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Many statistics teachers in line with the recommendations of several studies

suggest using real-life context data during class lessons. The present work shows

the use of the Old Faithful Geyser eruptions as a real-life data example for teaching

statistics at a university. It can be adapted for basic courses to more advanced

ones. During this study, we illustrated how to use the Old Faithful Geyser data

to discuss concepts and methods related to descriptive statistics, inferences and

curve fitting for an introductory statistics course. In the same way, we use the

data to examine some uses in advanced class lessons that involve topics such as

bootstrap method, inferences for the normal mixture models, goodness of fit tests,

kernel density estimation (KDE), as well as some nonparametric regression methods,

namely, kernel smoothing, LOWESS and smoothing splines.
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Por

DIDIER A. MURILLO FLOREZ

May, 2019

Consejero: Wolfgang A. Rolke. PhD
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Muchos maestros de estad́ıstica, en ĺınea con las recomendaciones de varios estu-

dios, sugieren utilizar datos de la vida real durante las lecciones de clase. El presente

trabajo muestra el uso de los datos de las erupciones en el Old Faithful Géiser como

un ejemplo de datos de la vida real para la enseñanza de la estad́ıstica en una univer-

sidad. El uso de estos datos puede adaptarse desde cursos básicos hasta cursos más

avanzados. Durante este trabajo, ilustramos como usar los datos del Old Faithful

Géiser para discutir conceptos y métodos relacionados con estad́ısticas descriptivas,

inferencias y ajuste de curvas para un curso de introducción a la estad́ıstica. De la

misma manera, utilizamos los datos para mostrar algunos usos de estos en lecciones

de clase avanzadas que involucran temas como el método bootstrap, inferencias en

modelos de mezclas normales, pruebas de bondad de ajuste, estimación de densidad

por kernel, aśı como también algunos métodos de regresión no paramétrica tales

como, suavizamiento por kernel, regresión local y suavizamiento por splines.
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CHAPTER 1

INTRODUCTION

1.1 The Old Faithful Geyser

The Old Faithful is a famous geyser in Yellowstone National Park in the United

States. Its eruptions are characterized by having a certain regularity; according to

historical data it erupts every 43 to 96 minutes, with a duration of 1.5 to 5 minutes,

and it can erupt around 20 times in a day. In this natural phenomenon there is

a relationship between the duration and length of the waiting times, in general a

large eruption is followed by a long waiting time and similarly a smaller eruption

is followed by a short waiting time. But the Old Faithful geyser is not as faithful

as the name suggests, because the time between eruptions and the length of each

eruption is quite variable.

This geyser has a strange feature, eruptions with a duration in the interval

between 2.8 to 3.4 minutes are not very frequent. Also, waiting times between 65

to 70 minutes do not happen often. This behavior can be explained by geological

reasons and some characteristics related to water temperature (e.g. See [1], [2]).

But we will not go into these aspects.

1.2 Background

Since the Old Faithful Geyser data set was collected in 1978 many statistical

studies have been realized. For example, a study in [3] used this data set to create

graphics based in a regression analysis. These graphs were used for educational

purposes. A general analysis of data, including Markov chain and time series mod-

els, to model the pattern of waiting time and eruption duration of the geyser was

1
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realized by [4]. Also, W. Härdle used the data to illustrate various topics about

nonparametric statistics [5].

A statistical learning-oriented research using the data to introduce students

to statistical thinking and ideas about variability and prediction is presented in

[6]. Also, an investigated about Rayleigh distributions statistical model to model

eruptions can be consulted in [7]. For the Old Faithful Geyser in particular, some

studies that can offer substantial insight into eruption dynamics, for example; (See

[1], [2], [8]).

1.3 The data set

We will develop this work with a data set of 272 observations of eruptions of

Old Faithful Geyser taken in 1978 [9]. This data set is formed of the duration of

eruption and time between eruptions, both variables, waiting time and eruption

duration, are given in minutes. This data set is available in R as a data frame with

the name faithful.

Table 1–1: First ten observations of Old Faithful Geyser data set.

Observations Eruptions Waiting time
1 3.60 79
2 1.80 54
3 3.33 74
4 2.28 62
5 4.53 85
6 2.88 55
7 4.70 88
8 3.60 85
9 1.95 51
10 4.35 85

A header with the first 10 records of the data set is shown in the Table 1–1.

The first record represents an eruption with a duration of 3.6 minutes, followed

by a waiting time of 79 minutes. We can easily see that a short eruption would be
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followed by a short time interval until the next eruption and a longer eruption would

be followed by a longer time interval.

1.4 Motivation

Often times in statistics education we do not have real-life data to explain

or teach about particular methods, and thus it is necessary to use synthetic data.

In fact, made up data can reinforce the perception in students that statistics is

artificial and uninteresting [10]. Unlike using synthetic data, the use of real-life

data is associated with cognitive and motivational aspects in the students learning

experiences, as well as statistical thinking and reasoning [11]. In line with this,

several studies recommend that statistics teachers incorporate real-life data into

class lessons (e.g. See [12], [13]).

The Old Faithful Geyser data set has the advantage of being a real and still

open problem, which has unique characteristics that involve variability and uncer-

tainty. These qualities make the data ideal to teach statistics. The aim of our work

is to present some uses of the Faithful Geyser data set in statistics education both

graduate and undergraduate courses. The data can be used to discuss topics like

descriptive statistics, inferences, simple linear and quadratic regression. Most of this

work will be devoted to show the use of the data set in more advanced statistics

courses that deal with topics such as normal mixture model distributions, param-

eter estimation, parametric and nonparametric bootstrap, nonparametric density

estimation, and goodness of fit tests, as well as curve fitting, which we will approach

using nonparametric methods.

This data set can be studied using a variety of statistical methods. It can be

discussed in different levels of academic courses, from undergraduate to graduate

level statistics.
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1.5 Objectives

1.5.1 General Objective

Illustrate some uses of the Old Faithful Geyser eruption as a real-life data

example in statistics education both graduate and undergraduate courses.

1.5.2 Specific Objectives

1. Use the Old Faithful Geyser data to illustrate graphs, concepts, and methods of

descriptive statistics that are discussed in most introductory statistics courses.

2. Illustrate some inferences statistical and curve fitting methods on real-life context

data for undergraduate statistics courses.

3. Exemplify some topics of graduate statistics courses like frequentist inferences sta-

tistical for normal mixture models, as well as a Bayesian analysis for these kind

models on a real-life data context.

4. Show some uses of the Old Faithful Geyser eruption data to illustrate advanced

topics such as kernel density estimate and nonparametric regression methods.



CHAPTER 2

INTRODUCTORY STATISTICS

In this chapter we will use the Old Faithful Geyser data to illustrate graphs,

concepts, and methods that are discussed in most introductory statistics courses.

Graphs such as the histogram, boxplot, scatterplot, and normal probability plot will

be discussed using the data set; as well as basic concepts of descriptive statistics such

as measures of central tendency and variability. Also, we will show how to to do

point and interval estimation using the standard theory. Finally, we will illustrate

the method of simple linear and polynomial regression.

2.1 Graphs

2.1.1 The Histogram

Histograms are an important and classic graph of descriptive statistics, they

are uses when we have a set of continuous data. This graph, introduced by Karl

Pearson [14], shows qualitative and quantitative information about the distribution

of the data. A histogram can be used to get a first impression about the shape (e.g.

skewness or symmetry) of the density function of the data by a simple visual check.

Also, this graph permits to detect outliers.

An important step in the construction of histograms is the choice of the number

of bins and their respective bandwidth. There is no single best method to determine

the number of bins or classes, but there are some formulas that can suggest a number

of bins. One of these is called Sturge’s rule [15]. Following this rule, the data range

should be split into k equally spaced bins. It is defined by following,

k =
⌈

log2n
⌉

+ 1. (2.1)

5
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In the expression 2.1 the ceiling operator means that the closest integer above

the calculated value will be used. This equations can be derived from a binomial

distribution [15]. If we apply the equation 2.1 we get,

k =
⌈

log2(272)
⌉

+ 1 ≃
⌈

8.08
⌉

+ 1 = 10. (2.2)

Above we obtained k = 10 bins, this means we should create a histogram with

10 bins equivalent to 10 bars. To make a histogram in R we can use the basic

function hist(.), however, in this work we use the ggplot2 package to make all

graphs. The hist(.) function computes, by default, the number of bins by using

Sturge’s method, but this number is only a suggestion. The recommended number

of bins gets transfered to the pretty(.) function which can define a new set of

intervals.To see more details about pretty(.) (e.g. See [16]). Figure 2–1 shows a

frequency histogram of the waiting time variable.

0

20

40

60

40 50 60 70 80 90 100

Waiting time

c
o

u
n

t

Figure 2–1: Frequency histogram of waiting time with 10 bins by Sturge’s rule.

We can see that the form of this histogram is skewed to the left. Also, it seems

to be split in two main parts and do not look bell-shaped. The center of distributions

do not have many observations. In short, the histogram of the data shows that their
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distribution is bimodal. The form of the histogram can be justified by geological

reasons (e.g See [1], [1]).

As we discussed earlier, if we use hist(.), the number of bins can be different

from the one recommended by Sturge’s or another rule, because the pretty(.)

function changes the number of bins to make the histogram visually appealing. But,

if we want the histogram with the number of recommended bins, we must manually

enter the values of the break points in the breaks option of the hist(.) function.

2.1.2 The Boxplot

The boxplot [17], is an ideal tool for conveying the measures of centrality,

location, and variation of data sets. The box diagram shows the median and the

quartiles of the data, and may also represent the outliers. The most frequent use of

the boxplot is to compare groups. We will use two Old Faithful Geyser data sets,

one from 1978 and the other from 2011, with a total of 272 observations. Figure 2–2

shows a boxplot graph of waiting time data sets.
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Figure 2–2: Boxplot for the Old Faithful Geyser data sets of 1978 and 2011.

In Figure 2–2, we can observe the changes in the behavior of the waiting time

in the Old Faithful Geyser. The 2011 sample has longer waiting times and outliers.

Unlike the 2011 sample, the Old Faithful Geyser data from 1978 has no outliers.
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2.1.3 Normal Probability Plot

We can do a simple diagnostic about normality in the data by means of a normal

probability plot [17]. If both sets of quantiles in a normality probability plot come

from the normal distribution, we should see that the points form a straight line in

the scatterplot. This test yield a visual representation of the data, but it is not a

definitive test. Figure 2–3 depicts the normal probability plot of the waiting time

variable.
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Figure 2–3: Normal probability plot of the waiting time in the Old Faithful Geyser.

Visually, in Figure 2–3 the probability plot of the waiting time variable does

not depict the points as a linear-pattern. Also, in the center and the lower and

upper extremes of the plot most points move away considerably from the straight

line, which indicates that the normal distribution is not an appropriate model to

describe the waiting time variable of the Old Faithful Geyser.

2.1.4 The Scatterplot

A scatterplot [17] uncovers relationships between two variables. So if we want

to investigate about the possibility of the existence of relationships between the
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waiting time and the durations of eruptions, it is necessary to carry out a bivariate

analysis of two joined variables. To describe the relationship we usually start by

drawing a scatterplot. Figure 2–4 depicts a scatterplot of the waiting time and the

duration of eruptions variables.
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Figure 2–4: Scatterplot for the waiting time and duration of eruptions variables of
the Old Faithful Geyser data.

In the scatterplot the x-axis and y-axis represent eruption durations and waiting

time, respectively. We can observe that there is a linear relationship between the

two variables. Also, we can se that the data is clumped in two distinct groups.

This suggests that there are generally two types of eruptions, short-wait preceded

by short-duration, and long-wait preceded by long-duration. In other words, we

can see that the data segregate into two clusters. Rinehart explains the geological

reasons of why the eruptions with durations in the 2.5 to 3.2 minute interval and

waiting times between 60 and 70 minutes are atypical [1].
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2.2 Summary statistics

2.2.1 Centrality Measures

Frequently, for a set of continuous data, the mean and the median are used as

summary measures. The average waiting time in the Old Faithful Geyser, explain

the trend, and centrality of this variable. We found that the average waiting time is

70.89 minutes, this means that we will expect that many waiting times will be close

to 70.89 minutes. Instead of the average, we can choose the median as a centrality

measure; we have that the median of the waiting times is 76 minutes, that is to say

the 50% of waiting times have been less than or equal to 76 minutes. Table 2–1

summarizes these results.

Table 2–1: Summary of centrality measures of waiting time.

Statistics Value
Mean 70.89
Median 76.00

We obtained a mean equal to 70.89 minutes, but if we look at the histogram

in Figure 2–1 this measure yields misleading results. Actually, it is a value that is

rarely seen in the Old Faithful Geyser. In this case, the mean is not appropriate

statistic measure because the waiting time distribution is bimodal.

2.2.2 Variability Measures

Respect to the variability measures, the variance and standard deviation are

usually used. Table 2–2 shows these measures to waiting time variable.

Table 2–2: Summary of waiting time variability measures for each group.

Statistics Value
Variance 184.82
Deviation standard 13.60

The values in Table 2–2 do not contribute relevant information.
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2.3 Statistical Inferences

2.3.1 Point estimation

To make a point estimation with the complete data set will be a mistake,

because the results lack meaning in the context of the waiting time estimation for

the Old Faithful Geyser. However, there is another option for this estimation. As

we previously discussed, the data in Fig 2–4 is clumped in two distinct groups.

Therefore, we can infer that the best way to analyze this data is to split it into

two groups, named group 1 and 2. Group 1 (short times eruptions ≤ 3.2 minutes)

will include waiting time values from 43 to 71 minutes, and Group 2 (long times

eruptions > 3.2 minutes) equivalents to waiting time values over 64 to 96 minutes.

Hence forth the terms group and sample will be used interchangeably. Figure 2–5

depicts the scatterplot with the groups.
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Figure 2–5: Scatterer plot of waiting time and duration of eruptions with the groups.

Visually, we can check the breakdown of the two groups for the waiting time in

the Old Faithful Geyser data when the times eruptions are shorts or larges. Then,

we have two samples with their respective population parameters.
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Now, since the sample average X̄ is an unbiased estimator of the population

mean µ. We use as usual the statistic X̄ as a point estimator of the parameter

µ. In other words, we take the sample average waiting time as the point estimate

of the time until the next eruption of each group. Before make this, we can make

histograms for each sample just to get an idea of the shape of the underlying distri-

butions. Figure 2–6 depicts the histograms for each group of the waiting time.
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Figure 2–6: a) Frequency histogram of the waiting time in group one. b) Frequency
histogram of the waiting time in group two.

The red dashed lines in the histograms represent the means for each group. Let

X̄1 and X̄2 the mean for the two groups respectively. The point estimation for µ1

and µ2 are following by,

µ1 = X̄1 = 54.64 and µ2 = X̄2 = 80.05 (2.3)

The results for the means in 2.3 and for the median for each group are summarize

in Table 2–3.
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Table 2–3: Summary of waiting time centrality measures for each group.

Statistics Group 1 Group 2
Mean 54.64 80.05
Median 54.00 80.00

The means estimated of each group are 54.64 minutes in group 1 and 80.05

minutes in group 2. In other words, we have that on average 54.64 minutes is

the next predicted eruption if the length of duration is short and on average 80.05

minutes if the length of duration is large. The abstraction for the medians is similar.

Therefore, the previous values correspond to what we would expect to occur in terms

of expectation about the waiting times for each group, in this case these results have

a greater significance compared with the values in Table 2–1.

Also, using point estimation we can estimate the variance and standard devia-

tion of each group. Table 2–4 shows these estimates to both groups.

Table 2–4: Summary of waiting time variability measures for each group.

Statistics Group 1 Group 2
Variance 36.0 34.8
Standard Deviation 6.0 5.9

The sample that has the most variability corresponds to group one with a

standard variation of 6 minutes. In part this can be explained by larger sample size

in group two.

2.3.2 Interval estimation

Thus far we have not yet discussed the distribution of samples 1 and 2, this

means that we have not made any assumptions about the nature of their distribution.

Now, to build confidence intervals from a parametric approach it is necessary to know

the distribution of the data. In this case, is essential to make the assumption that

the samples in both groups come from a normal distribution, that is to say that

X1, ..., Xn and X1, ..., Xm were drawn from N(µi, σi), where i = 1, 2, and n = 98

and m = 174 are the length of samples 1 and 2.
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2.3.3 Student t-interval

Since the population variance σ2 is generally unknown, the construction of

confidence intervals for the population mean µ will usually be based on Students

t-distribution. Therefore, a 100(1 − α)% confidence interval for the µ when the

assumption about normality holds and the σ2 is unknown is defined by,

[

X̄ − t(α
2
,n−1)

s√
n
, X̄ + t(α

2
,n−1)

s√
n

]

. (2.4)

The expression in 2.4 is known as Student’s t-interval. Following this equation

we computed a 95% confidence interval of the population mean µ of the waiting

time for each group. In group one the sample length is 98, therefore the value of the

t-student distribution should be computed with n−1 degrees of freedom, this means

97. We can use the command qt(0.975,98) to compute the value of distribution

t-student, in this case we obtained 1.98. Then,

Lower = 54.64− 1.98 ∗ 6√
98

= 53.44

Upper = 54.64 + 1.98 ∗ 6√
98

= 55.84

Similarly, we can compute the confidence interval for group 2. Table 2–5 shows the

results.

Table 2–5: A 95% confidence interval for average waiting time of both groups.

Group Point estimation Lower Upper Length sample
1 54.64 53.44 55.84 98
2 80.05 79.16 80.94 174

The 95% confidence intervals estimation of average waiting time is (53.44, 55.84)

minutes for group one, and (79.16, 80.94) minutes for group two. We can see that

the confidence interval in group 1 is wider than in group 2, the reason for this is

that group 2’s sample size is bigger, and the standard error is reduced when the
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sample size is larger. The confidence intervals in Table 2–5 can be computed using

the function t.test().

Sometimes the normality assumption in the sample is very restrictive and in

many cases it does not hold. In fact, since the confidence interval in the expression

2.4 is theoretically constructed by taking that assumption, if it is not fulfilled, then

the confidence interval is not totally true. We can do a simple diagnostic about

normality in both samples by means of normal probability plot (See Figure 2–7).

This test gives us a visual appreciation of the data, but it is not a definitive test.
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Figure 2–7: a-b) Normal probability plot to samples one and two of waiting time.

We can see that in both plots the majority of the points lay over the straight

line of the center of distribution, with the exception some points in the left tail

(Group 1). In this case we can consider the normality assumption acceptable in

both cases. But, if we are unsure we could do a rigorous test like ShapiroWilk test.

But, if definitively the normal assumption does not hold, a nonparametric method

to do interval estimation like a Wilcoxon signed rank test can be a option.
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2.4 Simple linear regression

Simple linear regression is a statistics method used to describe the relationship

between two variables. In our case we are interested in describing the relationship

between Y= Waiting time (response,dependent variable) and X= duration of erup-

tions (predictor, independent variable), and predicting the waiting times using the

duration of eruptions. Given a sample n of ordered pairs (Xi, Yi), then the model

of linear regression is given by,

yi = β0 + β1xi + ǫi, (2.5)

where i = 1, ..., n and β0 and β1 are the y−intercept and the slope of the

regression model respectively. ǫi is the random error, with the assumption that

ǫi ∼ Normal(0, σ2). The simple linear regression takes the assumption that the

expected value of y, E[Y |X = x] = β0+β1x is linear with respect to the parameters

(β0, β1), where β0 and β1 are unknown and should be estimated from the sample

(Xi, Yi). The usual method for estimating β0 and β1 is called least squares method.

The estimates of the parameter values are frequently denoted by β̂0 and β̂1.

In the least squared method the idea is to minimize the sum of the squares of

the errors ǫi, with respect to β0 and β1. That is to say,

LS(β0, β1) =

n
∑

i=1

ǫ2i =

n
∑

i=1

(y − β0 − β1xi)
2. (2.6)

The expression 2.6 is minimized when [9],

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2
=

Sxy

Sxx
. (2.7)

β̂0 = ȳ − β1x̄. (2.8)

As proved by [9]. Finally, the estimated regression line, also called the fitted

line by least squares, will be,

ŷ = β̂0 + β̂1xi. (2.9)
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When the regression line is fitted, the random error becomes an observed value

and is called residual, which is represented by ri.

The problem of predicting the waiting time in the Old Faithful Geyser can be

represent by the following linear regression model,

Waiting time = β0 + β1 ∗Duration. (2.10)

The linear relationship between waiting times and duration of eruptions allows

carry out a linear regression fitting process. Figure 2–8 depicts the scatterplot of

waiting time and duration of eruptions with the fitted line.
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Figure 2–8: Scatterer plot of waiting time and duration of eruptions with the fitted
line.

In R the function lm implements the least squares method. We used this function

the follows way lm(waiting ~ eruptions, data=faithful) to fit the regression

model 2.10. The output of lm showed that the estimate of the y-intercept is β̂0 = 33.5

and the slope is β̂1 = 10.7. With these results we can rewrite the model 2.10 as,

Waiting Time = 33.5 + 10.7 ∗Duration. (2.11)
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Equation 2.11 gives the fitted values of waiting time based on values of the

duration of eruptions. In this case the interpretation about the y-intercept coefficient

is nonsensical, because the duration of eruption can never have a value of zero. Now,

for the slope β̂1 = 10.7; this means that the average waiting time increase 10.7

minutes when the average eruption duration increases by one minute.

To check the goodness of fit of a regression model we can use a measure called

R-squared. It measures how close are the observed values of the regression line are.

In practice, this value is interpreted as the amount of variance explained in the

response variable by the predictor variable. In our regression model of the waiting

time 2.11 we calculated an R2 = 0.81. This to say, the quantity of variance explained

in the waiting time by the duration of eruptions is 81%. This indicate a “good” fit

of the model.

2.5 Prediction

A linear regression model can be used to make predictions for the response

variable for some fixed value of the predictor variable. Then, we will use the model

2.11 to make predictions of the waiting time, given a some value of the duration

eruptions.

2.5.1 Confidence and prediction intervals

We can predict an individual value of the response variable as ŷ0 = β̂0 + β̂1x0,

for instance, we can interested in predict the waiting time if the last eruption was 3

minutes, this is to say,

Waiting time = 33.5 + 10.7 ∗ 3 = 65.6. (2.12)

The result 2.12, indicate that given a value of duration eruptions of 3 minutes,

the prediction of the average waiting time until the next eruptions be 65.6 minutes.

This prediction is not bad, but it is more appropriate to predict it using an interval

where the value of waiting time is expected to be in with a certain confidence level.
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We can calculate confidence intervals of the average waiting time values based on

values of eruption durations. Let us say we want to estimate an interval of the wait-

ing time until the next eruption for the following values of eruption durations, 1.8,

3.2 and 4.5 minutes. We can find these intervals using the command predict(.),

with the argument interval = confidence. Table 2–6 shows the results.

Table 2–6: Linear regression 95% confidence intervals for average waiting time.

Duration Point estimation Lower Upper
1.8 52.78 51.52 54.05
3.2 67.81 67.08 68.53
4.5 81.75 80.81 82.70

We can observe that the 95% confidence interval of the average waiting time for

the 1.8 minute eruption duration falls within (51.52, 54.05) minutes. For the 3.2 and

4.5 minute values it falls within (67.08, 68.53) and (67.08, 68.53) minutes respectively.

Instead of calculating confidence intervals to the mean response, we want to predict

an individual response of waiting time given a value of duration, this case is known as

a prediction interval. Now, a similar process is done for the same values of eruption

durations in Table 2–6 to calculate predictions intervals. Again, we can use the

command predict(), but now the argument should be interval = "prediction".

The prediction intervals are showed in Table 2–7.

Table 2–7: Linear regression 95% prediction intervals for individual response of
waiting time.

Duration Point estimation Lower Upper
1.8 52.78 41.07 64.50
3.2 67.81 56.14 79.48
4.5 81.75 70.07 93.44

We can observe that a 95% confidence interval of the waiting time for the 1.8

minute eruption duration falls within (41.07, 64.50) minutes. For the 3.2 and 4.5

minute values it falls within (56.14, 79.48) and (70.07, 93.44) minutes respectively.
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2.6 Fitting Polynomial Regression

We can also considerer a quadratic regression model as an alternative to model

the relationship between the duration of eruptions and waiting time. A quadratic

model is a particular case of the polynomial regression when the order of polynomial

is 2, with this approach is included a partially linear model with nonlinear terms in

the explanatory variables. For example, given a sample n of ordered pairs (Xi, Yi),

the quadratic polynomial regression in one variable is,

yi = β0 + β1xi + β2x
2
i + ǫi. (2.13)

The expectation E[Y |X = x] of the model 2.13 describes the quadratic function

β0 + β1x + β2x
2. In this model, β1 is often called the linear effect parameter and

β2 the quadratic effect parameter. If the range of the data includes the zero. The

parameter β0 is is interpreted as the y-intercept. Otherwise, β0 has no interpretation.

The problem of predicting the waiting time of eruptions in the Old Faithful Geyser

can be resolved using a quadratic regression model. This model is the follows,

Waiting time = β0 + β1 ∗Duration + β2 ∗Duration2. (2.14)

Similar to the simple linear regression, we can estimate the unknown values of

β0, β1 and β2 through the least squared method using the lm(.) function. Table

2–8 shows the estimated values of β0, β1 and β2.

Table 2–8: Parameter estimated for waiting time quadratic model.

Parameter Estimation
β0 17.25
β1 22.17
β2 -1.76

The least squares estimates are β̂0 = 17.25, β̂1 = 22.17, and β̂2 = −1.76.
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Then, by substituting this values in 2.13, the quadratic regression model of the

waiting time in the Old Faithful Geyser is,

Waiting time = 17.25 + 22.17 ∗Duration− 1.76 ∗Duration2. (2.15)

The model 2.15 can be visualized in Figure 2–9 by means of a scatterplot with

the fitted curve.
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Figure 2–9: Scatter plot of waiting time and duration of eruptions with fitted
quadratic model.

We can observe the waiting time model fitted to expression 2.15. We could

think of high order polynomials as third, fourth, and fifth order, but we should

remark the importance of keeping the order as low as possible. Although the higher

order polynomials can be made to fit almost any pattern. However, interpretation

of such models may be very difficult. Besides, the data does not merit a higher

polynomial model. This models has an R2 = 0.82, this means that the goodness of

fit is quite better from linear regression model 2.11.
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2.7 Model comparison

So far, we have discussed two ways to fit the model for the waiting time of the

Old Faithful Geyser. In section 2.4 we utilized the simple linear regression. Next,

we discussed the polynomial regression approach. As a consequence, we have two

models to predict waiting time, and we need to choose the best model of the two.

Thus, we have that the linear model, 2.11, is nested in the quadratic model, 2.15.

2.7.1 Model Comparison Using F-test

The Extra Sum of Squares Principle uses the Error Sum of Squares and F-test

to compare two nested models. Where two models are nested if one of them is a

particular case of the other one. In our case, the models of simple linear regression

2.11 and quadratic 2.15 for waiting time are nested since if we define β2 = 0 in the

quadratic model 2.15, it simplifies into the previous linear model 2.11. In this case,

the linear model is called the reduced model and the quadratic model is named the

complete model. Thus,

Reduced Model: Waiting time = β0 + β1 ∗Duration

Complete Model: Waiting time = β0 + β1 ∗Duration + β2 ∗Duration2

To test whether the quadratic terms should be included in the model, we test

the null hypothesis,

H0 : β2 = 0

Ha : β2 6= 0

In short, the null hypothesis states that there is no difference between the mod-

els. To test the null hypothesis, we can use the command anova(.). The p-value

for this test is 0.00022, so we would reject the null hypothesis and conclude that the

quadratic model is preferred over the linear model.
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2.8 Residual Analysis

In linear regression, the main assumptions for the least squares regression are

the homogeneity of residuals variance. On other head, the residuals should be nor-

mally distributed. To check the homogeneity of residuals variance, a commonly used

graphical method is to plot the residuals versus fitted values. If the model is well-

fitted, there should be no pattern to the residuals plotted against the fitted values.

For assessing normality, an appropriate tool is the normal probability plot. Figure

2–10 depicts the fitted values against residuals plots and normal probability plots

for both models for the waiting time (linear and quadratic).
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Figure 2–10: a) Plot of fitted values linear model vs residuals. b) Normal proba-
bility plot of residuals linear model. c) Plot of fitted values quadratic model versus
residuals. d) Normal probability plot of residuals quadratic model.

Visually, the graphs show an appropriate appearance of the residuals versus the

fitted values in both models (linear and quadratic), there is no pattern in the plot.

This indicate that the models are well-fitted. In the same way, the assumption of

normality of residuals is acceptable in both cases.



CHAPTER 3

STATISTICS GRADUATE LEVEL

In this chapter we will use the data set to discuss the confidence intervals

by Bootstrap method. We will use the data to model the waiting time in the Old

Faithful Geyser as a normal mixture model, as well as, show how to do point estimate

in these kinds of models by Likelihood using the EM Algorithm. Also, we will apply

the Kolmogorov-Smirnoff goodness of fit test for evaluating the fit of an univariate

normal mixture model and how to use simulation to validate the results. Finally,

we perform a Bayesian analysis for normal mixture models.

3.1 Empirical Bootstrap

Although the bootstrap idea existed already [18], it was Bradley Efron in 1979

[19] who made it popular and its usefulness as a statistical technique, thus widening

its applicability and demonstrating how to implement the bootstrap effectively using

computers. The main idea of the bootstrap is to construct re-samples of the observed

data to estimate the variation of some statistic that is itself computed from the

same data. Simply suppose we have n observations X1, X2..., Xn, which come from

a unknown distribution F . Since an empirical bootstrap sample is a re-sample of

the same size, this implies that X∗
1 , X

∗
2 ..., X

∗
n is a re-sample from the same sample.

A statistic in the sample is denoted as u, but in the empirical bootstrap sample or

re-sample as u∗. If the sample has a distribution F then the empirical bootstrap

sample has a distribution F ∗.

Theoretically, the bootstrap guarantees that F ∗ ≃ F . This means that although

F is unknown, the true F and empirical distribution, F ∗, are approximately equal

24
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[20]. As a consequence, the bootstrap establishes is that the variation of the statistic

u is well estimated using the variation of u∗.

In the bootstrap process, care must be taken to ensure constructing re-samples

of the same size as the original sample, this is necessary because the variation of the

statistic u will depend on the sample size.

3.1.1 Confidence intervals by empirical bootstrap method

The empirical bootstrap can be used to build confidence intervals with a 100(1−

α)% confidence level around the any parameter of the population. The main goal

in the process of estimating a confidence interval for any unknown parameter θ is

to estimate the distribution of variation between the statistic T and true θ. These

differences can be denoted as δ, and can be defined as follows,

δ = T − θ. (3.1)

If we know the distribution of expression 3.1, then we can do a 100(1 − α)%

confidence interval for θ, that is to say that we can compute,

P (δ1−α/2 ≤ T − θ ≤ δα/2) = 1− α,

which is equivalent to,

P (T − δ1−α/2 ≥ θ ≥ T − δα/2) = 1− α.

Therefore, a confidence interval for θ with 100(1−α)% confidence level is given

by,
(

T − δα/2, T − δ1−α/2

)

. (3.2)

The principle bootstrap abstraction gives a practical and simple way to estimate

the distribution of δ, this means that it can be approximated through the distribution

of δ∗ as follows,

δ∗ = T ∗ − θ, (3.3)
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where T ∗ in 3.3 is the statistics of an empirical bootstrap sample and θ is the

parameter of interest. Therefore, the confidence interval for θ will be,

(

T − δ∗α/2, T − δ∗1−α/2

)

. (3.4)

Finally, the expression 3.4 is the bootstrap 100(1− α)% confidence interval for

the θ. In our case, we are interested for estimating the population mean of the

waiting time in the Old Faithful Geyser for the two samples discussed in the section

2.3. In this case θ = µ. The methodology to find confidence intervals for µ using

the empirical bootstrap principle simulation can be explained in five steps,

Confidence intervals empirical bootstrap principle simulation:

1. Given a sample X1, X2, ..., Xn compute the expectation

µ = X̄ =
X1 +X2 + ...+Xn

n
.

2. Generate B bootstrap samples X∗
1 , X

∗
2 , ..., X

∗
3 with the same size of original sample.

3. Compute the bootstrap sample mean X̄∗
i with i = 1, 2, ..., B.

4. Compute the centered sample mean of each bootstrap sample: δ∗i = X̄∗
i − X̄ , with

i = 1, 2, ..., B.

5. Calculate quantiles to probabilities α/2 and 1− α/2 into δ∗. Therefore, the confi-

dence interval is,
(

X̄ − δ∗α/2, X̄ − δ∗1−α/2

)

,

where δ∗α/2 and δ∗1−α/2 are the (α/2)th and (1− α/2)th percentiles respectively.

We computed bootstrap confidence intervals for population means in each group

from waiting times of the Old Faithful Geyser eruptions. We have the samples

X1, X2, ..., X98 and X1, X2, ..., X174 for the groups 1 and 2, respectively. We simu-

lated 100, 000 bootstrap samples for each group.
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Figure 3–1 depicts the histograms for re-sample means and differences δ∗ in

both groups.
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Figure 3–1: a-b) Frequency histograms for 100, 000 bootstrap sample means and the
differences δ∗ in group 1. c-d) Frequency histograms for 100, 000 bootstrap sample
means and the differences δ∗ in group 2.

The vertical dashed lines in Figure 3–1 refers to 2.5% and 97.5% of data, namely

0.025 and 0.975 percentiles. The summary of confidence intervals is shown in Table

3–1.

Table 3–1: Empirical bootstrap 95% confidence intervals for groups one and two.

Group Point estimation Lower Upper Bootstraps
1 54.64 53.45 55.81 100,000
2 80.05 79.17 80.93 100,000

Then, a 95% confidence interval for waiting time average in group 1 is (53.45, 55.81)

minutes and (79.17, 80.93) minutes for group 2. If we compare these results with

those obtained previously by means of Student t-interval in 2–5, we realize that they

are very similar.
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3.1.2 Percentile Method

As an alternative to computing the differences δ∗, the bootstrap percentile [19]

method uses the distribution of the bootstrap sample statistic as a direct approxima-

tion of the data sample statistic, but this approach could be naive and misleading.

It could work well, but it depends on the symmetry of the data’s distribution.
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Figure 3–2: a) Frequency histogram for 100, 000 bootstrap sample means in group 1.
b) Frequency histogram for 100, 000 bootstrap sample means in group 2.

Table 3–2 shows the confidence intervals for the average waiting time of group

1 and 2 using the percentile method.

Table 3–2: Percentile method 95% confidence intervals for groups 1 and 2.

Group Point estimation Lower Upper Bootstraps
1 54.64 53.45 55.82 100,000
2 80.05 79.17 80.93 100,000

Results shown in Table 3–2 were obtained by running 100, 000 bootstraps in

each sample. Again, these results do not depart much from those obtained by t-

interval from Table 2–5.
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There are some advanced methods such as the bias-corrected (BC) bootstrap

methods, but they are not part of this work, and therefore will not be discussed. In

R the package bootstrap implements the bias-corrected-accelerated (BCa) [20] and

ABC [20] methods through the functions bcanon and abcnon, respectively.

3.2 Waiting time as a univariate normal mixture model

As we discussed in Chapter 1, since the waiting time between eruptions has

a bimodal distribution, a mixture of two normal distributions might represent the

waiting time model. A normal mixture model assumes that the data is generated

from k distinct normal distributions. Now, we will consider the data as only one data

set and will make the assumption that the waiting time distribution is a univariate

normal mixture model with k = 2 components. In this case, it is assumed that

waiting time variables X1, X2, ..., Xn are independent. Data will belong to either the

short or long waiting time group, but we do not know which group they come from.

Thus, we shall have N(µ1, σ1) y N(µ2, σ2) normal distributions for each component.

Therefore, we can use the following normal mixture model to estimate the waiting

time eruptions of the Old Faithful Geyser,

f(x|λ, µ1, σ1, µ2, σ2) = λN(µ1, σ1) + (1− λ)N(µ2, σ2), (3.5)

with 0 < λ < 1. The Equation 3.5 is equivalent to,

f(x) = λϕ(x|µ1, σ1) + (1− λ)ϕ(x|µ2, σ2). (3.6)

It is clear that the function density f(x) in 3.6 has five parameters, where λ

is the percentage of each component and {µi, σi}2i=1 are the means and standard

deviations in each component. In this model, we have to estimate the five unknown

parameters of the distribution above. For this task, we will illustrate the perform of

the Maximum Likelihood Method.
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3.3 Parameter Estimation

3.3.1 Point Estimation: Maximum Likelihood Estimator

We can estimate the five parameters in equation 3.5 using the maximum like-

lihood method. Then, as X1, X2, ..., X272 are independent and normally distributed

N(µi, σi) with i = 1, 2. The likelihood function is defined as follows,

L(λ, µ1, σ1, µ2, σ2|X) =

n
∏

i=1

f(Xi) =

n
∏

i=1

[

λϕ(Xi|µ1, σ1) + (1− λ)ϕ(Xi|µ2, σ2)
]

,

and the log-likelihood function is,

log(L) = l(λ, µ1, σ1, µ2, σ2|X) =

n
∑

i=1

log
[

λϕ(Xi|µ1, σ1)+(1−λ)ϕ(Xi|µ2, σ2)
]

. (3.7)

Let θ = (λ, µ1, σ1, µ2, σ2). Then, an estimate for θ̂MLE is provided by,

S(θ̂, x) =
∂l(θ; x)

∂θ
= 0. (3.8)

The equation 3.8 is called the score function [21].

As we know, θ is a set of the five parameters, then the likelihood equation is a

set of 5 simultaneous equations, defined by differentiating l(θ, x) with respect to all

components of θ. We want to estimate the parameters, but unfortunately solving

equations 3.7 and 3.8 is not trivial, because, it is a 5D problem and can not be

maximized analytically.

We can solve the equation 3.8 using computational methods such as Newton-

Raphson [22]. One problem this method is the possibility of multiple local maxima

since the likelihood will have multiple roots. Aside from some other computational

issues [21]. Therefore, the convergence is not guarantied in this method; however,

the implementation of the Newton-Raphson algorithm in this example is somewhat

difficult. For the reasons mentioned above, we will illustrate the use of Expectation

Maximization Algorithm for tasking of estimating parameters.
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3.3.2 Expectation Maximization Algorithm

EM is an optimization algorithm developed in 1977 [23]. This algorithm has

many applications, among them, data clustering, missing values estimation, and

parameters estimation in mixed models and mixture distributions. Our case is the

parameters estimation in a normal mixture distributions as we saw in the expression

3.5. The algorithm (EM) is preferred over the Newton-Raphson algorithm since the

convergence in the latter strongly can be affected by the starts points of parameters

to be estimated. To use the EM we need a latent variable Zi that determines the

component from which the observation originates. Then we need to redefine the

log-likelihood function in 3.7 so that it looks like l(θ|X,Z).

Let us say,

Z ∼ Bernoulli(λ),

and,

Xi|Zi = 1 ∼ N(µ1, σ1) and Xi|Zi = 0 ∼ N(µ2, σ2),

where,

P (Zi = 1) = λ and P (Zi = 0) = 1− λ.

Then, the function f(x, z) is defined as follows,

f(x, z) =
[

λϕ(x|µ1, σ1)
]zi ·

[

(1− λ)ϕ(x|µ2, σ2)
]1−zi. (3.9)

Now, the maximum likelihood function of f(x, z) is,

L(θ|X,Z) =
n
∏

i=1

f(xi, zi) =
n
∏

i=1

[

λϕ(x|µ1, σ1)
]zi ·

[

(1− λ)ϕ(x|µ2, σ2)
]1−zi.

Therefore, the log-likelihood function is,
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log(L(θ|X,Z)) = l(θ|X,Z))

=

n
∑

i=1

log

{

[

λϕ(x|µ1, σ1)
]zi ·

[

(1− λ)ϕ(x|µ2, σ2)
]1−zi

}

=
n
∑

i=1

[

zi(log(λ) + log(ϕ(x|µ1, σ1)))

+ (1− zi)(log(1− λ) + log(ϕ(x|µ2, σ2)))

]

, (3.10)

by distributing the sum in the expression 3.10 we obtain,

l(θ|X,Z)) =

n
∑

i=1

zi(log(λ) + log(ϕ(x|µ1, σ1)))

+
n
∑

i=1

(1− zi)(log(1− λ) + log(ϕ(x|µ2, σ2))). (3.11)

Finally, in 3.11 we derive the maximum log-likelihood expression to 3.9, and

we can see that the equation 3.11 depends on xi and zi, this means that the EM

algorithm maximizes this function and finds the parameters according to the latent

variable Zi. It is clear that EM is an optimization algorithm, but it is not a statistical

inference principle. Therefore, it provides a maximum likelihood point estimate of

the parameter.

In R, the package mixtools [24] has the function normalmixEM; this function

implements the EM algorithm to estimate parameters for univariate normal mixture

models. To use the normalmixEM we should specify some arguments, such as the

sample, initial points for the mean, standard deviations, and first component per-

centage. For the mean’s argument mu we specified the vector (54.64, 80.05), similarly

for the sigma argument we chose standard deviations (6.00, 5.90). The percentage

argument lambda was assigned using lambda = 0.4. If the lambda = NULL, then

normalmixEM randomly draws the value from a uniform Dirichlet distribution [24].

The output of the function normalmixEM with the estimated parameters are

shown in table 3–3.
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Table 3–3: Estimated parameters of waiting time as mixtures of univariate normal
distribution

Parameters Component 1 Component 2
Lambda 0.36 0.64
mu 54.63 80.10
sigma 5.88 5.86

The estimated values of the percentage of components, means, and standard

deviations for the mixture model 3.5. The first and second component represent

36% and 64% of the eruption waiting time data. The average waiting time in the

first component (short times) is 54.63 and 80.10 minutes in the second (large times).

Figure 3–3 depicts the fit for waiting time as a normal mixture model.
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Figure 3–3: Histogram of the two components with fitted normal curves.

We can see the histogram for waiting times with the normal curves fitted with

the parameters in Table 3–3. It means the red and blue lines indicate the two

different fitted normal distributions.

According to the information above, the waiting time distribution as a mixture

normal in the expression 3.5 can be rewritten with the respective estimated values
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of the mean, standard deviation, and percentage components as follows,

f(x) = 0.36N(54.63, 5.88) + 0.64N(80.10, 5.86). (3.12)

The model in the expression 3.12 is the Maximum Likelihood estimate for the

waiting time in the Old Faithful Geyser.

3.3.3 Interval Estimation

Interval estimation in mixture normal models can be done by many ways, for

instance, bootstrap and maximum likelihood method. To find confidence intervals

of the unknown θ parameters in the normal mixture model of the waiting time

of the Old Faithful Geyser we will discuss confidence intervals based on the maxi-

mum likelihood method. In our case, the waiting time model is a multi-parameter

problem, where θ = (λ, µ1, σ1, µ2, σ2). We assume that X1, ..., Xn are iid random

variables with density function f(x, θ). Then, under some regularity conditions and

the Slutsky’s theorem [22], we have,

√
n
(

θ̂n − θ
) d−→ Normal

(

0,
√

I(θ)−1
)

,

where, I is the Fisher Information, which is defined by [22],

I(θ)ij = −E

[

∂i∂j

∂θi∂θj
logf(x; θ)

]

. (3.13)

Since the Fisher Information is the negative of the expected value of the Hessian

matrix of the log-likelihood function and by the law of large numbers,

1

n
H → I(θ)ij.

Then, a 100(1− α)% confidence interval for the i-th parameter is defined as,

θ̂i ± Zα

2

√

I(θ)−1
ij . (3.14)
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We need to find the second derivatives of each parameter θi, with i = 1, ..., 5, but

this is somewhat difficult. As an alternative, we can find the Hessian matrix using

some optimization functions in R. For this, we use the Non-Linear Minimization

function nlm(.) with the option Hessian = TRUE. For the start points we entered

the estimations of θ found by the EM algorithm. This guarantees an even closer

estimate of the true value of the parameters. Thus, we just need to solve H−1 and

get I(θ)−1
ij for each parameter.

Table 3–4 shows the estimates and 95% confidence intervals of θ by the method

of the Maximum Likelihood.

Table 3–4: Point estimations and 95% confidence interval for five parameters of the
waiting time distribution.

Parameter Point estimate Lower Upper
λ 0.36 0.29 0.42
µ1 54.63 53.24 55.98
σ1 5.87 4.81 6.92
µ2 80.10 79.10 81.07
σ2 5.86 5.08 6.65

In Table 3–4 we can observe that the point estimations for θ are similar by the

EM algorithm. Also, the parameter λ will be falls within (0.29, 0.42), µ1 and µ2

falls within (53.2 55.98) and (79.10 81.07) minutes respectively. Also, σ1 and σ2 falls

within (4.81, 6.92) and (5.08, 6.65) minutes respectively.

3.4 Goodness of Fit

In this section we will illustrate the Kolmogorov-Smirnov goodness of fit test.

We will use this tests to a formal check with a certain degree of confidence that

waiting time data come from a mixture normal distribution with parameters shows

in Table 3–3.

3.4.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov [25] is a test based on the empirical distribution func-

tion (ECDF) commonly used to decide if a sample comes from a population with a
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specific distribution. For example we say to have X1, ..., Xn which are continuous

and independent random variable and we wish to test H0 : Xi ∼ F vs Ha : Xi ≁ F

for all i. Thus, if the null hypothesis is true, then the empirical ECDF should be

close to the true one, that is the distance between the two curves should be small.

Figure 3–4 shows the fit between the ECDF of the waiting time sample and the

theoretical CDF.
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Figure 3–4: ECDF plot for waiting time data and theoretical curve.

We can observe that seems to perfectly fit the empirical distribution of the

waiting time, where the jump points curve be refer to ECDF and the red curve to

theoretical. The maximum difference occur when the waiting time is 78 minutes,

according the blue vertical line. The distance D we can definite as the statistics test

under of null hypothesis as following,

D = sup{|F (x)− F̂ (xi)| : x ∈ ℜ}. (3.15)

The expression 3.15 is called the Kolmogorov-Smirnov statistic. Then, all we

need to do is find F (Xi)− F̂ (Xi) for all i. The distribution of statistic D under the



37

null hypothesis does not depend on F , it is known as a distribution-free statistic.

The distribution of statistic D under the null hypothesis is difficult. Some literature

about it (e.g. [26]).

The Kolmogorov-Smirnov goodness of fit test is implemented in R thought rou-

tine ks.test(.) of base package stats. In this function we should provide some

arguments, as x refers to the sample, and y specifies the null hypothesis. An impor-

tant remark is that in ks.test(.) the null hypothesis H0 is that the data follow a

specified distribution provided in the argument y.

Now, the respectively hypothesis to perform a K-S test are,

H0 : The sample data of waiting time are not significantly different than a normal

mixture population. (H0 : Xi ∼ Fθ̂).

Ha : The sample data of waiting time are significantly different than a normal mixture

population. (H0 : Xi ≁ Fθ̂).

The output of ks.test(.) with the waiting time data and y = "pmnorm",

where "pmnorm" is a function that compute the theoretical probabilities of data

using the mixture normal distribution in 3.12 for the data is showed in Table 3–5.

Table 3–5: Output one-sample Kolmogorov-Smirnov test

Alternative hypothesis D statistics p-value
Two-sided 0.0337 0.9164

The value of tests statistics under null hypothesis is D = 0.0337. The p-value

of this test 0.9164. With this result we do not reject the null hypothesis H0 and we

keep going with our main idea about the that waiting time distribution is a normal

mixture like in 3.12. But formally, K-S test is inaccurate in this case, because the

fact that we estimated the parameters from the same data that we are using to do

the test, entails that be biasing the test towards failure to reject H0 . In other words,

the Kolmogorov-Smirnov goodness of fit test is not totally true when the population

parameters are unknown and the sample is used to estimate them.
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3.5 Simulation Studies: Adjusted p-value in K-S test

We can of course use simulation to implement such tests and try to overcome

that latter bias to an extent via a parametric bootstrap.

3.5.1 Simulation of waiting time

Through of Expectation Maximization (EM) algorithm we found the five pa-

rameters to the waiting time modeled as a mixture normal distribution. Now, to

simulate data drown from waiting time distribution in the equation 3.12 we should

carry out the follows process or methodology.

Simulation of waiting time:

1. Generate U1 ∼ Uniform(0, 1)

2. If U1 is less than λ, then generate X1 ∼ N(µ1, σ1)

3. Otherwise generate X1 ∼ N(µ2, σ2)

4. Repeat steps 1-3 n times.

Where λ is a percentage of first component, that means λ = 0.36 in this case,

and N(µ1, σ1), N(µ2, σ2) are the normal distributions for each component with val-

ues to {µi, σi}2i=1 showed in Table 3–3. With the process explained above, we get n

random variables come from the normal mixture model for the waiting time specified

in 3.12.

For example, we can generate 10, 000 observations of waiting time using this

procedure and then carry out a graphical check, the first graph to validate the

simulation, is just the relative-frequency histogram with the curve fit. With this,

we can look if our simulation study is doing the right thing, that means actually

it is generating data from 3.12 correctly. In other words, if the curve well-fit over

relative-frequency histogram, then our algorithm is working very well. We can see

the graph in the Figure 3–5.

Figure 3–5 is comparing the desired distribution with the simulated data. We

can observe that the curve fits very well to the simulated data, where the curve
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Figure 3–5: Relative-frequency histogram of waiting time simulated data with fitted
curve.

corresponding to mixture normal distribution model of waiting time specified in

3.12.

3.5.2 Parametric bootstrap

We carried out a parametric bootstrap to try correct the latter bias in K-S test.

For this purpose we can generate many samples from waiting time distribution in

3.12 using the methodology specified in the Section 3.5.1, then we estimated the

parameters of the samples by EM algorithm using normalmixEM and calculated the

K-S test for each sample using the estimated parameters. Under this construction,

the null hypothesis is always true. The methodology of this simulation is describe

below.

Adjusted p-values of K-S test:

1. Generate B samples from 0.36N(54.63, 5.88) + 0.64N(80.10, 5.86) of size 272.

2. Estimate the parameters in each sample by EM algorithm using normalmixEM.

3. Do the K-S test in each sample.

4. Compute the p-value as
∑

(Dsumulated > Dobserved)/B.
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We did ten thousand parametric bootstrap using the process above and found

a p-value equal to 0.2511. Figure 3–6 shows the histogram of D statistics simulated.
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Figure 3–6: Frequency histogram D statistics simulated.

The dished vertical line represent the observed D statistic, hence all the values

to right of the line represent the probability of finding a simulated D greater than

the observed D.

Table 3–6 summary of the simulation’s results.

Table 3–6: Parametric bootstrap for the Kolmogorov-Smirnov test

Simulations D observed p-value
10,000 0.0337 0.2511

Now, the p-value in Table 3–6 is correct and we can use it to make a decision

about H0. Therefore, the decision keep going be not reject the null hypothesis with

a confidence level of 95%. In conclusion, a normal mixture is a suitable model for

the waiting time in the Old Faithful Geyser.



41

3.6 Bayesian analysis

Let us illustrate a Bayesian analysis to find point and interval estimates for the

normal mixture model parameters of the waiting time in the Old Faithful. This

means we will treat the parameters λ, µ1, σ1, µ2, and σ2 as random variables.

3.6.1 Prior and Posterior Distribution

Given a sample X = (X1, X2, ..., Xn) iid random variables drawn from some

probability density function f(x; θ), where θ is a value parameter lying in Θ. A

Bayesian analysis begins by specifying a prior distribution π(θ) to observe X. This

prior distribution is supposed to encrypt our knowledge of the parameter before an

experiment is done. Let us denote the sampling distribution by f(X|θ), then the

joint probability distribution function of X and θ is given by,

f(x, θ) = f(X|θ)π(θ). (3.16)

The marginal of the distribution of X is m(X) =

∫

Θ

f(X)π(t)dt and the pos-

terior distribution is the conditional distribution of θ given the sample X defined

as follows,

π(θ|X) =
f(X)π(θ)

m(X)
. (3.17)

When θ is a vector of parameters θ = (θ1, ..., θp), the posterior distributions in

3.17 can be generalized as follows,

π(θ|X) =
f(X)π(θ)

∫

· · ·
∫

Θ

f(X, t)π(t)dt

. (3.18)

For the case of the waiting time model, we have θ = (λ, µ1, σ1, µ2, σ2). The

marginal posterior density of any single parameter in θ can be obtained by inte-

grating the joint posterior density over all the other parameters, but this is difficult

for the waiting time model. For instance, to find a credible interval for µ1, im-

plies knowing the marginal π(µ1|X). To overcome this problem, we can use the
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Metropolis-Hastings algorithm (see [27], [28]), which is common for posterior dis-

tribution simulation [21]. Then, with the sampling from the marginal posterior

density of each parameter in θ, we can find credible intervals for θ using the sample

quantiles.

3.6.2 Posterior distribution by Metropolis-Hastings algorithm.

Fortunately, we do not need to know the marginal distribution to employ the

Metropolis-Hastings algorithm. We just need a proposal distribution q(θ∗; θ). The

decision about whether we accept a value, θ∗, from this proposal density will be

based on the acceptance ratio,

a(θ∗; θ) =
q(θ; θ∗)π(θ∗)

q(θ∗; θ)π(θ)
(3.19)

With the formal notation defined, we can now construct a Metropolis-Hastings

algorithm for mixture models [29].

Algorithm: Metropolis-Hastings algorithm.

The steps to find the posterior distribution using the Metropolis-Hastings algo-

rithm are [29],

1. Choose initial values θ(0). Let t = 0.

2. Sample θ∗ from q(θ∗; θ(t)).

3. Generate u ∼ Unif(0, 1), such that Unif(0, 1) is taken to mean the uniform distri-

bution over the interval (0, 1).

4. Set

θ(t+1) =











θ(t+1) a(θ∗; θ(t)) > u

θ(t) a(θ∗; θ(t)) ≤ u

5. Increment t and repeat steps 2 through 4.

Once we have a sample from the posterior distribution, we can carry out infer-

ence on the parameters such as point estimations and credible intervals. The priors

will be λ ∼ Unif(0, 1), µ1 ∼ 1, µ2 ∼ 1, σ1 ∼ 1/σ1 and σ2 ∼ 1/σ2. Figure 3–7 shows

histograms for the marginals posteriors of the parameters λ, µ1, σ1, µ2 and σ2 .
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Figure 3–7: Frequency histograms for the marginal posteriors.

By means of the histograms, we can observe that these distributions are not

skewed; therefore, it is reasonable find the mean of the posterior distribution to get

an estimate of θ for a given X = x. Table 3–7 shows the estimates and 95% credible

intervals of θ.

Table 3–7: Estimations and 95% credible interval for parameter of waiting time
model.

Parameter Posteriori mean Lower Upper
λ 0.36 0.28 0.42
µ1 54.46 53.16 55.72
σ1 5.70 4.96 6.37
µ2 80.00 78.96 81.00
σ2 6.03 5.36 6.65

The estimations for θ, using the posterior mean are close from the likelihood

estimates by frequentist statistics. Similarly, the boundaries for credible intervals

look-alike with the confidence intervals showed in Table 3–4.



CHAPTER 4

OTHER TOPICS GRADUATE LEVEL

In this chapter, we will use Old Faithful Geyser eruption data to illustrate the

kernel density estimate (KDE) method in a real-life data context. The most common

selection methods for the bandwidth parameter in KDE will also be discussed. In

addition, we will use the waiting time estimate problem to illustrate the most typical

curve fitting nonparametric methods. We will start with the use of data to exemplify

the performance of kernel smoothing, such as the Nadaraya-Watson (See [30],[31]),

as well as the Locally Weighted Scatterplot Smoothing (LOWESS) [32], and finally

spline smoothing (See [33], [34]). Moreover, we will illustrate how to use the cross

validation method to choose the smoothing parameter in nonparametric regression.

4.1 Nonparametric density estimation

In the Section 3.2 we used the EM algorithm to find the maximum-likelihood

fit for the eruption waiting time. We obtained the following model,

f(x) = 0.36N(54.63, 5.88) + 0.64N(80.10, 5.86). (4.1)

The normal mixture model in 4.1 is effective for estimating the waiting time

distribution. However, the choice of the normal distributions for the two components

in the mixture model is open for debate, as other models that have a positive support,

like the Gamma mixture model, can be use to estimate the waiting time. Now, let

us carry out the estimate of the waiting time by using an estimation method that

does not make any assumptions about the shape of the density. We shall use the

44
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kernel density estimate (KDE), which is a nonparametric density estimation method

that uses kernel functions.

4.2 Assumptions on the data

In our problem we have n observations X1, X2, ..., Xn of the eruption waiting

time. We assume that these observations configure a random sample from a con-

tinuous population. That is to say, the random variables Xi are iid with density

function f . But, we do not know the density function f of where the data comes

from, however this information is not necessary.

4.3 Kernel Density Estimation

4.3.1 The histogram

A histogram is the first way to estimate the density function f . In this approach

the idea is to aggregate the data in intervals of the form [x0, x0+h) and then use their

relative frequency to estimate the density at x in these intervals. For this, an origin

point a0 and a bandwidth h > 0 are necessary. Therefore, the histogram builds a

piecewise constant function using the data within the intervals. These intervals are

defined as follows,

{[ak, ak+1); ak = a0 + (k − 1)h, h > 0, k = 1, ..., j} (4.2)

We will refer to these intervals in 4.2 as bins, where k represents the kth bin.

Then, the f estimated by means of the histogram is,

f̂hist(x) =
1

nh

n
∑

i=1

I[ak,ak+1)(Xi), (4.3)

In 4.3 each sample point in a bin adds
1

nh
to the height of the estimate for

all points x within [ak, ak+1). An advantage of this method is that it is easy to

compute, but a disadvantage is its annoying dependence on a0. Also, it is not a

smooth estimator of f , because f̂hist is continuous to pieces, but in reality f is a

continuous function.
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4.3.2 Centered histogram

This method tries to overcome the non-smoothness problem in the estimate

obtained by the histogram in 4.3. This method takes bins with fixed width 2h,

these bins will be centered on the point at which the density estimation is desired.

With this approach, the estimation of f changes to,

f̂hist(x) =
1

2nh

n
∑

i=1

I[x−h,x+h)(Xi). (4.4)

An advantage of centered histograms is that there is an exact computation and

plot of estimate for all X in the sample. Also, we only depend on the parameter h,

because in this type of histogram the points are considered to be near x by being

no more than h/2 away from x. Figure 4–1 shows the centered histogram for the

eruption waiting time.
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Figure 4–1: Centered histogram estimate for eruption waiting time with bandwidth
h = 4.

We can see that the resulting graphs of this method are not as blocky as the

estimation in 4.3, but the shape is still discontinuous. This method continues to be

a non-smooth estimator of the waiting time density.

We can rewrite the estimate 4.4 in the following way,

f̂hist(x) =
1

n

n
∑

i=1

1

h
K
(x−Xi

h

)

, (4.5)
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where, K(z) = 1
2
I(−1,1](z).

According to 4.5 the estimate of f is assembled by placing a box of width 2h

and height 1
2nh

on each observation and then summing to obtain the estimate [35].

The estimation above will still be non-smooth, this problem can be solved by adding

a smooth function. We can use the function density(data,kernel="r") to build

the centered histogram in R.

4.3.3 Kernels

The idea is to replace in 4.4 the indicator function by a smooth function, cen-

tered at the midpoint of the bin and symmetric. Then the expression 4.3 keep have

the same form, but now K is a continuous function,

f̂n(x; h) =
1

nh

n
∑

i=1

K
(x−Xi

h

)

. (4.6)

In this case, K is a positive function called kernel (smooth function). The

density estimation using Kernel is actually a weighted average by the distance of

the observations to the point to be estimated. The greater the distance from the

point to an element of the observations, the lower its weight in the estimate. The

weight will be determined by the chosen Kernel and the value of h. The greater the

value of h, the greater the weight of those elements from the observations that are

far from the point, so a h is usually called bandwidth. A kernel function must fulfill

the following properties,

(i) K(−x) = K(x)

(ii)

∫ ∞

−∞
K(x)dx = 1

Above we see that the Kernel K is a nonnegative function and the integrate

should be 1. In fact, the property (ii) implies that,
∫ ∞

−∞
xK(x)dx = 0 and σ2

K =

∫ ∞

−∞
x2K(x)dx > 0.

There are several kinds of kernels, but in this work we just show the estimate

of density the following,
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Rectangular Kernel: K(x) = 1
2

−1 ≤ x < 1

Gaussian Kernel: K(x) = 1√
2π
e−x2/2 −∞ < x < ∞

Epanechnikov Kernel: K(x) = 3(1−x2)
4

−1 ≤ x < 1
Triangle Kernel: K(x) = 1− |x| −1 ≤ x < 1

The Rectangular Kernel yields the centered histogram as a particular case, but

the other kernels produce a continuous estimate of f . Figure 4–2 shows the KDE

of the waiting time with the Rectangular, Epanechnikov, Gaussian and Triangular

Kernel.
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Figure 4–2: Frequency histograms with kernel density estimates of waiting time using
the Kernels: Rectangular, Epanechnikov, Gaussian and Triangular.

According to [36], the kernel choice does not have a significant impact on the

statistical properties of kernel density estimates, since all of these work fine. Also,

the Epanechnikov Kernel seems like an appropriate choice because of the ease of

calculation. It should be noted that the choice of the kernel type is only important

in exceptional cases, for example if the underlying distribution has the Boundary

Problem [37]. Unlike the choice of the kernel, the choice of bandwidth is a crucial

part of kernel density estimation.
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4.4 Bandwidth selection

Since the KDE method has a strong dependence on the bandwidth h, we need

to choose the value of h properly. There are several bandwidth selector methods

to achieve this. The goal is to estimate f , but this must be done with the best

approximation to the true function. Figure 4–3 depicts the different KDE of the

waiting time using four values to bandwidth.
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Figure 4–3: KDE of waiting time using different values of the bandwidth; h =
0.5, 2.0, 4.0 and 9.0.

We can observe that when modifying the bandwidth, considerably different

estimates of waiting time distribution are obtained. So a bandwidth of 0.5 produces

an evident under-smoothing, while a bandwidth of 9.0 yields f̂ over smoothing.

Then, we could think that a bandwidth of 4.0 is reasonable, but this choice must

be done in such a way that minimizes the estimation error. In summary, small

values of h lead to very spiky estimates (not much smoothing) while larger h values

lead to over-smoothing. In the process of selection, the optimal bandwidth for the

estimation of f̂ at point x, we could consider criteria, such as the Mean Square Error
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(MSE) and the Mean Integrate Square Error (MISE), which are defined below,

MSE[f̂(·; h)] = E
(

f̂(x; h)− f(x)
)2

. (4.7)

MISE[f̂(·; h)] = E

(

∫

(

f̂(x; h)− f(x)
)2
)

. (4.8)

In accordance with [38], the result of solving the (MISE) of KDE in 4.8 is as

follows,

MISE[f̂(·; h)] = 1

nh
‖K‖22 +

1

4
h4µ2

2‖f ′′‖22 +O(nh)−1 +O(h2). (4.9)

In equation 4.9, the higher order terms are ignored [38], and the resulting set

is called Asymptotic Mean Integrated Squared Error (AMISE),

AMISE[f̂(·; h)] = 1

nh
‖K‖22 +

1

4
h4µ2

2(K)‖f ′′‖22. (4.10)

Using 4.10, we can determine the optimal bandwidth h0 which minimizes this

function with respect to the parameter h.

h0 =

[

‖K‖22
nµ2

2(K)‖f ′′‖22

]1/5

. (4.11)

This final result seems appropriate, but the presence of the f ′′ makes it difficult

to solve for h, so we do not know f , let alone f ′′.

4.4.1 Rule-of-thumb

If we assume a parametric form for the density f , we have a simple solution

to 4.11. Therefore, we can find an h that is optimal for that particular shape, for

example if we know that the data come from a normal distribution N(µ, σ). So with

this assumption and using a Gaussian kernel, Silverman in 1986, obtained the most

popular method by a plug-in called rule-of-thumb [35].

h =

[

‖K‖22
nµ2

2(K)‖f ′′‖22

]1/5

σ̂. (4.12)
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For estimating the standard deviation of X , Silverman suggests employing the

minimum of both quantities [35],

σ̂ = min

(

s,
IQR(x)

1.34

)

. (4.13)

In other hand, the Gaussian kernel choice implies that µ2(K) = 1 and ‖K‖22 = 1
2
√
π
.

Therefore, the rule-of-thumb [35] is,

h =
(4

3

)1/5

σ̂n−1/5 ≃ 1.06σ̂n−1/5 (4.14)

The rule-of-thumb [35], equation 4.14, is implemented by the function bw.nrd(.).

Also, Scott in 1992 proposed a variation of rule-of-thumb by [39], where a factor of

0.9 is used instead of 1.06, obtained by the function bw.nrd0(.) in R. Figure 4–4

illustrates the KDE of the waiting time using the two versions of rule-of-thumb and

reference density (MLE).

0.00

0.01

0.02

0.03

0.04

50 60 70 80 90

Waiting time

D
en

si
ty bw.nrd

bw.nrd0

MLE

Figure 4–4: Reference density and KDE of waiting time with the two rules-of-thumb
and reference density (MLE).

Visually, the estimates of f using these methods differ practically only in the

maximum and minimum. Moreover, these estimates differ completely with respect
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to reference density (MLE) of waiting time. It is evident that the parametric as-

sumption of normality makes the KDE very dependent on the sample and for obvious

reasons, these bandwidth selection methods do not work well with the bimodal dis-

tribution of the waiting time in the Old Faithful Geyser. The density() function

does KDE with the second version’s rule-of-thumb, bw = "bw.nrd0", by default.

4.4.2 Cross-validation

Unbiased cross-validation (UCV), also called Least Squared Cross validation

(LSCV) [38] is a classic method that estimates the bandwidth in a different way from

rule-of-thumb. With this method, the main task is to try to minimize the MISE

using the sample in two stages: one for finding the KDE and other for checking its

performance on estimating f . To avoid the dependence on the sample, the data used

for computing the KDE is not used for its evaluation. Starting by remembering the

MISE,

MISE[f̂(·; h)] = E

(

∫

(

f̂(x; h)− f(x)
)2

dx

)

= E

(

∫

f̂(x; h)2dx− 2

∫

f̂(x; h)f(x)dx+

∫

f(x)2dx

)

. (4.15)

To minimize MISE in (4.15), the term E

(
∫

f(x)2dx

)

is ignored (see [38])

because it does not depend on h. Then, we can make an unbiased estimate by [38],

UCV(h) =

∫

f̂(x; h)2dx− 2

n

n
∑

i=1

f̂(−i)(Xi; h). (4.16)

The term f̂(−i)(Xi; h) in (4.16) refers to leave-one-out KDE and is based on the

sample with Xi removed. Where it is defined by,

f̂(−i)(Xi; h) =
1

n− 1

n
∑

j=1
i 6=j

Kh(x−Xj).
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Finally, the unbiased cross-validation (UCV) selection method is defined as,

ĥUCV = argmin
h>0

{UCV}. (4.17)

To find ĥUCV, it is necessary to make use of numerical optimization, that is, a

very different method to the rule of thumb (plug-in selectors). In R, the function

bw.ucv() finds the value of h by unbiased cross-validation (UCV). Figure 4–5 shows

the plot of UCV and the KDE of the waiting time using the UCV selection method.
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Figure 4–5: a) Plot of the UCV selector. b) KDE of waiting time with the UCV
selector method of bandwidth and reference density (MLE).

In Figure 4–5 a), we can observe the plot of UCV bandwidth selector, where the

UCV is minimized when h = 2.65, as indicated by the vertical line. On the other

hand, in Figure 4–5 b) we can observe the KDE of waiting time using the bandwidth

UCV selection method. There is a significant difference between the KDE and the

reference distribution (MLE) in the maximums and minimums, but we can see a

better fit with respect to the reference distribution, if it is compared to the fit found

by the rule-of-thumb. Nonetheless, the estimates are quite close.
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Another cross validation selection method is based on biased cross-validation

(BCV) [38]. The BCV selector presents a mixture procedure that combines plug-

in and cross validation ideas. The attractive property of hBCV is that it has a

considerably smaller variance compared to hUCV, but this reduction in variance

comes at the price of an increased bias (See [38]). This method is implemented in R

through the function bw.bcv(.). Figure 4–6 shows the biased cross-validation plot

and the KDE of waiting time with this bandwidth selector.
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Figure 4–6: a) Plot of the biased cross-validation selection method. b) KDE of
waiting time with the BCV method and reference density (MLE).

In Figure 4–6 a), the plot of UCV bandwidth selection method is illustrated,

where the UCV is minimized when h = 2.60, as indicated by the vertical line. In

Figure 4–5 b), however, we can observe the KDE of waiting time using the bandwidth

BCV selector method. Again there is a significant difference between the KDE and

the reference distribution (MLE) in the maximums and minimums. However, the

estimates are also quite close.

In summary, bandwidth selector methods based on cross-validation offer smaller

values of h compared to plugin-in methods, such as based on the rule-of-thumb.
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There are other selector methods based on direct plug-in (DPI) (see [40]). Also,

bootstrap methods can be used to select the bandwidth in KDE (see [41]).

4.5 Shape of waiting time density

With the aim of inquiring about some changes through the years on the prop-

erties of the waiting times distribution of the Old Faithful Geyser, we will do KDE

of waiting time with the classic data used in this work [4] and two more sets, one

from the year 2011 [42] and one current set from March 2019 [42]. We ensured that

the three data sets had the same length, n = 272 observations.
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Figure 4–7: KDE of waiting time sets 1978, 2011 and 2019.

We can see in Figure 4–7 that the shape of waiting time distribution is not

bimodal, as in the past. Now, the short waiting times do not occur. Currently these

times are between 65 and 125 minutes. According to the National Park Service (See

[43]), these alterations are attributed of changes in circulation that resulted from

1983 Borah Peak earthquake, as well as other local and smaller earthquakes. Then,

as consequence, the average interval between eruptions has been lengthening during

the last several decades. However, after a local earthquake in 1998, Old Faithfuls

eruptions are more often of the long duration, long interval type.
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4.6 Nonparametric Regression Methods

Given a set of data points of the form (Xi, Yi) with i = 1, ..., n. The relationship

between Xi and Yi can be modeled by a nonparametric regression function,

yi = m(xi) + ǫi, i = 1, 2, ..., n (4.18)

Essentially, the smoothing of the set (Xi, Yi) discovers an estimate of m in the

the nonparametric regression function showed in equation 4.18. In this equation,

we refer to m as the mean or average response curve E[Y |X = x] and to ǫ as

the random error. We assume that the ǫ is independent and identically distributed

with a mean of zero. With this approach, m is smooth, flexible, but unknown. The

shape of m and the distribution of the errors are determined using the input data.

In this sense, we will use the Old Faithful Geyser data eruptions and the problem

to estimate the expectation of the waiting time to illustrate the performance of

nonparametric regression, starting by the Kernel smoothing.

4.7 Kernel Smoothing

4.7.1 Nadaraya-Watson Estimator

Nadaraya [30] and Watson [31] proposed simultaneously, in 1964, an estima-

tor of the function m as a locally weighted average, using a kernel as a weighting

function. We assume that the observations (Xi, Yi) are independent and identically

distributed. To understand the idea of the Nadaraya-Watson estimator, we can

check the definition of the conditional expectation estimate,

m(x) = E[Y |X = x] =

∫

y
f(x, y)

fX(x)
dy (4.19)

In Section 4.1, we showed how to estimate fX(x) in the denominator of equation

4.19 using the kernel density estimate (KDE). Using the same idea, we can estimate
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the joint density f(x, y) by the multiplicative kernel (e.g. see [5]),

f̂(x, y; h1, h2) = n−1
n
∑

i=1

Kh1(x−Xi) ∗Kh2(y − Yi) (4.20)

In kernel smoothing, the kernel acts as a weighting function, which gives large

weight to points near where the curve is smooth and a low weight to points that are

far from it. As we saw in Chapter 4.1, there are many kernel functions that can be

considered, but in this section we will only use the Gaussian kernel.

According to Nadaraya [30] and Watson [31] we can factorize the numerator in

expression 4.19 as follows,

∫

yf̂(x, y; h1, h2)dx = n−1
n
∑

i=1

Kh(x−Xi)Yi

Note that f̂ initially depends on two parameters in h (h1 and h2), but finally

only a single h is needed for x and y. Now, if we use the result above and combine

it with the expression 4.19, we get the Nadaraya and Watson estimator m̂(x), which

is defined as follows,

m̂(x) =

∑n
i=1Kh(x−Xi)Yi
∑n

j=1Kh(x−Xj)
=

n
∑

i=1

Whi(x)Yi, (4.21)

where W is the weighting function and can be broken down as shown below,

Whi(x) =
Kh(x−Xi)

∑n
j=1Kh(x−Xj)

=
h−1K(x−Xi

h
)

f̂(x; h)
. (4.22)

About the results in 4.21 and 4.22, according to [5], the weights Whi(X) depend

only on the whole sample X1, ..., Xn through the kernel density estimate f̂(x; h).

Also, the observations Yi obtain more weight in those areas where the corresponding

Xi are sparse. Given the case that the denominator equals zero, then the numerator

is also equal to zero, so we set the estimate to 0.

Now, to illustrate the kernel-based smoothing Nadaraya-Watson estimator with

Gaussian kernel, we will attempt to estimate the waiting time until the next eruption
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in the Old Faithful Geyser. In this case, the function ksmooth from R base package

stats solves this type of kernel regression. Figure 4.7.1 shows two fits of the Old

Faithful Geyser data set with kernel-based smoothing Nadaraya-Watson with the

Gaussian kernel.
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Figure 4–8: Nadaraya-Watson estimate of the expectation of the waiting time using
the bandwidths; h = 0.10, 0.70.

We can visualize two estimates of the expectation of the waiting time using

two different values for the bandwidth parameter h (Smoothing parameter). In the

first estimation (red line and h = 0.10), we can observe that the estimate is not

completely smooth, since there are some spiky estimates of m(x). This differs from

the other estimate (blue line and h = 0.70), which is a smooth curve.

In short, the parameter bandwidth h works as a regulator for the amount of

smoothing, just like the on the kernel density estimator (KDE). Therefore, the kernel

regression also suffers from the bias-variance trade-off. That to say, when h is

small, the variability is large but the bias is small; when h is large, the variability

is small but the bias is large. In nonparametric regression, the best smoothing
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bandwidth parameter should equilibrium the bias and variability. Let us take a look

at some estimates of the expected waiting time for each of the h values.

Table 4–1: Nadaraya-Watson fitted values of the expectation of waiting time for
bandwidths h = 0.10, 0.70.

Bandwidth
Duration h = 0.10 h = 0.70

1.8 52.95 53.48
3.2 76.36 72.30
4.5 79.58 80.91

In Table 4–1, for instance, given a duration of eruption equal to 3.2 minutes, the

kernel smoothing prediction would be ŷ = 76.36 minutes when h = 0.10, but for the

same value of the duration and when h = 0.70, the fitted value is ŷ = 72.30 minutes.

We cannot certainly determine which is the best estimate, but we can select h with

some criterion that makes it optimal. Next, we present a tasteful approach called

cross-validation that allows us to select the smoothing bandwidth subject to certain

optimality criteria.

4.7.2 Optimum Bandwidth: Cross-Validation

There are several methods to find the optimal bandwidth for a smoother pa-

rameter, unfortunately, none of them is fully satisfactory. In order to find an optimal

solution, like on the KDE, we start by considering the Mean Integrated Square Error

(MISE),

MISE = E

(

∫

(

m̂(x; h)−m(x)
)2

dx

)

(4.23)

As usual, since the MISE depends on the unknown function m, it is necessary

to use the data for estimating m. The procedure used for this purpose is cross-

validation, specifically, the leave-one-out cross-validation (LOOCV). This method

can be computationally expensive if it is employed with large data sets. Even though

its difficulties, this method allows to choose the smoothing bandwidth subject to

certain optimality criterion. This method has the advantage that the generality of
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its definition allows it to be applied to quite a wide variety of settings. In the present

case, the idea is to choose h to minimize,

CV =

n
∑

i=1

{

yi − m̂(−i)(x)
}2

(4.24)

In Equation 4.24, the curve fitted at xi is constructed from the remainder of the

data, excluding xi. The aim then is to evaluate the amount of smoothness through

the extent to which each observation is predicted from the smooth curve produced

by the rest of the data. It is expected that the value of h which minimizes Equation

4.24 should provide an adequate level of smoothing. Figure 4–9 shows the plot of

the leave-one-out cross-validation (LOOCV) for the Nadaraya-Watson estimator.
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Figure 4–9: Plot of the leave-one-out cross-validation (LOOCV) for the Nadaraya-
Watson estimator in Kernel smoothing.

The curve in Figure 4–9 represents how the smoothing bandwidth affects the

quality of prediction. In this case, the smoothing bandwidth parameter h that

minimizes this LOOCV error is 0.70. The Nadaraya-Watson fit using this value of

h is represented by the blue curve in Figure 4.7.1.
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Also, the bandwidth parameter can be optimized by generalized cross-validation

(GCV). This is an approximation of Equation 4.24, and according to [44] it is more

computationally efficient. Other variant of the cross-validation is the k-fold cross-

validation (k-CV) (e.g. see [45]).

4.8 Locally weighted scatterplot smoothing (LOWESS)

Locally weighted regression scatterplot smoothing (LOWESS), originally pro-

posed by Cleveland in 1979 [32] and further developed by Cleveland and Devlin in

1988 [46], is a nonparametric method used to model a relationship between Xi and

Yi, when the linear relationship is inconvenient. This type of fitting procedure y0 is

estimated using only x values close to x0, or at least the contribution of x values

close to x0 is weighted more heavily than others. LOWESS regression fits a line to

a bivariate scatter of points in a series of iterations using the following steps (see

[32] and [47]),

• Step 1: Find the k nearest neighbors of x0, which constitute a neighborhood N(x0).

The number of neighbors k is specified as a percentage of the total number of points

in the data set. This percentage is called the span and is a tuning parameter of

the method.

• Step 2: Calculate the largest distance D(x0) between x0 and another point in the

neighborhood.

• Step 3: Assign weights to each point in N(x0) using the weight function:

W
(x0 − x1

∆(x0)

)

(4.25)

The expression 4.25 is called tricube weight function [32], where,

W (u) =











(1− u3)3 for 0 ≤ u ≤ 1

0 Otherwise

• Step 4: Calculate the weighted least squares fit of x0 on the neighborhood N(x0).
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As in the Kernel smoothing method, for the case of LOWESS regression, there

is also a smoothing parameter called span. The span parameter represents the

proportion of the total number of points that contribute to each local fitted value.

To carry out LOWESS regression in R we can use the function loess() from R base

package stats. This function uses span=0.75 by default.

Next, a LOWESS regression is performed for the Old Faithful Geyser with span

values of 0.25 and 0.65. Figure 4–10 shows the LOWESS fits for the Old Faithful

Geyser data using span values of 0.25 and 0.65.
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Figure 4–10: LOWESS regression for the expectation of the waiting time using the
span=0.25, 0.65.

The LOWESS regression using span values of 0.20 and 0.65, equivalent to the

red and blue curves, respectively. This means that each neighborhood consists of

20% and 65% of the observations for each LOWESS fit. Notice that for the small

value of span (0.20) we get a very rugged curve that follows the observations closely,

so we have a curve with a high fit but also high variance. In this case, the optimal

value for the span was chosen with the cross-validation method discussed above.
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We found that the optimal span value for LOWESS regression with the Old Faithful

Geyser data is 0.65, represented by the blue curve in Figure 4–10.

4.8.1 Interval estimation in LOWESS

It is possible to do statistical inference on the fitted values in LOWESS re-

gression. This allows for computing prediction intervals. To get an estimate of the

standard error by including se=TRUE argument within the predict() function. The

command predict() does not have an option for interval estimation but we can

manually calculate confidence or prediction intervals using output information of

the fit.

As we know, for the linear regression, the standard errors for confidence and

predict intervals are the following,

Se.fit = σ̂

√

1

n
+

(x− x̄)2

Sxx
(4.26)

Se.pre = σ̂

√

1 +
1

n
+

(x− x̄)2

Sxx

(4.27)

We can manipulate Equations 4.26 and 4.27, in such a way that we can find

useful expressions to build prediction intervals with the information given by the

loess() function. We can start by Equation 4.26,

Se.fit2 = σ̂2

(

1

n
+

(x− x̄)2

Sxx

)

.

Se.fit2

σ̂2
=

1

n
+

(x− x̄)2

Sxx

.

Now, using Equation 4.27,

Se.pre = σ̂

√

1 +
Se.fit2

σ̂2
=

√

σ̂2 + Se.fit2. (4.28)

In Equation 4.28, we have the standard error for prediction intervals in LOWESS

regression, where σ̂2 is the variance of errors. For instance, we can compute predic-

tion intervals for a set of values of the duration of eruptions.
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Table 4–2: LOWESS 95% prediction intervals for average waiting.

Duration Point estimation Lower Upper
1.8 53.00 43.64 62.36
3.2 70.45 61.01 79.89
4.5 81.11 71.81 90.42

A 95% prediction interval of the average waiting time for the 1.8 minute eruption

duration falls within (43.64, 62.36) minutes. For the 3.2 and 4.5 minute values, it

falls within (61.01, 79.89) and (71.81, 90.42) minutes, respectively.

According to [32] the residual plots can provide an analyst with useful guidance

for controlling the LOWESS fitting process. With this graph, is possible to detect

some dependence of the scale of the errors in the fitted values range. Figure 4–11

shows the residual plot from the original LOWESS curve that was fitted to the Old

Faithful Geyser data.
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Figure 4–11: Residual plot from the LOWESS curve fitted to the Old Faithful Geyser
data

We can see a constant scale since there is little change in the smoothed points.

The red curve represents the LOWESS fit for the residuals, which is fairly straight. It

indicates that there is no strange pattern between the fitted values and the residuals.
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This result provides strong evidence that the LOWESS fit with span=0.65 depicted

in Figure 4–10 does provide an adequate representation of the Old Faithful Geyser

data.

4.9 Smoothing Splines

Given real numbers x1, x2, ..., xn on some interval [a, b], a spline (Schoenberg,

1964) of order p with knots t1, ...tk on the interval [a, b] is a function S that can be ob-

tained by splitting the interval into k subintervals of the form (a, x1), (x1, x2), ..., (xk, b).

Then we can use a polynomial of a degree less than or equal to p in each of the subin-

tervals to smoothly join each of the knots. The spline S(x) is defined by,

S(x) = β0 + β1x+ ...+ βpx
p +

k
∑

j=1

βp+j(x− t)p+. (4.29)

Where β0 + β1 + ... + βp+1 + ... + βk are unknown constants. The case when

p = 3, S(x) is called cubic spline.

Now, in the smoothing spline approach the idea is to find a function m(x)

in the nonparametric regression function 4.18 that fits the data well but will also

be smooth. In that case, we can attempt to reconstitute the function m(x) by

constructing a spline function S(x) which minimizes the value of the penalized least

squares criterion (e.g. See [48]),

n
∑

i

(yi −m(xi))
2 + λ

∫

[m′′(x)]2dx, (4.30)

where λ > 0 is the smoothing parameter and

∫

[m′′(x)]2dx is a roughness

penalty. Also, when m is rough, the penalty is large, but when m is smooth, the

penalty is small. Thus the two parts of the criterion balance fit against smoothness.

There is a single minimum of 4.30, which is a natural cubic spline with knots at

the data points [49]. The smooth.spline(.) function from R package base stats

performs cubic smoothing splines. In this routine, λ is a function that depends on

spar; the amount of smoothness is regulated by this argument. Figure 4–12 shows
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the cubic smoothing spline fit of the expectation of the waiting time using two spar

values.
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Figure 4–12: Smoothing spline fits for the expectation of the waiting time under the
values of spar=0.50, 0.92.

In Figure 4–12 we can observe the smoothing splines fits for the expectation

of the waiting time with spar=0.50 (red curve) and spar=0.92 (blue curve). The

value of 0.92 was selected using cross-validation. It can be observed that this model

is smooth and fits the data well.

To find the optimal parameter for spar,use the cross validation method, which is

already included in the function smooth.spline(). If we do not specify a bandwidth

parameter (spar or df) and the argument cv=FALSE then, the function chooses

the bandwidth by default using generalized cross-validation (GCV). In contrast, if

cv=TRUE, then spar is chosen using classical cross-validation (LOOCV).
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Finally, Figure 4–13 shows fits for the expected waiting times of the Old Faithful

Geyser using Kernel smoothing, LOWESS and smoothing spline.
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Figure 4–13: Nadaraya-Watson, LOWESS, and smoothing spline fits of the expecta-
tion of the waiting time for the next eruption based on the duration of the eruptions.

We can see in Figure 4–13, that the fits of the expected waiting time by

LOWESS and spline smoothing are very similar. Nadaraya-Watson yields a sim-

ilar yet different fit. In each case, the smooth parameter was chosen using cross-

validation.



CHAPTER 5

DISCUSSION

This work presented some uses of the Old Faithful Geyser data to teach statistics

on different levels of complexity. The basic approach uses the Old Faithful Geyser

eruptions as a real-life data example to teach statistics in an introductory university

course. The more advanced approach employs the same data for teaching statistics

in graduate courses. Figure 5–1 depicts the relevant topics for teaching statistics in

an introductory statistics course.

Figure 5–1: Topics that can be explained in an introductory statistics course using
the Old Faithful Geyser data.

The main topics discussed are Descriptive Statistics, Statistical Inferences, and

Curve Fitting; they can be seen in Figure 5–1. Descriptive statistics can be discussed

by using the data to create graphs (e.g. histogram, boxplot and scatterplot) and
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to discuss their meaning. The data can also be used to find summary statistics,

including the mean, median, variance, and standard deviation. Additionally, the

data can be used to illustrate the normal probability plot as a simple visual test to

assess normality and demonstrate that the Old Faithful Geyser data does not follow

a normal distribution.

Teaching point and interval estimation with the complete data set will yield

misleading results. Instead, we can consider that a large eruption is followed by a

long waiting time, and similarly, a shorter eruption is followed by a short waiting

time. The data can be split into two parts and statistical inferences can be realized

for each of these groups. This strategy guarantees better estimations of waiting

time. Moreover, as in the estimation by the Student-t interval, it is necessary to

consider the assumption that the population is normally distributed. Again, we can

use the data to show the performance of a graphical test like the normal probability

plot for checking normality in each group. This exercise will help students learn

point and interval estimation and develop their statistical thinking and reasoning

skills.

A more advanced method for estimating and predicting the waiting time is the

simple linear regression method. Here, the duration of eruptions is used to model

the average waiting time by a straight line. The data illustrates concepts such

as the relationship between two quantitative variables, as well as variability and

uncertainty.

Finally, use of the quadratic regression model is discussed using the data. In a

regression analysis, the data can be modeled by a straight or a curvilinear. For our

data, the quadratic (i.e curvilinear) model yields a better fit. Also, since the linear

and quadratic model are nested, the F-test can be introduced to compare them and

draw conclusions of which is better.
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Next we can use the Old Faithful Geyser data in more advanced statistics

courses. Figure 5–2 depicts the relevant topics for teaching statistics in graduate

level courses.

Figure 5–2: Topics that can be explained in graduate level course using the Old
Faithful Geyser data.

According to Figure 5–2 we can discuss the Old Faithful Geyser data with

advanced statistics students as an application for two-component normal mixture

models. By using this approach we can make inferences, through either point or

interval estimation, on the parameters of this model. In this stage, the Newton-

Raphson and the Expectation Minimization Algorithms play an important role in

parameter estimation .

Bayesian analysis is another way to make statistical inference in normal mix-

ture models. In this way, the five parameters are considered as random variables

and their posterior distributions are approximated by the Metropolis-Hastings al-

gorithm. Finally, the point estimates are obtained using the mean of the posterior

distributions and the interval estimations using the quantiles.
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A part of this thesis uses of the Old Faithful Geyser data to illustrate how some

nonparametric methods work. Starting with the famous bootstrap method; again

we can discern that it is more effective to split the data into two parts for point and

interval estimation using the bootstrap method. A useful nonparametric method

for estimating densities is the kernel density estimation (KDE). Here the bimodal

distribution of the waiting time is a good choice to illustrate the method, as well as

the most common methods of bandwidth choice. The estimation of the waiting time

offers other important applications for data, for instance, the nonparametric curve

fitting method such as kernel smoothing, LOWESS, and smoothing splines. These

methods can be discussed with advanced students with the objective to estimate the

waiting time in the Old Faithful Geyser data.



CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

Using real-life data during class lessons increases the interest, motivation, and

engagement in students learning experiences (e.g. see [11], [12] and [13]]). This

work uses Old Faithful Geyser eruptions data to use these advantages while teaching

in university-level statistics courses. Throughout the chapters, we illustrated how

to discuss concepts and methods related to descriptive statistics, inferences, and

curve fitting for students enrolled in introductory statistics courses by applying

real-life data. Moreover, we found that these data are also a good example to

teach the bootstrap method, inferences of the normal mixture models, kernel density

estimations, and some nonparametric methods for curve fitting to advanced statistics

students.

After having performed this work, we can conclude that the Old Faithful Geyser

real-life data example is an ideal case study for teachers to illustrate statistical

concepts in both a theoretical framework and in an applied context. The students, in

turn, master basic statistic concepts and principles, practice calculations, and learn

to use statistical software. In short, the Old Faithful Geyser data is an excellent

real-life example that provides both beginner and advanced students context for

problems in statistics. This way, we can demonstrate that statistics can be both an

attractive science and crucial for solving practical problems.

Basic prediction of the waiting time of Old Faithful depends upon the duration

of the previous eruption. These eruptions can be short or large. Since there are
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physical causes, the underlying geological that make the variation in the Old Faithful

data is not totally random. So we can introduce an analytical approach of statistics

results for the attempt to discover explanations, investigate causes, make predictions

and look inside the data, addressing the variability in the relationship eruption and

waiting time. Also, taking the pattern of the eruptions as part of the variability.

6.2 Future work

Lastly, the Old Faithful data can be used to further develop this work. Including

addition of topics such as Bayesian analysis for regression, classification, and cluster

regression. Also, an application can be designed with shiny-RStudio to facilitate the

teaching process of these subjects and the ones discussed in this thesis.
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APPENDIX A

USEFUL R COMMANDS

Table A–1: Useful R commands.

Package Function Use
stats (base) hist() Computes a histogram.
stats (base) boxplot() Computes a boxplot
stats (base) qqnorm();qqline() Computes a Normal probability plot
stats (base) t.test() Find Student t-interval
stats (base) lm() Computes linear and polynomial regression
stats (base) anova() Performs a F-test for nested models.
mixtools normalmixEM() EM algorithm for finite mixture models.
stats (base) ks.test() Kolmogorov-Smirnov test
stats (base) nlm() Minimization of the function f.
stats (base) density() Kernel Density Estimation
stats (base) bw.nrd();bw.nrd0() Bandwidth based on rule-of-thumb.
stats (base) bw.ucv() Bandwidth based unbiased cross-validation.
stats (base) bw.bcv() Bandwidth based biased cross-validation.
stats (base) ksmooth() Fit a Nadaraya-Watson kernel regression.
stats (base) loess() Fit a LOWESS regression.
stats (base) smooth.spline() Fit a Smoothing Spline.
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Many statistics teachers in line with the recommendations of several studies

suggest using real-life context data during class lessons. The present work shows

the use of the Old Faithful Geyser eruptions as a real-life data example for teaching

statistics at a university. It can be adapted for basic courses to more advanced

ones. During this study, we illustrated how to use the Old Faithful Geyser data

to discuss concepts and methods related to descriptive statistics, inferences and

curve fitting for an introductory statistics course. In the same way, we use the

data to examine some uses in advanced class lessons that involve topics such as

bootstrap method, inferences for the normal mixture models, goodness of fit tests,

kernel density estimation (KDE), as well as some nonparametric regression methods,

namely, kernel smoothing, LOWESS and smoothing splines.
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