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ABSTRACT

Cardiac pacemakers are medical devices widely used to treat heart diseases. Mod-

ern pacemakers are ultra low power embedded systems with programmable function-

alities, which include acquisition of heart signals samples and statistical histograms

of paced, sensed and other events. This programmability is commonly offered by

an internal custom-designed processor for the application. These custom-designed

processors increase product cost and time to market. Research on pacemakers has

been limited because of the lack of information available in open technical literature.

This thesis presents a pacing system implemented in a general purpose low power

microcontroller, the msp430f1611. Furthermore, a methodology for the development

of the whole pacing system, including software flowcharts and control software source

code is presented. Techniques to achieve low power consumption by the software are

offered. The software consumes a maximum of 10 µA, with a typical value of 5 µA.
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RESUMEN

Los marcapasos son dispositivos médicos usados ampliamente en el tratamiento

de enfermedades cardiacas. Los marcapasos actuales son sistemas empotrados con

ultra baja potencia y con funcionalidades programables. Algunas de estas funciones

incluyen adquisición de muestras de la señal cardiaca e histogramas estad́ısticos de

eventos espećıficos de la unidad. Esta programación es t́ıpicamente implementada

por un procesador diseñado espećıficamente para esta aplicación en particular. Este

procesador aumenta el costo del producto y el tiempo para salir al mercado. La

investigación dentro del campo de marcapasos ha estado limitada debido a la falta

de disponibilidad de documentos técnicos para el público en general. Esta tesis pre-

senta un sistema de marcapasos implementado en un microcontrolador comercial, el

msp430f1611. También se presenta una metodoloǵıa para desarrollar todo el sistema,

incluyendo flujogramas del programa y el código del mismo en lenguaje de ensam-

blador. Algunas técnicas son ofrecidas para alcanzar bajo consumo de potencia al

ejecutar el programa. El programa consume 10 µA máximo, con un consumo t́ıpico

de 5 µA.
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CHAPTER 1

Introduction

Pacemakers are widely used today as a therapeutic tool to reestablish normal

pacing of a diseased heart. A total of 300,000 are implanted every year [1], which

indicates the popularity of these devices. Traditionally these devices have been pow-

ered by a battery to be implanted in a patient for a long period of time. For this

reason a pacemaker should have very low power consumption and at the same time

wide functionalities.

A pacemaker task is not computationally intensive, since a heart typically beats at

70 beats per minute and any general purpose microcontroller with a frequency of

500 kHz or above can accomplish this. However, pacemaker systems need very low

power consumption microcontrollers. Typically pacemaker companies use custom-

designed processors to implement pacemaker’s programmability. Custom-designed

processors increase the cost of the system significantly and also increase the time to

market. A few years back a survey for a general purpose processor to be used for

the design of a pacemaker was conducted [2]. However, the survey did not found

any microcontroller that satisfies the requirements of a pacemaker application. Cur-

rently, advancements in technology have made new microcontrollers available with

ultra low power consumption that can satisfy power constrains for the pacemaker

1
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design. If pacing software can be developed using a general purpose microcontroller,

it will reduce significantly cost and time to market. However, as noted in [3], there

is little available information in open technical literature regarding the design details

of cardiac circuits and even less, or non-existent, for control software source codes.

This is probably due to the “closed” characteristics of the pacemaker industry (few

companies with a long tradition) and the high competition among these companies.

This research intent to contribute to open technical literature by developing a design

of a cardiac pacemaker control software. This software is implemented in a low power

general purpose microcontroller. For this reason an extensive review of current low

power techniques for software design was performed.

This thesis is organized as follows: An broad discussion of a cardiac pacemaker,

including the electrical physiology of the heart and previous research in cardiac pace-

maker is presented in Chapter 2. Chapter 3 discuss general purpose microcontrollers

with emphasis in important aspects for low power consumption like memory organi-

zation, CPU architectural configurations, and instruction set philosophies. Chapter

4 presents a methodology for the development of a pacing system, including a defi-

nition of pacemaker programmable parameters along with a comparison of available

microcontroller and their low power performance. Chapter 5 and Chapter 6 presents

the design and implementation of the pacing system in a general purpose low power

microcontroller, the msp430f1611. Finally some important remarks are made at the

conclusion in Chapter 7.



CHAPTER 2

Implantable Cardiac Pacemakers

The cardiac pacemaker is one of the greatest inventions of the last decades. The

concept it brought to the mind of inventors, scientist, engineers, and doctors was

revolutionary: to aid the human body using microelectronic technology. Since the

first implantable pacemaker appeared, many different implantable devices have been

developed to encourage a higher quality of life in patients with disabilities. Car-

diologists around the world have used cardiac pacemakers as an efficient treatment

to patients suffering from bradycardia. Furthermore, implantable pacemakers have

helped to expand the knowledge of the electrical behavior of the heart by acquiring

intracardiac electrograms.

This chapter introduces the biological and electrical behavior of the heart. The dis-

cussion intends to give the reader a more comprehensive idea of the end purpose of

the pacemaker device. In addition, a historical background of the development of the

pacemaker and previous research will be presented. Finally, the approach followed

for this research is discussed.

3
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2.1 The human heart

The human heart is normally situated slightly to the left of the middle of the

thorax, underneath the sternum (breastbone). It is enclosed by a sac known as the

pericardium and is surrounded by the lungs. In normal adults, it weighs between 250

g and 350 g, but extremely diseased hearts can weigh up to 100 g.

2.1.1 The biological behavior of the heart

The heart has four chambers: two atria (singular: atrium) and two ventricles.

Figure 2.1 shows all the components of the heart.

Figure 2.1. The Human Heart.

Oxygen-depleted or deoxygenated blood from the body enters the right atrium through

two great veins, the superior vena cava which drains the upper part of the body and

the inferior vena cava that drains the lower part. The blood then passes through the

tricuspid valve to the right ventricle. The right ventricle pumps the deoxygenated

blood to the lungs, through the pulmonary artery. Gaseous exchange takes place in
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the lungs where the blood releases carbon dioxide into the lung cavity and picks up

oxygen. The oxygenated blood then flows through pulmonary veins to the left atrium.

From here, this newly oxygenated blood passes through the mitral valve to enter the

left ventricle, which pumps the blood through the aorta to the entire body. Even the

lung takes some blood supply from the aorta via bronchial arteries.

The left ventricle is much more muscular (1.3 - 1.5 cm thick) than the right one (0.3 -

0.5 cm thick) as it has to pump blood around the entire body, which involves exerting

a considerable force to overcome the vascular pressure. The right ventricle needs to

pump blood only to the lungs, so it requires less muscle.

The contractile nature of the heart is due the presence of cardiac muscle in its wall,

which can continuously work without fatigue. The heart wall is made of three distinct

layers. The first is the outer epicardium which is composed of a layer of flattened

epithelial cells (cells that most of the internal organs of the body) and connective

tissue. Beneath, a much thicker myocardium made up of cardiac muscle exists. The

endocardium is a further layer of flattened epithelial cells and connective tissue which

lines the chambers of the heart. The blood supply to the heart itself is supplied by

the left and right coronary arteries, which branch off from the aorta.

The function of the heart is to pump blood around the body. Every single beat of

the heart involves a sequence of events known as the cardiac cycle, which consists of

two major stages: cardiac diastole and cardiac systole. Basically the diastole is the

period of time when the heart relaxes and refills with blood. The systole is the period

of time when the heart contracts to push out blood to the different parts of the body.

Figure 2.2 shows the cardiac cycle of a healthy heart (75 beats per minute ≈ 800ms)

with reference to the electrocardiogram (ECG). The ECG is a signal generated by the

electric conduction of the heart. Section 2.1.2 will discuss the ECG in more detail.
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The picture presented in Figure 2.2 displays the cardiac cycle divided in 7 phases.

The three first phases comprise the systole, i. e., (1) atrial contraction, (2) isovol-

umetric contraction, and (3) rapid ejection. On the other hand, phases (4) reduced

ejection, (5) isovolumetric relaxation, (6) rapid filling, and (7) reduced filling, joint

to form the diastole.

Figure 2.2. Cardiac Cycle of a Human Heart [4].

In the lower part of Fig. 2.2 there is a curve known as Electrocardiogram (ECG);

the figure shows one cycle. This curve determines the different phases. Each phase

produces anatomical and electrical changes to the heart, as described next.

• Phase 1 - atrial contraction

This phase starts the cardiac cycle and covers what is denoted as the p-wave

on the ECG, going from a small peak to the start of the large spike. As the

atria contracts, the pressure within the atrial chambers increases causing a rapid
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flow of blood into the ventricles due to difference of pressure between the two

chambers.

• Phase 2 - isovolumetric contraction

This phase is determined by the QRS complex. The QRS complex is the large

spike on the ECG and it causes the ventricle to contract. This contraction

causes an abrupt rise in pressure causing the A-V valves to close as intraven-

tricular pressure exceeds atrial pressure. Closure of the A-V valves results in

the First Heart Sound (S1)depicted in Figure 2.2. This sound is normally split

(≈ 0.04sec) because mitral valve closure precedes tricuspid closure (see Figure

2.1).

• Phase 3 - Rapid Ejection

When the intraventricular pressures exceed the pressures within the aorta and

pulmonary artery, the aortic and pulmonic valves open and blood is ejected

out of the ventricles. Maximal outflow velocity is reached early in the ejection

phase, and maximal aortic and pulmonary artery pressures are achieved. In this

phase the ECG stays flat since all the anatomical changes are due to pressure

differences.

• Phase 4 - Reduced Ejection

Approximately 150-200 milliseconds (ms) after the QRS, ventricular repolariza-

tion occurs, yielding a small wave in the ECG, known as the T-wave. Although

ventricular pressure falls slightly below outflow tract pressure, the outward flow

still occurs due to inertial energy of the blood.

• Phase 5 - Isovolumetric Relaxation

Isovolumetric relaxation occurs when pressure of the ventricles is less than the
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pressure of the outflow tracks. At this point, the aortic and pulmonic valves

abruptly close (first aortic, then pulmonic) generating the Second Heart Sound

(S2). It is called isovolumetric because the volume in the ventricles remains

constant.

• Phase 6 - Rapid Filling

As the ventricular pressures fall below atrial pressures, the AV valves open and

the ventricular starts filling up. The ventricles continue to relax despite the

inflow, which causes intraventricular pressure to continue falling down. This

phase produces the Third Heart Sound (S3).

• Phase 7 - Reduced Filling

The ventricles continue to fill with blood and start expanding out and the

intraventricular pressures rise up. This reduces the pressure difference across

the atrioventricular valves so that the filling rate falls down.

The rhythmic sequence of contractions is coordinated by the sinoatrial (SA) and

atrioventricular (AV) nodes located at the upper and lower walls, respectively, of the

right atrium. The SA node, often known as the cardiac pacemaker, is responsible

for the wave of electrical stimulation that initiates atria contraction. Once the wave

reaches the atrioventricular node, it is conducted through the “bundles of His” and

causes contraction of the ventricles. The time that takes for the wave to travel from

the SA nerve to the AV node creates a delay between contractions of the two chambers

and ensures that each contraction is coordinated simultaneously throughout the heart.

In the event of severe pathology, the Purkinje fibers can also act as a pacemaker.

Nevertheless, this is usually not the case because the rate of spontaneous firing of the

Purkinje fibers is considerably lower than that of the other pacemakers, and hence is

overridden.
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2.1.2 The electrical behavior of the heart

The contractions of the heart are controlled by electrical impulses. These electri-

cal impulses fire at a rate which controls the beat of the heart. The cells that create

these rhythmical impulses are called pacemaker cells, and they directly control the

heart rate. If damage to the body’s intrinsic conduction system occurs, an artificial

device also called pacemaker can be used to produce these impulses synthetically.

Although all of the heart’s cells possess the ability to generate these electrical im-

pulses or action potentials, a specialized portion of the heart called the SA node is

responsible for the whole heart’s beat.

The SA node is composed of a group of modified cardiac myocytes. Myocytes possess

some contractile filaments, though they do not contract. Cells in the SA node will

naturally discharge at about 70-80 min−1. Since the SA node is responsible for the

rest of the heart’s electrical activity, it is sometimes called the primary pacemaker.

Figure 2.3 shows the location of the SA node relative to the whole conduction network

of the heart. If the SA node does not function, or the impulse generated in the SA

node is blocked before it travels down the electrical conduction system, a group of

cells further down the heart will become the heart’s pacemaker. These cells form the

atrioventricular node (AV node), which can be seen in Figure 2.3.

The cells of the AV node normally discharge at about 40-60 min−1, and are called

the secondary pacemaker. Further down the electrical conducting system of the heart,

the left and right branches of the Bundle of His, and the Purkinje fibers, will also

produce a spontaneous action potential if they are not inhibited by other electrical

activity. These tertiary pacemakers fire at a rate between 30-40 min−1. Even indi-

vidual cardiac muscle cells can contract rhythmically.
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Figure 2.3. Electrical conduction system of the heart.

The reason the SA node controls the whole heart, is that its action potentials are

released most often, triggering other cells to generate their own action potentials. In

the muscle cells, action potentials will produce contraction. The action potential gen-

erated by the SA node passes down the cardiac conduction system and arrives before

the other cells have had a chance to generate their own spontaneous action potential.

This is the normal conduction of electrical activity within the heart.

All living cells have different concentrations of ions, particularly Sodium (Na+),

Potassium (K+), Chlorine (Cl-), and Calcium (Ca++), across the cell membrane.

There are also impermeable negatively charged proteins within the cell. This dif-

ferent concentration of ions produce bioelectric potentials [5]. Bioelectric potentials

consist of a resting potential, and when appropriately stimulated, an action potential.

An individual excitable cell maintains a steady electrical potential difference between

its internal and external environments. This resting potential at the internal medium

is in the range of 50mV to 100mV, relative to the external medium. The membrane

potential (Vm) at which this steady state exists is called equilibrium potential. For

potassium, Ek is measured in volts and calculated from the Nernst Equation (2.1).
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Ek =
RT
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(V ) (2.1)

The active state is initiated when an adequate stimulus is used to excite the cells. An

adequate stimulus is one that causes depolarization in a membrane and exceeds the

threshold potential. Figure 2.4 shows the electrochemical process that occurs when

an adequate external stimulation is provided to the cells. The stimulus should be

applied for the right period of time, with enough strength and with the right polarity.

Without stimulation, the cells are at the rest potential. Since ions can travel from

and into the cells through the membrane, when stimulus is applied a diffusion process

takes place causing a current flow. The magnitude of this current is in the order of

the pico Amperes. After a finite period of time (typically 1 ms or so) the diffusion of

ions decreases the membrane potential until it passes the threshold voltage. At that

point the cells undergo total depolarization and a chain reaction of action potentials

is developed.

Figure 2.4. Artificial Stimulation of the heart.
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There are two types of action potentials in the heart: The non-pacemaker potentials

and pacemaker cells potentials. The non-pacemaker potentials are found throughout

the heart except on the SA-node. The non-pacemaker potentials are generated by

the more abundant cells in the heart, ventricular myocytes and Purkinje cells. Non-

pacemaker cells have an actual resting potential, which means that the membrane

equilibrium is achieved. Figure 2.5 presents the 4 phases that form the complete

action potential. When undisturbed, the cell is in phase 4 known as the resting state

or equilibrium state. When disturbed, the cells enter in a rapid depolarization known

as phase 0. The name depolarization is due to the fact that at the equilibrium state

the cell is actually polarized by the potassium, calcium and sodium ions creating

the membrane potential (Vm). As Figure 2.5 shows, this depolarization has a steep

Figure 2.5. Ventricular Action Potential [4].

slope with a slew rate greater than 150V/s. This rapid depolarization is caused by

Na+ diffusing rapidly into the cell. This influx causes the counter reaction of K+

ions which try to bring back the cell into its initial state. This is shown as phase

1. However, there is another component that causes depolarization. Although at a

slower rate, Ca++ help in the depolarization process of the cell. Since Ca++ diffuses
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slowly, it shapes the plateau in phase 2. Even though Na+ and Ca++ maintain

the cell depolarized for some time, K+ gets to develop such a rapid diffusion that it

establishes the rest potential again, closing the cycle. Consequently any stimulation

during phase 0, 1, 2 and part of 3 will be unsuccessful. For this reason this period of

time is called the Effective Refractory Period (ERP).

On the other hand, the pacemaker potentials are generated by SA cells in the SA

node. These cells are characterized as having no true resting potential, generating

regular and spontaneous action potentials. Figure 2.6 illustrates the behavior of the

Figure 2.6. SA node Action Potential [4].

SA cells. It should be noticed that pacemaker cells do not have neither phase 1 (atrial

contraction) or phase 2 (isovolumetric contraction). The electrochemical mechanism

in this case is only comprised by K+ and Ca++. Due to the absence of Na+, these

cells cannot achieve a rest potential. This is due to the fact that equilibrium between

K+ and Ca++ is very difficult to attain.

The combination of all these action potentials produces the peculiar wave called ECG

(electrocardiogram), shown in Figure 2.7. This is the ECG for the normal heart.
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Figure 2.7. Typical electrocardiogram of a normal heart.

The ECG is due to wave interferences in the electrical path of the heart. P, Q, R,

S, and T are used to identify the different electrical time intervals of the heart. The

description for the time intervals is given below:

• P wave

Identify the wave of depolarization that spreads from the SA node throughout

the atria. It typically has 80-100 ms in duration.

• P - R interval

It normally lasts from 120 to 200 ms. It represents the time between the onset

of atrial depolarization and the onset of ventricular depolarization. If the P-

R interval is >0.2 sec, there is an AV conduction block. It is also termed as

a first-degree heart block if the impulse is still able to be conducted into the

ventricles.

• QRS complex

The QRS complex represents the ventricular depolarization. It is the most
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prominent amplitude of the ECG. It can be used to diagnose bundle branch

blocks or abnormal pacemaker site located in the ventricles. This can be de-

tected when the QRS complex is prolonged above 100ms.

• ST segment

The ST segment is measured from the onset of the S wave to the onset of the

T wave. The T wave represents the repolarization of the ventricles. The ST

segment is the time at which the entire ventricle is depolarized. The ST segment

is important in the diagnosis of ventricular ischemia or hypoxia because under

those conditions, the ST segment can become either depressed or elevated.

• QT interval

The Q-T interval represents the time for both ventricular depolarization and

repolarization to occur. Therefore, it roughly estimates the duration of an

average ventricular action potential. This interval can range from 200 to 400

ms. In practice, the Q-T interval is expressed as a “corrected Q-T (QTc)” by

taking the Q-T interval and dividing it by the square root of the R-R interval.

The R-R is the time between two consecutive R waves. This nomenclature

allows an assessment of the Q-T interval that is independent of heart rate.

The ECG is a fundamental tool in cardiology and electrophysiology. It is obtained

by measuring the currents that flows through the body due to consecutive polariza-

tion/depolarization cycles. This current can be measured because the body acts as

a volume conductor. Surface electrodes are used to measure the generated ECG, al-

though sometimes intracardiac electrodes are used to monitor more severe conditions.

The ECG is valuable to obtain information concerning heart diseases like Bradycardia,

Arrhythmias, and Tachycardia.
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2.1.3 Diseases of the heart

The study of diseases of the heart is known as cardiology. Important diseases of

the heart include:

• Coronary heart disease - is the lack of oxygen supply to the heart muscle; it can

cause severe pain and discomfort known as Angina.

• Heart attack - occurs when heart muscle cells die because blood circulation to

a part of the heart is interrupted.

• Congestive heart failure - is the gradual loss of pumping power of the heart.

• Endocarditis and myocarditis - are inflammations of the heart.

• Congenital heart defects.

• Cardiac arrhythmia - is an irregularity in the heartbeat. It is sometimes treated

by implanting an artificial pacemaker.

Cardiovascular diseases (CVD) accounted for 38.5 % of all deaths, or 1 of every 2.6

deaths, in the United States in 2001. CVD mortality was about 60 percent of “total

mortality”. This means that of over 2,400,000 deaths from all causes, CVD was listed

as a primary or contributing cause on about 1,408,000 death certificates [6].

In 2003, Arrhythmias (disorders of heart rhythm) were the cause of 37,892 deaths. The

total mentioned mortality was 484,000 of over 2,400,000 U.S. deaths. Arrhythmias

are often treated using pacemakers, which means that there is a high demand for

these devices.
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2.2 History of implantable cardiac pacemakers

Since their commercial introduction in 1961, approximately 3.4 million pacemak-

ers have been implanted worldwide, and approximately 600,000 units were implanted

in 2000 alone [7]. Of the more than ten million people worldwide who suffer from

cardiac arrhythmias, only a small percentage receives proper medical attention. Ap-

proximately 300,000 - or only 3% - are fortunate enough to be evaluated by elec-

trophysiologists - cardiologists who specialize in cardiac rhythm disorders [8]. These

statistics clearly reveal that there is a need of research in order to help in the devel-

opment of more accessible treatment for all patients. This was the motivation behind

the origins of the pacemaker. This section discusses the development of the electrical

study of the heart focusing on the origins of the pacemaker as a therapeutic tool.

In 1902 Willem Einthoven applied the string galvanometer to the measurement of the

electrical potentials generated by the beating heart. Einthoven demonstrated that

these electrical potentials could be detected from electrodes placed on the surface of

the body. This study opened the possibility of quantifying and displaying the typical

signals of a normally-beating heart together with those produced by cardiac arrhyth-

mias. Furthermore, it led to the development of instruments for recording the ECG

and to the whole modern science of electrocardiography.

The first experimental heart pacemaker was designed by Hyman in New York. He

developed a device in which a needle was passed through the intact chest wall into

one of the top chambers of the heart. This produced an interrupted current, that is,

a pulsed rather than ’galvanic’ or continuous current, as it had been used in earlier

works. This device allowed prolonging the lives of two patients for 24-48 hours in

1932.
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In 1950 two Canadians, Bigelow and Callaghan, presented a paper describing their

work on stimulation of dog hearts with one electrode in the esophagus and the other

over the precordium. During the same year they stimulated the sinoatrial node of a

patient endovenously during open-heart surgery.

Two years later Zoll, building on the work of Bigelow, Callaghan, and Hyman, pub-

lished an article entitled “Resuscitation of the heart in ventricular standstill by exter-

nal electric stimulation”. Zoll’s system used plates held on the chest wall by straps

avoiding the dangers associated with methods involving surgery. The main drawback

from this method is that it could not be used for long-term pacing since it produced

many undesirable effects including skin burns, pain and contraction of skeletal mus-

cles in the chest.

In 1958 Senning and Elmqvist, in Sweden, developed a pacemaker that was able to

run from batteries and was small enough for implantation. This pacemaker is shown

in Figure 2.8. The batteries of this unit were nickel-cadmium and could be recharged

inductively. The first unit was implanted in a patient in October 1958 [9].

Figure 2.8. The first cardiac pacemaker, 1958 [10].

In America in 1959, Chardack and Greatbacth developed the first implantable pace-

maker using mercury zinc oxide cells. It measured 6 cm in diameter by 1.5 cm thick.
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It contained a blocking oscillator generating a very low power pulse which triggered a

transistor switch. This drained a capacitor charge from the power supply to deliver a

1 ms biphasic pulse to the electrodes. The current drained from the unit was 11 µA,

which gave the batteries a usable estimated life of 5 years. Warning of low battery

state was provided by a slow rise in the pulse rate over a period of weeks. Figure

2.9 illustrates the circuit schematic of the Greatbatch-Chardack implantable pace-

maker. From this first approach in the design of pacemakers, several improvements

have taken place. The new developments in hardware implementations are discussed

in the next section.

Figure 2.9. Circuit diagram of the Greatbatch - Chardack implantable pacemaker.
(Redraw from Chardack et al. (1964). Ann. N.Y. Acad. Sci.111, 1075-1092.).

2.3 Definition of a cardiac pacemaker

A pacemaker or “artificial pacemaker”, not to be confused with the heart’s natural

pacemaker, is a medical device designed to regulate the beating of the heart. The pur-
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pose of an artificial pacemaker is to stimulate the heart when either the heart’s native

pacemaker is not fast enough or there are blocks in the heart’s electrical conduction

system, preventing the propagation of electrical impulses from the native pacemaker

to the ventricles. In general, pacemakers are not used to treat fast rhythms of the

heart.

In most cases, the indication for permanent pacemaker placement is a slow heart

rate (bradycardia) or a defect in the electrical conduction system of the heart (heart

block) with associated symptoms. Typical symptoms of a slow heart rate include

light-headedness, poor exercise tolerance, and loss of consciousness. Asymptomatic

individuals who have a slow heart rate but do not require a pacemaker, like athletes,

typically have resting heart rates in the 40 bpm without any hurtful effects.

If the slow heart rate is due to complete heart block, a pacemaker is indicated, since

the heart rate can dramatically decrease without notice. Pacemakers can also be

placed in patients at high risk for complete heart block.

Rarely, in people prone to ventricular fibrillation, a slow rhythm in the heart can

lead to a ventricular fibrillation. For them, preventing the slow rhythm can prevent

ventricular fibrillation.

Modern pacemakers have two basic functions, monitoring and stimulation. A pace-

maker “listens” to the heart’s native electrical rhythm, and if it does not sense any

electrical activity within a certain period of time, it stimulates the heart with a preset

amount of energy, typically measured in Joules.

There are three modes of pacemaker’s operation [11]:

• freerunning (fixed rate or asynchronous) - is insensitive to any rhythm that may

develop in the paced chamber.
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• inhibited - senses cardiac activity and does nothing if this is present, but deliver

a stimulus after an elapsed time if no further cardiac activity occurs to inhibit

operation.

• triggered - senses activity and delivers a stimulus in a desired way.

The North American Society of Pacing and Electrophysiology (NASPE) and the

British Pacing and Electrophysiology Group (BPEG) generic code is a pacemaker

naming convention originally developed in 1974 that uses a 3 - 5 letter code to describe

the main features of an artificial pacemaker. Table 2.1 presents the nomenclature used

by NASPE to classify pacemakers [12].

Table 2.1. The Revised NASPE/BPEG Generic Code for Antibradycardia Pacing.

Position Category Code
O = None
A = Atrium

I Chamber(s) Paced
V = Ventricle
D = Dual (A+V)
O = None
A = Atrium

II Chamber(s) Sensed
V = Ventricle
D = Dual (A+V)
O = None
T = Triggered

III Response to Sensing
I = Inhibited
D = Dual (T+I)
O = None

IV Rate Responsive
R = Rate Modulation
O = None
A = Atrium

V Multisite Pacing
V = Ventricle
D = Dual (A+V)

Each of the 5 positions implies a particular aspect of the pacemaker’s functionality.
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Using this scheme, a designation of VATOO would describe, for example, a pace-

maker that sensed the atria and paced the ventricles in a triggered mode with no rate

response or multi-site pacing.

Patients with sick sinus syndrome and chronotropic incompetence, some of those

in whom the atrioventricular (AV) node has been ablated because of intractable

supraventricular arrhythmias, and patients with chronic atrial fibrillation and com-

plete AV block, cannot increase their heart rate. These patients can only increase

their cardiac output through an increase in stroke volume. A rate responsive pace-

maker system, which detects the need for a rise in heart rate, will increase the exercise

capability and the quality of life of these patients.

A rate responsive pacemaker is designed to adjust the lower rate of the pulse genera-

tor based on the output signal of the sensor. Recently, several other uses of the sensor

have been proposed such as capture detection, detection of tachycardias, rejection of

interference, and upper rate behavior adaptation.

2.4 Previous pertinent research in cardiac pace-

makers

Since the conception of the first pacemaker there has been a great amount of

research to improve it. Improvements can be divided in three main areas: (1) Hard-

ware Implementation, (2) Control Algorithms and (3) Pacemaker’s Battery Efficiency.

This section revises previous reseach that has been the foundation for this thesis and

discusses it briefly.
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2.4.1 Hardware implementations

At the beginning, the design of a pacemaker was only at the hardware level. The

first generation of pacemakers was a composition of discrete electronic devices that

served as therapeutic tools. The first steps toward miniaturization were taken in 1970

by Gerhard Weil, Walter L. Engl, and Albrecnt Renz [13].

They proposed a design based on a thyristor, which is a four-layer structure, to control

the output of a relaxation oscillator that served as the pacemaker. Their circuit is

shown in Figure 2.10. It should be mentioned that this design used a power supply of

7V and generated an asynchronous 1.5ms width pulse. The total current consumption

of this system was 18µA without load. Their design is important for its contribution

toward miniaturization and implementation of pacemakers using integrated circuits.

It also includes safety features that helped in the development of reliable pacemaker

designs.

Figure 2.10. Circuit schematic of the design proposed by Gerhard Weil, Walter L.
Engl, and Albrecnt Renz in 1970 [13].

In 1979 Robert A. Walters and Gary W. Bivins, at Arco Medical Products Com-

pany, developed a cardiac pacemaker that included digital elements to achieve a pro-

grammable pacemaker [14]. Their main concern was about the physiological change
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that suffers the patient’s heart. Further, the impedance built up in the heart-lead

interface changed with time causing loss of capture to the pacemaker. To solve these

problems they designed a circuit that could be programmed externally by means of

electromagnetic waves. Figure 2.11 illustrates how the programmability of the design

was done.

Figure 2.11. Block diagram of the programming of the pacemaker [14].

The first approach to design a pacemaker using a microcontroller was completed in

1989 by Larry J. Stotts, K. Ross Infinger, Janet Babka, and David Genzer [15]. Their

paper presents a custom design of an 8-bit microcontroller for pacemaker applications.

It also includes a detailed description of the design of the sense amplifiers. The ROM

and RAM memories are used as transition registers for programmability purpose.

Figure 2.12 presents the block diagram of the pacemaker.

Figure 2.12. Block diagram of the circuit design by by Larry J. Stotts, K. Ross
Infinger, Janet Babka, and David Genzer [15].
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The last approach used for hardware implementation was taken by Wen-Yaw Chung,

Heh-Sen Lin, Chung-Huang Yang, Tai-Ping Sun, Guo-Ching Chen, and Chang-Horng

Hsieh in 1995 [16].

Figure 2.13. Modular-based block diagram of the overall VVI pacemaker [16].

They proposed a demand-type VVI mode research prototype pacemaker partitioned

in three modules: digital processing, analog processing and master clocking module.

Figure 2.13 shows the block diagram of the modular design proposed in their paper.

It is useful to complement the hardware with software to have a more flexible control

of the parameters of the pacemaker. The software enhances the capabilities of the

pacemaker, making it a diagnostic tool besides the typical therapeutic characteristics.

The next section will discuss this area more in detail.

2.4.2 Control algorithms

The first generation of pacemakers did not have any kind of control algorithm.

Gradually, technology improved the way to approach the design of a pacemaker.

Memories and registers were included to implement logical operations. These pro-
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grams constitute the control algorithms that give functionality and adaptability to a

pacemaker in order to satisfy the needs of each individual patient. In the following

paragraphs a brief description of the control algorithms that have been previously

studied will be presented in order of relevance.

In 1998, Jungkuk Kim and Paul Haefner proposed an algorithm for an automatic gain

control (AGC) that improved sensing performance and minimized human interven-

tion [17]. The basic idea of the algorithm is relatively simple as shown in Figure 2.14.

When three out of four of the previous peak filtered (10-100 Hz bandpass) electro-

gram amplitudes are equal to or higher than an upper limit, the sense amplifier gain

decreases by 1.25 times.

Figure 2.14. The AGC upper and lower limits with sensing threshold [17].

In contrast, when three out of four previous peak amplitudes are lower than a lower

limit, the gain increases by 1.25 times. The results of the sensing performance of both

methods (optimal threshold vs. AGC) are shown in Figure 2.15.

The percentage of malsensing for the automatic sensing algorithm is 0.33% (0.19%

over-sensing and 0.14% under-sensing) for 3585 beats, compared to .45% (0% over-

sensing and .45% under-sensing) using the conventional method with an optimal sens-

ing threshold.

In 1994, R. Frohlich, A. Bolz, R. Hardt, M. Hubmann, and M. Schaldach proposed an
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Figure 2.15. Performance of the automatic sensing method and the optimal threshold
sensing method [17].

algorithm to automatically adjust the amplitude of the output stimulus in pacemakers

[18]. They call their algorithm the Automatic Amplitude Adjustment (AAA). The

basic idea of the AAA algorithm was that the effectiveness of each pulse is checked

immediately after it has been released. If the stimulus is effective, the pacemaker

works normally and nothing is changed. Otherwise, the pacemaker increases the out-

put voltage to guarantee safe pacing above threshold.

In 1993, D.B. Shaw and M. Horwood, explained the significance of having recording

pacemakers as a diagnostic tool for physicians [19]. They outlined some useful ap-

plications for recording pacemakers. Theoretically, ventricular pressure and cardiac

output would seem to be most useful, but mixed venous oxygen saturation or central

venous temperature would provide additional information as might indirect measure-

ments, such as impedance for cardiac stroke volume or respiration and acceleration

sensing for body activity.

There is a special area of programmed pacemakers, known as rate responsive pac-

ing. Rate responsive pacing is an effort of pacemaker’s designers to create intelligent

pacemakers that can adapt to the changeable ambient of the human body. In the

following subsection the major contributions is presented.
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Rate responsive pacemakers

In 1989, M. Schaldach, proposed a parameter for rate responsive pacing [20]. He

stated that the Preejection Period (PEP) get shorter under physical and emotional

stress. This shortage reflects the associated sympathetic response that caused the

heart rate to increase when sinus function is normal. Figure 2.16 defines the Pree-

jection Period as the interval beginning at the start of ventricular depolarization to

the onset of ventricular ejection. The period ends with the opening of the pulmonary

and aortic valves (see Figure 2.2).

Figure 2.16. Definition of the Preejection Period [20].

As shown in Figure 2.17, systolic time intervals (STI), particularly PEP, serve as phys-

iological parameters which can be used for the control of pacing rate [20]. From the

two intervals comprising PEP, the isovolumetric contraction time is physiologically

more important since it is a direct reflection of the speed of ventricular contraction

and, hence, sympathetic tone.

The block diagram of the design proposed by Schaldach to implement the PEP al-

gorithm is shown in Figure 2.18. The design included sensing and pacing channels, a

backup timer and a telemetry module. A special circuitry to measure and determine

PEP was also included. A microcontroller circuit with CPU, ROM, RAM, clock gen-

eration, watchdog timer, and interrupt capability was used as the central processing
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Figure 2.17. Systolic Time Interval (STI).

unit of the system.

Figure 2.18. Block diagram of a Rate-Adaptive Multiprogrammable Microprocessor
Controlled Dual-Chamber Pacemaker (DDD-R) Based on pre-ejection period (PEP)
[20].

Finally in 2002, M.P.R. Hexamer, M. Meine, A. Kloppe, E. Werner, proposed a

control sensor for rate responsive pacemakers [21]. This sensor consists of the atrio-

ventricular conductive time (AVCT). The AVCT corresponds to a well defined interval

in the intra electrocardiogram. Moreover, the AVCT is coupled to the sympathetic

and parasympathetic activity of the autonomous nervous system (dromotropic effect),
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leading to a shortening of the AVCT during exercise.

A pacemaker contains its hardware inside a sealed case with its software stored as

an array of binary instructions. However it cannot accomplish its objective of pacing

the heart if it does not have a suitable power supply providing the energy necessary

to generate the stimuli. The next section discusses the most important achievements

in pacemaker’s power supply.

2.4.3 Pacemaker’s power supply (Battery)

Irrespectively of the type of pacemaker, that is, external or implanted, the pulse

generator requires a source of electric energy. With implanted pacemakers, some

internal source of electric energy is required. Chemical batteries are by far most pop-

ular; however, nuclear powered cells have been used occasionally.

A chemical cell is the functional unit that produces electrical energy. A battery is

merely a group of cells arranged in series or parallel. Each cell contains two electrodes

(anode and cathode) and an electrolyte. Electrons are produced by a chemical reac-

tion within the cell. The chemical reaction alters the composition of the electrodes

and the electrolyte. Often gas is evolved as the cell is used. With the passage of time,

in some cells, the open circuit voltage is relatively constant and the internal resistance

rises. The term shelf life is often used to identify the self-discharging propensity of

chemical cells. The concept of a long shelf life for a cell is of obvious importance

in pacemaker technology, since the cells are sealed in the pacemaker at the time of

manufacture, and implantation may not occur for a considerable time. Another im-

portant characteristic of the cells used in pacemakers relates to the by-products of the

chemical reactions that produce the current. Cells that liberate substantial amounts

of gas are not used for pacemaker construction.
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There are two main chemical cells batteries for pacemakers, the Mercury-Zinc battery

and the Lithium-Iodide battery.

Mercury-Zinc batteries

Mercury-Zinc batteries contain a porous zinc cathode and an anode composed of a

compressed mixture of mercuric oxide, graphite, and silver oxide. The electrolyte

is largely potassium hydroxide, and the chemical reaction that takes place to yield

electrons is:

Zn + HgO + H2O → Zn(OH)2 + Hg

The open-circuit voltage is 1.35V and typical cells provide 1 ampere-hour of charge

when discharged at 40 A. The power density is on the order of 500 mW-hr/cm3 of

cell. Although this battery was quite common in the first implanted pacemakers, they

are not currently used at all for implantable pacemakers.

Lithium-Iodine batteries

In Lithium-Iodine cells the anode is lithium and the cathode is a proprietary iodide

(MI2). Instead of a liquid electrolyte, a pasty salt of lithium is used. The chemical

reaction, which releases electrons, was given by Greatbatch [11] as

2Li + MI2 → M + 2LiI

In this reaction no gas is liberated. The open circuit voltage of the cell is 2.8V, and

has ratings of 2 ampere-hours. The power density is similar to or slightly higher than

that of the mercury-zinc cell. The lithium-iodine has several unique features that

make it an ideal candidate for pacemakers. For example, since no gas is liberated,

the cell can be completely sealed. This feature allows the whole pacemaker to be

enclosed in a welded metal container, thereby rendering it fluid tight and reducing
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susceptibility to electromagnetic interference.

Lithium-Iodine batteries are the standard in modern pacemakers. Figure 2.19 depicts

a diagram of a typical lithium-iodine battery. Notice that the case is the anode (+)

and the output pin is the cathode (-).

Figure 2.19. Anatomy of a Lithium-Iodine Battery [22].
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These are the typical characteristics for a standard lithium-iodine cell [23]:

• Open Circuit Voltage : 2.8 Volt

• Control Circuit minimal voltage : 2.2 Volt

• Control Circuit current drain : 10 µA

• EOL battery resistance : 10 k Ohms

• Chold : 10 µF

• Discharge times : 1 ms, 5 ms

• Oscillator frequency : 167 Hz

• Duty Cycle : 16.7 %

• Ah rating : 2 Ah (typical rating)

• Reliability : 99.6% probability of survival beyond 8 years

• Failure Rate : 0.005% failures/month.

Modern batteries are smaller and more efficient. A typical battery weights around

12.5g, although cutting edge technologies are reducing the size significantly. Figure

2.20 shows a picture of the internal circuitry of a modern VVI pacemaker.

Figure 2.20. Layout of a modern pacemaker [24].

The major companies in the United States that produce pacemakers are Medtronic
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Inc, Guidant Corporation and St. Jude Medical Inc (SJM). Some prestigious inter-

national pacemaker industries are Biotronik GmbH & Co. and CCC medical devices

from Germany and Uruguay, respectively. Table 2.2 compares commercially available

VVI pacemakers in terms of longevity. The current consumption for each pacemaker

is calculated using equation 2.2. A typical Ah rating for a lithium-iodine battery

(2Ah) is assumed. As can be seem in Table 2.2 the current consumed by the stimu-

lus itself is a very small portion, about 10% of the total current consumption. This

implies that almost all the current, about 90%, is consumed to generate the stimu-

lus. This 90% of the current is shown in Table 2.2 as ISystem and is composed of the

pacemaker’s software and hardware consumption.

Iconsumed =
Ah rating

Hours of Service Life
(A) (2.2)

Table 2.2. Longevity Comparison Table.

Service Longevity
Company Product Characteristics IStimulus ISystem Life Testbench

Single Chamber 2.5V, 0.4ms,
Medtronic

Sigma
Rate Program 1.7 µA 21.1 µA 10 yrs 60bpm, 100%

VVI 100
ITotal = 22.8 µA paced at 600Ω
Single Chamber 2.5V, 0.4ms,

Guidant
Insignia

Onset EGMs 2 µA 20.4 µA 10.2 yrs 60bpm, 100%
1198

ITotal = 22.4 µA paced at 500Ω
Single Chamber 1.5 V, 0.3 ms,

SJM
Regency

AutoCapture 1.1 µA 10 µA 20.5 yrs 60bpm, 100%
2402L

ITotal = 11.1 µA paced at 400Ω

2.5 VVI cardiac pacemakers

In 1965, on-demand pacemakers were developed. These types of pacemakers used

the pacing electrodes to apply the stimulus, but also to detect natural occurrences
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of ventricular beats. There are two types of on-demand pacemakers: (1) demand-

inhibited and (2) demand-triggered pacemakers. Demand-triggered pacemakers con-

sume larger quantities of energy, although they are useful to the physician for di-

agnostic purposes. On the other hand, the demand-inhibited consume less battery,

which aligns with the objectives of this work. Furthermore, it is known that right

ventricular inhibited pacing is the most used therapy for maintaining a suitable heart

rate in the presence of chronic or paroxysmal bradycardia [9] [25].

The ventricular inhibited pacemaker senses the R wave of the ventricles and produces

no stimulus until a preset time (e.g., 800-1000ms) has elapsed. At the end of this

time a pace pulse is delivered; then the pacemaker waits for another R wave. Figure

2.21 illustrates schematically the manner in which this type of pacemaker operates.

Figure 2.21. Diagrammatic representation of the operation of the R-wave-inhibited
pacemaker. (a) illustrates atrial, (b) illustrates ventricular activity, and (c) identifies
the ECG [11].

The first beat in Figure 2.21 was initiated by the pacemaker stimulus (S). Following

this beat, A-V conduction (P-Q) was restored and a normal beat (R) occurred, in-

hibiting the pacemaker. However, after an A-V block occured, the pacemaker waited

the elapsed time E and then delivered a pacemaker stimulus S’, followed by a second
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stimulus S”. After the fourth ventricular beat, a ventricular ectopic beat X (R-S in

Figure 2.21) takes place, and the pacemaker is inhibited again. The pacemaker waited

for its preset elapsed time (E) and then delivered a stimulus (S’”) to evoke a beat.

Although VVI pacing is the most widely-used, recent articles [26] [27] have shown

that Dual-Chamber pacing improves exercise capacity and quality of life. However,

these papers are based on theoretical data and lack of hard evidence from large-scale

randomized trials. Other factors that may encourage the usage of VVI pacemakers is

that Dual-Chamber pacing is more expensive and that pacemaker implanters have a

limited experience with atrial-based pacing and atrial leads.

The pacemaker leads are one of the most important parts of any pacemaker. They

provide the interface between the pacemaker and the heart. These can be imple-

mented using a bipolar or a unipolar configuration. The difference between these two

is that bipolar electrodes carry the signal differentially while unipolar carry the signal

with reference to the can of the device. The design of the pacing electrode also affects

the capacity of the battery [28]. In order to stimulate the heart, a sufficient amount

of energy must be concentrated near excitable tissue. For this reason, an important

consideration is the density of current at the tip of the electrode. This current density

is affected by several factors, including the surface area of the electrode, amount of

fibrotic encapsulation, electrical material, pulse width and pulse amplitude among

others. Manufacturers have focused on these factors and have achieved a dramatic

reduction in energy requirements for maintaining capture, which results in consistent

depolarization of the heart.

The objective of this research is to reduce the power consumption of a cardiac pace-

maker. With this purpose in mind, the VVI pacemaker is chosen as the design in

which the research is conducted. VVI offers advantages in terms of power reduction
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(e.g. use one sensing channel and one pulse generator) and less complicate algorithms.

The research is focused in the pacemaker as a whole, from the control algorithm design

to the hardware implementation. For the actual implementation a general purpose

microcontroller is used. This approach permits to evaluate the performance of the

control algorithm in an actual low cost platform. The next chapter presents a re-

view of microcontrollers making emphasis on their relevant characteristics for cardiac

pacing.



CHAPTER 3

Microcontrollers and Embedded

Systems

Microcontrollers (µCs) are everywhere. From cars to washing machines, there is an

unimaginable number of day to day equipments with a µC inside. In simple terms, µC

is a computer-on-a-chip, so it is sometimes also known as microcomputers. Typically,

a µC contains all the memory, peripherals and Input/Output interfaces necessary

for embedded applications. Unlike general-purpose microprocessors, the kind used in

personal computers, a µC emphasizes self-sufficiency and cost-effectiveness. Around

3 billion embedded µCs are sold every year, with the smaller CPUs (4, 8, and 16 bit)

dominating the market [29].

Pacemakers were one of the first embedded systems in the biomedical field to include

a customized µC as a central processing unit. However, customized microcontrollers

are very expensive while general purpose µCs are available at moderate prices. This

work considers the option of using a general purpose µC as the central processing unit

of a pacemaker. In order to do so, this chapter reviews the different CPU architec-

tures available today in general-purpose µC and discusses the implications of those

architectures in a pacemaker system. Moreover, the definition of an embedded system

38
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with a detailed explanation of the pacemaker as an embedded system is presented.

3.1 Description of general-purpose microcontrollers

A general purpose microcontroller is an application-specific instruction set proces-

sor (ASIP). There are three categories of ASIPs: 1) Processors, 2) Microcontrollers,

and 3) Digital Signal Processors (DSPs). Table 3.1 shows most popular ASIPs. Pro-

cessors and DSPs normally have great processing power, but are power-hungry de-

vices. Since microcontrollers lower power consumption, which is a very appealing

feature for embedded systems. µC’s are are used in quite different applications, they

are customized for such different environments by software programming using a spe-

cific instructions set [30]. A typical µC will have a built in clock generator and a

small amount of RAM and ROM, which may be an EPROM or a EEPROM, al-

though more recently Flash memory has been also used. µCs also have a variety of

peripheral devices, such as analog-to-digital converters, timers, UARTs or specialized

serial communications interfaces like I2C, Serial Peripheral Interface and Controller

Area Network.

In the beginning, µCs were only programmed in assembly language and later in

C code. The debugging options were limited, but recently µCs are designed with a

Joint Test Action Group (JTAG) interface, an IEEE standard, included. The IEEE

1149.1 standard entitled Standard Test Access Port and Boundary-Scan Architecture

was created to regulate the test access ports used for testing printed circuit boards

with boundary scan. This standard enables a programmer to debug the software of

an embedded system within the actual µC. JTAG brings enormous advantages to the

programmer since the program run in the actual hardware with the actual constraints
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Table 3.1. Most popular Application-Specific Instruction Set Processors.

Clock Bus Tran-
Processor

Speed
Periferals

Width
MIPS Power

sistors
Price

General Purpose Processors
Intel 2x16KB L1,
Pentium 4 3GHz 2M L2, HTT 32 11356 86 W 55M $475

FSB 800MHz
AMD64 128KB L1,
3800+ 2.4GHz 512KB L2, 64 11176 89W 68.5M $329

FSB 2000MHz
IBM 2 x 32KB L1,
PowerPC 750X 550MHz 256KB L2 32/64 1300 5W 7M $100

Microcontrollers
Intel 4KB ROM, 128KB
8051 12MHz RAM,32 I/O 8 .67 .2W 10k $3

Timer, UART
Motorola 4KB ROM, 192KB,
68HC811 3MHz RAM,32 I/O 8 .57 .135W 10k $10

Timer, WDT
Digital Signal Processors
TI 40KB RAM, 256KB
C2812 150MHz ROM, CAN, SPI, 32 150 .63W NA $34

Timer, UART
AD WDT,3 Timers
ADSP21992 150MHz DMA controller 32 160 NA NA $50

POR generator

of the system. µCs trade away speed and flexibility to gain ease of equipment design

and low cost. There is a limited die area to include functionality. This limitation cause

the wide variety of µCs since there is a diversified way of deciding which peripherals

should be included.

3.2 Microcontrollers’ CPU Architectures

The Central Processing Unit (CPU) of any computer is vital to the overall system

performance. This is also true to µCs since they need to be very reliable, fast and
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with a wide functionality. A general CPU consists of a datapath and a control unit

linked together by a memory.

Figure 3.1 illustrates the arrangement of a basic CPU.

Figure 3.1. Basic block diagram of a typical microcontroller.

3.2.1 Datapaths

The datapath consists of the circuitry for transforming data and for storing tem-

porary data. It contains an arithmetic and logic unit (ALU) which manipulates data,

monitors the status of the data and generates signals that are stored in a status regis-

ter. Typically, processors are described by the size of datapath components; thus, in

an 8-bit processor, data is transported in packets of 8-bits. Common sizes are 4-bit,

8-bit, 16-bit, and 32-bit. More recently, 64-bit processors have gained considerable

popularity. However, sometimes processors are designed containing multiple buses

sizes. An example of multiple bus sizes is IBM’s PowerPC (see Table 3.1).
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3.2.2 Control Unit

The control unit consists of circuitry for retrieving program instructions and for

moving data through the datapath according to those instructions. The control unit

has a program counter (PC) that holds the address of the next program instruction,

and an instruction register to hold the fetched instruction. The controller inside the

control unit can be described as a finite state machine that sequences through the

different states, generating the signals necessary to control the datapath. The con-

troller also determines the value of the next instruction. For a branch instruction,

the controller looks at the datapath to determine the appropriate address. For every

other instruction, it just increments the value of the PC.

The Program Counter’s size determines the processor’s address size, that is, the num-

ber of directly accessible memory locations. This addressable memory is known as

address memory. Each instruction may involve several fetches to the address mem-

ory, since the instruction but also the operands for that instruction. All this process

occurs in a unit of time known as clock cycle. A clock cycle is usually the longest

time required for data to travel from one register to another. The inverse of the clock

cycle is the clock frequency which is used to compare speeds of different processors.

3.2.3 Memory

Registers serve as processor’s short-term storage. However, since the processor

execute many instructions in a typical program it is necessary to store results and the

instructions themselves in a different space. Memories are the processor’s medium

and long term storage devices. The information stored in a memory is classified

in two categories, data or program. Data information represents the values being

input, output and manipulated by the program. Program information consists of
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the sequence of instructions that cause the processor to carry out the desired system

functionality. The way data and program information is stored in memory depends of

the memory architecture. There are two basic configurations: 1) Harvard architecture

and 2) Von Neumann or Princeton architecture.

Harvard architecture

The Harvard architecture uses physically separated storage and signal pathways for

instructions and data. This architecture is depicted in Figure 3.2. In a computer

with Harvard architecture, the processor can read both instructions and data from

memory at the same time. In other words execution occurs in parallel. Harvard

architecture can be faster because it is able to fetch the next instruction at the same

time it completes the current instruction. However this faster execution is obtained

at the cost of silicon complexity. This complexity traduces in larger silicon areas

and complicated pathway networks that may increase the power consumption of the

processing unit.

Figure 3.2. Basic block diagram of the Harvard Architecture.
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Von Neumann architecture

The Von Neumann architecture, also known as a “stored-program computer archi-

tecture”, refers to a memory design that uses a single storage structure to hold both

instructions and data. Figure 3.3 shows the block diagram of Von Neumann archi-

tecture. By treating instructions in the same way as data, a stored-program machine

can easily change the program, and can do so under program control. Von-Neumann

architecture has a single “data” bus to fetch both instructions and data. When the

controller addresses main memory, it first fetches an instruction, and then it fetches

the data to support the instruction. Since it has a single bus to access memory, the

instruction-fetching process takes longer than in Harvard architecture. On the other

hand, Von Neumann architectures are typically simpler than Harvard architectures,

resulting in less silicon area. Since the signals to be process by a pacemaker are very

slow (500ms - 1s) the difference in fetching time between the two architectures is

insignificant.

Figure 3.3. Basic block diagram of the Von-Neumann Architecture.

Memory may be read-only memory (ROM) or readable random access memory (RAM).

ROM has the advantage of occupying less space than RAM. Therefore, many µCs have

larger amount of ROM than RAM. In embedded systems ROM is used as a program

memory, since program does not change quite often in an embedded system. Constant
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data is stored in ROM too, and RAM is mostly used for real time data.

To increase the speed of fetching instructions and data, a local copy of a portion of

memory, known as cache is put inside the CPU. This memory is optimized to be

accessed at faster rates. Cache memory is usually implemented using static RAM

since, although expensive, is faster than dynamic RAM. Figure 3.4 shows the differ-

ence between cache and normal memory. Cache memory uses the principle that if at

a particular time a processor access a particular memory location, is highly probable

that in a near feature it will also access the surrounding memory locations. For this

reason, when the processor first access a memory location it copy the whole memory

block in cache to have the information more accessible. This information might be

either data or program information.

Figure 3.4. Cache Memory.
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3.3 Microcontrollers’ Instruction Set Architectures

The way the instruction set is designed in µCs greatly influences system perfor-

mance. An instruction set architecture describes the aspects of computer architecture

visible to a programmer. It includes the native datatypes, instructions, registers, ad-

dressing modes, memory architecture, interrupt and exception handlers, and external

Input/Output of µCs. Since instruction set architectures are independent of the

actual hardware of the µC they have become a very attractive design option. For

example, the Intel Pentium and the AMD Athlon implement nearly identical versions

of the x86 instruction set, but have radically different internal designs. The follow-

ing sections will discuss the most widely used instruction architectures in terms of

advantages and disadvantages, and also will compare side by side their performance.

3.3.1 CISC architecture

In the complex instruction set computer (CISC) architecture, which each instruc-

tion can execute several low-level operations, such as a load from memory, an arith-

metic operation, and a memory store, all in a single instruction. The term was coined

in contrast to another emerging architecture at the time, the reduced instruction set

computer (RISC).

A typical CISC µC has well over 80 instructions, many of them very powerful and

very specialized for specific control tasks. It is quite common for the instructions to

behave quite differently. Some might only operate on certain address spaces or regis-

ters, and others might only recognize certain addressing modes. The disadvantage of

CISC architecture is that although the high-level program can be expressed in fewer

instructions, the actual performance of the µC is not always improved. Actually, the

complexity of the instruction set is directly proportional to the overhead of decoding
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any given instruction. This means that adding a large and complex instruction set

to a µC, the simpler instructions slow down too. Some devices with CISC are the

Motorola 68000 family and the Intel 80x86 CPUs. Modern CISC architectures divide

the complex instructions in subsets of smaller instructions improving performance

by reducing the overhead [31]. This is precisely the philosophy behind the RISC

architecture.

3.3.2 RISC architecture

The reduced instruction set computer, or RISC, favors a smaller and simpler set of

instructions that take about the same amount of time to execute. The key elements

shared by most RISC architectures are [32].

• A limited and simple instruction set.

• The use of either a hardware or compiler strategy to maximize the use of regis-

ters and minimize references to main memory.

• An emphasis on optimizing the instruction execution pipeline.

The motivation behind RISC architecture philosophy is based on studies that demon-

strate that 25% of the instructions in a CISC architecture make 95% of the executions.

This implies that 75% of the hardware that support these instructions is not used at

all, but consumes silicon area [31]. When using a High Level Language (HLL) such

as Fortran, Basic, C or others, RISC architectures outpast their CISC contenders as

illustrated in Figure 3.5.

HLL’s are very popular since the programmer can practically forget about the hard-

ware behind the software. Yet, when dealing with µCs the programmer needs to

have fair understanding of the hardware because of the peripherals that are needed
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Figure 3.5. Execution times for C-benchmarks on the RlSC I and CISCs [33].

to achieve control of an embedded system. Moreover, for applications where speed

or power consumption are tight constrains, HLL may be impractical. More on this

subject will be discussed in the section about embedded systems.

Significant effort has been invested in identifying common operations and optimizing

them in terms of speed. Since the maximum clock rate of a CPU is limited by the

speed of the slowest instruction, speeding up that instruction results in higher clock

rates. Instructions can be speed up by reducing the number of addressing modes they

support. At the end, it is desirable that each instruction in a RISC architecture can

run in only one clock cycle.

Although at a first glance RISC architecture looks almost perfect, it has several

drawbacks. Ironically, RISC shortcomings are a byproduct of its advantages. Since

to execute a single operation RISC will need more instructions than CISC, a program

developed on a RISC platform will occupy more memory [31]. The problem with
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larger programs is not a limitation in terms on memory space, but the traffic between

memory and CPU. Any operation performed inside the CPU will be executed at least

100 times faster than when fetching memory. This behavior is shown in Figure 3.6.

One idea that RISC encouraged to solve this problem was pipelining in the mid ’80s.

Figure 3.6. Performance time development for CPU and Memory [34].

RISC architecture is highly recommended over CISC architecture for low power ap-

plications. Moreover, as mentioned before, the RIC configurations optimize a small

set of instructions to be executed in one clock cycle, thereby allowing the inclusion of

pipelining and minimizing wake-up time.

3.3.3 Pipeline architecture

Pipelining greatly improves throughput, is the average number of instructions

performed in one second. Instructions consist of a number of steps, which constitute

the so called instruction cycle. These steps can be resumed in three tasks:
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1. Load or Fetch: Reading the instruction from memory

2. Execute: Interpreting and executing the instruction

3. Store: Storing result in memory or register

To do this sequentially is a wasteful approach, since each task uses only part of

the hardware; this will remain idle while the other tasks are performed. For example,

while the processor is using the adder, the loader of data is idle. Pipelining improves

the performance of the CPU by reducing the idle time of each piece of hardware.

Pipelined CPUs subdivide various functional units within a processor into different

stages, or relatively independent components, which can each be working simultane-

ously on a different task. Stages are ordered in sequence with the output of each

stage feeding the input of the stage after it. This way, the overall clock speed can be

increased tremendously. Let us illustrate with a 3-stage pipeline work

Consider the following pseudo-assembly code running on a 3-stage pipeline:

LOAD # 10,A ; load 10 in A

MOVE A,B ; copy A in B

ADD #15,B ; add 15 to B

STORE B, 0x100 ; store B into memory cell 0x100

Assuming one clock for each task in the instruction cycle, the four instructions would

require 12 clocks. On the other hand, with pipelining the complete set is execut.ed

in six clocks, as illustrated in Figure 3.7. Here, in the first clock, LOAD instruction

is fetched; in the second clock, while LOAD is executed, the MOVE instruction is

fetched, etc.
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Load step Execute step Store step

clock1: LOAD

clock2: MOVE LOAD

clock3: ADD MOVE LOAD

clock4: STORE ADD MOVE

clock5: STORE ADD

clock6: STORE

Figure 3.7. Sequence of instructions with pipelining.

Although pipeline architectures have promising advantages, they also suffer from

drawbacks. The larger problem when using pipelining is that every time that a

branch is taken in software the pipeline must be flushed. Branch predicting is used

to alleviate this effect of branching in pipelines architectures. It also helps when the

programmer reduce the number of branch instructions.

3.4 Definition of an embedded system

An embedded system is a special-purpose computer system completely encapsu-

lated by the device it controls, and does not require any human interaction to work.

It is a computer-controlled system, with pre-defined tasks and specific requirements.

For this reason an embedded system usually has a µC as its core controller. Since

embedded systems are designed for mass production, they need to have reliable soft-

ware and hardware parts and, in most cases, should accomplish this with the lower

possible cost.

The first recognizably modern embedded system was the Apollo Guidance Computer,

developed by Charles Stark Draper at the MIT Instrumentation Laboratory. Since

this first implementation the application field has growth exponentially. Today em-
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bedded µCs systems can be found in Automatic Teller Machines, cellular telephones,

computer printers, network routers, handheld calculators and medical devices, to

name just a few.

3.4.1 The pacemaker as an embedded system

The cardiac pacemaker can be considered an embedded system since it monitors

the heart and delivers a pulse when needed without human intervention. All the cir-

cuitry of the pacemaker is enclosed inside a hermetically sealed encapsulation. This

encapsulation has two purposes: 1) To help filter out electromagnetic disturbance,

and 2) prevent body fluids to get inside the electronic circuitry, causing premature

oxidation of electronic components. The only interface a pacemaker has is via a

magnetic programmer that is connected to a personal computer (PC). All these char-

acteristics define a cardiac pacemaker as an embedded system.

The most basic pacemaker configuration is an oscillator. However, this one will op-

erate as an asynchronous timer, with the problem that if the heart generates its

natural response there will be a competitive rhythm. If the stimulus generated by the

pacemaker coincides with the vulnerable period of the heart it will cause ventricular

fibrillation. Figure 3.8 shows that the localization of the vulnerable period is when

the T-wave is getting to its summit. This behavior should be expected since the

T-wave represents the moment when the ventricles are in the repolarization state.

Ventricular fibrillation should be avoided since it is too dangerous to the quality of

life of a patient. Fibrillation in the ventricles results in a loss of pumping and the fall

in blood pressure to a near-zero level. Figure 3.9 presents the behavior of the heart

during a ventricular fibrillation.

As the picture suggests, since the ventricles are contracting at such a rapid rate the
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Figure 3.8. Vulnerable period of the heart.

Figure 3.9. Typical ECG of a Ventricular Fibrillation.

ventricle chambers are not able to accumulate enough blood to pump to the body,

causing a zero cardiac output. Therefore the tissues start to die because they do

not receive the oxygenated blood coming from the lungs. Although asynchronous

pacemakers are currently non existent, modern pacemakers include a programmabil-

ity option to put the pacemaker in asynchronous mode. This is because, although

dangerous, a cardiologist may use it to analyze the behavior of the heart and check

the status of the pacemaker. Almost all currently used pacemakers are controlled via

customized µCs using system-on-chip configurations.

There is not doubt that by using a µC, the reliability of a pacemaker can be improved.
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Furthermore, programmable features can be included which make the system more

flexible. The µC architecture should include some of the features presented above.

The Von Neumann architecture satisfies the memory mapping requirements of a pace-

maker system, since it involves less silicon complexity which probably consumes less

power. Moreover, RISC architecture is also preferred because of power requirements

and speed.

Another important part of the architecture selection is the size of the data that will

be processed. Since a pacemaker system needs to count for large periods of time (up

to 1s, which can take many bits to represent depending on the counter clock) it is

more functional to have 16-bit buses. 32-bit are not considered because CPUs with

this structure consumes more power. By using 16-bit buses, larger quantities of data

can be accessed and processed in a single clock cycle reducing memory paging and

code size. These reductions will in turn maximize the sleep mode time of the µC

getting a lower power consumption.

As mentioned in Chapter 2, the total current consumption of pacemakers should be

around 20 µA. To satisfy this constraint HLLs should be avoided in the development

of the control software for the pacemaker. The problem when using HLLs for low

power applications is that programmers do not control how the program is encoded

into the machine language. The compiler constructs the machine code. Although

today compilers are sophisticated and have very good optimizations schemes, they

will nevertheless encode unnecessary instructions into machine codes. These unnec-

essary codes will take execution time thereby wasting power, a luxury that cannot be

taken in pacemakers. Therefore, the preferred programming language for the control

algorithm is ASSEMBLY since it allows the programmer to have greater hardware

control and a one to one instruction relationship with machine code. Chapter 5 dis-
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cusses the trends in the development of low power algorithms as well as the research

done in recent years in the minimization of power consumption in control algorithms

for embedded system.

To summarize, based on the previous observations, the microcontrollers to consider

in our selection process should have these 4 architectural features:

• Von Neumann CPU architecture.

• RISC Instruction set architecture.

• 3-stage pipeline system (3-stage as a minimum size)

• 16-bit data processing

In the next chapter a methodology for the development of this research will be pre-

sented. One part of that methodology is the microcontroller selection process. For

this effect, all the inputs given in this chapter will be considered.



CHAPTER 4

Design Methodology and

Objectives

4.1 Pacemaker Design Methodology

The intention of this research is to develop a prototype of a VVI cardiac pacemaker.

For that purpose, a methodology for the design of a pacemaker is proposed as follows:

1. Device requirement definition

2. Microcontroller selection

3. Software / Hardware specifications

4. Software Design

5. Hardware Design

6. Integration

7. Verification (Testing)

56
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This chapter discusses the first two steps.. Chapter 5 will explain in detail the software

specifications and software design. Chapter 6 will include the hardware specifications,

hardware design, integration and verification of the whole system. Finally, Chapter

7 will present the results, conclusions and future work.

4.2 Device requirements definition

The device requirements describe what the device must do in order to be consid-

ered a pacemaker. The specifications used in this research were developed by taking

the reference of a commercially available VVI pacemaker, the TEROS SSI 503. This is

a product offered by the“Centro de Construcción de Cardioestimuladores del Uruguay

S.A.” [35]. It will serve as a benchmark for the prototype developed in this research.

From now on, to avoid confusion, the pacemaker developed in this research will be

called PROV910.

4.2.1 System Description

The PROV910 will be a VVI cardiac pacemaker used to treat bradycardia, with

the following charactristics:

• It should stimulate and sense the heart with unipolar or bipolar polarities.

• It operates using a lithium battery of 3V, and works for supply voltages from

2V to 3V.

• It should offer a wide range of programmability, including basic pace rates, pulse

widths, pulse amplitudes, hysteresis intervals, sensitivities and polarities.

• Although described as VVI, it also includes the following modes: VVT, VOO,

AAI, AAT, and AOO.
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• The whole system is intended to have low power consumption and a life of 10

years or more when using a 2Ah rate

This program will be develop using IAR free development environment and de-

bugger for the msp430. A prototype will be implemented using surface mount (smt)

discrete components, and it should be a low cost system.

4.2.2 Definition of Pacemaker’s Parameter

The pacemaker has several programmable parameters that must be defined. These

are divided in two categories: 1) Timing parameters, and 2) Operational parameters.

The timing parameters are those that define the timing behavior of the pacemaker; the

operational parameters include all others that have nothing to do with time intervals,

but are necessary for proper operation of the pacemaker. The four timing parameters

are: basic pace interval, escape interval, ventricular refractory period (VRP) and

pulse width (PW). The operational parameters are: pulse amplitude (A), sensibility,

sensing and pacing polarities, and mode of operation. Figure 4.1 shows the timing

parameters and the pulse amplitude.

Figure 4.1. Pacemaker’s programmable paramaters.

Pacemaker’s timing parameters
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• Basic Pace Interval

The basic pace interval is the period of time that the pacemaker awaits to apply

a stimulus to the heart. It is measured in beats per minutes (bpm) or min−1.

• Escape Interval

The escape interval is the period of time that the pacemaker awaits after a

spontaneous QRS complex has been generated. If the hysteresis is off, this

interval is the same as the basic pace interval. However, if hysteresis is turn

on this interval becomes longer that the basic pace interval by the amount

specified by the hysteresis parameter. Hysteresis is used to reduce the number

of stimuli generated by the pacemaker and hence to reduce power consumption.

The reduction is achieved because if a spontaneous QRS occurs, it is highly

probable that more of them are generated by the heart. The escape interval has

the same units of the basic pace, which are bpm.

• Ventricular Refractory Period (VRP)

The VRP is the amount of time that the sense circuit is turned off. This is

done to avoid sensing the pacemaker own stimulus, the paced QRS complex,

the T wave and afterpotentials. If the sensing circuit is not turn off then it will

generate stimuli to all these events causing ventricular fibrillation. Figure 4.1

shows two kinds of VRPs: sensing VRP and pacing VRP. These two intervals

usually are programmed to the same amount of time which is measure in ms.

• Pulse Width

The Pulse Width is the amount of time the pulse generator will supply the

stimulus to the heart. This parameter is of immense importance to capture

the heart. Capture is the action of generating a potential that develop a chain

reaction through out the ventricle. The pulse width is measure in ms.
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Pacemaker’s Operational parameters

• Pulse Amplitude

The pulse amplitude and the pulse width are essential for correct capture of the

heart. The amplitude and witdh are related to the energy consumption curve

shown in Figure 4.2, for which it is seen that there exists a minimum. The

dashed line (b) in the figure is the rheobase or minimum-current asymptote.

The unit for the pulse amplitude is Volt (V).

Figure 4.2. Strength-Duration duration curve for cardiac stimulation.

• Sensitivity

The sensitivity refers to the minimum threshold voltage of an input signal that

must generate a flag in the microcontroller. This flag resets the basic timer and

marks the beginning of the escape interval. This parameter is measured in mV.

• Pacing and Sensing polarities

There are two polarities available for either pacing or sensing the heart, unipolar

and bipolar polarities. Unipolar polarity uses an electrode with the cathode (-)
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located in its tip and the anode (+) located on the encapsulated plate that

surrounds the pacemaker. The unipolar concept is shown in Figure 4.3(a). On

the other hand, bipolar polarity uses an electrode that consists of a ring and a

tip, both located in the electrode. In this case the ring is the anode (+) and

the tip is the cathode (-). More on the subject of polarities will be discussed in

Chapter 6 where the pulse generator along with the voltage multiplier will be

explained. Figure 4.3(b) illustrates the bipolar polarity.

(a) Unipolar polarization (b) Bipolar polarization

Figure 4.3. Sensing and pacing polarization modes.

• Modes of Operation

The modes of operation specify which part of the heart is paced and which part

is sensed. This parameter also involves the type of response to sensing. The

different types of modes are: VVI, VVT, VOO, AAI, AAT, and AOO (see Table

2.1).

As a matter of fact, the specified sensitivity for the PROV910 will have a wide range

so that either a p-wave or a QRS complex can be sensed. This means that the mode
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will be finally decided by the placement of the electrode either in the atrium or in the

ventricle. This decision is left to the cardiologist when implanting the device into a

patient.

4.2.3 User Interface

The interface for the PROV910 will be done by a serial connection. This con-

nection will go from a PC to an ES449 SoftBaught evaluation board. This board

contains the driver to decode the serial message and also a LCD to display use-

ful information. This evaluation board also contains a MSP430F449 connected to the

PROV910 through wires. For future work the communication should be done through

magnetically coupled loops.

4.2.4 PROV910 programmability and safety goals

Programmable goals:

• Basic Pacing Rates : From 32 to 120 bpm in steps of 2

• Pulse Widths : 20 values from .07 to 1.5 ms

• Pulse Amplitudes : 10 values from 3 to 7.5 V

• Refractory Period : 21 values from 200 to 500 ms

• Hysteresis : 20 values from 2 to 40 bpm

• Sensitivities : 16 values from .4 to 6.4 mV

• Pacing polarity : Unipolar / Bipolar

• Sensing polarity : Unipolar / Bipolar

• Upper rate in Trigger mode : 51 values from 80 to 180 bpm

Battery Monitoring goals:
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• Magnetic Response: BOL (Begin of life) = 96 bpm

ERI (Elective replacement) = 84 bpm

EOL (End of life) = 74 bpm

• Elective Replacement : When the remaining capacity of the battery is 15%

(Vbat = 2.3V)

• End of Life : When the remaining capacity of the battery is 5%

(Vbat = 2.1V)

Protection goals:

• Run away limit : The pacemaker will not deliver stimuli at a rate larger

than 200 bpm.

• No DC current path : All path to the heart will be coupled with caps to

avoid dc currents.

Service Life Goals:

It is expected that PROV910 can achieve at least 10 years of service life when pacing

a 100 % at 60 bpm, with a 3 V amplitude, a pulse width of 400 ms and a load of

500Ω.

4.3 Microcontroller selection process

The main attribute of the microcontroller to be chosen is that it must have very

low power consumption. This means that it must be able to work down to at least

2V and consume supply current in the µAs order when in standby mode. In this

section a comparison of different µCs will be performed. The µCs were chosen from
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a broad sample that passed through a preliminary elimination process. This first

elimination was based purely on minimum operational supply voltage. Those that

remained to be compared in more detail were: a) MAXQ2000, b) PIC18LF242, and

c) MSP430F1611.

The comparison of these µCs is made in terms of 1) average current consumption,

2) available power-down modes, 3) clocking system, and 4) pin leakage. A short

explanation describing the importance of each feature for the design of PROV910 is

also presented. Ranks are used in the decision process to determine which µC fits

better the needs of the research; the rank functions as a weight in the final evaluation.

The microcontroller with highest evaluation is the one selected.

4.4 Low Power Consumption Features

The following features are essential to obtain low power consumption. The in-

formation for comparison of each microcontroller was obtained from the respective

datasheets provided by Maxim [36], Microchip [37], and Texas Instruments [38]. This

comparison of low power microcontrollers is a significant contribution in the field of

low power embedded systems. Designers does not have to go through all the compar-

ison process since the following analysis serves as reference for future work using low

power microcontrollers. The methodology followed for the comparison that will be

presented can be easily used to compared new available low power microcontrollers.

4.4.1 Average current consumption

The average current consumption is essential to determine battery life. The aver-

age current has two components: the standby current and the active current. Figure

4.4 shows the typical behavior of a microcontroller changing operation modes.
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Figure 4.4. Average Current Consumption [39].

A µC should have a wake up time small enough to take care of interrupts in real

time. This wake up time should be at least in the µs range to be insignificant when

compared with the active time. If this assumption is accomplished, then the average

current may be calculated using the following equation:

Iaverage = Istandby +
Iactive

tbase

n
∑

i=1

tint(i) +
Iperipheral

tbase

n
∑

i=1

tperipheral(i) (4.1)

where Istandby is the constant standby current and Iinterrupts is the current consumption

due to handling interrupts. Iinterrupts is composed of the active current (Iactive) of the

µC, the base time (tbase)which is the time in which a cycle is completed and the time

consumed taking care of a particular interrupt (tint).

It is important to notice that the active current depends on the µC’s master clock

frequency and the supply voltage. It is therefore imperative to define the master clock

with the minimum frequency in which a proper real time operation can be achieved.
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A real time operation is one that accomplishes a specific task before the dateline is

done. For example, as discussed in section 4.2.4 the range of time for the basic pace

interval is from 500 ms to 1.9 s (Interval(ms) = 60000

Rate
). This means that in order

to achieve real time operation, the task performed by basic pace interval’s interrupt

must be done at least at half the minimum dateline time, that is 250 ms. A detailed

analysis of real time operations will be presented in Chapter 5.

Since the standby current is constant throughout all cycles, this is the most critical

characteristic and should be minimized. Therefore it has the highest rank. Table 4.1

presents the characteristics along with the ranks for each of thecurrents. Notice that

the µC with better performance in a given characteristic is underlined.

Table 4.1. Current consumption characteristics.

Character-
istics

Conditions maxq2000 pic18lf242 msp430f1611 Rank

Sleep All oscillators off
Current RAM retention only

.7 µA .1 µA .2 µA 5

Standby Only 32kHz Crystal is
Current on, interrupt enable

4.8 µA 14 µA 1.1 µA 10

Active Master Clock = 1MHz
Current (PIC, fmaster=4MHz) 5000 µA 300 µA (1 mA) 290 µA (400 µA) 7

Vsupply=2V

The decision is done as follows:

Microcontroller Characteristics Ranks Score

maxq2000 0 0 0

pic18lf242 1 5 Score = 5

msp430f1611 2 7 + 10 Score = 17
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As shown in the table above, msp430 offers better performance in terms of average

current consumption.

4.4.2 Power down modes

Power down modes enable the microcontroller to meet low current consumption.

A µC has several power down modes providing different levels of functionality. For a

pacemaker, we need a power down mode that consumes the least amount of current

but at the same time monitors ports and timers to take care of interrupts generated.

This is not possible in sleep mode, since this mode turns off all the µC’s peripher-

als and only can be woke up with a reset signal which cannot be delivered by the

pacemaker itself.

Table 4.2. Maxq2000 power down modes.

Power Down Current
Modes

Description
Consumption

Allows one system
PMM1 clock is 256 oscillator 190 µA

cycles
Runs from a 32kHz crystal

PMM2
oscillator.

4.8 mA

The external oscillator,
system clock and all process-

Stop Mode
ing activity is halted. No

.7 µA

interrupts available.

Table 4.2 shows the low power modes of maxim’m microcontroller maxq2000. This

one has only 3 low power modes which consume too much current to be considered

for the design. Table 4.3 shows the eight different modes in which pic18lf242 can

operate. These modes are obtained by manipulating the clock frequency source.

Although these µCs offer great flexibility and customization, the current consumption
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is still too high. Finally Table 4.4 shows the low power modes for the msp430. The

Table 4.3. pic18lf242 power down modes.

Power Down Current
Modes

Description
Consumption

LP Low Power Crystal 14 µA
XT Crystal/Resonator 500 µA
HS High Speed Crystal/Resonator 600 µA

High Speed Crystal/Resonator
HS + PLL

with PLL enabled
15 mA

RC External Resistor/Capacitor 300 µA
External Resistor/Capacitor

RCIO
with I/O pin enabled

300 µA

EC External Clock 10 mA
External Clock with I/O

ECIO
pin enabled

10 mA

msp430 offers a variety of modes which truly consume very low current. The LPM3

is particularly appealing for the design of the pacemaker since it offers a very low

current consumption while maintaining interrupts enabled, a feature which satisfies

the real time demands of the pacemaker. These features put the msp430 as the

stronger candidate at this point, for the design at hand. However, although low

current consumption is important, the way clocks enters or exit the low power modes

is important too. Next section will compare the clock system of the microcontrollers

to examine how fast clocks respond to a given interrupt.

4.4.3 Clock systems

The clocking system of any microcontroller is critical for low power consumption.

Applications may enter and exit various low power modes several times a second.

The ability to get into and out of the low power modes, and process data quickly,

is crucial because current is wasted when the CPU waits for the clock to become



69

Table 4.4. msp430f1611 power down modes.

Power Down Current
Modes

Description
Consumption

AM All clocks are active 300 µA
CPU and MCLK are disabled

LPM0
AUXCLK and SCLK are active

50 µA

CPU, MCLK, SCLK are disabled
LPM2

DCO and AUXCLK are active
11 µA

CPU, MCLK, SCLK, and DCO
LPM3

are disable. AUXCLK enabled
1.1 µA

LPM4 All clocks and CPU disabled .1 µA

stable. Some µCs have a two-stage clock wake-up providing a low frequency (usually

32.768kHz) clock to the CPU while a high frequency clock is being stabilized, which

can take up to a millisecond or longer. This is the case of maxq2000 which needs

65,536 oscillations to achieve stability while a ring oscillator provides the clock for

the CPU.

Table 4.5. Comparison of microcontroller’s wake up time.

Character-
istic

Conditions maxq2000 pic18lf242 msp430f1611

Wake-up Time from standby
time to active (f = 1MHz)

33 ms 2 ms 6 µs

As it can be seen in Table 4.5, the msp430 has a superior performance in terms of

the wake up time, taking only 6 µs to be stable. This is about 300 times faster than

the pic18lf242 and 5500 times faster than the maxq2000.
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4.4.4 Pin leakage

Pin leakage is often overlooked when designing low power systems. However, in

a demanding system as the PROV910 design, pin leakage is crucial. Typical micro-

controllers have pin leakage currents around 1 µA. In a 20 pin package, this traduces

into 20 µA. This is the case of pic18lf242 which has a maximum leakage current of

1µA and 28 pins (if a SO-28 package is used). Therefore the total leakage current is

around 28uA which is more than the total current budget of the system. Table 4.6

compares the leakage current for the different microcontrollers. Again the msp430

satisfies the low power constrains of the system.

Table 4.6. Comparison of microcontroller’s leakage current.

Character-
istic

Conditions maxq2000 pic18lf242 msp430f1611

Leakage Pin at high impedance
current Vcc or Vss applied to pin

100 nA 1 µA 50 nA

4.4.5 Final Microcontroller Selection

The above analysis demonstrated that in all the aspects considered for low power

consumption, the MSP430 was superior to its counterparts. It is also important to

point out that the MSP430 has peripherals that are optimized for low power consump-

tion. The peripherals were designed so they can be individually enabled or disabled

when needed. Furthermore, some peripherals have the ability to enable or disable

themselves automatically. An example of an intelligent peripheral is the ADC12. If

the ADC is not actively converting data, it turns off automatically. But it also has the

capacity of turning on automatically if a conversion is triggered. Other useful periph-

erals are the Direct Memory Access modules (DMA) that can transfer large blocks of
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data without CPU intervention. Using the DMA with the ADC is a winning combina-

tion, since long signals can be converted and stored without CPU intervention. This

information can be processed by the CPU later in a single wake up event minimizing

power consumption. The MSP430 complies with all the specifications lay down in

chapter 3, it contains a 16-bit RISC CPU core with a 3-stage pipeline system and

Von Neumann architecture. The next chapter will present the software specifications

and design.



CHAPTER 5

Pacemaker’s Software Design

Pacemakers, as any embedded system, are composed of two parts: software and

hardware. The software assures the correct operation of the hardware. Although

there are several papers exploring the hardware implementation of the front end,

which is composed of an amplifier, filter and level detector [40] [41] [42] [43], and few

for the output stage implementation,which is composed of a voltage multiplier and

switches [44] [45], this researcher could not find any reference of a control software

source used for pacemaker’s hardware. Moreover, at present, there is not any design

implementing a pacemaker using a general purpose microcontroller. This chapter

presents the control software implemented in an msp430 microcontroller to control a

prototype VVI pacemaker. The development and methodology to design low power

pacemaker software are discussed in details. This software is intended for educational

purposes and is accessible to anyone interested in the field of biomedical equipment.

This chapter is basically composed of two parts: the software specifications and the

software design.

72
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5.1 Software Specifications

The software specifications resume the requirements needed to accomplish a func-

tional software. Well defined software specifications lead to robust and reliable soft-

ware. For this reason this section is entirely dedicated to define and explain the

software specifications for PROV910.

5.1.1 Hardware partition

Microcontrollers have several internal hardware peripherals (see Chapter 3). Thus

the need to classify hardware as internal or external. This is the first step in the

software specifications.

Internal Hardware

The most basic function of a pacemaker is to generate stimuli at specific time intervals.

Therefore, the internal hardware should include at least 4 timers to keep track of the

basic pace interval, the escape interval (hysteresis), the refractory period, and the

pulse width. Although these intervals are the time requirements previously presented

in Chapter 4, there exist others time intervals that should be generated by internal

timers as well. These are the EGM interval, the battery and electrode impedance

interval, and a timer for the digital to analog converter. These intervals are described

next.

• EGM interval

This interval defines the rate at which the electrogram (EGM) is sampled and

converted to digital data. The electrogram is different from the electrocardio-

gram since the former is the signal sensed by the intracardiac electrode and the

latter is the signal sensed by external leads using an electrocardiograph. Figure
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5.1 shows a typical ventricular electrogram compared to a typical electrocardio-

gram. The electrogram has valuable information that cardiologists can use to

diagnostic heart diseases. Therefore it is important to include this feature in

the PROV910.

Figure 5.1. Typical ventricular electrogram [46].

• Battery and electrode impedance interval

It is important to monitor the voltage of the battery energizing the pacemaker

since a power failure is critical for the well-being of a patient. Another impor-

tant parameter is the electrode impedance since a broken or not well insulated

electrode will lead to failure to capture the heart and hence in an ineffective

pacemaker. However, although these parameters are very important, they do

not change rapidly. This means that it would be a wasteful approach to monitor

these parameters at the end of every basic pace interval (typically between 60

- 80 bpm). It is more efficient to have a longer time interval to monitor them,

between 1 min to 10 min.

• Digital to analog converters
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The front end of the pacemaker needs programmable voltage references to set the

sensitivity and the pulse amplitude. These voltage references are implemented

using a couple of timers and PWM techniques to generate a DC voltage level.

The above specifications identify the need of internal timers with the capability of

generating at least 8 different time intervals. Besides the timers, it is important that

the microcontroller include internally an Analog-to-Digital Converter (ADC) to ob-

tain the electrogram of the heart. As it was mentioned in Chapter 4, the msp430f1611

has an ADC optimized for low power consumption with a 12 bit resolution.

To monitor the battery voltage, the internal Supply Voltage Supervisor (SVS) of the

msp430f1611 is used. The SVS can be programmed to check if the supply voltage

gets below certain voltage value. If a low voltage condition occurs the SVS sets a flag

indicating the event. It also has the capability of restarting the microcontroller.

Additionally, an internal comparator is required to monitor the electrode impedance.

This is because, to check the impedance, a discharge time interval should be mea-

sured at a specific voltage level. This level can be set by an internal reference and a

comparator. Further discussion of the electrode impedance will be presented later in

this chapter.

Although highly unlikely, sometimes internal timers can fail. In this case PROV910

needs a backup timer that delivers a stimulus at a constant rate. RC circuits are

suitable for low cost timers. Since this backup timer is only a temporary timer (the

pacemaker need to be changed in case of failure), it only needs to deliver pulses at

a rate of about 60 bpm. To implement this RC timer an I/O port with interrupt

capability is needed.

Finally an internal UART and a DMA are necessary to communicate externally. The
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msp430f1611’s universal asynchronous receive/transmit (UART) has interrupt capa-

bilities and can be set at several baud rates. Moreover, the hand shaking protocol

can be configured easily in the UART control registers. The Direct memory Access

(DMA) is essential since it can transfer large amount of data, like large EGM samples,

from memory to external peripheral without CPU intervention. Since CPU consumes

large amounts of current, the longer is in sleep mode the best.

External Hardware

The external peripherals are defined by the specialized requirements of the pacemaker.

There are only two external stages: the front end and the output stage. Figure 5.2

shows the block diagram of the front end of a pacemaker. The front end senses small

signals with many noise components. Since the sensing of the signal can be performed

using unipolar or bipolar sensing, the first stage of the front end is a difference ampli-

fier. The difference amplifier converts a differential signal into a single ended signal.

After this first stage, a filtering stage and an amplification stage follow. The last

block of the front end is an external comparator that compares the output of the

filter/amplifier and a programmed referenced voltage.

Figure 5.2. Block diagram of the pacemaker’s front end.

The output stage consists of a charge pump, a complementary clock generator, a

comparator and several switches. This stage should be able to triple the battery
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voltage to generate a high voltage pulse that captures the heart. Figure 5.3 shows

the block diagram of the output stage. The output stage should multiply the battery

voltage to a voltage defined by the DC generator timer inside the msp430f1611. Note

that a voltage divider should be used to step down the high voltage and be able to

input it to the comparator without permanent damage. When the output voltage

stored in the capacitor is larger than the reference voltage, the clock generator is

disabled causing the charge pumping function to stop until the voltage stored in the

capacitor is smaller than the voltage reference.

Figure 5.3. Block diagram of the pacemaker’s output stage.

5.1.2 Internal hardware considerations

The external hardware can be controlled via I/O ports, while internal hardware

has more control capabilities since every piece of the msp430f1611’s hardware can be

controlled by modifying certain registers. Since microcontrollers also include internal

RAM and ROM, it is necessary to verify that the available memory in the msp430f1611

is sufficient for the intended application. It is also important to verify that there are

sufficient available ports to control external hardware.

This section will outline the specifications for the microcontroller in terms of: (a)

Peripherals, (b) I/O ports, (c) RAM requirement and (d) ROM requirement.
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MSP430F1611 hardware peripherals

The following internal peripherals are needed for the design:

• Timers with capacity for eight different time intervals

• 12 bit resolution low power ADC

• Supply voltage supervisor with programmable voltage thresholds (2.1V to 3.0V)

• Comparator

• Ports with Schmitt trigger inputs and interrupt capability

• Universal asynchronous receive/transmit (UART)

• Direct memory Access (DMA)

MSP430F1611 I/O ports

The following I/O ports are indispensable to control properly all the external hard-

ware. There are two port categories: timing ports and operational ports.

The timing ports are used to output the external signals that control the pulse, the

refractory period and the RC timer. The operational ports are the ones that control

all the functional parts of the pacemaker.

The timing ports required by the control software are:

1. Pulse signal port.

2. Refractory signal port.

3. Blank signal port.
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4. RC oscillator port. Need interrupt capability.

The operational ports required by the control software are:

1. Sensitivity voltage reference (DAC1).

2. Pulse amplitude voltage reference (DAC2).

3. Sensing polarity.

4. Pacing polarity.

5. Input from external comparator. Need interrupt capability.

6. Input to ADC.

7. Comparator On/Off

8. Rosc input. Used to stabilize the Digitally Controlled Oscillator (DCO) over

temperature to 800kHz.

9. Input to internal comparator.

10. I/O port charge/discharge Electrode impedance.

11. RC timer output port.

12. TurnOn RC signal port.

13. UART receiver port. Need interrupt capability.

14. UART transmitter port.

15. XOUT port. Watch crystal is connected here. A 5.1Mω resistor should be

connected to this port for stability since the supply voltage goes down to 2.1 V
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16. XIN port. Watch crystal is connected here.

17. Reed switch. Need interrupt capability.

18. External reference positive (+) port.

19. External reference negative (-) port.

As it can be seen from the I/O ports outlined above, the msp4301611 satisfy the port

requirement since it contains 48 I/O general purpose ports. Furthermore, of those 48

ports, 16 have interrupt capability activated by either the raising or the falling edge

of the input signal. Moreover, Schmitt triggered inputs avoid false interrupts.

RAM memory requirements

The data that will be stored in RAM are the EGMs, status variables, histograms,

memory buffers, and Stack. RAM is preferred over Flash, since the latter consume

7 mA to write. [38]. Stack memory is vital since every interrupt uses the stack as

a temporary storage for the status register and program counter. If the Stack is

not properly selected the software will crash, which would be catastrophic for the

application at hand. Figure 5.4 shows the RAM requirement for the different data

that should be stored. Using this RAM distribution, an EGM of 12 seconds can be

stored when using a sampling rate of 400 samples per second (400 Hz), which is a

typical sampling rate for cardiac signals [19].

The total RAM required should be at least 5,023 words of memory space which

translates into 10,046 bytes. The msp430f1611 attain this requirement given that it

has a 10 kBytes (10240 bytes) of RAM memory space.
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Figure 5.4. RAM memory distribution.

ROM memory requirements

The ROM memory is where the program resides. It typically is programmed one

time only, although the msp430 has the ability to rewrite it at any moment if the

proper sequence is used. However, as already mentioned this is not an option for the

current design due to the high current consumption. The ROM should be distributed

between software code, and parameters’ tables. These tables are stored in ROM since

if for any reason the pacemaker is reset, it will be able to fetch the default parameters

from ROM and continue with its operation. This makes the software more reliable

due to the fact that ROM memory can store data for a minimum of 100 years without

damage [38].

The code should not occupy too much space given the fact that the program is

developed using ASSEMBLY. A good estimate for the program size is 3 kBytes.

However, the size occupied by the PROV910’s parameters table can be accurately

calculated.
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Table 5.1. Pacemaker’s parameters memory consumption.

number of Total Bytes
Parameter

steps in ROM memory
Basic Pace 45 90
Pulse Width 20 40
Refractory Period 21 42
Hysteresis 20 40
Sensitivities 16 32
Upper Rate in
trigger mode

32 64

Magnetic Response 3 6
Unknown 50 100
Total 207 414

Table 5.1 presents each parameter with its corresponding size in memory. From Table

5.1 it can be seen that at least 4 kBytes of ROM memory are necessary for the software

design. The msp430f1611 satisfies by far this specification since it has a flash memory

of 48 kBytes.

Figure 5.5 illustrates where the I/O port are located in the msp430F1611 along with

some external circuitry. A more detailed schematic including all the external hardware

will be presented in Chapter 6.

From this analysis, we may conclude that the msp430f1611 has the required internal

hardware to implement PROV910’s design. The specifications presented above are a

good foundation to proceed to the software design.



83

Figure 5.5. I-O port map for the pacemaker design.

5.2 Software Design

The goal of the software design is to achieve functionality with the minimum

amount of current consumption. With this goal in mind the following design method-

ology is followed:

1. Research in low power software for embedded systems.

2. Investigate current consumption of the msp430f1611 in the available modes.
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3. Generate timing diagrams for all tasks.

4. Create flowcharts for all tasks.

5. Code analysis.

6. Functionality verification

5.2.1 Low power embedded software

The increasing relevance of software’s power consumption in embedded systems

has promoted several research efforts recent years. The approaches for software power

analysis reported in literature fall in two categories: architectural analysis and in-

struction level analysis. The first approach is discarded for the current research since

architectural analysis is only useful if one is designing a microprocessor or at least has

the internal structure of a processor core. However, the instruction level approach is

suitable for the current research since it gives insight information of how programming

instruction behaves in terms of power consumption.

The idea behind instruction level power analysis is to measure the current consumed

by the processor when executing a particular instruction. This current can be the

average current [47] or the instantaneous current [48] consumed by the µC.

The average current power analysis has been widely used in literature [49, 50]. Any

processor consumes certain amount of average power while executing a program. This

average power is expressed as:

Paverage = I × Vcc (5.1)
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where Paverage is the average power, I is the average current and Vcc is the supply

voltage. Since power is the rate at which energy is consumed, the energy consumed

by a program is given by: E = P x T, where T is the execution time of the program.

This execution time in turn is given by: T = N x τ , where N is the number of clock

cycles taken by the program and τ is the processor’s clock period [47].

There are several methods to measure the average current. The more simple method

is to open the circuit and use a standard off the shelf digital ammeter. Execution

time of programs is measured though detection of specific bus states using a logic

analyzer. However, the logic analyzer is only useful to calculate energy, to measure

current the ammeter is enough. Since typically a program completes execution in a

short period of time, it is necessary to use programs executing in an infinite loop to

be able to measure the average current. Although, other more sophisticated methods

exits to measure current [51, 52], using oscilloscopes or real time data acquisition

systems, the trends found in all of them are similar. Given the fact that the interest

of this research is focus in the trends rather than in the precise current consumption

values, the analysis proposed in [47] is used to characterize the instruction set of the

msp430F1611. Nevertheless, the results presented by these other techniques are used

to complement experiment’s data.

The instruction level power analysis is a valuable tool for the software design. It

provides the means to estimate the current consumption when the msp430 enters ac-

tive mode. Furthermore, an efficient program can be generated by characterizing the

msp430 instruction set. This is true since the programmer can minimize the current

consumption of the software by proper selection of the instructions and addressing

modes used.

The instruction level power analysis models the power consumption in terms of energy
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costs. The total energy of a particular program is composed of a base energy cost

and an Inter-instruction cost.

Base energy cost

The base cost is the cost of a single instruction run in a loop. This loop should be

large enough to converge the average current but small enough to avoid cache misses.

These should be avoided to conserve the integrity of the base cost. A good estimate

for the loop size is 120 steps. Interrupts should be disabled to obtain reasonable

results.

Consider now the instruction processing technique used by msp430’s CPU. The msp430

has a 3 stage pipeline. This means that at any particular point in time it will be pro-

cessing three instructions at the same time. But, as shown in [47] this is not a big

concern since the energy consumed in a pipeline cycle, Ecycle, is equal to the energy

consumed by the instruction, Eins. Since the total energy consumed in a cycle is

given by Ecycle = E1I1 + E2I2 + E3I3 and the energy of an instruction is expressed as

Eins = E1I1 + E2I1 + E3I1 , when using an adequate loop, I1 becomes I1 = I2 = I3

resulting in Ecycle = Eins. In this case, the average current is
∑

j EjI1/(Vcc×τ) which

is equal to the reading obtained by the ammeter.

A multimeter was used to measure the average current. The Agilent 34401A is a

61/2 digit, high-performance digital multimeter. The multimeter used a continuously

integrating, multi-slope III A/D converter to measure the average current [53]. The

multimeter’s integrating time is 10 power-line cycles, that is 167ms (1/60×10). Since

the execution time of the programmed loop is much smaller than the integrating time,

a stable reading is obtained. Figure 5.6 shows the test-bench used to measure the
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average current. The resolution for this test-bench was set up to 10 nA. The msp430

flash emulation tool was used, since it has a jumper (J7) to measure current directly.

Figure 5.6. Test-bench to measure the average current.

The msp430 has 27 core instructions. The base energy cost of these 27 instructions

was measured. The msp430’s clock cycles are defined by the instruction itself. They

are actually defined by the addressing mode used for the source and destination. Be-

cause of this, two addressing modes were used to characterize the current consumption

of the instruction set. The register mode is chosen as the lower limit since it consumes

the minimum clock cycles, and the absolute mode gives the maximum value due to

its large clock cycle consumption. Table 5.2 was generated using this approach.

Note that instructions “call” and “reti” were not included in the analysis. The reason

for excluding them is that it was not possible to generate a loop sequence including

only this instructions. The minimum and maximum currents were measured using

addressing modes with the shortest and longest clock cycles, respectively. The regis-

ter mode has the shortest clock cycle, while absolute mode has the longest. Although

absolute mode has long clock cycles it is widely used when programming the msp430

since it increases portability of the software. The clock cycles are based on an op-

erating frequency of 800kHz, which will be the operating frequency for PROV910’s

software design.
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As it can be seen in Table 5.2, the current consumption oscillates from 296 µA to 361

µA. As expected, instructions with longer execution cycles consumed larger quantities

of average current.

The number of existing 1’s in a particular instruction can increase significantly its

current consumption. This has been widely discussed in the EASY project [54]. They

demonstrated that there is a linear relationship between the number of ones in an

operand and the amount of current consumed. Another experiment was conducted

to verify this influence of 1’s in the current consumption. Table 5.3 shows the result

of using FFFFh (1111111111111111b)as input for the instruction’s operands. The

absolute mode was used to explore the worst case. The results of the experiment

support the findings of the EASY project. The operand’s content does influence the

power consumption of the instruction set. Note that a reduced instruction set was

tested for this experiment. The reason is that these instructions are more commonly

used. For example the extended sign instruction (sxt) is only useful if the program

works with negative numbers, which is not the case in this research.

Inter-instruction energy cost

The base cost presumes that instructions of the same type run continuously. However,

in reality, programs are composed of multiple instructions performing quite different

tasks. This task’s difference causes switching activity in hardware, which in turn

consumes power. This activity depends on the present state of the inputs and the

previous state of the circuit. Since a program has several states, it is difficult to

predict the state changes during program execution. However, an experiment can

give some insight about the existence of this additional inter-instruction cost in the

msp430.

Table 5.4 shows the result for the inter-instruction experiment. There is clearly an
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Table 5.2. Msp430f1611 instruction set power characterization.

Current µA Cycles
Instruction

Minimum Maximum Minimum Maximum

Double - Operand Instruction (Format I)

mov.w 302 330 1 6
add.w 314 334 1 6
addc.w 315 338 1 6
sub.w 332 335 1 6
subc.w 334 340 1 6
cmp.w 334 338 1 6
dadd.w 318 334 1 6
bit.w 311 336 1 6
bic.w 317 336 1 6
bic.w 317 336 1 6
bis.w 313 337 1 6
xor.w 317 337 1 6
and.w 313 339 1 6

Single - Operand Instruction (Format II)

rrc.w 316 316 1 4
rra.w 313 317 1 4
push 342 342 1 5
swpb 310 316 1 4
sxt.w 313 318 1 4

Jump Instruction (Format III)

jeq / jz 297 339 2 2
jne / jnz 296 339 2 2
jc 298 334 2 2
jnc 297 340 2 2
jn 297 339 2 2
jge 298 336 2 2
jl 298 336 2 2
jmp n/a 361 2 2
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Table 5.3. Influence of operand’s content in current consumption.

Current µA
Instruction

0000h FFFFh
Cycles

mov.w 332 359 6
add.w 334 360 6
cmp.w 338 354 6
bit.w 336 357 6
bic.w 336 351 6
bis.w 337 362 6
xor.w 337 376 6
and.w 339 361 6
rra.w 317 347 6
sub.w 335 361 6
swpb 316 347 6

Table 5.4. Evaluation of Inter-instruction cost.

Instruction Ibase (µA) Imeas (µA) Icalc (µA) Cycles
mov.w 330 6
add.w 334 6

Set 1
cmp.w 338

342 336.6
6

bit.w 336 6
bis.w 337 6
bic.w 336 6

Set 2
bit.w 336

340 336.8
6

mov.w 330 6
bis.w 336 6
jc 298 2

Set 3
swpb 316

338 331
4

xor.w 337 6
bit.w 336 6
jn 297 2

Set 4
and.w 339

340 331.7
6

rra.w 317 4
xor.w 337 6
sub.w 335 6

Set 5
mov.w 330

342 337
6

cmp.w 338 6
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overhead cost for the sequence. The measured sequence current (Imeas) is larger than

the calculated average current (Icalc). For example, for set 1, the following equation

is used

Icalc =
361 × 2 + 330 × 6 + 338 × 6 + 336 × 6

26
= 336.6µA (5.2)

This difference between measured and calculated values proof that there is an inter-

instruction cost as specified in [47, 48]. Note that the cost of a jump instruction was

added for each measurement (361 x 2). This is because each set must be repeated in

an infinite loop to be able to measure the average current.

The experiments presented above validate the results presented in [47, 48, 49, 50, 51,

52, 54] for the msp430. It is worth to mention that this power characterization of the

msp430 instruction set is the first instruction set profile generated for the msp430.

This profile can be used by software designers to choose the appropriate instructions

for their applications while considering the power impact in the software performance.

An embedded software design guideline is developed using the information obtained

by the experiments run above and results of previous research.

Embedded software design guideline

• Reduce as much as possible memory access. Read and write operations to mem-

ory consume more current and typically need multiple clocks cycles. The mem-

ory’s current consumption depends on the distance between the current and

previous address. This is further encouraged by [55], where a functionality ap-

proach is used to estimate power consumption of a processor. This paper defines

5 functionalities that can be defined for any processor: 1) Fetch and decode, 2)

Branch, 3) Write to register, 3) Arithmetic and logic, and 5) Load, store and
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stack. The load store (memory access) functionality consumed nearly double

the current when compared to others functionalities.

• Choose instructions that consume less current. For the msp430, bit manipu-

lation instructions consumed less current. To take advantage of this, software

should pass information by bit manipulation whenever possible.

• Use addressing modes with few clock cycles. The longest an instruction takes to

execute the more power it consumes. Typically the Register mode is the faster

addressing mode available. This implies that efficient use of the registers is a

must.

• Use operands with the least amount of 1’s when possible. As it was shown

previously there is a dependence between the number of 1’s in an operand

and current consumption. In the msp430 1’s can add up to 10% more current

consumption. When using bit manipulation to set reset flags, choose the reset

state for the longest state.

The above analysis minimizes current consumption while in active mode. How-

ever, this alone is not sufficient to achieve the low current consumption required

for PROV910’s design. To achieve ultra low power operation it is necessary to un-

derstand the current behavior in the different available modes. The following section

discusses this current consumption for the msp430.

5.2.2 Msp430f1611 current consumption

To obtain the full capability of the msp430 in terms of power consumption, the

low power modes should be used. Figure 5.7 shows the typical current consumption

of the msp430 in each mode.
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As it can be seen from Figure 5.7, LPM4 consumes the lowest current. However, for

the application at hand, this mode is not useful since all clock signals are turned off,

which cannot be since then there is no possible way of managing the time intervals

to generate the required pulses. On the other hand, mode LPM3 consumes approxi-

mately 2 µAs and activates the low power watch crystal as the auxiliary clock. This

attribute satisfies the needs of the design. Due to the slow rate of the heart signal

the 32 kHz watch crystal can be used.

Figure 5.7. Typical current consumption for each operating mode.

When the msp430 wakes up from LMP3 it activates its Digitally Controlled Oscillator

(DCO) at a frequency setup by the programmer. The DCO frequency which is also the

master clock frequency was chosen to be 800 kHz. Such frequency is quick enough

to execute several instructions while in active mode and then get back to LPM3.

Moreover, 800 kHz is the default frequency of the microcontroller, which means that

there is no need of inverting code in setting the DCO frequency [56].

The msp430x161x datasheet [38] define active mode current in terms of Vcc and

Master clock frequency. Equation 5.3 define the active current in terms of the supply

voltage. PROV910 needs to work from 3V or 2.8V down to 2V. In this case the
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worst case current consumption occurs while Vcc = 3V. For 3V, the nominal current

consumption is 500 µA with a maximum of 600 µA.

IAM = IAM @ 3V + 210 µA/V × (V cc − 3V ) (5.3)

The active mode current also depends on the system frequency. Given that the system

frequency was set to 800 kHz. equation 5.4 is used to calculate the actual current

consumption of the system. For 3V and 800 kHz the active current nominal value is

400 µA with a maximum of 480 µA

IAM = IAM @ 1Mhz × fsystem (5.4)

The LPM3 current is specified in the msp430x161x datasheet. Again, the worst case

current occurs at 3V with a nominal value of 2 µA and a maximum of 2.8 µA.

The battery used for the design is a Panasonic poly-carbonmonofluoride lthium coin.

This battery is used only for prototyping purposes. The actual battery used in a

pacemaker is a lithium-iodine battery, discussed in Chapter 2. Panasonic’s battery

has half the capacity of an actual pacemaker’s battery, that is 1Ah. The self-discharge

rate is 1 µA per year. So the actual total capacity is 900 mAh. The goal is to consume

20 µA or less giving a service life of 900mAh 20 µA = 45000 hrs or 5.13 yrs. If a

lithium battery is used then the service life would double to 10.26 yrs.

To effectively profit from the ultra low power consumption, it is necessary to develop

a well defined time scheme. The following section discusses the time diagrams for

each pacemaker’s task.
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5.2.3 Time diagrams

Time diagrams are useful to organize interrupt requests. Precaution should be

taken when organizing interrupts since run conditions, stack overflow, and boundary

conditions should be avoided [[57]]. These are defined as follows:

• Run conditions - refers to interrupts events that occur very close to each other,

and both access the same global variable.

• Stack overflow - occurs when a string of interrupts happen consecutively, pro-

ducing multiple push operations which could fill the stack.

• Boundary conditions - similar to run conditions. A boundary condition occurs

when an interrupt is generated exactly at the moment a variable it needs is been

updated.

A task is defined as an action accomplished in a predefined period of time. The

PROV910’s tasks are defined as follows:

1. Sensing / Pacing the heart

2. Adquire heart Electrogram

3. Monitor Battery / Electrode status

4. External communication

Sensing / Pacing the heart

Figure 5.8 shows the distribution of interrupts for the Sensing / Pacing of the heart.

Port 2 generated interrupts when a spontaneous QRS is sensed. This interrupt is

represented with dashed lines since it is generated randomly by the diseased heart.
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Hence, port 2 interrupt’s interval can not be defined. As Figure 5.8 shows, there are

four interrupts controlled by software. To minimize current consumption, the active

time t int xxx, should be as short as possible for every interrupt. Also, special care

is needed to avoid waking up the msp430 unnecessarily.

Figure 5.8. Timing diagram for the sensing / pacing task.

The four interrupts presented above have the highest priorities since they execute

continuously. There are other interrupts that occur less frequently. This is the case

of the battery and electrode status check. Figure 5.9 shows the timing diagram for

these tasks. Note that in this example 60 Watchdog interrupts must occur before

one Status interrupt is performed. Since the watchdog timer can be set to generate

interrupts every second, for this example the status check is done every minute.

There are other instances in which certain tasks are not executed unless they are

requested by the external programmer. An example of this type of task is the EGM

interrupt. Figure 5.10 presents the timing diagram for an EGM request. As was

mentioned previously, the EGM has a finite RAM memory allocation that can store

up to 20s of data at a rate of 400 samples per second.
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Figure 5.9. Timing diagram for the Battery and Electrode check task.

Figure 5.10. Timing diagram for the electrogram acquisition request.

In terms of power consumption, one should be careful of the methodology used to

implement EGM acquisition since the internal ADC consumes a considerable amount

of supply current that can go up to 1.6 mA.

The last timing diagram, Figure 5.11, presents the interrupts for the external pro-

grammer. The external programmer can either send or request data. This interrupt

basically consists in moving data from memory locations. There will always be two

interrupts, the incoming and the outgoing interrupt, since every instruction received

will be echo for verification purposes.
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To avoid run conditions, flags will be used as much as possible. Variables will be

Figure 5.11. Timing diagram for the external programmer request.

defined within an interrupt. This means that a variable can only be updated within

its respective interrupt routine. This approach avoids problems with boundary con-

ditions. Now that the distribution of interrupts has been defined, it is necessary to

discusse how the msp430 handles interrupt requests.

Msp430 interrupt

The msp430 has three types of interrupts: Reset, Non-Maskable and Maskable [56].

Non-maskable (NMI) interrupts are caused by oscillator faults, flash access error or

a rising edge at the NMI pint. Maskable interrupts are those generated by msp430’s

internal peripherals. Each peripheral interrupt can be individually disabled, thereby

offering great flexibility.

There is a 6 cycles latency, starting when the interrupt is accepted and ending when

the first instruction in the interrupt handler is executed. Each time an interrupt is

accepted the following logic is applied.

1. Any currently executing instruction is completed.
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2. The Program Counter (PC), which points to the next instruction, is pushed

onto the stack.

3. The Status Register (SR) is pushed onto the stack.

4. The interrupt with the highest priority is selected if multiple interrupts occurred

during the last instruction and are pending for service.

5. The interrupt request flag resets automatically on single-source flags. Multiple

source flags remain set for servicing by software.

6. The SR is cleared with the exception of SCG0, which is left unchanged. This

terminates any low-power mode. Because the Global Interrupt Enable (GIE)

bit is cleared, further interrupts are disabled.

7. The content of the interrupt vector is loaded into the PC: the program continues

with the interrupt service routine at that address.

After this logic is performed, the interrupt handler program is executed. At the end of

execution, the Return from interrupt (RETI) instruction must be used to terminate

the handler properly. It is important to mention that the interrupt’s priorities are

designated by hardware. Figure 5.12 shows the priorities for the msp430f1611.

Since TimerB has the higher maskable interrupt priority, timer B is used to perform

the timing operations for the pacemaker critical parameters like basic pace, pulse

width, etc. The following subsection presents the software’s flow charts with a thor-

ough discussion of the algorithm. The flowcharts presented in the following seciton

are a significant contribution to the open academic literature since they illustrate

pacemaker’s software functionality. This flowcharts are the first presented in open

literature and are suitable to explain the behavior of pacemakers to students at uni-

versity level.



100

Figure 5.12. Interrupt priorities for the msp430f1611.

5.2.4 PROV910’s control algorithm flowcharts

The control algorithm of a pacemaker in essence is a time manager, counted by

Timer B in this research. Since the msp430 should be in the standby mode as long as

possible, the ACLK driven by a watch crystal should be used to keep track of time.

A watch crystal has a very stable oscillation frequency of 32.768kHz. By using this

frequency, each count cycle becomes T = 1 / 32.768kHz = .03052ms. This means

that the timer counts in steps of .03052ms. Equation 5.5 is used to calculate the



101

programmed value (tbx) for a particular time period tx:

tbx =
tx

.03052ms
(5.5)

All interval parameters to program PROV910 are calculated using equation (5.5). It

is important to evaluate the robustness of the watch crystal as a time reference. The

watch crystal frequency drift over temperature is minimal. This can be proved by

using equation 5.6 to calculate the frequency drift due to temperature changes [58].

The body temperature is 37 C and if fever occurs it can go up to 40C [59]. For 40

C (worst case), the frequency drift would be -.524288 Hz, which yields a .000002 ms

variation. Hence, the watch crystal is a robust time reference for the control program.

∆frequency = frequency · k · (T0 − T )2 (5.6)

Figure 5.13 shows the register organization. The allocation of PROV910 into registers

allow reduction in power consumption (see section 5.2.1). When registers are used

inside interrupts, the registers are pushed into stack so that the pacing parameter is

not lost.

Registers 0 through 3 are special purpose registers so they can not be used to store

pacing parameters. Registers 4 to 6 store the pointers to the programmed param-

eters. Also these registers contain some operational flags to communicate between

interrupt’s handlers, thus preventing the occurrence of run conditions. Registers 7

to 13 store the most frequently used pacing variables. Finally register 14 is used for

logic manipulation (and, or, xor, etc.) and register 15 as a general counter. Figure

5.13 also presents the default values for flags and pacing parameters. Note than when

possible flags were defined with reset as the default value. This approach is due the
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Figure 5.13. PROV910 Registers’ Organization.

fact that zeros consume less power that ones.

The control program is composed of two functional groups: Modules and Interrupt

handlers. Modules are substructures that aid in the software design of the main pro-

gram.

The functional modules are:

• Time manager

• SVS

• Electrode

These modules are discussed first to establish the logical functionality of the mainloop.

The mainloop has an nfinite loop structure. This structure has been widely used in
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embedded systems due to its reliable response and low current consumption since

all operations are performed within interrupts [57]. Figure 5.14 shows the mainloop

flowchart.
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The reset vector points to the first step.

When working with the msp430, the first

instruction should turn off the watchdog

timer since the controller starts in Reset

mode as default. If not reset in a certain

period of time, the part will reset auto-

matically. However, the watchdog timer

is later used in interval mode. In inter-

val mode the WDT works as a regular

timer generating automatic interrupts ev-

ery second.

To avoid the having random data in the

registers all registers are cleared out and

the default pace parameters are loaded in

their respective registers.

The Battery and the electrode status are

checked as a precaution. If the unit is re-

set due to a low supply voltage event, the

battery status will be executed a short

time after the reset. This provides use-

ful information for diagnosis of the system

and development of possible solutions

The final step in the mainloop is to enter

into the Time Manager module.
Figure 5.14. Flowchart of the Mainloop.
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In the time manager module is where

all the peripherals are setup to their re-

spective programmed values. Also it se-

tups the I/O p ports. Note that at the

end of the module timers A and B are

turned on. Timer B is used to count all

the time intervals. Timer B can generate

up to seven time interrupts, each of them

individually maskable.

Timer A is used as a DAC. Timer A has

two registers that can generate interrupts

or that can generate pulse-width modu-

lated (PWM) signals. If the duty cycle

of a PWM signal is varied with time, and

then filtered, the output of the filter is

an analog signal [60]. Timer A is used

to generate the voltage references for the

sensitivity and the output voltage. The

resolution of the Timer A is 5 bits, suffi-

cient for the required references.

When the new parameter flag is set, the

time manager module is invoked to setup

all the pacing parameters. This module

includes all the interrupt handlers. Figure 5.15. Flowchart of the Time Man-
ager module.
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The Supply Voltage Supervisor (SVS)

module uses the internal msp430 periph-

eral with the same name. The peripheral

has certain startup constrains as specified

in [38]. These constrains do not allow

the instantaneous usage of the SVS, hence

certain software delay should be included

to allow the SVS to stabilize. The larger

delay occurs when the SVS is turned on,

although an additional delay is required

every time a new threshold voltage is pro-

grammed.

The SVS peripheral has 14 different in-

ternal generated voltage threshold. The

maximum battery voltage is 3V, which

are depleted to 2V throughout its service

life. This means that thresholds within

this range are required to check the bat-

tery status.

It is important to note that once the sup-

ply voltage gets below a certain threshold,

this will not be used again for comparison.

This is true because the battery used in

the design at hand is not a rechargeable

one.

Figure 5.16. Flowchart of the Supply
Voltage Supervisor module.
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The electrode check uses the variation

in discharge time of the RC circuit formed

by the impedance of the heart and a ca-

pacitor. The typical impedance of the

heart plus the electrode is around 500 Ω

[46]. If this impedance goes above 1 kΩ,

then the electrode is broken. In this case

the module store a 4444 in memory to in-

form that the electrode was set due to

high impedance. On the other hand, if

the electrode presents an impedance be-

low 250 Ω then there is an insulation de-

fect. When this occurs a 2222 code is

stored in RAM memory

The internal comparator is used to moni-

tor when the capacitor discharges to .25Vcc.

At this point the comparator sets its ouput

to one. The capacitor is discharged through

a 10 µF capacitors in series. These capac-

itors assure that all dc currents are iso-

lated form the heart. Since the ACLK is

too slow to measure this discharge time,

the clock cycles of the DCO were used in-

stead.

Figure 5.17. Flowchart of the Electrode
Check module.
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The modules are performed anywhere inside the main loop or by interrupts when

needed. However, interrupts only occur when either a predefined time period elapsed

generating an interrupt, or an external signal requests an interrupt. The following

interrupts are defined for the PROV910’s software:

• Basic Pace interrupt

• Pulse Width interrupt

• Refractory interrupt

• Electrogram interrupt

• Watchdog Timer interrupt

• Port1 interrupt

• Port2 interrupt

Interrupts are mostly controlled by hardware. This is the main difference between

the functional modules presented above and the interrupts. The interrupt vector is

an essential part of interrupts. The interrupt vector is a pointer to the location where

CPU needs to start execution of the respective handler. The msp430 series allocate

their interrupts in the higher addresses of Flash memory, that is 0FFFFh - 0FFE0h.

This feature eased portability since all vectors are in the same memory allocation.

In the following pages the interrupt’s flowcharts are presented with a brief explanation

of their functionalities.
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The Basic Pace is the most important

interrupt since it activates the switch net-

work that delivers the stimulus to the heart.

Furthermore, the basic pace contains the

time value which is the base for the pulse

width and the refractory period. If no ba-

sic pace occurs, neither of the other two

time intervals can be performed.

This interrupts handles both the VVI mode

and the VOO mode. It tests if the reed

switch is closed. If this is the case, then

the external comparator is turned off and

the respective magnet pace is performed.

The magnet rate will depend on the bat-

tery status. Also, this interrupt checks if

the output rate is smaller than 200 bpm.

If not, an RC circuit which delivers a 60

bpm is turned on. This RC circuit stays

on until an electrode check occurs. At this

point Timer B takes control again of the

Basic Pace. If everything is correct, then

the Pulse and Blanking signals are set, the

external comparator is turned off, and the

programmed time value is added to the

register preparing next BP interrupt.

Figure 5.18. Flowchart of the Basic Pace
interrupt handler.



110

The Pulse Width and Refractory in-

terrupts are straight forward in their func-

tionalities. The Pulse Width just resets

the signal and updates its time value.

The refractory interrupt resets the Blank

signal and turns on the external compara-

tor to permit sensing the heart again for

any spontaneous QRS.

Figure 5.19. Flowchart of the Pulse
Width interrupt handler.

Figure 5.20. Flowchart of the Refractory
Period interrupt handler.
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This interrupt is enabled only when re-

quested by the external programmer. The

Electrogram use analog ports to acquire

the analog signal coming from the out-

put stage of the amplifier or the the fil-

ter. When not in use, the analog port

should be put into high impedance to con-

sume the lowest possible amount of cur-

rent. The internal 12 bit ADC is used

to convert the signal. The mode of con-

version is single channel single conversion.

This allows to control the sample rate by

Timer B instead of using the internal os-

cillator of the ADC. The main concern

while using ADC’s internal oscillator is

that it consumes power. By only taking

one sample per interrupt, there is a signif-

icant reduction in power.

ADC’s conversions are store sequentially

in RAM using a circular buffer. If the

last available address for EGMs storage is

reach them the next address will start in

EGM start.

Figure 5.21. Flowchart of the Electro-
gram interrupt handler.
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The main purpose of the Watchdog in-

terrupt is to monitor if a new parameter

has been sent. This interrupt is activated

every second to ensure the prompt pro-

cessing of any external programmer’s re-

quest. If the new parameter flag is set,

the interrupt handle pops the stack and

jumps to the start of the time manager

module. If the stack is not popped out,

then an overflow condition will occur.

If the battery interval is done, the WD in-

terrupt uses modules SVS and Electrode

to check the status of both of them. In

the case of the RC timer, this is always

turned off. The reason for this is that the

RC timer consumes a significant amount

of power. However, there is a trade off

between security and power consumption.

If the RC timer was activated, it was be-

cause a run condition took place. If the

RC timer is turn off to soon, the heart

will receive a significant part of the run

away. In the case the Run away continu-

ous indefinitely, then the RC will respond

reseting in every battery interval.

Figure 5.22. Flowchart of the Watchdog
Timer interrupt handler.
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Port 1 interrupt handler, shown in Figure 5.23, controls two tasks: The RC timer and

the Reed Switch. Port 1 controls the charge/discharge cycle via its Schmitt trigger

inputs. When the capacitor charges to a voltage above Schmitt threshold, the inter-

rupt is accepted and the port is set to output low to start discharging the capacitor.

Also, the falling edge is selected to generated interrupts. This complementary action

is done to let capacitor charge and discharge cyclically. The pacing time is set by the

RC values to a 60 bpm rate.

Figure 5.23. Flowchart of the Port1 interrupt handler.

When the reed switch is closed, the VOO mode is on. This switch is activated

externally by a magnet. While the magnet is near the pacemaker it will continue in

the VOO mode. The VOO rate depends on the battery status, as established in the

requirements in Chapter 4.
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The last flowchart presented in Figure 5.24 corresponds to the interrupt handler for

port 2. The basic operation of this port is as follows: when an input high is received,

it will inhibit or trigger an stimulus depending on the mode. There are other features

related to patient safety. One of these is the evaluation the input frequency. If it is

higher than 11 Hz, then the operation mode is changed to VOO. In trigger mode the

stimulus is generated within this handler. This allows the monitoring of the trigger

rate which is limited by the upper rate parameter.

Figure 5.24. Flowchart of the Port2 interrupt handler.

The hysteresis is also set within this handler. If on, the additional delay for the sensed

of spontaneous QRS is added to the basic pace.
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The actual verification of the software parameters will be discussed in next chapter,

along with the hardware verification. The source code of the control algorithm is

available in Appendix A.



CHAPTER 6

Hardware Design and System

Verification

The purpose of the hardware designed in this research is to validate the software in

a simple platform. As was previously mention, there are cutting edge hardware designs

for the front end and the output stage. However, a basic design and implementation

of the front end and output stage is discussed. This implementation used discrete

circuits and Printed Circuit Board (PCB) techniques to achieve the required hardware

functionality. Finally a PROV910’s system verification is presented.

6.1 PROV910’s hardware requirements

As was stated in Chapter 5 the msp430f1611 offers a wide variety of internal

hardware, reducing design’s time and system’s cost. However, the interface to the

heart can not be implemented only using msp430’s internal hardware. The reason is

that the acquisition and stimulation of the heart have particular requirements that

need special hardware. Basically two hardware’s blocks are needed, the front end and

the output stage.

116
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The msp430f1611 cannot implement the front end since it does not offer internal filters

that achieve the cutoff frequencies required to obtain a good reading of the heart

signal. This is understandable since the cutoff frequencies of the front end are around

70 to 200 Hz [3], which are very difficult to achieved using integrated capacitors.

Furthermore, the requirements for the output stage needs several capacitors in the 1

µF order to multiply battery’s voltage. For these reasons, the design that is presented

in the next sections is used to validate the msp430 software design. An explanatory

note should be make here. The intention of the hardware designed in this research

is not to achieve a cutting edge front end nor output stage design, but to have a

prototype hardware that can demonstrate the validity of the software.

6.2 Front end design

As was stated in Chapter 5 the front end consists of a difference amplifier, a

bandpass filter and level detector. the block diagram is presented in Figure 6.1. Each

of this design blocks are discussed in the next sections.

Figure 6.1. Block diagram of the pacemaker’s front end.
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6.2.1 Difference amplifier

The sensing of the heart is performed by a lead that connects the pacemaker unit

to the heart. This lead can sensed the heart in two modes: unipolar and bipolar. The

basic function of this first stage is to allow for both types of sensing. If a different

structure is used, like an inverting amplifier, then only the unipolar mode can be

achieve. There are different types of difference amplifiers, being the most popular the

instrumentation amplifier. However, a typical instrumentation amplifier is composed

of three operational amplifiers (OpAmps) which consumes three times the supply cur-

rent of a single difference amplifier. Since the goal of this research is to obtain low

power operation, the one-OpAmp difference amplifier is the one use to implement this

first stage.

Figure 6.2 shows the schematic of the difference amplifier used. The difference am-

plifier have a single supply configuration since it will be supply by a battery. The

common mode of the amplifier is set via a resistor network that set it to Vbat/2. This

resistor network used resistor in the 1-MΩ order to limit the current consumption to

µAs. AC-coupling capacitor are included to reject dc levels from the input signal.

In this way the amplifier will only amplify the heart signal since it is an ac signal.

Also a balanced design is used where R1 = R3 and R2 = R4. One concern over this

structure as a difference amplifier is its low input resistance and second concern is the

error caused by resistor’s mismatches in the output signal. Let discussed these two

separately.

The importance of the input resistance is better understood by illustrating the block

diagram of an ideal voltage amplifier. Figure 6.3 shows the loading of an ideal ampli-

fier. With the configuration shown the equation for the transfer function is:
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Figure 6.2. Schematic of the one-OpAmp difference amplifier [61].

Figure 6.3. Schematic of an ideal amplifier [62].

Vo

Vs

=
R in

Rs + R in
Aoc

Rload

Ro + Rload

(6.1)

Equation 6.1 shows that a voltage divider is formed between the source and the input

of the amplifier. The higher the input resistance the lower the voltage drop in Rs

improving the precision of the transfer function. The load create by the electrode-

heart network can be represent by the RC circuit shown in Figure 6.4. Typical values

for Ch, Rf and Rs are 1.9 µF, 34.1 Ω, and 450 Ω, respectively, giving a typical

impedance of approximately 500 Ω [?]. This means that a difference amplifier with

an input resistance of 200 kΩ should acquire 99.75% of the heart signal ( 200k
200k+500

)

which is sufficient for the design at hand.
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Figure 6.4. Equivalent electrode tissue impedance network [?].

The second concern is the resistor mismatches. This is especially important since the

difference amplifier is used to reject common mode signals when sensing the heart

in bipolar mode. The higher the rejection of common mode signals the higher the

rejection of noise since noise is common to both inputs. Equation 6.2 express the

effect of a resistor mismatch in the Common Mode Rejection Ratio (CMRR) of the

difference amplifier.

CMRRdB = 20log10

[

1 + R2/R1

ǫ

]

(6.2)

where ǫ represents the imbalance factor of the resistors. To reduced the mismatch

effect a buffer configuration, 1 v/v difference amplifier is used, with input resistors

R1 and R2 set to 1 MΩ. As was stated above, this stage is only used to convert a

double-ended signal to a single-ended, so this gain is sufficient. If resistors with a 1%

tolerance and minimum width pcb traces are used the CMRR will be around 37.5 dB

in the the worst case (ǫ = 4 x .01) and in the best case around 49.5 dB (ǫ = .01).
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The Integrated Circuit (IC) OpAmp used to implement the difference amplifier is the

OPA379 from TI. Table 6.1 presents the most important parameters for this OpAmp.

Table 6.1. OPA379 important parameters.

OPA379
Parameter Condition

Min Typ Max
Units

Offset Voltage Vs =5V .4 1.5 mV
CMRR (V

−
) < Vcm <(V

−
) - 1 90 100 dB

Input Bias Current Vs = 5V, Vcm <= Vs/2 ±5 ±50 pA
Input Offset Current Vs = 5V ±5 ±50 pA
Input Vnoise f= .1 Hz to 10 Hz 2.8 µVpp

Input Vnoise Density f = 1 kHz 80 nV /
√

Hz

With this OpAmp the error of the input offset on the output, which is given by

equation 6.3, is .8mV.

EO =

(

1 +
R2

R1

)

VOS (6.3)

This offset error is a dc noise gain that moves up or down the ac signal coming

from the heart. This is not critical since the thresholds are set by the cardiologist

at the moment of implantation. Since the 1/f noise dominates at low frequencies ,

while white noise higher frequencies, and the frequency bandwidth is limited to 70Hz

(imposed by the filter discussed in next subsection) noise should not be a concern.

Also, is important to clarify that the actual input to the microcontroller is a pulse

generated by the level detector, which can filter out additional noise by using an

schmitt trigger configuration.

The schematic of the difference amplifier used is shown in Figure 6.5. This pcb was

generated using EAGLE free version. The test signal used for the evaluation of the

performance of the difference amplifier is a triangular waveform since the as will it

represents more precisely the heart response as state by the tokyo standard [?].
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Figure 6.5. Schematic of the difference amplifier implemented.

the results for this stage where obtained using an Agilent 54622D Mixed-Signal Os-

cilloscope. Figure 6.6(a) presents the inputs to the difference amplifier, while Figure

6.6(b) presents is output response and Figure 6.7 presents the simulation for an ideal

difference amplifier in Matlab. As can be seen from comparing Figure 6.6 and Figure

6.7, the difference amplifier is working properly.

(a) Measured Input (b) Measured Output

Figure 6.6. Measured response for the difference amplifier implemented.
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Figure 6.7. Simulate inputs and output response using MATLAB.

6.2.2 2 poles BandPass Filter

The second stage of the front end is a bandpass filter. Figure 6.8 shows the power

spectra of a typical ECG. This figure shows that the main components of the heart

signal are located at low frequencies ranging from .1 Hz to 80 Hz. The problem is

that this range include the 50 and 60 Hz networks which produce a large amount of

noise. However, it has been demonstrated that a bandpass using a range of frequencies

from 80 to 200 Hz can be used to acquire the heart signal, obtaining good results [3].

This type of filter has been used in several generations of commercial pacemakers

implemented by the CCC in Uruguay.

The bandpass specified removes two important sources of noise, the 60Hz noise and

the intra muscle noise which has components near the 300Hz frequency and above.

Although the filter can be implemented using a single OpAmp bandpass configuration,

this was rejected. The reason is shown in Figure 6.9. When cascading bandpass filters

the cutoff frequencies are move from 3 dB reducing the effective bandwidth of the

signal.
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Figure 6.8. Typical Power Spectral density of an ECG.

A high pass and low pass filters were cascaded to implement the design. This

Figure 6.9. Bode diagrams for cascade bandpass vs. cascade low / high pass stages.

filter have a better performance in rejecting input noise from frequencies outside the

specified frequency band.

Another important aspect to consider is the type of response require for the design.

There are three popular filter responses, these are:

• Butterworth
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This response, also know as a normally flat approximation, achieve a response

of order n, without any ripple.

• Chebyshev

This response offers a superior attenuation in the stop band at expense of a gain

ripple in the passband. Generally a ripple of .1 dB to .3 dB is used.

• Bessel

This response offers a flat group delay which is useful in digital design applica-

tions since it pass square signals with minimum harmonic distortion.

Figure 6.10 shows the graphical behavior of the three responses discussed above.

The bandpass filter is designed using a butterworth response since it have a smooth

transition from the pass to the stop band.

Figure 6.10. Bode diagrams Butterworth, Chebyshev, and Bessel responses.

The last consideration was to implement the circuit using a multiple feedback (MFB)

configuration. MFB filters have lower sensitivities to external components when com-

pare to their counterpart the Sallen-Key filter. This is useful since the variation of

the cutoff frequency is minimized due the fact that they do not depend of external
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components too much.

The schematic of the filter implement is shown in Figure 6.11.

Figure 6.11. Schematic of the Multiple Feedback filter.

For the filter the OPA349 was used since it consumes only 1 µA of Icc, which is the

OpAmp with lowest quiescent current consumption available in the market at present

time. The first stage of the schematic show the MFB high pass filter. This first

stage have a 20 V/V gain and a cutoff frequency near 70 Hz. The second stage is

a MFB low pass filter with a gain of 50 V/V and a cutoff frequency of 200 Hz. the

total gain will be Atotal = 20 x 50 = 1000. The simulated output is shown in Figure

6.12(a) and the measured response is shown in Figure 6.12(b). The measured response

closely resemble the simulated AC sweep in terms of Gain and cutoff frequencies. The

measured low frequency was 67 Hz and the high one was 250 Hz.

6.2.3 Level Detector

Two configurations can be used to implement the level detector, the first one use

a variable gain amplifier in the filter or difference amplifier and the second use a
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(a) Simulated AC sweep for the MFB butter-
worth filter

(b) Measured AC sweep for the MFB butterworth
filter

Figure 6.12. AC sweep for the MFB butterworth filter.

variable threshold for the level detector. The second approach is more suitable for

this research since the voltage reference can be generated using Digital to Analog

Converters (DACs) that can be implemented by the msp430. Figure 6.13 shows

the DAC operation unsign TimerA to generate pulse-width modulated signals. The

loading circuit for the DAC to be able to produce a DC voltage is a RC circuit with

R = 1MΩ and C = 1 µF.

Figure 6.13. Measurement of the Internal DAC implemented by TimerA.
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These DACs were validated in three different units of the msp430f1611 measuring the

output voltage for a set of programmable bits. Table 6.2 shows a sample of one of the

runs used to validated the programmability of the DAC. As shown the programmable

range start from 33 mV going up to 951 mV.

Table 6.2. DAC’s programmable voltage levels.

Run Voltages bit number Voltages bit number
33 mV 3 558 mV 51
98 mV 9 623 mV 57
164 mV 15 689 mV 63
230 mV 21 755 mV 69

Run 1
295 mV 27 820 mV 75
361 mV 33 886 mV 81
426 mV 39 951 mV 87
492 mV 45

This DAC is used in conjunction with the TLV349 micropower comparator to con-

struct the level detector. The comparator requirements are not that difficult to achieve

in terms of propagation delay and slew rate. However, the supply current should be

as small as possible. TLV349 consumes an ultra low current of 1.2 µA which is an

exceptional device to performed the comparison task.

6.3 Output stage design

The basic function of the output stage is to stimulate the heart with an adequate

pulse. Since the adequate pulse varies in different patients as well with time, it is

necessary that the pulse generator have the ability to produced programmable stimuli.

The block diagram for the output stage is presented in Figure 6.14.
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Figure 6.14. Block diagram of the output stage.

The output stage use a diode array to implement the charge pump since the

constrain in terms of area is more relaxed for PCBs than for ICs. Schottky diodes are

used to implement the charge pump because they have lower forward biased voltage

drops when compare to their silicon counter parts. Figure 6.15 shows the schematic

of the charge pump with the stimulation switches.

Figure 6.15. Schematic of the charge pump.

The operation of the output stage is straight forward, the charge pump charge the

capacitor until its stored voltage pass the threshold, Thigh, set by the DAC and the

resistor network that creates a hysteresis. When this occurs the voltage comparator

output a zero which turn off the clock generator. When the clock generator is turn off
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the output voltage will start to decrease slowly until Tlow is reach and the comparator

turn on the clock generator again. The clock generation is done using an oscillator

driver (sn74lvc1404) with a 2 MHz crystal oscillator. This driver generates the clock

and complementary clock signals require for the charge pump operation. Figure 6.16

shows the start up time which is 4 s to a 99% of the signal. As shown in the figure

the output voltage achieve is 6.5 V from a 2.8 Vbat.

Figure 6.16. Measurement of the charge pump start up time.

The hardware was intended for low power operation. All the ICs used were carefully

evaluate to choose the ones with lower power consumption. The current consumption

of the software should be around 10 µA to give a 10 µA headroom for hardware

consumption. Next section discuss throughly the software verification for PROV910’s

functionalities.
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6.4 Software verification

This section presents many oscilloscopes plots. As was mention before, the oscil-

loscope used for data acquisition is Agilent 54622D. Since it is a mixed-signal oscil-

loscope the digital interrupts were measure in conjunction with analog signals. The

plots are divided in the following sections:

Measured Timing diagrams

1. Basic Pace timing diagram

2. Pulse Width timing diagram

3. Refractory timing diagram

4. EGM timing diagram

5. Port1 timing diagram

6. Port2 timing diagram

7. Watchdog timing diagram

and functionality plots

1. VVI mode

2. VVT mode

3. VOO mode

4. Maximum frequency for VVI and VVT
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6.4.1 Measured timing diagrams

As was discussed in Chapter 5 the software was designed using the eternal loop

concept. There, expected timing diagrams were presented for each of the interrupts.

This subsection validates the expected timing diagrams presented in Chapter 5. All

the timing diagrams, with a zoom in, are presented for each of the interrupts. no

explanation will be given since they where discussed in Chapter 5.

Basic Pace timing diagram

(a) Timing diagram with measured Basic Pace in-
terval

(b) Zoom in of the Basic Pace time diagram

Figure 6.17. Timing diagram of the Basic Pace Interval.
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Pulse Width timing diagram

(a) Timing diagram for Basic Pace (b) Zoom of the Pulse Width time diagram

Figure 6.18. Timing diagram for the Pulse Width interval.

Refractory Period timing diagram

(a) Timing diagram for the Basic Pace interval (b) Zoom of the Refractory Period time diagram

Figure 6.19. Timing diagram for the Refractory interval.
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Electrogram timing diagram

(a) Timing diagram for the EGM interval (b) Zoom of the EGM time diagram

Figure 6.20. Timing diagram for the EGM interval.

Port1 timing diagram

(a) Timing diagram for the Port1 interrupt (b) Zoom of the Port1 time diagram

Figure 6.21. Timing diagram for the Port1 interrupt.
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Port2 timing diagram Watchdog timing diagram

(a) Timing diagram for the Port2 interrupt (b) Zoom of the Port2 time diagram

Figure 6.22. Timing diagram for the Port2 interrupt.

(a) Timing diagram for the Watchdog interval (b) Zoom of the Watchdog time diagram

Figure 6.23. Timing diagram for the Watchdog interval.
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6.4.2 Software functionality plots

This section will present the PROV910 working in its three different operational

modes. When presenting the VVI and VVT modes in some cases a heart signal is

display. The heart signal was created using Agilent 33120 15 Mhz Arbitrary Waveform

Generator and Agilent intuilink arbitrary waveform editor. This is only to better

distinguished between the signals display in the plots, since in reality the input port

2 receive a pulse generated by the comparator and not the actual heart signal.

VVI mode

Figure 6.24 presents the behavior of PROV910 in VVI mode without any external

stimulus. Since no signal is applied, the behavior of the VVI is very much similar to

the VOO. However, in the VVI mode the comparator remains working while in the

VOO it is completely turn off. The zoom in Figure 6.24(b) shows that the refractory

period start before sending the output pulse which is the proper operation for the

pacemaker.

(a) VVI mode without external stimulus (b) Zoom to VVI mode without external stimulus

Figure 6.24. VVI mode operation without external stimulus sensed.

When a signal is applied to port 2.0 the PROV910’s stimulus is inhibited. Figure 6.25

shows the behavior of the pacemaker while receiving signals from the heart. Figure
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6.25(a) mark how the heart signal inhibit the pulse because it fall inside the escape

interval. Figure 6.25(b) illustrates the functionality of hysteresis. Since hysteresis

provoke a longer escape interval, a second spontaneous QRS fell inside the escape

interval.

(a) VVI mode with external stimulus, Escape In-
terval

(b) Zoom to VVI mode with external stimulus,
Hysteresis

Figure 6.25. VVI mode operation with external stimulus sensed.

VVT mode

In the VVI mode a pulse is generated every time a stimulus is sensed. Figure 6.26

shows the behavior of the trigger mode. Note that during each interrupt of port 2 a

pulse is generated. Figure 6.26(b) shows the comparator turning on and off after each

pulse. This is important to avoid the sensing of the pulse generate by the pacemaker

itself.
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(a) VVT mode with external stimulus, Port2 in-
terrupts

(b) VVT mode with external stimulus, compara-
tor

Figure 6.26. VVT mode operation with external stimulus sensed.

VOO mode

The VOO mode was presented when discussing the time diagrams for Port1. However

it is presented here to get a better understanding of its functionality.

Figure 6.27. VOO mode, asynchronous pacing.

Basically the VOO is only activated by an external magnet applied to the pacemaker.

When this occurs all the interrupts are disable and the comparator is turn off. VOO
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is used by doctors to treated some heart conditions, like when arrhythmias occurs.

Note that for this case the rate of the VOO indicates Vbatt is fine.

Maximum frequency conditions for VVI

For safety when a frequency larger than 11 Hz occurs, the PROV910 enters in VOO

mode. This behavior is illustrated in Figure 6.28. As shown in Figure 6.28(b) the

frequency event is of 12.5 Hz which triggers the safety mechanism. The normal pace

is restored in the next battery interval. This parameter is programmed by the user

and have a default value of 1 min.

(a) VVI mode with high frequency condition (b) Zoom to VVI mode with high frequency con-
dition

Figure 6.28. VVI mode with high frequency condition.

These plots demonstrate the functionality of PROV910 pacing system. The typical

current consumption of the software is 5 µA with a maximum of 8 µA, which gives

a headroom of 12 muA for the hardware implementation. The goal of the research

was achieved, which are: 1) low power consumption of the software using a general

purpose microcontroller and 2) system functionality of the pacemaker application.
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Conclusion and Future Work

7.1 Conclusion

A complete methodology for the design of a cardiac pacemaker has been presented.

Furthermore, a control software source code that was validated in a pacemaker pro-

totype has been developed. The software has a typical current consumption of 5

µA with a maximum of 8 µA. This is a significant achievement since based of the

information gathered in Table 2.2 a pacemaker consumed around 20 µA to generated

a stimulus with an average current of 2 µA. Taking into account the front end and

output stage architectures proposed in open literature [40, 41, 42, 43, 44, 45], the

external interface hardware can be implemented with a current consumption of 2 µA.

This give a Itotal of 9 µA including the current consumed by the stimulus which com-

pares with the current consumption of commercial pacemakers.

Extensive background information based on the available open technical literature in

cardiac pacemakers was presented. This literature was the foundation for the current

research and its organization by categories can be useful as reference for beginners in

the matter of pacemaker design. Insights about current trends in pacemaker design

were discussed, focused in hardware implementations and software algorithms.

140
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A detailed discussion of microcontrollers with emphasis on important aspects for low

power consumption was offered. This discussion includes aspects like memory or-

ganization, CPU architectural configurations, and instruction set philosophies. The

definition of a pacemaker as embedded system and the importance of a microcon-

troller as the central control unit were also established.

The methodology for the development of a pacemaker system was presented. A defi-

nition of the requirements for a pacing system was show and an extensive analysis of

available low power microcontrollers was given, comparing them in terms of average

current, low power modes, clock systems and leakage currents. A power profile of the

msp430’s instruction set was developed using an average current testbench. The base

energy cost, the inter-instruction cost, and the operand cost was tabulated to give a

better reference for the software designer. The results in these tables further proved

the significance of designing low power software. Up to a 20% power reduction can

be achieved by using the software design guidelines outlined in this research.

A fully explained discussion of pacemaker’s software design, including hardware parti-

tioning, considerations for software specifications, and a comprehensive set of software

flowcharts were given. The software was designed in conjunction with the hardware

to get better comprehensive system that minimizes the current consumption of the

whole system.

Finally an external hardware design for the front end and output stage were offered.

A block diagram at the system level was included which illustrates the configuration

of each of them. A detail description of each part of the block diagram points out

the desirable characteristics and guide the designer to the key parameters that are

essential for hardware implementation. The next subsection presents a list of the

contributions done in this research.
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7.2 Contribution of this work

The main contributions of this work can be outlined as follows:

• The generation of an open-source pacemaker control code using assembly lan-

guage for a general purpose microcontroller.

• A software design that achieve a typical current consumption of 5 µA

• An open-source design methodology for a cardiac pacemaker was presented.

This methodology develops the software in conjunction with the hardware achiev-

ing good results and proposed a set of techniques for the comparison of micro-

controllers in terms of low power consumption.

• A source code was developed that illustrates the functionalities of a cardiac

pacemaker for educational purposes including flowcharts and timing diagrams.

• The instruction set power characterization of the msp430 microcontroller which

can help programmers to develop software that achieve ultra low power con-

sumption. A set of guidelines was created using the experimental data of the

instruction set power characterization. These guidelines help to generate effi-

cient low power embedded software code for the msp430.

7.3 Future work

Several research topics can be derived from this work as future work. These can

be summarized as follows:

• A detailed power characterization of the msp430’s instruction set can be per-

formed using statistical analysis. Statistical design of experiments (DOE) can
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be used to block undesirable variables and isolate the variables of interests. The

variables of interest would be the msp430’s core instructions, their interaction,

and the operand contents of the instructions. A well designed experiment can be

implemented to minimize the sample size to represent a 95% of the population.

• The development of an educational laboratory kit that demonstrates the func-

tionality of the different operation modes of a pacemaker and how to test them

using off-the-shelf equipment like oscilloscopes, multimeters and function gener-

ators. This kit would be useful to introduce students to the pacemaker concept

and to understand special requirements within this growing industry.

• The design of an interface integrated circuit that connects the microcontroller

with the heart. This IC can be design using the block diagrams and the refer-

ences presented in this research. The development of this IC should be done to

consumed at most 3 µA of average current. The interface IC can be implemented

with the msp430 using the software developed in this work to observed the per-

formance of the system as a whole. Contributions to the research in terms of

materials (batteries, leads, etc.) of leading companies in the pacemaker business

should be considered.
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APPENDIX A

PROV910 pacemaker Source Code

;********************************************************************************************************

; Standard Format

;

; Source name : Main_Basic.s43

; Executable name : Basic_LP_Algorithm.exe

; Code model : 1.0

; Author : Sigfredo E. González Dı́az

; Description : PROV910 Main Control.

; Harware Used : SVS, TimerA, TimerB, WD_Timer

;

;********************************************************************************************************

#include <msp430x16x.h>

;--------------------------------------------------------------------------------------------------------

ORG 1100h ; RAM Memory definition for Variables

;--------------------------------------------------------------------------------------------------------

BP_Const DW 0000 ; Constants to be used by program, RAM Location = 1100h = 4352

PW_Const DW 0000 ; 4354

Rate_Count DW 0000 ; 4356

Hyst_Const DW 0000 ; 4358

Magnet_Const DW 0000 ; 4360

WDT_Const DW 0000 ; 4362

EGM_Const DW 0000 ; 4364

BatteryStatus DW 0000 ; 4366

tMeas DW 0000 ; 4368

ElectrodeStatus DW 0000 ; 4370

Prev_Freq DW 0000 ; 4372

Freq_Count DW 0000 ; 4374

Prev_Rate DW 0000 ; 4376

VVT_Rate DW 0000 ; 4378

Max_VVT DW 0000 ; 4380

Hist_Paced DW 0000 ; 4382

Hist_Sensed DW 0000 ; 4384

Hist_EGM DW 0000 ; 4386

Hist_VOO DW 0000 ; 4388

Hist_Electrode DW 0000 ; 4390

144
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Hist_Battery DW 0000 ; 4392

EGMCurrent DW 0000 ; 4394

EGMstart DW 0000 ; 4396, First address to store EGM #1

;--------------------------------------------------------------------------------------------------------

ORG 4000h ; Define the address in which the program

;--------------------------------------------------------------------------------------------------------

RESET mov.w #3900h,SP ; Initialize ’1611 stackpointer to the top of RAM

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

StopXT2 bis.b #BIT7,&BCSCTL1 ; Stop XT2

; Module B - Default Values Setup -----------------------------------------------------------------------

;********************************************************************************************************

REPTI reg,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15 /* Clear all registers using Repeat */

xor reg,reg /* - instruction and "exclusive or" */

ENDR /* - to consume 1 cycle per clear */

mov.w #7098h,R4 ; Set the Default Pacemaker parameters (#7098)

; - Basic Pacing = 80 bpm (24)

; - Pulse Amplitude = 3V (3)

; - Sensitivity = 492 mV (7)

; - Pacing Mode = VVI (0) (#7098h), VVT (#7498h)

mov.w #0004h,R5 ; Set the Default Pacemaker parameters (#0004)

; - Pulse Width = .4 ms (4)

; - EGM rate = 400 Hz (0)

; - VVT upper rate = 80 bpm (0)

; - Sensing Polarity = Bipolar (0)

; - Pacing Polarity = Bipolar (0)

; - New Parameter? = No (0)

mov.w #08143h,R6 ; Set the Default Pacemaker parameters (#8143)

; - Refractory = 245 ms (3)

; - Hysteresis = 142 bpm (10)

; - WDT interval = 1 min (0)

; - EGM enable? = yes (1) (#A143h)

; - Electrode Status? 0(good) 1(bad)

; - Hysteresis on? = Yes (1) off (0)=>(2143h)

mov.w #0,BatteryStatus ; Set the Default Battery Status, 2.9V

; Module C - Battery Check ------------------------------------------------------------------------------

;********************************************************************************************************

; Description : PROV910 Battery Status Monitoring.

;

; SVS:

; Variable/s used : BatteryStatus, Hist_Battery

; Action : Use the MSP430 Supply Voltage Supervisor to evaluate

; if the Battery Charge is at critical level

;

; Output Location : Memory labeled BatteryStatus, RAM = 4366

; Memory labeled Hist_Battery, RAM = 4390

;********************************************************************************************************

;--------------------------------------------------------------------------------------------------------

SVS push R11 ; Stored R11 on stack and initialize it

push R14 ; Stored R14 on stack and initialize it
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inc.w Hist_Battery ; Histogram, counts frequency of Battery check

mov.w BatteryStatus,R11 ; Move Battery Status to R11

mov.b #41h,R14 ; Set 65 loops to wait for SVS to turn on and stabilize

Setup_SVS_On mov.b SVS_9(R11),&SVSCTL ; Turn on SVS, set threshold to previous battery status

Set_loop dec.b R14 ; Decrease R14, each decrease takes ~1us for DCO = 800kHz

jnz Set_loop

bit.b #BIT0,&SVSCTL ; Test if AVcc = V_bs (example if V_bs >= 2.9V)

jz End_SVS ; jump to end of routine

add.w #1,BatteryStatus ; If AVcc <= V_bs, then set V_bs = V_bs + 1

; (example, next pass V_bs = 2.8V)

End_SVS clr.b &SVSCTL ; Turn off SVS

pop R14 ; Restored R14

pop R11 ; Restored R11

; Module D - Electrode Check ----------------------------------------------------------------------------

;********************************************************************************************************

; Description : PROV910 Electrode Status Monitoring.

;

; Electrode:

; Variable/s used : ElectrodeStatus, Hist_Electrode, tMeas

; Action : Use the MSP430 Comparator A to evaluate

; if the Electrode Impedance is at critical level

;

; Output : Electrode Flag in Register R3, BIT E

; Output Location : Memory labeled ElectrodeStatus, RAM = 4370

; : Memory labeled Hist_Electrode, RAM = 4388

; : Memory labeled Hist_Electrode, RAM = 4368

;********************************************************************************************************

;--------------------------------------------------------------------------------------------------------

Electrode push R11 ; Stored R11 on stack and initialize it

push R12 ; Stored R12 on stack and initialize it

Setup_CompA mov.b #CARSEL+CAREF_1+CAIES,&CACTL1 ; Set Vref = .25Vcc applied to - terminal

; Enable Interrupts and negative trigger

mov.b #P2CA0+CAF,&CACTL2 ; Connects CA0 to P2.3 and Filters output

inc.w Hist_Electrode ; Histogram of Electrode measurement

Setup_Port2 bic.b #CAPD2,&CAPD ; Enable Port 2.2

MeasureRmeas bic.b #CAPD4,&CAPD ; Enable Port 2.2

bis.b #BIT4,&P2DIR ; Set P2.4 as output

bic.b #BIT2+BIT3,&P2DIR ; Set P2.2 & P2.2 as inputs

bis.b #BIT4,&P2OUT ; Charge to 7*tau = 7*33n*500 = 10.6us, MCLK = 800kHz

mov.w #50,R11 ; Set counter to 40 us to charge Cap

Charge_delay2 dec.w R11 ;

jnz Charge_delay2 ;

bis.b #CAON,&CACTL1 ; Turn on comparator A, CompOut = 1

Disch_Rmeas bic.b #BIT4,&P2OUT ; Discharge Cap, when Vcap < .25Vcc CompOut = 0

wait_Disch2 inc.w R11 ; 2 cycles, Each step = 1.25us for MCLK = 800kHz

bit.b #BIT0,&CACTL2 ; 7 cycles, Check if CompOut = 0

jnz wait_Disch2 ;

mov.w R11,tMeas ; Move counter value to RAM memory

bic.b #CAON,&CACTL1 ; Turn on comparator A, CompOut = 1

cmp.w #3,R11 ;
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jne Lead_Fracture ;

mov.w #3333h,ElectrodeStatus ; 3333 code for good lead

bic.w #BIT9,R5 ; Reset Electrode bit to indicate good impedance

jmp End_Electrode ;

Lead_Fracture cmp.w #8,R11 ;

jlo Isul_Defect ;

mov.w #4444h,ElectrodeStatus ; 4444 code for Lead Fracture

bis.w #BITE,R6 ;

jmp End_Electrode ;

Isul_Defect mov.w #2222h,ElectrodeStatus ; 2222 code for Isulation Defect

bis.w #BITE,R6 ;

End_Electrode pop R12 ; Restored R12

pop R11 ; Restored R11

;--------------------------------------------------------------------------------------------------------

;********************************************************************************************************

; Description : Set Time parameters of the Pacemaker

;

; Time_Manager

; Register/s used : R4, R5, and R6.

; Variable/s used : Basic Pacing, Pulse Width, Refractory, Sensitivity, and Pulse Amplitude

;

;

; Action : Use the MSP430 TimerB to generate interrupts based on programmed

; : - pacemake’s parameters and use TimerA as a DAC to generate DC voltages.

;

; Output :

; Output Location : TB0IV Location = FFFAh and TB1IV Location = FFF8h

;

;********************************************************************************************************

;--------------------------------------------------------------------------------------------------------

SetupWDT mov.w #WDT_ADLY_1000,&WDTCTL ; Setup WDT to Interval mode, ACLK, interval ~ 1s

bis.b #WDTIE,&IE1 ; Enable Watchdog interrupt

SetupP1 clr.b &P1OUT ; Clears Output Port 1

clr.b &P1DIR ; Sets all P1.x to inputs

clr.b &P1IES ; Sets all interrupts to rising edge

bis.b #00Ch,&P1SEL ; Select TA2, TA3,

bis.b #06Ch,&P1DIR ; Sets P1.1, 2, 5, and 6 as outputs

bis.b #BIT4,&P1IE ; Enable Interrupts for P1.4

SetupP2 clr.b &P2OUT ; Clears Output of Port2

bis.b #BIT3,&P2SEL ; Selec Comparator Input CA0

bic.b #BIT0,&P2IES ; Set Interrupt at rising edge for P2.0

bic.b #BIT3+BIT2+BIT0,&P2DIR ; Set P2.0, 2, and 3 as input

bis.b #BIT1,&P2DIR ; Set direction of Port2.1 to output

bis.b #BIT0,&P2IE ; Enable Interrupts for P2.0 to receive

; - signal from comparator

SetupP3 bic.b #BIT0,&P3OUT ; Reset Output Pin P3.0

bis.b #BIT0+BIT1,&P3DIR ; Set P3.0 into output direction

SetupP4 clr.b &P4DIR ; Set all P4.x to output

clr.b &P4OUT ; Set all P4.x to zero
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bis.b #0FFh,&P4SEL ; Select TB0, TB1, TB2, TB3, TB4, TB5, TB6

bis.b #0EFh,&P4DIR ; and sets all as outputs except TBOUT

SetupP5 clr.b &P5OUT ; Set direction of P5 as outputs

clr.b &P5OUT ; Sets all outputs of P5 to zero

SetupP6 clr.b &P6OUT ; Set direction of P6 as outputs

clr.b &P6OUT ; Sets all outputs of P6 to zero

Setup_Security mov.w Max_Freq,Prev_Freq ; Initialize Previous Frequency

mov.w Max_Rate,Prev_Rate ; Initialize Previous Rate

SetupTACCTLx mov.w #OUTMOD_7,&CCTL1 ; CCR1 toggle, interrupt enabled

mov.w #OUTMOD_7,&CCTL2 ; CCR2 toggle, interrupt enabled

SetupTA mov.w #TASSEL_1,&TACTL ; ACLK, Up-mode

mov.w #255,&CCR0 ; Sets Resolution of DAC

SetupTBCCTLx mov.w #OUTMOD_0+CCIE,&TBCCTL1 ; CCR1 Output Mode, interrupt enabled

mov.w #OUTMOD_0+CCIE,&TBCCTL2 ; CCR2 Output Mode, interrupt enabled

mov.w #OUTMOD_0+CCIE,&TBCCTL3 ; CCR3 Output Mode, interrupt enabled

SetupTB mov.w #TBSSEL_1+TBIE,&TBCTL ; ACLK, Continuous-mode

Basic_Pace mov.w R4,R11 ; Move the Register R4, that contains the Basic

; - Pacing offset

and.w #0003Fh,R11 ; Use mask to get only the bits that contains

; - the Basic Pacing offset

rla.w R11 ;

mov.w Basic_Pacing_0(R11),&TBCCR1 ; Set the Counter Register to Basic_Pacing_20

mov.w Basic_Pacing_0(R11),R7 ; R7 contains the Basic Pace Interval

Pulse_Width mov.w R5,R11 ; Move the Register R5 to R11

and.w #01Fh,R11 ; Use mask to get only the bits that contains

rla.w R11 ; the Pulse Width offset

mov.w Pulse_Width_0(R11),&TBCCR2 ; Set the Pulse Width

mov.w Pulse_Width_0(R11),R8 ; Move Basic Pace + Pulse Width to R8

Refractory mov.w R6,R11 ; Move the Register R6 to R11

and.w #0001Fh,R11 ; Use mask to get only the bits that contains

rla.w R11 ; - the Refractory offset

mov.w Refractory_0(R11),&TBCCR3 ; Set the Refractory Period

mov.w Refractory_0(R11),R9 ; Set R9 = Refractory Period

Hysteresis mov.w R6,R11 ; Move R6 to R11 for logic manipulation

and.w #03E0h,R11 ;

mov.w #00004,R14 ;

loop_hyst rra R11 ; Setup Register for Hysteresis Check

dec.w R14 ;

jnz loop_hyst ;

mov.w Hysteresis_0(R11),R10 ; Store Hysteresis into R10

Sensitivity mov.w R4,R11 ; Move R6 to R11 for logic manipulation

and.w #0F000h,R11 ; Mask to obtain Sensitivity

mov.w #5,R14 ;
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loop_sense rlc.w R11 ; Setup Register for Sensitivity Check

dec.w R14 ;

jnz loop_sense ;

mov.w Sensitivity_1(R11),&CCR1 ; Set DAC1 for Front End sensitivity

Pulse_Amp mov.w R4,R11 ; Move R4 to R11 for logic manipulation

and.w #00FC0h,R11 ; Mask to obtain Pulse Amplitude

mov.w #5,R14 ;

loop_Amp rra R11 ; Setup Register for Pulse Amplitude Check

dec.w R14 ;

jnz loop_Amp ;

mov.w Pulse_Amp_1(R11),&CCR2 ; Set DAC2 for Output Pulse Amplitude Comparison

VVT_Upper_Rate mov.w R5,R11 ; Move the Register R5, that contains

; - the Upper rate offset

and.w #1F00h,R11 ; Use mask to get only the bits that contains

mov.w #7,R14 ; - the Upper Rate offset

setup_Upper rra R11 ; Only rotate 7 times to multiply by 2 to

dec.w R14 ; - address words instead of bytes

jnz setup_Upper ;

mov.w Upper_Rate_0(R11),Max_VVT ; Store upper VVT rate in variable

Watchdog mov.w R6,R11 ; Move R6 to R11 for logic manipulation

and.w #00C00h,R11 ; Mask to obtain Watchdog interval

mov.w #9,R14 ;

loop_WDT rra R11 ; Setup Register for Watchdog Interval Check

dec.w R14 ;

jnz loop_WDT ;

mov.w WDT_Interval_0(R11),R13 ; Store Interval in R13

mov.w WDT_Interval_0(R11),WDT_Const ; Store Interval in R13

RC_Timer bic.b #BIT5,&P1OUT ; Set P1.5 low to discharge when needed

bic.b #BIT5,&P1DIR ; Set as input to charge capacitor

Pacing_Polar bit.w #BITE,R5 ; Test if Pacing Polarity is set

jz Sensing_Polar ; If not equal leave P5.0 output set to zero

bis.b #BIT0,&P5OUT ; Sets Pacing Polarity to Unipolar (1)

Sensing_Polar bit.w #BITD,R5 ; Test if Sensing Polarity is set

jz Setup_EGM ; If not equal leave P5.1 to zero

bis.b #BIT1,&P5OUT ; Sets Sensing Polarityto Unipolar (1)

Setup_EGM mov.w Initial_EGM,EGMCurrent ; Initialize Current EGM to EGM start address

bit.w #BITD,R6 ; Check if EGM is required

jz No_EGM ; If not end interrupt

mov.w #CCIE,&TBCCTL4 ; CCR4 interrupt enabled

mov.w R5,R11 ; Move the Register R5, that contains the EGM rate offset

and.w #00E0h,R11 ; Use mask to get only the bits that contains the EGM rate offset

mov.w #4,R12 ;

EGM_Enable rra R11 ; Only rotate 4 times to multiply by 2 to address words

dec.w R12 ; instead of bytes

jnz EGM_Enable ;

mov.w ECG_RATE_0(R11),&TBCCR4 ; Set the Counter Register to ECG rate

mov.w ECG_RATE_0(R11),R15 ; Add Pulse Width to Basic Pacing

inc.w Hist_EGM ; Histogram of EGM requested

jmp TimerA_On
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No_EGM bic.w #CCIE,&TBCCTL4 ; CCR4 interrupt disabled

TimerA_On bis.w #MC_1,&TACTL ; Turn on TimerA in Up-mode

TimerB_On bis.w #MC_2,&TBCTL ; Turn on TimerB in Continuous-mode

Mainloop bis.w #LPM3+GIE,SR ; CPU off and Global Interrpt Enable

nop ; Required only for debugger

;-------------------------------------------------------------------------------------------------------

TBX_ISR; Timer B Interrupt Handler

;-------------------------------------------------------------------------------------------------------

add.w &TBIV,PC ; Add Timer_B offset vector

reti ; CCR0 - no source

jmp TBCCR1_ISR ; TBCCR1

jmp TBCCR2_ISR ; TBCCR2

jmp TBCCR3_ISR ; TBCCR3

jmp TBCCR4_ISR ; TBCCR4

jmp TBCCR5_ISR ; TBCCR4

reti ; TBCCR6

reti ; Return from overflow ISR

TBCCR1_ISR push R11 ; Stored R11 on stack and initialize it

push R12 ; Stored R12 on stack and initialize it

bit.w #BITB,R4 ; Test hight frequency.

jnz Basic_P ; If true no pulse

Reed_check bit.b #BIT4,&P1IN ; Check if Reed Switch is closed

jz Rate_Check

add.w Magnet_Const,&TBCCR1 ; Sets the pace depending on the Battery voltage

bic.b #BIT4,&P1IFG ; Clear the reed interrupt flag

jmp Set_Vout ; Jumps to release stimulus

Rate_Check mov.w &TBR,R11 ; Move previous Current Time

mov.w Prev_Rate,R12 ;

mov.w R11,Prev_Rate ; Store current time into Prev_Freq

sub.w R12,R11 ; Substract Current time from previous freq sample

cmp.w Max_Rate,R11 ; Check if Int generate before frequency Threshold

jlo TurnOn_RC ; Jump to end of routine this set mode to VOO

Basic_P add.w R7,&TBCCR1 ; Move Basic Pacing time to TimerB1 Count Register

bis.b #BIT4,&P1IE ; Enable Reed switch interrupt

bic.b #BIT0,&P2IE ; Disable Interrupts from comparator

Set_Vout bic.b #BIT1,&P2OUT ; Turn off comparator

bis.w #BIT2,&TBCCTL2 ; Set Output of Register 2, Set Pulse_Signal

bis.w #BIT2,&TBCCTL3 ; Set Output of Register 3, Set Blank_Signal

bis.b #BIT1,&P5OUT ; Set Output P5.1, Set Sensing_Unipolar (Blank V+)

inc.w Hist_Paced ; Histogram of Paced Events

jmp End_BP

TurnOn_RC inc.w Rate_Count ; Increment high rate event

bis.b #BIT1,&P3DIR ; Set Output Direction

bis.b #BIT1,&P3OUT ; Set Output to Vcc

bis.b #BIT5,&P1IE ; Enable Interrupts for P1.5 for RC Timer

End_BP pop R12 ; Restored R12

pop R11 ; Restored R11

jmp TBX_ISR ; Jump to Interrupt Handler Label
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TBCCR2_ISR mov.w &TBCCR1,&TBCCR2 ; Move Basic Pacing Time to Counter Register 2

add.w R8,&TBCCR2 ; Add Pulse Width to Basic Pacing

bic.w #BIT2,&TBCCTL2 ; Reset Output of Register 2, Pulse_Signal

jmp TBX_ISR ; Jump to Interrupt Handler Label

TBCCR3_ISR mov.w &TBCCR2,&TBCCR3 ; Move Basic Pacing + Pulse Width to Register 3

add.w R9,&TBCCR3 ; Add Refractory Period to Register 3

bic.w #BIT2,&TBCCTL3 ; Reset Output of Register 3, End Refractory Period

bit.b #BIT4,&P1IN ; Check if Reed Switch is closed

jnz CompOffMag ; If switch closed do not turn on Comparator

bis.b #BIT1,&P2OUT ; Turn on comparator

bit.w #BITB,R4 ; Test hight frequency.

jnz CompOffMag

bis.b #BIT0,&P2IE ; Enable Interrupts from comparator

bic.b #BIT0,&P2IFG ; Clear P2.0 Interrupt Flag

CompOffMag jmp TBX_ISR ; Jump to Interrupt Handler Label

TBCCR4_ISR add.w R15,&TBCCR4 ; Add EGM rate to TBCCR4, sets sampling frequency

bis.b #BIT0,&P6SEL ; Enable A/D channel A0

mov.w #ADC12ON+SHT0_2,&ADC12CTL0 ; turn on ADC12, set samp time to ~3.2 us for ADCclk = 5MHz

mov.w #SHP,&ADC12CTL1 ; Use sampling timer

mov.b #SREF_2,&ADC12MCTL0 ; Vr+=VeREF+ (external)

bis.w #ENC,&ADC12CTL0 ; Enable conversions

bis.w #ADC12SC,&ADC12CTL0 ; Start conversions

testIFG bit.w #BIT0,&ADC12IFG ; Conversion done?

jz testIFG ; No, test again

mov.w &ADC12MEM0,EGMstart(R10) ; Move result to current EGM address

add.w #2,R10 ; Increase EGM address pointer

add.w #2,EGMCurrent ; Store address of last ECG store

bic.w #BIT0,&ADC12IFG ; Reset ADC memory_0 Interrupt Flag

bic.w #ADC12ON,&ADC12CTL0 ; Turn off ADC12

bic.b #BIT0,&P6SEL ; Disable A/D channel A0

bis.b #BIT0,&P6DIR ; Set AO to high impedance

cmp.w #14000,EGMCurrent ; Last available RAM?

jlo END_ADC ; (Separate 500bytes for Stack)

clr.w R10 ; If yes reset EGM counter, creates circular buffer

clr.w EGMCurrent ; Reset current address

mov.w Initial_EGM,EGMCurrent ; Put start address EGM into EGMCurrent

END_ADC jmp TBX_ISR ; Jump to Interrupt Handler Label

TBCCR5_ISR bic.w #CCIE,&TBCCTL5 ; Disable interrupts for this timer

bic.w #BIT2,&TBCCTL2 ; Reset Output of Register 2, Pulse_Signal

mov.w &TBR,&TBCCR3 ; Move Basic Pacing + Pulse Width to Register 3

add.w R9,&TBCCR3 ; Add Refractory Period to Register 3

jmp TBX_ISR

;-------------------------------------------------------------------------------------------------------

WDT_ISR; Watchdog Timer Interrupt Handler

;-------------------------------------------------------------------------------------------------------

Batt_Int bis.b #BIT2,&P3DIR ; Test WDT routine erase later

bis.b #BIT2,&P3OUT ; Erase later

cmp.w #0,R13 ; Watchdog Interval Register

dec.w R13 ; Interval is Setup by counting every time it

jnz End_WDT ; enters the interrupt handler, Int = (R13)*1s
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;-------------------------------------------------------------------------------------------------------

; Module C - Battery Check

;-------------------------------------------------------------------------------------------------------

SVS2 push R11 ; Stored R11 on stack and initialize it

push R14 ; Stored R14 on stack and initialize it

inc.w Hist_Battery ; Histogram, counts frequency of Battery check

mov.w BatteryStatus,R11 ; Move Battery Status to R11

mov.b #41h,R14 ; Set 65 loops to wait for SVS to turn on and stabilize

Setup_SVS_On2 mov.b SVS_9(R11),&SVSCTL ; Turn on SVS, set threshold to previous battery status

Set_loop2 dec.b R14 ; Decrease R14, each decrease takes ~1us for DCO = 800kHz

jnz Set_loop2

bit.b #BIT0,&SVSCTL ; Test if AVcc = V_bs (example if V_bs = 3.0V)

jz End_SVS2 ; jump to end of routine

add.w #1,BatteryStatus ; If AVcc ~= V_bs, then set V_bs = V_bs + 1

; (example, next pass V_bs = 2.8V)

End_SVS2 clr.b &SVSCTL ; Turn off SVS

pop R14 ; Restored R14

pop R11 ; Restored R11

;-------------------------------------------------------------------------------------------------------

; Module D - Electrode Check

;-------------------------------------------------------------------------------------------------------

Electrode2 push R11 ; Stored R11 on stack and initialize it

push R12 ; Stored R12 on stack and initialize it

Setup_CompA2 mov.b #CARSEL+CAREF_1+CAIES,&CACTL1 ; Sets Vref = .25Vcc applied to - terminal

; Enable Interrupts and negative trigger

mov.b #P2CA0+CAF,&CACTL2 ; Connects CA0 to P2.3 and Filters output

inc.w Hist_Electrode ; Histogram of Electrode measurement

Setup_P2 bic.b #CAPD2,&CAPD ; Enable Port 2.2

bis.b #CAPD4,&CAPD ; Disable Port 2.5

MeasureRmeas2 bic.b #CAPD4,&CAPD ; Enable Port 2.2

bis.b #BIT4,&P2DIR ; Set P2.2 as output

bic.b #BIT3+BIT2,&P2DIR ; Set P2.4 as input

bis.b #BIT4,&P2OUT ; Charge to 7*tau = 7*33n*500 = 10.6us,

; - MCLK = 800kHz

mov.w #50,R11 ; Set counter to 40 us to charge Cap tau =

Charging dec.w R11 ;

jnz Charging ;

bis.b #CAON,&CACTL1 ; Turn on comparator A, CompOut = 1

Disch_Rmeas2 bic.b #BIT4,&P2OUT ; Discharge Cap, when

; - Vcap < .25Vcc CompOut = 0

Discharging inc.w R11 ; 2 cycles, Each step = 1.25us

; - for MCLK = 800kHz

bit.b #BIT0,&CACTL2 ; 7 cycles, Check if CompOut = 0

jnz Discharging ; 2 cycles

mov.w R11,tMeas ;

bic.b #CAON,&CACTL1 ; Turn on comparator A, CompOut = 1

cmp.w #3,R11 ;
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jne Lead_Fracture2 ;

mov.w #3333h,ElectrodeStatus ; 3333 code for good lead

bic.w #BIT9,R5 ; Set Electrode bit to indicate

jmp End_Electrode2 ; good impedance

Lead_Fracture2 cmp.w #8,R11 ;

jlo Isul_Defect2 ;

mov.w #4444h,ElectrodeStatus ; 4444 code for Lead Fracture

bis.w #BITE,R6 ;

jmp End_Electrode2 ;

Isul_Defect2 mov.w #2222h,ElectrodeStatus ; 2222 code for Isulation Defect

bis.w #BITE,R6 ;

End_Electrode2 pop R12 ; Restored R11

pop R11 ; Restored R12

;-------------------------------------------------------------------------------------------------------

mov.w WDT_Const,R13 ; Reinitialize Watchdog Counter

bit.b #BIT0,&P2IE ; Test if P2.0 is already set (avoid run condition)

jnz TurnOff_RC ; If set jump to Turn off RC timer

bis.b #BIT0,&P2IE ; If not set interrupts for P2.0

bic.b #BIT0,&P2IFG ; - and clear P2.0 interrupt flag

TurnOff_RC bic.b #BIT1,&P3DIR ; Set Input Direction

bic.b #BIT5,&P1IE ; Disable Interrupts for P1.5 for RC Timer

bic.b #BIT5,&P1IFG ; Clear RC Timer Interrupt Flag

;mov.w Max_Rate,Prev_Rate ; Initialize Max Ouput Rate

Check_NewParam bic.w #BITB,R4 ; Reset to retest hight frequency condition

bit.w #BITF,R5 ; Check for new parameters

jz End_WDT ; if 0 jump to END_WDT

Prepare_Stack sub.w #4,R1 ; Decrease content of Stack to eliminate stored

jmp Basic_Pace ; - SR and PC by Interrupt. Jump to Basic_Pace

End_WDT bic.b #BIT2,&P3OUT ; Erase later

reti ; - to set new parameters.

;-------------------------------------------------------------------------------------------------------

P1_ISR; Port1 Interrupt Handler

;-------------------------------------------------------------------------------------------------------

push R14 ; Saves contents of R14 and Stack

bit.b #BIT4,&P1IN ; Test if Reed Switch Interrupt Flag is set

jnz Setup_VOO ; If set jump to end of routine

clr.b &P1IFG ; Clear P1 interrupt flags

bit.w #BITC,R6 ; Check if charging or discharging

jnz Charge_RC ; Jump to discharge cap

Discharge_RC bis.b #BIT5,&P1DIR ; P1.5 as output to dischage capacitor

bis.b #BIT0,&P3OUT ; Set P3.0 Start Aux pulse

mov.w #020h,R14 ; 1 cycle, each cycle = 1.25us for MCLK = 800kHz

Aux_PW dec.w R14 ; 1 cycle,

jnz Aux_PW ; 2 cycles, Total cycles = 97, 97*1.25u = .121ms

bic.b #BIT0,&P3OUT ; Clear P3.0, end Aux Pulse Width

bis.b #BIT5,P1IES ; Interrupt set to falling edge

bis.w #BITC,R6 ; Set to indicate RC need charging

jmp End_P1_ISR ; Jump to end of routine

Charge_RC bic.b #BIT5,&P1DIR ; Set as input to charge capacitor

;bis.b #BIT6,&P1OUT ; High to initiate Charging

bic.w #BITC,R6 ; Reset to indicate RC need discharging
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bic.b #BIT5,P1IES ; Interrupt set to raising edge

jmp End_P1_ISR ; Jump to end of routine

Setup_VOO inc.w Hist_VOO ; Histogram of Reed Switch activation

bic.b #BIT0,&P2IE ; Disable Interrupts from comparator

bic.b #BIT1,&P2OUT ; Turn off comparator

cmp.w #5,BatteryStatus ; Compare if Battery voltage < 2.3V

jlo MagnetNormal ; If true jump to Magnet Normal rate (96 bpm)

cmp.w #7,BatteryStatus ; Compare if Battery voltage is > = 2.1V

jhs MagnetEOL ; If true jump to Magnet EOL rate (74 bpm)

mov.w Magnet_ERI,&TBCCR1 ; Set Basic Pace to Magnet of Elective

mov.w Magnet_ERI,Magnet_Const ; - Replacement (84 bpm)

jmp End_P1_ISR ;

MagnetNormal mov.w Magnet_Normal,&TBCCR1 ; Set Basic Pace to Magnet Normal

mov.w Magnet_Normal,Magnet_Const ; Store normal magnet pace in memory

jmp End_P1_ISR ;

MagnetEOL mov.w Magnet_EOL,&TBCCR1 ; Set Basic Pace to Magnet EOL

mov.w Magnet_EOL,Magnet_Const ; Store End of Life pace in memory

bic.b #BIT4,&P1IE ; Set bit to identify first pass of Reed Switch

bic.w #BIT2,&TBCCTL2 ; In the case Port1 interrupt consides with

; - Basic Pace interrupt.

End_P1_ISR pop R14 ; Restore contents of R14 from Stack

reti

;-------------------------------------------------------------------------------------------------------

P2_ISR; Port2 Interrupt Handler

;-------------------------------------------------------------------------------------------------------

push R11 ;

push R12 ;

bic.b #BIT0,&P2IFG ; Clears P2.0 Interrupt Flag

In_Freq_Check mov.w &TBR,R11 ; Move previous Current Time

mov.w Prev_Freq,R12 ;

mov.w R11,Prev_Freq ; Store current time into Prev_Freq

sub.w R12,R11 ; Substract Current time from previous freq sample

cmp.w Max_Freq,R11 ; Check if Int generate before frequency Threshold

jlo Count_Freq ; Jump to check if occurs 10 times in a row

VVI_Mode mov.w R7,&TBCCR1 ; Set Basic Pace for Timer_B

add.w &TBR,&TBCCR1 ; Initialize Basic Pace to current time

inc.w Hist_Sensed ; Histogram of Sensed Events

bit.w #BITF,R6 ; Check if Hysteresis is on

jz No_Escape_Int ; Jump to Reset Timer_B

add.w R10,&TBCCR1 ; Add hysteresis to Basic Pace

No_Escape_Int mov.w &TBCCR1,&TBCCR2 ; Move Basic Pacing Time + Hysteresis to Counter Register 2

add.w R8,&TBCCR2 ;

mov.w &TBCCR2,&TBCCR3 ; Move Basic Pacing + Pulse Width to Register 3

add.w R9,&TBCCR3 ; Add Refractory Period to Register 3

bis.w #MC_2,&TBCTL ; Turn On Timer_B in Continuous Mode

bit.w #BITA,R4 ; Check Pacing Mode, VVI (0) or VVT (1)

jz End_P2ISR ; If 1 jump to VVI_Mode

VVT_Mode mov.w &TBR,&TBCCR5 ;

bic.b #BIT1,&P2OUT ; Turn off comparator

add.w R8,&TBCCR5 ; Set trigger pulse width

mov.w #CCIE,&TBCCTL5 ; CCR3 Output Mode, interrupt enabled

bis.w #BIT2,&TBCCTL2 ; Set Output of Register 2, Set Pulse_Signal
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jmp End_P2ISR ;

Count_Freq bis.w #BITB,R4 ; Set to notify hight frequency.

bic.b #BIT0,&P2IE ; Disable Port 2 Interrupts

End_P2ISR ;bis.b #BIT1,&P2OUT ; Turn on comparator

pop R12 ;

pop R11 ;

reti ;

;--------------------------------------------------------------------------------------------------------

; Definition of Programming Constants

;--------------------------------------------------------------------------------------------------------

; ROM Memory definition for Constants

Basic_Pacing_0 DW 61435 ; 32 bpm, 1, Define Basic_Pacing, units: min^-1, Flash Location =

Basic_Pacing_1 DW 57821 ; 34 bpm

Basic_Pacing_2 DW 54609 ; 36 bpm

Basic_Pacing_3 DW 51735 ; 38 bpm

Basic_Pacing_4 DW 49148 ; 40 bpm

Basic_Pacing_5 DW 46808 ; 42 bpm

Basic_Pacing_6 DW 44680 ; 44 bpm

Basic_Pacing_7 DW 42737 ; 46 bpm

Basic_Pacing_8 DW 40957 ; 48 bpm

Basic_Pacing_9 DW 39318 ; 50 bpm

Basic_Pacing_10 DW 37806 ; 52 bpm

Basic_Pacing_11 DW 36406 ; 54 bpm

Basic_Pacing_12 DW 35106 ; 56 bpm

Basic_Pacing_13 DW 33895 ; 58 bpm

Basic_Pacing_14 DW 32765 ; 60 bpm

Basic_Pacing_15 DW 31708 ; 62 bpm

Basic_Pacing_16 DW 30718 ; 64 bpm

Basic_Pacing_17 DW 29787 ; 66 bpm

Basic_Pacing_18 DW 28911 ; 68 bpm

Basic_Pacing_19 DW 28085 ; 70 bpm

Basic_Pacing_20 DW 27304 ; 72 bpm

Basic_Pacing_21 DW 26567 ; 74 bpm

Basic_Pacing_22 DW 25867 ; 76 bpm

Basic_Pacing_23 DW 25204 ; 78 bpm

Basic_Pacing_24 DW 24574 ; 80 bpm

Basic_Pacing_25 DW 23975 ; 82 bpm

Basic_Pacing_26 DW 23404 ; 84 bpm

Basic_Pacing_27 DW 22860 ; 86 bpm

Basic_Pacing_28 DW 22340 ; 88 bpm

Basic_Pacing_29 DW 21844 ; 90 bpm

Basic_Pacing_30 DW 21369 ; 92 bpm

Basic_Pacing_31 DW 20914 ; 94 bpm

Basic_Pacing_32 DW 20478 ; 96 bpm

Basic_Pacing_33 DW 20060 ; 98 bpm

Basic_Pacing_34 DW 19659 ; 100 bpm

Basic_Pacing_35 DW 19274 ; 102 bpm

Basic_Pacing_36 DW 18903 ; 104 bpm

Basic_Pacing_37 DW 18546 ; 106 bpm

Basic_Pacing_38 DW 18203 ; 108 bpm

Basic_Pacing_39 DW 17872 ; 110 bpm

Basic_Pacing_40 DW 17553 ; 112 bpm
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Basic_Pacing_41 DW 17245 ; 114 bpm

Basic_Pacing_42 DW 16948 ; 116 bpm

Basic_Pacing_43 DW 16660 ; 118 bpm

Basic_Pacing_44 DW 16383 ; 120 bpm

Hysteresis_0 DW 16114 ; 122 bpm, Define Hysteresis, units: min^-1, Flash Location =

Hysteresis_1 DW 15854 ; 124 bpm

Hysteresis_2 DW 15603 ; 126 bpm

Hysteresis_3 DW 15359 ; 128 bpm

Hysteresis_4 DW 15122 ; 130 bpm, 50, 4450

Hysteresis_5 DW 14893 ; 132 bpm

Hysteresis_6 DW 14671 ; 134 bpm

Hysteresis_7 DW 14455 ; 136 bpm

Hysteresis_8 DW 14246 ; 138 bpm

Hysteresis_9 DW 14042 ; 140 bpm, 4460

Hysteresis_10 DW 13845 ; 142 bpm

Hysteresis_11 DW 13652 ; 144 bpm

Hysteresis_12 DW 13465 ; 146 bpm

Hysteresis_13 DW 13283 ; 148 bpm

Hysteresis_14 DW 13106 ; 150 bpm, 60, 4470

Hysteresis_15 DW 12934 ; 152 bpm

Hysteresis_16 DW 12766 ; 154 bpm

Hysteresis_17 DW 12602 ; 156 bpm

Hysteresis_18 DW 12443 ; 158 bpm

Hysteresis_19 DW 12287 ; 160 bpm, 4480

Pulse_Width_0 DW 2 ; .070 ms, Define Pulse_Width, units: ms, Flash Location =

Pulse_Width_1 DW 5 ; .145 ms

Pulse_Width_2 DW 7 ; .220 ms

Pulse_Width_3 DW 10 ; .295 ms

Pulse_Width_4 DW 12 ; .370 ms

Pulse_Width_5 DW 15 ; .445 ms

Pulse_Width_6 DW 17 ; .520 ms

Pulse_Width_7 DW 19 ; .595 ms

Pulse_Width_8 DW 22 ; .670 ms

Pulse_Width_9 DW 24 ; .745 ms

Pulse_Width_10 DW 27 ; .820 ms

Pulse_Width_11 DW 29 ; .895 ms

Pulse_Width_12 DW 32 ; .970 ms

Pulse_Width_13 DW 34 ; 1.045 ms

Pulse_Width_14 DW 37 ; 1.120 ms

Pulse_Width_15 DW 39 ; 1.195 ms

Pulse_Width_16 DW 42 ; 1.270 ms

Pulse_Width_17 DW 44 ; 1.345 ms

Pulse_Width_18 DW 47 ; 1.420 ms

Pulse_Width_19 DW 49 ; 1.495 ms

Refractory_0 DW 6553 ; 200 ms, Define Refractory Period, units: ms, Flash Location =

Refractory_1 DW 7045 ; 215 ms

Refractory_2 DW 7536 ; 230 ms

Refractory_3 DW 8028 ; 245 ms

Refractory_4 DW 8519 ; 260 ms

Refractory_5 DW 9010 ; 275 ms

Refractory_6 DW 9502 ; 290 ms

Refractory_7 DW 9993 ; 305 ms
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Refractory_8 DW 10485 ; 320 ms

Refractory_9 DW 10976 ; 335 ms

Refractory_10 DW 11468 ; 350 ms

Refractory_11 DW 11959 ; 365 ms

Refractory_12 DW 12451 ; 380 ms

Refractory_13 DW 12942 ; 395 ms

Refractory_14 DW 13434 ; 410 ms

Refractory_15 DW 13925 ; 425 ms

Refractory_16 DW 14417 ; 440 ms

Refractory_17 DW 14908 ; 455 ms

Refractory_18 DW 15400 ; 470 ms

Refractory_19 DW 15891 ; 485 ms

Refractory_20 DW 16383 ; 500 ms

WDT_Interval_0 DW 60 ; 1 min Define Batt_Interval, units: min, Flash Location =

WDT_Interval_1 DW 120 ; 2 min

WDT_Interval_2 DW 300 ; 5 min

WDT_Interval_3 DW 600 ; 10 min

Sensitivity_1 DW 3 ; 33 mV, Define Variable Sensitivity, units: mV, Flash Location =

Sensitivity_2 DW 9 ; 98 mV

Sensitivity_3 DW 15 ; 164 mV

Sensitivity_4 DW 21 ; 230 mV

Sensitivity_5 DW 27 ; 295 mV

Sensitivity_6 DW 33 ; 361 mV

Sensitivity_7 DW 39 ; 426 mV

Sensitivity_8 DW 45 ; 492 mV

Sensitivity_9 DW 51 ; 558 mV

Sensitivity_10 DW 57 ; 623 mV

Sensitivity_11 DW 63 ; 689 mV

Sensitivity_12 DW 69 ; 755 mV

Sensitivity_13 DW 75 ; 820 mV

Sensitivity_14 DW 81 ; 886 mV

Sensitivity_15 DW 87 ; 951 mV

Pulse_Amp_1 DW 50 ; 2.0 V, Define Variable Pulse_Amplitude, units: V, Flash Location =

Pulse_Amp_2 DW 60 ; 2.5 V

Pulse_Amp_3 DW 70 ; 3.0 V

Pulse_Amp_4 DW 80 ; 3.5 V

Pulse_Amp_5 DW 90 ; 4.0 V

Pulse_Amp_6 DW 100 ; 4.5 V

Pulse_Amp_7 DW 115 ; 5.0 V

Pulse_Amp_8 DW 125 ; 5.5 V

Pulse_Amp_9 DW 135 ; 6.0 V

Pulse_Amp_10 DW 150 ; 6.5 V

Pulse_Amp_11 DW 160 ; 7.0 V

Pulse_Amp_12 DW 170 ; 7.5 V

Magnet_Normal DW 20478 ; 96 bpm, Define MagnetNormal, units: min^-1, Flash Location =

Magnet_ERI DW 23404 ; 84 bpm

Magnet_EOL DW 26567 ; 74 bpm

SVS_9 DB 0090h ; 2.90 V, Define Threshold Voltage SVS, units: Volts, Flash Location =

SVS_8 DB 0080h ; 2.80 V

SVS_7 DB 0070h ; 2.65 V
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SVS_6 DB 0060h ; 2.50 V

SVS_5 DB 0050h ; 2.40 V

SVS_4 DB 0040h ; 2.30 V

SVS_3 DB 0030h ; 2.20 V

SVS_2 DB 0020h ; 2.10 V

ECG_RATE_0 DW 328 ; 100 Hz, Define EGM sampling frequency, 400Hz, units: Hz, Flash Location =

ECG_RATE_1 DW 164 ; 200 Hz

ECG_RATE_2 DW 108 ; 300 Hz

ECG_RATE_3 DW 82 ; 400 Hz

ECG_RATE_4 DW 66 ; 500 Hz

ECG_RATE_5 DW 56 ; 600 Hz

ECG_RATE_6 DW 46 ; 700 Hz

ECG_RATE_7 DW 41 ; 800 Hz

ECG_RATE_8 DW 36 ; 900 Hz

Max_Freq DW 2584 ; Maximum input frequency = 12 Hz

Max_Rate DW 9830 ; Maximum Output Rate = 200 bpm

Initial_EGM DW 4394 ; First address of EGM

Upper_Rate_0 DW 24574 ; Define Upper_Rate in VVT mode, units: min^-1, Flash Location =

Upper_Rate_1 DW 23975 ;

Upper_Rate_2 DW 23404 ;

Upper_Rate_3 DW 22860 ;

Upper_Rate_4 DW 22340 ;

Upper_Rate_5 DW 21844 ;

Upper_Rate_6 DW 21369 ;

Upper_Rate_7 DW 20914 ;

Upper_Rate_8 DW 20478 ;

Upper_Rate_9 DW 20060 ;

Upper_Rate_10 DW 19659 ;

Upper_Rate_11 DW 19274 ;

Upper_Rate_12 DW 18903 ;

Upper_Rate_13 DW 18546 ;

Upper_Rate_14 DW 18203 ;

Upper_Rate_15 DW 17872 ;

Upper_Rate_16 DW 17553 ;

Upper_Rate_17 DW 17245 ;

Upper_Rate_18 DW 16948 ;

Upper_Rate_19 DW 16660 ;

Upper_Rate_20 DW 16383 ;

Upper_Rate_21 DW 16114 ;

Upper_Rate_22 DW 15854 ;

Upper_Rate_23 DW 15603 ;

Upper_Rate_24 DW 15359 ;

Upper_Rate_25 DW 15122 ;

Upper_Rate_26 DW 14893 ;

Upper_Rate_27 DW 14671 ;

Upper_Rate_28 DW 14455 ;

Upper_Rate_29 DW 14246 ;

Upper_Rate_30 DW 14042 ;

Upper_Rate_31 DW 13845 ;

;--------------------------------------------------------------------------------------------------------
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; Interrupt Vectors Used MSP430x4xx

;--------------------------------------------------------------------------------------------------------

ORG 0FFFEh ; MSP430 RESET Vector

DW RESET ;

ORG 0FFF8h ; Timer_BX Vector

DW TBX_ISR ;

ORG 0FFF4h ; Watchdog Timer Vector

DW WDT_ISR ;

ORG 0FFE8h ; Port1 Interrupt Vector

DW P1_ISR ;

ORG 0FFE2h ; Port2 Interrupt Vector

DW P2_ISR ;

END
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