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It is known that analyzing correlated bivariate count data as independent in a

regression context can lead to inefficient coefficients estimates. However, the number

of parametric bivariate distributions that can be found in the literature to model

bivariate counts are limited and not flexible enough to account for general correla-

tion structures and different marginal distributions. Copula-based regression models

provide a more flexible way of generating joint distributions for bivariate data by

admitting different marginal distributions and various dependence structures. The

purpose of this work was to evaluate the performance of copula-based regression

models for bivariate counts under different scenarios, and to apply this approach

to bivariate crash data in Puerto Rico highways. Scenarios with low, medium and

high degrees of dependence were considered, as well as different sample sizes. In

particular, the application of copulas when one of the marginal means was small

was examined. Overall, if appropriate copulas are fitted, copula-based regression

models provide more efficient estimators for the regression parameters when com-

pared to modeling the counts independently, even when the data exhibits a degree
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of association as low as a Kendall’s τ = 0.3, though we recommend a sample size

of N = 300 or higher to assure an unbiased estimation of the copula parameter.

The gain in efficiency increases with the degree of association. Also, traditional

penalized likelihood-based criteria, such as AIC and BIC, seem to have a fairly good

performance in selecting the best model among a set of candidate copula models. As

a last note, interpretation of the copula parameter about the dependence structure

is possible but should be made carefully since the range of its transformation to a

dependence measure is narrower than [−1, 1].
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Es conocido que analizar datos de conteo bivariados correlacionados de manera

independiente en un problema de regresión puede llevar a estimaciones de los co-

eficientes ineficientes. Sin embargo, las distribuciones bivariadas parámetricas que

aparecen en la literatura para modelar conteos correlacionados tienen limitaciones

y no son lo suficientemente flexibles como para admitir estructuras de correlación

generales y distribuciones marginales diferentes. Los modelos basados en cópulas

proveen una forma más flexible de generar distribuciones conjuntas para datos bi-

variados al admitir distribuciones marginales diferentes y varias estructuras de de-

pendencia. El propósito de este trabajo fue hacer una evaluación del desempeño

de los modelos de regresión basados en cópulas para datos de conteos bivariados

bajo diferentes escenarios, y aplicar este método a datos de conteos de accidentes

fatales y no fatales en autopistas de Puerto Rico. Escenarios con un bajo, moderado

y alto grado de dependencia fueron considerados, aśı como diferentes tamaños de

muestra. En particular, se examinó la aplicación de cópulas cuando una las medias

marginales es pequeña. En general, si se ajustan cópulas apropiadas, los modelos
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de regresión basados en cópulas proveen estimadores más eficientes para los coefi-

cientes en comparación a ajustar modelos independientes a cada conteo, aún cuando

los datos exhiben bajos grados de dependencia, Overall, if appropriate copulas are

fitted, copula-based regression models provide more efficient estimators for the re-

gression parameters when compared to modeling the counts independently, even

when the data exhibits a degree of association as low as a Kendall’s τ = 0.3, aunque

recomendamos un tamaño de muestra de N = 300 o superior para asegurar una

estimación insesgada del parámetro de cópula. La ganancia en eficiencia aumenta

con el grado de correlación. Además, los criterios tradicionales basados en verosimil-

itud, como AIC y BIC, parecen tener un buen desempeño en seleccionar el mejor

modelo entre un conjunto de modelos de cópulas. Cabe señalar, finalmente, que la

interpretación del parámetro de cópula sobre la estructura de dependencia es posible

pero debe hacerse considerando que el intervalo de su transformación a una medida

de dependencia es más estrecho que [−1, 1].
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CHAPTER 1
INTRODUCTION

It is known that analyzing correlated bivariate count data as independent in

a regression context can lead to inefficient coefficients estimates. Nevertheless, the

number of parametric bivariate distributions that can be found in the literature to

model bivariate counts are limited and not flexible enough to account for general

correlation structures and different marginal distributions [30]. Copula-based mod-

els provide a more flexible way of generating joint distributions for bivariate data

by admitting different marginal distributions and various dependence structures.

Moreover, using copulas to model multivariate data allows to model the marginals

and the dependence structure separately.

Although there exists theoretical knowledge about copulas for count data, sur-

prisingly, there is a lack of comprehensive simulation studies on this subject. There-

fore, there is not a clear understanding of the advantages and disadvantages of mod-

eling correlated bivariate counts using copula-based regression models. In particular,

the performance of copula-based regression models is unknown when the marginal

distributions exhibit different means. Likewise, the gain of modeling bivariate counts

with the proposed method has not been assessed for different correlation strengths

(low, moderate and high).

This research builds on theory and other bivariate distributions for discrete

variables to provide researchers an overview of the benefits and limitations of us-

ing copula-based regression models for bivariate count data. This work has been

motivated by a real dataset based on the counts of fatal and non-fatal crashes in
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highways of Puerto Rico where the marginal distributions have very different means.

We will focus on scenarios that have not been studied before.

This research motivating example refers to the number of fatal and non-fatal

vehicle crashes. The data is for 144 segments of highways in Puerto Rico for a period

of six years (2004− 2009) collected by the Highways and Transportation Authority

of Puerto Rico as described in [14]. Detailed crash count data is obtained mostly for

safety issues in different severity levels, e.g., Fatal, Injury, Property damage. Even

though crash data by severity are innately multivariate, they are often analyzed sep-

arately without taking into account the dependence and shared variables that exist

between severities. To approach crash frequencies as independent can lead to less

precise and perhaps biased estimates [2]. In this context, it is worthwhile to consider

bivariate count data copula-based models to improve the modeling and analysis of

vehicle crashes data since copulas are a useful tool for multivariate modeling when

the correlation among variables is difficult to incorporate into a joint distribution.

The purpose of this study is to evaluate the performance of copula-based re-

gression models for bivariate counts. The specific objectives of this work are:

i) Examine the statistical properties of coefficients and standard errors estimates

of copula-based regression models for bivariate count data,

ii) Determine the consequences of selecting the wrong copula on the statistical

properties of the estimators,

iii) Assess the performance of copula-based regression models for bivariate count

data with very different means for marginal distributions,

iv) Analyze the effect of sample size and correlation strengths on the performance

of copula-based regression models for bivariate count data,

v) Evaluate the performance of likelihood-based model selection criteria, such as

AIC and BIC, to recognize the true copula from a set of candidate copulas,
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vi) Apply copula-based regression models to bivariate crash data in Puerto Rico

highways.

The remaining of this thesis consists of five more chapters. In Chapter 2, a

theoretical background on modeling bivariate count data is developed. Standard

bivariate count models are introduced. This is followed by an overview on copula-

based models as the proposed approach to jointly model multivariate count data. In

Chapter 3, the performance of copula-based regression models for correlated counts

is evaluated by several simulation studies considering different scenarios. The aim

is to examine the statistical properties of coefficients and standard errors of copula-

based regression models for count data in different scenarios considering sample size

and magnitude of association. This leads to a guide of the scenarios where copula-

based models are suited for modeling bivariate count data. Scenarios where the

marginal means are different are included driven by our motivating example. The

power of likelihood-based model selection criteria in distinguishing the true copula

from a set of candidate copulas is also assessed by a power study in this chapter.

In Chapter 4, a discussion of the results obtained from the simulations studies in

Chapter 3 is presented. In Chapter 5, the copula-based regression models approach

is applied to the number of fatal and non-fatal crashes in highways of Puerto Rico

between 2004 and 2009. The data exhibits a marginal Kendall’s τ association of

0.345. In the final chapter, Chapter 6, a conclusion of this thesis is made along with

a discussion of future research topics related to the work presented here.



CHAPTER 2
LITERATURE REVIEW

Bivariate count data are two non-negative random variables that are often ob-

served in different fields, e.g., the number of fatal and non-fatal crashes in a road

segment, the number of points scored by each team in a game, purchases of two kinds

of products by a customer. Consequently, both variables share the unit characteris-

tics and are often correlated. Analyzing such data as independent, when they should

be modeled jointly, can lead to coefficients estimates and standard errors that do

not meet desired statistical properties. Failing to account for the association in mul-

tivariate data may produce inaccurate estimates of the regression parameters and

their standard errors, resulting in inconsistent, inefficient, less precise and perhaps

biased estimates [2, 6, 8, 31].

Joint modeling of multivariate data can improve the statistical properties of

estimation and the ability to make inferences about the dependence between the

variables. For bivariate data, a joint model can also allow probability statements

about the conditional distribution of y1 given y2 [6].

A number of parametric bivariate distributions can be found in the literature

to model bivariate counts, such as bivariate Poisson. However, it is common to

encounter overdispersion in count data, i.e. the variance is larger than the mean.

Therefore, assuming a bivariate Poisson is not adequate. Then, distributions like bi-

variate Negative Binomial and bivariate Poisson Inverse Gaussian, or models such as,

bivariate Hurdle or Zero-inflated, are considered instead. Yet these attempts suffer

from shortcomings. On one hand, these models do not allow for negative correlation

4
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between the counts. In many applications, the assumption of positive dependence

might not be plausible. A bivariate Poisson lognormal distribution [3], for example,

can handle both overdispersion and a more general dependence structure, including

negative correlation, but there are several disadvantages to this approach. First,

the bivariate Poisson lognormal model only applies when both margins are assume

to have the same distribution. Second, the numerical integration can be time con-

suming. This distribution is commonly used to model crash data by severities, by

using Bayesian methods [2, 10, 23, 24, 31]. A semiparametric bivariate model was

developed in [16, 17] known as bivariate Poisson Laguerre polynomial model. This

distribution has limitations in the range of possible correlations for counts with

small means. In summary, there is a lack of parametric bivariate distributions for

correlated count data with a flexible dependence structure and unequal marginal

distributions.

In the literature, applications of copula-based regression models for discrete

variables have gained popularity. For example, McHale and Scarf used copulas to

generate a bivariate count regression model for the discrete pair shots-for and shots-

against on 1048 soccer matches [25]. The data revealed negative correlation with

a Kendall’s τ = −0.191. The authors considered Archimedian copulas and found

that a model with Frank copula and negative binomial marginals was effective in

capturing the negative dependence in the data, and chose it over the independent

model.

Nikoloulopoulos and Karlis recommended the use of the covariates in the marginals

and the copula parameter when the aim is to understand the dependence structure

[30]. Illustrating this for count data, the authors presented an application in mar-

keting, where they analyzed the number of purchases for food and non-food data

based on customers’ characteristics. The data used consisted of 2580 customers, and

overdispersion was observed. They chose a model with Normal copula and negative
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binomial marginals over a group of other copula models. However, they did not

include the independent model in the paper, and failed to demonstrate the gain of

accounting for dependence using copulas.

Another practical use for copula models is when studying the distribution of

the difference between two correlated counts. Although never used before for this

mean, Cameron et al. used copula models to analyze the difference between reported

number of doctor visits and actual number of doctor visits of 502 patients in order

to determine sources of misreporting [5]. They found the joint distribution for the

counts using the copula approach, and then derived the distribution of the difference.

As a result, a Frank copula model with negative binomial marginals provided the

best fit for the difference among the other bivariate but more restrictive models.

In a key textbook about copulas [33] the authors present a Monte Carlo ex-

periment for a bivariate Poisson example. They simulated count data using a 500

sample size. The mean values were 2.01 and 1.35, replacing the mean values of

the covariates. Both marginals had similar means and somewhat small, meaning

that the identifiability issue encountered in copulas for discrete data could be trou-

blesome. For this particular scenario, they found that the copula parameter was

misestimated by 1%. Being this the only scenario considered, they failed to illus-

trate the consequences of having very different marginal distribution means as well

as to consider various sample sizes and correlation strengths.

Surprisingly, little attention has been devoted to examining the statistical prop-

erties of copula-based estimators for count data under different scenarios. In addi-

tion, the consequences of not accounting for dependence in count data is not assessed

by simulation studies. Another subject missing in the literature is the study of how

likelihood-based model selection methods, such as AIC or BIC, work for copula-

based regression models in the discrete case, in particular when weak dependence

between two count variables is observed.
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A variety of distribution models in the literature deal with bivariate distribu-

tions for counts. The most common model for correlated count data are the bivariate

Poisson distribution and its generalizations. A less common approach is to derive

joint distributions using copulas. In this chapter, an introduction to the most com-

monly used bivariate distributions for count data and copula-based models also for

count data is presented. In particular, the focus will be on contrasting the properties

of both approaches. The chapter begins with a brief discussion of Generalized Linear

Models (GLM) in the univariate case. Section 2.2 focuses in GLMs for count data.

A description of bivariate count data models and their properties is presented in

Section 2.3. Sections 2.4 and 2.5 finalize this chapter with a discussion of bivariate

copula-based models and their practical utility for count data.

2.1 Generalized Linear Models

Generalized linear models (GLMs) extend general linear models to admit re-

sponse variables that have error distributions other than a Normal distribution. In

these models the dependent variable yi follows an exponential family distribution

with mean µi. GLMs allow to model the mean µi as a function of xtiβ, where β is a

p-dimensional vector of unknown parameters and xi is a p-dimensional row vector

of covariates.

The response random variable yi follows an exponential family distribution if

its probability density function (pdf) or mass function (pmf) has the form

f(yi; θi, φ) = exp
{
yiθi − b(θi)

s(φ) + c(yi, φ)
}
, (2.1)

where, for i = 1, . . . , n, θi is known as the canonical parameter and φ as the

dispersion parameter, and the functions b(·), s(·) and c(·) are known. There are

some one-parameter distributions where φ is known, such as the Poisson or binomial

(φ = 1).

There are three components to any GLM:
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1. Random component - the dependent (response) variable Yi, for i = 1, . . . , n, and

its probability distribution which belong to the exponential family.

2. Systematic component - states the linear combination of the vector of covariates

xi, creating the linear predictor ηi = xtiβ.

3. Link function g - states the link between the random and the systematic com-

ponent, i.e., establishes how the mean µi of the dependent variable is related to

the linear predictor through ηi = g(µi) = xtiβ. The function g is monotonic and

differentiable. Examples of link functions include the identity, log, reciprocal, logit

and probit. When the canonical parameter θ = g(µi), then g(µi) is the canonical

link.

Estimation in GLM

Let Y = (y1, . . . , yn)t be a vector of n independent random response variables,

then the log-likelihood is

L(β) =
n∑
i=1

log f(yi; θi, φ) =
n∑
i=1

yiθi − b(θi)
s(φ) +

n∑
i=1

c(yi, φ). (2.2)

When fitting GLMs, where ηi = g(µi) = xtiβ is modeled, it is necessary to find

an estimation for the vector β and φ. The maximum likelihood estimator β̂ and

φ̂ are found by solving the likelihood equations derived from 2.2. These equations

are usually nonlinear in β, therefore, iterative methods such as Newton-Raphson or

Fisher Scoring are needed to find the ML estimator β̂. For more details refer to [1].

2.2 Generalized Linear Models for Count Data

Most count models are based on the Poisson and negative binomial probability

distributions. Both distributions belong to the exponential family, Poisson being

a one-parameter distribution and negative binomial a two-parameter distribution.

These distributions are introduced next.
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Poisson Distribution

A random variable Yi follows a Poisson distribution with parameter λi if its pmf

can be expressed as

f(yi;λi) = e−λiλyii
yi!

, yi = 0, 1, . . . . (2.3)

The most frequently used link function g for the Poisson model is the log func-

tion. That is,

log(λi) = ηi = xtiβ (2.4)

The Poisson distribution has the unique feature that the mean and variance are

the same, i.e.,

E(Yi) = V ar(Yi) = λi. (2.5)

The variance is rarely equal to the mean when modeling real count data. When

the variability of the data is greater than its mean this phenomenon is known as

overdispersion. Overdispersion may occur due to different reasons. The problem

with overdisperion is that it may cause incorrect estimates of the standard errors of

coefficients. To account for overdispersion, an extension of the Poisson distribution

is introduced next. For more details on what causes Poisson overdispersion and ways

to handle it refer to [18].

Negative Binomial Distribution

The negative binomial distribution accounts for Poisson overdispersion by adding

an extra parameter, the dispersion parameter φ. Yi follows a negative binomial dis-

tribution with parameters µi and φ if its pmf can be expressed as

f(yi;µi, φ) = Γ(yi + φ)
Γ(φ)Γ(yi + 1)

(
φ

µi + φ

)φ (
1− φ

µi + φ

)yi
, yi = 0, 1, . . . . (2.6)
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For this distribution

E(Yi) = µi, V ar(Yi) = µi + µ2
i

φ
.

For φ positive, V ar(Yi) > E(Yi). As for the Poisson model, the log link is the

most frequently used in negative binomial regression models.

2.3 Bivariate Count Data Models

The first bivariate count model to arise in the literature is the bivariate Poisson

model [22]. This distribution considers random variables zi1, zi2, z3 to be Poisson

and independently distributed with parameters λi1, λi2, λ3 > 0, for i = 1, 2, . . . , n,

respectively. The resulting random variables yi1 = zi1 + z3 and yi2 = zi2 + z3 are

then jointly distributed as bivariate Poisson. Other methods to obtain the bivariate

Poisson distribution are described in [22]. The marginal distributions are Poisson,

restricting the mean and variance to be the same for each response variable. The

main drawback of this model is that it does not allow for overdispersion and can

only describe non-negative correlation.

The bivariate negative binomial model is a generalization of the bivariate Pois-

son model, allowing for overdispersion using an additional parameter vi called the

unobserved heterogeneity component. As described in [8], the count variables yi1

and yi2 are conditionally independently distributed as

yij|xij, vi ∼ Poisson(λijvi) (2.7)

where

λij = exp(xtijβj), (2.8)

vi is gamma distributed with mean = 1 and variance = 1
a
, and xij is the vector

of covariates, for j = 1, 2 and i = 1, . . . , n. The marginal distributions are negative
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binomial and vi is restricted to be the same for both counts. Although this model

does account for overdispersion, it is still limited in admitting different dependence

structures because it only accommodates positive correlation and does not include

independence [22].

Other distributions have been developed by compounding the bivariate Poisson

distribution to obtain the desired flexibility to model correlation between counts,

such as the Generalized Poisson and Poisson Inverse Gaussian. These distributions

still do not allow for negative correlation [8].

The bivariate Poisson lognormal distribution is another example of a compound

bivariate Poisson distribution [3], where the count variables yi1 and yi2 are dis-

tributed as

yij|λij, vij ∼ Poisson(λijvij),

λij = exp(xtijβj),

with

vij = exp(bij)

and

bi ∼ Nj(0,Σ),

where Σ is the covariance matrix for j = 1, 2 and i = 1, . . . , n. To account for

correlation among the yij’s, the vector vi = (vi1, vi2)t is distributed as bivariate log-

normal with mean µ = 0. As shown in [7], this model has an unrestricted correlation

structure allowing for positive or negative correlation and overdispersion. However,

this model still has some shortcomings. For instance, the joint probability density

function of the bivariate Poisson lognormal model has no closed-form, therefore,

numerical integration methods are required to obtain parameters estimation, such
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as the MCMC estimation described in [7]. Furthermore, the marginal distributions

involve a complicated infinite series. With computational advances, this is probably

the most used parametric multivariate distribution for counts that can be found in

the literature nowadays using a Bayesian approach [2, 10, 23, 24, 31].

A semiparametric bivariate model based on an approximation by Laguerre poly-

nomial expansion of the distribution of vi in the bivariate Poisson lognormal was

developed in [16, 17]. Unlike the Poisson lognormal bivariate model, this model has

a closed form that allows to estimate the parameters by maximum likelihood. It is

also suitable to model overdispersion and has an unrestricted correlation structure

allowing for independence and positive or negative correlations. Nevertheless, this

semiparametric bivariate model for count data has limitations for real applications

due to the narrow range of possible correlations for counts with small means [17].

For more details on this and other bivariate Poisson mixed distributions and their

properties, the reader can be refered to [8, 21, 22].

Our motivating example on fatal and non-fatal crashes introduced in Chapter 1

is an uncommon application of bivariate count data in that one of the response vari-

ables has a small mean and the other one has a large mean, and both counts exhibit

overdispersion. In an attempt on obtaining more accurate estimates by accounting

for correlations and overdispersion in crash counts by severity or type of collision,

the Poisson lognormal distrubution was recently introduced [2, 10, 23, 24, 31]. Then

again, a flexible bivariate model that admits overdispersion, an unrestricted cor-

relation structure and different marginal distributions with very different means is

desired. While the aforementioned models are an intent to attend these phenomena,

none of them succeed in dealing with all of them simultaneously. Moreover, the

interpretation of the parameters in these models are specific to each subject. With

this in mind, we came across bivariate copula models for count data discussed in

the next section.
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2.4 Copula-based Regression Models

A copula is a multivariate probability distribution for which the marginal distri-

butions follow a Uniform distribution on (0,1). In probability and statistics, copulas

are useful because they offer a straightforward and flexible way of generating joint

distributions for multivariate data by admitting different marginal distributions and

various dependence structures between two or more random variables. Furthermore,

sometimes the interest lies in understanding the dependence structure, and copula-

based models allow to model the copula parameter using covariates as described in

[30]. Additionally, copula-based models make data generation feasible for simulation

purposes and provide marginal interpretation of the parameters. Copula theory is

based on the Sklar’s theorem [32] that describes functions that join two or more

probability functions to form a multivariate pdf (see Theorem 1).

Theorem 1. If H is a d-variate distribution with jth univariate marginal distribu-

tions Fj given a vector of covariates xj, then there is a function C : [0, 1]d → [0, 1]

so that

H(y;x) = C(F1(y1;x1), . . . , Fd(yd;xd); θ), y ∈ Rd, (2.9)

where θ is the copula parameter which measures the association between the marginals.

If F is continuous, then the copula C is unique, and is given by

C(u) = H(F−1
1 (u1), . . . , F−1

d (ud)), u ∈ [0, 1]d, (2.10)

where F−1
1 , . . . , F−1

d are the inverse quantile functions of the univariate marginals.

If F is discrete, then the copula C is unique only in the set Range(F1)× · · · ×

Range(Fd).

A formal definition of copula is given in [20] as follows:

Definition 2.4.1. A copula is a multivariate distribution with marginal distribu-

tions Uniform(0,1). That is, if C is a copula then it is the multivariate distribution



14

of a vector of two or more dependent variables that follow a marginal Uniform dis-

tribution on (0,1). A d-dimensional copula has the following properties:

(a) C(u1, . . . , ui−1, 0, uu+1, . . . , ud) = 0

(b) C(1, . . . , 1, u, 1, . . . , 1) = u

(c) C is d-increasing

From this definition one can see that the univariate approach assuming indepen-

dence is the particular case of a copula representation where C(u) = u1 · u2 · · · · ud.

Copula families are given as cumulative density distributions. Then, for H(y;x) =

C(F1(y1;x1), . . . , Fd(yd;xd); θ) with continuous univariate marginals F1, . . . , Fd and

densities f1, . . . , fd, the density function is given by

h(y;x) = c(F1(y1;x1), . . . , Fd(yd;xd); θ)×
d∏
j=1

fj(yj;xj), y ∈ Rd, (2.11)

where xj is the vector of covariates, c(·) is the density of the copula obtained by

taking the mixed partial derivative of d-order, and θ is the copula parameter.

In the discrete case, probability distributions are not strictly increasing, there-

fore rectangular probabilities need to be obtained. For example, for the bivariate

case of counts the pmf is given by

h(y1, y2;x) = P (Y1 = y1, Y2 = y2;x)

= P (y1 − 1 < Y1 ≤ y1, y2 − 1 < Y2 ≤ y2;x)

= H(y1, y2;x)−H(y1 − 1, y2;x)−H(y1, y2 − 1;x) +H(y1 − 1, y2 − 1;x)

= C(F1(y1;x1), F2(y2;x2); θ)− C(F1(y1 − 1;x1), F2(y2;x2); θ)

− C(F1(y1;x1), F2(y2 − 1;x2); θ) + C(F1(y1 − 1;x1), F2(y2 − 1;x2); θ)

(2.12)

A multivariate probability distribution can be represented as the composition

of a copula and the univariate marginals of the multivariate distribution as shown in

Eq. 2.11. In light of this, another useful feature of copulas is that the modeling of the
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univariate marginal distributions can be separated from the dependency structure,

which is then modeled by the copula. Since often there is more information about

the marginals rather than the joint distribution, this is probably the most interesting

feature of copula models. To illustrate this, consider the Clayton copula, which will

be discussed later, and marginal distributions F1 and F2. The Clayton copula has

the form (u−θ+v−θ−1)− 1
θ . Taking mixed partial derivatives it follows that the joint

density of the random variables Y1 and Y2 is given by

h(y1, y2;x) = ∂2

∂F2∂F1
(F1(y1)−θ + F2(y2)−θ − 1)− 1

θ

= (1 + θ)(F1(y1)−θ + F2(y2)−θ − 1)− 1
θ −2 · dF1(y1)

dy1
· dF2(y2)

dy2

= (1 + θ)(F1(y1)−θ + F2(y2)−θ − 1)− 1
θ −2 · f1(y1) · f2(y2)

There are many different copula families and they vary in properties such as

symmetry, tail dependence, and dependence structure. For example, some admit

both positive and negative dependence, others allow stronger association on one of

the tails (i.e. tail dependence). Examples of scatterplots and contour plots for some

copula families are shown in Figures 2–1 and 2–2, respectively. These examples

demonstrate the flexibility of a copula in that it can handle different dependence

structures. For instance, both the Normal and Frank copula families have symmet-

rical dependence structures, but the Normal copula allows for stronger dependence

in the tails, while Clayton and Galambos are copula families with asymmetrical de-

pendence structures. The focus of this research is on these specific copulas. These

copulas can be broken into three types: Archimedean copulas, extreme-value copu-

las, and elliptical copulas which will be discussed in detail next.

2.4.2 Parametric copula families

Many parametric copula families have been described in the literature [20, 27,

33]. Each complies with different desired properties when developing multivariate
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Figure 2–1: Scatterplots of simulated data for some copulas combined with N(0, 1)
marginal distributions; Kendall’s τ = 0.5.

distributions through copulas. One desirable property is a wide range, admitting

both positive and negative dependence, as well as tail dependence (i.e., measure of

the degree of dependence on one or both of the extremes of the joint distribution).

Another wanted property is a distribution function that makes likelihood estimation

computationally feasible. In Table 2–1, the four different one-parameter copula

families that will be used in this research are listed: Frank, Clayton, Normal and

Galambos. In Figures 2–1 and 2–2, these copulas are presented graphically. This

selection was based on their frequent application to model bivariate count data and

for the different shapes and tail dependence they exhibit. In this section these

parametric copulas and their properties are introduced. For more details on these

and other copula families, we refer the reader to [20, 27, 29].

Normal Copulas

The Normal copula family belongs to the class of elliptical copulas and is com-

monly used for count data [5, 30]. It inherits the dependence structure of the multi-

variate Normal distribution, admitting both negative and positive dependence. This
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Figure 2–2: Contour plots of the density for some copulas combined with N(0, 1)
marginal distributions; Kendall’s τ = 0.5.

copula family is probably the most computationally demanding because it lacks a

closed form and rectangular probabilities need to be computed for maximum like-

lihood estimation. Nevertheless, the computation of these probabilities are already

implemented in R in the package mvtnorm [13]. This copula family exhibits reflection

symmetry.

Frank Copulas

The Frank copula family is part of the Archimedean class of copulas and has

a closed form cumulative distribution function (cdf). It is the only Archimedean

copula with reflection symmetry. It is frequently used in modeling bivariate data

[5, 25, 30] because it allows flexible dependence, admitting both positive and negative

dependence and independence. Though, for three or more dependent variables, the

negative dependence is limited [20].



18

Table 2–1: Parametric copula families, their copula parameter range and the copula
parameter link function s(θ). Note: Φ2 is the bivariate standard Normal cdf with
correlation θ; Φ−1 is the quantile function of N(0, 1).

Copula family C(u, v;θ) θ ∈ s(θ)

Clayton (u−θ + v−θ − 1)− 1
θ (0,∞) log θ

Frank −1
θ

log
[
1 + (e−θu−1)(e−θv−1)

e−θ−1

]
(−∞,∞) θ

Galambos uve[(1−u)−θ+(1−v)−θ]−
1
θ [0,∞) log θ

Normal Φ2(Φ−1(u),Φ−1(v)) (−1, 1) log 1+θ
1−θ

Clayton Copulas

The Clayton copula family is also part of the Archimedean class of copulas. This

copula family admits only positive dependence and has a closed form cdf making

maximum likelihood estimation rather easy. It is specially useful when bivariate

data shows lower tail dependence [5, 25, 30].

Galambos Copulas

The Galambos copula family belongs to the extreme-value class of copulas. It

is the lower extreme value limit of an Archimedean copula. Extreme-value copulas

are useful when modeling the dependence structure between rare events [15]. An-

other advantage is that they are not symmetric. The amount of dependence for the

Galambos copula family ranges from independence to complete dependence and it

shows upper tail dependence. Despite its properties, the Galambos copula family is

the least used to model bivariate count data from our list [30].

2.4.3 Inference in copula-based regression models

Given y1j, . . . , ynj independent and covariates x1j, . . . ,xnj for j = 1, 2, the log-

likelihood for bivariate copula-based models is defined as

l =
n∑
i=1

log h(yi1, yi2;xi1,xi2), (2.13)
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where h is the pdf defined in Eq. 2.11 for the continuous case or the pmf defined

in Eq. 2.12 for the bivariate discrete case.

After choosing appropriate univariate distributions, and a selection of copulas

that could be a good fit for their properties, the optimization of the log-likelihood

in Eq. 2.13 can be made using general optimization methods, such as quasi-Newton

or Nelder-Mead. Therefore, maximum likelihood estimation can be used to obtain

estimates of the parameters for the univariate marginal distributions and the copula

parameter. Model comparisons between the independent, and the copula-based

models can be made with the log likelihood ratio statistic. To choose the best

copula model likelihood based criteria such as AIC and BIC can be used, which

becomes a comparison of the log-likelihood values across different models if all of

the competing models have the same covariates and a single copula parameter. In

this respect, a study of how this likelihood-based model selection methods behave for

copula-based regression models in the discrete case is not found in the literature. In

addition, prior research [11] states that the conditions under which the estimation of

the copula parameter can be found are not established yet for the discrete case. This

research attempts to contribute on these two unattended aspects by a simulation

study.

From Eq. 2.11, the estimation of the copula parameters is said to be separated

from the estimation of univariate marginals parameters [33]. Thus, a two steps

method for likelihood estimation as described in [20] can be used. The steps are as

follows:

1. Find appropriate models for the marginal distributions and get estimates of the

parameters by maximum likelihood.

2. Fix the parameters of the marginals and maximize Eq. 2.13 to estimate the

copula parameters.
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This approach is known as Inference Function of Margins (IFM) or two-stage

estimation. When the model is correctly specified, this approach produces consis-

tent parameter estimates with the traditional maximum likelihood, although less

efficiently [33].

2.4.4 Dependence measured by Kendall’s τ

Copula parameters for distinct families have different range making them in-

comparable. Therefore, it is convenient to convert the copula parameters to a con-

cordance measure such as Kendall’s τ .

For continuous data, Kendall’s τ is defined as the difference between the proba-

bility of concordance and discordance, and takes the values in [−1, 1]. However, for

the discrete case the probability of ties is positive and τ does not reach the values

±1. Various generalization of the Kendall’s τ for discrete data have been studied and

derived [4, 9, 26, 28]. For bivariate count data the population version of Kendall’s

τ is given in [30] as

τ(Y1, Y2) =
∞∑
y1=0

∞∑
y2=0

h(y1, y2;x1,x2){4C(F1(y1 − 1;x1), F2(y2 − 1;x2); θ)

− h(y1, y2;x1,x2)}+
∞∑
y1=0

f 2
1 (y1;x1) +

∞∑
y2=0

f 2
2 (y2;x2)− 1,

(2.14)

where Y1, Y2 are discrete random variables with joint pmf h as given in Eq. 2.12;

F1, F2 are the marginal cdfs; f1, f2 are the pmfs; and C is the copula with copula

parameter θ.

It is clear from Eq. 2.14 that the marginals have an effect on the Kendall’s τ

for the discrete case. To illustrate this effect, in Figure 2–3 Kendall’s τ values as

defined in Eq. 2.14 are plotted using Poisson marginal distributions with the same

parameter λ, where λ is the mean and variance of a Poisson distribution, and varying

the copula parameter θ for the four copula families listed in Table 2–1. It can be

seen that the range of Kendall’s τ is affected by the values of λ. Indeed, the range
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is narrower for small values of λ and almost reach ±1 as λ goes to infinity. In order

to better understand the behavior of Kendall’s τ for discrete data and given our

motivational example, in Figure 2–4 Kendall’s τ values are also plotted but using

Poisson marginal distributions with different λ values. The surface plots suggest

that if at least one of the λ values is small then the Kendall’s τ range is narrower

than ±1. Note that when λ1 = λ2 the values of Kendall’s τ achieve its highest value

for high values of θ according to the range of each copula family. In this context,

it is necessary to account for true range when evaluating the dependence strength

between the dependent variables using any concordance measure such as Kendall’s

τ .
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Figure 2–3: Kendall’s τ values for a set of copula parameter θ values for each copula
using Poisson marginal distributions with the same parameter λ ∈ [1, 30].
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Figure 2–4: Kendall’s τ values for a set of copula parameter θ values for each copula
using Poisson marginal distributions with different parameter λi ∈ [1, 30], i = 1, 2.

2.5 Copula-based Models for Count Data

Modeling count data through copulas is still legitimate despite the issues men-

tioned in this chapter, such as the lack of uniqueness for C in Theorem 1 for the

discrete case and the dependence of concordance measures like Kendall’s τ on the

marginal distributions. A deeper understanding of this approach’s advantages and

limitations are brought together in [11]. Briefly, some of the main conclusions follow.

First, the identifiability issue of Eq. 2.9 in the discrete case could be more dis-

advantageous when at least one of the variables has a small mean. This is because a

small mean implies a smaller range of values for the response variable. Nevertheless,

this should not be a problem if the range for the bivariate copula distribution is

restricted to the Range(Y1) × Range(Y2). Secondly, as mentioned in Section 2.4.4,
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the range of dependence is now a function of the copula parameter and the marginal

distributions, and does not necessarily attain the bounds ±1. Therefore, the true

range of any concordance measure needs to be considered when analyzing the de-

gree of dependence between the variables. Also, in the continuous case, two random

variables are independent if and only if C(u, v) = uv, where u, v ∈ (0, 1). But,

although C(u, v) = uv implies independence in the discrete case, the converse is not

necessarily true. Additionally, the authors establish that the conditions in which the

parameter θ is estimable by maximum likelihood estimation in the discrete case are

unknown at the time. In this respect, we aim to contribute by doing a simulation

study for count data for different scenarios.

As stated earlier, copula modeling for the discrete case is still valid since the

most important dependence properties of the copula are passed to the multivariate

distribution with discrete marginals, and the copula parameter θ can still be used

to describe the dependence structure when converted to some concordance measure

such as Kendall’s τ if its range is accounted for. Moreover, not only this approach is

less computationally demanding and more flexible than other bivariate count models

found in the literature by admitting different marginals and a variety of dependence

structures, but also copula-based models prove to be useful in special cases. For

instance, there is often more information on the marginals rather than the bivariate

distribution. Some examples that illustrate the use of copula models for multivari-

ate count data can be found in the literature, such as [5, 25, 30]. These are related

to marketing, econometrics, and sports statistics, respectively. The application pre-

sented in this research will add to these by providing an application under a scenario

where one of the marginal distributions has a small mean and the other one has a

large mean.
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2.6 Regression to the copula parameter

The authors in [30] proposed introducing a regression part for the copula pa-

rameter θ. This is useful when the interest lies in studying the dependence structure

and how any covariate affects the association between the counts.

Let b be the parameter vector for the copula parameter θ. Then, using the

correct function s(·), the regression part for θ is given by s(θi) = btxi, for i =

1, . . . , n.



CHAPTER 3
METHODOLOGY

Our motivating example, as described in Chapter 1, is related to the number

of fatal and non-fatal vehicle crashes in different highway segments. Both counts

share the characteristics of the segment, and therefore some association among the

number of fatal and non-fatal crashes is expected. Since modeling bivariate count

data independently can lead to coefficient’s estimates and standard errors that do

not meet desired statistical properties, such as unbiasedness, consistency and effi-

ciency, we propose modeling the dependence among two counts using copula-based

regression models. Moreover, modeling of bivariate count data allows the analyst to

quantify and explain the dependence between counts. However, caution should be

exercised given the limitations mentioned in Section 2.5. Interest in this approach

arises from its flexibility and ease of implementation. For example, this approach

admits different marginal distributions and the variety of dependence structures it

offers is quite large by admitting both negative and positive correlations, and tail

dependence. Moreover, there is often more information about the marginal distri-

butions of two correlated variables than about their joint distribution. With the

copula approach the joint distribution is derived given the marginals. Additionally,

the coefficient’s estimates are marginally interpretable which is more straightforward

than other existing multivariate distributions.

In this chapter a description of the implementation of copula-based regression

models for bivariate count data is presented in Section 3.1. In Section 3.2 the Mean

Squared Error (MSE) and likelihood-based selection criteria are introduced as the

25
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tools used to evaluate the performance of the set of candidate models and to select

the one with the best fit. A set of simulation studies is included in Section 3.3

to assess the statistical properties of the parameter estimates obtained from fitting

copula models to account for dependence in comparison to modeling the counts

independently. A discussion on the performance of likelihood-based criteria, such

as AIC or BIC, in selecting the true copula from a set of candidate copulas is also

covered in these studies.

3.1 Copula-based Regression Model for Bivariate Count Data

Consider two correlated non-negative random variables Y1 and Y2 with uni-

variate cumulative distribution functions (cdf’s), F1 and F2, respectively, and one

covariate x. For j = 1, 2 and i = 1, . . . , n, let Yij be independently distributed

as Fj(·). For instance, the cdf’s can be chosen to be negative binomial Fj(µij, φj),

where

µij = exp(xtiβj),

xi = (1, x)t, βj = (aj, bj)t and φj is the dispersion parameter (see Section 2.2).

To obtain their joint distribution the cdf’s are linked by a copula. Provided that

both cdf’s are a good fit, the joint distribution given by the copula representation is

C(F1(y1;x), F2(y2;x); θ), (3.1)

where θ is the copula parameter and x is a covariate assumed, but not restricted,

to be the same for both counts. Then, bivariate probabilities of the form P (Y1 =

y1, Y2 = y2) can be obtained from the pmf defined in Eq. 2.12.

As described in Section 2.4, the application of copulas to generate the joint

distribution for bivariate count data requires that the marginal distributions are

selected and estimated first. For this step several parametric models are consid-

ered and evaluated using goodness of fit tests. In Section 2.2 we described two of

the most used distributions to model univariate count data: Poisson and negative
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binomial. The second step is to specify the copula. A set of appropriate copulas

is selected for their dependence structure given prior information about the data.

That is to say that previous exploration of the data is needed in order to select a

good set of candidate copulas in this step. The copula families considered in this

research are often used in the literature and exhibit different dependence structures

and properties, namely, no tail dependence, lower and upper tail dependence, and

negative dependence. These copulas include the Clayton, Frank, Galambos and

Normal copula which were described briefly in Section 2.4.2. Then, the joint distri-

bution parameters are estimated via full maximum likelihood or the IFM approach

(see Section 2.4.3), and the copula with the best fit is chosen using likelihood-based

criteria, such as AIC or BIC.

The log-likelihood to be maximized to obtain the parameter estimates via full

maximum likelihood for a copula-based regression model for count data with one

covariate assuming negative binomial marginals is given as

l =
n∑
i=1

log h(yi1, yi2;xi,β1, φ1,β2, φ2)

=
n∑
i=1

log
[
C(F1(yi1;xi,β1, φ1), F2(yi2;xi,β2, φ2); θ)

− C(F1(yi1 − 1;xi,β1, φ1), F2(yi2;xi,β2, φ2); θ)

− C(F1(yi1;xi,β1, φ1), F2(yi2 − 1;xi,β2, φ2); θ)

+ C(F1(yi1 − 1;xi,β1, φ1), F2(yi2 − 1;xi,β2, φ2); θ)
]
,

(3.2)

where θ is the copula parameter. The implementation of the copula models

included in this research was done in the statistical software R. There are various

packages in R dedicated to copulas. For example, the package copula [19] includes

methods for density, distribution, random generation and fitting of common copula

families, but the available functions for fitting copulas do not allow to include co-

variates and were not useful in our example. However, the estimation method for
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the copula families included in this work was relatively easy to implement (See Ap-

pendix C). The log-likelihood in Eq. 3.2 for each bivariate copula model for count

data with negative binomial marginals was programmed in R and maximized using

the optim function. In this function the default method is an implementation of

Nelder and Mead. Although this method is relatively slow, it works better than the

quasi-Newton method “BFGS” in our scenarios due to its robustness. To fit the

negative binomial independently, the glm.nb function from the MASS package was

used. This function is a modification of the glm function as it includes the estima-

tion of the dispersion parameter φ. Also, the pmvnorm function from the mvtnorm

package was used in the implementation of the Normal copula.

To analyze the performance of copula-based models approach in different sce-

narios, this research includes simulation studies which will be discussed later. In

particular, the aim is to provide a guide of when copulas could be considered to

account for correlation between two counts.

3.2 Performance Measures and Selection Criteria

After estimating the parameters in a copula-based regression model with several

copula families, one needs to select the copula model with the best performance. For

the analyses here, the model that provides the best fit to the data among the set of

candidate models was chosen based on likelihood-based criteria, which measure the

loss of information of the fitted model. The Mean Squared Error (MSE) was also

calculated to characterize the performance of the estimator of the vector of mean

and dispersion parameters for the marginal distributions, separately.

Let β̂ = (β̂1, β̂2)t be the estimator of the vector of mean parameters for the

marginals F1 and F2, where β̂j = (âj, b̂j)t, j = 1, 2. Also, let φ̂ = (φ̂1, φ̂2)t be the

estimator of the vector of dispersion parameters. Then, the MSE of β̂ and φ̂ can

be defined as
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MSE(β̂) = E(β̂ − β)2 = trace(V ar(β̂)) + ||Bias(β̂)||2, (3.3)

and

MSE(φ̂) = E(φ̂− φ)2 = trace(V ar(φ̂)) + ||Bias(φ̂)||2 (3.4)

where

trace(V ar(β̂)) =
2∑
j=1

(V ar(âj) + V ar(b̂j)),

trace(V ar(φ̂)) =
2∑
j=1

V ar(φ̂j),

Bias(β̂) = E(β̂)− β,

Bias(φ̂) = E(φ̂)− φ,

and || · || is the Euclidean norm. The MSE describes two statistical properties

of any estimator: variability and bias. As a consequence, getting a small value of

MSE sometimes involves a trade-off between variance and bias. Both quantities

should be small for the estimator to have a good performance. When comparing

two unbiased (i.e., Bias = 0) estimators, the MSE is equal to their variance and the

most efficient estimator is the one with the smallest variance. Therefore, the MSE

can be used as a criterion to select the model that provides the best estimator based

on the compliance of desirable statistical properties.

On the other hand, penalized likelihood-base selection criteria, such as AIC and

BIC, can be used to choose the best copula model from a set of candidate models.

The AIC and BIC for a model is defined as −2l + kp, where l is the log-likelihood,

p is the number of parameters in the model, and k is 2 for AIC and log(n) for BIC.
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The model with the smallest AIC/BIC value gives a better fit. Since the number of

parameters is the same across the different copula models in our implementations,

the log-likelihood can be used as the model selection criterion, where the preferred

model is the one with the highest log-likelihood value. For comparisons between the

independent model and copula models, a penalized likelihood-base criterion should

be used. An assessment of the ability of these criteria to select the true copula is

also included in the simulation studies.

3.3 Simulation Studies

Although copula-based regression models have gained popularity in the discrete

case, there is little knowledge about their performance and suitability in different

scenarios. In order to better understand the statistical properties of coefficients esti-

mates when jointly modeling bivariate count data using copulas, a set of simulation

studies considering different sample sizes, degrees of dependence and dependence

structures where conducted. Driven by our motivating example on fatal and non-

fatal vehicle crashes, the aim of these simulation studies is to assess the performance

of copula-based models for overdispersed bivariate count data and to establish the

scenarios where their application is more advantageous compared to the alternative

of independent models. Moreover, as shown in Figures 2–3 and 2–4, the depen-

dence structure between two counts is determined by the copula parameter and

the marginal means. With this in mind, scenarios where both counts had different

marginal means were explored. Also, the performance of likelihood-based criteria,

such as AIC and BIC, in selecting the true model among a set of candidate models

was examined. In this section, a description of the simulation studies is provided.

3.3.1 STUDY 1 Copula-based regression models for overdispersed bi-
variate count data with the same marginal means

In the present simulation study, we address the statistical properties of coeffi-

cients estimates of copula-based regression models for overdispersed bivariate count
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data when both marginal means (20.08 when calculated at the mean value of the

covariate x) and dispersion parameters (φ = 2) are the same. Bivariate count data

were generated from a bivariate copula distribution as defined in Eq. 3.1 for each

of the four copula models in Table 2–1 assuming that the marginals, F1 and F2, are

negative binomial. Five models were fitted: the four copula models in Table 2–1 and

the independent model. Three degrees of association between the response variables

were considered with values of Kendall’s τ : 0.3, 0.5 and 0.7, to reflect low, medium

and high association strengths. Three sample sizes N : 100, 300 and 500, were also

included. A scenario where the response variables were generated independently to

examine the consequences of modeling counts using copula-based models when little

or no association is observed is also taken into consideration. For the simulation

studies herein, the covariate x is distributed as Normal (µ = 10, σ = 0.5). Each of

these Monte Carlo experiments involved 1,000 replications. The simulation scheme

used was as follows:

1. Select the sample size N , degree of association τ and true copula.

2. Set the parameters for both marginal models: β1 = β2 = (a, b) = (−2, 0.5) and

φ1 = φ2 = 2.

3. Generate the data.

(a) Simulate N covariates x from a Normal (µ = 10, σ = 0.5) distribution.

(b) Obtain N means for each count: µ1 = µ2 = exp(a+ bx).

(c) Generate N vectors (y1, y2) from the true copula model. Different models

were considered:

i. Copula model with negative binomial marginals with mean µ and dis-

persion parameter φ, and corresponding copula parameter θ that meets

an association of τ as defined in Eq. 2.14.

ii. Independent negative binomials assuming no association between both

counts, i.e., τ = 0.
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4. Fit negative binomial regression models to both counts independently.

5. Fit the four copula models in Table 2–1 by maximizing the log-likelihood in Eq.

3.2 using the estimates obtained in step 4 as the initial values.

6. Repeat steps 1-5 1,000 times for each copula: Clayton, Frank, Galambos, Nor-

mal; N : 100, 300, 500; and τ : 0.3, 0.5, 0.7, for a total of 36 scenarios. Do the same

for the independent model, for 3 additional scenarios.

3.3.2 STUDY 2 Copula-based regression models for bivariate count data
with different marginal means

In this study, the statistical properties of coefficients estimates of copula-based

regression models for overdispersed bivariate count data considering different marginal

means (2.72 and 20.08 when calculated at the mean value of the covariate x) and

dispersion parameters (φ1 = 5, φ2 = 2) are assessed. These values were selected

to represent our motivating example. Bivariate count data was generated from the

four copula models in Table 2–1 assuming negative binomial marginals. That is,

the realizations of the response variables (y1, y2) were taken from a bivariate copula

distribution as defined in Eq. 3.1. Five models were fitted: the four copula models

in Table 2–1 and the independent model. Three degrees of association between the

response variables were considered with values of Kendall’s τ : 0.3, 0.5 and 0.7, to

reflect low, medium and high associations. Three sample sizes N : 100, 300 and 500,

were also included. We also included a scenario where the response variables were

generated independently to examine how the copula-based models deal with little

or no association. For the simulation studies herein, the covariate x is distributed

as Normal (µ = 10, σ= 0.5). Each of these Monte Carlo experiments involved 1,000

replications. The simulation scheme used was as follows:

1. Select the sample size N, degree of association τ and true copula.

2. Set the parameters for both marginal models: β1 = (a1, b1) = (−4, 0.5), φ1 = 5,

β2 = (a2, b2) = (−2, 0.5), and φ2 = 2.
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3. Generate the data.

(a) Simulate N covariates x from a Normal (µ = 10, σ= 0.5) distribution.

(b) Obtain N means for each count: µ1 = exp(a1+b1x) and µ2 = exp(a2+b2x).

(c) Generate N vectors (y1, y2) from the true copula model. Different models

were considered:

i. Copula with negative binomial marginals, and corresponding copula

parameter θ that meets an association of τ as defined in Eq. 2.14.

ii. Independent negative binomials assuming no association between both

counts, i.e., τ = 0.

4. Fit negative binomial regression models to both counts separately.

5. Fit the four copula models in Table 2–1 by maximizing the log-likelihood in Eq.

3.2 using the estimates obtained in step 4 as the initial values.

6. Repeat steps 1-5 1,000 times for each copula: Clayton, Frank, Galambos, Nor-

mal; N: 100, 300, 500; and τ : 0.3, 0.5, 0.7, for a total of 36 scenarios. Do the same

for the independent model, for 3 additional scenarios.

3.4 Simulation Studies Results

The results of Studies 1 and 2 are presented next. Boxplots of the bias and

Mean Squared Error (MSE) for the mean and dispersion parameters estimators are

presented to check for desirable properties of any estimator: unbiasedness, minimum

variance and efficiency in the different scenarios based on 1,000 simulations. Tables

of the average bias are included in Appendices A and B. Another objective of this

work was to assess the ability of likelihood-based criteria in selecting the true copula

model in different scenarios. With this in mind, the percentage of times each copula

is selected for each scenario based on BIC is also reported below.
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3.4.1 STUDY 1 Results

Marginal parameters results

When both marginal means (20.08 when calculated at the mean value of the

covariate x) and dispersion parameters (φ = 2) are the same, Figures 3–1 through

3–5 indicate that the estimators β̂ were unbiased for the Independent model and

the true copula model in every scenario. In contrast, fitting the wrong copula gave

biased estimates for the mean parameters in most scenarios. For instance, Figure

3–1 shows that, when Clayton was the true copula, Frank, Galambos and Normal

copulas gave biased estimates. Recall that the Clayton copula is the only one with

lower tail dependence in our set of copulas and, by previous examination of the data,

the other copulas should not be considered, which supports the importance of this

step when fitting copula-based models. For the scenarios with high degree of associ-

ation between the response variables where Frank and Normal were the true copulas

(Figure 3–2 and 3–4), these two gave unbiased estimates along with the Independent

model for the three sample sizes included in this work (remember that these two

copulas share similar dependence structure). When Galambos (copula with upper

tail dependence) was the true copula, the estimation for the mean parameters from

other copulas was unbiased except for scenarios with a high degree of dependence.

In addition, the results show that the main gain of taking into account the

dependence structure for the mean parameters using copula-based models was in

precision. In other words, variance of the mean parameters estimators was signif-

icantly smaller when accounting for the association between counts by fitting an

adequate copula model even when small association is observed. For a fixed sample

size, the gain in precision is greater for stronger associations. Moreover, as shown in

Figure 3–5, the Independent model, and the Frank and Normal copulas gave unbi-

ased estimates for the mean parameters, and similar precision when no dependence

was observed between the response variables for all sample sizes. This suggests that
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fitting either of these copulas might be an option in case small association is present

and more precision can be obtained without losing accuracy.

On the other hand, the results show that the dispersion parameter estimator

had a right skewed distribution in every scenario and there was no evidence that

there was a difference in bias when the true copula was fitted versus the Independent

model. In fact, previous research exists on the estimation of the negative binomial

dispersion parameter φ, and it is known that maximum likelihood estimates of φ can

be biased upward. In this respect, several estimating methods have been proposed in

the literature [34, 35]. There was no gain in precision for the dispersion parameters

in any of the scenarios in this study.

Figures 3–6 through 3–10 show the distribution of the MSE of the vector of

coefficients and dispersion parameters, β̂ and φ̂, under the different scenarios. In

general, the MSE for β̂ is smaller when the true copula models are fitted when

compared to the Independent model and other copulas. As a result, the estimator

of the parameters of the mean from the true copula was more efficient than the

estimator from the Independent model. The gain in efficiency was greater as sample

size decreased for a given degree of dependence, and as the degree of association

became stronger for a fixed N .
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Figure 3–1: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution withµ1 = µ2 = exp(xtβ) and dispersion parameter φ1 = φ2.
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Figure 3–2: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution withµ1 = µ2 = exp(xtβ) and dispersion parameter φ1 = φ2.
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Figure 3–3: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution withµ1 = µ2 = exp(xtβ) and dispersion parameter φ1 = φ2.
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Figure 3–4: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution withµ1 = µ2 = exp(xtβ) and dispersion parameter φ1 = φ2.
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Figure 3–5: Boxplots of the bias of estimators based on 1,000 simulations for two
independent counts, Y1 (left) and Y2 (right), where each follows a negative binomial
distribution with µ1 = µ2 = exp(xtβ) and dispersion parameter φ1 = φ2.
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Figure 3–6: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on 1,000
simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–7: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on 1,000
simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–8: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on 1,000
simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–9: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on 1,000
simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–10: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on
1,000 simulations for two independent counts, Y1 and Y2.

Copula parameter results

Figure 3–11 shows the results of the copula parameter estimator for each copula

model for different sample sizes and degrees of dependence, when both means and

dispersion parameters are the same. In general, precision is gained with an increase

in sample size for a fixed degree of association. However, the results suggest that

the copula estimator might be biased when N = 100 for the Clayton, Frank and

Galambos copulas, and for the Normal copula when the data exhibit a high degree

of association.
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Figure 3–11: Boxplots of the estimates of the copula parameter estimator θ̂ when
data comes from the copula in the title based on 1,000 simulations. Horizontal line:
true copula parameter value.

Likelihood-based criteria performance results

Tables 3–1 and 3–2 and Figures 3–12 and 3–13summarize the percentage of

times the true copula model was selected in each scenario. In general, selection

of the true copula more than 99% of the times was achieved for high degrees of

association (τ = 0.7) and samples size N ≥ 300 for all copula models. For sample

size equal to 100 and small degree of association (τ = 0.3), BIC failed to select

the true copula between 14%-43% of the times depending on the true copula model.

Interestingly, the Normal copula was commonly selected over the true copula model,

as shown in Figure 3–12 under τ = 0.3 or N = 100. As presented in Table 3–2 and

Figure 3–13, BIC correctly selected the Independent model more than 95% of the

times. The performance of likelihood-based criteria was better when the degree of

association and sample size increased.
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Table 3–1: Percentage of times the true copula is selected using BIC based on 1,000
simulations.

N = 100 N = 300 N = 500

True Copula τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.3 τ = 0.5 τ = 0.7

Clayton 85.9 97.0 99.8 91.7 98.4 100.0 88.6 98.6 100.0
Frank 83.3 81.4 95.5 75.0 95.2 99.9 78.0 96.1 99.9

Galambos 78.8 90.1 94.9 93.6 98.4 99.6 97.6 99.9 99.9
Normal 56.6 75.7 91.7 85.3 97.2 99.8 92.7 99.4 100.0
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Figure 3–12: Percentage of times each copula is selected when data comes from the
copula in the title using BIC based on 1,000 simulations.
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Table 3–2: Percentage of times the independent model is correctly selected using
BIC based on 1,000 simulations.

True Model N = 100 N = 300 N = 500

Independent 94.9 96.1 97.4

N = 100 N = 300 N = 500
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Figure 3–13: Percentage of times each copula model is selected when data comes
from the independent model using BIC based on 1,000 simulations.

3.4.2 STUDY 2 Results

The results for Study 2, which considered different marginal means (2.72 and

20.08 when calculated at the mean value of the covariate x) and different dispersion

parameters (φ1 = 5 and φ2 = 2, respectively), were fairly similar to those of Study

1. A brief discussion of the results is presented next.

Marginal parameters results

As in Study 1, the results show that estimators β̂ from the Independent model

and the true copula model in every scenario produced unbiased estimates, and fitting

the wrong copula gave biased estimates in some scenarios (Figures 3–14 through 3–

18). Nevertheless, unlike in Study 1, when the association between the responses was

low (τ = 0.3), the estimates produced by every candidate copula were close to the

true value. Therefore, the wrong copula models gave biased estimates mostly under

medium (τ = 0.5) and high (τ = 0.7) correlation between counts. In contrast to

Study 1, where the five fitted models gave unbiased estimates of the mean parameters

when the data was generated from the Galambos copula with medium association
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between counts, biased estimates were given by the Clayton and Frank copulas

(Figure 3–16). The results for this study show that, when one of the count variables

has a small mean and the degree of association between the counts is medium or high,

taking into account the dependence structure provides significantly more precision

in the estimation of the regression coefficients. Once again, the gain in precision

increases as the degree of dependence gets stronger.

The dispersion parameter estimator also had a right skewed distribution in every

scenario in this study, being more so for the count with small mean and dispersion

parameter φ = 5, particularly when N = 100. Similarly, no gain in precision was

observed and the wrong copula produced even more biased estimates.

Finally, as shown in Figures 3–19 through 3–23, MSE is smaller for the true

copula model when compared to the Independent model. Moreover, Figure 3–23

suggests that the Frank copula gave more efficient estimators when no dependence

is observed.
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Figure 3–14: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution with µj = exp(xtβj) and dispersion parameter φj, for j = 1, 2.
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Figure 3–15: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution with µj = exp(xtβj) and dispersion parameter φj, for j = 1, 2.
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Figure 3–16: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution with µj = exp(xtβj) and dispersion parameter φj, for j = 1, 2.
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Figure 3–17: Boxplots of the bias of estimators based on 1,000 simulations for two
jointly distributed counts, Y1 (left) and Y2 (right), where each follows a negative
binomial distribution with µj = exp(xtβj) and dispersion parameter φj, for j = 1, 2.
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Figure 3–18: Boxplots of the bias of estimators based on 1,000 simulations for two
independent counts, Y1 (left) and Y2 (right), where each follows a negative binomial
distribution withµ1 = µ2 = exp(xtβ) and dispersion parameter φ1 = φ2.
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Figure 3–19: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on
1,000 simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–20: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on
1,000 simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–21: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on
1,000 simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–22: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on
1,000 simulations for two jointly distributed counts, Y1 and Y2.
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Figure 3–23: Boxplots of the MSE of β̂ (left) and φ̂ (right) estimators based on
1,000 simulations for two jointly distributed counts, Y1 and Y2.

Copula parameter results

Figure 3–24 shows the results of the copula parameter estimator for each copula

model for different sample sizes and degrees of dependence, when the means and

dispersion parameters are very different. Overall, precision is gained with an increase

in sample size for a fixed degree of association. As in Study 1, the results suggest

that the copula estimator (θ̂) might be biased when N = 100 for the Clayton, Frank

and Galambos copulas. For the Normal copula, θ̂ resulted to be biased when the

data exhibited a medium and high degree of association and N = 100.
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Figure 3–24: Boxplots of the estimates of the copula parameter estimator θ̂ when
data comes from the copula in the title based on 1,000 simulations. Horizontal line:
true copula parameter value.

Likelihood-based criteria performance results

Tables 3–3 and 3–4 and Figures 3–25 and 3–26 summarize the percentage of

times the true copula model was selected in each scenario, when the marginal distri-

butions of the counts were different. As in Study 1, selection of the true copula more

than 99% of the times was achieved for high degrees of association (τ = 0.7) and

samples size N ≥ 300 for all copula models. For sample size equal to 100 and small

degree of association (τ = 0.3), BIC failed to select the true copula between 12% up

to 51% of the times depending on the true copula model. The Normal and Frank

copulas were the hardest to be correctly selected by the BIC, in particular when the

degree of association was low. Performance of the BIC was slightly better in Study

1, where the marginal distributions were the same. As presented in Table 3–4 and

Figure 3–26, BIC correctly selected the Independent model more than 94% of the

times. The performance of likelihood-based criteria was better when the degree of

association and sample size increased.
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Table 3–3: Percentage of times the true copula is selected using likelihood based
criteria based on 1,000 simulations.

True Copula N = 100 N = 300 N = 500
τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.3 τ = 0.5 τ = 0.7

Clayton 87.9 96.8 98.9 98.5 99.3 100.0 99.9 99.3 100.0
Frank 62.2 80.2 91.6 84.8 96.8 100.0 93.6 98.0 99.9

Galambos 80.1 89.7 91.9 94.2 98.6 99.0 98.7 99.8 99.9
Normal 49.1 77.5 87.4 80.7 96.5 99.7 99.0 99.6 99.9
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Figure 3–25: Percentage of times each copula is selected when data comes from the
copula in the title using BIC based on 1,000 simulations.
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Table 3–4: Percentage of times the true copula is selected using BIC based on 1,000
simulations.

True model N = 100 N = 300 N = 500

Independent 94.2 97.0 97.2
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Figure 3–26: Percentage of times each copula is selected when data comes from the
independent model using BIC based on 1,000 simulations.



CHAPTER 4
APPLICATION: FATAL AND NON-FATAL
VEHICLE CRASHES IN HIGHWAYS OF

PUERTO RICO

Detailed crash count data is obtained mostly for safety issues in different severity

levels, e.g., Fatal, Injury, Property damage. Even though crash data by severity are

innately multivariate, they are often analyzed separately without taking into account

the dependence and shared variables that exist between severities, which can lead to

inefficient estimates and incorrect interpretations of the results, as discussed in the

simulation studies in Section 3.3. Efforts have been dedicated to taking into account

the dependence and shared characteristics between collision types by simultaneously

modeling crashes by severity. In this regard, road safety analysts have focused on the

study and application of the multivariate Poisson Lognormal distribution allowing

for the overdispersion that characterizes crash counts for jointly modeling crash

data by collision type [2, 10, 23, 24, 31]. As mentioned in Section 2.3, this approach

has some shortcomings and requires numerical methods for estimation. Moreover,

this and other multivariate models for count data, as described in Section 2.3, are

limited in the dependence structure and the marginal distributions they allow. In

this Chapter, an application to fatal and non-fatal crashes and their relationship to

the annual average daily traffic (AADT) is presented by jointly modeling fatal and

non-fatal crashes using a copula-based regression model.
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4.1 Data Description

The data used refer to the number of fatal and non-fatal crashes in segments

of highways in Puerto Rico for a period of six years (2004 − 2009) collected by

the Highways and Transportation Authority of Puerto Rico as described in [14].

For the application presented here three data points were identified as influential

outliers using the outlierTest function from the car package and the influence.measures

function in R, and were removed from the dataset to proceed with the statistical

analysis. The marginal association between fatal and non-fatal crashes in the 141

segments of highways has a Kendall’s τ of 0.537 (0.340 when accounting for the

length of the segment). Figure 4–1 shows the marginal distribution of the counts

of fatal and non-fatal crashes and the relationship between them. The covariate

included in this analysis was the natural logarithm of the mean average annual

daily traffic over the six years period (logMAADT), which measures how busy these

highway segments are. The length of each segment was used as an offset. In Table

4–1 a summary of the variables is presented. Notably, the marginal means of the

response variables are very different.

Table 4–1: Summary statistics of the crash data for the 6 year period.
Variable Mean SD Min Max
Fatal Crashes 1.84 2.11 0.00 10.00
Non-fatal Crashes 118.65 107.83 0.00 684.00
logMAADT 10.97 0.72 9.04 12.57
Length (km) 2.48 1.91 0.15 12.30

4.2 Modeling the Marginals

The first step when jointly modeling bivariate variable using copulas is to

estimate suitable univariate marginal distributions for each count. Appropriate

marginal fit to the data is needed to get a good estimation of the copula parameter

θ [33]. A scatterplot of the rate of crashes versus logMAADT suggested a quadratic

relationship, therefore, a polynomial regression model was fitted to both response
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Figure 4–1: The vehicle crashes data in 141 segments of highways in Puerto Rico.
(τ = 0.537)
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variables. After fitting Poisson models, the Pearson dispersion statistic and other

tests, such as the Score and Lagrange multiplier tests, indicated that Poisson overdis-

persion was present in the counts of non-fatal crashes. On this account, a negative

binomial regression model was fitted to the non-fatal crashes data to account for

overdispersion, and negative binomial was chosen over Poisson as the marginal dis-

tribution based on AIC and BIC for this response. Table 4–2 includes the estimates

of regression parameters obtained for the univariate models under the Independent

column. Precisely, one of the advantages of using copula-based regression models is

the possibility of working with the marginal distributions.

4.3 Joint Modeling Using Copulas

To jointly model the number of fatal and non-fatal crashes, families from the

Archimedean, elliptical and extreme value classes of copulas were fitted to allow

for different dependence structures and tail behaviors. Briefly, the copula families

considered were: Frank and Normal copulas for their flexibility, Clayton to account

for the apparent lower tail dependence (Figure 4–1), and Galambos for its usefulness

in modeling the dependence of rare events. The copula representation of the joint

distribution is given by

C(F1(y1;x), F2(y2;x); θ), (4.1)

where, respectively, y1 and y2 are the number of fatal and non-fatal crashes,

F1(·) and F1(·) are the univariate marginals chosen to be Poisson and negative

binomial, x is the covariate logMAADT, and θ is the copula parameter. The log-

likelihood as defined in Eq. 3.2 was maximized via full maximum likelihood estima-

tion to obtain an estimate of the regression and copula parameters for each candidate

copula. The Nelder and Mead method, implemented in the optim function in the

statistical software R was used to obtain the estimates of the parameters using the

estimates provided by the univariate models as the initial values.
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The parameters estimates obtained via full maximum likelihood based on the

Independent and the candidate copula models are presented in Table 4–2. The Nor-

mal copula model is not included since optimization was not achieved after several

unsuccessful attempts. According to AIC and BIC criteria, the Clayton copula re-

gression model was selected as the one with the best fit with a BIC of 1909.08,

followed by the Frank copula with a BIC of 1912.47, among the set of candidate

copulas and over the Independent model. On the other hand, the Galambos copula

had the worst fit among the set of candidate copula models probably because of the

upper tail dependence this copula admits. To assess the goodness-of-fit of the chosen

model (Clayton copula), a plot of the observed and fitted curve for different seg-

ment lengths is presented in Figure 4–2. Jointly modeling the crash data using the

Clayton copula gives similar estimates to those of the univariate models and smaller

standard errors (SE) for the estimates of the regression parameters when compared

to the univariate approach. In other words, the estimates of the regression parame-

ters are more precise when accounting for the dependence using the Clayton copula

model. For example, the percentage decrease in SE for the three marginal means

parameters was 70% and 23% for the fatal and non-fatal data, respectively. Conse-

quently, smaller SE’s give narrower confidence intervals for the regression coefficients

that could result in the declaration of covariates or factors as significant. To put

in another way, accounting for the dependence between counts provides additional

information that might be sufficient to conclude that an independent variable is sig-

nificant when, in contrast, by not taking the dependence into account, larger SE’s

would have led to incorrectly declaring a variable as non-significant. For example,

under the univariate model, the Wald confidence interval of the multiplicative effect

on the number of fatal crashes for a one unit increase in the squared logMAADT

was (0.55, 0.95) compared to (0.67, 0.78) under the bivariate model using the Clayton

copula.
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Table 4–2: Estimated parameters (SE), AIC, BIC, and loglikelihood, under the
Independent and the four copula models for the crash data (N = 141).

Independent Clayton Frank Galambos

Intercept -49.96 (17.35) -49.88 (5.3) -50.15 (15.37) -50.28 (20.76)

µiFatal logMAADT 8.14 (3.1) 8.14 (0.92) 8.19 (2.75) 8.19 (3.69)

logMAADT2 -0.33 (0.14) -0.33 (0.04) -0.33 (0.12) -0.33 (0.16)

Intercept -46.03 (9.29) -46.01 (7.23) -45.86 (18.12) -46.19 (11.15)

µiNon-Fatal logMAADT 8.02 (1.69) 8.02 (1.31) 7.98 (3.26) 8.04 (1.99)

logMAADT2 -0.32 (0.08) -0.32 (0.06) -0.31 (0.15) -0.32 (0.09)

φ2 3.47 (0.44) 3.51 (0.49) 3.45 (0.99) 3.34 (0.63)

s(θ) — -0.69 (0.16) 1.77 (1.2) -1.06 (0.35)

AIC 1895.62 1885.49 1888.53 1891.25

BIC 1916.26 1909.08 1912.12 1914.84

loglik -940.81 -934.74 -936.26 -937.63

With regard to the interpretation of the copula model’s output, the coefficients

are fairly alike for both counts, indicating that logMAADT had a similar marginal

effect for both types of crashes. The model indicates that higher values of log-

MAADT are associated with a higher number of fatal and non-fatal crashes for

the range of values of logMAADT observed in this dataset. In other words, busier

highway segments tend to have more fatal and non-fatal crashes. The estimate for

the copula parameter was θ = 0.50. Evaluated at the mean value of logMAADT

and logMAADT2 (10.97 and 120.44, respectively), this estimate of the copula pa-

rameter transformed to the Kendall’s τ measure of dependence as defined in 2.14

was τ = 0.16. Recall that the true range of τ is dependent on the marginal means

and the bounds do not attain ±1 (see Section 2.4.4). The true range at this value

of the logMAADT and given the estimates of the regression parameters is [0, 0.64],

since the Clayton copula only admits a positive dependence structure. Therefore,

a τ = 0.16 is one forth of the highest dependence that can be reached under this

value of logMAADT.



65

0

1

2

3

4

9 10 11 12

logMAADT

Fa
ta

l

0

100

200

300

400

9 10 11 12

logMAADT

N
on

−f
at

al

Length (km)

0.15

1.2

2

3.15

Figure 4–2: The vehicle crashes data in 141 segments of highways in Puerto Rico
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Figure 4–3: Residuals by the Clayton copula model for the number of fatal and
non-fatal crashes. (N = 141)

The Clayton copula-based regression model fitted to the 141 highway segments

provides the curve for different segment lengths of the observed data given the

covariate logMAADT (Figure 4–2). The residual plots in Figure 4–3 indicates that

there are some outliers in this dataset. In that regard, we tried fitting the models

dropping them but more outliers appeared according to different criteria. This

suggests that more exploration of these data points is required and more covariates,

such as speed limit and lighting, are needed to obtain a better fit. Unfortunately,

we did not have additional significant information to include in this application.
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Table 4–3: Estimated parameters (SE), AIC, BIC, and loglikelihood, under the
Poisson lognormal model for the crash data.

Poisson lognormal

Intercept -30.08 (31.33)

µiFatal logMAADT 4.58 (5.67)

logMAADT2 -0.17 (0.25)

Intercept -40.02 (9.78)

µiNon-Fatal logMAADT 6.87 (1.78)

logMAADT2 -0.26 (0.08)

σ2
bFatal

0.06 (0.34)

Σ ρσbFatalσbNon−Fatal 0.13 (0.05)

σ2
bNon−Fatal

0.30 (0.04)

AIC 1892.3

BIC 1918.9

loglik -937.15

For comparison purposes, the estimates obtained by fitting a Poisson lognormal

model as described in 2.3 are presented in Table 4–3. According to AIC/BIC, this

model gave a slightly better fit than the univariate (Independent) approach. One

can see that the signs of the coefficients agree. However, the parameters are not

comparable since this is a subject-specific effects model and so are their interpre-

tation. For example, exp(xtβ) can be interpreted as the incidence rate ratio for

a change of one unit in the logMAADT given the same segment. In that sense,

another advantage of copula-based regression models is that the parameters are al-

ready given as marginal effects and their interpretation is based on the population

average.
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4.4 Regression to the copula parameter

As proposed by the authors in [30] we introduced a regression part for the copula

parameter θ with logMAADT as a covariate using the Clayton and Frank copula

models to get a better understanding of how the logMAADT affects the association

between fatal and non-fatal crashes. The results obtained by the Clayton and Frank

copula are presented in Table 4–4. According to both models, the dependence

between fatal and non-fatal crashes was weaker for higher logMAADT; although

the covariate logMAADT was not statistically significant for the copula parameter

in the Frank copula model. For instance, the point estimate for the copula parameter

θ obtained from the best model (Clayton copula model) was 13.24 (τ = 0.72) for the

minimum observed logMAADT and 0.02 (τ = 0) for the maximum, which suggest

that the dependence between the number of fatal and non-fatal crashes on highway

segments is lower on busier highways. Moreover, note that the AIC/BIC was slightly

lower for the models when introducing the covariate in the copula parameter.

While we recognize the limitations of this dataset, it is a simple and good

example to comply with the objective of illustrating the flexibility and ease of use

of copula-based regression models for bivariate count data.
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Table 4–4: Estimated parameters (SE), AIC, BIC, and loglikelihood, under the
Clayton and Frank copula models for the crash data including a regression part for
the copula parameter θ.

Clayton Frank

Intercept -49.85 (13.25) -50.16 (4.3)

µiFatal logMAADT 8.09 (2.37) 8.18 (0.78)

logMAADT2 -0.33 (0.11) -0.33 (0.04)

Intercept -46.43 (7.58) -46.25 (21.61)

µiNon-Fatal logMAADT 8.07 (1.38) 8.05 (3.89)

logMAADT2 -0.32 (0.06) -0.32 (0.17)

φ2 3.54 (0.48) 3.48 (1.23)

s(θ) Intercept 19.79 (6.13) 17.73 (21.1)

logMAADT -1.9 (0.57) -1.45 (1.92)

AIC 1882.23 1887.66

BIC 1908.77 1914.2

loglik -932.11 -934.83



CHAPTER 5
CONCLUSIONS AND FUTURE WORK

The main purpose of this work was to provide researchers a guide on when

copula-based regression models could be considered to model bivariate count data.

Also we wanted to provide an overview of the benefits of accounting for dependence

between counts using copulas instead of modeling counts independently for different

scenarios. In this context, a scenario where the counts had different means does not

appear in the literature. Simulation studies and an application to fatal and non-fatal

vehicle crashes were included to show the performance of our suggested approach

when bivariate counts have different means.

Overall, copula-based regression models are very flexible by admitting different

dependence structures and allowing different marginals for each response variable.

This method of modeling correlated bivariate counts provides more efficient esti-

mators for the regression parameters in comparison to the independent approach

when adequate copula models are fitted, even when the data exhibits a low degree

of association. However, caution should be taken in the selection of the set of candi-

date copulas since biased estimates can be produced by copulas with a dependence

structure far from the true association. Previous exploration of the data is crucial

in that regard. Also, traditional penalized likelihood-based criteria, such as AIC

and BIC, have a fairly good performance in selecting the true model among a set

of candidate copula models, yet slightly better when both marginal distributions

had large means. Under the scenarios considered in this work, the estimates of the

copula parameter seemed to be reasonable except when N = 100 where bias was
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observed. Simulation studies with sample sizes between N = 100 and N = 300 are

needed to establish if copula models should be used for sample sizes less than 300

if one is interested in the interpretation of the copula parameter. In that sense,

whether the estimate of the copula parameter in our application is biased or not is

unclear since N = 141. We suggest a sample size of N = 300 or higher for the use

of the copula approach for count data. As a last note, interpretation of the copula

parameter about the dependence structure should be made carefully since the range

of its transformation to a dependence measure may be narrower than [−1, 1] de-

pending on the copula, even for large marginal means. As shown in the application,

another advantage of copula-based regression models is the marginal interpretation

of the parameters compared to other parametric models where the interpretation is

subject specific.

A long list of copula families exist in the literature, including nonparametric

copulas. Therefore, future work related to this research should include other copula

families and extensions to three or more counts. Also, a Bayesian approach to cop-

ula modeling for count data could be explored given the complexity of some copula

models such as the Normal copula, in particular when covariates are introduced into

the copula parameter. Inclusion of other goodness-of-fit and selection criteria avail-

able in the literature [12] for copula-based models besides likelihood-based criteria

and MSE should be considered for comparison purposes.
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APPENDIX A
STUDY 1 AVERAGE BIAS OF ESTIMATES
AND MONTE CARLO STANDARD ERROR

(MCSE)
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Table A–1: Average bias of estimates and Monte Carlo Standard Error (MCSE)
based on 1,000 simulations.

True Copula: Clayton
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.024 (0.039) 0.100 (0.041) 0.193 (0.041) -0.006 (0.050) 0.191 (0.040)
b1 -0.003 (0.004) -0.013 (0.004) -0.018 (0.004) -0.000 (0.005) -0.020 (0.004)
φ1 0.082 (0.010) 0.006 (0.011) -0.009 (0.011) 0.092 (0.010) 0.068 (0.011)
a2 0.021 (0.039) 0.087 (0.044) 0.259 (0.042) 0.016 (0.049) 0.206 (0.038)
b2 -0.003 (0.004) -0.012 (0.004) -0.024 (0.004) -0.002 (0.005) -0.021 (0.004)
φ2 0.089 (0.011) 0.011 (0.011) -0.003 (0.011) 0.099 (0.011) 0.067 (0.011)

τ = 0.5
a1 -0.015 (0.031) -0.082 (0.030) 0.164 (0.038) -0.032 (0.043) 0.106 (0.033)
b1 0.001 (0.003) 0.001 (0.003) -0.012 (0.004) 0.003 (0.004) -0.010 (0.003)
φ1 0.070 (0.009) -0.114 (0.010) -0.132 (0.010) 0.079 (0.010) 0.017 (0.010)
a2 0.017 (0.031) -0.049 (0.031) 0.143 (0.040) -0.043 (0.043) 0.073 (0.033)
b2 -0.002 (0.003) -0.002 (0.003) -0.009 (0.004) 0.004 (0.004) -0.007 (0.003)
φ2 0.059 (0.009) -0.120 (0.009) -0.141 (0.009) 0.069 (0.009) 0.004 (0.009)

τ = 0.7
a1 0.020 (0.027) -0.079 (0.030) 0.179 (0.041) 0.082 (0.048) 0.075 (0.035)
b1 -0.002 (0.003) -0.006 (0.003) -0.010 (0.004) -0.008 (0.005) -0.006 (0.003)
φ1 0.122 (0.010) -0.222 (0.010) -0.246 (0.010) 0.137 (0.011) 0.023 (0.011)
a2 0.028 (0.027) -0.083 (0.029) 0.177 (0.040) 0.096 (0.046) 0.096 (0.034)
b2 -0.003 (0.003) -0.006 (0.003) -0.010 (0.004) -0.010 (0.005) -0.008 (0.003)
φ2 0.122 (0.010) -0.222 (0.010) -0.256 (0.010) 0.132 (0.011) 0.019 (0.011)

N = 300

τ = 0.3
a1 0.033 (0.021) 0.093 (0.026) 0.254 (0.024) 0.052 (0.026) 0.281 (0.022)
b1 -0.003 (0.002) -0.012 (0.003) -0.023 (0.002) -0.005 (0.003) -0.028 (0.002)
φ1 0.025 (0.005) -0.051 (0.006) -0.071 (0.006) 0.027 (0.006) 0.014 (0.006)
a2 0.021 (0.021) 0.070 (0.026) 0.236 (0.024) 0.052 (0.026) 0.289 (0.022)
b2 -0.002 (0.002) -0.009 (0.003) -0.021 (0.002) -0.005 (0.003) -0.028 (0.002)
φ2 0.025 (0.005) -0.051 (0.006) -0.070 (0.006) 0.027 (0.005) 0.013 (0.006)

τ = 0.5
a1 -0.020 (0.019) -0.032 (0.019) 0.210 (0.023) -0.003 (0.026) 0.149 (0.021)
b1 0.002 (0.002) -0.004 (0.002) -0.015 (0.002) 0.000 (0.003) -0.014 (0.002)
φ1 0.029 (0.005) -0.159 (0.006) -0.183 (0.005) 0.028 (0.005) -0.030 (0.005)
a2 -0.019 (0.019) -0.038 (0.018) 0.212 (0.022) -0.012 (0.025) 0.156 (0.021)
b2 0.002 (0.002) -0.003 (0.002) -0.016 (0.002) 0.001 (0.003) -0.015 (0.002)
φ2 0.035 (0.005) -0.153 (0.006) -0.174 (0.005) 0.037 (0.006) -0.023 (0.006)

τ = 0.7
a1 0.009 (0.015) -0.104 (0.014) 0.173 (0.021) 0.024 (0.024) 0.045 (0.015)
b1 -0.001 (0.001) -0.004 (0.001) -0.008 (0.002) -0.002 (0.002) -0.003 (0.001)
φ1 0.042 (0.005) -0.306 (0.005) -0.335 (0.005) 0.045 (0.006) -0.060 (0.006)
a2 0.021 (0.015) -0.095 (0.014) 0.187 (0.022) 0.021 (0.025) 0.045 (0.016)
b2 -0.002 (0.002) -0.005 (0.001) -0.010 (0.002) -0.002 (0.002) -0.003 (0.002)
φ2 0.042 (0.005) -0.309 (0.005) -0.338 (0.005) 0.041 (0.006) -0.065 (0.006)

N = 500

τ = 0.3
a1 0.020 (0.017) 0.066 (0.020) 0.194 (0.020) 0.023 (0.020) 0.289 (0.019)
b1 -0.002 (0.002) -0.009 (0.002) -0.017 (0.002) -0.003 (0.002) -0.029 (0.002)
φ1 0.009 (0.004) -0.064 (0.004) -0.083 (0.004) 0.011 (0.004) 0.002 (0.004)
a2 0.002 (0.017) 0.045 (0.021) 0.167 (0.021) -0.003 (0.020) 0.311 (0.019)
b2 -0.000 (0.002) -0.007 (0.002) -0.014 (0.002) 0.000 (0.002) -0.031 (0.002)
φ2 0.007 (0.004) -0.067 (0.004) -0.086 (0.004) 0.007 (0.004) -0.008 (0.004)

τ = 0.5
a1 0.004 (0.015) -0.004 (0.013) 0.264 (0.017) 0.025 (0.019) 0.183 (0.015)
b1 -0.001 (0.001) -0.007 (0.001) -0.021 (0.002) -0.003 (0.002) -0.018 (0.002)
φ1 0.017 (0.004) -0.170 (0.004) -0.192 (0.004) 0.017 (0.004) -0.041 (0.004)
a2 0.015 (0.014) -0.026 (0.013) 0.240 (0.016) -0.008 (0.018) 0.173 (0.015)
b2 -0.002 (0.001) -0.004 (0.001) -0.019 (0.002) 0.001 (0.002) -0.017 (0.001)
φ2 0.019 (0.004) -0.169 (0.004) -0.188 (0.004) 0.020 (0.004) -0.039 (0.004)

τ = 0.7
a1 0.008 (0.014) -0.066 (0.013) 0.175 (0.019) 0.016 (0.021) 0.059 (0.014)
b1 -0.001 (0.001) -0.008 (0.001) -0.009 (0.002) -0.002 (0.002) -0.005 (0.001)
φ1 0.019 (0.004) -0.330 (0.004) -0.357 (0.004) 0.021 (0.004) -0.084 (0.004)
a2 0.003 (0.013) -0.081 (0.013) 0.162 (0.019) 0.006 (0.020) 0.051 (0.015)
b2 -0.001 (0.001) -0.007 (0.001) -0.008 (0.002) -0.001 (0.002) -0.004 (0.001)
φ2 0.022 (0.004) -0.329 (0.004) -0.358 (0.004) 0.021 (0.004) -0.083 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table A–2: Average bias of estimates and Monte Carlo Standard Error(MCSE)
based on 1,000 simulations.

True Copula: Frank
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.250 (0.034) -0.001 (0.032) 0.081 (0.035) 0.012 (0.046) 0.107 (0.032)
b1 -0.021 (0.003) -0.000 (0.003) -0.006 (0.004) -0.002 (0.005) -0.011 (0.003)
φ1 0.061 (0.010) 0.086 (0.009) -0.078 (0.010) 0.094 (0.010) 0.121 (0.010)
a2 0.265 (0.036) 0.008 (0.032) 0.121 (0.037) 0.034 (0.046) 0.084 (0.033)
b2 -0.023 (0.004) -0.001 (0.003) -0.009 (0.004) -0.004 (0.005) -0.009 (0.003)
φ2 0.075 (0.010) 0.096 (0.010) -0.073 (0.010) 0.102 (0.010) 0.131 (0.010)

τ = 0.5
a1 0.261 (0.033) 0.024 (0.034) 0.116 (0.035) -0.004 (0.043) 0.103 (0.033)
b1 -0.024 (0.003) -0.003 (0.003) -0.009 (0.004) -0.000 (0.004) -0.011 (0.003)
φ1 0.061 (0.010) 0.068 (0.010) -0.057 (0.009) 0.072 (0.010) 0.089 (0.010)
a2 0.315 (0.032) 0.025 (0.033) 0.127 (0.036) -0.003 (0.043) 0.121 (0.032)
b2 -0.029 (0.003) -0.003 (0.003) -0.010 (0.004) 0.000 (0.004) -0.012 (0.003)
φ2 0.053 (0.010) 0.067 (0.009) -0.056 (0.009) 0.070 (0.009) 0.085 (0.009)

τ = 0.7
a1 0.207 (0.031) 0.058 (0.026) 0.089 (0.030) 0.080 (0.043) 0.046 (0.026)
b1 -0.015 (0.003) -0.006 (0.003) -0.005 (0.003) -0.008 (0.004) -0.005 (0.003)
φ1 0.080 (0.011) 0.095 (0.010) -0.129 (0.009) 0.105 (0.011) 0.141 (0.010)
a2 0.205 (0.031) 0.073 (0.025) 0.091 (0.028) 0.094 (0.042) 0.046 (0.025)
b2 -0.015 (0.003) -0.008 (0.002) -0.005 (0.003) -0.010 (0.004) -0.005 (0.002)
φ2 0.071 (0.010) 0.098 (0.009) -0.140 (0.009) 0.099 (0.010) 0.136 (0.010)

N = 300

τ = 0.3
a1 0.392 (0.024) 0.036 (0.022) 0.163 (0.023) 0.035 (0.026) 0.242 (0.022)
b1 -0.038 (0.002) -0.004 (0.002) -0.015 (0.002) -0.004 (0.003) -0.024 (0.002)
φ1 0.023 (0.006) 0.026 (0.006) -0.036 (0.006) 0.027 (0.006) 0.042 (0.006)
a2 0.454 (0.024) 0.042 (0.021) 0.179 (0.023) 0.058 (0.026) 0.279 (0.023)
b2 -0.044 (0.002) -0.004 (0.002) -0.016 (0.002) -0.006 (0.003) -0.028 (0.002)
φ2 0.023 (0.006) 0.024 (0.005) -0.039 (0.005) 0.024 (0.005) 0.039 (0.006)

τ = 0.5
a1 0.363 (0.020) 0.046 (0.019) 0.158 (0.019) 0.040 (0.025) 0.151 (0.020)
b1 -0.033 (0.002) -0.005 (0.002) -0.013 (0.002) -0.004 (0.003) -0.015 (0.002)
φ1 0.025 (0.006) 0.028 (0.005) -0.103 (0.005) 0.028 (0.006) 0.045 (0.006)
a2 0.356 (0.019) 0.016 (0.019) 0.149 (0.020) 0.019 (0.025) 0.127 (0.019)
b2 -0.033 (0.002) -0.002 (0.002) -0.012 (0.002) -0.002 (0.002) -0.013 (0.002)
φ2 0.028 (0.006) 0.034 (0.006) -0.096 (0.005) 0.035 (0.006) 0.052 (0.006)

τ = 0.7
a1 0.162 (0.017) 0.003 (0.012) 0.060 (0.013) 0.014 (0.022) 0.010 (0.012)
b1 -0.010 (0.002) -0.000 (0.001) -0.002 (0.001) -0.001 (0.002) -0.001 (0.001)
φ1 -0.004 (0.006) 0.020 (0.005) -0.214 (0.005) 0.022 (0.006) 0.067 (0.006)
a2 0.191 (0.016) 0.016 (0.012) 0.074 (0.014) 0.029 (0.022) 0.019 (0.012)
b2 -0.013 (0.002) -0.002 (0.001) -0.003 (0.001) -0.003 (0.002) -0.002 (0.001)
φ2 -0.003 (0.006) 0.019 (0.005) -0.216 (0.005) 0.018 (0.005) 0.063 (0.005)

N = 500

τ = 0.3
a1 0.418 (0.020) 0.027 (0.017) 0.201 (0.018) 0.019 (0.020) 0.232 (0.019)
b1 -0.041 (0.002) -0.003 (0.002) -0.019 (0.002) -0.002 (0.002) -0.023 (0.002)
φ1 0.003 (0.004) 0.009 (0.004) -0.053 (0.004) 0.008 (0.004) 0.028 (0.004)
a2 0.421 (0.021) 0.012 (0.017) 0.161 (0.017) -0.007 (0.020) 0.290 (0.019)
b2 -0.041 (0.002) -0.001 (0.002) -0.015 (0.002) 0.001 (0.002) -0.029 (0.002)
φ2 0.005 (0.004) 0.009 (0.004) -0.051 (0.004) 0.009 (0.004) 0.029 (0.004)

τ = 0.5
a1 0.343 (0.015) 0.018 (0.014) 0.170 (0.014) 0.019 (0.018) 0.178 (0.014)
b1 -0.032 (0.001) -0.002 (0.001) -0.014 (0.001) -0.002 (0.002) -0.018 (0.001)
φ1 0.014 (0.004) 0.016 (0.004) -0.113 (0.004) 0.016 (0.004) 0.037 (0.004)
a2 0.348 (0.015) 0.005 (0.014) 0.135 (0.015) -0.010 (0.018) 0.159 (0.014)
b2 -0.032 (0.002) -0.001 (0.001) -0.011 (0.001) 0.001 (0.002) -0.016 (0.001)
φ2 0.012 (0.004) 0.016 (0.004) -0.110 (0.004) 0.017 (0.004) 0.039 (0.004)

τ = 0.7
a1 0.199 (0.014) 0.008 (0.009) 0.088 (0.013) 0.022 (0.018) 0.018 (0.010)
b1 -0.014 (0.001) -0.001 (0.001) -0.004 (0.001) -0.002 (0.002) -0.002 (0.001)
φ1 -0.012 (0.004) 0.013 (0.004) -0.218 (0.004) 0.014 (0.004) 0.060 (0.004)
a2 0.196 (0.013) 0.002 (0.010) 0.078 (0.012) 0.008 (0.018) 0.005 (0.010)
b2 -0.013 (0.001) -0.000 (0.001) -0.003 (0.001) -0.001 (0.002) -0.001 (0.001)
φ2 -0.005 (0.004) 0.016 (0.004) -0.218 (0.004) 0.016 (0.004) 0.062 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table A–3: Average bias of estimates and Monte Carlo Standard Error(MCSE)
based on 1,000 simulations.

True Copula: Galambos
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.052 (0.041) 0.059 (0.040) 0.035 (0.035) 0.036 (0.046) 0.049 (0.038)
b1 -0.004 (0.004) -0.004 (0.004) -0.004 (0.004) -0.004 (0.005) -0.005 (0.004)
φ1 0.059 (0.010) 0.078 (0.010) 0.085 (0.010) 0.089 (0.010) 0.094 (0.010)
a2 0.048 (0.039) 0.045 (0.038) -0.011 (0.036) 0.020 (0.045) 0.009 (0.036)
b2 -0.004 (0.004) -0.003 (0.004) 0.001 (0.004) -0.002 (0.004) -0.001 (0.004)
φ2 0.041 (0.010) 0.057 (0.010) 0.063 (0.010) 0.071 (0.010) 0.076 (0.010)

τ = 0.5
a1 0.010 (0.036) -0.011 (0.035) 0.012 (0.027) -0.034 (0.042) -0.054 (0.028)
b1 0.002 (0.004) 0.005 (0.003) -0.002 (0.003) 0.003 (0.004) 0.005 (0.003)
φ1 0.025 (0.010) 0.038 (0.010) 0.061 (0.009) 0.070 (0.010) 0.096 (0.010)
a2 0.006 (0.038) -0.024 (0.036) 0.015 (0.027) -0.023 (0.042) -0.063 (0.029)
b2 0.002 (0.004) 0.006 (0.004) -0.002 (0.003) 0.002 (0.004) 0.006 (0.003)
φ2 0.022 (0.010) 0.036 (0.010) 0.067 (0.010) 0.068 (0.010) 0.093 (0.010)

τ = 0.7
a1 0.005 (0.035) -0.088 (0.040) -0.019 (0.018) -0.084 (0.043) -0.105 (0.025)
b1 0.004 (0.004) 0.015 (0.004) 0.000 (0.002) 0.007 (0.004) 0.008 (0.003)
φ1 0.027 (0.011) 0.015 (0.011) 0.101 (0.010) 0.111 (0.011) 0.164 (0.011)
a2 -0.034 (0.035) -0.131 (0.040) -0.036 (0.018) -0.105 (0.043) -0.126 (0.025)
b2 0.008 (0.003) 0.019 (0.004) 0.002 (0.002) 0.009 (0.004) 0.011 (0.003)
φ2 0.029 (0.011) 0.012 (0.010) 0.105 (0.010) 0.115 (0.011) 0.167 (0.011)

N = 300

τ = 0.3
a1 0.066 (0.022) 0.023 (0.022) 0.008 (0.019) -0.000 (0.026) 0.029 (0.021)
b1 -0.006 (0.002) -0.001 (0.002) -0.001 (0.002) -0.000 (0.003) -0.003 (0.002)
φ1 0.010 (0.006) 0.023 (0.006) 0.030 (0.006) 0.033 (0.006) 0.043 (0.006)
a2 0.025 (0.021) 0.004 (0.022) -0.021 (0.020) -0.030 (0.025) 0.015 (0.021)
b2 -0.001 (0.002) 0.001 (0.002) 0.002 (0.002) 0.003 (0.003) -0.002 (0.002)
φ2 0.003 (0.006) 0.020 (0.005) 0.026 (0.005) 0.028 (0.005) 0.039 (0.005)

τ = 0.5
a1 0.012 (0.021) -0.022 (0.021) -0.013 (0.016) -0.025 (0.024) -0.027 (0.017)
b1 0.002 (0.002) 0.006 (0.002) 0.001 (0.002) 0.003 (0.002) 0.002 (0.002)
φ1 -0.011 (0.006) -0.002 (0.005) 0.027 (0.005) 0.028 (0.005) 0.060 (0.005)
a2 0.042 (0.020) -0.005 (0.021) 0.001 (0.014) -0.009 (0.023) -0.010 (0.017)
b2 -0.001 (0.002) 0.005 (0.002) -0.000 (0.001) 0.001 (0.002) 0.001 (0.002)
φ2 -0.025 (0.006) -0.014 (0.005) 0.015 (0.005) 0.015 (0.005) 0.047 (0.005)

τ = 0.7
a1 0.013 (0.019) -0.087 (0.027) 0.008 (0.008) 0.001 (0.023) -0.115 (0.014)
b1 0.005 (0.002) 0.016 (0.003) -0.001 (0.001) -0.001 (0.002) 0.010 (0.001)
φ1 -0.050 (0.006) -0.063 (0.006) 0.033 (0.005) 0.036 (0.006) 0.095 (0.006)
a2 0.000 (0.019) -0.094 (0.029) -0.000 (0.009) -0.010 (0.023) -0.123 (0.015)
b2 0.006 (0.002) 0.017 (0.003) -0.000 (0.001) 0.000 (0.002) 0.011 (0.001)
φ2 -0.054 (0.006) -0.066 (0.006) 0.029 (0.005) 0.033 (0.006) 0.091 (0.006)

N = 500

τ = 0.3
a1 0.041 (0.018) 0.035 (0.018) -0.003 (0.015) -0.008 (0.020) 0.005 (0.016)
b1 -0.003 (0.002) -0.002 (0.002) 0.000 (0.002) 0.001 (0.002) -0.001 (0.002)
φ1 -0.012 (0.004) 0.004 (0.004) 0.012 (0.004) 0.012 (0.004) 0.023 (0.004)
a2 0.052 (0.016) 0.046 (0.017) 0.003 (0.015) -0.002 (0.019) 0.005 (0.015)
b2 -0.004 (0.002) -0.003 (0.002) -0.000 (0.002) 0.000 (0.002) -0.001 (0.002)
φ2 -0.014 (0.004) 0.001 (0.004) 0.009 (0.004) 0.010 (0.004) 0.021 (0.004)

τ = 0.5
a1 0.044 (0.016) 0.007 (0.016) 0.005 (0.012) 0.006 (0.018) -0.024 (0.013)
b1 -0.001 (0.002) 0.003 (0.002) -0.001 (0.001) -0.001 (0.002) 0.002 (0.001)
φ1 -0.016 (0.004) -0.008 (0.004) 0.018 (0.004) 0.021 (0.004) 0.053 (0.004)
a2 0.048 (0.016) 0.028 (0.016) 0.008 (0.011) 0.013 (0.018) -0.017 (0.012)
b2 -0.002 (0.002) 0.001 (0.002) -0.001 (0.001) -0.001 (0.002) 0.001 (0.001)
φ2 -0.027 (0.004) -0.015 (0.004) 0.012 (0.004) 0.012 (0.004) 0.044 (0.004)

τ = 0.7
a1 0.012 (0.015) -0.097 (0.027) 0.005 (0.006) -0.000 (0.019) -0.103 (0.014)
b1 0.005 (0.001) 0.017 (0.003) -0.001 (0.001) -0.000 (0.002) 0.009 (0.001)
φ1 -0.060 (0.005) -0.074 (0.004) 0.023 (0.004) 0.027 (0.005) 0.084 (0.005)
a2 0.017 (0.016) -0.108 (0.027) 0.014 (0.006) 0.004 (0.019) -0.099 (0.014)
b2 0.005 (0.002) 0.018 (0.003) -0.002 (0.001) -0.001 (0.002) 0.009 (0.001)
φ2 -0.055 (0.004) -0.071 (0.004) 0.028 (0.004) 0.032 (0.004) 0.090 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table A–4: [STUDY 1: Average bias of estimates and Monte Carlo Standard Error
(MCSE) for Normal copula.]Average bias of estimates and Monte Carlo Standard
Error(MCSE) based on 1,000 simulations.

True Copula: Normal
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.325 (0.036) 0.278 (0.042) 0.172 (0.034) 0.017 (0.043) 0.009 (0.036)
b1 -0.032 (0.004) -0.028 (0.004) -0.016 (0.003) -0.002 (0.004) -0.001 (0.004)
φ1 0.075 (0.010) 0.052 (0.010) 0.031 (0.010) 0.090 (0.010) 0.084 (0.010)
a2 0.345 (0.036) 0.270 (0.044) 0.198 (0.035) 0.056 (0.043) 0.019 (0.034)
b2 -0.034 (0.004) -0.027 (0.004) -0.019 (0.003) -0.006 (0.004) -0.002 (0.003)
φ2 0.057 (0.010) 0.037 (0.010) 0.021 (0.010) 0.075 (0.010) 0.069 (0.010)

τ = 0.5
a1 0.146 (0.034) -0.004 (0.033) 0.065 (0.032) -0.074 (0.043) -0.077 (0.033)
b1 -0.012 (0.003) 0.001 (0.003) -0.005 (0.003) 0.007 (0.004) 0.007 (0.003)
φ1 0.043 (0.010) 0.004 (0.010) -0.005 (0.010) 0.089 (0.010) 0.081 (0.010)
a2 0.229 (0.035) 0.081 (0.031) 0.184 (0.032) 0.028 (0.044) 0.001 (0.032)
b2 -0.021 (0.004) -0.008 (0.003) -0.017 (0.003) -0.003 (0.004) -0.001 (0.003)
φ2 0.059 (0.010) -0.009 (0.009) -0.025 (0.009) 0.081 (0.009) 0.074 (0.009)

τ = 0.7
a1 0.121 (0.033) 0.044 (0.026) 0.035 (0.025) 0.051 (0.042) 0.009 (0.023)
b1 -0.007 (0.003) -0.004 (0.003) -0.001 (0.003) -0.006 (0.004) -0.002 (0.002)
φ1 0.042 (0.011) -0.067 (0.010) -0.038 (0.010) 0.136 (0.011) 0.123 (0.011)
a2 0.128 (0.034) 0.062 (0.026) 0.076 (0.025) 0.085 (0.042) 0.024 (0.024)
b2 -0.008 (0.003) -0.005 (0.003) -0.005 (0.002) -0.009 (0.004) -0.003 (0.002)
φ2 0.033 (0.011) -0.070 (0.011) -0.043 (0.010) 0.129 (0.011) 0.115 (0.011)

N = 300

τ = 0.3
a1 0.369 (0.023) 0.269 (0.031) 0.160 (0.022) 0.016 (0.026) 0.031 (0.022)
b1 -0.036 (0.002) -0.027 (0.003) -0.015 (0.002) -0.002 (0.003) -0.003 (0.002)
φ1 0.008 (0.006) -0.008 (0.006) -0.027 (0.006) 0.024 (0.006) 0.022 (0.006)
a2 0.358 (0.023) 0.257 (0.031) 0.173 (0.023) 0.022 (0.026) 0.038 (0.021)
b2 -0.035 (0.002) -0.026 (0.003) -0.016 (0.002) -0.002 (0.003) -0.004 (0.002)
φ2 0.012 (0.006) -0.008 (0.005) -0.024 (0.005) 0.026 (0.005) 0.024 (0.005)

τ = 0.5
a1 0.294 (0.018) 0.059 (0.022) 0.185 (0.018) 0.059 (0.024) 0.051 (0.018)
b1 -0.027 (0.002) -0.005 (0.002) -0.016 (0.002) -0.006 (0.002) -0.005 (0.002)
φ1 -0.000 (0.006) -0.058 (0.006) -0.070 (0.005) 0.027 (0.006) 0.024 (0.006)
a2 0.272 (0.018) 0.055 (0.022) 0.168 (0.018) 0.040 (0.025) 0.036 (0.019)
b2 -0.025 (0.002) -0.005 (0.002) -0.015 (0.002) -0.004 (0.002) -0.004 (0.002)
φ2 -0.001 (0.006) -0.059 (0.006) -0.075 (0.006) 0.025 (0.006) 0.022 (0.006)

τ = 0.7
a1 0.103 (0.019) 0.032 (0.012) 0.054 (0.012) 0.035 (0.023) 0.008 (0.012)
b1 -0.004 (0.002) -0.001 (0.001) -0.002 (0.001) -0.004 (0.002) -0.001 (0.001)
φ1 -0.059 (0.006) -0.166 (0.006) -0.135 (0.006) 0.032 (0.006) 0.028 (0.006)
a2 0.087 (0.019) 0.018 (0.013) 0.051 (0.012) 0.034 (0.023) 0.002 (0.012)
b2 -0.003 (0.002) -0.000 (0.001) -0.002 (0.001) -0.003 (0.002) -0.000 (0.001)
φ2 -0.060 (0.006) -0.166 (0.006) -0.138 (0.005) 0.031 (0.006) 0.027 (0.006)

N = 500

τ = 0.3
a1 0.330 (0.019) 0.227 (0.030) 0.174 (0.019) 0.012 (0.020) 0.018 (0.017)
b1 -0.032 (0.002) -0.023 (0.003) -0.016 (0.002) -0.001 (0.002) -0.002 (0.002)
φ1 -0.003 (0.004) -0.021 (0.004) -0.041 (0.004) 0.011 (0.004) 0.010 (0.004)
a2 0.359 (0.019) 0.266 (0.030) 0.209 (0.019) 0.042 (0.021) 0.023 (0.018)
b2 -0.035 (0.002) -0.026 (0.003) -0.020 (0.002) -0.005 (0.002) -0.003 (0.002)
φ2 0.001 (0.004) -0.015 (0.004) -0.036 (0.004) 0.016 (0.004) 0.015 (0.004)

τ = 0.5
a1 0.256 (0.015) 0.019 (0.020) 0.177 (0.014) 0.055 (0.019) 0.036 (0.014)
b1 -0.023 (0.001) -0.001 (0.002) -0.016 (0.001) -0.006 (0.002) -0.004 (0.001)
φ1 -0.010 (0.004) -0.067 (0.004) -0.079 (0.004) 0.017 (0.004) 0.016 (0.004)
a2 0.252 (0.015) 0.021 (0.020) 0.179 (0.014) 0.054 (0.019) 0.030 (0.015)
b2 -0.023 (0.001) -0.002 (0.002) -0.016 (0.001) -0.006 (0.002) -0.003 (0.001)
φ2 -0.007 (0.004) -0.065 (0.004) -0.081 (0.004) 0.018 (0.004) 0.017 (0.004)

τ = 0.7
a1 0.111 (0.018) -0.004 (0.013) 0.051 (0.012) 0.022 (0.021) 0.010 (0.011)
b1 -0.006 (0.002) 0.002 (0.001) -0.002 (0.001) -0.003 (0.002) -0.001 (0.001)
φ1 -0.065 (0.004) -0.173 (0.004) -0.143 (0.004) 0.026 (0.004) 0.023 (0.004)
a2 0.103 (0.018) -0.004 (0.013) 0.055 (0.012) 0.026 (0.021) 0.010 (0.011)
b2 -0.005 (0.002) 0.002 (0.001) -0.003 (0.001) -0.003 (0.002) -0.001 (0.001)
φ2 -0.065 (0.004) -0.169 (0.004) -0.138 (0.004) 0.029 (0.004) 0.026 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table A–5: Average bias of estimates and Monte Carlo Standard Error(MCSE)
based on 1,000 simulations.

True Model: Independent
Clayton Frank Galambos Independent Normal

N = 100

a1 0.268 (0.043) -0.043 (0.039) 0.069 (0.039) -0.082 (0.044) -0.056 (0.038)
b1 -0.027 (0.004) 0.004 (0.004) -0.008 (0.004) 0.007 (0.004) 0.005 (0.004)
φ1 0.077 (0.010) 0.078 (0.010) 0.078 (0.010) 0.081 (0.010) 0.078 (0.010)
a2 0.394 (0.042) 0.013 (0.039) 0.178 (0.040) -0.005 (0.045) 0.012 (0.039)
b2 -0.039 (0.004) -0.001 (0.004) -0.018 (0.004) 0.000 (0.004) -0.001 (0.004)
φ2 0.070 (0.010) 0.070 (0.010) 0.081 (0.011) 0.075 (0.010) 0.070 (0.010)

N = 300

a1 0.418 (0.029) 0.003 (0.022) 0.107 (0.024) 0.000 (0.026) 0.005 (0.022)
b1 -0.042 (0.003) -0.000 (0.002) -0.011 (0.002) -0.000 (0.003) -0.000 (0.002)
φ1 0.027 (0.006) 0.028 (0.006) 0.033 (0.006) 0.030 (0.006) 0.029 (0.006)
a2 0.360 (0.028) -0.015 (0.022) 0.115 (0.024) -0.037 (0.025) -0.014 (0.022)
b2 -0.036 (0.003) 0.002 (0.002) -0.011 (0.002) 0.004 (0.003) 0.001 (0.002)
φ2 0.017 (0.006) 0.022 (0.006) 0.027 (0.006) 0.023 (0.006) 0.022 (0.006)

N = 500

a1 0.421 (0.023) 0.032 (0.018) 0.098 (0.020) 0.030 (0.020) 0.045 (0.017)
b1 -0.042 (0.002) -0.003 (0.002) -0.010 (0.002) -0.003 (0.002) -0.004 (0.002)
φ1 0.024 (0.005) 0.027 (0.004) 0.032 (0.005) 0.027 (0.004) 0.026 (0.004)
a2 0.430 (0.023) 0.039 (0.017) 0.115 (0.020) 0.038 (0.020) 0.045 (0.017)
b2 -0.043 (0.002) -0.004 (0.002) -0.011 (0.002) -0.004 (0.002) -0.005 (0.002)
φ2 0.006 (0.004) 0.010 (0.004) 0.011 (0.004) 0.010 (0.004) 0.009 (0.004)

Note: Bold numbers indicate results from the true model.
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Table B–1: Average bias of estimates and Monte Carlo Standard Error (MCSE)
based on 1,000 simulations.

True Copula: Clayton
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.076 (0.039) 0.037 (0.039) 0.112 (0.042) 0.052 (0.049) 0.065 (0.042)
b1 -0.008 (0.004) -0.007 (0.004) -0.009 (0.004) -0.006 (0.005) -0.007 (0.004)
φ1 0.912 (0.088) 0.407 (0.087) -0.281 (0.069) 1.152 (0.105) 0.322 (0.077)
a2 0.085 (0.040) 0.086 (0.039) 0.156 (0.042) 0.091 (0.046) 0.087 (0.040)
b2 -0.009 (0.004) -0.012 (0.004) -0.014 (0.004) -0.010 (0.005) -0.009 (0.004)
φ2 0.072 (0.010) -0.002 (0.010) -0.041 (0.010) 0.077 (0.010) 0.047 (0.010)

τ = 0.5
a1 -0.014 (0.033) 0.017 (0.031) 0.291 (0.037) -0.001 (0.044) 0.093 (0.034)
b1 0.001 (0.003) -0.009 (0.003) -0.025 (0.004) -0.000 (0.004) -0.009 (0.003)
φ1 0.466 (0.063) -0.738 (0.045) -1.434 (0.037) 0.488 (0.064) -0.549 (0.047)
a2 0.004 (0.034) 0.070 (0.034) 0.177 (0.038) -0.020 (0.042) 0.099 (0.035)
b2 -0.001 (0.003) -0.014 (0.003) -0.013 (0.004) 0.002 (0.004) -0.010 (0.003)
φ2 0.037 (0.009) -0.128 (0.009) -0.188 (0.009) 0.046 (0.009) -0.015 (0.009)

τ = 0.7
a1 0.083 (0.030) -0.042 (0.029) 0.282 (0.040) 0.070 (0.049) 0.122 (0.036)
b1 -0.008 (0.003) -0.007 (0.003) -0.021 (0.004) -0.007 (0.005) -0.011 (0.004)
φ1 1.378 (0.106) -0.362 (0.066) -1.783 (0.040) 1.719 (0.138) -0.368 (0.064)
a2 0.110 (0.031) 0.112 (0.030) 0.213 (0.039) 0.101 (0.047) 0.149 (0.035)
b2 -0.011 (0.003) -0.022 (0.003) -0.014 (0.004) -0.010 (0.005) -0.014 (0.004)
φ2 0.089 (0.009) -0.120 (0.009) -0.312 (0.008) 0.111 (0.011) -0.027 (0.009)

N = 300

τ = 0.3
a1 0.017 (0.020) 0.025 (0.019) 0.104 (0.022) 0.029 (0.024) 0.038 (0.020)
b1 -0.002 (0.002) -0.005 (0.002) -0.008 (0.002) -0.003 (0.002) -0.004 (0.002)
φ1 0.152 (0.034) -0.329 (0.032) -0.874 (0.027) 0.163 (0.035) -0.315 (0.031)
a2 0.042 (0.021) 0.037 (0.021) 0.089 (0.020) 0.031 (0.024) 0.065 (0.021)
b2 -0.004 (0.002) -0.006 (0.002) -0.006 (0.002) -0.003 (0.002) -0.006 (0.002)
φ2 0.014 (0.005) -0.060 (0.005) -0.098 (0.005) 0.015 (0.005) -0.010 (0.005)

τ = 0.5
a1 -0.011 (0.020) 0.012 (0.018) 0.327 (0.027) 0.005 (0.025) 0.155 (0.020)
b1 0.001 (0.002) -0.008 (0.002) -0.028 (0.003) -0.000 (0.003) -0.015 (0.002)
φ1 0.149 (0.033) -0.917 (0.025) -1.588 (0.021) 0.141 (0.034) -0.729 (0.026)
a2 0.007 (0.020) 0.098 (0.019) 0.251 (0.026) 0.004 (0.024) 0.174 (0.020)
b2 -0.001 (0.002) -0.017 (0.002) -0.020 (0.003) -0.001 (0.002) -0.017 (0.002)
φ2 0.020 (0.005) -0.150 (0.005) -0.211 (0.005) 0.023 (0.005) -0.036 (0.005)

τ = 0.7
a1 0.013 (0.015) -0.083 (0.012) 0.157 (0.019) -0.014 (0.025) 0.060 (0.016)
b1 -0.001 (0.001) -0.003 (0.001) -0.009 (0.002) 0.002 (0.002) -0.005 (0.002)
φ1 0.302 (0.038) -0.991 (0.025) -2.173 (0.016) 0.310 (0.040) -0.963 (0.026)
a2 0.002 (0.016) 0.058 (0.014) 0.060 (0.019) -0.020 (0.024) 0.057 (0.017)
b2 -0.000 (0.002) -0.017 (0.001) 0.001 (0.002) 0.002 (0.002) -0.005 (0.002)
φ2 0.022 (0.005) -0.193 (0.004) -0.387 (0.004) 0.025 (0.005) -0.097 (0.005)

N = 500

τ = 0.3
a1 0.022 (0.016) 0.001 (0.016) 0.078 (0.018) 0.018 (0.020) 0.032 (0.017)
b1 -0.002 (0.002) -0.003 (0.002) -0.005 (0.002) -0.002 (0.002) -0.003 (0.002)
φ1 0.198 (0.028) -0.302 (0.025) -0.851 (0.021) 0.193 (0.028) -0.291 (0.025)
a2 0.045 (0.016) 0.039 (0.016) 0.074 (0.015) 0.051 (0.018) 0.051 (0.016)
b2 -0.004 (0.002) -0.006 (0.002) -0.005 (0.002) -0.005 (0.002) -0.005 (0.002)
φ2 0.012 (0.004) -0.062 (0.004) -0.102 (0.004) 0.012 (0.004) -0.013 (0.004)

τ = 0.5
a1 0.010 (0.015) -0.001 (0.014) 0.291 (0.024) 0.019 (0.019) 0.149 (0.015)
b1 -0.001 (0.001) -0.007 (0.001) -0.025 (0.002) -0.002 (0.002) -0.015 (0.001)
φ1 0.137 (0.027) -0.926 (0.021) -1.601 (0.017) 0.144 (0.028) -0.702 (0.022)
a2 0.018 (0.015) 0.079 (0.016) 0.181 (0.022) 0.010 (0.018) 0.153 (0.016)
b2 -0.002 (0.001) -0.015 (0.002) -0.013 (0.002) -0.001 (0.002) -0.015 (0.002)
φ2 0.010 (0.004) -0.160 (0.004) -0.224 (0.004) 0.012 (0.004) -0.043 (0.004)

τ = 0.7
a1 0.000 (0.013) -0.081 (0.010) 0.191 (0.017) -0.028 (0.021) 0.051 (0.014)
b1 -0.000 (0.001) -0.003 (0.001) -0.013 (0.002) 0.003 (0.002) -0.004 (0.001)
φ1 0.180 (0.029) -1.057 (0.019) -2.213 (0.013) 0.203 (0.031) -1.008 (0.021)
a2 -0.004 (0.013) 0.068 (0.011) 0.102 (0.016) -0.020 (0.020) 0.065 (0.014)
b2 0.000 (0.001) -0.018 (0.001) -0.003 (0.002) 0.002 (0.002) -0.006 (0.001)
φ2 0.013 (0.004) -0.202 (0.003) -0.398 (0.003) 0.015 (0.004) -0.106 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table B–2: Average bias of estimates and Monte Carlo Standard Error(MCSE) based
on 1,000 simulations.

True Copula: Frank
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.046 (0.041) -0.017 (0.039) 0.070 (0.042) -0.001 (0.048) 0.046 (0.040)
b1 -0.004 (0.004) 0.001 (0.004) -0.006 (0.004) -0.001 (0.005) -0.005 (0.004)
φ1 1.302 (0.121) 1.064 (0.103) 0.219 (0.085) 1.319 (0.132) 1.076 (0.102)
a2 0.015 (0.042) -0.001 (0.039) 0.094 (0.041) 0.009 (0.047) 0.022 (0.038)
b2 -0.001 (0.004) -0.000 (0.004) -0.008 (0.004) -0.002 (0.005) -0.003 (0.004)
φ2 0.061 (0.010) 0.082 (0.010) 0.007 (0.010) 0.086 (0.011) 0.084 (0.010)

τ = 0.5
a1 0.148 (0.033) 0.032 (0.030) 0.180 (0.034) 0.030 (0.043) 0.034 (0.033)
b1 -0.012 (0.003) -0.003 (0.003) -0.016 (0.003) -0.003 (0.004) -0.003 (0.003)
φ1 0.801 (0.067) 0.433 (0.063) -0.820 (0.044) 0.482 (0.065) 0.376 (0.058)
a2 0.137 (0.036) 0.005 (0.030) 0.119 (0.036) 0.018 (0.041) 0.018 (0.033)
b2 -0.010 (0.004) -0.000 (0.003) -0.009 (0.004) -0.002 (0.004) -0.002 (0.003)
φ2 0.002 (0.009) 0.049 (0.009) -0.099 (0.009) 0.051 (0.009) 0.048 (0.009)

τ = 0.7
a1 0.144 (0.034) -0.074 (0.028) 0.117 (0.032) -0.046 (0.047) 0.024 (0.030)
b1 -0.010 (0.003) 0.007 (0.003) -0.008 (0.003) 0.004 (0.005) -0.003 (0.003)
φ1 0.728 (0.077) 0.618 (0.068) -1.298 (0.044) 0.848 (0.083) 0.517 (0.076)
a2 0.087 (0.037) -0.070 (0.029) 0.083 (0.032) -0.033 (0.047) 0.041 (0.031)
b2 -0.003 (0.004) 0.006 (0.003) -0.005 (0.003) 0.003 (0.005) -0.005 (0.003)
φ2 -0.037 (0.010) 0.052 (0.009) -0.225 (0.009) 0.067 (0.010) 0.032 (0.010)

N = 300

τ = 0.3
a1 0.046 (0.021) 0.010 (0.019) 0.063 (0.021) 0.008 (0.024) 0.004 (0.020)
b1 -0.004 (0.002) -0.001 (0.002) -0.005 (0.002) -0.001 (0.002) -0.000 (0.002)
φ1 0.368 (0.037) 0.187 (0.035) -0.516 (0.029) 0.205 (0.035) 0.195 (0.035)
a2 0.067 (0.020) 0.039 (0.020) 0.077 (0.020) 0.040 (0.023) 0.011 (0.020)
b2 -0.005 (0.002) -0.004 (0.002) -0.006 (0.002) -0.004 (0.002) -0.001 (0.002)
φ2 -0.004 (0.005) 0.015 (0.005) -0.060 (0.005) 0.016 (0.005) 0.018 (0.005)

τ = 0.5
a1 0.189 (0.020) 0.010 (0.018) 0.107 (0.020) 0.024 (0.024) 0.076 (0.018)
b1 -0.016 (0.002) -0.001 (0.002) -0.008 (0.002) -0.002 (0.002) -0.007 (0.002)
φ1 0.596 (0.035) 0.189 (0.034) -1.023 (0.025) 0.184 (0.035) 0.159 (0.032)
a2 0.160 (0.020) 0.024 (0.018) 0.085 (0.019) 0.016 (0.023) 0.087 (0.017)
b2 -0.013 (0.002) -0.002 (0.002) -0.006 (0.002) -0.002 (0.002) -0.009 (0.002)
φ2 -0.015 (0.005) 0.026 (0.005) -0.131 (0.005) 0.027 (0.006) 0.027 (0.005)

τ = 0.7
a1 0.177 (0.017) 0.015 (0.012) 0.109 (0.015) 0.012 (0.024) 0.009 (0.014)
b1 -0.012 (0.002) -0.001 (0.001) -0.007 (0.001) -0.001 (0.002) -0.001 (0.001)
φ1 0.191 (0.039) 0.219 (0.035) -1.624 (0.020) 0.231 (0.038) -0.005 (0.035)
a2 0.128 (0.017) 0.022 (0.012) 0.033 (0.015) 0.016 (0.023) 0.018 (0.015)
b2 -0.005 (0.002) -0.002 (0.001) 0.001 (0.001) -0.001 (0.002) -0.001 (0.001)
φ2 -0.086 (0.005) 0.015 (0.005) -0.282 (0.005) 0.009 (0.005) -0.019 (0.005)

N = 500

τ = 0.3
a1 0.031 (0.016) 0.002 (0.015) 0.065 (0.016) 0.013 (0.019) 0.022 (0.016)
b1 -0.002 (0.002) -0.000 (0.001) -0.005 (0.002) -0.002 (0.002) -0.002 (0.002)
φ1 0.256 (0.029) 0.116 (0.028) -0.580 (0.023) 0.115 (0.028) 0.114 (0.028)
a2 0.014 (0.016) -0.006 (0.015) 0.041 (0.015) -0.009 (0.018) 0.009 (0.016)
b2 -0.000 (0.002) 0.000 (0.002) -0.003 (0.001) 0.001 (0.002) -0.001 (0.002)
φ2 -0.013 (0.004) 0.008 (0.004) -0.069 (0.004) 0.007 (0.004) 0.009 (0.004)

τ = 0.5
a1 0.257 (0.015) 0.005 (0.014) 0.130 (0.016) 0.031 (0.018) 0.107 (0.013)
b1 -0.023 (0.001) -0.001 (0.001) -0.010 (0.002) -0.003 (0.002) -0.011 (0.001)
φ1 0.515 (0.027) 0.104 (0.027) -1.072 (0.019) 0.108 (0.027) 0.130 (0.026)
a2 0.218 (0.015) -0.007 (0.013) 0.069 (0.015) 0.009 (0.017) 0.090 (0.013)
b2 -0.018 (0.001) 0.001 (0.001) -0.004 (0.002) -0.001 (0.002) -0.009 (0.001)
φ2 -0.022 (0.004) 0.016 (0.004) -0.139 (0.004) 0.016 (0.004) 0.022 (0.004)

τ = 0.7
a1 0.170 (0.016) 0.002 (0.011) 0.152 (0.015) 0.013 (0.021) 0.014 (0.013)
b1 -0.012 (0.002) -0.000 (0.001) -0.012 (0.001) -0.002 (0.002) -0.001 (0.001)
φ1 0.121 (0.031) 0.191 (0.028) -1.634 (0.017) 0.201 (0.032) -0.025 (0.030)
a2 0.104 (0.016) -0.006 (0.011) 0.061 (0.014) -0.005 (0.020) -0.003 (0.013)
b2 -0.003 (0.002) 0.000 (0.001) -0.002 (0.001) 0.000 (0.002) 0.000 (0.001)
φ2 -0.084 (0.004) 0.017 (0.004) -0.279 (0.004) 0.017 (0.004) -0.013 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table B–3: Average bias of estimates and Monte Carlo Standard Error(MCSE) based
on 1,000 simulations.

True Copula: Galambos
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 0.099 (0.039) 0.088 (0.035) 0.049 (0.036) 0.074 (0.044) 0.028 (0.036)
b1 -0.009 (0.004) -0.007 (0.004) -0.005 (0.004) -0.007 (0.004) -0.003 (0.004)
φ1 0.282 (0.058) 0.229 (0.057) 0.221 (0.056) 0.249 (0.057) 0.567 (0.061)
a2 0.095 (0.038) 0.043 (0.036) 0.067 (0.033) 0.070 (0.042) 0.051 (0.033)
b2 -0.008 (0.004) -0.002 (0.004) -0.007 (0.003) -0.007 (0.004) -0.005 (0.003)
φ2 0.005 (0.010) 0.034 (0.009) 0.041 (0.009) 0.043 (0.009) 0.056 (0.010)

τ = 0.5
a1 0.170 (0.039) 0.207 (0.034) 0.068 (0.031) 0.059 (0.043) 0.027 (0.030)
b1 -0.013 (0.004) -0.015 (0.003) -0.006 (0.003) -0.005 (0.004) -0.002 (0.003)
φ1 0.455 (0.066) 0.306 (0.063) 0.348 (0.062) 0.347 (0.063) 0.895 (0.069)
a2 0.073 (0.041) 0.132 (0.034) 0.047 (0.028) 0.019 (0.042) -0.003 (0.030)
b2 -0.003 (0.004) -0.008 (0.003) -0.004 (0.003) -0.001 (0.004) 0.001 (0.003)
φ2 -0.039 (0.009) 0.011 (0.009) 0.035 (0.009) 0.035 (0.009) 0.068 (0.009)

τ = 0.7
a1 0.130 (0.039) 0.126 (0.030) -0.036 (0.023) -0.047 (0.047) -0.021 (0.028)
b1 -0.007 (0.004) -0.005 (0.003) 0.003 (0.002) 0.004 (0.005) 0.001 (0.003)
φ1 0.387 (0.082) 0.186 (0.069) 0.712 (0.078) 1.067 (0.101) 1.483 (0.094)
a2 0.102 (0.042) 0.079 (0.031) 0.006 (0.021) -0.016 (0.047) 0.025 (0.027)
b2 -0.003 (0.004) 0.000 (0.003) -0.001 (0.002) 0.001 (0.005) -0.003 (0.003)
φ2 -0.090 (0.010) -0.030 (0.009) 0.052 (0.009) 0.057 (0.010) 0.106 (0.010)

N = 300

τ = 0.3
a1 0.083 (0.022) 0.079 (0.020) 0.040 (0.020) 0.039 (0.024) 0.057 (0.020)
b1 -0.007 (0.002) -0.006 (0.002) -0.004 (0.002) -0.004 (0.002) -0.006 (0.002)
φ1 0.244 (0.035) 0.179 (0.034) 0.150 (0.032) 0.179 (0.034) 0.491 (0.036)
a2 0.066 (0.022) 0.037 (0.020) 0.028 (0.019) 0.028 (0.024) 0.021 (0.019)
b2 -0.005 (0.002) -0.002 (0.002) -0.003 (0.002) -0.003 (0.002) -0.002 (0.002)
φ2 -0.022 (0.005) 0.002 (0.005) 0.009 (0.005) 0.010 (0.005) 0.025 (0.005)

τ = 0.5
a1 0.161 (0.022) 0.167 (0.021) 0.040 (0.018) 0.033 (0.024) 0.043 (0.016)
b1 -0.013 (0.002) -0.012 (0.002) -0.004 (0.002) -0.004 (0.002) -0.005 (0.002)
φ1 0.270 (0.036) 0.107 (0.035) 0.107 (0.031) 0.146 (0.035) 0.757 (0.038)
a2 0.077 (0.022) 0.079 (0.020) 0.029 (0.016) 0.010 (0.023) 0.012 (0.016)
b2 -0.004 (0.002) -0.003 (0.002) -0.003 (0.002) -0.001 (0.002) -0.002 (0.002)
φ2 -0.055 (0.005) -0.012 (0.005) 0.011 (0.005) 0.012 (0.005) 0.053 (0.005)

τ = 0.7
a1 0.188 (0.022) 0.136 (0.014) -0.002 (0.011) -0.014 (0.025) -0.013 (0.014)
b1 -0.013 (0.002) -0.005 (0.001) 0.000 (0.001) 0.001 (0.003) 0.001 (0.001)
φ1 -0.095 (0.039) -0.244 (0.034) 0.280 (0.035) 0.396 (0.042) 1.059 (0.046)
a2 0.125 (0.023) 0.041 (0.014) -0.003 (0.009) -0.016 (0.025) -0.015 (0.014)
b2 -0.005 (0.002) 0.004 (0.001) 0.000 (0.001) 0.001 (0.002) 0.001 (0.001)
φ2 -0.120 (0.006) -0.060 (0.005) 0.026 (0.005) 0.028 (0.006) 0.089 (0.006)

N = 500

τ = 0.3
a1 0.085 (0.016) 0.064 (0.015) 0.040 (0.015) 0.038 (0.018) 0.031 (0.015)
b1 -0.007 (0.002) -0.004 (0.001) -0.004 (0.001) -0.004 (0.002) -0.003 (0.001)
φ1 0.186 (0.029) 0.107 (0.028) 0.083 (0.026) 0.115 (0.028) 0.438 (0.030)
a2 0.053 (0.016) 0.027 (0.015) 0.017 (0.014) 0.022 (0.017) 0.015 (0.015)
b2 -0.004 (0.002) -0.001 (0.001) -0.002 (0.001) -0.002 (0.002) -0.002 (0.001)
φ2 -0.023 (0.004) 0.002 (0.004) 0.009 (0.004) 0.009 (0.004) 0.025 (0.004)

τ = 0.5
a1 0.145 (0.016) 0.162 (0.017) 0.036 (0.014) 0.029 (0.019) 0.048 (0.012)
b1 -0.012 (0.002) -0.012 (0.002) -0.004 (0.001) -0.003 (0.002) -0.005 (0.001)
φ1 0.226 (0.029) 0.093 (0.029) 0.087 (0.026) 0.101 (0.028) 0.716 (0.030)
a2 0.079 (0.018) 0.055 (0.017) 0.026 (0.012) 0.014 (0.018) 0.021 (0.012)
b2 -0.004 (0.002) -0.001 (0.002) -0.003 (0.001) -0.001 (0.002) -0.002 (0.001)
φ2 -0.059 (0.004) -0.011 (0.004) 0.009 (0.004) 0.009 (0.004) 0.050 (0.004)

τ = 0.7
a1 0.196 (0.018) 0.126 (0.012) -0.004 (0.009) 0.005 (0.020) -0.010 (0.012)
b1 -0.014 (0.002) -0.004 (0.001) 0.000 (0.001) -0.001 (0.002) 0.000 (0.001)
φ1 -0.116 (0.032) -0.250 (0.028) 0.253 (0.028) 0.352 (0.034) 1.066 (0.038)
a2 0.131 (0.018) 0.040 (0.012) 0.005 (0.008) 0.008 (0.020) -0.007 (0.011)
b2 -0.005 (0.002) 0.005 (0.001) -0.001 (0.001) -0.001 (0.002) 0.000 (0.001)
φ2 -0.119 (0.004) -0.056 (0.004) 0.027 (0.004) 0.030 (0.004) 0.092 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table B–4: Average bias of estimates and Monte Carlo Standard Error(MCSE) based
on 1,000 simulations.

True Copula: Normal
Clayton Frank Galambos Independent Normal

N = 100

τ = 0.3
a1 -0.006 (0.040) -0.027 (0.037) 0.021 (0.041) -0.060 (0.046) 0.001 (0.038)
b1 0.002 (0.004) 0.003 (0.004) -0.001 (0.004) 0.006 (0.005) -0.000 (0.004)
φ1 1.368 (0.117) 1.108 (0.113) 0.460 (0.094) 1.511 (0.141) 1.221 (0.108)
a2 -0.037 (0.041) 0.008 (0.039) 0.024 (0.039) -0.033 (0.046) 0.026 (0.039)
b2 0.004 (0.004) -0.001 (0.004) -0.002 (0.004) 0.003 (0.005) -0.003 (0.004)
φ2 0.025 (0.010) 0.025 (0.010) -0.011 (0.010) 0.052 (0.010) 0.047 (0.010)

τ = 0.5
a1 0.244 (0.034) 0.160 (0.033) 0.175 (0.031) 0.105 (0.044) 0.088 (0.033)
b1 -0.022 (0.003) -0.015 (0.003) -0.016 (0.003) -0.011 (0.004) -0.009 (0.003)
φ1 0.344 (0.060) -0.081 (0.056) -0.603 (0.047) 0.380 (0.061) 0.266 (0.059)
a2 0.188 (0.037) 0.144 (0.033) 0.178 (0.032) 0.116 (0.044) 0.078 (0.032)
b2 -0.016 (0.004) -0.014 (0.003) -0.016 (0.003) -0.012 (0.004) -0.008 (0.003)
φ2 -0.017 (0.009) -0.027 (0.010) -0.066 (0.009) 0.052 (0.010) 0.041 (0.009)

τ = 0.7
a1 0.174 (0.033) 0.020 (0.028) 0.038 (0.023) 0.036 (0.044) 0.023 (0.023)
b1 -0.013 (0.003) 0.000 (0.003) -0.002 (0.002) -0.004 (0.004) -0.003 (0.002)
φ1 0.201 (0.068) -0.353 (0.054) -0.607 (0.047) 0.923 (0.082) 0.537 (0.065)
a2 0.170 (0.035) 0.050 (0.027) 0.065 (0.021) 0.089 (0.041) 0.068 (0.022)
b2 -0.011 (0.003) -0.003 (0.003) -0.005 (0.002) -0.009 (0.004) -0.007 (0.002)
φ2 -0.090 (0.009) -0.118 (0.009) -0.120 (0.008) 0.047 (0.009) 0.030 (0.009)

N = 300

τ = 0.3
a1 0.056 (0.021) 0.033 (0.019) 0.060 (0.020) 0.006 (0.024) 0.001 (0.020)
b1 -0.005 (0.002) -0.003 (0.002) -0.005 (0.002) -0.001 (0.002) -0.000 (0.002)
φ1 0.214 (0.036) -0.004 (0.034) -0.428 (0.031) 0.153 (0.036) 0.143 (0.036)
a2 0.065 (0.021) 0.032 (0.020) 0.056 (0.019) 0.020 (0.023) 0.018 (0.020)
b2 -0.006 (0.002) -0.003 (0.002) -0.004 (0.002) -0.002 (0.002) -0.002 (0.002)
φ2 -0.009 (0.005) -0.010 (0.005) -0.049 (0.005) 0.016 (0.005) 0.015 (0.005)

τ = 0.5
a1 0.194 (0.019) 0.096 (0.019) 0.164 (0.017) 0.055 (0.024) 0.056 (0.018)
b1 -0.017 (0.002) -0.009 (0.002) -0.015 (0.002) -0.006 (0.002) -0.006 (0.002)
φ1 0.316 (0.037) -0.201 (0.033) -0.670 (0.028) 0.252 (0.037) 0.224 (0.036)
a2 0.107 (0.021) 0.071 (0.019) 0.105 (0.016) 0.030 (0.023) 0.028 (0.016)
b2 -0.008 (0.002) -0.006 (0.002) -0.009 (0.002) -0.003 (0.002) -0.003 (0.002)
φ2 -0.038 (0.005) -0.056 (0.005) -0.097 (0.005) 0.019 (0.005) 0.018 (0.005)

τ = 0.7
a1 0.135 (0.020) 0.072 (0.014) 0.045 (0.013) -0.044 (0.025) -0.007 (0.013)
b1 -0.008 (0.002) -0.004 (0.001) -0.002 (0.001) 0.004 (0.002) 0.001 (0.001)
φ1 -0.200 (0.039) -0.636 (0.030) -0.797 (0.028) 0.421 (0.044) 0.331 (0.039)
a2 0.084 (0.021) 0.045 (0.015) 0.009 (0.011) -0.030 (0.024) 0.002 (0.012)
b2 -0.002 (0.002) -0.001 (0.002) 0.002 (0.001) 0.003 (0.002) -0.000 (0.001)
φ2 -0.100 (0.005) -0.135 (0.005) -0.139 (0.005) 0.031 (0.005) 0.029 (0.005)

N = 500

τ = 0.3
a1 0.034 (0.012) 0.014 (0.011) 0.042 (0.012) -0.006 (0.014) 0.007 (0.012)
b1 -0.003 (0.001) -0.001 (0.001) -0.003 (0.001) 0.000 (0.001) -0.001 (0.001)
φ1 0.114 (0.020) -0.108 (0.019) -0.527 (0.017) 0.034 (0.020) 0.036 (0.020)
a2 0.017 (0.012) 0.016 (0.011) 0.016 (0.010) -0.002 (0.013) 0.011 (0.012)
b2 -0.001 (0.001) -0.001 (0.001) -0.000 (0.001) 0.000 (0.001) -0.001 (0.001)
φ2 -0.023 (0.003) -0.024 (0.003) -0.061 (0.003) 0.002 (0.003) 0.002 (0.003)

τ = 0.5
a1 0.189 (0.014) 0.120 (0.014) 0.135 (0.013) 0.029 (0.018) 0.036 (0.014)
b1 -0.016 (0.001) -0.011 (0.001) -0.012 (0.001) -0.003 (0.002) -0.004 (0.001)
φ1 0.240 (0.027) -0.246 (0.025) -0.711 (0.022) 0.196 (0.028) 0.175 (0.027)
a2 0.129 (0.015) 0.113 (0.013) 0.094 (0.013) 0.033 (0.017) 0.030 (0.012)
b2 -0.010 (0.002) -0.010 (0.001) -0.007 (0.001) -0.003 (0.002) -0.003 (0.001)
φ2 -0.043 (0.004) -0.062 (0.004) -0.105 (0.004) 0.013 (0.004) 0.012 (0.004)

τ = 0.7
a1 0.169 (0.017) 0.076 (0.012) 0.035 (0.010) 0.009 (0.020) 0.014 (0.010)
b1 -0.012 (0.002) -0.005 (0.001) -0.002 (0.001) -0.001 (0.002) -0.001 (0.001)
φ1 -0.303 (0.029) -0.750 (0.023) -0.899 (0.021) 0.275 (0.033) 0.186 (0.029)
a2 0.120 (0.017) 0.061 (0.012) 0.010 (0.010) 0.030 (0.020) 0.031 (0.010)
b2 -0.006 (0.002) -0.003 (0.001) 0.001 (0.001) -0.003 (0.002) -0.003 (0.001)
φ2 -0.113 (0.004) -0.146 (0.004) -0.148 (0.004) 0.023 (0.004) 0.018 (0.004)

Note: Bold numbers indicate results from the true copula.
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Table B–5: Average bias of estimates and Monte Carlo Standard Error(MCSE) based
on 1,000 simulations.

True Model: Independent
Clayton Frank Galambos Independent Normal

N = 100

a1 0.117 (0.042) -0.018 (0.038) 0.071 (0.040) -0.025 (0.044) 0.037 (0.039)
b1 -0.012 (0.004) 0.002 (0.004) -0.007 (0.004) 0.002 (0.004) -0.004 (0.004)
φ1 0.555 (0.068) 0.456 (0.066) 0.643 (0.067) 0.476 (0.065) 0.448 (0.063)
a2 0.166 (0.041) -0.017 (0.038) 0.020 (0.039) -0.018 (0.043) 0.036 (0.038)
b2 -0.017 (0.004) 0.002 (0.004) -0.002 (0.004) 0.002 (0.004) -0.004 (0.004)
φ2 0.072 (0.010) 0.069 (0.010) 0.069 (0.010) 0.072 (0.010) 0.069 (0.010)

N = 300

a1 0.139 (0.026) 0.016 (0.023) 0.055 (0.024) 0.016 (0.026) 0.033 (0.022)
b1 -0.014 (0.003) -0.001 (0.002) -0.005 (0.002) -0.002 (0.003) -0.003 (0.002)
φ1 0.292 (0.041) 0.207 (0.038) 0.439 (0.043) 0.223 (0.038) 0.213 (0.038)
a2 0.146 (0.026) -0.000 (0.023) 0.073 (0.025) -0.000 (0.026) 0.020 (0.023)
b2 -0.015 (0.003) 0.000 (0.002) -0.007 (0.003) -0.000 (0.003) -0.002 (0.002)
φ2 0.023 (0.006) 0.024 (0.006) 0.026 (0.006) 0.026 (0.006) 0.025 (0.006)

N = 500

a1 0.112 (0.020) 0.031 (0.017) 0.056 (0.020) 0.036 (0.019) 0.027 (0.016)
b1 -0.011 (0.002) -0.003 (0.002) -0.005 (0.002) -0.004 (0.002) -0.003 (0.002)
φ1 0.200 (0.031) 0.133 (0.029) 0.328 (0.032) 0.140 (0.029) 0.131 (0.029)
a2 0.130 (0.021) -0.009 (0.017) 0.079 (0.020) -0.020 (0.019) -0.006 (0.017)
b2 -0.013 (0.002) 0.001 (0.002) -0.008 (0.002) 0.002 (0.002) 0.001 (0.002)
φ2 0.013 (0.004) 0.014 (0.004) 0.015 (0.004) 0.014 (0.004) 0.013 (0.004)

Note: Bold numbers indicate results from the true model.



APPENDIX C
LOGLIKELIHOODS FOR THE BIVARIATE
REGRESSION COPULA-BASED MODELS

WITH NEGATIVE BINOMIAL MARGINALS

#---------- Clayton ----------

NBC.loglik <- function(pars){
n = length(y1)
X = as.matrix(cbind( rep(1,n), x) ) # Design Matrix
npars = ncol(X)

pars <- as.list(pars)
names(pars) <- c(paste("b", 0:( npars -1) ,"1", sep = ""),
paste("b", 0:( npars -1) ,"2", sep = ""),
"phi1", "phi2", ’theta ’) # Dispersion Parameters
list2env (pars , envir = . GlobalEnv )

beta1 = as.numeric(pars [1: npars ])
beta2 = as.numeric(pars [( npars +1) :(2*npars)])
theta = exp(as.numeric(pars[length(pars)]))

mu1 = exp( X%*%beta1 ); mu2 = exp( X%*%beta2 ) # means

F1 = function(y){
pnbinom(y, mu = mu1[i], size = phi1)
} # Marginal CDF X1 - NB (mu = mu1 , size = phi1)

F2 = function(y){
pnbinom(y, mu = mu2[i], size = phi2)
} # Marginal CDF X2 - NB (mu = mu2 , size = phi2)

C = function(u1 , u2){
(u1 ˆ -theta + u2 ˆ -theta - 1) ˆ -(1/theta)
} # Joint Distribution function by the Clayton Copula

representation

h = NULL # Joint pmf for discrete random variables
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for (i in 1:n) {

if (y1[i] == 0 & y2[i] == 0) {
h[i] = C( F1 (0) , F2 (0) )
}
if (y1[i] != 0 & y2[i] == 0) {
h[i] = C( F1(y1[i]), F2 (0) ) - C( F1(y1[i]-1), F2 (0) )
}
if (y1[i] == 0 & y2[i] != 0) {
h[i] = C( F1 (0) , F2(y2[i]) ) - C( F1 (0) , F2(y2[i] - 1) )
}
if (y1[i] != 0 & y2[i] != 0) {
h[i] = C( F1(y1[i]), F2(y2[i]) ) - C( F1(y1[i] - 1), F2(

y2[i]) ) - C( F1(y1[i]), F2(y2[i] - 1) ) + C( F1(y1[i]
- 1), F2(y2[i] - 1) )

}
} # Joint PMF for discrete random variables

sum(log(h))
}

#---------- Normal ----------

NBN.loglik <- function(pars){
n = length(y1)
X = as.matrix(cbind( rep(1,n), x) ) # Design Matrix
npars = ncol(X)

pars <- as.list(pars)
names(pars) <- c(paste("b", 0:( npars -1) ,"1", sep = ""),
paste("b", 0:( npars -1) ,"2", sep = ""),
"phi1", "phi2", ’theta ’) # Dispersion Parameters
list2env (pars , envir = . GlobalEnv )

beta1 = as.numeric(pars [1: npars ])
beta2 = as.numeric(pars [( npars +1) :(2*npars)])
theta = ( exp(as.numeric(pars[length(pars)])) - 1 ) / ( 1

+ exp(as.numeric(pars[length(pars)])) )

mu1 = exp( X%*%beta1 ); mu2 = exp( X%*%beta2 ) # means

F1 = function(y){
pnbinom(y, mu = mu1[i], size = phi1)
} # Marginal CDF X1 - NB (mu = mu1 , size = phi1)

F2 = function(y){
pnbinom(y, mu = mu2[i], size = phi2)
} # Marginal CDF X2 - NB (mu = mu2 , size = phi2)
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C = function(u1 , u2){
corr <- diag (2)
corr[lower.tri(corr)] <- theta
corr[upper.tri(corr)] <- theta
pmvnorm (lower = -Inf , upper = c(qnorm(u1), qnorm(u2)),

corr = corr) #cor = cov
} # Joint Distribution function by the Normal Copula

representation

h = NULL # Joint pmf for discrete random variables

for (i in 1:n) {

if (y1[i] == 0 & y2[i] == 0) {
h[i] = C( F1 (0) , F2 (0) )
}
if (y1[i] != 0 & y2[i] == 0) {
h[i] = C( F1(y1[i]), F2 (0) ) - C( F1(y1[i]-1), F2 (0) )
}
if (y1[i] == 0 & y2[i] != 0) {
h[i] = C( F1 (0) , F2(y2[i]) ) - C( F1 (0) , F2(y2[i] - 1) )
}
if (y1[i] != 0 & y2[i] != 0) {
h[i] = C( F1(y1[i]), F2(y2[i]) ) - C( F1(y1[i] - 1), F2(

y2[i]) ) - C( F1(y1[i]), F2(y2[i] - 1) ) + C( F1(y1[i]
- 1), F2(y2[i] - 1) )

}
} # Joint PMF for discrete random variables

sum(log(h))

}

#---------- Galambos ----------

NBG.loglik <- function(pars){
n = length(y1)
X = as.matrix(cbind( rep(1,n), x) ) # Design Matrix
npars = ncol(X)

pars <- as.list(pars)
names(pars) <- c(paste("b", 0:( npars -1) ,"1", sep = ""),
paste("b", 0:( npars -1) ,"2", sep = ""),
"phi1", "phi2", ’theta ’) # Dispersion Parameters
list2env (pars , envir = . GlobalEnv )

beta1 = as.numeric(pars [1: npars ])
beta2 = as.numeric(pars [( npars +1) :(2*npars)])
theta = exp(as.numeric(pars[length(pars)]))
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mu1 = exp( X%*%beta1 ); mu2 = exp( X%*%beta2 ) # means

F1 = function(y){
pnbinom(y, mu = mu1[i], size = phi1)
} # Marginal CDF X1 - NB (mu = mu1 , size = phi1)

F2 = function(y){
pnbinom(y, mu = mu2[i], size = phi2)
} # Marginal CDF X2 - NB (mu = mu2 , size = phi2)

C = function(u1 , u2){
u1 * u2 * exp( ( (-log(u1))ˆ-theta + (-log(u2))ˆ-theta )

ˆ (-1/theta) )
} # Joint Distribution function by the Galambos Copula

representation

h = NULL # Joint pmf for discrete random variables

for (i in 1:n) {

if (y1[i] == 0 & y2[i] == 0) {
h[i] = C( F1 (0) , F2 (0) )
}
if (y1[i] != 0 & y2[i] == 0) {
h[i] = C( F1(y1[i]), F2 (0) ) - C( F1(y1[i]-1), F2 (0) )
}
if (y1[i] == 0 & y2[i] != 0) {
h[i] = C( F1 (0) , F2(y2[i]) ) - C( F1 (0) , F2(y2[i] - 1) )
}
if (y1[i] != 0 & y2[i] != 0) {
h[i] = C( F1(y1[i]), F2(y2[i]) ) - C( F1(y1[i] - 1), F2(

y2[i]) ) - C( F1(y1[i]), F2(y2[i] - 1) ) + C( F1(y1[i]
- 1), F2(y2[i] - 1) )

}
} # Joint PMF for discrete random variables

sum(log(h))
}

#---------- Frank ----------

NBF.loglik <- function(pars){
n = length(y1)
X = cbind( rep(1,n), x ) # Design Matrix

npars = ncol(X)

pars <- as.list(pars)
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names(pars) <- c(paste("b", 0:( npars -1) ,"1", sep = ""),
paste("b", 0:( npars -1) ,"2", sep = ""),
"phi1", "phi2") # Dispersion Parameters
list2env (pars , envir = . GlobalEnv )

beta1 = as.numeric(pars [1: npars ])
beta2 = as.numeric(pars [( npars +1) :(2*npars)])
theta = as.numeric(pars[length(pars)])

mu1 = exp( X%*%beta1 ); mu2 = exp( X%*%beta2 ) # means

F1 = function(y){
pnbinom(y, mu = mu1[i], size = phi1)
} # Marginal CDF X1 - NB (mu = mu1 , size = phi1)

F2 = function(y){
pnbinom(y, mu = mu2[i], size = phi2)
} # Marginal CDF X2 - NB (mu = mu2 , size = phi2)

C = function(u1 , u2){
-theta ˆ-1 * log( 1 + (exp( -theta*u1 ) - 1) * (exp( -

theta*u2 ) - 1) / (exp( -theta) - 1) )
} # Joint Distribution function by the Frank Copula

representation

h = NULL # Joint pmf for discrete random variables

for (i in 1:n) {

if (y1[i] == 0 & y2[i] == 0) {
h[i] = C( F1 (0) , F2 (0) )
}
if (y1[i] != 0 & y2[i] == 0) {
h[i] = C( F1(y1[i]), F2 (0) ) - C( F1(y1[i]-1), F2 (0) )
}
if (y1[i] == 0 & y2[i] != 0) {
h[i] = C( F1 (0) , F2(y2[i]) ) - C( F1 (0) , F2(y2[i] - 1) )
}
if (y1[i] != 0 & y2[i] != 0) {
h[i] = C( F1(y1[i]), F2(y2[i]) ) - C( F1(y1[i] - 1), F2(

y2[i]) ) - C( F1(y1[i]), F2(y2[i] - 1) ) + C( F1(y1[i]
- 1), F2(y2[i] - 1) )

}
} # Joint PMF for discrete random variables

sum(log(h))
}
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[15] Gordon Gudendorf and Johan Segers. Extreme-Value Copulas, pages 127–

145. Springer, 2010.

[16] Shiferaw Gurmu and John Elder. A simple bivariate count data regression

model. Economics Bulletin, 3(11):1–10, 2007.

[17] Shiferaw Gurmu and John Elder. Flexible bivariate count data regression

models. Journal of Business & Economic Statistics, 30(2):265–274, 2012.

[18] Joseph M. Hilbe. Modeling count data. Cambridge University Press, 2014.

[19] Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan. cop-

ula: Multivariate Dependence with Copulas, 2017. https://CRAN.R-

project.org/package=copula, R package version 0.999-18.

[20] Harry Joe. Dependence modeling with copulas. Monographs on Statistics

and Applied Probability (Book 134). Chapman and Hall/CRC, 2015.



91

[21] Dimitris Karlis and Evdokia Xekalaki. Mixed Poisson distributions. Inter-

national Statistical Review, 73(1):35–58, 2005.

[22] Subrahmaniam Kocherlakota and Kathleen Kocherlakota. Bivariate discrete

distributions. Encyclopedia of Statistical Sciences, 1992.

[23] Zhibin Li, Wei Wang, Pan Liu, Lu Bai, and Muqing Du. Analysis of crash

risks by collision type at freeway diverge area using multivariate modeling tech-

nique. Journal of Transportation Engineering, 141, 2015.

[24] Jianming Ma, Kara M. Kockelman, and Paul Damien. A multivariate Poisson

lognormal regression model for prediction of crash counts by severity, using

bayesian methods. Accident Analysis and Prevention, 40(3):964–975, 2008.

[25] Ian McHale and Phil Scarf. Modeling soccer matches using bivariate dis-

crete distributions with general dependence structure. Statistica Neerlandica,

61(4):432–445, 2007.

[26] Mhamed Mesfioui and Jean-François Quessy. Concordance measures for

multivariate non-continuous random vectors. Journal of Multivariate Analy-

sis, 101(10):2398–2410, 2010.

[27] Roger B Nelsen. An introduction to copulas. Springer Science & Business

Media, 2007.

[28] Johanna Nešlehová. On rank correlation measures for non-continuous ran-

dom variables. Journal of Multivariate Analysis, 98(3):544–567, 2007.

[29] Aristidis K Nikoloulopoulos. A survey on multivariate copula-based mod-

els for multivariate discrete response data. In Copulae in Mathematical and

Quantitative Finance, pages 231–249. Springer, 2013.

[30] Aristidis K. Nikoloulopoulos and Dimitris Karlis. Regression in a copula

model for bivariate count data. Journal of Applied Statistics, 37(9):1555–1568,

2010.



92

[31] Eun Sug Park and Dominique Lord. Multivariate Poisson-lognormal mod-

els for jointly modeling crash frequency by severity. Transportation Research

Record: Journal of the Transportation Research Board, (2019):1–6, 2007.

[32] M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. Inst.

Statist. Univ. Paris, 8:229–231, 1959.

[33] Pravin K Trivedi and David M Zimmer. Copula modeling: an introduction

for practitioners. Now Publishers Inc, 2007.

[34] Linda J. Willson, J. Leroy Folks, and J. H. Young. Multistage estimation

compared with fixed-sample-size estimation of the negative binomial parameter

k. Biometrics, 40(1):109–117, 1984.

[35] Yunlong Zhang, P E Assistant, Ye Zhirui, and Dominique Lord. Estimating

dispersion parameter of negative binomial distribution for analysis of crash data:

Bootstrapped maximum likelihood method. Transportation Research Record,

2019, 12 2006.


	ABSTRACT ENGLISH
	ABSTRACT SPANISH
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Literature Review
	Generalized Linear Models
	Generalized Linear Models for Count Data
	Bivariate Count Data Models
	Copula-based Regression Models
	Parametric copula families
	Inference in copula-based regression models
	Dependence measured by Kendall's 

	Copula-based Models for Count Data
	Regression to the copula parameter

	Methodology
	Copula-based Regression Model for Bivariate Count Data
	Performance Measures and Selection Criteria
	Simulation Studies
	STUDY 1 Copula-based regression models for overdispersed bivariate count data with the same marginal means
	STUDY 2 Copula-based regression models for bivariate count data with different marginal means

	Simulation Studies Results
	STUDY 1 Results
	STUDY 2 Results


	Application: Fatal and Non-fatal Vehicle Crashes in Highways of Puerto Rico 
	Data Description
	Modeling the Marginals
	Joint Modeling Using Copulas
	Regression to the copula parameter

	CONCLUSIONS AND FUTURE WORK
	APPENDICES
	STUDY 1 Average bias of estimates and Monte Carlo Standard Error (MCSE)
	STUDY 2 Average bias of estimates and Monte Carlo Standard Error (MCSE)
	Loglikelihoods for the bivariate regression copula-based models with negative binomial marginals

