Endophytic fungi associated with the black mangrove *Avicennia germinans* in Cabo Rojo, Puerto Rico: their antimicrobial potential.

by

VERÓNICA FIGUEROA-NEGRÓN

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

BIOLOGY

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

2018

Approved by:

Matías J. Cafaro, Ph.D. President, Graduate Committee

Carlos Ríos Velázquez, Ph.D. Member, Graduate Committee

Sandra L. Maldonado Ramírez, Ph.D. Member, Graduate Committee

Jaime E. Curbelo, Ph.D. Representative of Graduate Studies

Ana Vélez Díaz, M.S. Interim Chair of Biology Date

Date

Date

Date

Date

Endophytic fungi associated with the black mangrove, *Avicennia germinans*, in Cabo Rojo, Puerto Rico: their antimicrobial potential.

ABSTRACT

The search for new antimicrobial compounds has been of great interest in recent years. These compounds are naturally produced by microorganisms including endophytic fungi isolated from mangroves. This study focuses on endophytic fungi isolated from leaves and seeds of the black mangrove (Avicennia germinans) from Bahía Salinas, Cabo Rojo, Puerto Rico. We isolated 20 genera of fungal endophytes from which nine identified strains were tested for antimicrobial secondary metabolite production. Fungal strains from Penicillium (BSI-HV-1(2)) sp., Aspergillus flavus (BSI-HV-2(1)), Aspergillus clavatus (BSI(MH)-HJ-2(1)), Stereum (BSI-R-2(1)) sp., Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)), Purpureocillium (BSII(3.5)-R-3(2)) sp., Simplicillium (BSI(1.5)-R-1(1)) sp., Hortaea (BSII(3.5)-HC-1(2)) sp. and Bionectria (BSI(MH)-HC-3(1)) sp. were selected for analysis. Four bacterial strains: *Escherichia coli*, *Pseudomonas* sp., Serratia sp. and Staphylococcus sp. and two yeast strains of Candida albicans and C. tropicalis were used to perform bioassays (ATCC certified strains). Growth curves were prepared for yeasts and bacteria. Fungal extracts were added after lag, exponential and stationary growth phases of each bacteria and yeast culture. Our results showed that A. flavus (BSI-HV-2(1)) and A. clavatus (BSI(MH)-HJ-2(1)) extracts strongly decreased the growth of C. albicans, P. aeruginosa, and E. coli. Only A. flavus (BSI-HV-2(1)) decreased the growth of C. tropicalis. Stereum (BSI-R-2(1)) sp. enhanced the growth of *E. coli* and *A. flavus* (BSI-HV-2(1)) enhanced the growth of *S. aureus*. These results could open a way for future discoveries of new antimicrobial or antifungal compounds from the black mangrove endophytes in Puerto Rico.

Hongos endófitos asociados al mangle negro, *Avicennia germinans*, en Cabo Rojo, Puerto Rico: su potencial antimicrobial

RESUMEN

La búsqueda de nuevos compuestos antimicrobiales ha sido de gran interés durante los últimos años. Estos compuestos pueden ser producidos naturalmente por muchos organismos, entre ellos, hongos aislados de mangles. Este estudio se enfoca en los hongos endófitos aislados de las hojas y semillas del mangle negro (Avicennia germinans) en Bahía Salinas, Cabo Rojo, Puerto Rico. Aislamos 20 géneros de hongos endófitos de los cuales se escogieron 9 para determinar si los metabolitos secundarios producidos tenían alguna capacidad antimicrobial. Las especies de hongos utilizadas fueron Penicillium (BSI-HV-1(2)) sp., A. flavus (BSI-HV-2(1)), Aspergillus clavatus (BSI(MH)-HJ-2(1)), Stereum (BSI-R-2(1)) sp., Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)), Purpureocillium (BSII(3.5)-R-3(2)) sp., Simplicillium (BSI(1.5)-R-1(1)) sp., Hortaea (BSII(3.5)-HC-1(2)) sp. y Bionectria (BSI(MH)-HC-3(1)) sp. Utilizamos cuatro cepas de bacterias para realizar los bioensayos: Escherichia coli, Pseudomonas sp., Serratia sp. y Staphylococcus sp., así como dos cepas de levaduras, Candida albicans y C. tropicalis (cepas certificadas ATCC). Se realizaron curvas de crecimiento para determinar las fases de crecimiento de cada bacteria y levadura. Luego se añadió el sobrenadante del hongo (extractos) para ver cómo los metabolitos secundarios excretados por el mismo afectaban la curva normal de crecimiento en las fases lag, exponencial y estacionaria de cada espécimen. Se encontró que los extractos de A. flavus (BSI-HV-2(1)) y A. clavatus (BSI(MH)-HJ-2(1)) disminuyeron el crecimiento de C. albicans, P. aeruginosa y E. coli. Sólo A. flavus (BSI-HV-2(1)) disminuyó el crecimiento de C. tropicalis, mientras que los extractos de Stereum (BSI-R-2(1)) sp. y A. flavus (BSI-HV-2(1)) aumentaron el crecimiento de E. coli y S. aureus, respectivamente. Estos resultados abren nuevas puertas a posibles descubrimientos de nuevos productos antimicrobiales provenientes de hongos endófitos de mangle negro en Puerto Rico.

ACKNOWLEDGEMENTS

I would like to thank all the people that make this work possible. To my chairman, Matias J. Cafaro, for his guidance, patience and dedication on every step of my journey since I started to work in his laboratory.

To all the members of the Symbiosis Laboratory; my mentor as an undergraduate student, Angélica Olmo, and the ones who took part in this research, specially Zuleida Valentin, Edaris Rodríguez, and Victoria Cabán.

To the Department of Biology faculty members, specially: Sandra Maldonado, Carlos Ríos Velázquez, Luis Ríos, Magaly Zapata, Carol Rivera among others; for being supportive and providing their knowledge and help.

To the BRIDGES to Doctorate Program and their coordinators, for funding and guideline throughout these years (Grant number R25GM058389).

Without you all I would not have become the scientist that I am today. Thanks.

List of Figures	viii
List of Tables	xi
List of Appendices	xii
Chapter 1. General Overview	
1.1 Introduction	
1.2 Literature Review	
1.2.1 Mangroves in Puerto Rico	
1.2.2 Mangrove-associated fungal endophytes and their medical properties	6
1.3 Goals	
1.3.1 Hypothesis	
1.3.2 Objectives	
Chapter 2. Identification of cultivable fungi associated with the black mangrove Avicer	ınia
germinans	
2.1 Introduction	
2.2 Materials and Methods	
2.2.1 Sampling area	
2.2.2 Leaves and seeds samplings	
2.2.3 Leaves and seeds processing	
2.2.4 Macroscopic and microscopic culture-dependent identification method	
2.2.5 Molecular identification using the ITS gene region	
2.2.6 Identification of fungi associated with the black mangrove Avicennia germin	ans:
Sequence Analysis	
2.3 Results	
2.3.1 Fungal endophytes from A. germinans	
2.3.2 Macroscopic and microscopic identification of A. germinans endophytes	

Table of Contents

2.3.2 Phylogenetic analysis of black mangrove fungi
2.4 Discussion and Conclusion
Chapter 3. Antibiotic and Antifungal Assays
3.1 Introduction
3.2 Materials and Methods
3.2.1 Fungal Extracts
3.2.2 Antibacterial and Antifungal Assays
3.2.3 Statistical Analysis
3.3 Results
3.3.1 First Assay
3.3.2 Second Assay
3.3.3 Third Assay
3.4 Discussion and Conclusion
Future Work
General Conclusions
References

LIST OF FIGURES

Figure 1.1: Distribution of mangrove forest in Puerto Rico (purple areas)
Figure 1.2: Salt crystals observed on a leaf from <i>Avicennia germinans</i>
Figure 2.1: Frequency of fungal genera isolated from the black mangrove <i>Avicennia germinans</i> from samplings: BSI, BSII, and BSIII
Figure 2.2: Fungal genera isolated from <i>A. germinans</i> in potato dextrose agar (PDA) (n=19) 21
Figure 2.3: Fungal genera isolated from <i>A. germinans</i> in PDA 1.5% salinity (n=29) 21
Figure 2.4: Fungal genera isolated from <i>A. germinans</i> in PDA 3.5% salinity (n=28) 22
Figure 2.5: Fungal genera isolated from <i>A. germinans</i> in Leaves Media (4% salinity) (n=12) 22
Figure 2.6: Frequency of fungal genera isolates from the black mangrove <i>Avicennia germinans</i> from leaves (n=64) and seeds (n=27)
Figure 2.7: <i>Aspergillus clavatus</i> (BSI(MH)-HJ-2(1)) structures. Measurements from vesicles, conidia and conidiophore were obtained for identification. Vesicles (A and D), conidia (B) and conidiophore (C). Scale: 100µm
Figure 2.8: <i>Aspergillus flavus</i> (BSI-HV-2(1)) structures. Measurements from conidiophores and conidia were obtained for identification. Conidiophores (A-C) and conidia (D). Scale: 100µm. 26
Figure 2.9: <i>Aspergillus niger</i> structures. Measurements from vesicles and conidiophores were obtained for identification. Vesicles (A-C) and conidiophores (D). Scale: 100µm
Figure 2.10: <i>Penicillium waksmanii</i> (BSI-HV-1(2)) structures. Measurements from conidiophores, metulae and phialides were obtained for identification. Conidiophores (A, B, F), metulae and phialides (D), and conidia (E). Scale: 100µm
Figure 2.11: <i>Nigrospora (Khuskia oryzae)</i> (BSI(1.5)-HJ-2(1)). Measurements from conidia were obtained for identification. Conidia (A-D). Scale: 100µm
Figure 2.12: Phylogenetic Neighbor-joining tree based on ITS region gene sequences isolated from the black mangrove <i>A. germinans</i> . Isolates belonging to the same class are colored: Agaromycetes (orange), Dothidiomycetes (green), Sordariomycetes (blue), and Eurotiomycetes (purple). The ITS region is composed for approximately 500-600 base pairs for fungi. The numbers at the nodes indicate bootstrap support values (>50%)
Figure 3.1: <i>E. coli</i> growth curves under different treatment from extracts of <i>A. flavus</i> (BSI-HV-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

Figure 3.4: *S. aureus* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added after 2 hours of incubation. All measures were performed in triplicate.

Figure 3.5: *E. coli* growth curves under different treatment from extracts of *Stereum* (BSI-R-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate...... 46

Figure 3.12: *P. aeruginosa* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added when incubated. All measures were performed in triplicate. 51

Figure 3.13: *P. aeruginosa* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added when incubated. All measures were performed in triplicate. 51

Figure 3.14: *C. albicans* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added when incubated. All measures were performed in triplicate. 52

LIST OF TABLES

Table 1.1: Previous reports of fungal endophytes isolated from mangrove plants
Table 1.2: Reports of fungal endophytes producing active compounds from mangrove plants9
Table 1.3: Compounds from mangrove endophytic fungi with antimicrobial or antifungal activity.
Table 2.1: Fungal isolates from A. germinans. Isolates were retrieved from three samplings (BSI,
BSII and BSIII), on four different culture media [PDA, PDA (1.5% NaCl), PDA (3.5% NaCl) and
leaves medium] from seeds and leaves
Table 3.1: Results showing fungal extracts that significantly (p-value <0.05) affected (+) and
unaffected (-) the growth of bacteria and yeasts
Table 3.2: Results showing fungal extracts that significantly (p-value <0.05) affected (+) and
unaffected (-) the growth of E. coli, P. aeruginosa and C. albicans
Table 3.3: Results showing fungal extracts that significantly affected (+) and unaffected (-) the
growth of E. coli, P. aeruginosa and C. albicans. Extracts were added at the beginning of the curve
(lag phase) and in the stationary phase

LIST OF APPENDICES

Appendix A: Topographic map of the Cabo Rojo National Wildlife Refuge (FWS 2010) 69
Appendix B: Mangrove Species Richness: Native distributions of mangrove species (Polidoro et
al. 2010)
Appendix C: Map of drought areas in Puerto Rico in August 2015 (USDA 2015)
Appendix D: Fungi isolated from the back mangrove Avicennia germinans in Bahia Salinas, Cabo
Rojo, Puerto Rico
Appendix E: Isolates from this experiment founded as endophytes or mangrove endophytes 75
Appendix F: First Assay: E. coli growth curves showing not significant differences between
treatments (p-value > 0.05)
Appendix G: First Assay: P. aeruginosa growth curves showing not significant differences
between treatments (p-value > 0.05)
Appendix H: First Assay: S. marcescens growth curves showing not significant differences
between treatments (p-value > 0.05)
Appendix I: First Assay: S. aureus growth curves showing not significant differences between
treatments (p-value > 0.05)
Appendix J: First Assay: C. albicans growth curves showing not significant differences between
treatments (p-value > 0.05)
Appendix K: First Assay: C. tropicalis growth curves showing not significant differences between
treatments (p-value > 0.05)
Appendix L: Second Assay: E. coli growth curves showing not significant differences between
treatments (p-value > 0.05)
Appendix M: Second Assay: P. aeruginosa growth curves showing not significant differences
between treatments (p-value > 0.05)
Appendix N: Second Assay: C. albicans growth curves showing not significant differences
between treatments (p-value > 0.05)
Appendix O: Third Assay: E. coli growth curves showing not significant differences between
treatments (p-value > 0.05)
Appendix P: Third Assay: P. aeruginosa growth curves showing not significant differences
between treatments (p-value > 0.05)

Appendix Q: Third Assay: C. albicans growth curves showing not significant difference	s between
treatments (p-value > 0.05).	
Appendix R: Statistical Analysis Data	

Chapter 1. General Overview

1.1 Introduction

Antibiotics have been widely used for 80 years since their first discovery in 1928 by Alexander Fleming (ACS 2016). Since then, microorganisms have developed resistance against many drugs. Infections by multi drug-resistant microorganisms (MDRO) have limited treatments, increasing morbidity in patients. Thus, the discovery and development of new compounds is critical, but where could we find them? There are many ecological niches that can harbor potential drugs for the treatment of MDROs such as marine environments (Hughes and Fenical 2010; Rahman et al. 2010), and also being produced by different organisms like plants, bacteria and fungi (Aminov 2010).

Marine environments, such as mangroves, provide a unique ecological system with a variety of adaptations, increased productivity and irreplaceable value. Mangroves are woody plants found in coastal areas around the tropics, characterized by different tree species, which can withstand high salt concentrations (Alongi 2008; Kathiresan and Bingham 2001). They also serve as natural barriers for coastal erosion and hurricanes (Lugo and Snedaker 1974), and are habitats for many organisms, such as bacteria, archaea, algae, insects, marine invertebrates, fungi among others (Alongi 2008; Polidoro et al. 2010; Costa et al. 2012; Castro et al. 2014; Hong et al. 2015). On this remarkable habitat, we can find microorganisms associated with the inner tissues of plants known as endophytes. Many of these microorganisms are capable of producing secondary metabolites, which inhibit growth of other organisms including pathogenic bacteria and yeasts (Cheng et al. 2009; Silva et al. 2011).

An endophyte is an organism that lives in between plant cells (mostly bacteria or fungi). They appear to be present in all plants (Rodriguez et al. 2008) and several studies suggest that fungal endophytes have a symbiotic relationship with several plants (Petrini 1986). These organisms are very important for the plant in different ways: they can protect the host plant from herbivores and from plant pathogens (Mousa and Raizada 2013), boost host fitness (Spiering et al. 2006), promote drought tolerance or avoidance (Malinowski and Belesky 2000), and increase salt tolerance (Baltruschat et al. 2008). In some cases, endophytes can also invade plant tissues acting as pathogens (Rodriguez et al. 2008). They can be found in a myriad of plant species, sometimes associated with a specific plant in mutualistic, parasitic, or commensal symbiotic relationships (Arnold and Lutzoni 2007).

Endophytic fungi, especially associated with mangroves, have been reported many times in Southeast Asia (Table 1.1), but in the Caribbean, especially in Puerto Rico, there are no known reports of mangrove fungal endophytes. These fungi, besides being an important component of the plants microbiome (Porras-Alfaro and Bayman 2011), also produce important secondary metabolites that have antimicrobial, antifungal and anticarcinogenic properties (Bhimba and Joel 2012). In addition, fungi (not only fungal endophytes), are essential in multiple life processes (Wessels 1999; Harms et al. 2011). For example, they are the principal decomposers of organic compounds (Boer et al. 2005). Thus, research in countries of limited studies like Puerto Rico is very important to explore new areas. An estimated of the total number of fungal species indicates that there are about 5.1 million fungi, based on a fungus to plant ratio of 6:1 (Blackwell 2011). With the current technology, it would take about 1,170 years to only describe 1.4 million fungi (Hibbett et al. 2007), representing a substantial window of opportunities for new discoveries of new fungal species. Until 2016, there were 11,268 species isolated from the Caribbean, 30% of those represented by Puerto Rico's fungal species in where 3,315 species have been described (24% endemic to the island) (Cantrell-Rodriguez 2016).

In addition to contribute to the identification of new fungal species and, given the necessity for new fungal studies as a means to discover new compounds with medical applications, we decided to study the antibiosis potential of fungal endophytes from the black mangrove *Avicennia germinans* in Puerto Rico. Since fungal endophytes play a role in producing important bioactive compounds for the benefit of the plant and it has been showed that they can produce medicinal compounds, it is worth study them from mangrove forests in the Caribbean.

1.2 Literature Review

1.2.1 Mangroves in Puerto Rico

Puerto Rican mangroves are classified in two groups according to climate regions: the northern-coast and the southern-coast mangroves. The northern-coast is characterized by high precipitation, wave energy and river runoff (since the majority of Puerto Rican rivers flow into the Atlantic Ocean), and is also dominated by basin (interior) and riverine (commonly flooded by river water) mangroves. On the other hand, the southern-coast shows less precipitation and peripheral (tide-dominated) mangroves. Both regions are considered subtropical with an equal temperature regime (Lugo and Cintrón 1995; Martinuzzi et al. 2009). Both are distributed along most of Puerto Rico's coasts (Figure 1.1) (Martinuzzi et al. 2009).

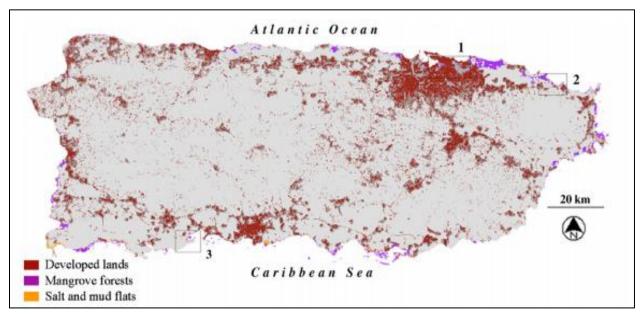


Figure 1.1: Distribution of mangrove forest in Puerto Rico (purple areas) (Martinuzzi et al. 2009).

Mangroves are formed by a variety of plant species around the globe. There are four types of mangroves in Puerto Rico: (i) red mangrove (*Rhizopora mangle*), (ii) white mangrove (*Laguncularia racemosa*), (iii) black mangrove (*Avicennia germinans*), and (iv) buttonwood mangrove (*Conocarpus erectus*) (not considered a mangrove because it cannot grow in salty soils) (Lugo and Snedaker 1974; Chinea and Agosto 2007). The black mangrove, *Avicennia germinans*

is abundant in Puerto Rico's mangroves and is one the most tolerant species to environments with high salinity (Holdridge 1940; Lugo and Cintron 1975; Sobrado 1999).

Avicennia germinans possess a peculiar characteristic that attracts the attention for our study. The plant possesses specialized glands to excrete the excess absorbed salt through its leaves (Scholander et al. 1962) (Figure 1.2). Thus, it represents a unique environment for microorganisms associated with this plant (Lugo and Snedaker 1974). Black mangrove can be found in other continental tropical countries around the world like North America (Florida and Texas coasts), Bahamas, Bermuda, Mexico, Africa, Australia, India, and Thailand (Kathiresan and Bingham 2001; Little and Wadsworth 1964; Nieves et al. 2002).

Figure 1.2: Salt crystals observed on a leaf from *Avicennia germinans*. (http://www.westafricanplants.senckenberg.de/root/index.php?page_id=14&id=2263).

1.2.2 Mangrove-associated fungal endophytes and their medical properties

Mangrove endophytes have been studied in the past years due to their production of secondary metabolites. These compounds possess an important role in the medical field due to their antimicrobial, antifungal, anticancer, and antimalarial properties (Bhimba et al. 2011; Strobel and Daisy 2003). Secondary metabolites are not only produced by fungi, but also, by many organisms including plants and bacteria (Croteau et al. 2000; Vining 1990). Plant secondary metabolite production has been studied for many years placing them as the major producers of compounds with medical applications (Rodríguez et al. 2008). Several studies have shown that secondary metabolites from fungal endophytes can improve the survival of the host plant and its capacity to produce its own compounds (Ludwig-Müller 2015). In fact, studies have shown that some compounds originally believed to be plant-produced are actually produced by their fungal endophytes (Kaul et al. 2012; Alvin et al 2014).

Compounds with antibiotic, antifungal and anticancer activity have been isolated from fungal species. The most well-known example of a fungal antibiotic is the discovery of penicillin by Alexander Fleming in 1928 (Fleming 1929), the first compound showing antibacterial properties. Since then, and with the emergence of a large number of pathogens developing resistance to existing drugs, the search for new compounds with antibiotic properties of fungal etiology has been uninterrupted through decades (Vassal et al. 2013; Alanis 2005).

In addition to identify compounds for disease treatments, investigations are also conducted to study the roles of endophytes in agriculture and biofuel production (Strobel et al. 2008). Crop plants inoculated with certain endophytes may provide disease or parasite resistance by producing compounds like cryptocandin (useful in the control of the wine grape pathogen *Botrytis cinerea*), produced by *Cryptosporiopsis quercina* (Li et al. 2000), and jesterone (an oomycete antibiotic for plant pathogens) from *Pestalotiopsis jesteri* (Strobel and Daisy 2003). The latter, has been successfully synthetized maintaining its biological properties (Mehta and Pan 2004). Also, other endophytes may convert cellulose and other carbon sources into "myco-diesel" hydrocarbons and other hydrocarbon derivatives (Strobel et al. 2008). Subsequently, secondary metabolites from endophytes have become of primordial interest for the scientific community in many areas.

A vast number of studies about the diversity and properties of mangrove fungal endophytes have been reported around the world (Tables 1.1 and 1.2). The majority of these reports are from eastern countries (Gilbert et al. 2002; Liu et al. 2007). Apart from Brazil and Panama, investigations in western countries are more limited. More detailed and comprehensive information about compounds produced by mangrove-associated fungi has been reported in many reviews over the years by specific dates [May 2012 to April 2014 (Chagas et al. 2015)], different biotopes (Schulz et al. 2002), and specific properties like biofungicides (Kumar and Kaushik 2012), among others (Bhimba et al. 2011; Bhimba and Joel 2012: Blunt et al. 2014; Pandi et al. 2011; Thatoi et al. 2013). Some compounds produced by mangrove endophytes showing antibacterial or antifungal activities are shown on Table 1.3.

Type of mangrove	Fungal Isolates			Country	Reference	
	Guignardia sp. Colletotrichum gloeosporioides Glomerella cingulata Sphaerosporium sp. Chloridium virescens Microsphaeropsis arundinis	Penicillium pinophilum Periconia cambrensis Phoma herbarum P. diachenii P. obscurans Sordaria prolífica Torula ellisii	Nodulisporium sp. Periconia cambrensis Phomopsis archeri Phyllosticta sp. Preussia minima Fusarium lateritium	Scopulariopsis sphaerospora Sordaria prolifica Sphaerosporium equinum Torula ellisii Trichoderma pseudokoningii Hormonema sp.		Costa et al. 2012
Avicennia schaueriana Laguncularia racemosa Rhizophora mangle	Diaporthe sp. Colletotrichum sp. Fusarium sp. Trichoderma sp. Xylaria sp. Arthothelium sp. Chrysoporthe sp. Coniothyrium sp. Coprinellus sp.	Curvularia sp. Epicoccum sp. Eutypa sp. Gelasinospora sp. Lasiodiplodia sp. Neosartorya sp. Neurospora sp. Nigrospora sp. Phaeoramularia sp.	Phaeoseptoria sp. Phanerochaete sp. Pseudallescheria sp. Scolecobasidium sp. Valsa sp. Guignardia sp. Penicillium sp. Aspergillus sp. Alternaria sp.	Botryosphaeria sp. Endothia sp. Neofusicoccum sp. Pestalotiopsis sp. Pichia sp. Periconia sp. Cylindrocladium sp.	Brazil	De Souza et al. 2013
Laguncularia racemosa	Aspergillus niger	Curvularia pallescens	Guignardia bidwelii	Paecilomyces variotii		Silva et al. 2011
Avicennia officinalis Kandelia candel Rhizophoramucronata		Aspergillus flavus				Ravindran et al 2012
Acanthus ilicifolius	Alternaria sp.	Aspergillus sp.	Cumulospora sp.	Pestalotiopsis sp.	-	Maria et al. 2005
Rhizophora apiculate	Acremonium sp. Diaporthe sp.	Hypoxylon sp.	Pestalotiopsis sp.	Phomopsis sp. Xylaria sp.		Buatong 2010
Rhizophora apiculate	Glomerella sp. Sporormiella minima Acremonium sp. Alternaria alternata	Aureobasidium sp. Cladosporium cladosporioides Curvularia lunata Curvularia pallescens	Drechslera sp. Nodulisporium sp. Pestalotiopsis sp. Phialophora sp. Fusarium sp.	Phoma sp. Phomopsis sp. Phyllosticta sp. Pithomyces sp. Sporothrix sp.		Kumaresan and Suryanarayanan 2002
Acanthus ilicifolius	Colletotrichum sp. Acremonium sp. Cumulospora marina	Alternaria sp. Aspergillus sp. Cladosporium sp.	Cytospora sp. Dycima sp. Fusarium sp.	Paecilomyces sp. Phoma sp. Pestalotiopsis sp.	India	Maria and Sridhar 2003
AegicerasBruguiera cylindricacorniculatumCeriops decandraAvicennia marinaExcoecaria agallochaAvicennia officinalisLumnitzera racemosa	Acremonium sp. Alternaria sp. A. alternata Aspergillus sp. A. niger Camarosporium sp. Chaetomium sp.	Cladosporium sp. Colletotrichum sp. Drechslera sp. Curvularia sp. Glomerella sp. Mammaria sp.	Memnoniella sp. Paecilomyces sp. Penicillium sp. Phialophora sp. Phoma sp. Phomopsis sp.	Pithomyces sp. Phyllosticta sp. Selenophoma sp. Sporormiella minima Sporothrix sp. Trimmatostroma sp.		Kumaresan and Suryanarayanan 2001
Bruguiera gymnorrhiza	Phyllosticta sp.	•		Japan	Izumi et al. 2001	
Sonneratia caseolaris Paracaseolaris Sonneratia hainanensis Sonneratia apetala Sonneratia ovata	<i>Cytospora</i> sp. <i>Diaporthe</i> sp.	Fusarium sp. Glomerella sp.	Mycosphaerella sp. Phoma sp.	Phomopsis sp. Stemphylium sp.	China	Xing et al. 2010
Kandelia candel Sonneratia alba	Phomopsis sp.	Pestalotiopsis sp.	Guignardia sp.	Xylaria sp.]	Pang et al. 2008 Kjer et al. 2009
	Alternaria sp. Penicillium sp. Guignardia sp. Diaporthe sp. Neosartorya sp.			5		
Avicennia sp.	Aspergillus sp.	Curvularia sp.	Eupenicillium sp.	Cladosporium sp.	Malaysia	Ling 2013
Avicennia germinans Aspergillus ustus		Panama	Facey et al. 2016			

Table 1.1: Previous reports of fungal endophytes isolated from mangrove plants.

Type of mangrove	Fungal Isolates	Pathogen	Activity/ Compounds	Country/ Reference
Laguncularia racemosa	Aspergillus niger Curvularia pallescens Guignardia bidwelii Paecilomyces variotii	Staphylococcus aureus Micrococcus luteus Bacillus subtilis Escherichia coli Enterococcus faecalis Pseudomonas aeruginosa	Antibiotic	Brazil/ Silva et al. 2011
Sonneratia alba	Alternaria sp.	Staphylococcus aureus	Xanalteric Acids I and II	China/ Kjer et al. 2009
Acanthus ilicifolius	Alternaria sp. Aspergillus sp. Cumulospora sp. Pestalotiopsis sp.	Bacillus subtilis Salmonella typhi Enterococcus sp. Staphylococcus aureus Klebsiella pneumoniae Candida albicans Pseudomonas Trichophyton metagrophytes aerugionosa Trichophyton metagrophytes	Antibiotic and Antifungal	India/ Maria et al. 2005
Rhizophora apiculate	Acremonium sp.Pestalotiopsis sp.Diaporthe sp.Phomopsis sp.Hypoxylon sp.Xylaria sp.	Staphylococcus aureus Candida albicans Pseudomonas aeruginosa Escherichia coli Microsporum gypseum Cryptococcus neoformans	Antibiotic and Antifungal	India/ Buatong et al. 2011
Avicennia officinalis	Aspergillus sp. Penicillium sp. Acremonium sp. Curvularia sp. Cladosporium sp. Phoma sp. Fusarium sp.	Pseudomonas aeruginosa Vibrio cholera Escherichia coli Vibrio parahaemolyticus Aeromonas hydrophila Vibrio proteolyticus Bacillus cereus Vibrio vulnificus Staphylococcus aureus Candida albicans Edwardsiella tarda Aspergillus flavus Vibrio harveyi Aspergillus funigatus	Antibiotic and Antifungal	India/ Neema et al. 2015
Rhizophora mucronata	Pestalotiopsis sp.	N/A	Chromones production Asthma treatment	China/ Xu et al. 2009; Netzer et al. 2012
Excoecaria agallocha	Phomopsis sp.	Candida albicans Fusarium oxysporum	Phomopsins	China/ Huang et al. 2008
Kandelia candel	Sporothrix sp.	N/A	Sporothrins	China/ Wen et al. 2009
Avicennia sp.	Penicillium sp. Guignardia sp. Curvularia sp. Neosartorya sp. Diaporthe sp. Cladosporium sp. Aspergillus sp. Eupenicillium sp.	Bacillus cereus Pseudomonas aeruginosa Bacillus subtilis Vibrio anguillarum Staphylococcus aureus Saccharomyces cerevisiae Micrococcus luteus Candida albicans Escherichia coli Aspergillus niger	N/A	Malaysia/ Ling 2013
Not specified	Aspergillus sp. Pestalotiopsis sp. Colletotrichum sp. Phomopsis sp. Fusarium sp. Talaromyces sp. Guignardia sp. Trichoderma sp.	Fusarium oxysporum	Antagonism	Indonesia/ Rahmansyah and Rahmansyah 2013
Rhizophora apiculate R. mucronata Ceriops decandra Someratia alba Lumnitzera littorea Avicennia alba Acanthus ilicifolius Xylocarpus granatum Xylocarpus moluccensis Thespesia populneoides	Phyllosticta sp. Cladosporium sp. Colletotrichum sp. Phomopsis sp. Xylaria sp.	Bacillus subtilisA375 (human malignant melanoma), SW620 (human colorectal adenocarcinoma), Kato III (human gastric carcinoma), HepG2 (human liver hepatoblastoma) and Jurkat (human acute T cell leukemia)	Antibacterial and anticancer	Thailand/ Chaeprasert et al. 2010

Table 1.2: Reports of fungal endophytes producing active compounds from mangrove plants.

Type of mangrove	Fungal Isolates	Compound	Activity	Reference	
Rhizopora mucronata	Pestalotiopsis sp.	Pestalotiopen A	Antibacterial: Enterococcus faecalis	Hemberger et al. 2013	
Laguncularia racemosa	Diaporthe phaseolorum	3-Hydroxypropionic acid (3-HPA)	Antibacterial: S. aureus and Salmonella typhi	Sebastianes et al. 2012	
Avicennia sp.	Penicillium Diaporthe	Quinolactacin Cyclo(tyrosylprolyl)	Quinolone antobiotic Antibiotic	Ling 2013	
Acanthus ilicifolius	Talaromyces sp.	Talaromyone A	Antibacterial: B. subtilis	Cai et al. 2017	
		Norlichexanthone	Antibacterial: P. aeruginosa Antifungal: A. niger, C. albicans and F. oxysporum		
Kandelia candel	Talaromyces sp.	Secalonic Acid A	Antibacterial: E. coli, S. aureus, S. ventriculi and P. aeruginosa Antifungal: A. niger, C. albicans and F. oxysporum	Lui et al. 2010	
		Stemphyperylenol	Antibacterial: S. aureus, S. ventriculi and P. aeruginosa Antifungal: A. niger, C. albicans		
Kandelia obovata	Talaromyces amestolkiae	5-Hydroxy-7- methoxy-2-methyl- benzofuran-3- carboxylic acid	Antibacterial: <i>E. coli, S. aureus, B. subtilis</i> and <i>S. epidermidis</i>	Chen et al. 2016	
Ceriops tagal	Penicillium sp.	Deoxytalaroflavone 7-Hydroxy- Deoxytalaroflavone	Antibacterial: S. aureus	Jin et al. 2013	
Kandelia candel	Penicillium aculeatum	Chromone derivative	Antibacterial: Salmonella 2.0	Huang et al. 2017	
Sonneratia alba	Alternaria sp.	Xanalteric acids I and II	Antibacterial: S. aureus	Kjer et al. 2009	
Porteresia coarctata	Penicillium chrysogenum MTCC 5108	(3, 1'-didehydro-3[2" (3"', 3"';-dimethyl- prop-2-enyl)-3"- indolylmethylene]-6- Mepipera-zine-2, 5- dione)	Antibacterial: Vibrio cholera	Devi et al. 2012	
Pongamia pinnata	Nigrospora sp. MA75	Griseophenone C	Antibacterial: MRSA, <i>E. coli, P. aeruginosa,</i> and <i>P. fluorescens</i>	Shang et al. 2012	
Not specified	Nigrospora sp.	4-Deoxybostrycin and its derivative Nigrosporin	Antibacterial: (MDR) Mycobacterium tuberculosis	Wang et al. 2013	

Table 1.3: Compounds from mangrove endophytic fungi with antimicrobial or antifungal activity.

In summary, all these studies show that fungal endophytes isolated from mangroves possess high potential for the discovery of new drugs that may serve as antifungals, antimicrobials, and anticarcinogens. In Puerto Rico, reports about mangrove-associated fungi are few; although they include information about foliar taxa they present no evidence of secondary metabolite production (Nieves-Rivera et al. 2002; Nieves-Rivera 2005). Thus, continue to develop research in this area is warranted to explore endophytes taxa and their properties. The research presented here is focused on selected endophytic fungi isolated from the black mangrove (*Avicennia germinans*) and their effect in the growth of selected bacterial and yeasts pathogens.

1.3 Goals

1.3.1 Hypothesis

1. If fungal endophytes showing antimicrobial activity have been reported for a myriad of plants (including mangroves), then fungal endophytes from the black mangrove *Avicennia germinans* in Puerto Rico should also produce extracellular secondary metabolites with antimicrobial potential.

1.3.2 Objectives

1. Isolate and identify fungal endophytes from the black mangrove Avicennia germinans.

2. Determine if the secondary metabolites produced by selected endophytes from *A. germinans* possess antibacterial or antifungal activity.

Chapter 2. Identification of cultivable fungi associated with the black mangrove *Avicennia* germinans.

2.1 Introduction

Avicennia germinans, commonly known as black mangrove for the color of the trunk and heartwood, is a tree that grows in tropical and subtropical countries around the world. These shrubs are founded in coastal zones and swamps, where the seawater reaches, providing the necessary high salinity concentrations for its growth (Andreu et al. 2010; Nieves-Rivera et al. 2002). *A. germinans* growth fluctuates between three and twelve meters according to environmental conditions (Nieves-Rivera et al. 2002). Its seeds are enclosed in a fruit where the cotyledon and root are already germinating. When the seeds fall, they produce vertical roots called pneumatophores. This specialized root allows oxygen acquisition necessary in this environment due to water inundations. Leaves are pointed and oval shaped with a green topside and greyish underneath. They can grow from 2 to 3 inches long and possess specialize glandules for salt excretion (Andreu et al. 2010; Lugo and Snedaker 1974; Nieves-Rivera et al. 2002).

In Cabo Rojo, Puerto Rico, this species can be found in various territories of the National Wildlife Refuge between red mangroves (*Rhizophora mangle*), found in standing waters, and the white mangrove (*Laguncularia racemosa*), a more highland tree (FWS 2010; Lugo and Snedaker 1974). This mangrove forms part of an ecosystem that harbors an endless number of organisms including plants, birds, fishes, bacteria, archaea and fungi, among others (Kathiresan and Bingham 2001). Fungal studies associated with this mangrove are very limited.

In Puerto Rico, there is one study of fungi associated with *A. germinans* leaves. Nieves and colleagues (2002) found a planthopper (*Petrusa marginata*) on *A. germinans*, which excreted sugary honeydew on which the fungus *Asteridiella sepulta* grew, being considered a foliar fungus of the plant. Other studies have reported fungi associated with *A. germinans* but, to our knowledge,

only two studies are from endophytes including one in Panama (Gilbert et al. 2002) (no identification of isolates) and the other in Jamaica (Facey et al. 2016) reporting the fungus Aspergillus ustus. Some of the other reports of non-endophytes associated with A. germinans were in different western countries. In Panama, Phellinus swieteniae, Trichaptum biforme, and Ceriporia alachuana were isolated from A. germinans (Gilbert and Sousa 2002). In Mexico, six species where isolated from the rhizosphere of the mangrove: Aspergillus sp., Blastomyces sp., Fusarium sp., Peniciliium sp., Acremonium sp. (Martin-Rodríguez et al. 2014), and Aspergillus niger (Vazquez et al. 2000). Moreover, in Florida, Olexa and Freeman (1975) described Phyllosticta hibiscina as a fungal pathogen causing necrosis in A. germinans, while Nigrospora sphaerica was found causing chlorosis in the plant leaves (Osorio et al. 2014). In Texas and Bermudas, Acremonium sp., Aspergillus flavus, A. niger, Cladosporium cladosporiodes, and Nigrospora sphaerica were reported in leaves and stems (Koehn and Garrison 1981) and Halosarpheia fibrosa was found associated with mangroves (Kohlmeyer and Kohlmeyer 1977). Thus, the relatively few studies on A. germinans fungal endophytes communities makes this study exceptional.

2.2 Materials and Methods

2.2.1 Sampling area

Mangrove leaves and seeds were collected randomly from Bahía Salinas at Cabo Rojo, Puerto Rico (17°56'27.8"N and 67°11'32.86"W) [Appendix A]. This area is part of the Boquerón National Wildlife Refuge making it a unique and irreplaceable environment (Nieves-Rivera et al. 2002) [Appendix B]. Bahia Salinas possess soils of high salinity, poor water availability, and a sandy composition derive from volcanic material. Its annual average precipitation is 36 inches (last 17 years), with a minimum of 15 inches in 1997 and a maximum of 58 inches in 1998. The climate is tempered during the year, with a highest average temperature of 31.6 °C and a lowest average temperature of 21.6 °C (NWS 2010).

2.2.2 Leaves and seeds samplings

Samples were collected randomly from healthy *A. germinans* trees found in the road that led to the Cabo Rojo Lighthouse. Seeds and young, mature and almost falling leaves were placed separately in plastic bags and transported to the laboratory for processing during the day. We performed three samplings during the following dates: (i) June 2013 (Bahia Salinas I: BSI), (ii) January 2014 (Bahia Salinas II: BSII), and (iii) August 2015 (Bahia Salinas III: BSIII). In the second and third sampling, precipitation volumes were 25% and 50% below the normal annual average reported for each month respectively (NOAA 2016). Also, Puerto Rico was suffering from a drought crisis during the third sampling where only 2 to 3 inches of precipitation were reported in Cabo Rojo for August 2015 (USDA 2015) [Appendix C].

2.2.3 Leaves and seeds processing

Mangrove leaves and seeds were surface-sterilized with hypochlorite (50%) for one minute and ethanol 70% for 3 minutes to prevent contamination from epiphytic species (Costa et al. 2012; Morell-Rodríguez 2008). We used a sterile hole-puncher to obtain circular segments of the leaves and seeds (we used the cotyledons as well as the roots inside the seeds). Then, we placed three circular pieces per Petri dish of 4 different media: (i) Potato Dextrose Agar (PDA), (ii) PDA 1.5% NaCl, (iii) PDA 3.5% NaCl, and (iv) an enriched medium prepared with mangrove leaf extract (inoculation in each media were made in triplicates). All media were autoclaved and served into petri dishes inside the hood to avoid contamination. The medium containing the leaf extract was prepared using a blender and its salinity was measured with a portable refractometer (salinity of leaves medium: 4%). We added 10 grams of black mangrove leaves in 1L of distilled water. The mixture was filtered with Whatman paper grade 1. Finally, 6.5 grams of agar were added and the medium was autoclaved. All media were supplemented with antibiotics (penicillin and streptomycin; 5g per liter). After inoculation, the plates were incubated at 25.0 °C until visible fungal growth was observed emerging from the borders of the segments. For one month, each plate was screened daily for endophytes using a dissection microscope to assure that the isolate was not from the external tissue of the leaves, cotyledons or roots.

2.2.4 Macroscopic and microscopic culture-dependent identification method

Macroscopic and microscopic observations were recorded for the identification of fungal isolates. Wet mount slides and moist chambers were prepared for observation under a compound microscope. Taxonomic keys were used for the identification of the specimens where different culture media were used according to each key [*Nigrospora* (Ellis 1971), *Aspergillus* (Klich 2002), and *Penicillium* (Pitt 1988)]. Isolates highly difficult to identify were subjected to molecular analysis.

2.2.5 Molecular identification using the ITS gene region

DNA extraction was performed using grinding and Cetyl Trimethyl-Ammonium Bromide (CTAB) chemical method (Doyle and Doyle 1987). The mycelium was transferred to a sterile mortar (pre-cooled at -80°C) and grounded to a fine powder (this is necessary to break the strong chitin fungal cell walls). Then, the sample was transferred to a microtube to continue with the CTAB extraction protocol. Approximately 500µL of CTAB were added to each sample to promote cell lysis. Then, we use 500µL of chloroform to extract the DNA and performed the precipitation with one volume of 100% isopropanol and washed with 100µL of 70% ethanol. Finally, each sample was resuspended in 50µL of TE buffer (1/10; 10mM Tris-HCl and 0.1mM EDTA) and stored at -20°C.

PCR amplification of the internal transcribed spacer (ITS) region was carried out using ITS4 [5'-TCCTCCGCTTATTGATATGC-3'] ITS5 and [5'GGAAGTAAAAGTCGTAACAAGG-3'] primers (White et al. 1990). The ITS is a portion of DNA localized between the small and large subunits of ribosomal RNA (rRNA) genes. Eukaryotes possess two ITS regions: (i) ITS1, located between 18S and 5.8S rRNA genes and (ii) ITS2, located between 5.8S and 26S rRNA genes (in plants) (Bellemain et al. 2010). This region has been considered as a universal barcode for fungal specimens (Schoch et al. 2012). Genomic DNA of 1:10 and 1:20 dilutions were used as template with 0.6mM of ITS primers, 0.8x PCR green buffer, 3nM MgCl₂, 0.16 mM dNTPs and 5U Taq polymerase for a final volume of 25 µL per reaction. The following thermal parameters were used: 95°C: 5min (1x); 94.0 °C: 1:30min, 52.5 °C: 30sec, 72.0 °C: 1min (35x), and 72.0 °C: 5min (1x). Sanger sequencing was conducted to identify the fungal genera from each specimen at the High-Throughput Genomics Unit of the University of Washington, Seattle, WA (UW-htSEQ). We compared our sequences with the ones in the National

Center for Biotechnology Information (NCBI) data base, using the program BLASTn®. This led to a more accurate fungal identification.

2.2.6 Identification of fungi associated with the black mangrove *Avicennia germinans:* **Sequence Analysis**

Once the sequence analysis was ready, we downloaded our sequences from the UW-htSEQ webpage. Then, we edited them using the program BioEdit Sequence Analysis Editor (Hall 1999) to eliminated unreliable nucleotides (noise and nucleotides with a query coverage below 20%). To perform the identification, the program BLASTn® (Altschul et al. 1990), which align and compare our sequences with the ones in the GenBank® (Benson et al. 2013) of the National Center for Biotechnology Information (NCBI) was used. For this analysis, a comparison using reference sequences from the GenBank was made. This led us to a list of similar sequences to ours, from which we selected the one with the higher percent of query coverage and identification. Having our sequences identified we proceeded to perform a phylogenetic analysis using the program CLC Main Workbench 7.6.4. The specific steps followed were: (i) create alignment, (ii) select the sequences to be analyzed, (iii) select an alignment (very accurate), and (iv) create a phylogenetic tree (Neighbor-Joining method; nucleotide distance measure: Jukes-Cantor; Boostrap: 1000). Other parameters included: (i) gap open cost: 10.0, (ii) gap extension cost: 1.0, and (iii) gap cost: as any other (Quiagen 2016). This program performed multiple sequence alignments between our sequences and the ones retrieved from the data base, creating a phylogenetic tree that shows the evolutionary relationships among them. Differences between taxa can be evaluated with the boostrap percent showed in the tree (Figure 2.12).

2.3 Results

2.3.1 Fungal endophytes from *A. germinans.*

A total of 104 specimens within 20 genera associated with A. germinans leaves and seeds were identified from culture-dependent methods using molecular, macroscopic and microscopic characteristics [Appendix D]. All isolates were classified by samplings (BSI, BSII, and BSIII; where BS: Bahia Salinas), by culture media [Potato Dextrose Agar (PDA) 0% NaCl, PDA 1.5% NaCl, PDA 3.5% NaCl, and MH 4% salinity (measured)], and isolation source (leaves and seeds) (Table 2.1). In the first sampling (BSI), 54 specimens were isolated within 13 different genera (Hortaea, Penicillium, Bionectria, Teratosphaeria, Purpureocillium, Acremonium, Cladosporium, Bipolaris, Nigrospora, Aspergillus flavus, Aspergillus clavatus, Aspergillus niger, Wrightoporia, Stereum, Pochonia, Simplicillium, and Nemania), but the final number was reduced to 41 due to contamination by mites. Nevertheless, from samplings BSII and BSIII only 30 endophytes were isolated within 8 genera (Hortaea, Penicillium, Bionectria, Teratosphaeria, Purpureocillium, Acremonium, Amorosia littoralis, and Physalospora), and 20 isolates also within 8 genera (Hortaea, Penicillium, Bionectria, Teratosphaeria, Purpureocillium, Acremonium, Cladosporium, Aspergillus, and Bipolaris), respectively. The most abundant genera of our isolates were Hortaea (76.3%), Penicillium (50.5%), and Cladosporium (35%). These three genera were the only ones present in the three samplings (BSI, BSII and BSIII), while 3 genera were present in two of the samplings and the other 14 were only on one of the samplings (Figure 2.1). Similar to the results on the different samplings, Hortaea, Penicillium, and Cladosporium were the only genera present in all culture media (Figure 2.2 to 2.5). Nevertheless, the most number of isolates was reported for PDA 1.5% NaCl and PDA 3.5% NaCl followed by PDA (no salt added) and the leaves medium in descending order. Differences among genera were also found; Stereum and Simplicillum were only present in seeds and Nemania, Wrightoporia, Aspergillus niger, A. flavus, A. clavatus, Pochonia,

Bipolaris, Amorosia and Physalospora were only present in the leaves. The remaining genera were

found in both leaves and seeds (Figure 2.6).

In summary, a total of 91 fungi were isolated during three samplings from the leaves and seeds of the black mangrove *Avicennia germinans* in four different culture media. The majority of the genera were isolated in the first sampling, from the leaves and on 1.5% salinity PDA medium.

Table 2.1: Fungal isolates from *A. germinans*. Isolates were retrieved from three samplings (BSI, BSII and BSIII), on four different culture media [PDA, PDA (1.5% NaCl), PDA (3.5% NaCl) and leaves medium] from seeds and leaves.

	Leaves				
	PDA	PDA (1.5% NaCl)	PDA (3.5 % NaCl)	Leaves Medium	
BSI	Nigrospora sp. Aspergillus niger Aspergillus flavus Penicillium sp. Wrightoporia sp. Hortaea sp.	Nigrospora sp. Nemania sp. Pochonia sp.	Hortaea sp. Penicillium sp.	Aspergillus clavatus Bionectria sp. Hortaea sp.	
BSII	Penicillium sp.	Teratosphaeria sp. Purpureocillium sp. Physalospora sp. Penicillium sp. Acremonium sp. Amorosia sp.	<i>Teratosphaeria</i> sp. <i>Penicillium</i> sp. <i>Hortaea</i> sp. <i>Amorosia</i> sp.	Bionectria sp. Hortaea sp. Penicillium sp.	
BSIII	<i>Bipolaris</i> sp. <i>Penicillium</i> sp. <i>Teratosphaeria</i> sp.	Cladosporium sp. Teratosphaeria sp. Penicillium sp.	Cladosporium sp. Hortaea sp.	N/A*	
		Seeds			
BSI	Nigrospora sp. Stereum sp. Hortaea sp.	Hortaea sp. Simplicillium sp. Acremonium sp. Bionectria sp.	<i>Penicillium</i> sp. <i>Hortaea</i> sp.	N/A*	
BSII	Purpureocillium sp.	N/A*	Purpureocillium sp. Penicillium sp.	N/A*	
BSIII	N/A*	<i>Cladosporium</i> sp. <i>Penicillium</i> sp. <i>Bionectria</i> sp.	Cladosporium sp.	Aspergillus sp. Purpureocillium sp. Cladosporium sp.	

*N/A= there was no visible growth of endophytes.

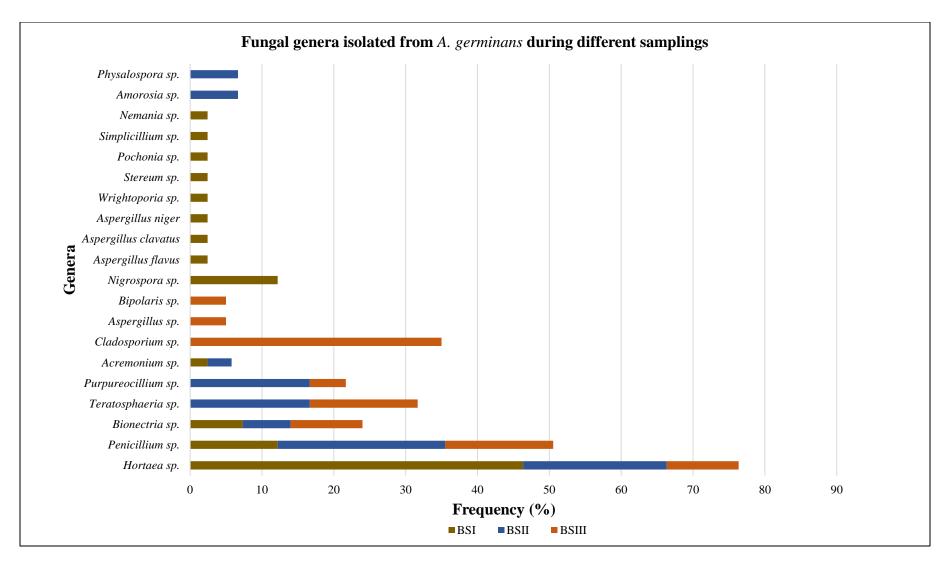


Figure 2.1: Frequency of fungal genera isolated from the black mangrove Avicennia germinans from samplings: BSI, BSII, and BSIII.

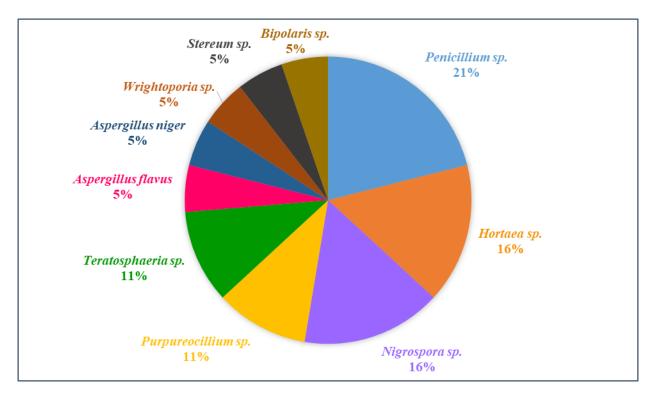


Figure 2.2: Fungal genera isolated from A. germinans in potato dextrose agar (PDA) (n=19).

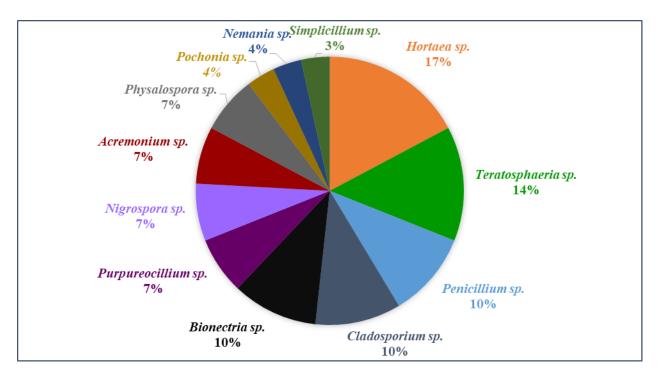


Figure 2.3: Fungal genera isolated from A. germinans in PDA 1.5% salinity (n=29).

Figure 2.4: Fungal genera isolated from A. germinans in PDA 3.5% salinity (n=28).

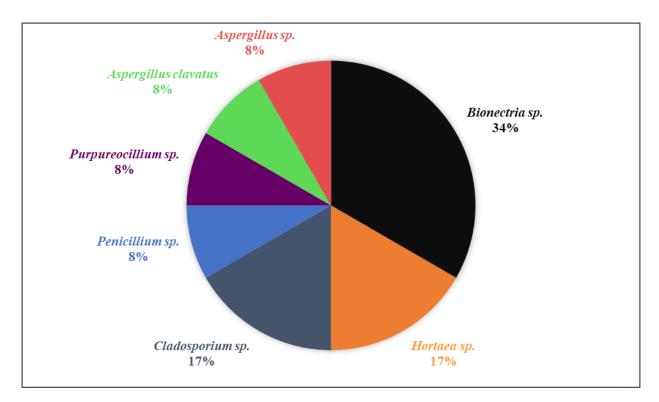


Figure 2.5: Fungal genera isolated from A. germinans in Leaves Media (4% salinity) (n=12).

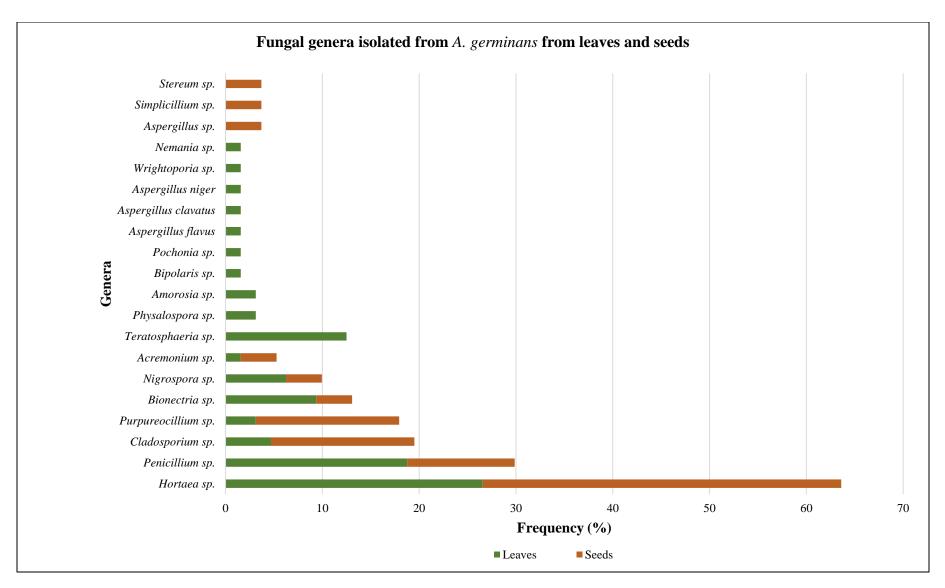


Figure 2.6: Frequency of fungal genera isolates from the black mangrove Avicennia germinans from leaves (n=64) and seeds (n=27).

2.3.2 Macroscopic and microscopic identification of A. germinans endophytes.

From all the isolates, only three genera, including five species, were identified at the species level using microscopic and macroscopic characteristics: (i) *Aspergillus flavus*, (ii) *Aspergillus clavatus*, (iii) *Aspergillus niger*, (iv) *Penicillium waksmanii*, and (v) *Nigrospora* (*Khuskia oryzae*). Macroscopic and microscopic descriptions for each specimen are listed below. For these methods, different culture media were used according to each taxonomic key (Ellis 1971; Klich 2002; Pitt 1991).

2.3.2.1 Aspergillus clavatus (BSI(MH)-HJ-2(1)):

<u>Macroscopic description</u>: CYA25 medium: colony diameter: ~ 46 mm; adverse: greyish blue; reverse: incrusted in the agar; mycelium: umbonated in the middle and greyish blue; exudate: a little; soluble pigment: present. CYA37 medium: colony diameter: ~18.1 mm; adverse: blue with white borders; reverse: full of folds, dark brown center with white borders; mycelium: elevated in the center, turquoise blue; exudate: a little; soluble pigment: present. CY20S medium: colony diameter: ~48.5 mm; adverse: greyish blue; reverse: pale yellow with folds; mycelium: folds in the center, light greyish blue halo near the center; exudate: no present; soluble pigment: present. MEA medium: colony diameter: ~31.5 mm; adverse: whitish and blue; reverse: whitish without folds; mycelium: white and blue; exudate: no present; soluble pigment: no present. CZ medium: colony diameter: ~25 mm; adverse: greyish blue; reverse: pale yellow without folds; mycelium: greyish blue and incrusted in agar (beige-whitish); exudate: no present; soluble pigment: no present. <u>Microscopic description</u>: uniseriate. STIPE: length: could not be clearly seen; width: ~ 21 μ m; surface texture: smooth. VESICLE: diameter: 177x55 μ m; shape: piriform. CONIDIA: length: 3.33 μ m; shape: elliptic; surface texture: smooth (Figure 2.7).

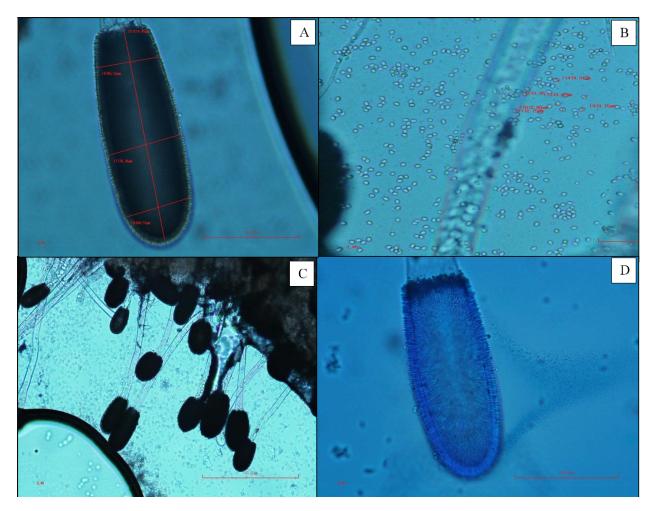


Figure 2.7: *Aspergillus clavatus* (BSI(MH)-HJ-2(1)) structures. Measurements from vesicles, conidia and conidiophore were obtained for identification. Vesicles (A and D), conidia (B) and conidiophore (C). Measures of the vesicle (A) and conidia (B) are shown. Scale: 100µm.

2.3.2.2 Aspergillus flavus (BSI-HV-2(1))

<u>Macroscopic description</u>: CYA25 medium: colony diameter: ~47 mm; adverse: green; reverse: pale yellow with irregular folds in the center that became radial in the edges; mycelium: green; exudate: no present; soluble pigment: no present. CYA37 medium: colony diameter: ~46 mm; adverse: greenish; reverse: brown in the center with folds, lighter color in the edges; mycelium: olive-green; exudate: no present; soluble pigment: no present. CY20S medium: colony diameter: ~50.25 mm; adverse: green; reverse: pale yellow with folds; mycelium: green; exudate:

no present; soluble pigment: no present. MEA medium: colony diameter: ~44 mm; adverse: greenish; reverse: no folds, green and whitish; mycelium: green and elevated; exudate: no present; soluble pigment: no present. CZ medium: colony diameter: ~34 mm; adverse: green; reverse: dark brown with folds; mycelium: dark green; exudate: present; soluble pigment: no present. <u>Microscopic description</u>: biseriate. STIPE: length: ~486.5 μ m; width: ~6.82 μ m; surface texture: a little rough. VESICLE: diameter: ~22 μ m; shape: circular-globose. CONIDIA: length: ~4 μ m; shape: circular-globose; surface texture: smooth to lightly rough (Figure 2.8).

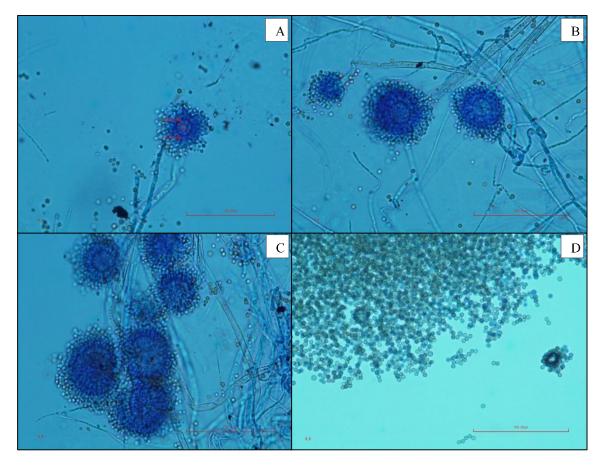


Figure 2.8: *Aspergillus flavus* (BSI-HV-2(1)) structures. Measurements from conidiophores and conidia were obtained for identification. Conidiophores (A-C) and conidia (D). Scale: 100µm.

2.3.2.3 Aspergillus niger (BSI- HV-1(1)):

<u>Macroscopic description</u>: CYA25 medium: colony diameter: ~ 42 mm; adverse: dark brown; reverse: pale yellow with folds; mycelium: dark brown; exudate: no present; soluble pigment: no present. CYA37 medium: colony diameter: ~ 37.25 mm; adverse: brown; reverse: pale yellow with folds; mycelium: brown; exudate: no present; soluble pigment: no present. CY20S medium: colony diameter: ~ 50.25 mm; adverse: brown; reverse: pale yellow with folds; mycelium: brown; exudate: no present; soluble pigment: no present. MEA medium: colony diameter: ~ 25.17 mm; adverse: brown; reverse: various folds; mycelium: dark brown almost black; exudate: no present; soluble pigment: no present. CZ medium: colony diameter: ~ 36 mm; adverse: dark brown; reverse: various folds; mycelium: dark brown; exudate: no present; soluble pigment: no present. <u>Microscopic description</u>: biseriate. STIPE: length: ~ 373 μ m; width: ~ 19.2 μ m; surface texture: smooth. VESICLE: diameter: 41 μ m; shape: circular. CONIDIA: length: ~4.24 μ m; shape: circular-globose; surface texture: rough (Figure 2.9).

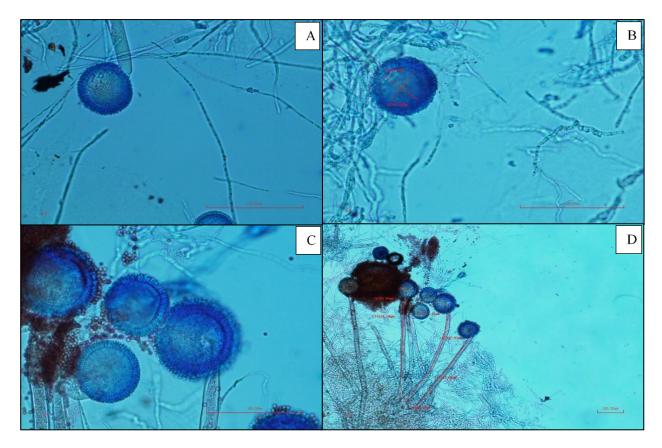


Figure 2.9: *Aspergillus niger* structures. Measurements from vesicles and conidiophores were obtained for identification. Vesicles (A-C) and conidiophores (D). Measures of the vesicle (B) and conidiophores (D) are shown. Scale: 100µm.

2.3.2.4 Penicillium waksmanii (BSI-HV-1(2)):

<u>Macroscopic description</u>: CYA25 medium: colony diameter: ~28.25 mm; adverse: greenish-blue; reverse: pale yellow in borders and orange in center with folds; mycelium: umbonate in center with folds, velvety; exudate: present in large amount, amber color; soluble pigment: present, yellowish. CYA37 medium: colony diameter: ~16 mm; adverse: greenish-blue with white borders; reverse: pale yellow in borders and orange in center with folds; mycelium: umbonate in center with folds; exudate: present in large amount, amber color; soluble pigment: present, yellowish. CYA37 medium: colony diameter: ~16 mm; adverse: greenish-blue with white borders; reverse: pale yellow in borders and orange in center with folds; mycelium: umbonate in center with folds; exudate: present in large amount, amber color; soluble pigment: present, yellowish. CYA5 medium: colony diameter: ~3-4 mm; adverse: white; reverse: pale yellow. MEA medium: colony diameter: ~20.6 mm; adverse: greenish-blue with grayish zones,

beige under the agar; reverse: pale yellow; mycelium: fasciculate; exudate: no present; soluble pigment: no present. G25N medium: colony diameter: ~20.5 mm; adverse: greenish-blue with grayish zones; reverse: pale yellow in borders and orange in center with folds; mycelium: velvety, umbonate in center; exudate: no present; soluble pigment: present, yellow-orange. <u>Microscopic description</u>: STIPE: length: ~60.4 μ m. PENICILLI: biverticilated, irregular terminal; RAMI: no present. METULA: ~2-4; length: ~12 μ m, smooth, no vesiculated. PHIALIDES: ~3-5; length: ~7.1 μ m. CONIDIA: 5 surface texture: a little rough. VESICLE: diameter: ~22 μ m; shape: circular-globose. CONIDIA: length: ~5 μ m, spherical (Figure 2.10).

2.3.2.5 *Nigrospora* (*Khuskia oryzae*) (BSI(1.5)-HJ-2(1)):

<u>Macroscopic description</u>: adverse: grayish with black and white areas; reverse: black with white areas, black dots; mycelium: covered the entire petri dish; exudate: no present; soluble pigment: could not be seen. <u>Microscopic description</u>: CONIDIA: length: ~11.1 to 17.0 μ m (Figure 2.11).

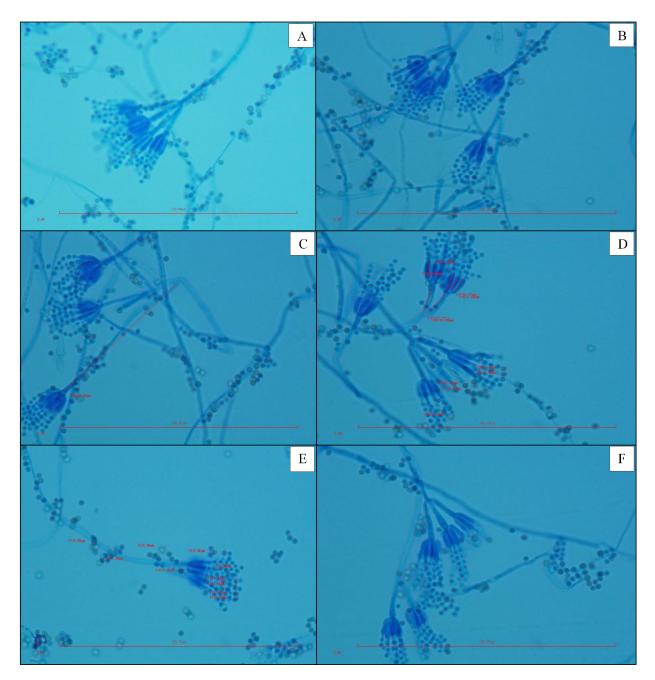


Figure 2.10: *Penicillium waksmanii* (BSI-HV-1(2)) structures. Measurements from conidiophores, metulae and phialides were obtained for identification. Conidiophores (A, B, C and F), metulae and phialides (D), and conidia (E). Measures of the conidiophore (C), methula and phialides (D) and conidias (E) are shown. Scale: 100µm.

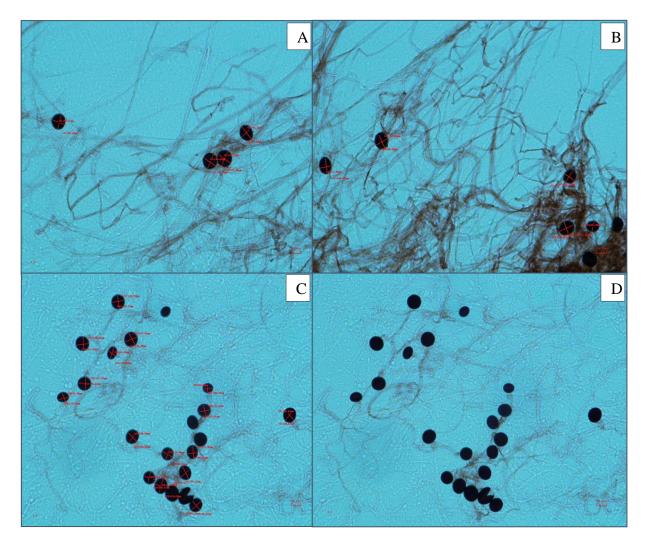


Figure 2.11: *Nigrospora (Khuskia oryzae)* (BSI(1.5)-HJ-2(1)). Measurements from conidia were obtained for identification. Conidia (A-D). Measures of conidias are shown (A-C). Scale: 100µm.

2.3.2 Phylogenetic analysis of black mangrove fungi

We performed this analysis to have a more consistent view of the different groups of fungal endophytes associated with *A. germinans*. The results showed 4 different classes between the isolates: (i) Agaromycetes (2 specimens), (ii) Dothidiomycetes (43 specimens), (iii) Eurotiomycetes (19 specimens) and (iv) Sordariomycetes (27 specimens). In our data, only two basidiomycetes, *Stereum* and *Wrightoporia*, were associated with *A. germinans* (Figure 2.12).

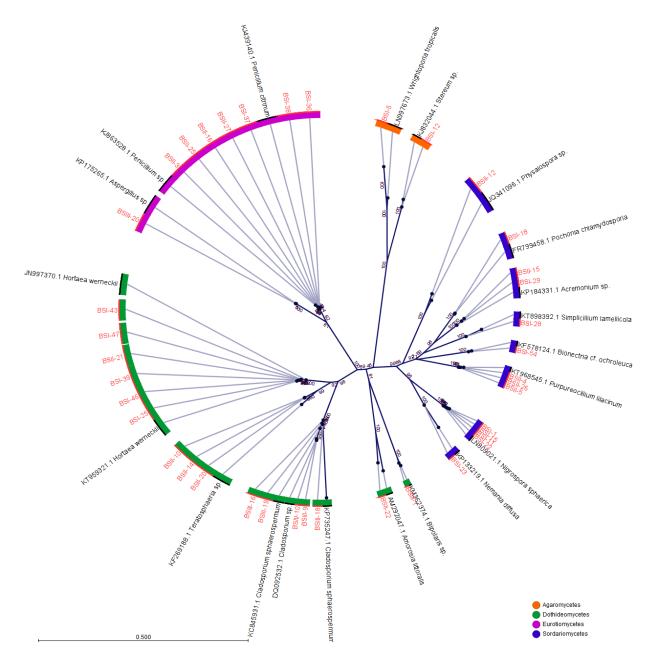


Figure 2.12: Phylogenetic Neighbor-joining tree based on ITS region gene sequences isolated from the black mangrove *A. germinans*. Isolates belonging to the same class are colored: Agaromycetes (orange), Dothidiomycetes (green), Sordariomycetes (blue), and Eurotiomycetes (purple). The ITS region is composed for approximately 500-600 base pairs for fungi. The numbers at the nodes indicate bootstrap support values (>50%).

2.4 Discussion and Conclusion

Fungal endophytes represent an important community in many environments. They can help their host plant by providing resistance to disease and herbivores, and also reducing stress to abiotic factors. Endophytes, especially associated with marine environments, have been studied due to their capacity to produce medicinal compounds (Rodríguez et al. 2008). Also, new species have been found in strict symbiosis relationships with a host plant, rising awareness about the myriad of fungal species that are waiting to be discovered. Given this, our first objective was to isolate and identify the fungal endophytic community associated with seeds and leaves of the black mangrove *Avicennia germinans*.

Since our goal was not to compare the fungal diversity between seasons, we isolated *A*. *germinans* specimens in three random samplings. To our surprise, we found different amounts of fungal isolates during each sampling. This could have been caused by precipitation and drought changes during those times; given that for the second and third sampling the precipitation was 25% and 50% below the normal average for this zone, respectively. Also, during the summer and fall of 2015, Puerto Rico was under a severe drought (USDA 2015). This correlates with studies showing that the amount of precipitation affects the abundance of endophytes (U'Ren et al. 2012). Although other studies have shown that endophytes confer abiotic stress resistance like high salinity, drought and extreme temperatures (Kandalepas et al. 2015), this does not specifically means that endophyte diversity and abundance remain unaffected as shown in our data.

Fungal endophytes were isolated in different culture media at different salinity concentrations. We expected to retrieve more specimens in the leaf medium since it contains the principal compounds of their natural habitat, but more endophytes were isolated in PDA medium with 1.5% salinity and the lowest from the leaf medium. However, there was almost no difference

between that medium and the one containing 3.5% salinity (29 and 28 isolates, respectively). A possible explanation for these results is that the leaf medium did not possess the nutrients that are available in PDA medium, thus reducing the amount of specimens able to grow in it. Although a study in Panama demonstrated that the high salinity of *A. germinans* leaves, compared with other mangroves, *Rhizophora mangle* and *Laguncularia racemosa*, contributed to a low recover of specimens (Gilbert et al. 2002), in our study, more isolates were obtained from higher salinity media. Among the three more common genera associated with *A. germinans*, *Aspergillus* and *Cladosporium* have been reported as two of the most common endophytes in mangroves (Liu et al. 2007). Even though we were able to identify to species 5 of the 20 genera by macro and microscopic characteristics, there was some degree of uncertainty with *Penicillium waksmanii* since we found some discrepancies with the measurements described in the literature. To address this singularity, multiple measurements should be performed from different wet mounts of the organism.

Endophytes were not only isolated from the leaves but also from the seeds of the black mangrove. The purpose of this was to see if there was any species associated specifically with the seed that could be vertically transferred in this plant. Only *Stereum* and *Simplicillium* were found solely in *A. germinans* seeds. No conclusions about a specific association of these two species with a vertical transmission in this mangrove can be reached at this point; more studies must be performed since only one isolate was recovered from some species in a sole sample.

Molecular and phylogenetic studies showed only four phylogenetic classes present in our study, 89 ascomycetes and 2 basidiomycetes: *Stereum* and *Wrightoporia*, but no relation were found between certain taxa and a specific sampling, media or isolation source. We also need to consider that most of the species isolated appeared only once in all our samples. To have a better

understanding about the diversity and the conditions that may affect the abundance of *A. germinans* endophytes, a more systematic sampling must be made under different conditions such as comparisons between dry and wet seasons and extensive studies on specific parts of the plant. In general, all fungal isolates have been reported as endophytes in other mangroves and non-marine plants [Appendix E]. However, to the best of our knowledge, some genera are reported as mangrove endophytes for the first time in this study: *Physalospora, Pochonia, Simplicillium, Stereum, Teratosphaeria and Wrightoporia.* Some of these genera have been isolated from mangroves or marine environments but not as endophytes. *Physalospora* (Olexa 1976) and *Stereum* (Cavalcanti et al. 2016) were found associated to the red mangrove *Rhizophora mangle* in Brazil, and *Pochonia* was found on mangrove sediments in China (Li, Wang, 2016). Moreover, there are no known reports of fungal endophytes associated to the black mangrove in Puerto Rico, thus this represents the first report of fungal endophytes associated to *A. germinans* in Puerto Rico.

Chapter 3. Antibiotic and Antifungal Assays

3.1 Introduction

Antibiotics were first described by Selman Waksman in 1941 as "small molecules made by a microbe that antagonize the growth of other microbes" (Clardy et al. 2009). These compounds are important in medicine due to their potential as antimicrobials, antifungals and anticancer, among others (Bhimba and Joel 2012; Strobel et al. 1999). They are byproducts of the secondary metabolism of certain organisms like bacteria, fungi and plants (Croteau et al. 2000; Vining 1990). They have served to overcome numerous illnesses; thus, giving us a better quality of life. One of the most relevant challenges for the scientific and medical community today is the problem with antibiotic resistant organisms. There are many reports where pathogens that were thought to be neutralized have become resistant to the existent drugs; more pernicious in nosocomial infections. For example, E. coli, although a microorganism associated with the normal human gastrointestinal tract, can cause urinary tract and blood streams infections and some strains are resistant to cephalosporins and fluoriquinoles antibiotics (Tanwar et al. 2014). Similarly, Candida strains, responsible for candidiasis, have been reported to be resistant to fluconazole and echinocandins (Tanwar et al. 2014). Other nosocomial pathogens of medical relevance that have developed antibiotic resistance include: (i) Staphylococcus aureus causing fatal infective endocarditis and necrotizing pneumonia, has developed resistance to methicillin and its alternative treatments: vancomycin, distamycin and linezolid (Haaber et al. 2017); some strains are also resistant to penicillin, erythromycin, rifampicin, gentamicin and clindamycin (Rağbetli et al. 2016); (ii) Pseudomonas aeruginosa causing severe respiratory infections especially in patients suffering from cystic fibrosis and immunocompromised patients at the intense care unit and some strains are resistant to cephalosporins, fluoroquinolones, and carbapenems (Cabot et al. 2016); (iii) Serratia marcescens causing urinary tract infections, septicemia, meningitis, wound infections and

affecting neonatal intensive care units being resistant to ampicillin, cephalosporins, β -lactams, aminoglycosides and fluoroquinolones (Haifei et al. 2012).

Different approaches have been studied to overcome these problems. Among them there are antibiotic-antibiotic combinations, where two antibiotics are combined to produce stronger effect (Worthington and Melander 2013), but to find compatible drugs that will actually present synergism could be difficult (Richardson 2017). Sequential regimens are also studied, where two or more drugs are alternated during the treatment period (Fuentes-Hernández et al. 2015). Also, combinations of an antibiotic with a non-antibiotic compound that increases the activity of the antibiotic or blocks the resistant mechanism of the pathogen have been explored (Worthington and Melander 2013). Another different approach given by Ayhan and coworkers (2016) is to resensitize the resistant bacteria with a treatment with specifically designed anti-sense oligonucleotides.

Despite all these great efforts to fight antibiotic resistance, as Tawar et al. (2014) expresses, the discovery of novel drugs is one of the best chances to overcome this problem in combination with the actual knowledge of drug resistance. Given this, several researches have been made searching in different ecological niches for possible new drugs. Some of the most successful work has been done on marine environments, since they harbor a myriad of species capable of producing compounds with the desired effects (Hughes and Fenical 2010; Rahman et al. 2010). Among these, fungal compounds have caught the attention of recent investigations (Cheng et al. 2009; Silva et al. 2011).

The first approach to see if there are any active compounds with potential antibiotic activity is to determine the effect on microbial growth of specific pathogens. Bacterial and yeast pathogens

36

are ideal to test these effects on growth because rapid and easy bioassays can be developed. Optical density measures determined by spectrophotometry reflect the proportional number of cells in a liquid culture medium (Monod 1949). Using this method, different curves can be prepared and analyzed (Gompertz growth) (Zwietering et al 1990). In this work, we focused on the analysis of *A. germinans* endophyte fungal extracts on bacterial and yeast pathogens using growth curves to detect any effect that produces growth decrease of pathogens.

3.2 Materials and Methods

3.2.1 Fungal Extracts

Fungal isolates were incubated in 250mL Erlenmeyer flasks with Malt Extract medium (ME) on a shaker at 120 rpm for 2 weeks prior extractions (Morell-Rodríguez 2008). The term "fungal extracts" is referring to the supernatant collected from each specimen after 2 weeks of incubation giving enough time for the fungal isolates to produce extracellular secondary metabolites. The supernatant was collected in falcon tubes and subjected to two different treatments: (i) a 0.22µm filter was used to filter the extract and (ii) the extract was autoclaved. Also, the supernatant (as initially collected), was centrifuged at 15,871 rcf for 5 minutes and used for the assays as the "untreated" treatment. Thus, three different fungal extract treatments were evaluated: (i) untreated, (ii) filtered and (iii) autoclaved. Only the supernatant (containing extracellular secondary metabolites) was used to determine a possible antibacterial and antifungal activity. Nine fungal isolates showing potential to produce secondary metabolites to be used as antimicrobials on other studies were used for this analysis: *Penicillium* (BSI-HV-1(2)) sp., *Aspergillus flavus* (BSI-HV-2(1)), *Aspergillus clavatus* (BSI(MH)-HJ-2(1)), *Stereum* (BSI-R-2(1)) sp., *Nigrospora (Khuskia oryzae*) (BSI(1.5)-HJ-2(1)), *Purpureocillium* (BSII(3.5)-R-3(2))

sp., *Simplicillium* (BSI(1.5)-R-1(1)) sp., *Hortaea* (BSII(3.5)-HC-1(2)) sp. and *Bionectria* (BSI(MH)-HC-3(1)) sp. All extracts were collected in triplicate from each fungus.

3.2.2 Antibacterial and Antifungal Assays

Yeast and bacteria growth curves were used for the analyses; where the standard growth curves of each microorganism were compared with growth curves of each specimen treated with different fungal extracts. Tryptic Soy Broth (TSB) and Yeast Mold (YM) media were used for the assays with bacteria and yeasts, respectively. The bacteria used included: Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 10145), Serratia marcescens (ATCC 13880) and Staphylococcus aureus (ATCC 6538), provided by Mrs. Magaly Zapata from the Microbiology Department and the yeasts: Candida albicans (ATCC 42266) and Candida tropicalis (ATCC 4563), provided by Mrs. Carol Rivera from the Mycology Laboratory; both from the University of Puerto Rico- Mayaguez Campus. Previous to the experiments, standard growth curves for each microorganism were performed to determine the different growth phases. A biophotometer (Eppendorf, Biophotometer Plus) was used to measure the absorbance and plot a graph of absorbance vs. time to obtain the curves. Bacteria and yeast were inoculated in 250mL Erlenmeyer flasks and placed in a shaker at 150 rpm for 10 hours. Samples were taken every 30 minutes before the fourth hour and every hour after that same time. Before each absorbance measurement the samples were vortexed vigorously to obtain a homogeneous mixture, especially the yeasts which flocculate. All measures were performed in triplicate.

We divided the experiments in three assays, in the first assay we used extracts from: *Penicillium* (BSI-HV-1(2)), *Simplicillium* (BSI(1.5)-R-1(1)), *Purpureocillium* (BSII(3.5)-R-3(2)), *Bionectria* (BSI(MH)-HC-3(1)) and *Aspergillus flavus* (BSI-HV-2(1)) against: *Escherichia coli*, *Pseudomonas aeruginosa*, *Serratia marcescens* and *Staphylococcus aureus*, and the yeasts: *Candida albicans* and *Candida tropicalis*. The extracts (2.5mL) were added after 2 to 3 hours of inoculation since the logarithmic phase started at that time for bacteria and 3 hours for *C. tropicalis* and *C. albicans*. Then, a second assay was performed given the results from the first assay, where only two bacteria and one yeast strain were used: *E. coli*, *P. aeruginosa* and *C. albicans*. Four different fungal extracts were used for these analyses: *Stereum* (BSI-R-2(1)), *Nigrospora (Khuskia oryzae)* (BSI(1.5)-HJ-2(1)), *Hortaea* (BSII(3.5)-HC-1(2)) and *Aspergillus clavatus* (BSI(MH)-HJ-2(1)). Since *A. flavus* (BSI-HV-2(1)) and *A. clavatus* (BSI(MH)-HJ-2(1)) presented relevant results (a significant decrease in the growth of the tested organisms was observed), a third assay was performed where the fungal extracts were not only added at the beginning of the log phase but also in the lag phase and at the beginning of the stationary phase. Positive controls using nystatin/cyclohexamide and penicillin/streptomycin were used for the antifungal and antibacterial assays, respectively. Also, controls adding water and ME were performed. All assays were performed in triplicate.

3.2.3 Statistical Analysis

The analysis of the data was performed using the GraphPad Prism version 6.00 for Windows. Using this program, we were able to compare the growth curves of all specimens adjusting the data to a model designed for growth curves (Gompertz Model) (Winsor, 1932; Zwietering et al. 1990). This model uses an equation that analyses some features of a growth curve: (i) an asymptote in the curve (representative of the stationary phase), (ii) the growth rate and (iii) the displacement along the x-axis. The equation used was: $y = (YM)e^{-(\ln(\frac{Y0}{YM}))e^{-kx}}$; where YM represents the upper asymptote (stationary phase); $\ln(Y0/YM)$ sets the displacement along the x axis (translates the graph to the left or right); "k" sets the growth rate [y scaling], Y0 represents the lower asymptote and "e" is Euler's Number (e = 2.71828...) (Zwietering et al. 1990; Manterola

2016). This equation is available on the Graph Pad program and once you insert your data it runs an ANOVA (F-test) comparing those specific parameters from each set (YM, Y0 and K). An output window shows all the values from the analysis including the p-value and if the compared curves are considered the same or different. To perform all the procedure on the program: (i) introduce the data on the tables, (ii) go to "analyze"; on the "X and Y axis" select "Nonlinear regression (curve fit)" and also select the data set you want to compare, (iii) then, under "fit", select "Gompertz growth" and under "Fitting method" select "Least squares (ordinary) fit", (iv) once those parameters are set, under "Compare", select "Does one curve adequately fit all the data sets?", the comparison method "Extra sum-of-squares F-test" and the p-value: 0.05.

3.3 Results

3.3.1 First Assay

Among the selected bacteria and yeasts, only *Aspergillus flavus* (BSI-HV-2(1)) extracts significantly affected the growth of *E. coli* (all extracts), *Candida albicans* (all extracts) and *Candida tropicalis* (untreated and filtered extracts) (Table 3.1) (Figures 3.1, 3.2 and 3.3). The rest of the extracts did not have a significant negative effect on the growth curves of the microorganisms (p-value > 0.05) (Table 3.1) [Appendix G and H]. Unexpectedly, untreated extracts from *A. flavus* (BSI-HV-2(1)) enhanced growth of *S. aureus* (Figure 3.4). Statistical analysis showed a p-value less than 0.05 for the ones that were reported to have a significant effect on the bacterial and yeast growth [Appendix R].

Table 3.1: Results showing fungal extracts that significantly (p-value <0.05) affected (+) and unaffected (-) the growth of bacteria and yeasts.

	Did the fungal extracts affect the bacteria and yeasts standard growth curve?					
	BACTERIA			YEASTS		
EXTRACTS	E. coli	P. aeruginosa	S. marcescens	S. aureus	C. albicans	C. tropicalis
Positive Control	+	+	+	+	+	+
Distilled Water (control)	-	-	-	-	-	-
ME medium (control)	-	-	-	-	-	-
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	-	-	-	-	-	-
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	-	-	-	-	-	-
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	-	-	-	-	-	-
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	-	-	-	-	-	-
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	-	-	-	-	-	-
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	-	-	-	-	-	-
Bionectria (BSI(MH)-HC-3(1)) (untreated)	-	-	-	-	-	-
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	-	-	-	-	-	-
Bionectria (BSI(MH)-HC-3(1)) (filtered)	-	-	-	-	-	-
Penicillium (BSI-HV-1(2)) (untreated)	-	-	-	-	-	-
Penicillium (BSI-HV-1(2)) (autoclaved)	-	-	-	-	-	-
Penicillium (BSI-HV-1(2)) (filtered)	-	-	-	-	•	-
A. flavus (BSI-HV-2(1)) (untreated)	+	-	-	+	+	+
A. flavus (BSI-HV-2(1)) (autoclaved)	+	-	-	-	+	-
A. flavus (BSI-HV-2(1)) (filtered)	+	-	-	-	+	+

*(+): there was a significant difference (p-value <0.05) when compared to the standard curve including decreased and enhanced growth; (-) no significant difference (p-value>0.05) was observed.

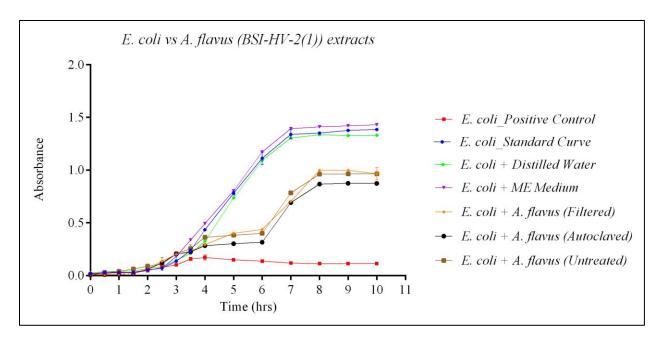


Figure 3.1: *E. coli* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added after 2.5 hours of incubation. All measures were performed in triplicate.

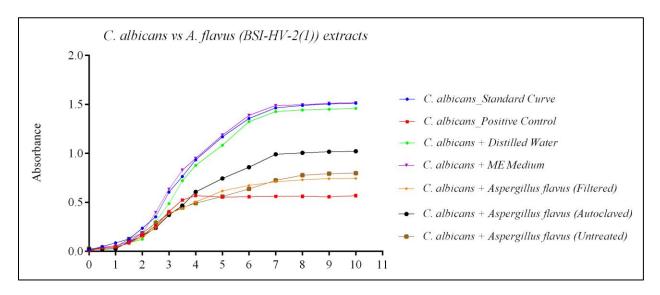


Figure 3.2: *C. albicans* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

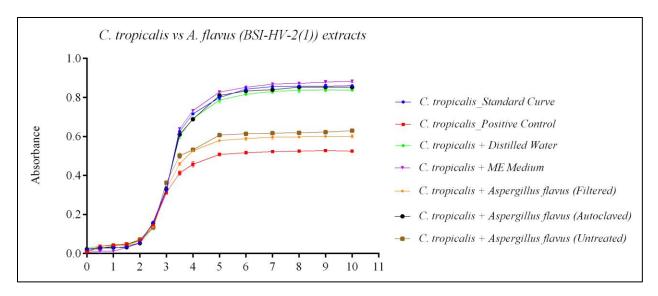


Figure 3.3: *C. tropicalis* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

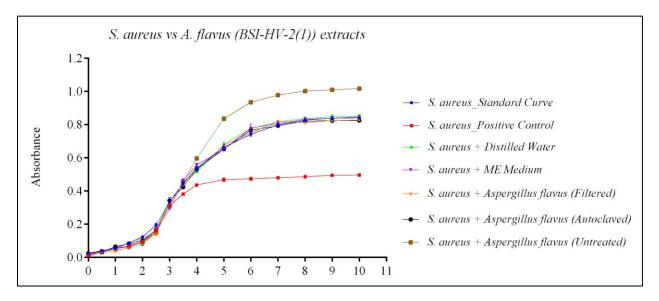


Figure 3.4: *S. aureus* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added after 2 hours of incubation. All measures were performed in triplicate.

3.3.2 Second Assay

Candida albicans and E. coli were most affected in the first assay; hence, they were selected to be tested with other fungal extracts. As another control, non-affected P. aeruginosa was selected over S. marcescens due to its clinical relevance as a pathogen. Then, four new fungal extracts were selected to perform assays: Stereum (BSI-R-2(1)), Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)), Hortaea (BSII(3.5)-HC-1(2)) and Aspergillus clavatus (BSI(MH)-HJ-2(1)). Surprisingly, extracts from *Stereum* (BSI-R-2(1)) (untreated and autoclaved) increased the growth of E. coli (Figure 3.5), but extracts from Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (all treatments) (Figure 3.6) and A. clavatus (BSI(MH)-HJ-2(1)) (all treatments) (Figure 3.7) decreased its growth. On the other hand, extracts from *Hortaea* (BSII(3.5)-HC-1(2)) [Appendix L] and Stereum (BSI-R-2(1)) (filtered) (Figure 3.5) have no effect on the growth curve of E. coli. Only A. clavatus (BSI(MH)-HJ-2(1)) extracts (all treatments) decreased growth of *P. aeruginosa* and *C.* albicans (Figures 3.8 and 3.9), while the other extracts had no significant effects on the growth curves of these organisms [Appendix M and N]. Once again, statistical analysis showed a p-value less than 0.05 for the ones that were reported to have a significant effect on the bacterial and yeast growth [Appendix R]. All results are showed on Table 3.2.

	Did the fungal extracts affect the bacteria and yeast standard growth curve?			
	BACTERIA		YEAST	
EXTRACTS	E. coli	P. aeruginosa	C. albicans	
Positive Control	+	+	+	
Distilled Water (control)	-	-	-	
ME medium (control)	-	-	-	
Stereum (BSI-R-2(1)) (untreated)	+	-	-	
Stereum (BSI-R-2(1)) (autoclaved)	+	-	-	
Stereum (BSI-R-2(1)) (filtrated)	-	-	-	
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (untreated)	+	-	-	
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (autoclaved)	+	-	-	
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (filtrated)	+	-	-	
Hortaea (BSII(3.5)-HC-1(2)) (untreated)	-	-	-	
Hortaea (BSII(3.5)-HC-1(2)) (autoclaved)	-	-	-	
Hortaea (BSII(3.5)-HC-1(2)) (filtered)	-	-	-	
A. clavatus (BSI(MH)-HJ-2(1)) (untreated)	+	+	+	
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved)	+	+	+	
A. clavatus (BSI(MH)-HJ-2(1)) (filtered)	+	+	+	

Table 3.2: Results showing fungal extracts that significantly (p-value <0.05) affected (+) and unaffected (-) the growth of *E. coli*, *P. aeruginosa* and *C. albicans*.

*(+): there was a significant difference (p-value <0.05) when compared to the standard curve including decreased and enhanced growth; (-) no significant difference (p-value>0.05) was observed.

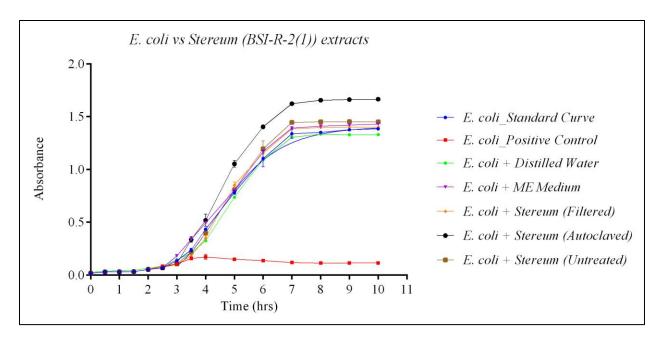


Figure 3.5: *E. coli* growth curves under different treatment from extracts of *Stereum* (BSI-R-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

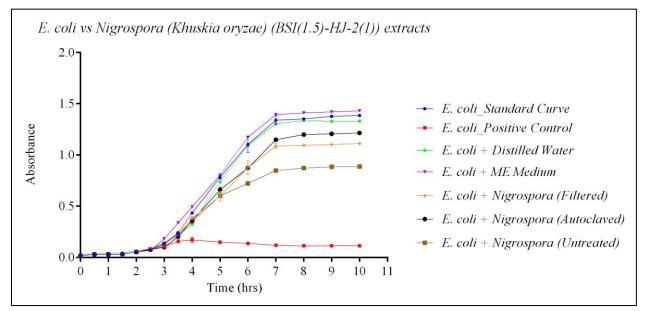


Figure 3.6: *E. coli* growth curves under different treatment from extracts of *Nigrospora* (*Khuskia oryzae*) (BSI(1.5)-HJ-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

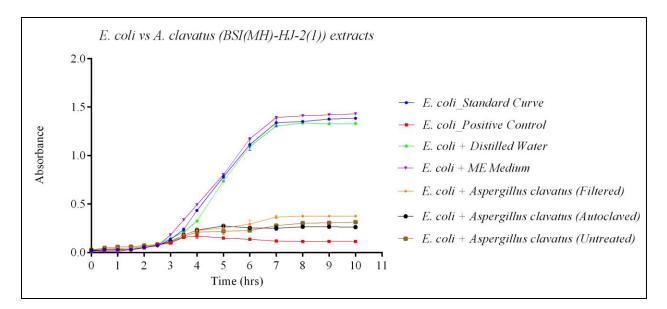


Figure 3.7: *E. coli* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

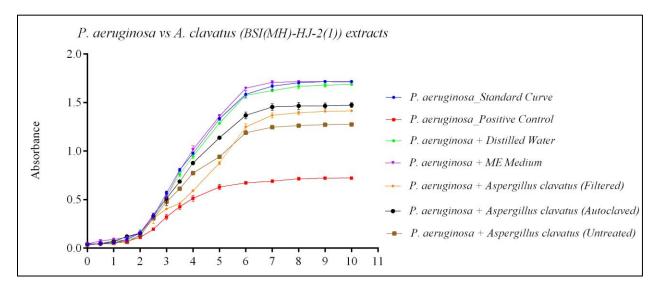


Figure 3.8: *P. aeruginosa* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added after 2 hours of incubation. All measures were performed in triplicate.

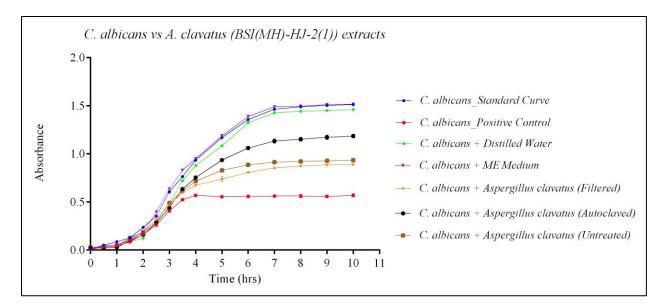


Figure 3.9: *C. albicans* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added after 3 hours of incubation. All measures were performed in triplicate.

3.3.3 Third Assay

Since *Aspergillus flavus* (BSI-HV-2(1)) and *Aspergillus clavatus* (BSI(MH)-HJ-2(1)) extracts were the ones that showed most growth inhibition within the first two assays, we proceeded to see their effects on each grow phase on the model strains selected. For the lag phase results, we observed a stronger decrease of growth for *E. coli*, *P. aeruginosa* and *C. albicans* (Figures 3.10 to 3.15), resulting in an increased lag phase and overall less growth. On the contrary, when the extracts were added at the beginning of the stationary phase the results did not show any significant differences on the growth curves when compared with the standard [Appendix P and Q]. Statistical analysis showed a p-value less than 0.05 for the ones that were reported to have a significant effect on the bacterial and yeast growth [Appendix R]. All results are showed in triplicate.

Table 3.3: Results showing fungal extracts that significantly affected (+) and unaffected (-) the growth of *E. coli*, *P. aeruginosa* and *C. albicans*. Extracts were added at the beginning of the curve (lag phase) and in the stationary phase.

	Did the fungal extracts affect the bacteria standard growth curve?						
	BA	YEAST					
EXTRACTS	E. coli	P. aeruginosa	C. albicans				
Positive Control	+	+	+				
Distilled Water (control)	-	-	-				
ME medium(control)	-	-	-				
Lag Phase							
A. flavus (BSI-HV-2(1)) (untreated)	+	+	+				
A. flavus (BSI-HV-2(1)) (autoclaved)	+	+	+				
A. flavus (BSI-HV-2(1)) (filtered)	+	+	+				
A. clavatus (BSI(MH)-HJ-2(1)) (untreated)	+	+	+				
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved)	+	+	+				
A. clavatus (BSI(MH)-HJ-2(1)) (filtered)	+	+	+				
Station	nary Phase						
A. flavus (BSI-HV-2(1)) (untreated)	-	-	-				
A. flavus (BSI-HV-2(1)) (autoclaved)	-	-	-				
A. flavus (BSI-HV-2(1)) (filtered)	-	-	-				
A. clavatus (BSI(MH)-HJ-2(1)) (untreated)	-	-	-				
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved)	-	-	-				
A. clavatus (BSI(MH)-HJ-2(1)) (filtered)	-	-	-				

*(+): there was a significant difference (p-value <0.05) when compared to the standard curve including decreased and enhanced growth; (-) no significant difference (p-value>0.05) was observed.

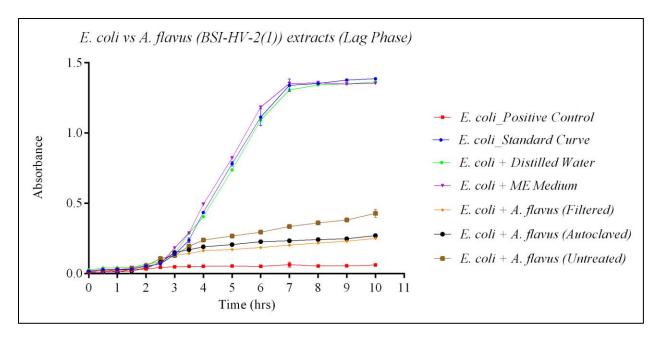


Figure 3.10: *E. coli* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added when incubated. All measures were performed in triplicate.

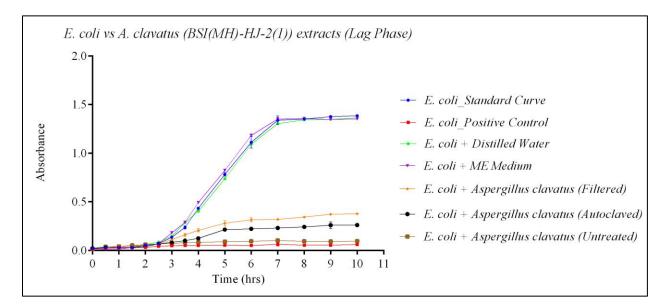


Figure 3.11: *E. coli* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added when incubated. All measures were performed in triplicate.

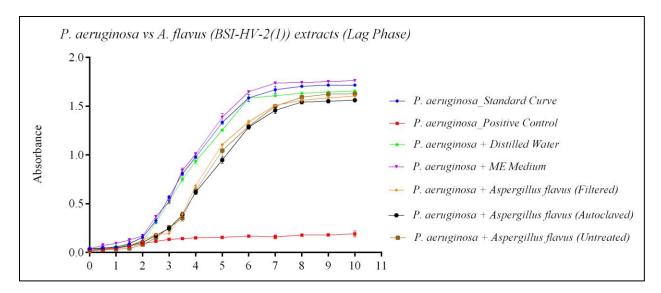


Figure 3.12: *P. aeruginosa* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added when incubated. All measures were performed in triplicate.

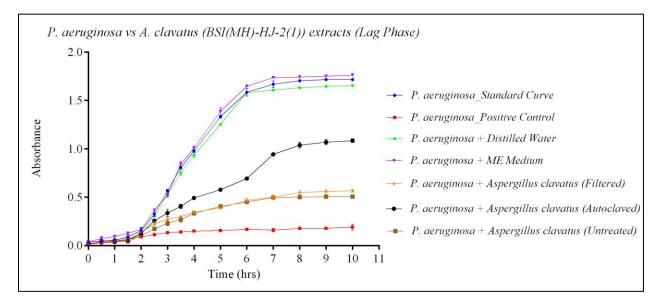


Figure 3.13: *P. aeruginosa* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added when incubated. All measures were performed in triplicate.

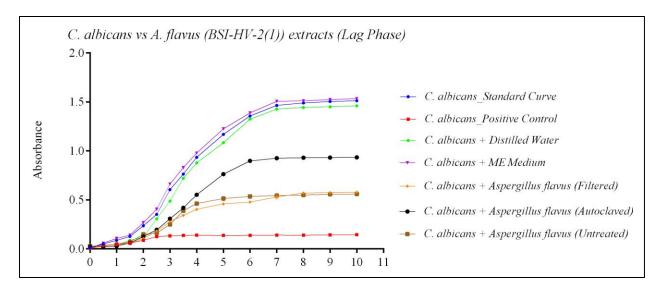


Figure 3.14: *C. albicans* growth curves under different treatment from extracts of *A. flavus* (BSI-HV-2(1)). Extracts were added when incubated. All measures were performed in triplicate.

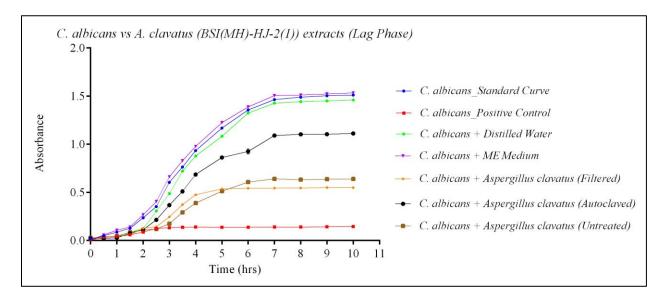


Figure 3.15: *C albicans* growth curves under different treatment from extracts of *A. clavatus* (BSI(MH)-HJ-2(1)). Extracts were added when incubated. All measures were performed in triplicate.

3.4 Discussion and Conclusion

This study was expected to find fungal extracts with the capability to decrease growth of certain microorganisms considered pathogens. On the contrary, unexpected results were obtained where the extracts of *A. flavus* (BSI-HV-2(1)) (untreated) enhanced growth of *S. aureus* (Figure 3.4) and extracts from *Stereum* (BSI-R-2(1)) (autoclaved and untreated) enhanced growth of *E. coli* (Figure 3.5). Bacteria or fungi can benefit from specific compounds that are produced by the other partner when interacting in a synergist relationship (Frey-Klett et al. 2011). Nutritional interactions have been seen in other systems, but they are usually about competition.

In the case of *A. flavus* (BSI-HV-2(1)) extracts, (i) compounds released by the fungus (added as extract from the supernatant) could possess hydrolytic enzymes that help the bacteria obtain nutrients or used them directly as source of energy (Boer et al. 2005); (ii) fungal spores could be promoting the survival of the bacteria as seen on some bacterial communities that feed on *Glomus geosporum* outer spore layer (Frey-Klett et al. 2011; Roesti et al. 2005); (iii) or *S. aureus* could also be producing a compound that help *A. flavus* (BSI-HV-2(1)) to grow since there was no treatment for this extract, however this is less probable since fungi growth rate is much more slower than bacterial growth (Frey-Klett et al. 2011; Sitharashmi et al. 2015). In addition, *A. flavus* (BSI-HV-2(1)) could be producing a compound that protects *S. aureus* from other agents as seen in *Candida albicans-S. aureus* interactions (Kong et al. 2016).

For the enhanced growth of *E. coli* by the autoclaved extract of *Stereum* (BSI-R-2(1)) the explanation could be a little more of a challenge. Perhaps there could have been a compound(s) that was/were decomposed by the high temperature and pressure of the autoclave process and *E. coli* was able to use it as source of energy. To have some insight about this singularity, further

experiments could be prepared in where a reducing sugar analysis (Miller 1959) can be made before and after autoclaving the extract.

On the other hand, extracts from *Nigrospora (Khuskia oryzae)* (BSI(1.5)-HJ-2(1)), *A. flavus* (BSI-HV-2(1)) and *A. clavatus* (BSI(MH)-HJ-2(1)) decreased growth of *E. coli*, but with *A. flavus* (BSI-HV-2(1)) extracts, it recovered and started to grow again. Despite this, it did not grow to the same extent as the standard curve (Figure 3.1). Since the extracts from that result were added during the beginning of the logarithmic phase, *E. coli* may have had the chance to recover from the negative effect, a behavior not seen when the extract was added in the lag phase (Figure 3.10). Among the 3 fungal extracts that affected *E. coli* growth, the ones from *A. clavatus* (BSI(MH)-HJ-2(1)) were the more effective, given to the point that when the analysis was performed in the lag phase, they worked very similarly to the positive control, showing no significant difference between them (p<0.05) (Figure 3.7). All extracts from *A. clavatus* (BSI(MH)-HJ-2(1)) also decreased the growth of *P. aeruginosa* (Figure 3.8) and *C. albicans* (Figure 3.9), but not to the same extent.

A. clavatus (BSI(MH)-HJ-2(1)) extracts presented a major decrease in the growth of the selected bacteria and yeast maybe due to its production of various toxic secondary metabolites. Among them, the fungus produces clavacin (best known as patulin), cytochalasin E and tryptoquivalines (López-Díaz and Fannigan 1997; Varga et al. 2007). Given that the majority of the extracts showed lower effect after the autoclaved treatment, it is probable that these compounds are sensitive to high temperature and pressure, such as patulins, which possess a melting point of 111°C (O'Neil 2006). Also, Gomes and coworkers (2014), found no effect from tryptoquivalines on the growth of *E. coli* and *P. aeruginosa* and cytochalasin E, which possess a melting point of 206-208 °C (Cole and Cox 1981). These are only a few examples of potential compounds produced

by *A. clavatus* (BSI(MH)-HJ-2(1)), but we cannot discard the possibility that the observed effects could be caused by other compounds with antimicrobial activity.

The other microorganisms affected by the extracts of *A. flavus* (BSI-HV-2(1)) were *C. albicans* and *C. tropicalis. C. albicans*, was affected by all the extracts (Figure 3.2) but *C. tropicalis* was not affected by the autoclaved extracts (Figure 3.3). In this case, it is probable that the compound(s) that performed the activity is affected by the high temperature (121°C) and pressure (15 psi) of the autoclaving process.

A. flavus (BSI-HV-2(1)) extracts was the other treatment that presented significant effects in decreasing the growth of bacteria and yeasts [Appendix R]. It is relevant that this organism produces substances known as aflatoxins (Klich 2007). These toxins are considered major carcinogens (lung and liver mostly) (Wong and Hsieh 1976) and bacterial mutagens (Stark et al. 1979). Thus, they could be directly responsible for growth decrease. Nevertheless, latest studies have found lactic acid producers (Ahlberg et al. 2015) and probiotic bacteria that mitigate the effects of aflatoxins (Gacem and Ould El Hadj-Khelil 2016).

When we examined the effect of the extracts of *A. flavus* (BSI-HV-2(1)) and *A. clavatus* (BSI(MH)-HJ-2(1)) added at the lag and the stationary phase, results were as expected. If there was a decrease in growth when the extracts were added at the start of the log phase in the first assay, for the lag phase it was expected to see a major decrease in growth since the extracts were added earlier (Figures 3.10 to 3.15). Interestingly, in addition to that major growth decrease for the case of *E. coli* with the extracts of *A. clavatus* (BSI(MH)-HJ-2(1)) (Figure 3.11), the extracts of the untreated treatment acted very similar to the positive control (penicillin/streptomycin mix). When we performed an analysis comparing the slopes of the two "curves", there were no

significant differences among them (p-value<0.05). For the treatment at the stationary phase no significant effect was seen since the bacteria was already at its maximum growth.

These results show a potential for extracts from *A. flavus* (BSI-HV-2(1)) and *A. clavatus* (BSI(MH)-HJ-2(1)), which can be producing a compound or compounds that decrease the growth of pathogens besides the ones known until today since they are recovered from a different environment, thus affecting the compounds they produce.

Future Work

To have further insight on the fungal endophytic community associated to the black mangrove *Avicennia germinans* several experiments can be addressed. For example, experiments comparing fungal diversity between seasons (e.g. dry and wet seasons) since we observed a decrease in the amount of isolates. Also, perform several samplings to determine the distribution of endophytes on different parts of the plant to observe if there is any specific association with a specie or a vertical transmission, by the endophytes associated to the seeds, in this mangrove.

To address some of the uncertainties with the antimicrobial and antifungal assays, various experiments could be performed in the future. For example, analyzing the fungal supernatants (extracts) by performing extractions in fractions using a column chromatography and identifying possible compounds of interest. Also, instead of incubating only the fungus to produce secondary metabolites by its own, an experiment adding bacteria strains to it could produce new insights given that the bacterial-fungus interaction can activate gene clusters that produce secondary metabolites, which are not expressed under normal growth conditions (Brakhage and Schroeckh 2011). This was seen when a marine isolate of *Pestalotia* produced pestalone (a chlorinated benzophenone antibiotic) when it was co-cultivated with marine alpha proteobacterium (CNJ-328) (Frey-Klett et al. 2011).

For the results of the enhanced growth of *S. aureus* by *A. flavus* (BSI-HV-2(1)) (untreated) extracts, an experiment to address this situation could be as follows: take four samples (one of the extract, a second one of the inoculated medium with the bacteria, another one when the extract is added, and a final sample at the end of the experiment) and prepare a wet mount of each sample and compare the amount of fungus (if there is any) and bacteria. In addition, an antibiotic such as penicillin/streptomycin (which we know for this results, affect the growth of *S. aureus* significantly) could be added to the extract of *A. flavus* (BSI-HV-2(1)) and then perform the assay once again with *S. aureus* to see if the is a protection by *A. flavus* (BSI-HV-2(1)) to *S. aureus* as seen in *Candida albicans* (Kong et al. 2016).

Similarly, for the results of the enhanced growth of *E. coli* by *Stereum* (BSI-R-2(1)) (autoclaved) extracts, to see if there are really compounds degrading due to the autoclaving process that could serve as source of energy (like sugars) to *E. coli* from extracts of *Stereum* (BSI-R-2(1)), a reducing sugar analysis by the 3,5-dinitrosalicylic acid (DNS) method (Miller 1959) could be performed to the extract before and after autoclaving to see if the amount of reducing sugars increase.

General Conclusions

In this research, we were able to study fungal endophyte community in the black mangrove *A. germinans* and determined their potential as producers of secondary metabolites with antimicrobial properties. To our knowledge, this is the first report of fungal endophytes associated to *A. germinans* in Puerto Rico in where the fungi *Physalospora, Pochonia, Simplicillium, Teratosphaeria, Wrightoporia* and *Stereum* were identified for the first time as mangrove endophytes. Finally, *A. flavus* (BSI-HV-2(1)) and *A. clavatus* (BSI(MH)-HJ-2(1)) showed a potential to produce compounds with antimicrobial and antifungal activity. This findings opens a window to the discovery of new compounds with antimicrobial activity that could be used to treat diseases.

References

Ahlberg S, Joutsjoki V, Korhonen H. 2015. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int J Food Microbiol. 207:87-102.

Alanis A. 2005. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 36:697-705.

- Alongi D. 2008. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf S. 76:1-13.
- Altschul S, Gish W, Miller W, Myers E, Lipman D. 1990. Basic local alignment search tool. J Mol Biol. 215:403-410.
- Alvin A, Miller K, Neilan B. 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res. 169:483-495.
- American Chemical Society. 2016. American Chemical Society International Historic Chemical Landmarks. Discovery and Development of Penicillin. [accessed: 2016 Jan 9]. Available from:

http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicilli n.html

- Aminov R. 2010. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the
Future.Future.FrontMicrobiol.1.Availablefrom:
from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109405/pdf/fmicb-01-00134.pdf
- Ananda K, Sridhar K. 2002. Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol. 48:871-878.
- Andreu M, Friedman M, Hudson M, Quintana H. 2010. *Avicennia germinans*, Black Mangrove. University of Florida, IFAS Extension. [accessed 2015 Dec 14]. Available from: https://edis.ifas.ufl.edu/pdffiles/FR/FR32100.pdf
- Anita D, Sridhar K, Bhat R. 2009. Diversity of fungi associated with mangrove legume *Sesbania* bispinosa (Jacq.) W. Wight (Fabaceae). Livestock Research for Rural Development 21. [accessed 2016 Apr 3]. Available from: http://www.lrrd.org/lrrd21/5/anit21067.htm
- Arnold A, Lutzoni F. 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology. 88:541-549.
- Ayhan DH, Tamer YT, Akbar M, Bailey SM, Wong M, Daly SM. 2016. Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. Plos Biol. 14(9): e1002552. Available from: https://doi.org/10.1371/journal.pbio.1002552
- Baltruschat H, Fodor J, Harrach B, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A. 2008. Salt tolerance of barley induced by the root endophyte *Piriformospora indica* is associated with a strong increase in antioxidants. New Phyt. 180(2):501-510.
- Bharathidasan R, Panneerselvam A. 2015. Antibacterial activity of endophytic fungi extracts from the mangrove plant *Avicennia marina* (Forsk) Vierh. Int J Adv Res Biol Sci. 2:145-148.
- Bayman P, Angulo-Sandoval P, Báez-ortiz Z, Lodge D. 1998. Distribution and dispersal of *Xylaria* endophytes in two tree species in Puerto Rico. Mycol Res. 102:944-948.
- Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10:189.
- Benson D, Clark K, Karsch-Mizrachi I, Lipman D, Ostell J, Sayers E. 2013. GenBank. Nucleic Acids Res. 42:32-37.

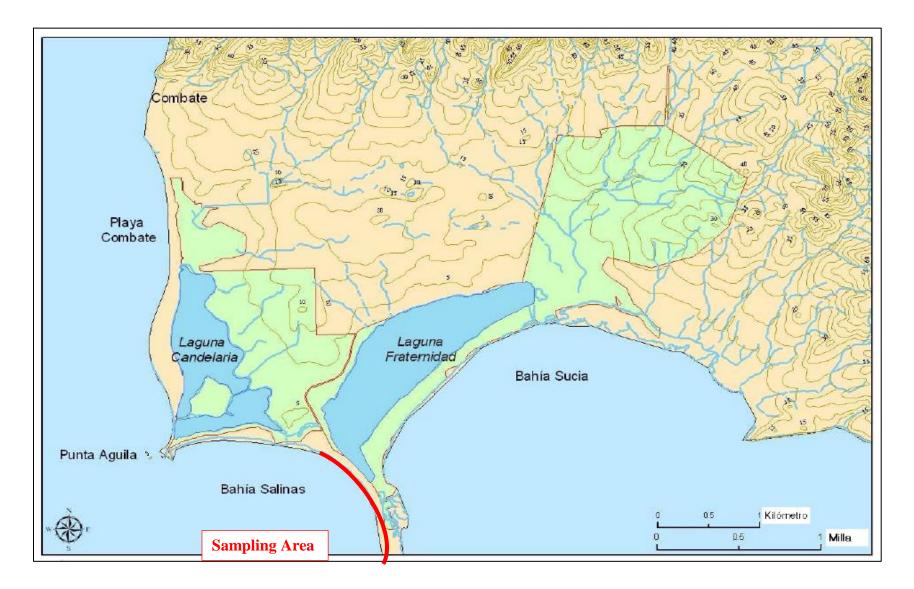
- Bhimba BV, Franco D, Jose G, Mathew J, Joel E. 2011. Characterization of cytotoxic compound from mangrove derived fungi *Irpex hydnoides* VB4. Asian Pac J Trop Biomed. 1: 223-226.
- Bhimba BV, Joel EL. 2012. Fungi from mangrove plants: their antimicrobial and anticancer potentials. Int J Pharm Sci. 4(3): 139-142.
- Blackwell M. 2011. The Fungi: 1, 2, 3 ... 5.1 million species? Am J Bot. 98:426-438
- Blunt J, Copp B, Keyzers R, Munro M, Prinsep M. 2014. Marine natural products. Nat Prod Rep. 31:179-183.
- Boer W, Folman L, Summerbell R, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. Fems Microbio Rev. 29:795-811.
- Brakhage A, Schroeckh V. 2011. Fungal secondary metabolites Strategies to activate silent gene clusters. Fungal Genet Biol. 48:15-22.
- Buatong J. 2010. Endophytic fungi producing antimicrobial substances from mangrove plants in the south of Thailand [M.S.]. Prince of Songkla University.
- Buatong J, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. 2011. Antimicrobial activity of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol. 27: 3005-3008.
- Cabot G, Zamorano L, Moyà B, Juan C, Navas A, Blázquez J, Oliver A. 2016. Evolution of *Pseudomonas aeruginosa* antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Ch. 60:1767-1778.
- Cai R, Chen S, Long Y, She Z. 2017. Depsidones from *Talaromyces stipitatus* SK-4, an endophytic fungus of the mangrove plant *Acanthus ilicifolius*. Phytochem Lett. 20:196–199.
- Cantrell-Rodriguez SA. 2016. IMC11 Puerto Rico and the 11th International Mycological Congress. IMA Fungus News. [accessed 2017 Apr 25]. http://www.imafungus.org/Issue/72/03.pdf
- Castillo-López D, Zhu-Salzman K, Ek-Ramos M, Sword G. 2014. The Entomopathogenic fungal endophytes *Purpureocillium lilacinum* (formerly *Paecilomyces lilacinus*) and *Beauveria bassiana* negatively affect cotton aphid reproduction under both greenhouse and field conditions. Plos One. 9:e103891. https://doi.org/10.1371/journal.pone.0103891.
- Castro R, Quecine M, Lacava P, Batista B, Luvizotto D, Marcon J, Ferreira A, Melo I, Azevedo J. 2014. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus. 3:382.
- Cavalcanti L, Damasceno G, Costa A, Bezerra A. 2016. Myxomycetes in Brazilian mangroves: species associated with *Avicennia nitida*, *Laguncularia racemosa* and *Rhizophora mangle*. Mar Biodivers Rec. 9(31). https://doi.org/10.1186/s41200-016-0035-4.
- Chagas F, Caraballo-Rodríguez A, Pupo M. 2015. Endophytic Fungi as a Source of Novel Metabolites. In: Zeilinger S, Martín J, García-Estrada C, editors. Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. 2nd ed. New York (USA): Springer. p. 123-176.
- Chaeprasert S, Piapukiew J, Whalley A, Sihanonth P. 2010. Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar. 53(6):555-564.
- Chen S, Liu Y, Liu Z, Cai R, Lu Y, Huang X, She Z. 2016. Isocoumarins and benzofurans from the mangrove endophytic fungus *Talaromyces amestolkiae* possess α-glucosidase inhibitory and antibacterial activities. RSC Adv. 6:26412-26420.
- Chen J, Xing X, Zhang L, Xing Y, Guo S. 2012. Identification of *Hortaea werneckii* isolated from mangrove plant *Aegiceras comiculatum* based on morphology and rDNA sequences. Mycopathologia. 174:457-466.

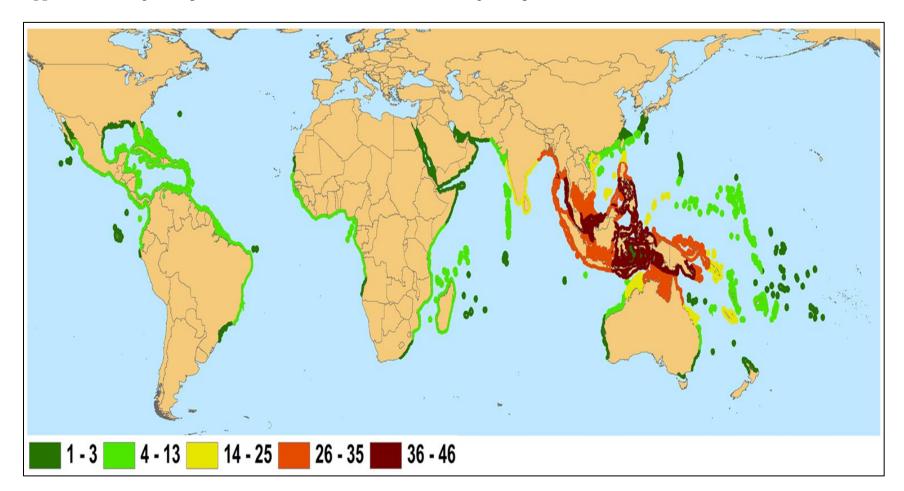
- Cheng Z, Pan J, Tang W, Chen Q, Lin Y. 2009. Biodiversity and biotechnological potential of mangrove-associated fungi. J Forestry Res. 20:63-72.
- Chinea J, Agosto R. 2007. Forests Surrounding the Joyuda Lagoon, Puerto Rico: 67 Years of Change. Caribb J Sci. 43:142-147.
- Chowdhary K, Kaushik N. 2015. Fungal endophyte diversity and bioactivity in the Indian medicinal plant *Ocimum sanctum* Linn. Plos One. 10:1-25.
- Clardy J, Fischbach M, Currie C. 2009. The natural history of antibiotics. Curr Biol. 19(11):437-441.
- Cole RJ, Cox RH. 1981. Handbook of Toxic Fungal Metabolites. New York: Academic Press, Inc., p. 266
- Costa I, Maia L, Cavalcanti M. 2012. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz J Microbiol. 43:1165-1173.
- Croteau R, Kutchan TM, Lewis NG. 2000. Biochemistry & Molecular Biology of Plants. In: Buchanan B, Gruissem W, Jones R, editors. Natural products (secondary metabolites). Wiley. p. 1250-1318.
- De Souza F, Romão-Dumaresq A, Lacava P, Harakava R, Azevedo J, de Melo I, Pizzirani-Kleiner A. 2013. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet. 59:153-166.
- Devi P, Rodrigues C, Naik CG, D'Souza L. 2012. Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, *Penicillium chrysogenum* MTCC 5108. Ind J Microbiol. 52:617–623.
- Doilom M, Manawasinghe I, Jeewon M, Jayawardena R, Tibpromma S, Hongsanan S, Meepol W, Lumyong S, Jones E, Hyde K. 2017. Can ITS sequence data identify fungal endophytes from cultures? A case study from *Rhizophora apiculata*. Mycosphere. 8:1869-1892.
- Douanla-Meli C, Langer E. 2012. Diversity and molecular phylogeny of fungal endophytes associated with *Diospyros crassiflora*. Mycology. 3(3):175-187.
- Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phyt Bull. 19:11-15.
- Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P. 2012. Pullularins E and F, two new peptides from the endophytic fungus *Bionectria ochroleuca* isolated from the mangrove plant *Sonneratia caseolaris*. Mar Drugs. 10:1081-1091
- El-nagerabi S, Elshafie A, Alkhanjari S. 2014. Endophytic fungi associated with endogenous *Boswellia sacra*. Biodiversitas. 15:24-30.
- Ellis MB. 1971. Dematiaceous Hyphomycetes. Commonwealth Mycologial Institute Kew. Surrey, England. p. 319-320.
- Facey P, Porter R, Laatsch H. 2016. A new indole alkaloid from the endophyte *Aspergillus ustus* isolated from the mangrove, *Avicennia germinans*. Planta Med. 81:S1-S381. doi: 10.1055/s-0036-1596734
- Fleming A. 1929. On the antibacterial action of cultures of a *Penicillium*, with special reference to their use in the isolation of b. Influenzæ. Br J Exp Pathol. 10(3):226-236.
- Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. 2011. Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol Mol Biol R. 75:583-609.
- Fuentes-Hernández A, Plucain J, Gori F, Pena-Miller R, Reding C, Jansen G, et al. 2015. Using a sequential regimen to eliminate bacteria at sublethal antibiotic dosages. Plos Biol. 13(4): e1002104. Available from: https://doi.org/10.1371/journal.pbio.1002104

- FWS. 2010. Comprehensive conservation plan and environmental assessment of Cabo Rojo National Wildlife Refuge [Internet]. Washington: Fish & Wildlife Service (US); [updated 2010 July; cited 2016 Jan] Available from: http://www.fws.gov/southeast/planning/PDFdocuments/Cabo%20Rojo%20Span/Cabo%2 0Rojo%20Draft%20CCP.pdf
- Gacem M, Ould El Hadj-Khelil A. 2016. Toxicology, biosynthesis, bio-control of aflatoxin and new methods of detection. Asian Pac J Trop Med. 6:808-814.
- Gilbert G, Mejía-Chang M, Rojas E. 2002. Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia. 132(2):278-285.
- Gilbert G, Sousa W. 2002. Host Specialization among Wood-Decay Polypore Fungi in a Caribbean Mangrove Forest1. Biotropica. 34:396.
- Gomes N, Bessa L, Buttachon S, Costa P, Buaruang J, Dethoup T, Silva A, Kijjoa A. 2014. Antibacterial and antibiofilm activities of tryptoquivalines and meroditerpenes isolated from the marine-derived fungi *Neosartorya paulistensis*, *N. laciniosa*, *N. tsunodae*, and the soil fungi *N. fischeri* and *N. siamensis*. Mar Drugs. 12:822-839.
- Gong B, Liu G, Liao R, Song J, Zhang H. 2017. Endophytic fungus *Purpureocillium* sp. A5 protect mangrove plant *Kandelia candel* under copper stress. Braz J Microbiol. 48:530-536.
- GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com
- Guo L, Huang G, Wang Y, He W, Zheng W, Hyde K. 2003. Molecular identification of white morphotype strains of endophytic fungi from *Pinus tabulaeformis*. Mycol Res. 107:680-688.
- Haaber J, Penadés J, Ingmer H. 2017. Transfer of Antibiotic Resistance in *Staphylococcus aureus*. Trends in Microbiol. 25:893-905.
- Haifei Y, Chen J, Hu L, Zhu Z, Li J. 2012. Mechanisms of antimicrobial resistance in *Serratia marcescens*. Afr J Microbiol Res. 6(21):4427-4437.
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 41:95-98.
- Harms H, Schlosser D, Wick L. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 9:177-192.
- Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G. 2013. Pestalotiopens A and B: Stereochemically Challenging Flexible Sesquiterpene-Cyclopaldic Acid Hybrids fromPestalotiopsissp. Chem A Eur J. 19:15556-15564.
- Hibbett D, Binder M, Bischoff J, Blackwell M, Cannon P, Eriksson O, Huhndorf S, James T, Kirk P, Lücking R et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res. 111:509-547.
- Holdridge LR. 1940. Some notes on the mangrove swamps of Puerto Rico. Caribb Forest. 1:19-29.
- Hughes C, Fenical W. 2010. Antibacterials from the Sea. Chem-Eur J. 16:12512-12525.
- Hong Y, Liao D, Hu A, Wang H, Chen J, Khan S, Su J, Li H. 2015. Diversity of endophytic and rhizoplane bacterial communities associated with exotic *Spartina alterniflora* and native mangrove using Illumina amplicon sequencing. Can J Microbiol. 61:723-733.
- Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y. 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus *Phomopsis* sp. ZSU-H76. Phytochemistry. 69:1604-1608.

- Huang H, Liu T, Wu X, Guo J, Lan X, Zhu Q, Zheng X, Zhang K. 2017. A new antibacterial chromone derivative from mangrove-derived fungus *Penicillium aculeatum* (No. 9EB). Nat Prod Res. 31:2593–2598.
- Izumi O, Akira N, Tadayoshi I. 2001. Assemblages of endophytic fungi on *Bruguiera gymnorrhiza* in the Shiira River basin, Iriomote Is. Res Commun. 20:41-49.
- Jin PF, Zuo WJ, Guo ZK, Mei WL, Dai HF. 2013. Metabolites from the endophytic fungus *Penicillium* sp.FJ-1 of *Ceriops tagal*. Acta Pharm Sin. 48:1688–1691.
- Kandalepas D, Blum M, Van Bael S. 2015. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill. Plos One. 10:e0122378.
- Kathiresan K, Bingham BL. 2001. Biology of mangroves and mangrove ecosystems. Adv Mar Biol. 40:81-251.
- Kaul S, Gupta S, Ahmed M, Dhar M. 2012. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev. 11:487-505.
- Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P. 2009. Xanalteric acids I and II and related phenolic compounds from an endophytic *Alternaria* sp. isolated from the mangrove plant *Sonneratia alba*. J. Nat. Prod. 72:2053-2057.
- Klich M. 2002. Identification of common *Aspergillus* species. Utrecht, Netherlands: Centraalbureau voor Schimmelcultures.
- Klich M. 2007. Aspergillus flavus: the major producer of aflatoxin. Mol Plant Path. 8:713-722.
- Koehn R, Garrison R. 1981. Fungi Associated with *Avicennia germinans* from the Vicinity of Port Aransas, Texas. Mycologia. 73(6):1183.
- Kohlmeyer J, Kohlmeyer E. 1977. Bermuda marine fungi. T Brit Mycol Soc. 68:207-219.
- Kong EF, Tsui C, Kucharíková S, Andes D, Van Dijck P, Jabra-Rizk MA. 2016. Commensal protection of *Staphylococcus aureus* against antimicrobials by *Candida albicans* biofilm matrix. MBIO. 7(5):e01365-16. doi:10.1128/mBio.01365-16.
- Kumar S, Kaushik N. 2012. Metabolites of endophytic fungi as novel source of biofungicide: a review. Phytochem Rev. 11:507-522.
- Kumaresan V, Suryanarayanan T. 2001. Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res. 105:1388-1391.
- Kumaresan V, Suryanarayanan T. 2002. Endophyte assemblages in young, mature and senescent leaves of *Rhizophora apiculata*: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers. 9:81-91.
- Larriba E, Jaime M, Nislow C, Martín-Nieto J, Lopez-Llorca L. 2015. Endophytic colonization of barley (*Hordeum vulgare*) roots by the nematophagous fungus *Pochonia chlamydosporia* reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res 128:665-678.
- Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J. 2000. Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus *Cryptosporiopsis quercina*. Org Lett. 2: 767-770.
- Li J, Sun X, Chen L, Guo L. 2016. Community structure of endophytic fungi of four mangrove species in Southern China. Mycology. 7:180-190.
- Li W, Wang M, Bian X, Guo J, Cai L. 2016. A High-Level Fungal Diversity in the Intertidal Sediment of Chinese Seas Presents the Spatial Variation of Community Composition. Frontiers in Microbiology. 7. http://sci-hub.tw/https://doi.org/10.3389/fmicb.2016.02098.

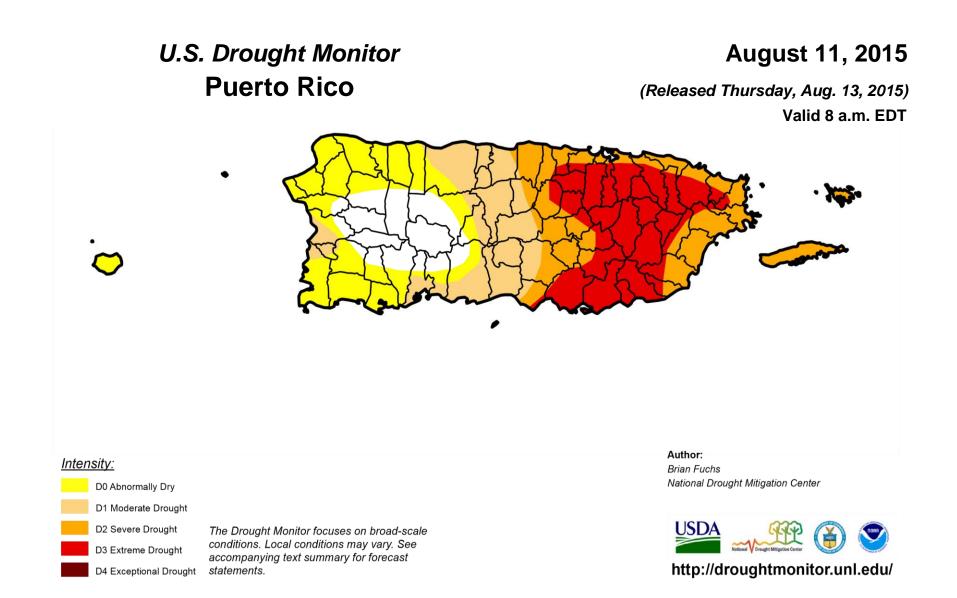
- Li W, Xiong P, Zheng W, Zhu X, She Z, Ding W, Li C. 2017. Identification and antifungal activity of compounds from the mangrove endophytic fungus *Aspergillus clavatus* R7. Mar Drugs. 15:259.
- Ling OM. 2013. Screening of mangrove endophytic fungi for bioactive compounds [MS]. Swinburne University of Technology. Available from: http://www.swinburne.edu.my/library/theses/ths/S/Screening%20of%20Mangrove%20En dophytic%20Fungi%20for%20Bioactive%20Compounds.pdf
- Little E, Wadsworth F. 1965. Common trees of Puerto Rico and the Virgin Islands. J Ecol. 53:818.
- Liu A, Wu X, Xu T. 2007. Research advances in endophytic fungi of mangrove. J Appl Ecol. 18(4):912-918.
- Liu F, Cai XL. Yang H, Xia X, Guo ZY, Yuan J, Li MF, She ZG, Lin YC. 2010. The bioactive metabolites of the mangrove endophytic fungus *Talaromyces* sp. ZH-154 isolated from *Kandelia candel* (L.). Druce Planta Med. 76:185–189.
- Lodge D, Fisher P, Sutton B. 1996. Endophytic fungi of *Manilkara bidentata* leaves in Puerto Rico. Mycologia. 88:733.
- López-Díaz T, Flannigan B. 1997. Mycotoxins of *Aspergillus clavatus*: Toxicity of Cytochalasin E, Patulin, and Extracts of Contaminated Barley Malt. J Food Protec. 60:1381-1385.
- Ludwig-Müller J. 2015. Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25792513.
- Lugo AE, Cintron G. 1975. The mangrove forests of Puerto Rico and their management. In: Walsh, G., Snedaker, S., Teas, H. editors. Proceedings of International Symposium on Biology and Management of Mangroves. Gainesville (FL): Institute of Food and Agricultural Sciences, University of Florida. p. 825–846.
- Lugo A, Snedaker S. 1974. The ecology of mangroves. Annu Rev Ecol Syst. 5:39-64.
- Maciá-Vicente, JG, Jansson, H-B, Talbot, NJ and Lopez-Llorca, LV. 2009. Real-time PCR quantification and live-cell imaging of endophytic colonization of barley. *Hordeum vulgare* roots by *Fusarium equiseti* and *Pochonia chlamydosporia*. New Phytol. 182:213–228.
- Malinowski D, Belesky D. 2000. Adaptations of endophyte-infected cool-season grasses to environmental stresses. Crop Sci. 40(4):923-940.
- Manterola F. 2016. Hydrocarbon and insecticide induction of *Beauveria bassiana* catalysis of organosulfur compounds [Ph.D]. University of Iowa.
- Maria G, Sridhar K. 2003. Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol. 55:241-251.
- Maria G, Sridhar K, Raviraja N. 2005. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agr Tech. 1(1):67-80.
- Martin R, Gazis R, Skaltsas D, Chaverri P, Hibbett D. 2015. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of *Hevea*. Mycologia. 107:284-297.
- Martín-Rodríguez A, Reyes F, Martín J, Pérez-Yépez J, León-Barrios M, Couttolenc A, Espinoza C, Trigos Á, Martín V, Norte M et al. 2014. inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs. 12:5503-5526.
- Martinuzzi S, Gould W, Lugo A, Medina E. 2009. Conversion and recovery of Puerto Rican mangroves: 200 years of change. Forest Ecol Manag. 257:75-84.


- Mehta G, Pan S. 2004. Total synthesis of the novel antifungal agent (.+-.)-jesterone. Org Lett. 6(5): 811-813.
- Miller G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31:426-428. [accessed 2017 Mar 29]
- Min Y, Park M, Fong J, Quan Y, Jung S, Lim Y. 2014. Diversity and saline resistance of endophytic fungi associated with *Pinus thunbergii* in coastal shelterbelts of Korea. J Microbiol Biotech. 24:324-333.
- Monod J. 1949. The Growth of Bacterial Cultures. Ann Rev Microbiol. 3:371-394.
- Morell-Rodriguez G. 2008. Potential of fungal endophytes from *Thalassia testudinum* bank ex K.D. koenig as producers of bioactive compounds [M.S]. University of Puerto Rico-Mayaguez Campus. https://wordpress.uprm.edu/oeg/es/tesis-digitales-biologia/#2008
- Mousa WK, Raizada MN. 2013. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol. doi: 10.3389/fmicb.2013.00065.
- Neema J, Manomi S, Rosamma P. 2015. Isolation and characterization of endophytic fungi from *Avicennia officinalis*. Int J Research Biomed Biotech. 5(1):4-8.
- Netzer N, Küpper T, Voss H, Eliasson A. 2012. The actual role of sodium cromoglycate in the treatment of asthma—a critical review. Sleep Breath. 16:1027-1032.
- Nieves-Rivera AM. 2005. Coastal mycology of Puerto Rico: a survey and biologicalaspects of marine, estuarine, and mangrove fungi. Thesis. Available from: http://www.academia.edu/574279/Coastal_mycology_of_Puerto_Rico_A_survey_and_bi ological_aspects_of_marine_estuarine_and_mangrove_fungi.
- Nieves-Rivera AM, Tattar T, Williams E. 2002. Sooty mould-planthopper association on leaves of the black mangrove *Avicennia germinans*, (l.) Stearn in southwestern Puerto Rico. Arboricultural J. 26:141-155.
- NOAA. 2016. AHPS Precipitation Analysis. Water.weather.gov. [accessed 2016 Jan 8]. http://water.weather.gov/precip/
- O'Neil, M.J. (ed.). The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, NJ: Merck and Co., Inc., 2006. p. 1217
- Olexa, M.T. and Freeman, T.E. 1974. Occurrence of three unrecorded diseases on mangrove in Florida. In: G. Walsh, S. Snedaker and H. Teas. Editors. International Symposium on Biology and Management of Mangroves 2:688-692.
- Olexa M. 1976. The distribution, etiology, and importance of red mangrove diseases in Florida. [PhD]. [place unknown]: University of Florida.
- Osorio J, Wingfield M, Roux J. 2014. A review of factors associated with decline and death of mangroves, with particular reference to fungal pathogens. S Afri J Bot. 103:295-301.
- Padumadasa C, Xu Y, Wijeratne E, Espinosa-Artiles P, U'Ren J, Arnold A, Gunatilaka A. 2018. Cytotoxic and noncytotoxic metabolites from *Teratosphaeria* sp. FL2137, a fungus associated with *Pinus clausa*. J Nat Prod. 81:616-624.
- Pandi M, SenthilKumaran R, RajapriyaP, Yogeswari S, Muthumary J. 2011. Taxol, a potential drug for the treatment of cancer. Biores Bull. 1:001-012.
- Pang K, Vrijmoed L, Khiang Goh T, Plaingam N, Jones E. 2008. Fungal endophytes associated with *Kandelia candel* (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Bot Mar. 51(3):171-178.


- Petrini O. 1986. Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Huevel J, eds. Microbiology of the phyllosphere. Cambridge, UK: Cambridge University Press. p. 175-187.
- Pitt J. 1988. A laboratory guide to common Penicillium species. North Ryde: Commonwealth Scientific and Industrial Research Organization.
- Polidoro B, Carpenter K, Collins L, Duke N, Ellison A, Ellison J, Farnsworth E, Fernando E, Kathiresan K, Koedam N et al. 2010. The loss of species: Mangrove extinction risk and geographic areas of global concern. Plos One. 5(4):e10095. doi:10.1371/journal.pone.0010095
- Porras-Alfaro A, Bayman P. 2011. Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annu Rev Phytopathol. 49:291-315.
- Quiagen Aarhus A/S. 2016. CLC Main Workbench. Denmark: Qiangen.
- Rağbetli C, Parlak M, Bayram Y, Guducuoglu H, Ceylan N. 2016. Evaluation of Antimicrobial Resistance in *Staphylococcus aureus* Isolates by Years. Interdiscip Perspect Infect Dis. 2016:1-4.
- Rahman H, Austin B, Mitchell W, Morris P, Jamieson D, Adams D, Spragg A, Schweizer M. 2010. Novel Anti-Infective Compounds from Marine Bacteria. Mae Drugs. 8:498-518.
- Rahmansyah S, Rahmansyah N. 2013. Endophytic fungi isolated from mangrove plant and have antagonism role against *Fusarium* wilt. ARPN JABS. 8(3):251-257.
- Ravindran C, Naveenan T, Varatharajan G, Rajasabapathy R, Meena R. 2012. Antioxidants in mangrove plants and endophytic fungal associations. Bot Mar. 55:269-279.
- Richardson LA. 2017. Understanding and overcoming antibiotic resistance. PLoS Biol. 15(8): e2003775. Available from: https://doi.org/10.1371/journal.pbio.2003775
- Rodriguez RJ, White JF, Arnold AE, Redman RS. 2008. Fungal endophytes: diversity and functional roles. New Phytol. 182(2):314-330.
- Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M. 2005. Bacteria Associated with Spores of the Arbuscular Mycorrhizal Fungi *Glomus geosporum* and *Glomus constrictum*. Appl Environ Microb. 71:6673-6679.
- Samaga P, Rai V, Rai K. 2013. *Bionectria ochroleuca* NOTL33—an endophytic fungus from *Nothapodytes foetida* producing antimicrobial and free radical scavenging metabolites. Ann Microbiol. 64:275-285.
- Sebastianes F, Cabedo N, Aouad N, Valente A, Lacava P, Azevedo J, Pizzirani-Kleiner A, Cortes D. 2012. 3-Hydroxypropionic Acid as an Antibacterial Agent from Endophytic Fungi *Diaporthe phaseolorum*. Curr Microbiol. 65:622-632.
- Schoch C, Seifert K, Huhndorf S, Robert V, Spouge J, Levesque C, Chen W, Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 10916):6241-6246.
- Scholander P, Hammel H, Hemmingsen E, Garey W. 1962. Salt balance in mangroves. Plant Physiol. 37:722-729.
- Schulz B, Boyle C, Draeger S, Römmert A, Krohn K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Res. 106:996-1004.
- Shang Z, Li XM, Li CS, Wang BG. 2012. Diverse secondary metabolites produced by marinederived fungus *Nigrospora* sp. MA75 on various culture media. Chem Biodivers. 9:1338– 1348.

- Silva M, Almeida A, Arruda F, Gusmao N. 2011. Endophytic fungi from Brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Méndez-Vilas A, editors. Science against microbial pathogens: communicating current research and technological advances. 1st ed. Badajoz, Spain: Formatex Research Center. p. 1260-1266.
- Sitharashmi S, Madhushree K, Lala Behari S. 2015. Bio-beneficiation of iron ore using heterotrophic microorganisms. J Microbiol Biotech Res. 5:54-60.
- Sobrado M. 1999. Drought effects on photosynthesis of the mangrove, *Avicennia germinans*, under contrasting salinities. Trees. 13:125-130.
- Spiering M, Greer DH, Schmid J. 2006. Effects of the fungal endophyte, *Neotyphodium lolii*, on net photosynthesis and growth rates of perennial ryegrass (*Lolium perenne*) are independent of in planta endophyte concentration. Ann Bot. 98(2):379-387.
- Stark A, Essigmann J, Demain A, Skopek T, Wogan G. 1979. Aflatoxin B1 mutagenesis, DNA binding, and adduct formation in *Salmonella typhimurium*. P Natl Acad Sci-Biol. 76:1343-1347.
- Strobel G, Miller R, Martinez-Miller C, Condron M, Teplow D, Hess W. 1999. Cryptocandin, a potent antimycotic from the endophytic fungus *Cryptosporiopsis cf. quercina*. Microbiol. 145: 1919-1926.
- Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 67:491-502.
- Strobel G., Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J. 2008. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus *Gliocladium roseum* (NRRL 50072). Microbiol. 154: 3319-3328.
- Supaphon P, Phongpaichit S, Rukachaisiriku; V, Sakayaroj J. 2012. Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass *Enhalus acoroides*. Indian J Mar Sci. 43:785-797.
- Tao G, Lui Z, Hyde K, Lui X, Yu Z. 2008. Whole rDNA analysis reveals novel and endophytic fungi in *Bletilla ochracea* (Orchidaceae). Fungal Divers. 33:101-122.
- Tanwar J, Das S, Fatima Z, Hameed S. 2014. Multidrug Resistance: An Emerging Crisis. Interdiscip Perspect Infect Dis. 2014:1-7.
- Thatoi H, Behera B, Mishra R. 2013. Ecological role and biotechnological potential of mangrove fungi: a review. Mycology. 4(1):54-71. doi: 10.1080/21501203.2013.785448.
- Thomas S, Crozier J, Catherine Aime M, Evans H, Holmes K. 2008. Molecular characterization of fungal endophytic morphospecies associated with the indigenous forest tree, *Theobroma gileri*, in Ecuador. Mycological Rese. 112:852-860.
- U'Ren J, Lutzoni F, Miadlikowska J, Laetsch A, Arnold A. 2012. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 99:898-914.
- USDA. 2015. U.S. Drought Monitor Weekly Comparison. Droughtmonitor.unl.edu. [accessed 2016 Jan 7]. Available from: http://droughtmonitor.unl.edu/MapsAndData/WeeklyComparison.aspx
- Varga J, Due M, Frisvad JC, Samson RA. 2007. Taxonomic revision of *Aspergillus* section Clavati based on molecular, morphological and physiological data. Stud Mycol. 59:89–106
- Vassal G, Zwaan C, Ashley D, Le Deley M, Hargrave D, Blanc P, Adamson P. 2013. New drugs for children and adolescents with cancer: the need for novel development pathways. Lancet Oncol. 14:117-124.

- Vazquez P, Holguin G, Puente ME, Lopez–Cortes A, Bashan Y. 2000. Phosphate–solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils. 30:460-468.
- Vega F, Posada F, Catherine Aime M, Pava-Ripoll M, Infante F, Rehner S. 2008. Entomopathogenic fungal endophytes. Biol Control. 46:72-82.
- Vining L. 1990. Functions of secondary metabolites. Ann Rev Microbiol. 44:395-427.
- Wang H, Lu Z, Qu H, Liu P, Miao C, Zhu T, Li J, Hong K, Zhu W. 2012. Antimicrobial aflatoxins from the marine-derived fungus *Aspergillus flavus* 092008. Arch Pharm Res. 35:1387-1392.
- Wang C, Wang J, Huang Y, Chen H, Li Y, Zhong L. 2013. Anti-mycobacterial activity of marine fungus-derived 4-deoxybostrycin and nigrosporin. Molecules. 18:1728–1740.
- Wen L, Cai X, Xu F, She Z, Chan W, Vrijmoed L, Jones E, Lin Y. 2009. Three Metabolites from the Mangrove Endophytic Fungus Sporothrix sp. (#4335) from the South China Sea. The J Org Chem. 74:1093-1098.
- Wessels J. 1999. Fungi in Their Own Right. Fungal Genet Biol. 27:134-145.
- Winsor C. 1932. The Gompertz Curve as a Growth Curve. P Natl Acad Sci-Biol. 18:1-8.
- White TJ, Bruns T, Lee S, Taylor J.1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. editors. PCR Protocols: a guide to methods and applications: Academic Press, New York, USA: 315–322.
- Wong J, Hsieh D. 1976. Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. P Natl Acad Sci-Biol. 73:2241-2244.
- Worthington R, Melander C. 2013. Combination approaches to combat multidrug-resistant bacteria. Trends in Biotechnol. 31:177-184.
- Xing X, Chen J, Xu M, Lin W, Guo S. 2010. Fungal endophytes associated with *Sonneratia* (Sonneratiaceae) mangrove plants on the south coast of China. Forest Pathol. 41:334-340.
- Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada R, Lin W, Wu J, Proksch P. 2009. Chromones from the Endophytic Fungus *Pestalotiopsis* sp. Isolated from the Chinese Mangrove Plant *Rhizophora mucronata*. J Nat Prod. 72:662-665.
- Zwietering M, Jongenburger I, Rombouts F, van 't Riet K. 1990. Modeling of the bacterial growth curve. Appl Environ Microbiol. 56:1875-1881.


Appendix A: Topographic map of the Cabo Rojo National Wildlife Refuge (FWS 2010).

Appendix B: Mangrove Species Richness: Native distributions of mangrove species (Polidoro et al. 2010).

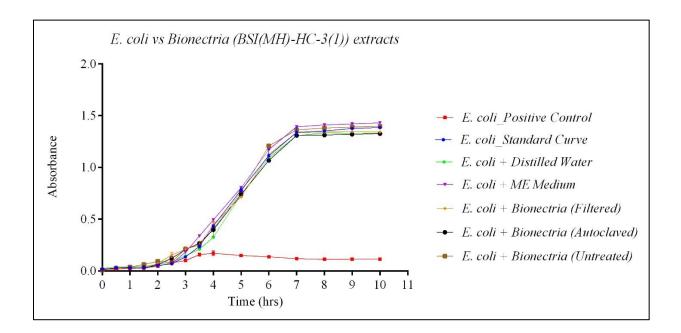
Appendix C: Map of drought areas in Puerto Rico in August 2015 (USDA 2015).

				BSI			
DNA/PCR Codes	Plates Codes	Accesion Number	Identification	Phylum	Class	Query Covarage / Max Identity	Source
1	BSI-HJ-3(1)	LN809021.1	Nigrospora sphaerica	Ascomycota	Sordariomycetes	99/100	Cave air sample/Spain
2	BSI-HV-1(1)	N/A	Aspergillus niger	Ascomycota	Eurotiomycetes	N/A	N/A
3	BSI-HV-1(2)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
4	BSI-HV-2(1)	N/A	Aspergillus flavus	Ascomycota	Eurotiomycetes	N/A	N/A
5	BSI-HV-3(1)	LN997673.1	Wrightoporia tropicalis	Basidiomycota	Agaromycetes	84/91	Leaves endophyte/Phillipines
6	BSI-HV-3(2)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
7	BSI-HC-1(1)	N/A	Nigrospora sphaerica	Ascomycota	Sordariomycetes	N/A	N/A
8	BSI-HC-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
9	BSI-HC-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
10	BSI-HC-3(2)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
11	BSI-C-2(1)	LN809021.1	Nigrospora sphaerica	Ascomycota	Sordariomycetes	98/100	Cave air sample/Spain
12	BSI-R-2(1)	KJ832044.1	Stereum sp.	Basidiomycota	Agaromycetes	90/100	Rubber tree leaf/ Peru
13	BSI-R-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
14	BSI-R-3(2)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
15	BSI(1.5)-HJ-2(1)	KC492457.1	Nigrospora sp.	Ascomycota	Sordariomycetes	98/100	Mango endophyte/China
18	BSI(1.5)-HV-3(1)	LN808894.1	Pochonia chlamydosporia	Ascomycota	Sordariomycetes	100/99	Cave/Spain
22	BSI(1.5)-HC-2(1)	LN809021.1	Nigrospora sphaerica	Ascomycota	Sordariomycetes	100/97	Cave air sample/Spain
23	BSI(1.5)-HC-3(1)	KP133219.1	Nemania diffusa	Ascomycota	Sordariomycetes	99/99	Plant endophyte/Ecuador
24	BSI(1.5)-C-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
25	BSI(1.5)-C-2(2)	JN997370.1	Hortaea werneckii	Ascomycota	Dothideomycetes	99/99	Silicone scuba diving equipment/Spain
26	BSI(1.5)-C-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
28	BSI(1.5)-R-1(1)	KT898392.1	Simplicillium lamellicota	Ascomycota	Sordariomycetes	99/98	Plant/Iran
29	BSI(1.5)-R-1(2)	KP184331.1	Acremonium sp.	Ascomycota	Sordariomycetes	95	Arthropods/Portugal
30	BSI(1.5)-R-3(1)	N/A	Bionectria sp.	Ascomycota	Sordariomycetes	N/A	N/A
31	BSI(3.5)-HJ-1(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
35	BSI(3.5)-HV-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
36	BSI(3.5)-HV-3(1)	KJ439140.1	Penicillium citrinum	Ascomycota	Eurotiomycetes	99/99	Root vegetable/Brazil
37	BSI(3.5)-HC-1(1)	KJ439140.1	Penicillium citrinum	Ascomycota	Eurotiomycetes	100/99	Root vegetable/Brazil
38	BSI(3.5)-HC-2(1)	KJ862538.1	Penicillium sp.	Ascomycota	Eurotiomycetes	98/100	Plant endophyte/China
39	BSI(3.5)-HC-3(1)	KT959321.1	Hortaea werneckii	Ascomycota	Dothideomycetes	98/99	Coral fungi/China
40	BSI(3.5)-HC-3(2)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
42	BSI(3.5)-C-1(1)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
43	BSI(3.5)-C-1(2)	KT959321.1	Hortaea werneckii	Ascomycota	Dothideomycetes	99/99	Coral fungi/China
44	BSI(3.5)-C-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
45	BSI(3.5)-C-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
46	BSI(3.5)-C-3(2)	KT959321.1	Hortaea werneckii	Ascomycota	Dothideomycetes	98/99	Coral fungi/China
47	BSI(3.5)-R-3(1)	KT959321.1	Hortaea werneckii	Ascomycota	Dothideomycetes	99/99	Coral fungi/China
48	BSI(MH)-HJ-2(1)	N/A	Aspergillus clavatus	Ascomycota	Eurotiomycetes	N/A	N/A
51	BSI(MH)-HV-3(1)	N/A	Hortaea werneckii	Ascomycota	Dothideomycetes	N/A	N/A
53	BSI(MH)-HC-2(1)	N/A	Bionectria sp.	Ascomycota	Sordariomycetes	N/A	N/A
54	BSI(MH)-HC-3(1)	KF578124.1	Bionectria ochroleuca	Ascomycota	Sordariomycetes	98/99	Inner root/Blazil

Appendix D: Fungi isolated from the back mangrove Avicennia germinans in Bahia Salinas, Cabo Rojo, Puerto Rico.

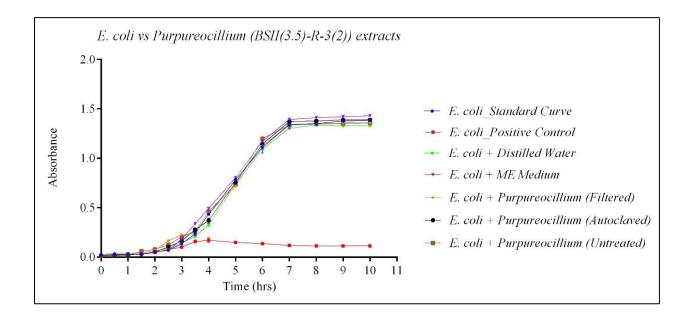
				BSII			
DNA/PCR Codes	Plates Codes	Accesion Number	Identification	Phylum	Class	Query Covarage / Max Identity	Source
1	BSII-HV-2(1)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
2	BSII-HC-2(1)	KT385760.1	Penicillium citrinum	Ascomycota	Eurotiomycetes	100/100	Airborne fungi/Thailand
3	BSII-R-1(1)	KT968545.1	Purpureocillium lilacinum	Ascomycota	Sordariomycetes	100/99	Mitochondrion/China
4	BSII-R-2(1)	KT968545.1	Purpureocillium lilacinum	Ascomycota	Sordariomycetes	99/100	Mitochondrion/China
5	BSII(1.5)-HJ-3(1)	N/A	Purpureocillium sp.	Ascomycota	Sordariomycetes	N/A	N/A
6	BSII(1.5)-HV-1(1)	N/A	Purpureocillium sp.	Ascomycota	Sordariomycetes	N/A	N/A
7	BSII(1.5)-HV-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
8	BSII(1.5)-HV-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
9	BSII(1.5)-HC-1(1)	KF269188.1	Teratosphaeria sp.	Ascomycota	Dothideomycetes	100/92	Leaf endophyte/Australia
10	BSII(1.5)-HC-1(2)	N/A	Teratosphaeria sp.	Ascomycota	Dothideomycetes	N/A	N/A
11	BSII(1.5)-HC-2(1)	N/A	Physalospora sp.	Ascomycota	Sordariomycetes	N/A	N/A
12	BSII(1.5)-HC-2(2)	JQ341096.2	Physalospora sp.	Ascomycota	Sordariomycetes	97/94	Ebony endophyte/Cameroon
13	BSII(1.5)-HC-2(3)	KF269188.1	Teratosphaeria sp.	Ascomycota	Dothideomycetes	100/92	Leaf endophyte/Australia
14	BSII(1.5)-HC-3(1)	KP184331.1	Acremonium sp.	Ascomycota	Sordariomycetes	98/99	Rubber tree/Thailand
15	BSII(1.5)-HC-3(2)	KJ863528.1	Penicillium citrinum	Ascomycota	Eurotiomycetes	100/99	Plant endophyte/China
16	BSII(3.5)-HJ-3(1)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
17	BSII(3.5)-HV-1(1)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
18	BSII(3.5)-HV-3(1)	N/A	Amorosia sp.	Ascomycota	Sordariomycetes	N/A	N/A
19	BSII(3.5)-HC-1(1)	KF269188.1	Teratosphaeria sp.	Ascomycota	Dothideomycetes	99/92	Leaf endophyte/Australia
20	BSII(3.5)-HC-1(2)	JN997374.1	Hortaea werneckii	Ascomycota	Dothideomycetes	98/99	Coral fungi/China
21	BSII(3.5)-HC-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
22	BSII(3.5)-HC-2(2)	AM292047.1	Amorosia littoralis	Ascomycota	Dothideomycetes	87/91	Marine intertidal sediment/Bahamas
23	BSII(3.5)-HC-2(3)	N/A	Teratosphaeria sp.	Ascomycota	Dothideomycetes	N/A	N/A
24	BSII(3.5)-HC-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
25	BSII(3.5)-R-3(1)	KJ439140.1	Penicillium citrinum	Ascomycota	Eurotiomycetes	99/99	Root vegetables/Brazil
26	BSII(3.5)-R-3(2)	KT968545.1	Purpureocillium lilacinum	Ascomycota	Sordariomycetes	100/99	Mitochondrion/China
27	BSII(MH)-HV-2(1)	LC105679.1	Penicillium citrinum	Ascomycota	Eurotiomycetes	98/100	Manuscript/Indonesia
28	BSII(MH)-HV-3(1)	N/A	Bionectria sp.	Ascomycota	Sordariomycetes	N/A	N/A
29	BSII(MH)-HC-2(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
30	BSII(MH)-HC-3(1)	N/A	Bionectria sp.	Ascomycota	Sordariomycetes	N/A	N/A

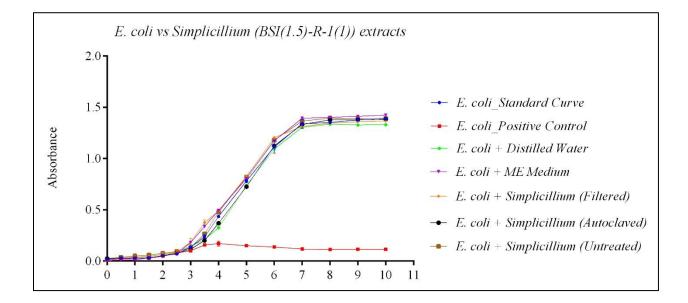
Appendix D: Fungi isolated from the back mangrove Avicennia germinans in Bahia Salinas, Cabo Rojo, Puerto Rico.

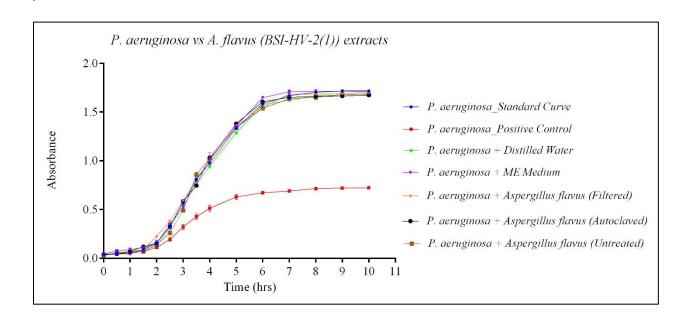

				BSIII			
DNA/PCR Codes	Plates Codes	Accesion Number	Identification	Phylum	Class	Query Covarage / Max Identity	Source
1	BSIII-HC-1(2)	KM362374.1	Bipolaris sp.	Ascomycota	Dothideomycetes	98/100	Grapevine endophyte/Brazil
2	2 BSIII-HC-1(2)(1)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
3	BSIII-HC-1(2)(2)	N/A	Teratosphaeria sp.	Ascomycota	Dothideomycetes	N/A	N/A
4	BSIII-HC-2(1)	N/A	Teratosphaeria sp.	Ascomycota	Dothideomycetes	N/A	N/A
5	5 BSIII(1.5)-HC-1(1)	N/A	Cladosporium sp.	Ascomycota	Dothideomycetes	N/A	N/A
6	BSIII(1.5)-HC-2(1)	N/A	Teratosphaeria sp.	Ascomycota	Dothideomycetes	N/A	N/A
7	BSIII(1.5)-HC-2(2)	N/A	Bionectria sp.	Ascomycota	Sordariomycetes	N/A	N/A
8	BSIII(1.5)-HC-2(3)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
9	BSIII(1.5)-HC-3(1)	JN851005.1	Cladosporium sphaerospermum	Ascomycota	Dothideomycetes	99/99	Coral reef/China
10	BSIII(1.5)-R-3(1)(1)	KC845931.1	Cladosporium sphaerospermum	Ascomycota	Dothideomycetes	98/99	Noni tree fungi/China
11	BSIII(1.5)-R-3(1)(2)	N/A	Penicillium sp.	Ascomycota	Eurotiomycetes	N/A	N/A
12	2 BSIII(1.5)-HC-3(2)	N/A	Bionectria sp.	Ascomycota	Sordariomycetes	N/A	N/A
13	BSIII(3.5)-HC-2(1)	N/A	Cladosporium sp.	Ascomycota	Dothideomycetes	N/A	N/A
14	BSIII(3.5)-HC-2(2)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
15	5 BSIII(3.5)-HC-3(1)	N/A	Hortaea sp.	Ascomycota	Dothideomycetes	N/A	N/A
16	6 BSIII(3.5)-R-3(2)	KP735247.1	Cladosporium sphaerospermum	Ascomycota	Dothideomycetes	97/100	Chicken feces/Philippines
17	BSIII(MH)-R-1(1)	N/A	Purpureocillium sp.	Ascomycota	Sordariomycetes	N/A	N/A
18	BSIII(MH)-R-2(1)	KP735247.1	Cladosporium sphaerospermum	Ascomycota	Dothideomycetes	97/100	Chicken feces/Philippines
19	BSIII(MH)-R-2(2)	DQ092532.1	Cladosporium sp.	Ascomycota	Dothideomycetes	98/99	Marine sponge/Hawaii
20	BSIII(MH)-R-3(1)	KT803070.1	Aspergillus terreus	Ascomycota	Eurotiomycetes	99/99	Cotton root/China

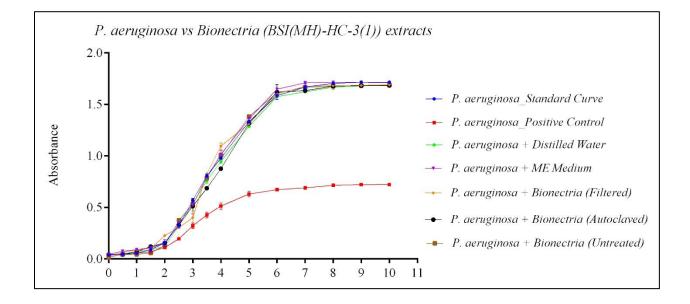

Appendix D: Fungi isolated from the back mangrove Avicennia germinans in Bahia Salinas, Cabo Rojo, Puerto Rico.

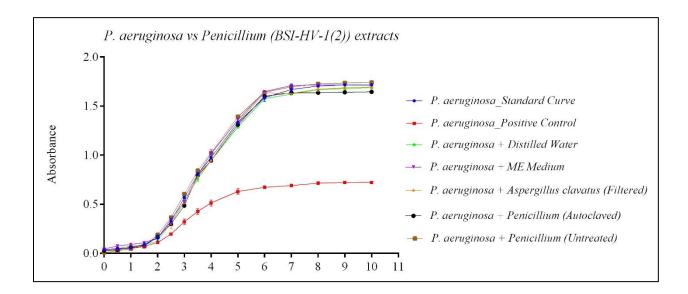
Appendix E: Isolates from this experiment founded as endophytes or mangrove endophytes.

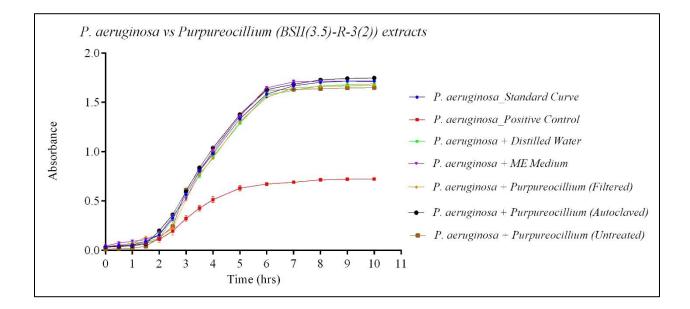

Fungus	Plant	Country/Reference	Mangrove	Country/Reference
Acremonium	Coffea arabica	Colombia/ Vega et al. 2008	Rhizophora mucronata	India/ Ananda and Sridhar 2002
Amorosia	Not found	Not found	Avicennia marina	China/Li, Xiong, et al. 2016
Aspergillus sp.	Casuarina equisetifolia	Puerto Rico/ Bayman et al. 1998	Rhizophora mucronata	India/Ananda and Sridhar 2002
Aspergillus clavatus	Myoporum bontioides	China/Li et al. 2017	Avicennia marina	India/Bharathidasan and Panneerselvam 2015
Aspergillus flavus	Hibiscus tiliaceus Boswellia sacra	China/Wang et al. 2012 Saudi Arabia/El-nagerabi et al. 2014	Avicennia marina	India/Bharathidasan and Panneerselvam 2015
Aspergillus niger	Sesbania bispinosa	India/Anita et al. 2009	Avicennia alba, Sonneratia and Laguncularia racemosa	Indonesia/ Rahmansyah and Rahmansyah 2013 Brazil/Silva et al. 2011
Bionectria	Nothapodytes foetida	India/ Samaga et al. 2013	Sonneratia caseolaris	China/ Ebrahim et al. 2012
Bipolaris	Ocimum sanctum Enhalus acoroides	India/ Chowdhary and Kaushik 2015 Thailand/ Supaphon et al. 2012	Not specified	Thailand/ Doilom et al. 2017
Cladosporium	Coffea arabica	Puerto Rico/ Vega et al. 2008	Kandelia candel, Aegiceras corniculatum Avicennia marina and Rhizopora apiculata	China/Li, Xiong, et al. 2016 India/Kumaresan and Suryanarayanan 2002
Hortaea	Bletilla ochracea	China/ Tao et al. 2008	Aegiceras corniculatum, Avicennia marina and Bruguiera gymnorrhiza	China/Chen et al. 2012; Li, Xiong, et al. 2016
Nemania	Pinus tabulaeformis	China/Guo et al. 2003	Rhizophora apiculata	Thailand/Doilom et al. 2017
Nigrospora	Manilkara bidentata	Puerto Rico/ Lodge et al. 1996	Rhizophora mucronata	India/Ananda and Sridhar 2002
Penicillium	Manilkara bidentate Casuarina equisetifolia	Puerto Rico/ Lodge et al. 1996 Puerto Rico/ Bayman et al. 1998	Rhizophora mangle	Brazil/Costa et al. 2012
Physalospora	Diospyros crassiflora	Cameroon/ (Douanla-Meli and Langer 2012)	Not found	Not found
Pochonia	Hordeum vulgare	Spain/Larriba et al. 2015; Maciá-Vicente et al. 2009	Not found	Not found
Purpureocillium	Gossypium hirsutum	EEUU/Castillo-López et al. 2014	Kandelia candel	China/ Gong et al. 2017
Simplicillium	Enhalus acoroides Pinus thunbergii	Thailand/ Supaphon et al. 2012 Korea/ Min et al. 2014	Not found	Not found
Stereum	Hevea Pinus thunbergii	Peru, Mexico, Brazil and Cameroon/ Martin et al. 2015 Korea/ Min et al. 2014	Not found	Not found
Teratosphaeria	Pinus clausa	EEUU/ Padumadasa et al. 2018	Not found	Not found
Wrightoporia	Theobroma gileri	Ecuador/ Thomas et al. 2008	Not found	Not found

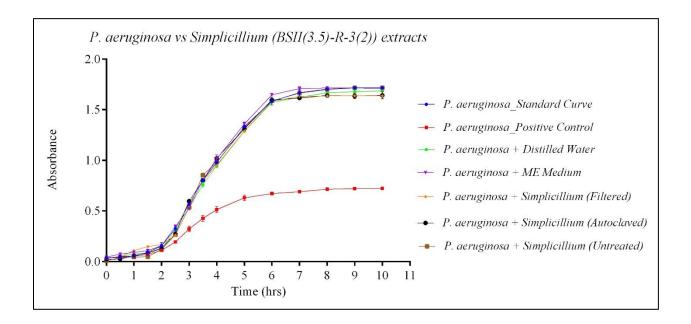

Appendix F: First Assay: *E. coli* growth curves showing not significant differences between treatments (p-value > 0.05).



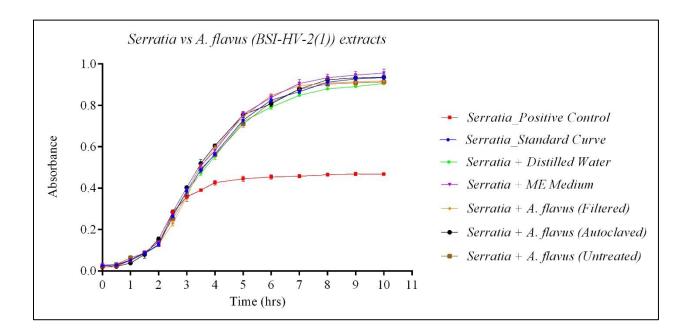

Appendix F: First Assay: *E. coli* growth curves showing not significant differences between treatments (p-value > 0.05).

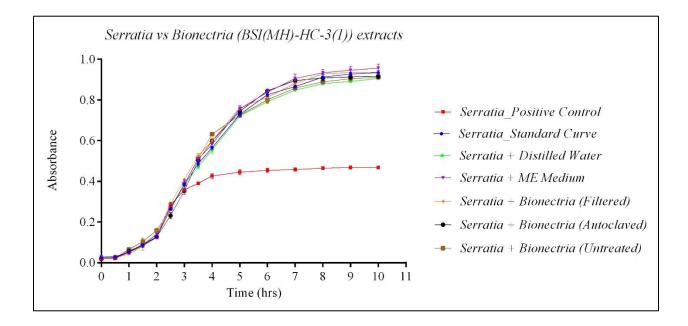



Appendix G: First Assay: *P. aeruginosa* growth curves showing not significant differences between treatments (p-value > 0.05).

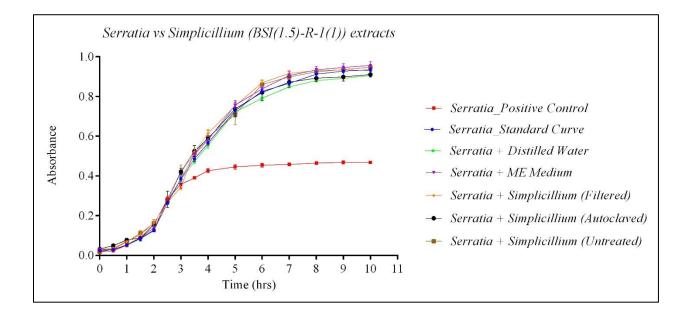


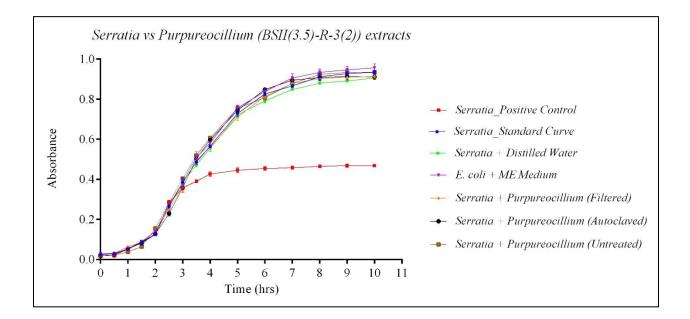
Appendix G: First Assay: *P. aeruginosa* growth curves showing not significant differences between treatments (p-value > 0.05).



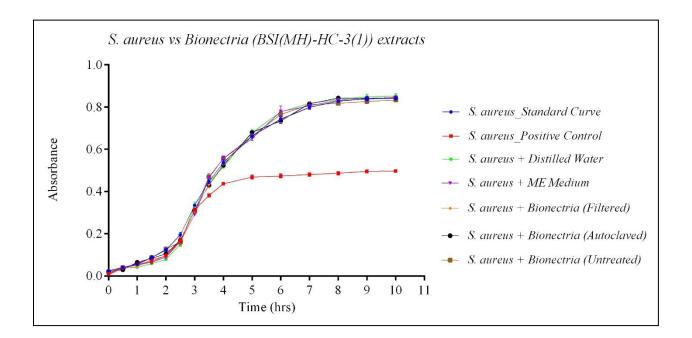


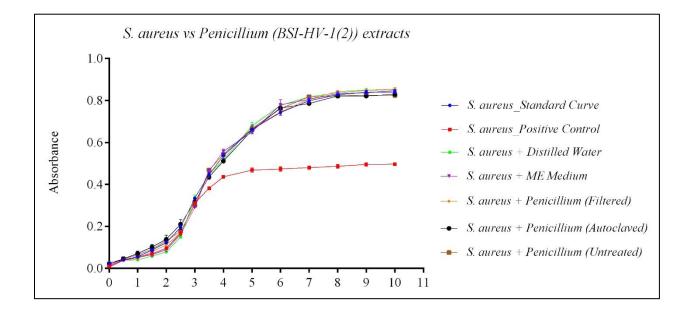
Appendix G: First Assay: *P. aeruginosa* growth curves showing not significant differences between treatments (p-value > 0.05).


Appendix H: First Assay: *S. marcescens* growth curves showing not significant differences between treatments (p-value > 0.05).

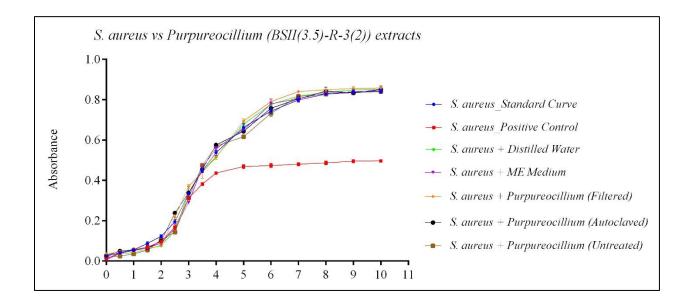


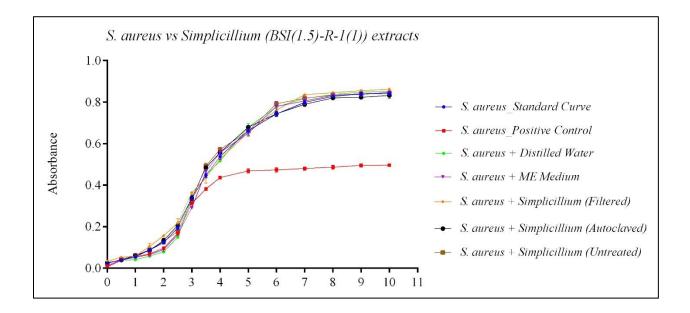
Appendix H: First Assay: S. marcescens growth curves showing not significant differences between treatments (p-value > 0.05).

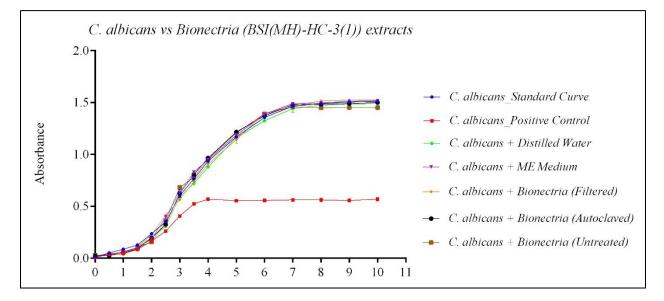


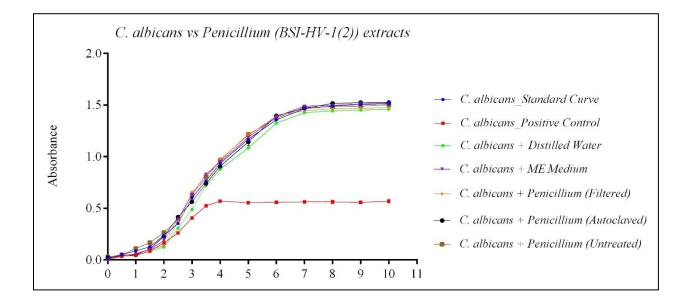


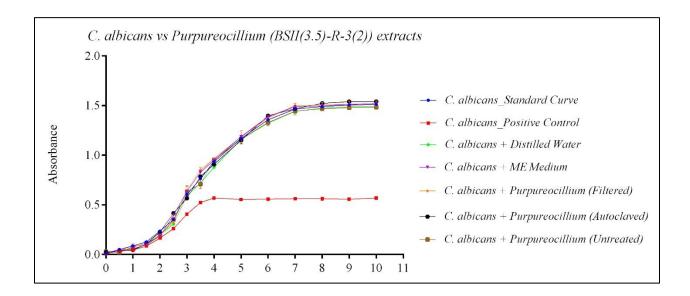
Appendix H: First Assay: *S. marcescens* growth curves showing not significant differences between treatments (p-value > 0.05).

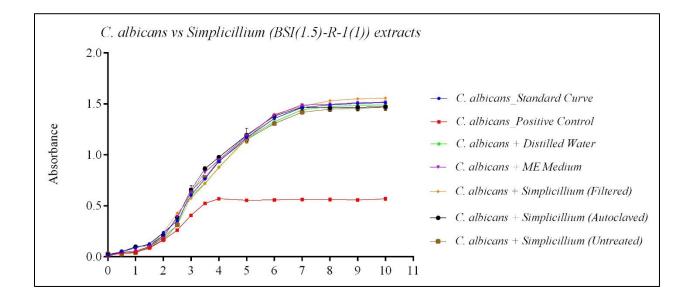


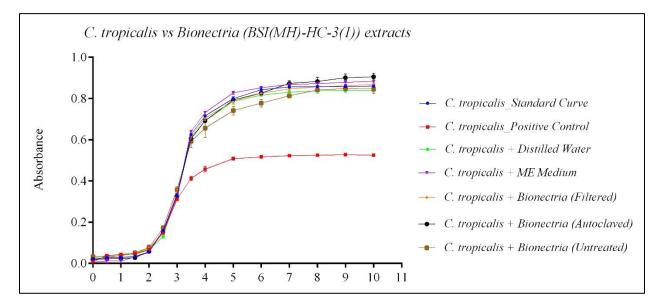

Appendix I: First Assay: *S. aureus* growth curves showing not significant differences between treatments (p-value > 0.05).

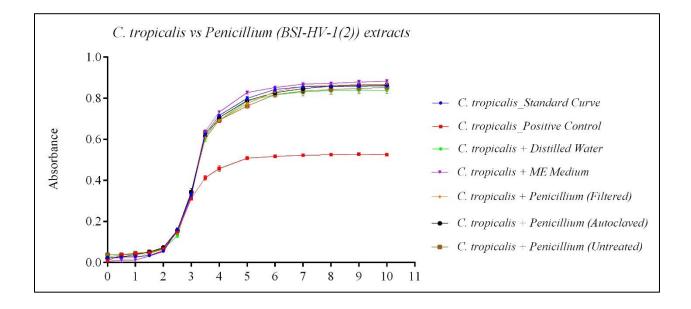


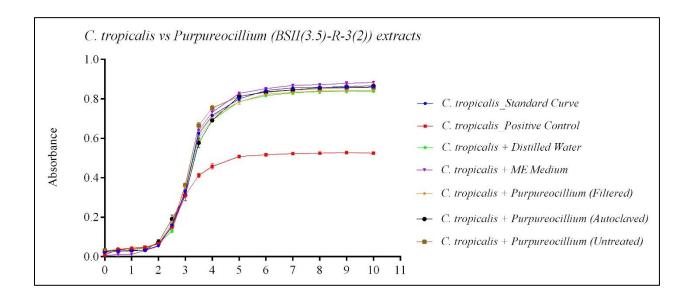

Appendix I: First Assay: *S. aureus* growth curves showing not significant differences between treatments (p-value > 0.05).

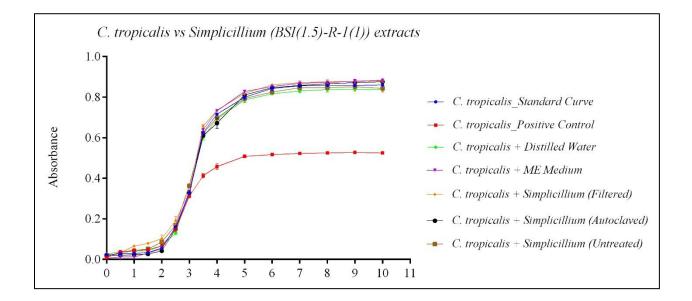


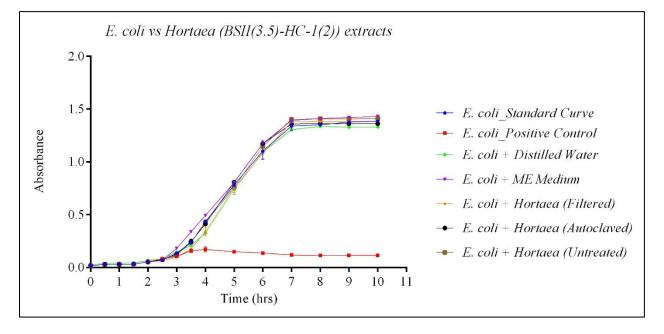

Appendix J: First Assay: *C. albicans* growth curves showing not significant differences between treatments (p-value > 0.05).



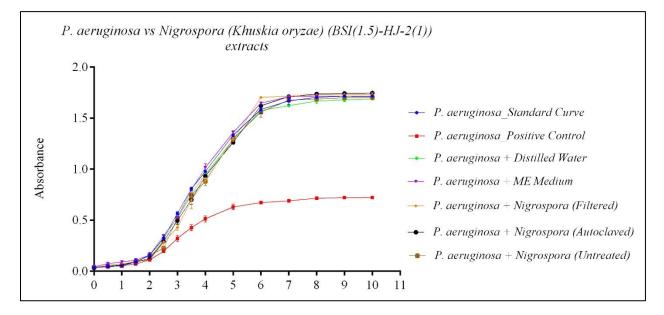

Appendix J: First Assay: *C. albicans* growth curves showing not significant differences between treatments (p-value > 0.05).

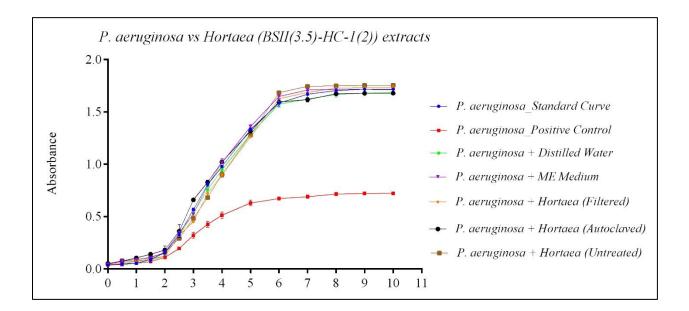



Appendix K: First Assay: *C. tropicalis* growth curves showing not significant differences between treatments (p-value > 0.05).

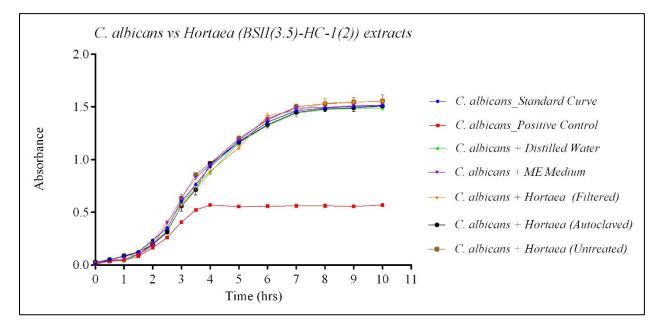


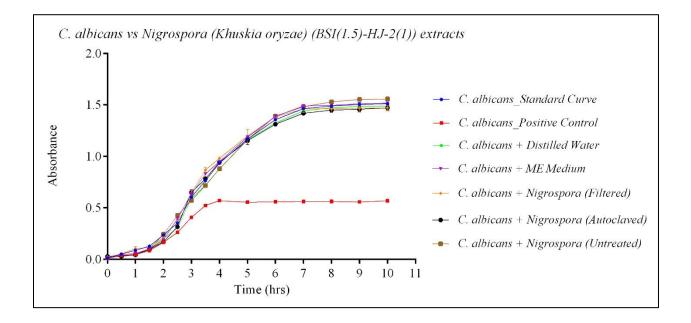
Appendix K: First Assay: *C. tropicalis* growth curves showing not significant differences between treatments (p-value > 0.05).



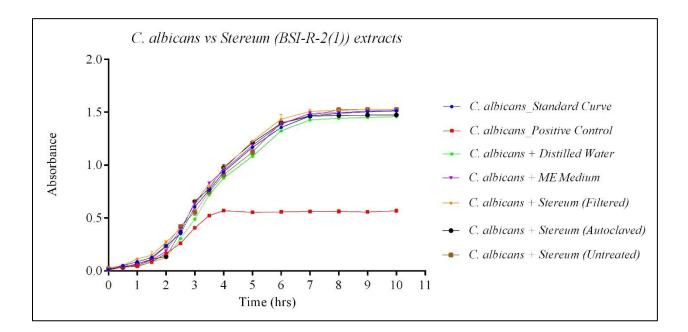

Appendix L: Second Assay: *E. coli* growth curves showing not significant differences between treatments (p-value > 0.05).

Appendix M: Second Assay: *P. aeruginosa* growth curves showing not significant differences between treatments (p-value > 0.05).

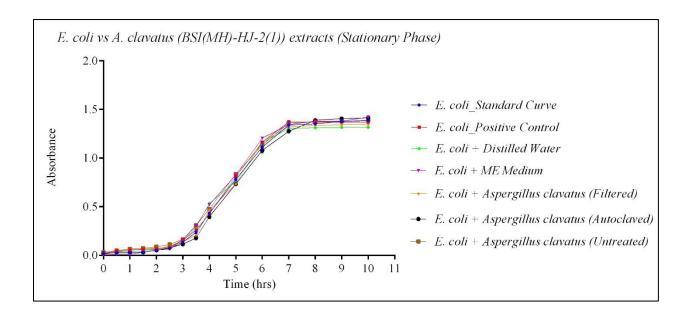


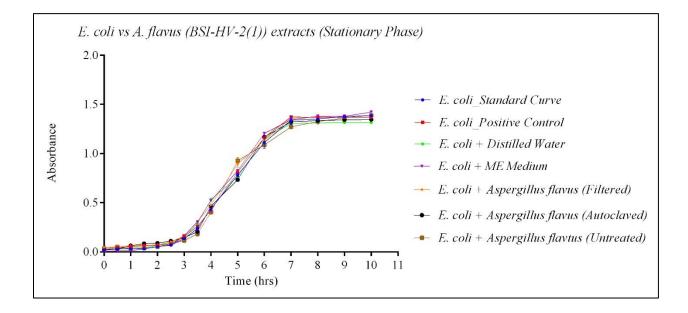


Appendix M: Second Assay: *P. aeruginosa* growth curves showing not significant differences between treatments (p-value > 0.05).

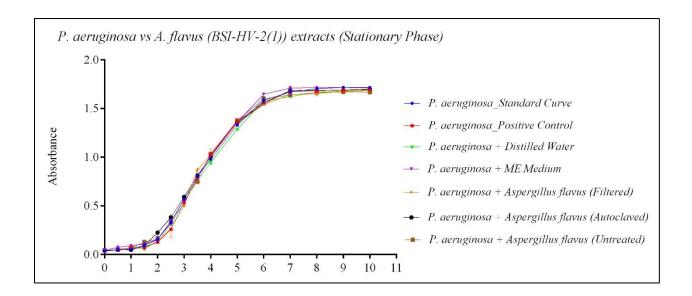


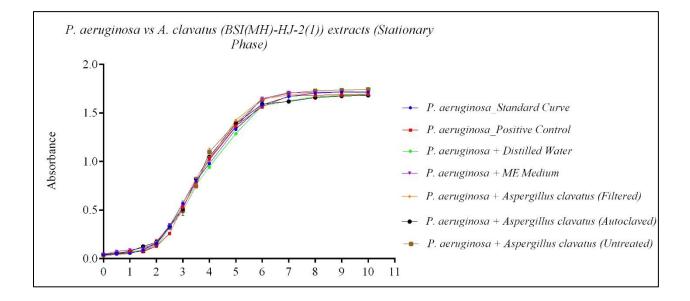
Appendix N: Second Assay: *C. albicans* growth curves showing not significant differences between treatments (p-value > 0.05).

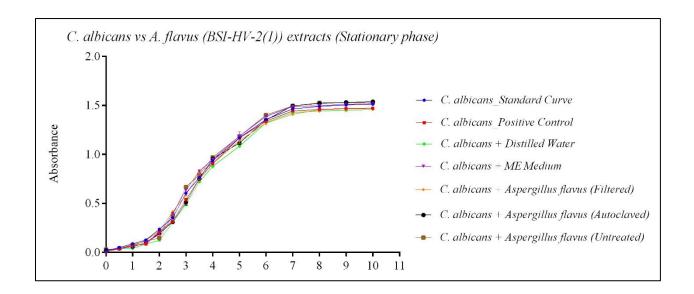


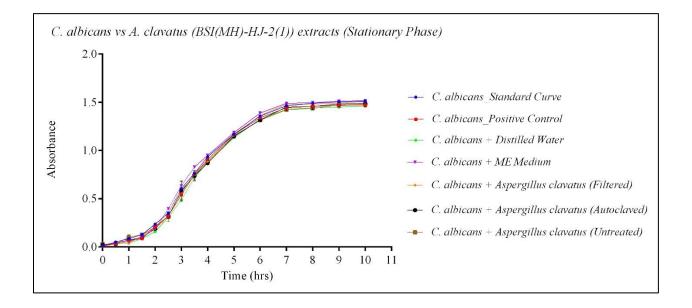


Appendix N: Second Assay: *C. albicans* growth curves showing not significant differences between treatments (p-value > 0.05).




Appendix O: Third Assay: *E. coli* growth curves showing not significant differences between treatments (p-value > 0.05).




Appendix P: Third Assay: *P. aeruginosa* growth curves showing not significant differences between treatments (p-value > 0.05).

Appendix Q: Third Assay: *C. albicans* growth curves showing not significant differences between treatments (p-value > 0.05).

	E. coli								
		Parameters		Degrees of	F				
EXTRACTS	YM	YO	K	Freedom	(DFn, DFd)	p-value	Preferred Model/ Conclusion		
Standard Growth Curve	1.434	4.823e-011	.7517						
Positive Control	.1336	2.068e-008	1.533	12	1432 (3,24)	< 0.0001	Different curve for each data set		
Distilled Water (control)	1.391	4.613e-014	.7133	12	1.326 (3,24)	.2891	One curve for all data sets		
ME medium (control)	1.484	1.356e-008	.7113	12	2.908 (3,24)	.0553	One curve for all data sets		
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	1.446	8.811e-012	.7864	12	0.9505 (3,24)	.4320	One curve for all data sets		
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	1.439	4.574e-014	.7974	12	0.8906 (3,24)	.4602	One curve for all data sets		
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	1.415	1.141e-008	.7361	12	2.951 (3,24)	.0529	One curve for all data sets		
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	1.430	1.050e-008	.7111	12	0.4186 (3,24)	.7413	One curve for all data sets		
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	1.464	3.316e-010	.7267	12	0.1572 (3,24)	.9240	One curve for all data sets		
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	1.454	4.732e-007	.6452	12	0.6289 (3,24)	.6035	One curve for all data sets		
Bionectria (BSI(MH)-HC-3(1)) (untreated)	1.465	3.660e-010	.7359	12	0.2840 (3,24)	.8364	One curve for all data sets		
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	1.407	1.174e-007	.6661	12	1.577 (3,24)	.2210	One curve for all data sets		
Bionectria (BSI(MH)-HC-3(1)) (filtered)	1.436	2.020e-007	.6616	12	0.6709 (3,24)	.5782	One curve for all data sets		
Penicillium (BSI-HV-1(2)) (untreated)	1.506	1.809e-011	.7466	12	1.858 (3,24)	.1638	One curve for all data sets		
Penicillium (BSI-HV-1(2)) (autoclaved)	1.484	1.356e-010	.7561	12	2.949 (3,24)	.0531	One curve for all data sets		
Penicillium (BSI-HV-1(2)) (filtered)	1.477	8.729e-012	.7444	12	0.6875 (3,24)	.5685	One curve for all data sets		
Stereum (BSI-R-2(1)) (untreated)	1.508	6.209e-017	.8411	12	4.524 (3,24)	.0119	Different curve for each data set		
Stereum (BSI-R-2(1)) (autoclaved)	1.706	3.643e-016	.8676	12	69.79 (3,24)	< 0.0001	Different curve for each data set		
Stereum (BSI-R-2(1)) (filtrated)	1.439	3.589e-023	.9195	12	2.563 (3,24)	.0784	One curve for all data sets		
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (untreated)	.9121	4.474e-008	.7263	12	214.1 (3,24)	< 0.0001	Different curve for each data set		
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (autoclaved)	1.276	8.399e-009	.6737	12	24.79 (3,24)	< 0.0001	Different curve for each data set		
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (filtrated)	1.169	5.495e-008	.6739	12	45.32 (3,24)	< 0.0001	Different curve for each data set		
Hortaea (BSII(3.5)-HC-1(2)) (untreated)	1.475	1.453e-012	.7748	12	0.8579 (3,24)	.4763	One curve for all data sets		
Hortaea (BSII(3.5)-HC-1(2)) (autoclaved)	1.413	2.020e-015	.8437	12	0.4983 (3,24)	.6870	One curve for all data sets		
Hortaea (BSII(3.5)-HC-1(2)) (filtered)	1.439	1.442e-017	.8324	12	1.764 (3,24)	.1808	One curve for all data sets		
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Log Phase)	.3459	0.01891	.3607	12	1203 (3,24)	< 0.0001	Different curve for each data set		
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Log Phase)	.2685	1.849e-007	1.021	12	1183 (3,24)	< 0.0001	Different curve for each data set		
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Log Phase)	.4050	0.003168	.4856	12	1006 (3,24)	< 0.0001	Different curve for each data set		
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Lag Phase)	.09711	0.02131	.5878	12	2140 (3,24)	< 0.0001	Different curve for each data set		
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Lag Phase)	.2775	0.003090	.4683	12	1376 (3,24)	< 0.0001	Different curve for each data set		
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Lag Phase)	.3860	0.001617	.5260	12	1105 (3,24)	< 0.0001	Different curve for each data set		
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Stationary Phase)	1.448	1.427e-008	.7144	12	1.248 (3,24)	.3144	One curve for all data sets		
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Stationary Phase)	1.469	7.477e-011	.7178	12	1.531 (3,24)	.2321	One curve for all data sets		
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Stationary Phase)	1.401	1.623e-012	.7901	12	0.1545 (3,24)	.9257	One curve for all data sets		
A. flavus (BSI-HV-2(1)) (untreated) (Log Phase)	1.367	0.01139	.2852	12	70.47 (3,24)	< 0.0001	Different curve for each data set		
A. flavus (BSI-HV-2(1)) (autoclaved) (Log Phase)	1.312	0.008473	.2736	12	93.64 (3,24)	< 0.0001	Different curve for each data set		
A. flavus (BSI-HV-2(1)) (filtered) (Log Phase)	1.364	0.006592	.3021	12	80.60 (3,24)	< 0.0001	Different curve for each data set		
A. flavus (BSI-HV-2(1)) (untreated) (Lag Phase)	.4163	0.005651	.4563	12	1050 (3,24)	< 0.0001	Different curve for each data set		
A. flavus (BSI-HV-2(1)) (autoclaved) (Lag Phase)	.2466	1.186e-005	.9140	12	1447 (3,24)	< 0.0001	Different curve for each data set		
A. flavus (BSI-HV-2(1)) (filtered) (Lag Phase)	.2295	0.001808	.6216	12	1492 (3,24)	< 0.0001	Different curve for each data set		
A. flavus (BSI-HV-2(1)) (untreated) (Stationary Phase)	1.381	3.258e-018	.8882	12	0.6773 (3,24)	.5745	One curve for all data sets		
A. flavus (BSI-HV-2(1)) (autoclaved) (Stationary Phase)	1.404	8.201e-012	.7763	12	0.1225 (3,24)	.9459	One curve for all data sets		
A. flavus (BSI-HV-2(1)) (filtered) (Stationary Phase)	1.434	5.819e-010	.7617	12	1.903 (3,24)	.1561	One curve for all data sets		

				<i>P</i> .	aeruginosa			
		Parameters		Degrees of				
EXTRACTS	YM	YO	K	Freedom	F (DFn, DFd)	p-value	Preferred Model/ Conclusion	
Standard Growth Curve	1.754	7.259e-005	.7263					
Positive Control	.7267	0.0001401	.7868	12	1323 (3,24)	< 0.0001	Different curve for each data set	
Distilled Water (control)	1.721	4.294e-005	.7307	12	1.770 (3,24)	.1799	One curve for all data sets	
ME medium (control)	1.766	2.850e-005	.7552	12	0.3358 (3,24)	.7996	One curve for all data sets	
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	1.736	4.788e-006	.7943	12	0.8526 (3,24)	.4789	One curve for all data sets	
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	.670	3.262e-006	.8271	12	2.764 (3,24)	.0639	One curve for all data sets	
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	1.688	3.398e-005	.7501	12	1.499 (3,24)	.2402	One curve for all data sets	
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	1.674	2.872e-007	.8770	12	3.007 (3,24)	.0501	One curve for all data sets	
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	1.777	8.020e-005	.7395	12	2.879 (3,24)	.0569	One curve for all data sets	
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	1.709	9.240e-006	.7653	12	2.065 (3,24)	.1316	One curve for all data sets	
Bionectria (BSI(MH)-HC-3(1)) (untreated)	1.723	8.263e-006	.7942	12	0.6728 (3,24)	.5771	One curve for all data sets	
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	1.746	7.154e-005	.7015	12	1.448 (3,24)	.2536	One curve for all data sets	
Bionectria (BSI(MH)-HC-3(1)) (filtered)	1.727	8.533e-006	.7873	12	0.1860 (3,24)	.9049	One curve for all data sets	
Penicillium (BSI-HV-1(2)) (untreated)	1.755	6.360e-005	.7474	12	2.987 (3,24)	.0511	One curve for all data sets	
Penicillium (BSI-HV-1(2)) (autoclaved)	1.688	7.869e-006	.7837	12	2.190 (3,24)	.1154	One curve for all data sets	
Penicillium (BSI-HV-1(2)) (filtered)	1.728	1.553e-005	.7619	12	0.6456 (3,24)	.5933	One curve for all data sets	
Stereum (BSI-R-2(1)) (untreated)	1.728	9.939e-006	.7901	12	0.6523 (3,24)	.5893	One curve for all data sets	
Stereum (BSI-R-2(1)) (autoclaved)	1.807	0.0006384	.6630	12	2.461 (3,24)	.0871	One curve for all data sets	
Stereum (BSI-R-2(1)) (filtrated)	1.759	0.0001281	.7267	12	1.760 (3,24)	.1817	One curve for all data sets	
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (untreated)	1.748	2.281e-005	.7269	12	2.534 (3,24)	.0808	One curve for all data sets	
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (autoclaved)	1.803	3.959e-005	.7028	12	2.934 (3,24)	.0539	One curve for all data sets	
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (filtrated)	1.793	2.934 (3,24)	.7635	12	2.988 (3,24)	.0510	One curve for all data sets	
Hortaea (BSII(3.5)-HC-1(2)) (untreated)	.1.830	3.878e-005	.6980	12	2.244 (3,24)	.1090	One curve for all data sets	
Hortaea (BSII(3.5)-HC-1(2)) (autoclaved)	1.719	0.0003852	.7026	12	1.915 (3,24)	.1541	One curve for all data sets	
Hortaea (BSII(3.5)-HC-1(2)) (filtered)	1.793	4.758e-005	.6966	12	2.467 (3,24)	.0865	One curve for all data sets	
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Log Phase)	1.306	0.0003915	.6813	12	194.8 (3,24)	< 0.0001	Different curve for each data set	
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Log Phase)	1.518	0.0003382	.6837	12	53.58 (3,24)	< 0.0001	Different curve for each data set	
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Log Phase)	1.529	0.001763	.5248	12	70.04 (3,24)	< 0.0001	Different curve for each data set	
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Lag Phase)	.5239	0.003832	.5872	12	2537 (3,24)	< 0.0001	Different curve for each data set	
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Lag Phase)	1.230	0.01501	.3773	12	422.5 (3,24)	< 0.0001	Different curve for each data set	
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Lag Phase)	.5785	0.01485	.4874	12	2180 (3,24)	< 0.0001	Different curve for each data set	
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Stationary Phase)	1.769	1.953e-006	.8150	12	1.904 (3,24)	.1559	One curve for all data sets	
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Stationary Phase)	1.703	1.191e-005	.7965	12	0.9445 (3,24)	.4347	One curve for all data sets	
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Stationary Phase)	1.757	1.647e-005	.7849	12	1.934 (3,24)	.1510	One curve for all data sets	
A. flavus (BSI-HV-2(1)) (untreated) (Log Phase)	1.690	1.212e-006	.8363	12	1.924 (3,24)	.1527	One curve for all data sets	
A. flavus (BSI-HV-2(1)) (autoclaved) (Log Phase)	1.711	1.766e-005	.7811	12	0.6199 (3,24)	.6089	One curve for all data sets	
A. flavus (BSI-HV-2(1)) (filtered) (Log Phase)	1.741	0.0002763	.7024	12	1.470 (3,24)	.2477	One curve for all data sets	
A. flavus (BSI-HV-2(1)) (untreated) (Lag Phase)	1.683	7.481e-007	.6747	12	106.8 (3,24)	< 0.0001	Different curve for each data set	
A. flavus (BSI-HV-2(1)) (autoclaved) (Lag Phase)	1.637	7.196e-006	.6354	12	94.24 (3,24)	< 0.0001	Different curve for each data set	
A. flavus (BSI-HV-2(1)) (filtered) (Lag Phase)	1.632	3.436e-008	.7486	12	52.17 (3,24)	< 0.0001	Different curve for each data set	
A. flavus (BSI-HV-2(1)) (untreated) (Stationary Phase)	1.710	2.634e-005	.7720	12	0.6601 (3,24)	.5846	One curve for all data sets	
A. flavus (BSI-HV-2(1)) (autoclaved) (Stationary Phase)	1.742	0.0002929	.7005	12	1.446 (3,24)	.2542	One curve for all data sets	
A. flavus (BSI-HV-2(1)) (filtered) (Stationary Phase)	.684	4.196e-007	.8630	12	1.880 (3,12)	.1868	One curve for all data sets	

					C. albicans		
		Parameters		Degrees of	F		
EXTRACTS	YM	YO	K	Freedom	(DFn, DFd)	p-value	Preferred Model/ Conclusion
Standard Growth Curve	1.546	0.001725	.4672				
Positive Control	.5712	9.290e-009	1.341	12	1038 (3,24)	< 0.0001	Different curve for each data set
Distilled Water (control)	1.520	0.0006131	.6734	12	2.793 (3,24)	.0621	One curve for all data sets
ME medium (control)	1.536	0.0005334	.7137	12	1.682 (3,24)	.1974	One curve for all data sets
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	1.470	0.0001988	.7470	12	2.900 (3,24)	.0557	One curve for all data sets
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	1.493	0.0004041	.7501	12	2.925 (3,24)	.0543	One curve for all data sets
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	1.605	0.002878	.6001	12	2.132 (3,24)	.1226	One curve for all data sets
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	1.509	0.0007597	.6852	12	0.8465 (3,24)	.4820	One curve for all data sets
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	1.579	0.001934	.6324	12	0.8681 (3,24)	.4712	One curve for all data sets
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	1.537	0.0003361	.7299	12	1.437 (3,24)	.2566	One curve for all data sets
Bionectria (BSI(MH)-HC-3(1)) (untreated)	1.478	9.975e-005	.7885	12	2.590 (3,24)	.0763	One curve for all data sets
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	1.514	0.0001231	.7649	12	2.846 (3,24)	.0588	One curve for all data sets
Bionectria (BSI(MH)-HC-3(1)) (filtered)	1.571	0.001863	.6302	12	0.6026 (3,24)	.6196	One curve for all data sets
Penicillium (BSI-HV-1(2)) (untreated)	1.539	0.002608	.6530	12	1.869 (3,24)	.1618	One curve for all data sets
Penicillium (BSI-HV-1(2)) (autoclaved)	1.572	0.001883	.6297	12	0.5883 (3,24)	.6286	One curve for all data sets
Penicillium (BSI-HV-1(2)) (filtered)	1.488	7.244e-005	.7911	12	2.874 (3,24)	.0572	One curve for all data sets
Stereum (BSI-R-2(1)) (untreated)	1.578	0.002322	.6185	12	0.6324 (3,24)	.6013	One curve for all data sets
Stereum (BSI-R-2(1)) (autoclaved)	1.496	8.017e-005	.7883	12	2.532 (3,24)	.0810	One curve for all data sets
Stereum (BSI-R-2(1)) (filtrated)	1.576	0.002428	.6488	12	2.967 (3,24)	.0521	One curve for all data sets
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (untreated)	1.607	0.002762	.6016	12	2.429 (3,24)	.0900	One curve for all data sets
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (autoclaved)	1.473	0.0002160	.7455	12	2.563 (3,24)	.0784	One curve for all data sets
Nigrospora (Khuskia oryzae) (BSI(1.5)-HJ-2(1)) (filtrated)	1.495	0.0004290	.7486	12	2.972 (3,24)	.0519	One curve for all data sets
Hortaea (BSII(3.5)-HC-1(2)) (untreated)	1.567	0.0005225	.7056	12	2.192 (3,24)	.1151	One curve for all data sets
Hortaea (BSII(3.5)-HC-1(2)) (autoclaved)	1.528	0.0005749	.6809	12	1.137 (3,24)	.3540	One curve for all data sets
Hortaea (BSII(3.5)-HC-1(2)) (filtered)	1.600	0.002810	.6040	12	1.413 (3,24)	.2635	One curve for all data sets
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Log Phase)	.9365	0.0002429	.8372	12	469.3 (3,24)	< 0.0001	Different curve for each data set
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Log Phase)	1.189	0.0003267	.7159	12	236.7 (3,24)	< 0.0001	Different curve for each data set
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Log Phase)	.8807	0.0008811	.7890	12	681.3 (3,24)	< 0.0001	Different curve for each data set
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Lag Phase)	.6685	0.0002468	.6588	12	913.9 (3,24)	< 0.0001	Different curve for each data set
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Lag Phase)	1.129	0.0001451	.6969	12	258.0 (3,24)	< 0.0001	Different curve for each data set
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Lag Phase)	.5602	1.546e-006	.9787	12	1090 (3,24)	< 0.0001	Different curve for each data set
A. clavatus (BSI(MH)-HJ-2(1)) (untreated) (Stationary Phase)	.5606	0.001115	.6561	12	2.768 (3,24)	.0637	One curve for all data sets
A. clavatus (BSI(MH)-HJ-2(1)) (autoclaved) (Stationary Phase)	1.518	0.0008014	.6632	12	2.775 (3,24)	.0632	One curve for all data sets
A. clavatus (BSI(MH)-HJ-2(1)) (filtered) (Stationary Phase)	1.536	0.0004643	.66846	12	1.942 (3,24)	.1497	One curve for all data sets
A. flavus (BSI-HV-2(1)) (untreated) (Log Phase)	.8112	0.01704	.5083	12	859.5 (3,24)	< 0.0001	Different curve for each data set
A. flavus (BSI-HV-2(1)) (autoclaved) (Log Phase)	1.057	0.002386	.5826	12	530.3 (3,24)	< 0.0001	Different curve for each data set
A. flavus (BSI-HV-2(1)) (filtered) (Log Phase)	.7466	0.001640	.6985	12	1298 (3,24)	< 0.0001	Different curve for each data set
A. flavus (BSI-HV-2(1)) (untreated) (Lag Phase)	.5649	0.0001673	.8678	12	1158 (3,24)	< 0.0001	Different curve for each data set
A. flavus (BSI-HV-2(1)) (autoclaved) (Lag Phase)	.9642	5.074e-005	.7292	12	512.7 (3,24)	< 0.0001	Different curve for each data set
A. flavus (BSI-HV-2(1)) (filtered) (Lag Phase)	.5725	0.001884	.6664	12	1745 (3,24)	< 0.0001	Different curve for each data set
A. flavus (BSI-HV-2(1)) (untreated) (Stationary Phase)	1.555	0.0004760	.7108	12	1.545 (3,24)	.2287	One curve for all data sets
A. flavus (BSI-HV-2(1)) (autoclaved) (Stationary Phase)	1.570	0.0005764	.6642	12	2.219 (3,24)	.1120	One curve for all data sets
A. flavus (BSI-HV-2(1)) (filtered) (Stationary Phase)	1.494	0.001844	.6595	12	2.656 (3,24)	.0714	One curve for all data sets

	S. aureus									
		Parameters		Degrees of	F	p-value	Preferred Model/ Conclusion			
EXTRACTS	YM	YO	Y0 K		(DFn, DFd)	p-value	Preferred Model/ Conclusion			
Standard Growth Curve	.8543	0.001021	.6552							
Positive Control	.4931	6.421e-007	1.099	12	179.4 (3,24)	< 0.0001	Different curve for each data set			
Distilled Water (control)	.8570	3.040e-005	.7678	12	2.192 (3,24)	.1151	One curve for all data sets			
ME medium (control)	.8475	3.021e-005	.7746	12	1.503 (3,24)	.2391	One curve for all data sets			
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	.8557	0.0002852	.7240	12	0.7354 (3,24)	.5412	One curve for all data sets			
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	.8365	0.0006319	.7046	12	0.7579 (3,24)	.5287	One curve for all data sets			
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	.8914	0.004558	.5728	12	1.750 (3,24)	.1836	One curve for all data sets			
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	.8387	6.963e-005	.7535	12	0.7299 (3,24)	.5442	One curve for all data sets			
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	.8535	0.0006119	.6895	12	0.2958 (3,24)	.8280	One curve for all data sets			
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	.8732	0.0002395	.7118	12	1.437 (3,24)	.2565	One curve for all data sets			
Bionectria (BSI(MH)-HC-3(1)) (untreated)	.8429	0.0001871	.7294	12	0.3338 (3,24)	.8010	One curve for all data sets			
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	.8612	0.0003802	.6781	12	0.6670 (3,24)	.5805	One curve for all data sets			
Bionectria (BSI(MH)-HC-3(1)) (filtered)	.8497	0.0001751	.7078	12	1.244 (3,24)	.3159	One curve for all data sets			
Penicillium (BSI-HV-1(2)) (untreated)	.8465	0.0004189	.6974	12	0.1123 (3,24)	.9520	One curve for all data sets			
Penicillium (BSI-HV-1(2)) (autoclaved)	.8542	0.002325	.6125	12	0.3687 (3,24)	.7763	One curve for all data sets			
Penicillium (BSI-HV-1(2)) (filtered)	.8638	0.0003886	.6789	12	0.7006 (3,24)	.5609	One curve for all data sets			
A. flavus (BSI-HV-2(1)) (untreated)	1.027	1.322e-006	.8108	12	61.65 (3,24)	< 0.0001	Different curve for each data set			
A. flavus (BSI-HV-2(1)) (autoclaved)	.8413	0.0002988	.7014	12	0.4182 (3,24)	.7416	One curve for all data sets			
A. flavus (BSI-HV-2(1)) (filtered)	.8375	5.227e-005	.7608	12	1.294 (3,24)	.2992	One curve for all data sets			

	S. marcescens										
	Parameters			Degrees of	F (DFn, DFd)	n voluo	Preferred Model/ Conclusion				
EXTRACTS	YM	YO	K	Freedom	r (Drii, Dru)	p-value	Freierreu Wodel/ Conclusion				
Standard Growth Curve	.9441	0.001758	.6350								
Positive Control	.4650	1.807e-005	.162	12	521.3 (3,24)	< 0.0001	Different curve for each data set				
Distilled Water (control)	.9106	0.001530	.6479	12	2.879 (3,24)	.0570	One curve for all data sets				
ME medium (control)	.9674	0.001717	.6404	12	2.809 (3,24)	.0611	One curve for all data sets				
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	.9641	0.004075	.6054	12	2.832 (3,24)	.0597	One curve for all data sets				
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	.9187	0.002411	.6584	12	2.787 (3,24)	.0625	One curve for all data sets				
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	.9606	0.001499	.6568	12	1.965 (3,24)	.1462	One curve for all data sets				
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	.9368	0.001096	.6851	12	2.632 (3,24)	.0731	One curve for all data sets				
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	.9299	0.0002942	.7219	12	1.484 (3,24)	.2442	One curve for all data sets				
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	.9343	0.001982	.6282	12	0.5138 (3,24)	.6767	One curve for all data sets				
Bionectria (BSI(MH)-HC-3(1)) (untreated)	.9139	0.001905	.6674	12	2.852 (3,24)	.0585	One curve for all data sets				
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	.9327	0.0003799	.7105	12	1.107 (3,24)	.3656	One curve for all data sets				
Bionectria (BSI(MH)-HC-3(1)) (filtered)	.9409	0.001312	.6776	12	2.950 (3,24)	.0530	One curve for all data sets				
Penicillium (BSI-HV-1(2)) (untreated)	.9470	0.003471	.6174	12	1.385 (3,24)	.2713	One curve for all data sets				
Penicillium (BSI-HV-1(2)) (autoclaved)	.9549	0.001077	.6715	12	1.565 (3,24)	.2237	One curve for all data sets				
Penicillium (BSI-HV-1(2)) (filtered)	.9279	0.004204	.6237	12	2.983 (3,24)	.0513	One curve for all data sets				
A. flavus (BSI-HV-2(1)) (untreated)	.9340	0.001973	.6286	12	0.5217 (3,24)	.6714	One curve for all data sets				
A. flavus (BSI-HV-2(1)) (autoclaved)	.9391	0.001402	.6731	12	2.868 (3,24)	.0576	One curve for all data sets				
A. flavus (BSI-HV-2(1)) (filtered)	.9328	0.0003551	.7134	12	1.266 (3,24)	.3084	One curve for all data sets				

	C. tropicalis										
		Parameters		Degrees of	F (DFn, DFd)	p-value	Preferred Model/ Conclusion				
EXTRACTS	YM	YO	K	Freedom	r (Drn, Dru)	p-value	Preferred Model/ Conclusion				
Standard Growth Curve	.8555	3.961e-032	1.493								
Positive Control	.5254	1.049e-016	1.395	12	192.0 (3,24)	< 0.0001	Different curve for each data set				
Distilled Water (control)	.8326	1.919e-036	1.531	12	0.7728 (3,24)	.5206	One curve for all data sets				
ME medium (control)	.8726	0.000e+000	1.553	12	0.5602 (3,24)	.6464	One curve for all data sets				
Simplicillium (BSI(1.5)-R-1(1)) (untreated)	.8458	2.981e-020	1.360	12	0.8494 (3,12)	.4932	One curve for all data sets				
Simplicillium (BSI(1.5)-R-1(1)) (autoclaved)	.8653	5.518e-025	1.384	12	0.3640 (3,24)	.7795	One curve for all data sets				
Simplicillium (BSI(1.5)-R-1(1)) (filtered)	.8784	1.567e-018	1.328	12	0.7007 (3,24)	.5609	One curve for all data sets				
Purpureocillium (BSII(3.5)-R-3(2)) (untreated)	.8507	0.0000000	1.670	12	0.7739 (3,24)	.5200	One curve for all data sets				
Purpureocillium (BSII(3.5)-R-3(2)) (autoclaved)	.8617	3.380e-016	1.245	12	0.7738 (3,24)	.5201	One curve for all data sets				
Purpureocillium (BSII(3.5)-R-3(2)) (filtered)	.8677	6.406e-027	1.455	12	0.5213 (3,24)	.6717	One curve for all data sets				
Bionectria (BSI(MH)-HC-3(1)) (untreated)	.8282	2.348e-013	1.203	12	2.516 (3,24)	.0823	One curve for all data sets				
Bionectria (BSI(MH)-HC-3(1)) (autoclaved)	.8801	1.613e-019	1.295	12	0.7567 (3,24)	.5294	One curve for all data sets				
Bionectria (BSI(MH)-HC-3(1)) (filtered)	.8527	1.956e-024	1.403	12	0.1105 (3,24)	.9531	One curve for all data sets				
Penicillium (BSI-HV-1(2)) (untreated)	.8369	3.576e-027	1.450	12	0.3975 (3,24)	.7560	One curve for all data sets				
Penicillium (BSI-HV-1(2)) (autoclaved)	.8539	1.865e-023	1.389	12	0.1055 (3,24)	.9561	One curve for all data sets				
Penicillium (BSI-HV-1(2)) (filtered)	.8565	9.207e-024	1.376	12	0.2479 (3,24)	.8620	One curve for all data sets				
A. flavus (BSI-HV-2(1)) (untreated)	.6210	3.703e-030	1.585	12	80.97 (3,24)	< 0.0001	Different curve for each data set				
A. flavus (BSI-HV-2(1)) (autoclaved)	.8496	3.413e-028	1.442	12	0.1762 (3,24)	.9115	One curve for all data sets				
A. flavus (BSI-HV-2(1)) (filtered)	.5979	5.243e-031	1.576	12	113.1 (3,24)	< 0.0001	Different curve for each data set				