫                                                  (2.3) 

 
 
where KIM ,KIP, KIIP are stress intensity factors for opening-type and sliding-type cracks 

due to M and P, respectively 

 
( ) ( )26 /IM IK M bh aF sπ=   

( ) ( )23 /IP IK PL bh aF sπ=                                                                     (2.4) 

( ) ( )/IIP IIK P bh aF sπ=  

 

FI(s) anf FII(s) are function of the ratio s between the crack depth and the height of the 

element (s=a/h), defined as  
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The flexibility coefficient of the uncracked element can be derived as 
 

( )
( )02

0

1 2,     ,      , 1,2

ij
i j

WC
P P

P P P M i j

∂
=
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= = =

                                                                  (2.7) 

 

and the additional flexibility coefficient are 
 

( )
( )12

1
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ij
i j
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∂
=
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= = =                                                                   (2.8) 

The  flexibility matrix of the uncracked element can be expressed as 

 

3 2

(0)
2
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⎡ ⎤
⎢ ⎥
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                                                                                                   (2.9) 

 

Similarly the coefficients ( )1
ijC  can be expressed in matrix form as  

2 2 2 22
(1) 1 2 1

2 2
1 1

9 18
18 36p

L Lb aC
E L

β β βπ
β β

⎡ ⎤+
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦
                                                                         (2.10) 

where  ( ) 2
1 /IF s bhβ = and  ( )2 /IIF s bhβ =  

 

The total flexibility coefficients for the element with an open crack are 
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( ) ( )0 1
ij ij ijC C C= +                                                                                                              (2.11) 

 

The total flexibility matrix for the element with an open crack can be expressed as 

 

(0) (1)C C C⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                                                                                   (2.12) 

 

From the equilibrium conditions (shown in Figure 2.2), the following relationship holds 

{ } [ ]{ }1 1 1 1        T T
i i i i i iP M P M T P M+ + + +=                                                       (2.13) 

where 

 

[ ] 1 1 0
0 1 0 1

TL
T

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

                                                                  (2.14) 

 

The stiffness matrix of the undamaged element can be written as 

[ ] [ ] [ ]1(0) T
uK T C T

−
⎡ ⎤= ⎣ ⎦                                                                                                (2.15) 

and the stiffness matrix of the cracked element can be written as 

[ ] [ ] [ ] [ ]1 T
cK T C T−=                                                                           (2.16) 



 22

The derivation of the matrices (1)C⎡ ⎤⎣ ⎦  and [ ]cK is presented in Appendix D. The stiffness 

matrix of the undamaged element with rectangular cross-section is that given by 

Bernoulli–Euler theory with Hermite shape functions: 

 

[ ]

1 1

2 23
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1

2
1

                       
12 6 12 6
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                                                                (2.17) 

 

The mass matrix for an element without a crack is 

[ ]
2 2

2

156 22 54 13
4 13 3

156 22420
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u
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L
sym L

−⎡ ⎤
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−⎢ ⎥
⎢ ⎥
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                                                                (2.18) 

where m is the mass per unit length. 

 

 

Figure 2.1 Diagram of a generic element. 
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Figure 2.2 Equilibrium conditions of a generic element. 
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CHAPTER III 
 
 

FREE VIBRATION ANALYSIS 

 In this chapter the free vibration analysis of a simply supported and a plane frame 

is considered for the undamaged and damaged cases. First, a brief introduction to the 

theory used in modal analysis is discussed. The frequencies and mode shapes generated 

here are used to compare the damage identification methodologies in the following 

chapters. Also, the geometric and material properties of the structures analyzed and the 

damage scenarios used in the numerical simulations, are presented.  

3.1 ORTHOGONALITY PROPERTIES OF THE NORMAL MODES 

The computation of the mode shapes and natural frequencies of a structural 

system is carried out by solving a matrix eigenvalue problem, obtained from the 

formulation of the equation of motion for free undamped vibration. In general the matrix 

eigenvalue problem is given by: 

[ ] [ ] { } { }2 0K Mω⎡ ⎤− Ψ =⎣ ⎦                                                                                  (3.1) 

 
where 
 
 
[ ]K : stiffness matrix of the system 
 
[ ]M : mass matrix of the system 
 
ω : natural frequency  
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{ }Ψ : mode shape vector  
 
 
The non-trivial solution of the eigenproblem must satisfy: 

[ ] [ ] { }2 0K Mω− =                                                                                               (3.2) 

This algebraic equation, known as the characteristic equation, yields n possible 

positive real solutions known as the eigenvalues of the equation (3.2) which are the 

undamped natural frequencies of the system. 

Substituting each natural frequency value in (3.1) and solving each of the 

resulting sets of equations for { }Ψ  we obtain n possible vector solutions { }jΨ  (j = 1, 2, 

..., n), known as the mode shapes of the system under analysis.  

The complete free vibration solution is normally expressed in two nxn matrices 

[ ]

2
1

2
1

2

0 0
0 0

0 0 n

ω
ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                                              (3.3) 

 

and  

[ ] { } { } { }1 2 nΨ = Ψ Ψ Ψ⎡ ⎤⎣ ⎦                                                                   (3.4) 



 26

which contain a full description of the dynamic characteristics of the structural system. 

Equations (3.3) and (3.4) constitute what is known as the Modal Model, i.e., they 

describe the system through its modal properties (natural frequencies and mode shapes). 

[Ψ] is commonly known as the modal matrix.  

The mode shape vectors have very important properties known as the 

orthogonality properties which are described by 

{ } [ ]{ } 0T
i jMΨ Ψ =      ;     for i ≠ j                                                                       (3.5) 

{ } [ ]{ } 0T
i jKΨ Ψ =   ;     for i ≠ j                                                                           (3.6) 

 

The  matrix form of the latter equations is  

 

[ ] [ ][ ]T M m∗⎡ ⎤Ψ Ψ = ⎣ ⎦                                                                                            (3.7) 

[ ] [ ][ ]T K k ∗⎡ ⎤Ψ Ψ = ⎣ ⎦                                                                                              (3.8) 

with 

2
j j jk mω∗ ∗=  

 

where [m*] and [k*] are diagonal matrices known as the modal mass and modal stiffness 

matrix, respectively.  
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The amplitudes of the modal shape vectors are only relative values which may be 

normalized following any convenient procedure. The most common normalization 

scheme used in modal analysis is to normalize the modes with respect to the mass matrix 

[M] as follows: 

{ } [ ]{ }
ij

ij T
i jM

φ
Ψ

=
Ψ Ψ

                                                                                                  (3.9) 

or  

ij
ij

jm
φ

Ψ
=                                                                                                                      (3.10) 

 

in which ijφ  is the ith normalized component of the jth modal vector. The orthogonality 

condition for the mass-normalized modal vectors is given by 

{ } [ ]{ } 1T
i jMφ φ =           ; for i = j                                                                        (3.11) 

{ } [ ]{ } 2T
i j jKφ φ ω=         ; for i = j                                                                       (3.12) 

Therefore, the mass-normalized modal matrix orthogonality properties can be expressed 

as  

[ ] [ ][ ] [ ]T M IΦ Φ =                                                                                               (3.13) 

[ ] [ ][ ] [ ]T KΦ Φ = Λ                                                                                               (3.14) 

where [I] is the identity matrix. 
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 In this research, it is assumed that damage in a structure will affect only the 

stiffness matrix and not the mass matrix in the eigenvalue problem formulation. This 

assumption is consistent with those used by Yuen (1985) and Pandey (1994). 

3.2 DAMAGE EFFECT ON MODAL PARAMETERS 

3.2.1 Simply Supported Beam 

 The free vibration analysis of a simply supported beam with and without damage 

is performed.  Modal responses of the beam are generated using finite element models 

before and after damaging episode cases. The following dimensions and material 

properties are used for the beam: length L=100 in [1 in=2.54 cm], height of the cross 

section H=4 in , width of the cross section b= 2 in, elastic modulus E = 29000 ksi [1ksi= 

6.895 MPa] and mass density ρ= 0.00073 lbm/ in3 [1 lbm/ in3 =  0.0277 kg/cm3].   For 

Finite Element Analysis purposes the beam is divided into 40 elements.  

Here, six damage scenarios are investigated, as summarized in Table 3.1. In the 

first two cases damage is simulated by reducing the stiffness of assumed elements. In  

cases 3 to 6, damage is simulated in the form of cracks. The finite element model of the 

beam uses the stiffness matrix of the cracked element described in the Chapter II. The 

damage scenarios SD1 and SD2 (listed in Table 3.1) were simulated by reducing the 

stiffness of an element near the beam’s mid-span. The damage cases SC1 and SC2 (listed 

in Table 3.1) correspond to a crack located near the mid-span. The remaining damage 
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cases SC3 and SC4 in the same table correspond to a multiple damage scenario and were 

simulated by introducing cracked elements at two different locations.  

For each damage scenario, the dynamic characteristics (frequencies and mode 

shapes) before and after the damage were numerically evaluated, with programs coded in 

MATLAB®. The first five frequencies are listed in Table 3.2. According to the results in 

the table the simulated damage scenarios cause the first modal frequency to shift from 

0.4% to 3.4 % of the undamaged frequency. Also, it can be noted that the change in the 

frequencies for the cases SC1 (single crack) and SC3 (two cracks) is practically the same. 

The decrease in the natural frequencies of the higher modes range from 0.01 to 2.33 % 

for the second mode, 0.38 to 4.15 % for mode 3, 0.008 to 0.54 % for mode 4, and 0.36 to 

2.21 % for the last mode considered. Thus changes in natural frequencies cannot provide 

information about the location of structural damage. This conclusion is in agreement with 

the observations in the studies carried out by Salawu (1994), Pandey (1994) and Kim 

(2003).  

Since the present study is based on the use of the flexural modes, only the 

translation degrees of freedom along the perpendicular axis to the elements (vertical 

DOFs in the beams and horizontal DOFs in the columns) were considered in the analysis. 

This was done because, in general, in experimental works rotations are not obtained 

because of the difficulty in their measurement.  

It was assumed that the modal amplitudes were “read” at 9 locations equally 

spaced along the longitudinal axis of the beam. The first five displacement mode shapes 
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are compared in Figures 3.1 to 3.5 for the damage case SC2 (a single crack at the mid-

span). All mode shapes considered in this study have been normalized with respect to the 

mass matrix. Figures 3.6 and 3.7 shows the first two undamaged and damaged mode 

shapes for the damage case SC4 (two cracks). It is observed from the figures that the 

amplitude changes in the mode shapes alone are not precise enough to locate the 

damaged element.  

Table 3.1 Damage scenarios: simply supported beam. 
 

Damage scenario Damaged element Stiffness reduction (%) a/H 

SD1 21 (~L/2) 25 - 
SD2 21 (~L/2)  50 - 
SC1 21 (~L/2) - 0.1 
SC2 21 (~L/2)  - 0.25 
SC3 9(~L/5)  , 21 (~L/2) - 0.1 
SC4 9(~L/5)  , 21 (~L/2) - 0.25 

  

Table 3.2. Natural frequencies of the simply supported beam. 
 

Damage Natural Frequency  
(rad/sec) 

Scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Undamaged 226.8 907.1 2041.0 3628.4 5669.5 

SD1 224.9 907.0 2024.7 3627.5 5626.2 
SD2 221.3 906.9 1994.5 3625.7 5549.0 
SC1 225.9 907.1 2033.2 3628.1 5648.7 
SC2 221.2 906.9 1993.9 3626.1 5547.6 
SC3 225.6 903.7 2026.8 3625.2 5647.9 
SC4 219.2 886.0 1956.1 3608.7 5543.8 
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Figure 3.1. First mode of the simply supported beam for case SC2. 
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Figure 3.2. Second mode of the simply supported beam for case SC2. 
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Figure 3.3. Third mode of the simply supported beam for case SC2. 
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Figure 3.4. Fourth mode of the simply supported beam for case SC2. 
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Figure 3.5. Fifth mode of the simply supported beam for case SC2. 
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Figure 3.6. First mode of the simply supported beam for case SC4. 
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Figure 3.7. Second mode of the simply supported beam for case SC4. 

 
 
 
3.2.2 Plane frame 

The free vibration analysis of a plane frame with and without damage was 

performed. The modal quantities of the plane frame were numerically generated using 

finite element models without and with damage episodes, with routines coded in 

MATLAB®. The dimensions of the plane frame are listed in Table 3.3. Figure 3.8 

illustrates the model of the frame. For modal analysis purposes, the beam and the 

columns were divided into 40 elements. Six damage scenarios were investigated and are 

summarized in Table 3.4. In the first two cases the damage is simulated by a crack 

inflicted at the right column. The damage scenarios PC3 and PC4 (listed in Table 3.4) 

consist of a single crack near the mid-span of the beam. The remaining damage cases 
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correspond to two cracks inflicted at two different locations. The crack size was changed 

during the analysis.  

The modal amplitudes were extracted at 19 locations equally spaced along the 

longitudinal axis of the beam and the right column of the frame. As in the case of the 

beam, the dynamic characteristics (frequencies and mode shapes) before and after the 

damage were calculated for each damage scenario. The first five natural frequencies are 

listed in Table 3.5. It can be observed that the highest variation for the first modal 

frequency caused by the simulated damage scenarios was 1.7 %. Also, it can be noted 

that there is no variation in the frequencies for the cases PC3 and PC4. The highest 

reduction for mode 2, 3, 4 and 5 were 1.4, 1.1, 1.2 and 8.3 %, respectively. 

The first three undamaged and damaged modal amplitudes of the frame beam are 

compared in Figures 3.9 to 3.11 for the damage case PC6 (multiple damage location). 

The first two undamaged and damaged modal amplitudes of right column of the frame 

are compared in Figures 3.12 and 3.13 for the damage case PC2. As in the case of the 

simply supported beam, it is observed from the figures that the amplitude changes in the 

mode shapes are not adequate to locate the damaged zone of the frame. 
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Table 3.3. Dimensions and material properties: plane frame. 
 

Bay width  (L-[in*] ) 96 
Column height (Hc-[in]) 96 

Cross section width (b-[in]) 2 
Cross section depth (H-[in]) 5 

Elastic modulus E [ksi+] 29000 
Mass density ρ [lbm/ in3]** 0.00073 

*1 in=2.54 cm, +1ksi=6.895 MPa , **1 lbm/ in3 =  0.0277 kg/cm3 

 

 

Table 3.4 Damage scenarios: plane frame. 
 

Damage scenario Damaged member Damaged element a/H 

PC1 Right column 4 (From col. base) 0.1 
PC2 Right column 4 (From col. base) 0.2 
PC3 Beam 21 (~L/2) 0.1 
PC4 Beam 21 (~L/2) 0.2 
PC5 Beam 21, 36 0.1 
PC6 Beam 21,36 0.2 

 
 
 

Table 3.5. Natural frequencies: plane frame 
 

Damage  Natural Frequency 
(rad/sec) 

  

Scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Undamaged 99.8 394.3 646.4 697.9 1512.6 

PC1 99.5 393.9 645.2 697.2 1511.8 
PC2 98.1 392.0 639.3 694.4 1507.7 
PC3 99.8 391.7 645.8 693.7 1389.7 
PC4 99.8 388.7 645.8 691.5 1389.6 
PC5 99.7 391.7 645.1 693.3 1388.9 
PC6 99.4 388.7 642.9 689.8 1386.4 
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Figure 3.8 Plane frame model. 
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Figure 3.9. First mode of the frame beam for case PC6. 
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Figure 3.10. Second mode of the frame beam for case PC6. 
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Figure 3.11. Third mode of the frame beam for case PC6. 
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Figure 3.12. First mode of the plane frame for case PC2. 
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Figure 3.13. Second mode of the plane frame for case PC2. 
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CHAPTER IV 

 

METHODS BASED ON CHANGES IN MODE SHAPES 
AND FREQUENCIES  

 

4.1 INTRODUCTION  

As mentioned in the previous chapter, in theory it is possible to determine the 

presence of cracks or damage in a structure from the changes in its natural frequencies. 

The methods using frequencies only, however, have some limitations. The frequency 

changes may not be sufficient to locate the precise position of the damage, since similar 

defects at different places may cause similar amount of frequency changes. In addition, 

significant damage may cause very small changes in natural frequencies, particularly for 

larger structures. Because of the small values, these changes may go undetected due to 

measurement errors (Kim et al. 2003). Moreover, the changes in frequencies cannot 

distinguish between damage at symmetrical locations in a symmetric structure. In 

contrast, vibration mode shapes are more strongly influenced by local damage and thus 

they offer a better means of locating damage (Salawu 1994). 

In this chapter, several structural damage identification methods based on changes 

in displacement mode shapes are presented. Numerical simulations are performed to 

compare the effectiveness of the existing procedures to locate damage. 
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4.2 EIGENPARAMETER METHOD 

The eigenparameter method was proposed by Yuen (1985) to detect the presence 

and location of damage in a cantilever beam. It was also evaluated by Salawu and 

Williams (1993) and Dong et al. (1994). This method utilizes only mode shape data. It is 

based on the premise that the mode displacements associated with each of the dynamic 

degrees of freedom would be affected differently by the presence of damage and the 

changes in the mode shapes should reflect the location and extent of the damage.  

The parameters used are the frequencies and mode shapes associated with the 

eigenvalue problem of the undamaged structure, 

[ ] [ ]( ){ } 0i i
K Mλ φ− =                                                                                         (4.1) 

and the damaged structure  

[ ]( ){ }* * 0i i
K Mλ φ∗⎡ ⎤ − =⎣ ⎦                                                                                   (4.2) 

A parameter that accounts for the changes in the frequencies and mode shapes of 

the structure is proposed to be used for damage detection. For the i-th mode shape, the 

eigenparameter is defined by 
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*2 2
i i

i
i i

U
φ φ
ω ω

= −                                                                                                (4.3) 

The square of the natural frequency (the eigenvalue) is chosen as a normalization 

factor because it is another dynamic property affected by the introduction of damage in 

the structure. 

4.3 NUMERICAL SIMULATIONS 

The simply supported beam and the portal frame described in Chapter III were 

used as test structures to investigate the performance of the eigenparameter as damage 

indicator. It was assumed that the beam and frame were subjected to the different damage 

scenarios presented in Chapter III.  

• Simply-supported beam. 

The values of the eigenparameter for the damage scenarios SD1 to SC4 are 

illustrated in Figures 4.1 to 4.6. The eigenparameter was calculated for the first two mode 

shapes. The parameter for the first mode shows the largest change at the location of the 

damage, i.e. the peak value occurs in the damaged region. Also at this location the slope 

changes sign. The damage scenarios SD1, SD2, SC1 and SC2 correspond to a single 

crack at the mid-span. It can be observed that the absolute value of the parameter 

increases with an increase in the severity of damage. The eigenparameter for the second 

mode displays a positive peak at the location of the damage but also other two negative 
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peaks. These two changes are of the same magnitude than the peak value at L/2, thus 

indicating a wrong location of damage. In the cases of two cracks (cases SC3 and SC4 in 

Figures 4.5 and 4.6), the method can locate the damage at the mid-span. As it can be 

observed the method was not able to clearly indicate simultaneously the location of the 

two damaged zones of the beam. 
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Figure 4.1 Eigenparameter for the first mode of the beam with damage scenarios SD1 and 

SD2. 
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Figure 4.2 Eigenparameter for the second mode of the beam with damage scenarios SD1 

and SD2. 
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Figure 4.3 Eigenparameter for the first mode of the beam with damage scenarios SC1 and 

SC2. 
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Figure 4.4 Eigenparameter for the second mode of the beam with damage scenarios SC1 

and SC2. 
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Figure 4.5 Eigenparameter for the first mode of the beam with damage scenarios SC3 and 

SC4. 
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Figure 4.6 Eigenparameter for the second mode of the beam with damage scenarios SC3 

and SC4. 
 

 
• Plane frame 

 
The values of the eigenparameter for the damage scenarios PC1 to PC6 in the 

plane frame are illustrated in Figures 4.7 to 4.12. For each damage case, the 

eigenparameter for the first two vibration modes are displayed. In the damage cases PC1 

and PC2, it is not clear which is the location of the damage predicted by the method. This 

is so because the peak in the eigenparameter is spread over part of the column length. In 

the damage scenarios PC3 to PC6, a clear maximum value of the eigenparameter occurs 

at the damaged region and thus the localization of the crack is straightforward. In the two 

cases of multiple damage scenarios (PC5 and PC6 in Figures 4.11 and 4.12), the 

eigenparameter was able to indicate damage at one location.  
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Figure 4.7 Eigenparameter for the first mode of the frame with damage scenarios PC 

andPC2. 
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Figure 4.8 Eigenparameter for the second mode of the frame with damage scenarios PC1 

and PC2. 
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Figure 4.9 Eigenparameter for the first mode of the frame with damage scenarios PC3 

and PC4. 
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Figure 4.10 Eigenparameter for the second mode of the frame with damage scenarios 

PC3 and PC4. 
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Figure 4.11 Eigenparameter for the first mode of the frame with damage scenarios PC5 

and PC6. 
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Figure 4.12 Eigenparameter for the second mode of the frame with damage scenarios 

PC5 and PC6. 
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4.4 MODE SHAPE RELATIVE DIFFERENCE METHOD. 

In this formulation, a graphical comparison of the displacement mode shapes is 

used as an indicator of the damage location. The parameter used is the relative difference 

(RD) between the mode shapes for the undamaged and damaged structure. For the i-th 

mode shape the parameter is a vector defined as (Fox 1992): 

{ }
{ } { }

{ }

*
i i

i
i

RD
φ φ

φ

−
=                                                                                             (4.4) 

In theory a plot of the vector {RD} as a function of the measurement locations 

should show a definite trend with distinct discontinuity at the damage locations. The 

displacement mode shapes most affected by the damage are more likely to indicate the 

location of the damaged regions of the structure. 

4.5 NUMERICAL SIMULATIONS 

The relative difference between the mode shapes of the undamaged and damaged 

structures are applied to find the locations of the cracks in the simply-supported beam and 

the plane frame considered before. The same damage scenarios described in Chapter III 

were simulated in the two structures.  
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• Simply-supported beam  

The values of the relative difference for the first two mode shapes and for damage 

scenarios SD1 to SC4 are graphically presented in Figures 4.13 to 4.18.  For the second 

mode, to avoid division by zero because a node of the mode is localized at 0.5L, the 

difference between the modes has been normalized with respect to the maximum absolute 

value of the undamaged mode shape. For the first mode of the beam with a single crack  

(cases SD1, SD2, SC1 and SC2) there is a negative peak at the location of the damage 

and there are other two peaks near the ends. Therefore, the localization of the damage 

cannot be clearly identified. The situation is even worse for the two cases of multiple 

damage (SC3 and SC4 in Figures 4.17 and 4.18): the method cannot locate the damaged 

zones in the beam because the width of the peaks is large and not all of them are at or 

near the cracks. 

• Plane frame 

The values of the relative difference between the modes of the original and 

damaged structure for damage scenarios PC1 to PC6 are shown in Figures 4.19 to 4.24. 

The values of the parameter RD were calculated for the first two mode shapes. In the 

damage cases PC1 and PC2, there is a peak near the damaged element (location 2). In the 

damage scenarios PC3 to PC4, the maximum value of the parameter occurs at the 

damaged region of the frame’s beam. In Figures 4.21 and 4.23 the mode difference was 

normalized with respect to the maximum absolute value of the mode shape of the 

undamaged system. For the cases of multiple damage scenarios PC5 and PC6 illustrated 
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in Figures 4.23 and 4.24, the relative difference parameter showed a performance similar 

to the eigenparameter method. 
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Figure 4.13 Relative difference for the first mode of the beam with damage scenarios 

SD1 and SD2. 
 

0 1 2 3 4 5 6 7 8 9 10
-3 

-2 

-1 

0 

1 

2 

3 x 10 -3 

Location

R
el

at
iv

e 
di

ffe
re

nc
e 

SD1 
SD2 

 
Figure 4.14 Relative difference for the second mode of the beam with damage scenarios 

SD1 and SD2. 
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Figure 4.15 Relative difference for the first mode of the beam with damage scenarios 

SC1 and SC2. 
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Figure 4.16 Relative difference for the second mode of the beam with damage scenarios 

SC1 and SC2. 
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Figure 4.17 Relative difference for the first mode of the beam with damage scenarios 

SC3 and SC4. 
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Figure 4.18 Relative difference for the second mode of the beam with damage scenarios 

SC3 and SC4. 
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Figure 4.19 Relative difference for the first mode of the frame with damage scenarios  

PC1 and PC2. 
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Figure 4.20 Relative difference for the second mode of the frame with damage scenarios  

PC1 and PC2. 
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Figure 4.21 Relative difference for the first mode of the frame with damage scenarios 

PC3 and PC4. 
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Figure 4.22 Relative difference for the second mode of the frame with damage scenarios  

PC3 and PC4. 
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Figure 4.23 Relative difference for the first mode of the frame with damage scenarios 

PC5 and PC6. 
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Figure 4.24 Relative difference for the second mode of the frame with damage scenarios  

PC5 and PC6. 
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4.6 ELEMENT DAMAGE INDEX EQUATION 

De Roeck (2002) proposed a mode shape-based method, to predict the damage 

location and severity. The performance of this method will be studied here by applying it 

to the beam used for other procedures. A conventional finite-element discretization is 

used for the structural modeling. The modal properties considered are the natural 

frequencies and mode shapes of the undamaged and damaged structure. 

In De Roeck study the damage in the structure is represented by a decrease in the 

stiffness of the individual finite elements. The damage identification is carried out at the 

element level. It is assumed that the stiffness matrix of the whole element decreases 

uniformly. The change in stiffness of an element is expressed by the damage index De 

*
e e e e ek k k D k∆ = − =                                                                                              (4.5) 

where  

ek : element stiffness matrix of the undamaged structure. 

*
ek : element stiffness matrix of the damaged structure. 

ek∆ : the stiffness reduction of the element. 

A positive value of De will indicate a loss of the element stiffness. The eth 

element is undamaged when De = 0 and the stiffness of the eth element is completely lost 

when De=1 . Therefore, the damaged element stiffness matrix can be represented by 
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( )* 1e e ek k D= −                                                                                                        (4.6) 

For planar beam elements in bending ek  is the stiffness matrix defined in 

Equation (2.17). In this case the element damage index is the ratio of the damaged to the 

undamaged bending stiffness  

*( )
( )

e
e

e

EID
EI

=                                                                                                                   (4.7) 

 

For a structural system with N elements (e = 1,2,…,N),  n undamaged mode 

shapes (i =1,…, n) and m damaged mode shapes (j =1,…, m), the element damage index 

equations can be formulated as  

*2

2
1

1
N

jT T
je e ie e j i

e i

k D K
ω

φ φ φ φ
ω

∗ ∗

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑                                                                            (4.8) 

where 

K : stiffness matrix of the undamaged structure. 

iφ : mode shape of the ith modal vector for the undamaged structure. 

jφ
∗ : mode shape of the jth modal vector for the undamaged structure. 

*,j iω ω : natural frequencies of the damaged and undamaged structure. 
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Equations can be written in the compact matrix notation  

[ ]{ } { }S D R=                                                                                                                  (4.9) 

where the coefficients of the system matrix [S] are    

T
ije je e ieS kφ φ∗=                                                                                                                 (4.10) 

and the elements of the vector on the right-hand side are 

*2

21 j T
ij j i

i

R K
ω

φ φ
ω

∗⎛ ⎞
= −⎜ ⎟
⎝ ⎠

                                                                                                  (4.11) 

The system matrix and the residual vector on the right-hand side of Equation (4.8) 

involve both undamaged and damaged mode shapes. The expanded damage equations 

(4.9) are  
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                                (4.12) 
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The system matrix [S] of damage Equation (4.12) is not always square. It is 

square if the product of the number of undamaged and damaged mode shapes is the same 

as the number of elements (or sensors in an actual application). In general the element 

damage equations may be determined, overdetermined, or underdetermined depending on 

the number of undamaged modes n, damaged modes m, and elements N chosen. When a 

direct inverse solution is not possible because n x m < N, the Moore–Penrose 

pseudoinverse [S+] can be used. The pseudoinverse can be calculated by solving the 

singular value decomposition of [S]. Another possible approach to solve the damage 

equations is to use the non-negative least-squares technique – NNLS (Lawson and 

Hanson 1974). 

4.7 NUMERICAL SIMULATIONS 

The damage index equations presented before were implemented to detect 

damage in a simply-supported beam. Due to the definition of damage of this method, in 

this numerical example the beam was divided into 15 elements. Three damage scenarios 

were investigated. In the first case the damage was simulated by reducing by 50% the 

stiffness of an element located at the mid-span. In the second case, the reduction was 

done at two elements. In the third case considered, a crack at L/2 was introduced to the 

beam by means of the element developed in Chapter II. The crack size corresponds to the 

damage scenario SC2.  
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Next, the proposed damage index equations are solved by using the NNLS 

technique, available in MATLAB. The predicted distributions of element damage indices 

for the simulated damage scenarios are shown in Figures 4.25 to 4.27. The indices were 

obtained by using the first three mode shapes of the beam. It can be seen that for these 

particular damage scenarios the damage identification method was able to indicate the 

location and severity of the damaged elements. In the present simulation the complete 

stiffness matrix of the beam was used to compute the values of the coefficients Rij. This is   

a disadvantage of the method in its current form because it uses the rotational degrees of 

freedom to generate the equations (4.12). However, in general, in experimental modal 

analysis the rotations are not measured. 
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Figure 4.25 Element damage index for the beam single damage scenario. 
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Figure 4.26 Element damage index for the beam with multiple damage scenario. 
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Figure 4.27 Element damage index for the beam with a cracked element. 
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4.8 SUMMARY 

In this chapter, several structural damage identification methods based on changes 

in the mode shapes and frequencies are presented. Numerical examples are performed to 

compare the effectiveness of the methods studied, to indicate and locate the damage in 

simple structures. Six damage scenarios were analyzed for the simply-supported beam 

and plane frame. 

In the cases of the eigenparameter method, it was found that this method can 

indicate the location of the region damaged of the simply-supported beam, when the first 

mode shapes is used in damage scenarios that simulate one damaged element. For 

multiple damage scenarios the parameter was not able to locate clearly the damaged 

zones. In the plane frame, the damage simulated at the column was not located. In the 

cases of multiple damage the parameter cannot locate the positions of the cracks 

simultaneously. In the mode shape relative difference method, the results obtained 

indicate that the parameter introduces factors of uncertainty about the correct locations of 

damage.  

The element damage index method was evaluated for three damage scenarios. 

Since this method uses the modal forces and the rotational degrees of freedom to generate 

the equations, and in experimental modal analysis, rotations are not measured, presents 

limitations respect to others methods.  

 



CHAPTER V 

 

METHOD BASED ON DYNAMICALLY MEASURED 
FLEXIBILITY 

 
 

 

5.1 INTRODUCTION  

As mentioned earlier, the presence of damage in a structure changes its dynamic 

characteristics. Changes also occur in some of the structural parameters: the damping, 

stiffness and flexibility matrices of the structure. There are a few methods based on this 

concept, which use a dynamically measured flexibility matrix to calculate changes in the 

performance of the structures [Pandey and Biswas (1994), Raghavendrachar and Aktan 

(1992)]. By definition, the flexibility matrix relates the applied forces and the resulting 

structural displacements. Thus, each column of the flexibility matrix represents the 

displacement pattern of the structure associated with a unit force applied at the associated 

DOF. The measured flexibility matrix can be estimated from the measured mass-

normalized mode shapes and frequencies. Typically, to detect damage using a flexibility 

matrix, the flexibility matrix obtained using the modes of the damaged structure is 

compared with the matrix calculated using the modes of the undamaged structure or the 

analytical flexibility matrix from the FEM.  
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5.2 THE DELTA METHOD. 

This method was proposed by Pandey and Biswas (1994). The method is based on 

the changes in the flexibility matrices of the undamaged and damaged structure. The 

flexibility matrix obtained by this method is approximate due to the fact that only the first 

few modes of the structure (associated with the lowest frequencies) are measured. The 

synthesis of the complete flexibility matrix would require the measurement of as many 

mode shapes and frequencies as dynamic degrees of freedom are being measured. In the 

method proposed by Pandey and Biswas the development of an analytical model of the 

structure is not required. All the predictions of the state of damage can be made using the 

data experimentally collected on the structure. 

If the mode shapes are normalized with respect to the mass matrix, the stiffness 

matrix [K] and flexibility matrix [F] are related to the modal properties as 

[ ] [ ] [ ] [ ] [ ] [ ]T

n n n n n n n n n nK M M
× × × ×

= Φ Λ Φ
×

                                                    (5.1) 

 

[ ] [ ] [ ] [ ]1
2

1

Tn
T i i

n n n n n n
i i

F φφ
ω

−

× × ×
=

Φ Λ Φ =∑=                                                             (5.2) 

If all the n normal modes and their respective natural frequencies are used, 

equation (5.2) defines the flexibility matrix of the structure. If only a number m < n of 

modes are used, a singular matrix is obtained. This is known as the pseudo-flexibility 

matrix or the raw flexibility matrix, and is defined as 
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[ ] [ ] [ ] [ ]1 T

n m m m m nF −

× ×
Φ Λ Φ=

×
                                                                               (5.3) 

 

From equation (5.2), it can be observed that the modal contribution to the 

flexibility matrix decreases as the frequency increases, i.e., the flexibility matrix 

converges rapidly with increasing values of frequency. Therefore, a good estimate of the 

flexibility matrix can be obtained with only a few of the lower frequency modes. 

In practice, the flexibility matrices for the undamaged structure and the damaged 

structure are obtained by using equation (5.3). Knowing these flexibility matrices, the 

change in the flexibility matrix [ ]∆  can be calculated 

[ ] [ ] [ ]*F F∆ = −                                                                                                            (5.4) 

where [ ]F is the flexibility  matrix for the undamaged structure,   

[ ] [ ] [ ] [ ]1
* * * *

T

n m m m m nF −

× ×
Φ Λ Φ=

×
                                                                         (5.5) 

 For each degree of freedom j of the structure, the maximum absolute value of the 

elements in the corresponding column of [∆ ] is defined by 

maxj i ijδ δ=                                                                                                              (5.6) 

where ijδ  are the elements of [ ]. ∆
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The parameter jδ  which is a measure of change of flexibility for each 

measurement location can be used to detect and locate damage in a structure. 

A variation on the method based on the dynamically measured flexibility matrix is 

the use of the dynamically measured stiffness matrix. This matrix is defined as the 

pseudoinverse of the dynamically measured flexibility matrix. A brief discussion of these 

methods is presented in Appendix A. 

5.3 NUMERICAL SIMULATIONS 

The procedure presented above was used to calculate the pseudo-flexibility 

matrices of the undamaged and damaged structures with the different damage scenarios 

presented in Chapter III. The modal amplitudes obtained from the free vibration analysis 

are used to construct the mode shape matrices. Next, the parameter jδ is computed for 

each one of damage scenarios.  

• Simply-supported beam  

Six scenarios of damage for the beam are studied. The flexibility changes for the 

damage scenarios SD1 to SC4 are illustrated in Figures from 5.1 to 5.3, using the first 

three displacement mode shapes. These flexibility changes were normalized with respect 

to the maximum value. The point in the graphs where the slope changes sign, indicates 

the damaged region. For the damage cases shown in Figures 5.1 and 5.2, a single crack 

was induced at the mid-span. It is recalled that the difference between cases SD1 and 
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SD2, and SC1 and SC2 is the amount of damage. It is interesting to observe that the 

curves are similar to the bending moment diagrams obtained for a vertical force applied 

at the location of damage. Moreover, it can be observed that, as expected, the change in 

the flexibility increases with an increase in the severity of damage. From Figure 5.1 it can 

be seen that the change in flexibility for case SD2 is three times the change for case SD1, 

whereas the severity of damage inflicted in case SD2 is twice that of case SD1. Figure 5.3 

displays the change in flexibility for a multiple damage case, namely two cracks at 

locations 2 and 5. It is evident that the method does not possess the capability of 

detecting the two damaged zones of the beam: it just tells that there is some damage in 

the beam.  

 
Figure 5.1 Normalized flexibility change for the beam with damage scenarios SD1 and 

SD2. 
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Figure 5.2 Normalized flexibility change for the beam with damage scenarios SC1 and 

SC2. 

 
Figure 5.3 Normalized flexibility change for the beam with damage scenarios SC3 and 

SC4. 
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• Plane frame  

The flexibility-based methodology is next tested on the plane frame of Figure 3.8. 

For this structure three pairs of damage scenarios are considered. The flexibility changes 

for the damage scenarios PC1 to PC6 are shown in Figures 5.4 to 5.6. In all the cases the 

first two mode shapes were used to define the flexibility matrix. In the cases PC1 and 

PC2 where the crack is near the base of the column, the location of the damage is not 

clear, although at location 2 the slope changes value.  

In damage scenarios PC3 and PC4 (a single crack in the beam of the frame), the 

identification was successful since the maximum flexibility change occurs in the 

damaged region. However, as in the cases of the beam, this method cannot locate the 

damaged zones in the cases of multiple damage. This is evidenced by the results 

displayed in Figure 5.6. The damage cases denoted as PC5 and PC6 correspond to the 

beam with two cracks. The parameter δj only indicated that there is damage at the mid-

span of the beam. Note that the results for damage scenarios PC3 and PC5, and PC4 and 

PC6, are practically identical. 
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Figure 5.4 Normalized flexibility change for the frame with damage scenarios PC1 and 

PC2. 

 
Figure 5.5 Normalized flexibility change for the frame with damage scenarios PC3 and 

PC4. 
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Figure 5.6 Normalized flexibility change for the frame with damage scenarios PC3 to 

5.8 SUMMARY 

In this chapter, a structural damage identification method based on changes in the 

flexibility matrix is presented. By means of numerical examples the effectiveness of the 

method to indicate the presence of damage in simple structures and to locate its position 

was examined.   

The first structure analyzed was a simply-supported beam.  Six damage scenarios 

were studied. For each of these cases, the values of the localization index δj were 

calculated. It was found that this method was able to pinpoint the location of the region 

damaged in the beam when the first two or three mode shapes were used and when the 

PC6. 
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damage was restricted to a single crack. However, when the beam had more than one 

crack, the method failed to clearly locate the damaged zones.   

In the other structure considered, a plane frame, six scenarios of damage were 

also studied. The flexibility-based localization index only indicated the damaged region 

in the cases of single damage scenarios in the beam of the frame. The damage inflicted at 

the right end of the beam was not detected. Moreover, when the crack was placed at one 

of columns of the frame, the results were ambiguous.  

It was found that in both structures the change in flexibility is sensible to the 

severity of the damage inflicted to the structure, and thus it could be used to indicate 

relative degrees of damage. An advantage of the method is that to locate the damage it 

requires only a few modes (two or three) because the measured flexibility matrix is 

mostly influenced by the lower-frequency modes of the structure. However, based on the 

numerical simulations performed here it is not recommended for practical, real 

applications. 

 

 

 

 



CHAPTER VI 

 

METHODS BASED ON THE MODE SHAPE 
CURVATURE. 

 

6.1 INTRODUCTION 

Changes in mode shapes are much more sensitive to local damage when 

compared with changes in natural frequencies. However, using mode shapes also has 

some limitations.  As damage is a local phenomenon, it may not significantly influence 

the mode shapes of the lower modes, that are usually those measured from vibration tests 

of large structures.  

As mentioned earlier, the existence of damage at a given section of a structure 

reduces the stiffness, especially in the neighborhood of that section. This reduction leads 

to an increase in the magnitude of the curvature at the section. Since the changes in the 

curvatures are local and depend on the extent of reduction in the structural stiffness, the 

curvature changes can be used to detect and locate damage. 

In this chapter, a damage identification method based on the modal curvature is 

proposed, and two existing methodologies are presented. Numerical simulations are 

performed to compare the effectiveness of the existing and proposed procedures to locate 

the damage. 
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6.2 CURVATURE MODE SHAPE 

This method was proposed by Pandey et al. (1991) to identify and locate damage 

in a structure. It has been also evaluated by Salawu and Williams (1994). Curvature mode 

shape is related to the flexural stiffness of beam cross-sections. By definition, the 

curvature at a point of an element with bending deformation is given by  

M
EI

υ′′ =                                                                                                                       (6.1) 

 

in which v" is the curvature at a section, M is the bending moment at a section, E is the 

modulus of elasticity and I is the second moment of the cross-sectional area. 

If a crack or other damage is introduced in a structure, it reduces the flexural 

stiffness EI of the structure at the cracked section or in the damaged region. This in turn 

increases the magnitude of curvature at that section of the structure. The changes in the 

curvature are local in nature and therefore they can be used to detect and locate a crack or 

other damage in the structure. The change in curvature increases with the reduction in the 

value of the flexural stiffness EI. 

Starting with the displacement mode shapes obtained from the finite element 

analysis, the curvature mode shapes for the undamaged structure can be obtained 

numerically by using a central difference approximation as 
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1
2

2i i
i h

1iφ φ φφ − − +′′= +                                                                                               (6.2) 

 

where, 

h : distance between the measurement points (i) and (i+1) 

iφ : mass normalized mode shape of the undamaged structure associated with a given      

frequency 

 

Similarly, the curvature mode shapes for the damaged structure can be obtained as 

 

1
, 2

2i i
i h

1iφ φ φφ
∗ ∗
−

∗
− +′′ =

∗
+                                                                                          (6.3) 

 

where, 

iφ
∗ : mass normalized mode shape of the damaged structure corresponding to a specific     

natural frequency. 

 

For mode j the absolute difference between the curvatures of the damaged and 

undamaged structure is calculated as 

 

{ } { } { }j j
φ φ φ∗′′ ′′ ′′∆ = −

j
                                                                                      (6.4) 
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6.3 NUMERICAL SIMULATIONS 

The procedure described before was used to calculate the absolute differences 

between the curvature mode shapes of undamaged and damaged structures. The same 

simply-supported beam and plane frame as well as the damage scenarios presented in 

Chapter III are considered again here to evaluate the method. The modal amplitudes 

obtained from the free vibration analysis are used to numerically compute the modal 

curvatures. 

• Simply-supported beam  

The absolute differences between the curvature mode shapes of the undamaged 

and the damaged beam for damage scenarios SD1 and SD2 are plotted in Figures 6.1 to 

6.3 for the first three displacement mode shapes. The discrete points in the horizontal axis 

correspond to the position of the sensors along the span of the beam. The maximum 

difference for each curvature mode shape occurs in the damaged region, which is 

between locations 5 and 6 for this damage case. The larger differences in the curvature 

mode shapes are localized near the damaged zone and they are much smaller outside the 

damaged region. Figures 6.4 to 6.6 show the results for damage scenarios SC1 and SC2. 

It is recalled that these correspond to a single crack at the mid-span with ratios between 

crack depth and section height of 0.1 and 0.25, respectively. The absolute differences 

between the curvature mode shapes of the undamaged and the cracked beam are plotted 

over the beam’s length for the first three displacement mode shapes. As it can seen in 

Figures 6.4 to 6.6, the maximum difference for each curvature mode shape occurs in the 
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damaged region, which is between locations 5 and 6 for these damage scenarios. As 

expected, the differences are larger for damage case SC2, since this correspond to a larger 

crack depth for the same cross section  

Figures 6.7 to 6.9 show the results for the multiple damage scenarios SC3 and 

SC4 (two cracks at 1/5 and 1/2 of the length with increasing depths). The cracks are at 

positions 2 and 5. The absolute differences between the curvature mode shapes for the 

first three modes of the undamaged and the cracked beam are plotted as a function of the 

sensor position. As it can be observed, only with the curvatures of the first mode shape it 

is possible to clearly detect the damaged zones. From the modal curvatures of modes 2 

and 3, it is possible to identify only one of the damaged elements. Although for the 

damage case SC3 the results are somewhat better than for case SC4, the resolution is not 

good enough nevertheless. Hence the curvature mode method does not exhibit a good 

performance for multiple damage scenarios.  
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Figure 6.1. Absolute difference between the curvature mode shapes for mode 1 of the 

beam for damage scenarios SD1 and SD2. 
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Figure 6.2. Absolute difference between the curvature mode shapes for mode 2 of the 

beam for damage scenarios SD1 and SD2. 
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Figure 6.3. Absolute difference between the curvature mode shapes for mode 3 of the 

beam for damage scenarios SD1 and SD2. 
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Figure 6.4. Absolute difference between the curvature mode shapes for mode 1 of the 

beam for damage scenarios SC1 and SC2. 
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Figure 6.5. Absolute difference between the curvature mode shapes for mode 2 of the 

beam for damage scenarios SC1 and SC2. 
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Figure 6.6. Absolute difference between the curvature mode shapes for mode 3 of the 

beam for damage scenarios SC1 and SC2. 
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Figure 6.7. Absolute difference between the curvature mode shapes for mode 1 of the 

beam for damage scenarios SC3 and SC4. 
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Figure 6.8. Absolute difference between the curvature mode shapes for mode 2 of the 

beam for damage scenarios SC3 and SC4. 
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Figure 6.9. Absolute difference between the curvature mode shapes for mode 3 of the 

beam for damage scenarios SC3 and SC4. 
 
 
 

• Plane frame 

The performance of the mode shape curvature criterion to detect damage is 

examined by applying it to the plane frame in Figure 3.8. In damage scenarios PC1 and 

PC2 the crack-like damage is located near the right fixed support (between location 

points 1 and 2). The depth of the crack for case PC2 is twice that of case PC1. The 

absolute differences between the curvature mode shapes corresponding to the undamaged 

and cracked right column are shown in Figures 6.10 to 6.12. The figures display the 

modal curvatures for the first three displacement mode shapes. The method was able to 

pinpoint the damaged zone in the right column using the three modal curvatures. 
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In the next damage scenarios PC3 and PC4 a single crack is introduced at the 

mid-span of the beam (between location points 10 and 11). Figures 6.13 and 6.14 show 

the absolute differences between the curvature mode shapes corresponding to the 

undamaged and the damaged beam of the frame, for the first two mode shapes. As it can 

be observed by inspecting the figures, the method was able to indicate the presence of 

damage and the location of the damaged region of the frame. 

In the multiple damage scenarios (PC5 and PC6), the presence of two cracks at 

the beam is simulated. The defects are at positions 10 and 18 measured from the left end 

of the beam. The results in terms the absolute differences between the curvature mode 

shapes corresponding to the undamaged and the damaged beam are shown in Figures 

6.15 to 6.17, for the first three modes. It is evident from the graphs displayed in Figures 

6.15 and 6.16 that the method could not indicate simultaneously the location of the two 

damaged regions of the beam using the curvatures of the first two modes. Notice, 

however, that is possible to detect one of the damaged zones using the difference in the 

first mode shape curvatures and the other one using the corresponding quantity for the 

second mode. The difference between the modal curvatures of the third undamaged and 

damaged modes for the case of the bigger crack (PC6) yielded better results. However, 

even in this case there is some ambiguity in the results in the left region of the beam.  
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Figure 6.10. Absolute difference between the curvature mode shapes for mode 1 of 

the frame for damage scenarios PC1 and PC2. 
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Figure 6.11. Absolute difference between the curvature mode shapes for mode 2 of 

the frame for damage scenarios PC1 and PC2. 
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Figure 6.12. Absolute difference between the curvature mode shapes for mode 3 of 

the frame for damage scenarios PC1 and PC2. 
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Figure 6.13. Absolute difference between the curvature mode shapes for mode 1 of 

the frame for damage scenarios PC3 and PC4. 
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Figure 6.14. Absolute difference between the curvature mode shapes for mode 2 of 

the frame for damage scenarios PC3 and PC4. 
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Figure 6.15. Absolute difference between the curvature mode shapes for mode 1 of 

the frame for damage scenarios PC5 and PC6. 
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Figure 6.16. Absolute difference between the curvature mode shapes for mode 2 of 
the frame for damage scenarios PC5 and PC6. 
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Figure 6.17. Absolute difference between the curvature mode shapes for mode 3 of 

the frame for damage scenarios PC5 and PC6. 
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6.4 DAMAGE INDEX  β  

This method was proposed by Kim et al. (2003), and is designed to yield 

information on the location and the severity of damage in a structure directly from 

measured changes in the modal characteristics of the structure. The modal characteristics 

of interest are natural frequencies and mode shapes. Once several sets of modal 

parameters are measured, for the undamaged structure and the damaged state, the damage 

indices developed are used to predict the damage location and to estimate the severity of 

the damage at that location. 

The damage indices are based on the variation of the fraction of modal energy at 

the elements of the structure for a particular mode.  

The method considers a structural system with ne elements (j=1,2,…,ne) and a 

measured set of nm vibration modes (i =1,…, nm). For several measurable and 

identifiable modes, the damage localization index for the jth location, is given by: 

( )
γ

β
γ η γ

∗

=
+

∑
∑

ij
i

j
i i ij

i

                                                                                                   (6.5) 

 
where iη  is the relative change in the eigenvalues of the damaged and undamaged 

system: 
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with 
  
 

*,i iω ω : natural frequencies of the damaged and undamaged structure  
 

2
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+∆
⎡ ⎤= ⎣ ⎦∫                                                                                               (6.7) 

 
2"

0
( )

L

i i x dxγ φ⎡ ⎤= ⎣ ⎦∫  

 
"* "( ), ( )i ix xφ φ : curvature mode shape of the ith modal vector for the damaged and 

undamaged structure. 

 
in which kx  and  kx x+ ∆ are the local coordinates of two consecutive nodes of  element j. 

Note that an asterisk is used to denote the modal parameters associated with the damaged 

system. 

The damage index defined in equation (6.5) is the original definition as proposed 

by Kim et al. (2003). However, when this damage index was implemented to evaluate 

damage via numerical simulations, it did not give the results expected. The reasons for 

this are not clear; it is possible that there was a misprint problem in the original 

expressions. Therefore, in this work it is proposed an alternative damage localization 

index with a format similar to the original one. The new index is defined as 
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                                                                                                  (6.8) 

 
 

This index is defined in terms of the first two integrals in Equations (6.7), over the 

same element j of the structure. After the damage localization index of element j is 

computed for the damage cases, the values of the indicator are normalized according to 

the following rule: 

 
j

j
j

Z jβ

β

β µ
σ
−

=                                                                                                              (6.9) 

 
where 
 

jβµ : mean of the damage index 
 

jβσ : standard deviation of the damage index 
 
 

The structural elements are next assigned to a damage class via a statistical-

pattern-recognition technique that utilizes hypothesis testing. The null hypothesis, 

referred to as H0, corresponds to the structure not damaged at the jth location and the 

alternate hypothesis, denoted as H1, means that the structure is damaged at the jth 

location. To assign damage to a particular location, the following decision rule is used: 

(1) select H0 if Zj < 2 or (2) select the alternate H1 if Zj ≥ 2 . This test corresponds to a 

confidence level of 97.7 %.  
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6.5 NUMERICAL SIMULATION 

It is recalled that the modal amplitudes were obtained at a reduced number of 

locations. To obtain a better approximation in the evaluation of equations (6.7), from the 

ith modal vector, modal coordinates at the 41 nodal points (corresponding to 40 elements) 

of the damage detection model were calculated by using cubic spline interpolation 

functions. Using the interpolated modal coordinates, the curvature mode shapes were 

generated numerically via a central difference approximation. To evaluate the integrals, 

the function quad, (included in MATLAB) was used. This function evaluates numerically 

the integral using a recursive adaptive Simpson quadrature.  

• Simply-supported beam  

The damage index for the damage scenarios SD1 to SC4 using the first two 

displacement mode shapes are illustrated in Figures 6.18, 6.20 and 6.22. It can be seen 

that for all the damage scenarios the damage index displays a peak in the damaged 

region. In Figures 6.18 and 6.20 the damage was simulated at the mid-span of the beam. 

As it happened with the modal curvature method studied before, the damage index was 

also able to clearly identify the damage. However, as it can be observed in Figure 6.22, 

the new method can indicate simultaneously the location of the two damaged regions of 

the beam. The damage index βj for the damage scenarios SD2, SC2 to SC4 are used to 

calculate the normalized index Zj defined in equation (6.9). The predicted damaged 

elements using the normalized indicator index Zj are shown in Figures 6.19, 6.21 and 6.23 
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respectively. As it is evident from these figures, the predicted damaged elements 

correspond to peak values of the damage localization index. 
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Figure 6.18. Damage Index for the beam with damage scenarios SD1 and SD2 
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Figure 6.19. Normalized indicator for damage scenario SD2. 
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Figure 6.20 Damage Index for the beam with damage scenarios SC1 and SC2. 
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Figure 6.21 Normalized indicator for damage scenario SC2. 
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Figure 6.22 Damage Index for the beam with damage scenarios SC3 and SC4. 
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Figure 6.23 Normalized indicator for damage scenario SC4. 
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•  Plane frame 

Similar sets of results are presented next for the plane frame. The damage 

localization index βj for the damage scenarios PC1 to PC6 are shown in Figures 6.24, 

6.26 and 6.28. The index is defined using the first two mode shapes. Again, the peak 

values are in correspondence with the damaged regions. Figure 6.24 and 6.26 show the 

results when the damage is a single crack in the column and beam, respectively. Figure 

6.28 corresponds to the case where there are two cracks in the beam of the frame.  In a 

similar way as for the simply supported beam with multiple damage, the plot of the 

damage indexes was able to locate the damaged spots.  

The predicted location of the damaged elements using the normalized indicator 

index Zj  for the damage scenarios PC2, PC4 and PC6 are shown in Figures 6.25, 6.27 and 

6.29 respectively. As it can be seen, the predicted damaged elements correspond to peak 

values of the damage localization index. 
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Figure 6.24 Damage Index for the frame with damage scenarios PC1 and PC2. 
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Figure 6.25 Normalized indicator for damage scenario PC2. 
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Figure 6.26. Damage Index for the frame with damage scenarios PC3 and PC4. 
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Figure 6.27 Normalized indicator for damage scenario PC4. 
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Figure 6.28 Damage Index for the frame with damage scenarios PC5 and PC6. 
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Figure 6.29 Normalized indicator for damage scenario PC6. 
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6.6 CURVATURE-ENERGY DAMAGE INDEX  

As it was discussed in a previous chapter, the presence of damage in a structure 

increases the magnitude of the curvature at that section of the structure. In this chapter a 

new damage index based on the modal curvature is proposed. It is based on the concept 

of the flexibility matrix. The proposed modal curvature-based matrix can be defined by 

[ ] [ ] [ ] [ ]1 T

n n n m m m m n

−

× × ×
′′ ′′Χ = Φ Λ Φ

×
                                                                    (6.10) 

 

where n is the number of points for mode shape measurements (or measured and 

interpolated and m is the number of measured modes. [ ]′′Φ  is the modal curvature matrix 

formed by the curvature mode shapes { }"iφ : 

[ ] { } { } { }" " "
1 2 mφ φ φ⎡ ⎤′′Φ = ⎣ ⎦  

[ ]Λ  : Modal stiffness matrix 

For the damaged structure, the proposed curvature- energy matrix can be expressed as 

[ ] 1" T

m mn n n m m n

−∗
∗ ∗ ∗×× ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Χ = Φ Λ Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
"

×
                                                            (6.11) 

For the undamaged structure, the corresponding curvature-energy matrix is given by 

equation (6.10). In terms of these curvature-energy matrices, the relationship between 
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damaged and undamaged states, is defined by  

{ } { } { }/ uχ χ χ∗= ⋅                                                                                                (6.12) 

where the symbol ./ is used to indicate that the division of the vectors is done element by 

element. 

{ u}χ : diagonal of the matrix [X]. 

{ }χ∗ : diagonal of the matrix [X*]. 

It is proposed to define the damage index for the jth location as  

1j jκ χ= −                                                                                                             (6.13) 

6.7 NUMERICAL SIMULATIONS 

The procedure presented above was used to calculate the curvature-energy 

matrices of the undamaged and damaged structures considered (simply-supported beam 

and the plane frame). The same damage scenarios presented in Chapter III are used. The 

amplitudes of the mode shapes obtained from the free vibration analysis are used to 

numerically compute the modal curvatures. Next, the proposed damage index is 

calculated for each one of the damage scenarios. 
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• Simply-supported beam  

The proposed damage index for the damage scenarios SD1 to SC4 is shown in 

Figures 6.30 to 6.32, calculated using only two curvature mode shapes. As the two 

previous methods, the new technique is able to detect the single cracks in the beam for 

the damage scenarios SD1, SD2 and SC1, SC2. When two cracks are induced in the beam 

(damage scenarios SC3 and SC4), the proposed method is capable of detecting the 

location of the two defects, as evidenced by the peaks in the index κj  in Figure 6.32. 
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Figure 6.30  Curvature-energy damage index for the beam with damage scenarios 
SD1 and SD2. 
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Figure 6.31  Curvature-energy damage index for the beam with damage scenarios 

SC1 and SC2. 
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Figure 6.32  Curvature-energy damage index for the beam with damage scenarios 

SC3 and SC4. 
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• Plane frame 

The proposed damage index is next applied to detect damage in the plane frame. 

The results for the damage scenarios PC1 to PC6 are shown in Figures 6.33 to 6.35, 

where only the first two curvature mode shapes were used. Again, the peak value of the 

index occurred at the damaged region. In a similar way as in the analysis of the beam 

with multiple damage, the plot of the damage index clearly indicates the location of the 

two damaged regions of the frame.   
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Figure 6.33  Curvature-energy damage index for the frame with damage scenarios 

PC1 and PC2. 
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Figure 6.34  Curvature-energy damage index for the frame with damage scenarios 

PC3 and PC4. 
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Figure 6.35  Curvature-energy damage index for the frame with damage scenarios 

PC5 and PC6. 
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6.8 SUMMARY 

A new damage identification method based on the modal curvature is proposed in 

this chapter. Two existing methodologies are also presented and evaluated. One of these 

methods is based on the difference between the modal curvatures of the damaged and 

undamaged structure. The other method is based on the variation of the modal energy in 

the elements of the structure. Numerical examples are presented to compare the 

effectiveness of the methods studied to indicate the presence and locate the position of 

damage in simple structures. Two structures were used to evaluate the three methods. The 

first structure analyzed was a simply-supported beam.  For each of the six scenarios of 

damage, the values of the damage indices for all the methods were calculated. 

 The curvature-difference method can indicate correctly the location of the region 

damaged of the beam, when the first two curvature modes are used in the damage 

scenarios that simulate one damaged element. In the multiple damage scenarios if the 

results of the two modes are used is possible to detect the location of damage. 

From the evaluation of the second method, it was observed that it was possible to 

clearly locate the damage in all the damage scenarios studied using only two mode 

shapes. This method showed a good performance in the case of multiple damage. The 

results of the analyses indicate that the damage index formulated in this thesis correctly 

localizes the defects simulated in the beam. An advantage of the method is that to locate 

the damage it requires only a few modes (the lower two in the examples considered).   
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Next, a plane frame was analyzed. Six scenarios of damage were studied and the 

damage indices of each method were calculated. The curvature difference method could 

indicate correctly the location of the damaged region of the beam when the first two 

modes were used and a single element was damaged. The damage index β was evaluated 

next. This method proved to be capable to locate the damaged zones of the beam and 

plane frame in all of the damage scenarios analyzed and using the first three modes. The 

new damage index was applied to the same structures. This damage index correctly 

localized the damaged zones of the beam and frame by using only two mode shapes. 

 

 

 

 

 

 



CHAPTER VII 

 

METHODS BASED ON THE FREQUENCY RESPONSE 
FUNCTION 

 
 

7.1 INTRODUCTION  

The structural damage identification methods studied in the previous chapters are 

based on measured modal data (frequencies and mode shapes). There are other kinds of 

methods based on Frequency Response Function (FRF) data. Using measured FRFs for 

damage detection may have certain advantages over the traditional methods using modal 

analysis data (He 1999). First, numerical errors inherent in modal analysis results due to 

inaccurate curve fitting and unavailable residual terms are avoided. Second, no more 

effort is needed to process measured FRF data in order to obtain modal analysis data. 

Finally, the most significant advantage lies in the fact that FRF data provide abundant 

information on the dynamic behavior of a structure. In comparison, modal analysis data, 

due to the numerical process used to extract them, lose much of the information that FRF 

data have to offer.  

In this chapter, an existing methodology is studied and two damage identification 

methods based on the FRF-curvature are proposed. A new concept based on the 

Receptance Energy is formulated. Numerical simulations are performed to compare the 

109 
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effectiveness of the existing and proposed procedures to locate the damage. First, a brief 

introduction to the theory of the harmonic vibrations and the FRF is presented. 

7.2 FREQUENCY RESPONSE FUNCTION : HARMONIC VIBRATIONS 

The general mathematical representation of a single degree of freedom (SDOF) system is 

expressed by  

 

( ) ( ) ( ) ( )mx t cx t kx t F t+ + =                                                                                      (7.1) 

 

Assuming that the forcing function is harmonic of the form  and the 

damping is linear and viscous, the Frequency Response Function (FRF) can be defined 

by 

( ) i t
oeF t F Ω=

 

( ) 2

2

1

1
n n

i
H

ξ
ω ω
⎛ ⎞ ⎛ ⎞Ω Ω

+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
Ω =                                                                                                 (7.2) 

 

For multiple degree of freedom (MDOF) systems with classic damping, the Frequency 

Response Function (FRF) between the degrees of freedom r and s is defined as  

 

2 2 2
1

( ) rj sj

j j

n
rs i

j
H φ φ

ω ξ ω−Ω + Ω
=

Ω =∑ j
                                                                                        (7.3) 
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( )rsH Ω  is the response of the DOF r due to a single harmonic force excitation of unit 

amplitude applied at the DOF s. This particular FRF where the response or output is 

described in terms of the displacement and the input is a force is known as the 

Receptance function. 

The functions  can be arranged in matrix form. This leads to a Receptance Matrix 

defined as 

( )rsH Ω

[ ]

11 12 1

21 22 2

1 2

( )

n

n

n n nn

H H H
H H H

H H H

H

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

Ω ⎥
⎥

                                                                                  (7.4) 

 

In a more general case the Receptance Matrix for MDOF systems with viscous damping, 

can be expressed as  

[ ] [ ] [ ] [ ] 12( ) K M i CH
−

⎡= −Ω + Ω⎣Ω ⎤⎦                                                                              (7.5) 

The Receptance Matrix is symmetric and therefore 

( ) r
rs sr

s

s r

X X
F F

H H= =Ω =                                                                                         (7.6) 

where kX  and Fk are, respectively, the Fourier transform of the displacement and applied 

force time histories at the kth degree of freedom.               
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The property in Equation (7.6) is known as the principle of reciprocity. The 

displacement, velocity and acceleration are mathematically interrelated response 

quantities. Therefore, by knowing the FRF in terms of any one of the response parameters 

one can derive any of the other FRF forms. For instance, the mobility is defined by 

2 2 2
1

( ) ( ) rj sj

j j

n
i

rs rs
i

j
Y i H φ φ

ω ξ ω
Ω

j−Ω + Ω
=

Ω = Ω Ω =∑                                                                    (7.7) 

Similarly the Accelerance or Inertance  is defined by 

2

2 2
2

2
1

( ) ( ) rj sj

j j j

n
rs rs i

j
A H φ φ

ω ξ ω
−Ω

−Ω + Ω
=

Ω = −Ω Ω =∑                                                            (7.8) 

The Accelerance matrix can be expressed by  

 

[ ]

11 12 1

21 22 2

1 2

( )

n

n

n n nn

A A A
A A A

A A A

A

⎡ ⎤
⎢ ⎥
⎢=
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⎣ ⎦

Ω ⎥                                                                                      (7.9) 

Table 7.1 displays the different formulations of the FRF. A brief review of the 

Frequency Response Function in the Frequency Domain (Fourier Analysis) is presented 

in Appendix B.  
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Displacement
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Force
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Force
Acceleration

Force
Velocity

 

 
Table 7.1 Frequency Response Function Formulations. 

 
 

7.3 THE FREQUENCY RESPONSE FUNCTION (FRF) CURVATURE METHOD 

This method was proposed by Sampaio et al. (1999). The method is an extension 

of the procedure proposed by Pandey et al. (1991) based on mode shape curvature. The 

approach accounts for all the frequencies in the measurement range, and not only the 

natural frequencies. It uses FRF (Receptance) data rather than mode shape data. The 

method uses something similar to an “operational mode shape” defined, for each 

frequency by the frequency response at various locations on the structure. 

The FRF-curvature for any frequency Ω is defined by 
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1, , 1,
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( ) 2 ( ) ( )
( ) i j i j i j

i j

H H H
H

h
+Ω − Ω + Ω

′′ Ω = −                                                    (7.10) 

 where 

,( )i jH Ω :  the receptance FRF measured at location i due to  a force input at position j. 

h: the distance between two consecutive measurement points: (i) and (i+1) or (i) and (i-1) 

In this work, the receptance FRF is calculated with Equation (7.3). This implies 

that the structure has classical viscous damping.  

For an applied force at point j, the absolute difference between the FRF curvatures 

of the damaged and undamaged structure at a location i, in a predetermined frequency 

range, is defined as  

"
, * ,( ) ( )i j i j i jH H H

Ω

′′ ′′∆ = Ω − Ω∑ ,

i jH

                                                                          (7.11) 

Finally, the change in the FRF curvatures for several force location are added. This leads 

to a parameter Si for the ith measurement point defined as,  

,i
j

S ′′= ∆∑                                                                                                              (7.12) 
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7.4 NUMERICAL SIMULATIONS 

The previously presented methodology was used to calculate the FRF curvature 

difference between the FRF-curvature of undamaged and damaged structures. As it was 

done with the previous methods, simply-supported beam and the plane frame with the 

different damage scenarios presented earlier are considered. It was assumed that the 

modal damping ratio ξj was constant for all the modes and equal to 0.05. The first five 

mode shapes were used to compute the values of the Receptance function  Hrs in the 

frequency range from 10 to 100 rad/s. This range of frequencies was chosen because the 

method shows a better performance in a range before the first resonant frequency 

(Sampaio et al. 1999). 

• Simply-supported beam. 

The FRF curvature differences for damage scenarios SD1 to SC4 are illustrated in 

Figures 7.1 to 7.3. The quantity plotted in the figures is the parameter Si defined in 

Equation (7.12). The input force was applied at 2 locations: at points 3 and 5. Note from 

the figures that the peak value occurred at the damaged region. As it can be verified from 

Figure 7.3, the method is capable of indicating simultaneously the location of the two 

damaged regions of the beam. Figure 7.4 shows a two-dimensional plot of the FRF-

curvature difference defined in Equation (7.11) for the frequency range 10-100 rad/s. 

Figure 7.5 shows the surface of the FRF-curvature difference for a frequency range 

extending from 10 to 220 rad/s. This is done to observe the performance of the FRF-

curvature near the first natural frequency of the damaged beam. This frequency is equal 
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to 221.8 rad/sec. As it can be observed in Figure 7.4, the localization of damage in the 

frequency range 10-100 rad/sec is clearly defined.  
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Figure 7.1 FRF curvature differences for the beam with damage scenarios SD1 and SD2. 
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Figure 7.2 FRF curvature differences for the beam with damage scenarios SC1 and SC2. 
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Figure 7.3 FRF curvature differences for the beam with damage scenarios SC3 and SC4. 
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Figure 7.4 Surface of FRF curvature differences in the frequency range 10-100 rad/s for 
damage scenario SC2. 
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Figure 7.5 Surface of FRF-curvature differences in the frequency range 10-220 rad/s for 

damage scenario SC2. 
 

 
• Plane frame 

The plane frame in Figure 3.8 is used for the next set of examples. The FRF 

curvature differences for damage scenarios PC1 to PC6 are shown in Figures 7.6 to 7.8. 

The frequency range considered to define ,i jH ′′∆ is 5-50 rad/s. For the damage cases PC1 

and PC2, the input force was located at one position (at location 20 on the right column). 

As in the case of the simply-supported beam, the peak value of Si occurs at the damaged 

zone of the frame. Similarly to the beam with multiple damage, the plot of the FRF 

curvature difference indicates the location of the damaged zone. Note, however that the 

FRF-curvature difference has different magnitude at the location of the two cracks, even 
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though the severity of the damage is the same. This is a disadvantage of the method 

because we will not be able to estimate the amount of damage with this parameter. 
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Figure 7.6 FRF curvature differences for the frame for damage scenarios PC1 and PC2. 
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Figure 7.7 FRF curvature differences for the frame for damage scenarios PC3 and PC4. 
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Figure 7.8 FRF curvature differences for the frame with damage scenarios PC5 and PC6. 
  
 

7.5 THE RECEPTANCE-ENERGY DAMAGE INDEX  

In this section a new damage index based on the concept of Receptance-energy, is 

proposed. The index was conceived to predict the damage location and to estimate the 

severity of the damage in a structure directly from the measured FRF (Receptance or 

Accelerance). In the formulation presented here the Receptance function will be used. 

The damage indices are based on the variation of the Receptance-energy at the 

elements of the structure for a given excitation frequency.  In a one-span beam, the 

Receptance-energy can be defined as: 



 121

[ ]
2

( ) 0
( ; )

L
H x dζ Ω ′′= Ω∫ x                                                                                          (7.13) 

where 

L: span of the beam. 

( ; )H x′′ Ω : Receptance-curvature for a frequency Ω. 

The damage index ( )ζ Ω  is the area under the curve of the curve  2( ; )H x′′ Ω  

covering the whole span. Similarly, the integral in Equation (7.13) can be evaluated 

between two arbitrary limits x1 and x2

[2

1

2

( ) ( ; )
x

x
]H xζ Ω ′′= Ω∫ dx                                                                                          (7.14) 

The Receptance-curvature for each frequency can be calculated numerically with 

Equation (7.10) using the magnitude of the Receptance (it is recalled that the Receptance 

is a complex function). 

The structural system is assumed to be divided into ne elements (j=1,2,…,ne). For the jth 

element the Receptance-energy can be written as  

[ ]1
2

( ; )k

k

x

j x
H x dζ + ′′= Ω∫ x                                                                                           (7.15) 

 
where 
 

kx  ,  1kx + : coordinates of the nodes of element j. 
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The signature of damage is reflected on the variation of the integrals (7.15). The 

ratio of the Receptance-energy between the damaged and undamaged jth element of the 

structure is defined as 

ζ
η

ζ

∗

= j
j

j

                                                                                                                      (7.16) 

where ζ ∗
j  is the Receptance-energy of the structure with damage: 

[ ]1
2

*
*( ; )k

k

x

j x
H x dζ + ′′= Ω∫ x                                                                                           (7.17) 

 

For a given frequency range, the damage localization index for the jth location and 

for an external force applied at point p is defined as follows 

ζ

ζ

∗

Ω

Ω

Ψ =
∑
∑,

j

j p
j

                                                                                                             (7.18) 

 
 
where the summation covers all the discrete frequencies in the selected range. If several 

forces are applied at different positions, the damage localization index for the jth location 

is  

 
ζ

ζ

∗

Ω

Ω

Ψ =
∑∑
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j
p

j
j

p

                                                                                                          (7.19) 
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For a frequency range, the damage severity index for the jth location, for an applied force 

at point p, is defined by 

 

ζ ζ ζ

ζ ζ
Ω Ω Ω

Ω Ω

−
Γ = = −

∑ ∑ ∑
∑ ∑

*

, * 1 *

j j j

j p
j j

                                                                          (7.20) 

 
For several force positions, the damage severity index for the jth location is defined by 

ζ

ζ

Ω

Ω

⎛ ⎞
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j
p

                                                                                               (7.21) 

 
 
                                                                                               
After the damage localization index of element j is computed, the value of the indicator is 

normalized according to the rule: 

( )j j
j

j

Z
µ

σ
Ψ

Ψ

Ψ −
=                                                                                                            (7.22) 

 
 
where 
 

jµΓ : mean value of the damage localization index 
 

jσΓ : standard deviation of the damage localization index 
 
 

The damage is assigned to the elements by using the technique proposed by Kim 

et al. (2003) presented in Chapter VI. 
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7.6 NUMERICAL SIMULATIONS 

 Once again, the two structures considered in the previous chapters are analyzed. 

For the simply-supported beam the Receptance FRF were obtained at 9 locations equally 

spaced along the longitudinal axis and for the beam and the column of the frame at 19 

positions. From the Receptance vector {H}s obtained for a force located at position s, 

Receptance values at 41 nodal points (corresponding to 40 elements) of the structural 

model are obtained by using cubic spline interpolation functions. It is recalled that the 

beam and the right column of the frame were divided into 40 elements. Using the 

interpolated values of the Receptance FRF, the FRF-curvatures were generated 

numerically via a central difference approximation. The MATLAB function quad was 

used to evaluate the integrals. 

• Simply-supported beam  

The damage indices for the damage scenarios SD1 to SC4 are illustrated in 

Figures 7.9 to 7.17. The indices were calculated in the frequency range 150-190 rad/s. A 

single input force was applied at location L/2. The method was able to detect damage in 

all cases. As it is expected, the larger the damage (cases SD2, SC2, SC4), the more 

pronounced the peaks in the index. Note also that the proposed index succeeded in 

detecting the damage in the beam with two cracks (Figure 7.11). 

Next, the damage severity index Γj was calculated for the predicted damaged 

elements. The damage locations were determined by using the normalized indicator Zj. 
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The values of the damage severity along the beam span are shown in Figures 7.12 to 

7.17. The damage severities of the elements with the highest values of the damage 

localization index (Ψj), are listed in Table 7.2. The errors in the estimation of damage 

severity for cases SD1 and SD2 range from 0.2  to 13 % and for cases SC1 to SC4 the 

errors range from 18 to 22 %. The error represents the difference between simulated and 

predicted damage severity. The simulated severity for cases SC1 to SC4 is defined in 

Appendix D. It can be noted that in cases SC3 and SC4, the maximum difference in the 

estimated severity for the elements with the same crack size was of 2%. As it can be 

observed for the beam with multiple damage scenarios (cases SC3 and SC4), the 

proposed method indicates simultaneously the location and severity of the two damaged 

regions of the beam. 
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Figure 7.9 Receptance-energy damage index for the beam with damage scenarios SD1 

and SD2. 
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Figure 7.10 Receptance-energy damage index for the beam with damage scenarios SC1 

and SC2. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 

1.5 

2 

2.5 

Location (x/L)

D
am

ag
e 

In
de

x 

SC3 
SC4 

 
Figure 7.11 Receptance-energy damage index for the beam with damage scenarios SC3 

and SC4. 
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Figure 7.12 Damage severity index for the beam with damage scenario SD1. 
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Figure 7.13 Damage severity index for the beam with damage scenario SD2. 
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Figure 7.14 Damage severity index for the beam with damage scenario SC1. 
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Figure 7.15 Damage severity index for the beam with damage scenario SC2. 
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Figure 7.16 Damage severity index for the beam with damage scenario SC3. 
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Figure 7.17 Damage severity index for the beam with damage scenario SC4. 
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Table 7.2. Damage indices: simply-supported beam. 

 
Damage scenario Element with the 

Highest Ψj

Damage Severity 
Index Γj  

Simulated 
Severity 

SD1 20 0.22 0.25 
SD2 20 0.50 0.50 
SC1 21 0.11 0.11 
SC2 21 0.51 0.46 
SC3 8  , 21 0.13   ,  0.12 0.11 
SC4 8 ,  21 0.56  ,   0.54 0.46 

 
 

• Plane frame 

 
The first two cases studied for the second structure analyzed, are the damage 

scenarios PC1 and PC2. The values of the damage localization index Ψj are shown in 

Figure 7.18, and the corresponding damage severity indices are shown in Figures 7.21 

and 7.22. The indices were calculated in the frequency range 10 to 50 rad/s. A scheme of 

multiple input forces (MIF) was used. The forces were applied at 2 locations.  

The values of the damage localization index for damage scenarios PC3 to PC6 are 

shown in Figures 7.19 and 7.20. The indices were calculated in a frequency range of 200-

300 rad/s. The damage severity indices Γj for the elements with predicted damage are 

shown in Figures 7.23 to 7.26. The damage locations were determined by using the 

normalized indicator Zj. Multiple input forces were also used. The damage severity 

indices Γj for the elements with the highest values of the damage localization index Ψj , 

are listed in Table 7.3. It is observed that the errors in the estimation of damage severity 

for cases PC1 and PC2 are 8 and 35 % respectively and for cases PC3 to PC6 the errors 

range from 15 to 23 %. The simulated severity is defined in Appendix D. It can be noted 
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that in cases PC5 and PC6, the maximum difference in the estimated damage severity 

index for the elements with the same crack size was 1 %.  

As in the case of the simply-supported beam, the peak values occur at the 

damaged regions. In a similar way to the beam with multiple damage, the damage index 

correctly indicated the location of the damaged zone. As it can be observed for the 

multiple damage scenarios (cases PC5 and PC6), the proposed method indicates 

simultaneously the location and severity of the two damaged regions of the frame. 
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Figure 7.18 Damage localization index for the frame with damage scenarios PC1 and 

PC2. 
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Figure 7.19 Damage localization index for the frame with damage scenarios PC3 and 

PC4. 
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Figure 7.20 Damage localization index for the frame with damage scenarios PC5 and 

PC6. 
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Figure 7.21 Damage severity index for the frame with damage scenario PC1. 
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Figure 7.22 Damage severity index for the frame with damage scenario PC2. 
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Figure 7.23 Damage severity index for the frame with damage scenario PC3. 
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Figure 7.24 Damage severity index for the frame with damage scenario PC4. 
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Figure 7.25 Damage severity index for the frame with damage scenario PC5. 
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Figure 7.26 Damage severity index for the frame with damage scenario PC6 
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Table 7.3. Damage indices: plane frame. 
 

Damage scenario Element with the 
Highest Ψj

Damage Severity 
Index Γj

Simulated 
Severity 

PC1 4 0.14 0.13 
PC2 4 0.54 0.40 
PC3 21 0.16 0.13 
PC4 21 0.46 0.40 
PC5 21, 36 0.16   ,   0.15 0.13 
PC6 21, 36 0.46  ,   0.46 0.40 

 
 
7.7 DAMAGE  INDEX η 

 In this thesis a new damage localization index is proposed as a variation of 

the Stubbs et al. (1995) method based on modal strain energy. The new index uses FRF-

curvature data rather than mode shape data. The FRF-curvature for each frequency is 

computed using the absolute value of the receptance function Hrs (or the Accelerance 

function Ars). The second derivative is calculated with a central difference approximation.  

For a given frequency Ω, the FRF-curvature is defined for FRFs at all the 

measurement locations 1,2, …, n. The excitation is assumed to be applied at the location 

or dynamic degree of freedom j: 

( ){ } ( ) ( ) ( ){ }'' '' ''
1 2

T

j j njj
H H H H′′ Ω = Ω Ω Ω                               (7.23) 

 

For a selected frequency range and for a force applied at point j, a partial damage 

index at location i is first defined as  
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where  
 
 

, ,( ), ( )i j i jH H∗′′ ′′Ω Ω : the FRF-curvature for the undamaged and damaged structure , 

respectively, calculated at location i for a force input at position j.  

( ) ( )2 2*
, ;j i j j i j

i i

H H* ,ψ ψ′′ ′′= Ω =∑ ∑ Ω

i j

                                                        (7.25) 

 
 
The proposed damage index is defined by adding up the partial indices for several force 

locations 

,i
j

η η= ∆∑                                                                                                            (7.27) 

7.8 NUMERICAL SIMULATIONS 

 The methodology presented before was used to calculate the damage localization 

index for the undamaged and the damaged structures previously studied (the simply-

supported beam and the plane frame). The different damage scenarios presented earlier 

are considered again. The first five mode shapes were used to compute the values of the 

Receptance (Hrs) for a frequency range between 10 to 100 rad/s. A constant modal 

damping ratio ξ = 0.05 was used. To assess the influence of the input force location on 
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the results, the damage index was calculated by using a single input and multiple input 

forces locations.  

• Simply-supported beam  

In this case eight damage scenarios were analyzed. The proposed damage 

localization index for the damage scenarios SD1 to SC4 are illustrated in Figures 7.27 to 

7.30. Two new damage scenarios were added. They are identified as SD3 and  SD4. They 

differ in the severity of damage: for case SD3 is 25% and for case SD4 is 50% of the 

stiffness. In both cases the damaged element is located at L/5 from the left support of the 

beam. The results for the new damage scenarios are displayed in Figure 7.28. 

Figures from 7.27 to 7.30 illustrate the case of a single input force (SIF) location, 

and the Figures 7.31 and 7.32 correspond to the case of multiple input forces (MIF). In 

the latter case the input forces are applied at locations 3 and 5. In all these figures, the 

maximum value of the damage localization index occurs at the damaged region.  As it 

can be observed, the proposed damage index can locate damage by using only one input 

force. The method was capable of indicating the location of the two damaged regions of 

the beam) in the cases of multiple damage, using a single excitation (Figure 7.30) and 

using a pair of input forces (Figure 7.32). 

• Plane frame 
 

 The index based on the FRF curvature for the frame with damage scenarios 

PC1 to PC6 are shown in Figures 7.33 to 7.35 for a frequency range from 5 to 50 rad/s. 
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The first natural frequency of the frame is 99.8 rad/sec. In cases PC1 and PC2, the input 

force was located at position 20 on the column (SIF). In cases PC3 and PC4, the input 

force was located at location 10 on the beam. As in the case of the simply-supported 

beam, the peak value of the index occurs at the damaged zone of the frame. It can be 

observed from Figures 7.33 and 7.34 that is possible to locate the damage by using only 

one input force location in the cases of damage that simulate a single element damaged. 

Figure 7.35 corresponds to the case of multiple input forces (MIF). The input forces were 

applied at 3 positions: locations 5, 10, 15. As it can be seen, the peaks at positions 10 and 

18 indicate the location of the damaged elements of the frame.  
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Figure 7.27 Damage Index η for the beam with damage scenarios SD1 and SD2 and SIF. 
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Figure 7.28 Damage Index η for the beam with damage scenarios SD3 and SD4 and SIF. 
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Figure 7.29 Damage Index η for the beam with damage scenarios SC1 and SC2 and SIF. 
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Figure 7.30 Damage Index η for the beam with damage scenarios SC3 and SC4 and  SIF. 
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Figure 7.31 Damage Index η for the beam with damage scenarios SC1 and SC2 and MIF. 
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Figure 7.32 Damage Index η for the beam with damage scenarios SC3 and SC4 and MIF. 
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Figure 7.33 Damage Index η for the frame with damage scenarios PC1 and PC2 and SIF. 
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Figure 7.34 Damage Index η for the frame with damage scenarios PC3 and PC4 and SIF. 
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Figure 7.35 Damage Index η for the frame with damage scenarios PC5 and PC6 and MIF. 
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7.9 SUMMARY 

In this chapter, two damage identification methods based on the FRF are 

proposed, and one existing methodology is presented. A new damage index based on the 

concept of Receptance-Energy is proposed. This index was designed to predict the 

damage location and to estimate the severity of the damage in a structure directly from 

measured FRFs (either Receptance or Accelerance). Numerical examples using simple 

structures are presented to compare the effectiveness of the methods studied in finding 

the damage. Two structures were considered for all the three methods 

The FRF-curvature difference method can indicate correctly the location of the 

damaged zones in the beam and plane frame for single and multiple damage scenarios. It 

was found that for the structures with two cracks the FRF-curvature differences at the 

damage location are different even though the severity of damage was the same. This is a 

potential weakness of the method because it makes it difficult to calibrate the index with 

the magnitude of the damage. A possible advantage of the method is that it can locate the 

damage by using only one input force. 

For the damage indices formulated in this work based on the Receptance-Energy, 

the results obtained indicate that the proposed method can localize and estimate the 

damage severity for the single and multiple damage scenarios simulated in the beam and 

frame. For single-span beams, a significant feature of the proposed method is that it can 

locate the damaged zones by using a single input force. Although some errors were 
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obtained in the quantification of the damage severity because the index seems sensitive to 

the frequency range used, for practical purposes they could be acceptable.  

The results of the simulations with the damage index η indicate that the proposed 

index can correctly localize the damage, at least for the damage scenarios studied. The 

damage index can locate the damage by using one input force in the damage scenarios 

that simulate one damaged element. For the case of multiple damage scenarios, the 

method showed a better performance for the simply-supported beam. 

 
 
 



CHAPTER VIII 
 

APPLICATION OF THE DISCRETE WAVELET 
TRANSFORM TO DAMAGE IDENTIFICATION 

 

8.1 INTRODUCTION  

Most of the methods that use modal analysis are based on the Fourier transform. 

In other words, the Fourier transform is used to extract the modal information (natural 

frequencies and vibration modes), or it is used to calculate the FRF from a transient time 

signal. The theory of the Fourier transform is very well established, and it is a quick and 

easy tool to find the frequency components in a signal. The Fourier analysis consists in 

transforming a signal from the time or space domain to the frequency domain. A 

disadvantage of the Fourier analysis is that the time or space information is lost in the 

transformation, and it is not possible to determine when or where a local event occurs. In 

order to overcome this drawback, wavelet analysis has been considered recently for 

structural identification and damage detection. Wavelet analysis may be viewed as an 

extension of the traditional Fourier transform with a window adjustable in location and 

size. The advantage of wavelet analysis lies in its capacity to examine local information 

with a ‘‘zoom lens having an adjustable focus’’ to provide multiple levels of details and 

approximations of the original signal. In this Chapter, a wavelet-based methodology for 

structural damage identification is formulated. Numerical examples are presented to 

illustrate the effectiveness of the proposed procedure to indicate the location of damage 

in simple structures. 

144 
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 8.2 THE CONTINUOUS WAVELET TRANSFORM. 

The Continuous Fourier Transform (CFT) is defined as  
 
 

( ) ( ) i tF f t e ωω
∞

−

−∞

= ∫ dt                                                                                                                (8.1) 

 
 

The results of the CFT are the Fourier coefficients F(ω), which when multiplied 

by a sinusoid of appropriate frequency ω, yields the constituent sinusoidal components of 

the original signal. 

The Continuous Wavelet Transform (CWT) is defined as the sum over all time of 

the signal function of time or space multiplied by a scaled, shifted version of a wavelet 

function ψ. For a space signal, 

( , ) ( ) ( , , )Cw a b f x a b x dxψ
∞

−∞

= ∫                                                                                        (8.2) 

 

The results of the CWT are wavelet coefficients Cw that are a function of the 

scale a and position b. Multiplying each coefficient by the appropriately scaled and 

shifted wavelet yields time signals whose synthesis can recover the original signal.  

To perform the CWT, a basic wavelet function must be selected from the existing 

wavelet families. The basic wavelet function, known as the “mother wavelet” ψ(x), is 

dilated by a value a and translated by the parameter b. The dilation (expansion or 
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compression) and the translation yield a set of basis functions defined as 

1( , , ) x ba b x
aa

ψ ψ −⎛= ⎜
⎝ ⎠

⎞
⎟                                                                                               (8.3) 

 
 

The translation parameter, b, indicates the space (or time) position of the relocated 

wavelet window in the wavelet transform. Shifting the wavelet window along the space 

(or time) axis implies examining the signal f(x) in the neighborhood of the current 

window location. The scale parameter, a, indicates the width of the wavelet window. A 

smaller value of a implies a higher resolution filter, i.e., the signal is examined through a 

contracted wavelet window in a smaller scale. The wavelets coefficients defined in 

equation (8.2) indicate how similar is the function being analyzed f(x) to the wavelet 

function ψ(a,b,x). 

In terms of a selected mother wavelet function ψ(x), the continuous wavelet 

transform of a signal f (x) is defined as 

1( , ) ( ) x bCw a b f x dx
aa

ψ
∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫                                                                               (8.4) 

The scale parameter a and the translation parameter b are real numbers, and a 

must be positive.  

 



 147

8.3 THE DISCRETE WAVELET TRANSFORM. 

One of the drawback of the CWT is that a very large number of wavelet 

coefficients C(a,b) are generated during the analysis. In addition, the CWT is said to be 

redundant, in the sense that it contains more than the necessary information to retrieve 

the original signal. Therefore, instead of using a continuum of dilations and translations, 

discrete values of the parameters a and b are used. The dilation is defined as a = 2j and 

the translation parameter takes the values b = k2j, where (j, k) ∈  Z, and Z is the set of 

integers. This sampling of the coordinates (a,b) is known as dyadic sampling because 

consecutive values of the discrete scales differ by a factor of 2. Using the discrete scales, 

the discrete wavelet transform (DWT) can be defined as  

/ 2
, 2 ( ) (2 ) ( ) ( )j j

j k j kC f x x k dx f xψ
∞ ∞

− −

−∞ −∞

= − =∫ ∫ , x dxψ                                                    (8.5) 

 

The signal resolution is defined as the inverse of the scale 1/a=2-j, and the integer 

j is referred to as the level. The signal can be reconstructed from the wavelet coefficients 

 and the reconstruction algorithm is called the inverse discrete wavelet transform 

(IDWT): 

,j kC

/ 2
,( ) 2 (2 )j j

j k
j k

f x C xψ
∞ ∞

− −

=−∞ =−∞

= ∑ ∑ k−                                                                              (8.6) 



 148

If the dyadic scale is used for a and b, and a level J is considered, the level-J 

detail coefficients are defined by  

,( ) ( ) ( )J jcD k f x x dxψ
∞

−∞

= ∫ k

j k

j

j

                                                                                            (8.7) 

In the discrete wavelet analysis, a signal can be represented by its approximations 

and details. For this we define the detail at level j as 

,( ) ( ) ( )j j
k

D x cD k xψ
∞

=−∞

= ∑                                                                                             (8.8) 

and the approximation at level J is defined as the sum of the details up to that level, i.e., 

( ) ( )J
j J

A x D x
>

= ∑                                                                                                           (8.9) 

There are two types of details. Those associated with indices j < J correspond to 

the scales a = 2j < 2J and are the fine details. The other ones, which correspond to j > J, 

are the coarser details. The details and approximations are related. The signal f(x) is the 

summation of the approximations AJ and of the fine details up to that level: 

( ) ( ) ( )J
j J

f x A x D x
<

= +∑                                                                                              (8.10) 

From the previous equation, it is obvious that the approximations are related to one 

another by   
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1( ) ( ) ( )J J JA x A x D x− = +                                                                                               (8.11) 

Equations (8.10) and (8.11) provide a tree structure of a signal and also a 

reconstruction procedure for the original signal. The wavelet tree structure with details 

and approximations at various levels (shown in the following section) gives information 

of the signal characteristics that may not be clearly appreciated in the original signal.  

8.4 ONE-STAGE FILTERING AND MULTIPLE-LEVEL DECOMPOSITION. 

To implement the DWT it is convenient to use the concept of digital filter. The 

approximations and details functions can be regarded as the signals obtained by passing 

the original signal through two types of filters. For many signals, the low-frequency 

content is the most important part. This part is what gives the signal its identity. The 

high-frequency content, on the other hand, imparts flavor. In wavelet analysis the 

concepts of approximations and details are introduced to separate the low and high 

frequency components. The approximations are the high-scale, low-frequency 

components of the signal. The details are the low-scale, high-frequency components. 

During the filtering process the original signal f(t) passes through two complementary 

filters and emerges as two signals as shown in Figure 8.1. Unfortunately, by performing 

this operation one winds up with twice as much data as one started with (Misiti et al. 

2001). To correct this problem, the notion of downsampling is introduced. This simply 

means throwing away every second data point. This process produces the DWT 

coefficients.  
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The actual lengths of the detail and approximation coefficient vectors are slightly 

more than half the length of the original signal. This has to do with the filtering process, 

which is implemented by convolving the signal with a filter. The convolution "smears" 

the signal, introducing several extra samples into the result. The decomposition process 

can be iterated, with successive approximations being decomposed in turn, so that one 

signal can be broken down into many lower-resolution components. The resulting process 

is referred to as the wavelet decomposition tree and it is shown on Figure 8.2. Since the 

analysis process is iterative, in theory it can be continued indefinitely. In practice, the 

selection of a suitable number of levels is based on the nature of the signal. A down-

sampling technique (Strang and Nguyen 1996) can be used to efficiently reduce the data 

size in the tree and the Mallat algorithm, a fast wavelet transform (FWT) procedure, can 

be used to greatly reduce the computational efforts involved.  

f 

  

 

Figure 8.1 One stage filtering. 
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Figure 8.2 Wavelet decomposition tree. 
 

8.5 BOUNDARY DISTORTIONS. 

Typically, the DWT is defined for sequences with length of some power of two 

(the dyadic scale), and different ways of extending samples of other sizes are needed. 

Methods for extending the signal include: zero-padding, smooth padding, periodic 

extension, and boundary value replication (symmetrization). The basic algorithm for the 

DWT is not limited to dyadic lengths and it is based on a simple scheme: convolution and 

downsampling. As usual, when a convolution is performed on finite-length signals, 

border distortions arise (Misiti et al. 2001). For damage identification purposes, these 

distortions can create a problem because the boundary conditions (supports) and joints of 

structural elements can generate disturbances similar to actual defects. 
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To deal with border distortions, the border should be treated differently from 

other parts of the signal. Various methods are available to deal with this problem, referred 

to as "wavelets on the interval". Often it is preferable to use simple schemes based on 

signal extension on the boundaries. This involves the computation of a few extra 

coefficients at each stage of the decomposition process to get a perfect reconstruction. It 

should be noted that extension is needed at each stage of the decomposition process. The 

available signal extension modes in the Wavelet Toolbox of MATLAB are: zero-padding, 

symmetrization, smooth padding and periodic-padding. The details of these extension 

modes are presented in Appendix C.  

8.6 DWT METHODOLOGY FOR DAMAGE IDENTIFICATION. 

8.6.1. Criteria for wavelet selection. 

To apply the discrete wavelet transform it is very important to select the most 

appropriate wavelet for the analysis. The selection is usually done by trial and error, but 

by examining the properties it is possible to discard many candidates and expedite the 

process. To analyze the response signals in this work the optimal wavelet is chosen 

according to the following criteria described by Ovanesova and Suárez (2004):  

1. From the available wavelets, eliminate those that do not allow carrying out a 

FWT. They are the Gaussian, Mexican Hat, Morlet, Shannon and Meyer wavelets. 

2. The orthogonal and biorthogonal wavelets remain after the first elimination. Both 

permit to apply the FWT using filter banks. 



 153

3. The requirement to satisfy symmetry and exact reconstruction of the analyzed 

signal limit the choice to the Haar wavelet and biorthogonal wavelets. 

4. The two candidate wavelets have a significant difference in regularity. Thus, 

regularity is the last property that singles out the wavelet to perform the analyses. 

The irregularity of the Haar wavelet leaves the biorthogonal wavelets as the 

choice for the analyses. 

5. The regularity of the different biorthogonal wavelets increase with the wavelet 

order N. 

8.6.2 Wavelet methodology for damage identification. 

The main idea behind the use of wavelet transform for structural damage 

identification purposes is the fact that damage introduces small discontinuities in the 

structural response at the damaged zones (Ovanesova and Suárez 2004, Liew and Wang 

1998). The proposed structural damage identification method based on the DWT, uses the 

measured Receptance FRF as the input signal. The Receptance function at a selected 

fixed frequency measured at various locations along the structure is the signal to be 

decomposed with the DWT. The procedure is described next in a step-by-step way:  

1. For the structure analyzed, obtain the Receptance FRF at n locations. 

2. Perform a Multilevel Wavelet Decomposition of the signal using a selected 

wavelet.  The wavelets coefficients  are calculated from the equation (8.7). ( )JcD k

3. For a level j  extract the Detail function Dj. The values of the Dj are obtained from 

Eq. (8.8). 
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4. For a level j plot and examine the Detail function  Dj over the longitudinal axis of 

the structure analyzed. An abrupt change in the distribution of the detail indicates 

the presence of damage, except when this perturbation is caused by a geometric 

discontinuity. 

8.7 NUMERICAL SIMULATIONS. 

The proposed procedure presented above was used to estimate the damage 

localization. The FRF and the FRF-first derivative of the damaged structures with 

simulated damage were generated numerically. The FRF-first derivative was obtained 

numerically by using a central finite-divided difference based on the Taylor series. In the 

numerical examples the magnitude of the FRF is used. The beam and plane frame used 

throughout this thesis were once again chosen to present numerical examples.  

To select the appropriate type of wavelets to perform the wavelet decomposition, 

several wavelets were studied, following the methodology mentioned earlier. The signal 

for the case SW1 described next was analyzed by the DWT using three different 

wavelets: db1, db5, and bior5.5. These wavelets are known, respectively, as the 

Daubechies-1, Daubechies-5 and the biorthogonal wavelets-5.5. The signal analyzed by 

these wavelets is one of the FRF curves shown in Figure 8.3 (the one for damage scenario 

SW1) for Ω = 100 rad/s. The FRF corresponds to the simply-supported beam described in 

Chapter III. 
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The decompositions performed for the first two levels of the wavelet tree are 

shown in Figures 8.3 to 8.5. The abrupt changes in the level-1 details due to the damage 

occur in the db5 and bior5.5. As it can be seen in Figures 8.6 and 8.7, the level-1 details 

of the decompositions performed with the bior5.5 wavelet exhibit a better performance to 

indicate the localization of damage. Therefore, the latter wavelet is selected for the 

wavelet analysis. To avoid the boundary distortions, the signal extension mode ‘spd’, 

included in the Wavelet Toolbox of MATLAB (Misiti et al. 2001) is used.  

8.7.1 Simply-supported beam 

• Case 1.  

The simply-supported beam described in Chapter III is used for the first set of 

numerical examples. The beam was divided into 50 finite elements and damage was 

inflicted at element 26 (~L/2) by reducing the flexural stiffness EI by 50 %. The values of 

the FRF-Receptance for an excitation frequency of 100 rad/sec are shown in Figure 8.3. 

The first natural frequency of the beam is 221.3 rad/sec. After the DWT is applied to the 

response signal and both the presence of damage and its location are detected from the 

damaged beam response by the bior5.5 wavelet. The values of the level-1 details are 

shown in Figure 8.8.  

• Case 2.  

The damage scenario SW2 consists of a single crack inflicted near the mid-span 

(element 26). The crack depth is hc = 0.25 H, where H is the section depth. The 
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magnitude of the Receptance FRF for an excitation frequency of 100 rad/s is shown in 

Figure 8.3. The level-1 details of the decompositions performed by the bior5.5 wavelet 

are shown in Figure 8.9. The abrupt changes in the level-1 details due to the crack 

indicate the localization of damage. 

• Case 3.  

The damage case SW3 corresponds to a multiple damage scenario. Cracked 

elements are introduced at two different locations. The cracks depth is hc = 0.25 H. The 

absolute value of the Receptance FRF for an excitation frequency of 100 rad/s is shown 

in Figure 8.4. The level-1 details of the decompositions performed with the bior5.5 

wavelet are shown in Figure 8.10. The spikes in the level-1 details are centered around 

the cracks positions and thus they indicate the localization of the damage. 
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Figure 8.3 Receptance FRF for the beam with damage scenarios SW1 and SW2. 
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Figure 8.4 Receptance FRF for the beam with damage scenario SW3. 
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Figure 8.5 DW decomposition with wavelet ‘db1’ for the beam with damage scenario 

SW1. 
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Figure 8.6 DW decomposition with wavelet ‘db5’ for the beam with damage scenario 

SW1. 
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Figure 8.7 DW decomposition with wavelet ‘bior5.5’ for the beam with damage scenario 

SW1. 
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Figure 8.8. DW decomposition of the FRF for the beam with damage scenario SW1. 
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Figure 8.9 DW decomposition of the FRF for the beam with damage scenario SW2. 
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Figure 8.10 DW decomposition of the FRF for the beam with damage scenario SW3. 
 
 
8.7.2 Plane frame 

• Case 1.  

The plane frame described in Chapter III is used in the second set of numerical 

examples. The beam of the frame was divided into 100 finite elements. The damage 

scenario PW1 is simulated by a crack inflicted near to the beam mid-span (element 51). 

The crack depth is hc = 0.1H. The values of the Receptance FRF for the excitation force 

at L/2 are shown in Figure 8.11. When the DWT is applied to the signal in Figure 8.11, 

the values of the level-1 detail are those shown in Figure 8.13.  As it can be observed the 

bior5.5 wavelet was capable of detecting the damage location from the response of the 
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damaged frame. The two spikes at the beginning and at the end in the detail-1 graph are 

produced by the geometric discontinuities at the beam-column joints and should therefore 

be ignored. 

• Case 2.  

The damage scenario PW2 consists of a single crack near the mid-span (element 

51). The crack depth is now hc = 0.25H. The magnitude of the Receptance FRF is shown 

in Figure 8.11. After the DWT with the bior5.5 wavelet was applied to the FRF curve of 

the damaged frame, the location of the damage was detected. The values of the level-1 

detail as a function of relative position along the beam are shown in Figure 8.14.  

Next, the DWT is applied to the FRF-first derivative of the frame with the same 

damage. The level-1 detail is shown in Figure 8.15. The abrupt and rapid changes in the 

level-1 detail at the crack position indicate the localization of damage. 

• Case 3.  

The damage case PW3 is a multiple damage scenario. It corresponds to two 

cracked elements at different locations 0.25L and 0.5L. The depth of cracks is hc=0.25H. 

The values of the Receptance FRF are shown in Figure 8.12. The level-1 detail of the 

decompositions performed with the bior5.5 wavelet is shown in Figure 8.16. The abrupt 

changes in the level-1 detail due to the cracks indicate the localization of the multiple 

damage.  
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Next, the DWT is applied to the FRF-first derivative of the frame with the same 

damage case PW3. The level-1 detail is shown in Figure 8.17. The spikes at the level-1 

details within the span indicate the localization of the two cracks. As it can be noted, the 

values of the detail function at the two cracks are different, even though the two cracks 

have the same size. This is a drawback because it will be difficult to calibrate the details 

with the amount of damage. 

• Case 4 

The damage scenario PW4 is simulated by introducing two cracked elements at 

the locations 0.5L and 0.95L, where L is beam span. The crack depth is hc=0.25H. The 

signal analyzed is the FRF-first derivative. Figure 8.18 shows the level-1 detail obtained 

with the bior5.5 wavelet. Small disturbances are observed in this figure at the beginning 

and at the end in the detail graph. This impedes the detection of the crack located at x/L = 

0.95. However, the detection of this crack can be facilitated by performing a level-2 

decomposition. Figure 8.19 shows the level-2 detail where the spikes at the right end are 

magnified whereas those at the left end due to the corner are low.  
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Figure 8.11 Receptance FRF for the frame with damage scenarios PW1 and PW2. 
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Figure 8.12 Receptance FRF for the frame with damage scenarios PW3 and PW4. 
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Figure 8.13 DWT decomposition of the FRF for the frame with damage scenario PW1. 
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Figure 8.14 DWT decomposition of the FRF for the frame with damage scenario PW2. 
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Figure 8.15 DWT decomposition of the FRF-1st Derivative for the frame with damage 
scenario PW2. 
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Figure 8.16 DWT decomposition of the FRF for the frame with damage scenario PW3. 
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Figure 8.17 DWT decomposition of the FRF-1st Derivative for the frame with damage 
scenario PW3. 
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Figure 8.18 DWT decomposition of the FRF-1st Derivative for the frame with damage 

scenario PW4. 
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Figure 8.19  Level-2 DWT decomposition of the FRF-1st Derivative for the frame with 
damage scenario PW4. 

 
 

8.8 SUMMARY 

In this chapter, a brief review of the wavelet theory is presented. Next, a 

methodology based on the DWT for damage identification is formulated. Numerical 

examples are presented to compare the effectiveness of the proposed method in two 

simple structures.  The Receptance FRF and the FRF-first derivative were used as the 

input signal. Several wavelets were studied to choose the most appropriate one to perform 

the decompositions. The wavelet selected was the biorthogonal wavelet bior5.5. 

In the case of the simply-supported beam, the abrupt changes in the level-1 details 

due to the crack indicate the localization of the damage in both single and multiple 
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damage scenarios. It was found that the signal extension mode used practically 

eliminated the effect of the boundary conditions.  

For the case of the plane frame, the drastic changes (spikes) in the level-1 details 

accurately indicate the location of the structural damage if the cracked element is located 

at a sufficient distance from the discontinuity in the geometry of the structure. When the 

crack was placed at the right end of the beam, it was only possible to detect the damage 

by using the level-2 details. It was observed that in this case, the wavelet-based 

methodology gives better results when the FRF-first derivative is used as the response 

signal. It was found that the value of the details for the same severity of damage were 

different. Therefore, if it is desired to quantify the damage, this issue has to be studied 

further. However, the numerical simulations showed that the DWT analysis was capable 

of detecting the discontinuities in the FRF signal that is associated with damage in all the 

cases considered. It must be pointed out that the FRFs for the two structures were 

obtained with a large number of “sensors” (displacement degrees of freedom in the 

simulations). The minimum number of sensors to pick up the damage is a topic that needs 

to be resolved in future studies. 

 

 

 



CHAPTER IX 
 

CONCLUSIONS 
 

 

9.1 SUMMARY AND CONCLUSIONS 

This thesis examined the several existing structural damage identification 

methods that are based on changes in the dynamic characteristics of the structure and 

proposes new methods. These methods are based on the premise that modal parameters 

are a function of the physical properties of the structure and provide a global way to 

evaluate the structural condition. In this thesis, several structural damage identification 

methodologies were developed and tested via numerical simulations. The proposed 

methodologies are based on the modal curvature matrix, the FRF-curvature and on the 

application of the Discrete Wavelet Transform that discloses the location of damage by 

detecting the discontinuities in the FRF signal.  

The most significant conclusions obtained from the research carried out in the 

thesis are summarized in the following paragraphs:  

a) The direct comparison of the natural frequencies and mode shapes did not 

reveal any significant change in all the damaged structures studied. Therefore, changes in 

natural frequencies or in the mode shapes alone are not precise enough to locate damage.  

169 
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In a real life situation when the modal properties are measured, the method will perform 

even worse because of the unavoidable errors in the measurement. 

b) The structural damage identification technique referred to as the 

eigenparameter method, which is based on changes in the displacement mode shapes, was 

able to indicate the location of the region damaged for the simply-supported beam with 

only one crack. For the case of multiple damage scenarios the eigenparameter was not 

competent to clearly locate the damaged zones. For the relative difference method, the 

results obtained indicate that the parameter RD introduced factors of uncertainty about 

the correct locations of damage.  

c) The results of the present study showed that the method based on the changes 

in the pseudo-flexibility matrix is sensitive enough to detect the presence and indicate the 

location of damage in simply-supported beams and plane frames with single crack 

scenarios. The methodology is based on the premise that there is an increase in the local 

flexibility of the structure due to the presence of damage. In the structures with multiple 

damage scenarios, the method based on the flexibility matrix could not locate the 

damaged zones clearly. Therefore, this method seems suitable to locate damage in 

structures where the damage is located at the zones where the maximum bending 

moments occur, such as at the mid-span of the simply supported beams. 

d) In general, the methodologies based on the modal curvatures and on the modal 

strain energy exhibited a superior performance in detecting and locating damage that 

those mentioned in the previous paragraphs. The results of the analyses indicate that the 
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new curvature-energy damage index formulated in this study correctly localizes the 

damaged zones in the two structures considered. An advantage of the proposed method is 

that it requires only a few modes to indicate the position of damage.   

e) The results of the numerical simulations verified the capability of the Damage 

Index η proposed in this thesis to correctly localize the damage. It was shown that the 

proposed damage index can locate the damage by using only one input force to obtain the 

Frequency Response Function in the damage scenarios that simulate one damaged 

element. For the case of the multiple damage scenario, the technique displayed a better 

performance for the simply-supported beam. 

f) For the new damage method based on the Receptance-Energy formulated in this 

work, the results of the numerical examples indicate that the proposed indices performed 

well in detecting, locating and quantifying damage. This is true for both the single and 

multiple damage scenarios simulated in the structures. In the case of simple-span beams, 

a significant feature of the proposed method is that it can locate the damaged zones of the 

structure by using a single input force to determine the Receptance Function.  Although 

some errors were obtained in the quantification of the damage severity because the index 

is sensitive to the frequency range used, it is deemed that these errors are within 

acceptable margins. However, it is realized that this issue still needs further study. The 

main advantage of this procedure is that it does not require performing a modal analysis 

for the identification of mode shapes, as it is the case of the other methods. In other 

words, it directly uses the measured FRFs without further processing. 
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g) The wavelet transform, a powerful and relatively new mathematical tool to 

detect subtle changes, trends and discontinuities in signal, was used in this thesis as a 

methodology for structural damage identification. The method is based on the application 

of the Discrete Wavelet Transform. The Receptance FRF and the FRF-first derivative 

were used as the input signals. The numerical examples verified that the proposed method 

can locate the cracks based on the simulated response signal. It is shown that DWT 

analysis is capable of detecting the discontinuities in the FRF signal in single and 

multiple damage scenarios. Because the formulated method does not require to know the 

response of the undamaged structure, the DWT-based technique can provide an 

alternative to the damage identification methods based on modal analysis. The method 

can be used for various levels of damage assessment, including identifying damage 

occurrence and location.  

9.2 RECOMMENDATIONS FOR FUTURE WORK  

In this investigation the study of the existing and proposed damage identification 

methodologies has been limited to the analytical and numerical aspects only. The 

performance of these methodologies must be studied experimentally to test whether they 

can be used in real existing structures.  

It is well known that the cost and labor associated with experimental testing can 

be quite high. Therefore, the numerical simulation of existing and new methods is 

important to screen out these procedures that do not perform satisfactorily. In this way 

the set of methods that require experimental verification will be reduced. Nevertheless, 
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experimental work using these methods is a requisite to confirm whether they can be 

successfully implemented for damage assessment in complex structures. Real signals 

obtained by measuring the structural response should be used in order to demonstrate the 

reliability and capability of the proposed procedures in the presence of noise and the 

uncertainties associated with experimental methods.  

The proposed methodologies could be applied to detect defects on beam-column 

connections, plate and shells structures, and trusses. Damage in form of cracks with 

different orientations should also be studied. Other areas of possible future investigation 

include the simulation of damage on post-tensioned and pre-tensioned structures.  

For the wavelet-based methodology, a procedure to reduce the number of 

measurement points is required. A method based on wave propagation could be 

developed, in which only one or two sensors are required to provide the response signal. 

The wavelet-based methodology proposed in this thesis was shown to be capable of 

pointing out the location of the damage. The issue of damage quantification has to be 

further developed and experimentally validated. A wavelet-based method to detect and 

locate damage in bridge structures using vibration induced by vehicular traffic data is 

also worth studying. 
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APPENDIX A 
 

METHODS BASED ON:  STIFFNESS MATRIX CHANGES  
 

A variation on the use of the dynamically measured flexibility matrix is the use of the 

dynamically measured stiffness matrix, defined as the pseudoinverse of the dynamically 

measured flexibility matrix. However, this methods exhibit defined limitations. When 

modal data are used, it is usually unrealistic to expect many vibration modes to be 

available from the experiments. This may result in significantly inaccurate stiffness 

matrices, as higher frequency modes, which are more important for constructing the 

stiffness matrix, are usually not as available as lower vibration modes. 

 

A.1 DIRECT ERROR MATRIX METHOD-(EMM) 

 

The EMM was originally formulated to correct/update theoretical models using measured 

data. The model updating methods using experimental modal analysis are used to validate 

predictions from theoretical models. Most updating procedures locate zones of errors in 

the finite element model before the updating. If it is assumed that the (analytical) system 

matrices to be updated were obtained from a prior vibration measurement, then the error 

localization step can be used to detect and locate damage in a structure from any two 

measurements of the vibration response. 
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For two matrices [K] and [K*] the error matrix between them is defined as 

 

[ ] [*
u ]K K K⎡ ⎤∆ = −⎣ ⎦                                                                                              (A.1) 

 

In model updating procedures [K*] represents the experimentally derived stiffness matrix 

while [Ku] is the analytical matrix. Both matrices are numerically obtained derived using 

pseudo-inverse of the mode shape matrix and the orthogonality properties. 

 

The system matrix [K] is defined by  

 

[ ] TK
+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Φ Λ Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                                                                   (A.2) 

 

where 

 

[ ]+Φ : pseudo-inverse of the mode shape matrix 

[ ]Λ  : diagonal modal stiffness matriz. 
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A.2 MODIFIED MATRIX STIFFNESS ERROR METHOD -(MEMM) 

 

Many modified versions of the direct error matrix have been suggested. For two matrices 

[K] and [K*] the modified error matrix between them is defined as 

 

[ ] [ ] [ ] [ ]{ }[ ]*u u uK K F F K∆ = − .                                                                       (A.3) 

 

In the latter equation, [Ku] is obtained from equation (A.2) while the pseudo-flexibility 

matrices [Fu] and [F*] are obtained from the frequencies and mode shapes of the 

undamaged and damaged structures respectively. 
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APPENDIX B 

 

FREQUENCY DOMAIN: FREQUENCY RESPONSE 
FUNCTION 

 
 

The general mathematical representation of a single degree of freedom system is 

expressed in Equation (B.1): 

 

( ) ( ) ( ) ( )mx t cx t kx t f t+ + =                                                                                     (B.1) 

 

An equivalent equation of motion for Equation (B.1) is determined for the Fourier or 

frequency (ω) domain. This representation has the advantage of converting a differential 

equation to an algebraic equation. This is accomplished by taking the Fourier transform 

of Equation (B.1).  

 

Thus, Equation (B.1) becomes: 

 

2 ( ) ( )m ic k X Fω ω ω⎡ ⎤− + + =⎣ ⎦ ω                                                                            (B.2) 

 

Restating the above equation: 

 

( ) ( ) ( )B X Fω ω = ω                                                                                                    (B.3) 
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where, 

 

2( )B m ic kω ω ω⎡= − + +⎣ ⎤⎦                                                                                       (B.4) 

 

Equation (B.3) states that the system response ( )X ω  is directly related to the system 

forcing function ( )F ω  through the quantity ( )B ω  , the impedance function. If the 

system forcing function ( )F ω  and its response ( )X ω  are known, ( )B ω  can be 

calculated. That is: 

 

( )( )
( )

FB
X

ωω
ω

=                                                                                                             (B.5) 

 

More frequently, the system response, ( )X ω , due to a known input ( )F ω  , is of 

interest. 

 

( )( )
( )

FX
B

ωω
ω

=                                                                                                             (B.6) 

 

Equation (B.6) becomes: 

 

( ) ( ) ( )X H Fω ω ω=                                                                                                   (B.7) 

 



 182

 

where 

 

2

1( )H
m ic k

ω
ω ω

=
⎡ ⎤− + +⎣ ⎦

                                                                                    (B.8) 

 

The quantity ( )H ω  is known as the Frequency Response Function of the system. The 

Frequency Response Function relates the Fourier transform of the system input to the 

Fourier transform of the system response.  

 

Under certain conditions, an arbitrary function f(t) can be described by an integral ( )F ω  

given by 

 

( ) ( ) i tF f t e ωω
+∞ −

−∞
= ∫ dt

dt

                                                                                             (B.9) 

 

Similarly the Fourier transform of the system response can be described by the integral  

 

( ) ( ) i tX x t e ωω
+∞ −

−∞
= ∫                                                                                             (B.10) 

 

The ratio of the functions (B.9) and (B.10) can be computed in order to obtain an 

expression for the corresponding Frequency Response Function: 
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( )( )
( )

XH
F

ωω
ω

=                                                                                                          (B.11) 

 

It is possible to derive an expression for the response x(t), from the inverse Fourier 

transform of ( )X ω : 

 

[ ]( ) ( ) ( ) i tx t H F e ω dω ω
+∞

−∞
= ∫ ω                                                                              (B.12) 

 

The frequency spectrum is now a continuous function of ω, in contrast to the frequency 

spectrum obtained for periodic time functions which consists of discrete components 

only. As a consequence, the F(ω) values represent an amplitude which is continuously 

distributed along the frequency and therefore represent units of amplitude per unit 

frequency, i.e., what is known as a spectral density.  

 

To obtain x(t) it is then necessary to evaluate the integral in (B.12) which often leads to 

difficulties from a mathematical point of view. On the other hand, there are a number of 

situations where the Fourier transform analysis is inadequate, yielding completely 

meaningless solutions of the integral. Attempting to solve these situations, through 

adequate mathematical manipulations, results in the use of a 'modified' Fourier transform, 

known as the Laplace transform, which can be easily found in the appropriate litterature. 
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In practice, the forcing function may be quite irregular, even if it is periodic, and may be 

determined only experimentally. Such cases correspond to having a graphical 

representation of the signal and no analytical expression to describe it. These situations 

can still be handled by means of adequate discretization and numerical procedures 

applied to the signal. 
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APPENDIX C 

 
 
SIGNAL EXTENSION MODES:  WAVELET TOOLBOX OF 

MATLAB 
 
 
 

Zero-padding ('zpd'): This method assumes that the signal is zero outside the original 

support. The disadvantage of zero-padding is that discontinuities are artificially created at 

the border. 

 

Symmetrization ('sym'): This method assumes that signals or images can be recovered 

outside their original support by symmetric boundary value replication. It is the default 

mode of the wavelet transform in the toolbox. Symmetrization has the disadvantage of 

artificially creating discontinuities of the first derivative at the border.  

 

Smooth padding of order 1 ('spd' or 'sp1'): This method assumes that signals or images 

can be recovered outside their original support by a simple first-order derivative 

extrapolation: padding using a linear extension fit to the first two and last two values. 

Smooth padding works well in general for smooth signals. 

 

Smooth padding of order 0 ('sp0'): This method assumes that signals or images can be 

recovered outside their original support by a simple constant extrapolation. For a signal 

extension is the repetition of the first value on the left and last value on the right. 
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Periodic-padding (1): ('ppd'): This method assumes that signals or images can be 

recovered outside their original support by periodic extension. The disadvantage of 

periodic padding is that discontinuities are artificially created at the border. 

 

Periodic-padding (2): ('per'): If the signal length is odd, the signal is first extended by 

adding an extra-sample equal to the last value on the right. Then a minimal periodic 

extension is performed on each side. The same kind of rule exists for images. This last 

mode produces the smallest length wavelet decomposition. But the extension mode used 

for IDWT must be the same to ensure a perfect reconstruction. 
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APPENDIX D  
 
 
STIFFNESS MATRIX OF THE CRACKED ELEMENT 

 

The relation between displacements and forces in the base system (see Figure 2.1) can be 

obtained as  

 
                                                                                                        (
 

D.1) 

here  

{ } { }* *C Fδ ∗ ⎡ ⎤= ⎣ ⎦

 
w
 
 { } { }1 1

T
i iuδ θ∗
+ +=                 (D.2) 

 
 { } { }*

1 1  T
i iF P M+ +=  

 
The element stiffness matrix in the base system (Figure 2.1) is obtained by inversion of 

the flexibility matrix [C ]: 

 
                                                                                                           (D.3) 

 

hus the relation between forces and displacements is   

*

  

 
 
T
 
 
{ } { }* *F k δ ∗⎡ ⎤= ⎣ ⎦                                                                                                 (D.4) 
 

he forces and displacements {F} , {δ} in the local system (Figure 2.2) are obtained from 

forces in the base system with the relation  

 

T

 
{ } [ ]{ }*F T F=                                                                                                              (D.5) 

1* *k C
−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
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{ } [ ] { }* TTδ δ=                                                                                                              (D.6) 

where   

 

 

⎥
⎦

                                                                   

 

he matrix [T] is obtained from the equilibrium conditions. From equations (D.3), (D.4) 

 

 
{ } { }1 1      i i i iF P M P M+ +=  T

{ } { }1 1      T
i i i iu uδ θ θ+ +=  

[ ]

1 0
1

1 0
0 1

L
T

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢
⎣

 
T

and (D.5) is obtained the following expression: 

 

} [ ]{ } [ ] { }* *F T F T k δ ∗⎡ ⎤= = ⎣ ⎦{                                                                                       (D.7) 
 

eplacing (D.6) in the latter equation yields 

 
                                                            (D.8) 

inally, from this equation the matrix [K] in the local system can be expressed as 

 

} [ ] [ ] { } [ ] [ ] { }1* *T TF T k T T C T

 
R
 

δ δ
−

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦{
 

 
 
F
 

[ ] [ ] [ ]1* TK T C T
−

⎡ ⎤=                                                                                                      (D.9) ⎣ ⎦
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EQUIVALENT FLEXURAL STIFFNESS 

 
or the undamaged element the displacement ui  caused by a unit value of the force P is F

 
 

( )
3

0
1,1 3i

Lu C
EI

= =                                                                                                         (D.10) 

 

rom equations (2.9) and (2.10) for the cracked element the displacement is 

 
 
F *

iu   

 
 

( ) ( )0 1*
1,1 1,1iu C C= +                                                                                                          (D.11) 

 

he equivalent moment of inertia (Ie) of an uncracked element that produces the  

displacement , can be calculate as 

 

 
T

*
iu

 

( )
3

*3e
i

LI
E u

=                                                                                                              (D.12) 

 

he damage severity in terms of the reduction in  the flexural stiffness can be expressed 

as  

 

 
T

 

1 eEID
EI

= −                                                                                                               (D.13) 
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 restart:with(linalg):

 norm and trace have been redefined and 
>
Warning, the protected names
unprotected 
 
 beta1:=FI# (s)/(b*h^2);beta2:=FII(s)/(b*h);

 
 k2:=P^2*(beta2^2)*(Pi*x);

 := k2
>

P2 β2 2 π x  

>  
> k1:=(6*M*(Pi*x)^(1/2)*beta1+3*P*L*(Pi*x)^(1/2)*beta1)^2;

 := k1 ( ) + 6 M π x β1 3 P L π x β1 2  

> 

d⌠
⌡
⎮⎮

0

a

9 π x β12 ( ) + 2 M P L 2 x  

> 

k1:=simplify(k1):
> IN1:=Int(k1,x=0..a);

 :IN1 = 

IN1:=int(k1,x=0..a);

IN1 := 
9
2 π β1 2 ( ) + 2 M P L 2 a2  

> 

> 

IN2:=Int(k2,x=0..a);

 := IN2 d⌠
⌡
⎮⎮

0

a

P2 β22 π x x  

IN2:=int(k2,x=0..a);

 := IN2
1
2 P2 β2 2 π a2  

> W1:=(b/Ep)*IN1+(b/Ep)*IN2;

 := FW  + 
9
2

b π β12 (2 M P ) + L 2 a2

Ep

1
2 b P2 β22 π a2

Ep  

> 

> C12:=diff(W1,P,M); 

C11:=diff(W1,P,P): 
 

 
 := C11 Ep

b π a2 ( ) + 9 β12 L2 β22

 := C12 18
b π β12 a2 L

Ep  

>  
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> C22:=diff(W1,M,M); 

 := C22 36
b π β12 a2

Ep  

> C21:=diff(W1,M,P); 

 := C21 18
b π β12 a2 L

Ep  

Flexibility coefficients due to the crack: 

  

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

 
Cc:=linalg[matrix](2,2,[C11,C12,C21,C22]);

⎡ b π a2 ( ) + 9 β12 L2 β22

Ep 18
b π β12 a2

>

 := Cc

L
Ep

18
b π β12 a2 L

Ep 36
b π β12 a2

Ep

 

>  T:=matrix(2,4,[-1, -L,1,0,0,-1,0,1]);

 := T ⎡⎢ ⎤-1
⎢ ⎦

⎥⎥
−L 1 0

⎣ 0 -1 0 1  

> kk1:=(L^3)/(3*EI):kk2:=(L^2)/(2*EI):kk3:=L/(EI): 

he  flexibility matrix of the uncracked element [Co] : 

 

 
T
 
> Co:=linalg[matrix](2,2,[kk1,kk2,kk2,kk3]); 
 

3 L2

 := Co

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

1
3

L
EI

1
2 EI

1
2

L2

EI
L
EI

 

>  

 

ffness matrix of the cracked element [KC]: 

 KC:=simplify((multiply(KK1,T))); 

C(1,1)=

CC:=evalm(Co+Cc):
>  
> KK1:=multiply(transpose(T),inverse(CC)):
>  
Sti
 
>
 

EI EpK 12
 + L3 Ep 12 b π a2 EI β22
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KC(1,2)= 6
Ep EI L

 + L3 Ep 12 b π a2 EI β22
 

 
 
KC(1,3)= −12

EI Ep
 + L3 Ep 12 b π a2 EI β22

 

 
 
KC(1,4)= 6

Ep EI L
 + L3 Ep 12 b π a2 EI β22

 

 
 
KC(2,1)= KC(1,2) 
 

KC(2,2)= 4
( ) +  + L3 Ep 27 b π a2 EI β12 L2 3 b π a2 EI β22 EI Ep
( ) + L Ep 36 b π β1 2 a2 EI ( ) + L3 Ep 12 b π a2 EI β22  

 
KC(2,3) =  −6

Ep EI L
 + L3 Ep 12 b π a2 EI β22

 

 

KC(2,4) = 2
Ep EI ( ) +  − L3 Ep 54 b π a2 EI β12 L2 6 b π a2 EI β22

( ) + L Ep 36 b π β1 2 a2 EI ( ) + L3 Ep 12 b π a2 EI β22  

 
KC(3,1)= KC(1,3)   
 
KC(3,2)= KC(2,3)   
 
KC(3,3)=  12

EI Ep
 + L3 Ep 12 b π a2 EI β22

  

 
KC(3,4)= −6

Ep EI L
 + L3 Ep 12 b π a2 EI β22

 

 
KC(4,1)= KC(1,4) 
 
KC(4,2)= KC(2,4) 
 
KC(4,3)= KC(3,4) 
 

KC(4,4) = 4
( ) +  + L3 Ep 27 b π a2 EI β12 L2 3 b π a2 EI β22 EI Ep
( ) + L Ep 36 b π β1 2 a2 EI ( ) + L3 Ep 12 b π a2 EI β22   

 

 


