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ABSTRACT 
 

This work presents an enhancement to the Hyperspectral Coastal Image Analysis Toolbox (HyCIAT). 

HyCIAT is a graphic interface developed in MATLAB, for the estimation of water optical properties, 

bathymetry and bottom composition using a hyperspectral image of a shallow underwater environment 

[1]. The implemented algorithms for the estimation of the submerged bottom are based on the inversion 

model developed by Z. P. Lee combined with unmixing techniques developed by J. A. Goodman and 

A. Castrodad [2]–[5]. The graphic interface ceased to work on MATLAB versions over 2008b due to 

some compatibility issues. With this work, HyCIAT was enabled to be used on MATLAB 2013a. New 

functionalities are implemented to allow additional configurations of the unmixing algorithms. 

HyCIAT was further enhanced with the integration of a new subsurface classification algorithm by 

means of regularization techniques developed by L. O. Jiménez-Rodríguez and E. Rodríguez-Díaz [6], 

[7]. Algorithms were tested using a hyperspectral data set obtained from an indoor controlled 

environment that simulates an object submerged on fresh and turbid water. A new method was 

presented for the empirically retrieval of the optical properties of water using Z. P. Lee inversion model 

and the obtained hyperspectral data set. Results shows that the new functionalities have a positive 

impact on unmixing results by increasing the overall accuracy on objects submerged in fresh and turbid 

waters. At the other hand, the classification accuracy of objects submerged in fresh and turbid water 

was also increased with the use of the regularization algorithms. Finally, additional tools were included 

in the toolbox that extends HyCIAT capabilities for a more complete and robust interface. 
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RESUMEN 
 

Este trabajo presenta una mejora realizada a un programa desarrollado en MATLAB llamado HyCIAT. 

HyCIAT es una interface gráfica que integra algoritmos para la estimación de propiedades ópticas del 

agua, batimetría y composición del fondo marino utilizando imágenes hiperespectrales de poca 

profundidad [1]. Los algoritmos integrados para la estimación de la composición del fondo marino son 

basados en el modelo establecido por Z. P. Lee y combinados con técnicas de descomposición lineal 

para la estimación de abundancias desarrollados por J. A. Goodman y A. Castrodad [2]–[5]. La 

interface gráfica dejó de funcionar en las versiones de MATLAB sobre la 2008b debido a problemas 

de compatibilidad. Con este trabajo la funcionalidad de HyCIAT se re-estableció en la versión de 

MATLAB 2013a. Nuevas funcionalidades fueron implementadas para lograr un grado mayor de 

libertad al momento de configurar los algoritmos de estimación de abundancia. HyCIAT se extendió 

aún más con la integración de un nuevo algoritmo de clasificación submarina basado en técnicas de 

regularización desarrollado por L. O. Jiménez-Rodríguez y E. Rodríguez-Díaz [6], [7]. Los algoritmos 

fueron probados utilizando un conjunto de datos hiperespectrales obtenidos de un ambiente controlado 

en el interior que simula un objeto sumergido tanto en agua limpia como en agua turbia. Un nuevo 

método fue desarrollado y presentado para estimación empírica de las propiedades ópticas del agua 

utilizando el modelo de Z. P. Lee y el conjunto de datos hiperespectrales obtenido. Los resultados 

demuestran que las funcionalidades propuestas tienen un impacto positivo en los algoritmos de 

estimación de abundancia aumentando la precisión general aumento en objetos sumergidos en agua 

limpia y turbia. Por otro lado la clasificación de objetos sumergidos tanto en agua limpia como en agua 

turbia también aumento con el uso del algoritmo de regularización. Finalmente, herramientas 

adicionales fueron incluidas en la interface para extender sus capacidades hacia un a más completa y 

robusta.   
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1 Introduction 

1.1 Justification 
This project is based on a toolbox named Hyperspectral Coastal Image Analysis Toolbox 

(HyCIAT) developed by Maria Torres Madroñero on the Laboratory for Applied Remote Sensing 

and Image Processing (LARSIP) and previous work by Luis O. Jiménez and Eladio Rodriguez 

which proposed a subsurface classification algorithm by means of regularization techniques. The 

justification of the toolbox and the regularization algorithm will be discussed on section 1.1.1 and 

1.1.2 respectively. 

1.1.1 HyCIAT Enhancement  
In the Laboratory for Applied Remote Sensing and Image Processing (LARSIP) at the 

University of Puerto Rico – Mayaguez Campus researchers have developed different applications 

for the analysis of remote sensed hyperspectral images. Particularly a toolbox named 

Hyperspectral Coastal Image Analysis Toolbox (HyCIAT) was designed to perform analysis of 

hyperspectral images of shallow waters [1]. The interface, coded in MATLAB, implements three 

different algorithms based on the semi-analytical model proposed by Lee et al. [2], [3] which 

derive the inherent optical properties of the water column and bathymetry assuming that the whole 

bottom is sand. This algorithm was modified by Goodman [4] and Castrodad [5] to determine 

individual contributions to the measured signal of given spectra of materials that are known to be 

present on the ocean or sea floor. Individual contribution to the measured spectra are called 

“abundance”, and they are retrieved using unmixing algorithms. The objective of HyCIAT is to 

study the sea bottom using hyperspectral images. Its application includes: spatial and temporal 

monitoring of coral reef, subsurface object detection and classification, water quality monitoring, 

entertainment, coastal engineering, coastal science, etc. [8] 

Due to the constant update of MATLAB’s native functions this toolbox ceases to work on 

MATLAB version over 2008b. The reason is that several default parameters of functions have 

been changed in different MATLAB versions and are no longer compatible to each other. 

Therefore, an update is proposed to make this toolbox work on MATLAB 2013a. Since there are 

some compatibility issues, this update will be accompanied by a comparative analysis between 

the results published on [1] and the ones obtained from the new version. Controlled experiments 

will be performed by simulating a benthic environment to test the Lee’s model combined with 

unmixing algorithms.  
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1.1.2 Regularization Algorithm 
Previous studies in LARSIP by Professor Luis O. Jiménez and former graduate student Eladio 

Rodriguez-Díaz, have presented a subsurface classification algorithm by means of regularization 

techniques. This approach was applied for mapping coastal water floor based on the spectra of 

objects that are known to be present on the bottom. Preliminary results were promising on a 

laboratory controlled environment and on real hyperspectral images of benthic environments. 

Therefore, a more thorough evaluation of this algorithm as well as its implementation in 

MATLAB are proposed. This algorithm will be integrated to HyCIAT as another tool for the 

analysis, classification and mapping of the coastal water floor using remotely sensed hyperspectral 

images. This contribution will extend HyCIAT capabilities into concrete classification of the 

bottom reflectance based on a priori spectras1.  

1.2 Objectives 
The objectives of this project are: 

• Update HyCIAT to MATLAB 2013a. 

o Validate the results. 

• Recode the regularization algorithms in MATLAB. 

• Experimentation and validation of regularization algorithm. 

• Integrate the regularization algorithm into HyCIAT. 

1.3 Contributions of this Work 
The contribution of this work can be defined by, but not limited to, these descriptions: 

• Enable the use of the Hyperspectral Coastal Image Analysis Toolbox in a recent 

MATLAB version. 

• Enhance HyCIAT usability by providing new tools and functionalities. 

• Extends HyCIAT functionalities into concrete classification of underwater objects by 

means of regularization Techniques. 

                                                   
1 Spectra or spectral signature can be defined as a unique representation of the amount light reflected on several 
wavelengths from an object.  
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• Establish an experimental procedure that can be used as baseline for future 

indoor/outdoor hyperspectral imaging experiment with a simulated benthic environment. 

• Establish a mathematical procedure that can be used as a baseline for future studies on 

the empirically retrieval of optical properties: absorption and backscattering, coefficients 

of water, using Lee’s equations and a HSI of a real or simulated benthic environment. 

• Establish an algorithm for the future geometrical registration of HSI using a common 

tool among hyperspectral images researchers (MATLAB).  

• Establish a baseline for future studies using HyCIAT. Especially on the regularization 

algorithm.  

1.4 Thesis Outline 
The rest of the thesis will be organized in the following manner: section 2 presents the theoretical 

background needed to understand the functionalities of this toolbox. It is not limited to just 

hyperspectral images, it also includes specific information about Spectral Unmixing, Lee Bio-

optical Semi-Analytical model and underwater unmixing algorithms LIGU, CIUS and CIUB 

developed by Goodman and Castrodad. Also, on section 2, a detailed explanation of the 

regularization algorithm is presented. Section 3 will cover materials and methods including 

information of how the data was acquired and processed to obtain final results. Section 4 presents 

how HyCIAT was updated to MATLAB 2013a and enhanced by including the regularization 

algorithm and additional tools included for data processing. In sections 5 and 6 the results are 

presented and discussed. Conclusion and future work are presented on section 7. Section 9 is the 

appendix that include additional information. 
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2 Theoretical Background and Previous Publications 
The study of benthic habitats by means of remotely sensed hyperspectral images has been in 

continuous development during the last four decades [9]–[15]. This is because hyperspectral images 

provide sufficient information for effective studies of these complicated environments [4], [12], [16]. 

Airborne or satellite hyperspectral sensors offer the ability to obtain spatial and temporal information 

over large areas, reducing the cost of conventional fields methods, thus making this technology 

essential for the studies of shallow water environments [17]. Hyperspectral imaging sensors measure 

reflected visible and non-visible light from objects by sampling the electromagnetic spectrum over 

hundreds of bands. Remotely sensed imageries are captured by digital spectrometers, which are 

instruments used to measure properties of light. The number of bands over which the imaging sensor 

samples the spectrum and their width determines what is called spectral resolution. There are three 

different types of spectral resolution in remote sensing imaging sensors as shown in figure bellow. 

 
Figure 1: Comparison between three ways of sampling the spectrum 

An example of a sensor with low spectral resolution is a panchromatic sensor, which is a sensor 

that measures the electromagnetic spectrum in a very wide band. Applications for panchromatic 

images are geological and topological mapping. Medium spectral resolution is commonly named 

multispectral resolution. Multispectral imagery is obtained from sensors that measure several to 

tens of bands of the electromagnetic spectrum. High resolution spectrometers are called 

hyperspectral sensors, which sample the electromagnetic spectrum in hundreds of narrow bands. 

Spectrometers resolution also varies in spatial or ground coverage per pixel. Spatial resolution can 

vary from less than a meter squared per pixel (QuickBird Panchromatic Sensor) up to 1000 of meter 

square per pixel (MODIS Multispectral Sensor). Airborne remote sensing of the earth surfaces adds 

Panchromatic: One very big band 

Multispectral: Several to tens of Bands 

Hyperspectral: Hundreds of narrow continuous bands 
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another resolution type to the data: temporal resolution. This attribute is very useful in the studies of 

temporal changes, i.e. change detection of specific habitats, mapping or measuring anthropogenic 

impact on nature and other applications that use past data to survey and compare changes of visible 

objects over time. [18] 

The use of airborne hyperspectral sensor to study littoral underwater environment implies a very 

challenging task, due to diffusive and murky mediums like the atmosphere and the column of shallow 

coastal waters. A common shallow water remote sensed environment is showed in figure 2. 

  
Figure 2: Typical remote sensed benthic environment 

 At the sensor, the measured reflectance usually includes scattered light from the atmosphere path 

radiance, specular reflection of the sun glint (sea surface reflection), water column scattering (due to 

dissolved matter particles and phytoplankton absorption) and the bottom reflectance. Scattered 

sunlight from the atmosphere and the water column typically contributes close to 90% of the at-

sensor measured remote sensing reflectance (𝑅𝑅𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎−𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟) [19].   

For an effective study of shallow water environments using hyperspectral remotely sensed images, 

atmospheric correction algorithms must be applied to subtract the contribution of the atmosphere to 

the measured signal 𝑅𝑅𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎−𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟. With this correction, the measured signal is converted to remote 

sensed reflectance just above the water surface 𝑅𝑅𝑟𝑟𝑟𝑟. 𝑅𝑅𝑟𝑟𝑟𝑟 includes contributions from the water column 

and the bottom reflectance. To study the bottom composition and classify it, the optical properties of 

the water column must be known or derived [20].  

Atmospheric 
Scattering 

Sea Surface 
Reflection 

Water Colum Scattering 

Bottom 
Reflectance 
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One the most commonly used algorithms for retrieval of the optical water properties and 

bathymetry is the one based on semi-analytical model developed by Lee et al. [2], [3] (referred here 

as the Lee’s model). This algorithm is an inversion2 model that uses optimization schemes to derive 

the optical properties of the water column and bathymetry based on the remote sensing reflectance 

just above the water and a sand input spectra normalized at 550nm. The optimization algorithm is a 

predictor-corrector, model-inversion scheme. One of its convenience is the fact that it doesn’t require 

field measurements. The output is a solution vector 𝛾𝛾 that includes the following variables: the 

phytoplankton coefficient, absorption coefficient of gelbstoff and detritus, backscattering, the bottom 

albedo and the bottom depth. The optimization procedure does not solve for actual reflectance. 

Instead, it provides an approximation of the reflectance based on the input spectra at the 550 band. 

More details will be explained on section 2.2. 

James A. Goodman integrated an additional layer of processing to the Lee’s model to add a linear 

unmixing model3 to extract bottom composition. The bottom was modeled as a linear combination 

of different materials spectra. In Goodman’s work three spectras were used: sand, coral and algae. 

The mentioned spectras were empirically measured, using underwater spectrometers, and were given 

to the algorithm.  First, the optical properties of water were derived using Lee’s method. The second 

step is to transform each input spectra to remote sensing reflectance just above the water surface by 

using Lee’s forward model. As a final step, the transformed input spectras are used to unmix the 

original measured remote sensed reflectance at the water surface [4]. This method is called Lee’s 

Inversion with Goodman’s Unmixing (LIGU). LIGU algorithm will be explained in section 2.3.  

Following Goodman’s work, and also based on Lee’s model, Castrodad proposed two algorithms. 

The Combined Inversion with Linear Unmixing at the Surface (CIUS) and the Combined Inversion 

with Linear Unmixing at the Bottom (CIUB) [5]. Both vary from LIGU by simulating the remote 

sensing reflectance as a linear mixture of the individual bottom types which were also sand, coral 

and algae. Castrodad models the remote sensing reflectance by multiplying each input spectra by the 

individual contribution of each one of them calculated from the unmixing algorithm. Then this 

approximation is used to calculate the error for the optimization scheme by subtracting it from the 

measured 𝑅𝑅𝑟𝑟𝑟𝑟. Now, the main difference between CIUS and CIUB is where the unmixing is 

                                                   
2 Inversion can be defined as a general methodology used to convert observed measurements into specific information 
of a physical object.  For example, in this work, an inversion model is implemented to derive the optical properties of 
the water column from the remotely sensed measured spectra. 
3 For an explanation of what is unmixing refer to section 2.1 
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performed. On CIUS the unmixing is performed at the water surface. Therefore, the water column 

contribution is added to the input spectra (coral, sand and algae). On CIUB the unmixing is performed 

at the bottom. Therefore, the water column contribution is subtracted from the measured remote 

sensing reflectance. CIUS will be explained on section 2.4 and CIUB will be explained on section 

2.5.  

These algorithms were integrated into a MATLAB toolbox called Hyperspectral Coastal Images 

Analysis Toolbox by Maria C. Torres-Madroñero, with a focus on data fusion. Torres-Madroñero 

integrates the toolbox into the mentioned platform and conducts studies focusing on the impact that 

bathymetry4 data collected using LIDAR had to results. It was observed that by adding this type of 

information their results improve significantly by eliminating one of the unknowns [1] from Lee’s 

equation.  

2.1 Spectral Unmixing 
As explained in the work by Samuel Rosario-Torres, Spectral Unmixing is the process of 

decomposing the measured spectra into a collection of endmembers and a set of corresponding 

abundances [16]. Methods presented on [1], [4], [5] use linear unmixing schemes to determine the 

fractional abundances of each endmember to the measured or estimated spectra. Abundance can be 

explained as the fractional area that the endmembers occupies in the measured pixel [1].  

The linear mixing model is given by:  

 
𝑏𝑏 =  �𝑥𝑥𝑖𝑖𝑎𝑎𝑖𝑖 + 𝑤𝑤 = 𝐴𝐴𝑥𝑥 + 𝑤𝑤

𝑠𝑠

𝑖𝑖=1

 ( 1 ) 

where:  

• 𝑏𝑏 is a spectral signature based on a linear combination of endmembers. 

• 𝑎𝑎𝑖𝑖 is the spectral signature of the 𝑖𝑖𝑎𝑎ℎ endmember. 

• 𝑥𝑥𝑖𝑖 is the corresponding fractional abundance. 

• 𝑤𝑤 is the measurement noise. 

• 𝐴𝐴 ∈ ℜ𝑚𝑚×𝑠𝑠 where 𝑚𝑚 is the number of spectral bands and 𝑛𝑛 is the number of endmembers. 

                                                   
4 Bathymetry can be defined as the studies of the depth of water bodies.  
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In order for the fractional abundances to have physical meaning, the unmixing problem must satisfy 

the non-negative constrain: 𝑥𝑥𝑖𝑖 ≥ 0 for all 𝑖𝑖.  Rosario-Torres on [16] adds two other constraints  

1) Sum to one:  

 
 �𝑥𝑥𝑖𝑖 = 1
𝑠𝑠

𝑖𝑖=1

 ( 2 ) 

2) And, in order to allowed a dark pixel [5], sum less or equal to one: 

 
 �𝑥𝑥𝑖𝑖 ≤ 1
𝑠𝑠

𝑖𝑖=1

 ( 3 ) 

The constraint described in equation 2 was developed in an algorithm called Non-Negative Sum 

To One (NNSTO) and the constraint described in equation 3 was developed in an algorithm called 

Non-Negative Sum Less or equal to One (NNSLO).  

NNSTO algorithm solve the following problem: 

 𝑥𝑥� = arg min‖𝐴𝐴𝑥𝑥 − 𝑏𝑏‖ subject to 𝑥𝑥 ≥ 0 and 𝟏𝟏𝑇𝑇𝑥𝑥 = 1 ( 4 ) 

NNSLO algorithm solve the following problem: 

 𝑥𝑥� = arg min‖𝐴𝐴𝑥𝑥 − 𝑏𝑏‖ subject to 𝑥𝑥 ≥ 0 and 𝟏𝟏𝑇𝑇𝑥𝑥 ≤ 1 ( 5 ) 

where 𝟏𝟏 is a vector of ones of dimension 𝑁𝑁. It is important to say that matrix 𝐴𝐴 is recalculated 

on every pixel to include the effect of the optical properties of water. The method to retrieve these 

properties is described on section 2.2. 

Through the rest of this document the unmixing algorithms are going to be abbreviated as: 

 𝑥𝑥� = 𝑈𝑈𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥(𝐴𝐴, 𝑟𝑟𝑟𝑟𝑟𝑟)  ( 6 ) 

Where:  

• 𝐴𝐴 ∈ ℜ𝑚𝑚×𝑠𝑠, 𝑚𝑚 is the number of spectral bands and 𝑛𝑛 is the number of endmembers. 

• 𝑟𝑟𝑟𝑟𝑟𝑟 is the measured spectral signature. 

• 𝑥𝑥� is the estimated fractional abundances of given endmembers to the measured signal. 
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2.2 Lee’s Bio-optical Semi-analytical model 
The Lee’s model proposes an invertible equation for estimating the hyperspectral remote sensing 

reflectance of shallow waters just above the water surface [2], [3]. The model relates 𝑅𝑅𝑟𝑟𝑟𝑟 as follow: 

 𝑅𝑅𝑟𝑟𝑟𝑟 = 𝑓𝑓[𝑎𝑎,𝑏𝑏𝑏𝑏,𝜌𝜌,𝐻𝐻,𝜃𝜃𝑤𝑤 ,𝜃𝜃,𝜑𝜑] ( 7 ) 

Where: 

•  𝑎𝑎 is the absorption coefficient. 

• 𝑏𝑏𝑏𝑏 is the backscattering. 

•  𝜌𝜌 bottom albedo. 

•  𝐻𝐻 is the bottom depth. 

• 𝜃𝜃𝑤𝑤 is the subsurface solar zenith angle. 

• 𝜃𝜃 is the subsurface viewing angle from nadir. 

• 𝜑𝜑 is the azimuth angle. 

𝑅𝑅𝑟𝑟𝑟𝑟 is defined as the ratio of water leaving radiance to surface reflected irradiance.  

 𝑅𝑅𝑟𝑟𝑟𝑟 =  
0.5𝑟𝑟𝑟𝑟𝑟𝑟

1 − 1.5𝑟𝑟𝑟𝑟𝑟𝑟
 ( 8 ) 

where 𝑟𝑟𝑟𝑟𝑟𝑟 is the subsurface remote sensing reflectance or the ratio of the upwelling radiance to the 

down-welling irradiance just below the water surface. 𝑟𝑟𝑟𝑟𝑟𝑟 is defined as the sum of the scattered light 

from the water column and the reflected light from the bottom. 

𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶 + 𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵 ( 9 ) 

�̂�𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 �1 − exp �− �1 +

𝐷𝐷𝑢𝑢𝐶𝐶

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻��+
1
𝜋𝜋 𝐵𝐵𝜌𝜌 exp �− �1 +

𝐷𝐷𝑢𝑢𝐵𝐵

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻� ( 10 ) 

where: 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 is the remote sensing reflectance for optically deep water defined as: 

 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 ≈ (0.084 + 0.170𝑢𝑢)𝑢𝑢 ( 11 ) 

𝐷𝐷𝑢𝑢𝐶𝐶 and 𝐷𝐷𝑢𝑢𝐵𝐵 are the path of elongation factor for scattered photons from the water column and 

bottom respectively defined as: 

 𝐷𝐷𝑢𝑢𝐶𝐶 ≈ 1.03(1 + 2.4𝑢𝑢)0.5 and  𝐷𝐷𝑢𝑢𝐶𝐶 ≈ 1.04(1 + 5.4𝑢𝑢)0.5 ( 12 ) 

with 

 𝑢𝑢 =  𝑏𝑏𝑏𝑏/(𝑎𝑎 + 𝑏𝑏𝑏𝑏) and 𝑘𝑘 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 ( 13 ) 

and 

 𝑏𝑏𝑏𝑏 =  𝑏𝑏𝑏𝑏𝑤𝑤 + 𝑏𝑏𝑏𝑏𝑑𝑑 ( 14 ) 
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 𝑎𝑎 =  𝑎𝑎𝑤𝑤 + 𝑎𝑎𝜙𝜙 + 𝑎𝑎𝑔𝑔 ( 15 ) 

Where 𝑎𝑎𝑔𝑔 is the absorption coefficient of gelbstoff 5 and 𝑎𝑎𝜙𝜙 is the absorption coefficient of 

phytoplankton pigments defined as: 

 𝑎𝑎𝑔𝑔 = 𝐺𝐺 exp{0.014(𝜆𝜆 − 440)} ( 16 ) 

 𝑎𝑎𝜙𝜙 =  [𝑎𝑎0(𝜆𝜆) + 𝑎𝑎1(𝜆𝜆) ln(𝑃𝑃)]𝑃𝑃 ( 17 ) 

And 𝑏𝑏𝑏𝑏𝑑𝑑 is the backscattering coefficient of suspended particles and 𝑏𝑏𝑏𝑏𝑤𝑤 is the backscattering 

coefficient of seawater both are defined as: 

 𝑏𝑏𝑏𝑏𝑑𝑑 = 𝐵𝐵𝑃𝑃 �
400
𝜆𝜆 �

𝑌𝑌

 ( 18 ) 

 𝑏𝑏𝑏𝑏𝑤𝑤 = 0.0038 �
400
𝜆𝜆 �

4.3

 ( 19 ) 

𝑌𝑌 is the spectral shape parameter estimated by the following relationship (𝑌𝑌 is kept within the 

0 to 2.5 range) [3]:   

 𝑌𝑌 ≈ 3.44(1 − 3.17 exp[−2.01𝑅𝑅𝑟𝑟𝑟𝑟(440)/𝑅𝑅𝑟𝑟𝑟𝑟(490)]) ( 20 ) 

All the equation above, leaves the Lee’s model as a function parameterized by the following five 

unknowns: 𝑃𝑃,𝐺𝐺,𝐵𝐵𝑃𝑃,𝐵𝐵,𝐻𝐻.  

Where: 

• 𝑃𝑃 is the phytoplankton coefficient. 

• 𝐺𝐺 is the absorption coefficient of gelbstoff and detritus. 

• 𝐵𝐵𝑃𝑃 is the backscattering. 

• 𝐵𝐵 is the bottom albedo. 

• 𝐻𝐻 is the bottom depth. 

It is important to mention that, in the original Lee’s method, 𝜌𝜌 is a 550 normalized sand spectrum. 

This is because the original model was not intended to estimate bottom reflectance. Instead, it was 

developed to study the inherent optical properties of the water column. The model assumed that the 

whole bottom was sand. 

To solve for all the unknown, the following nonlinear least squares optimization problem must 

be solved: 

                                                   
5 Gelbstoff are colored dissolved organic matter.  
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 𝛾𝛾� = min
�𝑅𝑅𝑟𝑟𝑟𝑟 − 𝑅𝑅�𝑟𝑟𝑟𝑟(𝛾𝛾,𝜌𝜌𝑟𝑟𝑎𝑎𝑠𝑠𝑑𝑑)�

2
2

‖𝑅𝑅𝑟𝑟𝑟𝑟‖22
  ( 21 ) 

Where 𝛾𝛾 is the solution vector and the optimization is perform using bands from 400𝑛𝑛𝑚𝑚 to 

675𝑛𝑛𝑚𝑚 and from 750𝑛𝑛𝑚𝑚 to 830𝑛𝑛𝑚𝑚.  

2.3 Lee’s Inversion with Goodman’s Unmixing (LIGU) 
Goodman took advantage of the spectral separability of different components of hyperspectral 

imagery to add a linear mixing model to Lee’s Model to extract bottom composition. The first step 

is to obtain the solution vector 𝛾𝛾 with Lee’s Model, then use it to add the water column contribution 

to each endmember (input spectra) and perform the unmixing with the original measured 

reflectance. The algorithm block diagram is showed on figure 3. 

 
Figure 3: LIGU Block Diagram 

2.4 Combined Inversion with Linear Unmixing at the Surface (CIUS) 
Unlike LIGU, CIUS estimates the water optical properties, bathymetry and abundances together 

by modeling the remote sensing reflectance just above the water surface as: 

 𝑅𝑅�𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑥𝑥� = �𝑥𝑥𝑖𝑖𝑅𝑅�⃑ 𝑟𝑟𝑟𝑟(𝜌𝜌𝑖𝑖, 𝛾𝛾)
3

𝑖𝑖=1

 ( 22 ) 

where 𝐴𝐴 is a transformed endmembers matrix. Each column of 𝐴𝐴 corresponds to a transformed 

endmember spectral signature to surface remote sensing reflectance. This transformation is 

performed by adding the water column contribution to each endmember. An endmember is the 

reflected light from the pure surface of a specific material measured by a spectrometer.   𝑥𝑥� is the 
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abundances vector obtained by unmixing endmember matrix 𝐴𝐴 with 𝑅𝑅𝑟𝑟𝑟𝑟 and 𝜌𝜌𝑖𝑖 is the 𝑖𝑖𝑎𝑎ℎ 

endmember. The Abundance vector contains the weight that represents the individual contribution 

of each endmember to the measured 𝑅𝑅𝑟𝑟𝑟𝑟.  𝑅𝑅�𝑟𝑟𝑟𝑟 is the modeled remote sensing reflectance just above 

the water surface.  

The error for the optimization scheme is: 

 𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 =  𝑅𝑅𝑟𝑟𝑟𝑟 − 𝑅𝑅�𝑟𝑟𝑟𝑟 ( 23 ) 

The optimization problem is the following: 

 
(𝑥𝑥, 𝛾𝛾) = min

𝛾𝛾,𝑥𝑥

1
2 �𝑅𝑅𝑟𝑟𝑟𝑟 − 𝑅𝑅�𝑟𝑟𝑟𝑟�2

2

‖𝑅𝑅𝑟𝑟𝑟𝑟‖22
 

( 24 ) 

For each iteration, the algorithm uses the solution vector 𝛾𝛾 to add the water column to each 

endmember. Then, these transformed endmembers are unmixed with the measured 𝑅𝑅𝑟𝑟𝑟𝑟 to obtain 

abundance vector 𝑥𝑥. After that the remote sensing reflectance 𝑅𝑅�𝑟𝑟𝑟𝑟 is modeled as in (22) and the error 

is calculated as in (23). See the following figure for the block diagram of this algorithm:  

 
Figure 4: CIUS Block Diagram 

2.5 Combined Inversion with Linear Unmixing at the Bottom (CIUB) 
Unlike CIUS, CIUB tries to fit the subsurface remote sensing reflectance 𝑟𝑟𝑟𝑟𝑟𝑟. CIUB uses the 

Lee’s model to approximate the water column optical properties. The model is based on the 

optimization (i.e., minimization) of the following error. 

 𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 =  𝑟𝑟𝑟𝑟𝑟𝑟 − �̂�𝑟𝑟𝑟𝑟𝑟 ( 25 ) 

where  



13 
 

 𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑅𝑅𝑟𝑟𝑟𝑟

0.5 + 1.5𝑅𝑅𝑟𝑟𝑟𝑟
 ( 26 ) 

Following Lee’s Model, subsurface remote sensing reflectance can be model as:  

�̂�𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 �1 − exp �− �1 +

𝐷𝐷𝑢𝑢𝐶𝐶

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻��+
1
𝜋𝜋 𝐵𝐵𝜌𝜌 exp �− �1 +

𝐷𝐷𝑢𝑢𝐵𝐵

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻� ( 27 ) 

and can be modified by reconstructing the bottom in the following way: 𝜌𝜌 = 𝑨𝑨�⃗�𝑥. For each 

iteration, the water column contribution is subtracted from the measured 𝑟𝑟𝑟𝑟𝑟𝑟 as follows: 

�̂�𝑟𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 �1 − exp �− �1 +

𝐷𝐷𝑢𝑢𝐶𝐶

cos(𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻�� =
𝑎𝑎𝑖𝑖𝑇𝑇

𝜋𝜋 exp �− �1 +
𝐷𝐷𝑢𝑢𝐵𝐵

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻� ( 28 ) 

where 𝑎𝑎𝑖𝑖𝑇𝑇 is the 𝑖𝑖𝑎𝑎ℎ row of endmember matrix 𝐴𝐴. Taking the left-hand side of the last equation 

as 𝑏𝑏, and the right-hand side is the 𝑖𝑖𝑎𝑎ℎ row of 𝐴𝐴: 

 
𝑏𝑏 = 𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑 �1 − exp �− �1 +
𝐷𝐷𝑢𝑢𝐶𝐶

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻�� ( 29 ) 

 
𝑎𝑎�𝑖𝑖 =

𝑎𝑎𝑖𝑖
𝜋𝜋 exp �− �1 +

𝐷𝐷𝑢𝑢𝐵𝐵

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻� ( 30 ) 

Then, the linear mixing model can be applied in the following way: 

 𝑥𝑥� = unmix(𝐴𝐴, 𝑏𝑏) ( 31 ) 

The optimization problem is the following: 

 
(𝑥𝑥�, 𝛾𝛾�) = min

𝛾𝛾,𝑥𝑥

1
2 ‖𝑟𝑟𝑟𝑟𝑟𝑟 − �̂�𝑟𝑟𝑟𝑟𝑟(𝛾𝛾,𝜌𝜌)‖22

‖𝑟𝑟𝑟𝑟𝑟𝑟‖22
 ( 32 ) 

Figure 5 below shows a block diagram that explains the operation of the CIUB algorithm: 
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Figure 5: CIUB Block Diagram 

2.6 Regularization Algorithm 
Luis O. Jiménez and Eladio Rodriguez-Díaz proposed a subsurface classification algorithm by 

means of regularization techniques. It was developed into a thesis by Rodriguez-Díaz in [6]. 

Regularization is a method commonly used to solve ill posed or rank deficient problems. An ill 

posed problem is one where small perturbations in the data cause large perturbations in the solution. 

Moreover, rank deficiency is caused by linearly dependent rows and columns in the data. This work 

is also based on the Lee’s Model described on section 2.2 of this document.  

Recalling the surface remote sensing reflectance is expressed in the following way: 

 𝑅𝑅𝑟𝑟𝑟𝑟 = 𝑓𝑓[𝑎𝑎, b,𝜌𝜌,𝐻𝐻, 𝜃𝜃𝑤𝑤] ( 33 ) 

Where: also, as proposed by Lee’s Model, the surface remote sensing reflectance is defined as: 

 𝑅𝑅𝑟𝑟𝑟𝑟 =  
0.5�̂�𝑟𝑟𝑟𝑟𝑟

1 − 1.5�̂�𝑟𝑟𝑟𝑟𝑟
 ( 34 ) 

where �̂�𝑟𝑟𝑟𝑟𝑟 is the estimated subsurface remote sensing reflectance defined as: 

�̂�𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 �1 − exp �− �1 +

𝐷𝐷𝑢𝑢𝐶𝐶

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻�� +
1
𝜋𝜋 𝜌𝜌 exp �− �1 +

𝐷𝐷𝑢𝑢𝐵𝐵

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻� ( 35 ) 

with 
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 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 ≈ (0.084 + 0.170𝑢𝑢)𝑢𝑢 ( 36 ) 

 𝐷𝐷𝑢𝑢𝐶𝐶 ≈ 1.03(1 + 2.4𝑢𝑢)0.5 and  𝐷𝐷𝑢𝑢𝐶𝐶 ≈ 1.04(1 + 5.4𝑢𝑢)0.5 ( 37 ) 

and 

 𝑢𝑢 =  𝑏𝑏
𝑎𝑎+ 𝑏𝑏

 and 𝑘𝑘 = 𝑎𝑎 + 𝑏𝑏 ( 38 ) 

Note: 𝜌𝜌, 𝑎𝑎 and 𝑏𝑏 are wavelength dependent. 

Now, Lee’s Model can be reformulated in a matrix form as follows: 

 

𝑏𝑏 = 𝐴𝐴𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑏𝑏(𝜆𝜆1)
𝑏𝑏(𝜆𝜆2)

.

.

.
𝑏𝑏(𝜆𝜆𝑑𝑑)⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆1)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆1)
𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆2)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆2)

.

.

.
𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆𝑑𝑑)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑑𝑑)⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑎𝑎11 0 ⋯ 0
0 𝑎𝑎22 ⋯ 0
. . ⋯ .
. . ⋯ .
. . ⋯ .
0 0 ⋯ 𝑎𝑎𝑑𝑑𝑑𝑑⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜌𝜌(𝜆𝜆1)
𝜌𝜌(𝜆𝜆2)

.

.

.
𝜌𝜌(𝜆𝜆𝑑𝑑)⎦

⎥
⎥
⎥
⎥
⎤

 ( 39 ) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 is defined as: 

 
𝑎𝑎𝑖𝑖𝑖𝑖 =

1
𝜋𝜋 exp �− �1 +

𝐷𝐷𝑢𝑢𝐵𝐵

cos (𝜃𝜃𝑤𝑤)� 𝑘𝑘𝐻𝐻� ( 40 ) 

and  

 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐 = 𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 �1 − exp �− �

1
cos (𝜃𝜃𝑤𝑤) + 𝐷𝐷𝑢𝑢𝐶𝐶� 𝑘𝑘𝐻𝐻�� ( 41 ) 

is the water column contribution at 𝜆𝜆𝑖𝑖 wavelength. The inverse solution can be found using 

Tikhonov Regularization[6], [7]. Then, the problem is expressed in the following way: 

 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 = arg min{‖𝐴𝐴𝑃𝑃 − 𝑏𝑏‖22 + 𝜂𝜂2‖𝑃𝑃 − 𝑃𝑃0‖22} ( 42 ) 

and its solution is: 

 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 = (𝐴𝐴𝑇𝑇𝐴𝐴 + 𝜂𝜂2𝐼𝐼)−1(𝐴𝐴𝑇𝑇𝑏𝑏 + 𝜂𝜂2𝑃𝑃0) ( 43 ) 

The mathematical expression for each component of 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 is: 

 
𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆) =

𝑎𝑎𝑖𝑖2(𝜆𝜆)
𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2

𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆1)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜆𝜆) +

𝜂𝜂2

𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2
𝜌𝜌0 ( 44 ) 

where 𝜌𝜌0 is the spectral signature of individual objects of interest and 𝜂𝜂2 is expressed as: 

 𝜂𝜂2 =  
𝛾𝛾

1 − 𝛾𝛾  with  𝛾𝛾 ∈ [0,1). ( 45 ) 

where 𝛾𝛾 is the regularization parameter and is selected one per endmember per pixel. The bigger 

the regularization parameter the more similar 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 will be to 𝑃𝑃0. Equations from 33 to 45 enable the 
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estimation of 𝜌𝜌(λ) considering uncertainties present in the observation.  𝜌𝜌(λ) will be used to detect 

our object of interest [6]. 𝑎𝑎 and 𝑏𝑏 are optical properties of the water column and, in this project, 

were retrieved using a special method described on section 3.4. 

The spectral signature of the bottom 𝜌𝜌0 and the regularization parameter 𝛾𝛾 needs special 

considerations for several reasons: 

• These two parameters affect significantly the result of the algorithm.  

• There can be multiple bottoms since it is common, in classification problems, to have 

more than two objects of interest.  

• There is not a specific method to select the regularization parameter 𝛾𝛾 since it depends 

on the problem and usually is determined by ad hoc methods, particularly designed just 

for the current problem. 

For these reasons, the algorithm proposed by Rodriguez [6] includes an automatic method that 

select the optimum bottom (𝜌𝜌0) from the given endmembers and the optimum regularization 

parameter (𝛾𝛾), based on the point of maximum curvature of the error function between the obtained 

𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 and the given endmembers. The point of maximum curvature is selected because is the point 

that produce a small enough (𝛾𝛾) that also produce a small error as by Rodriguez in [6]. This 

methodology is going to be described in the next section.  

2.6.1 Selecting the Optimum Bottom and the Optimum Regularization Parameter 

While inverting the 𝑘𝑘𝑎𝑎ℎ pixel in the hyperspectral image using the 𝑖𝑖𝑎𝑎ℎ spectral signature from the 

objects of interest, the optimum 𝛾𝛾 will be selected based on the point of maximum curvature of 

the following error function: 

 𝐸𝐸𝑘𝑘,𝑖𝑖(𝛾𝛾) = �𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔(𝑘𝑘) − 𝑃𝑃𝑠𝑠(𝑖𝑖)�2
2 ( 46 ) 

that is calculated in the following way: 

 
𝛾𝛾𝑠𝑠𝑑𝑑𝑎𝑎𝑘𝑘,𝑖𝑖 = arg max𝑖𝑖 �

𝐸𝐸(𝛾𝛾)′′
(1 + (𝐸𝐸(𝛾𝛾)′)2)3/2� ( 47 ) 

Were 𝛾𝛾 is a value from 0 to 1 and 

 𝐸𝐸(𝛾𝛾)′′
(1 + (𝐸𝐸(𝛾𝛾)′)2)3/2 ( 48 ) 
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is defined as the curvature for the current 𝛾𝛾. The mathematical procedure to obtain 𝛾𝛾𝑠𝑠𝑑𝑑𝑎𝑎𝑘𝑘,𝑖𝑖  will be 

explained on section 3.5. Once all the 𝛾𝛾𝑠𝑠𝑑𝑑𝑎𝑎𝑘𝑘,𝑖𝑖 has been calculated for each endmember, the image is 

then inverted using one of the following possibilities: 

1. The class and 𝛾𝛾 that produce the smallest 𝛾𝛾𝑠𝑠𝑑𝑑𝑎𝑎𝑘𝑘,𝑖𝑖  

 𝛾𝛾 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝛾𝛾𝑖𝑖) ,  where 𝑖𝑖 = 1,2, … ,𝑛𝑛 ( 49 ) 

 
Figure 6: Example of choosing 𝜸𝜸 that produce the smallest 𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸,𝒊𝒊  

2. By choosing the class and 𝛾𝛾 that produce the smallest error 𝐸𝐸𝑘𝑘. 

 𝛾𝛾 = 𝑎𝑎𝑟𝑟𝑔𝑔 𝑚𝑚𝑖𝑖𝑛𝑛
𝛾𝛾𝑖𝑖
�𝐸𝐸𝑘𝑘(𝛾𝛾𝑖𝑖)� ,  where 𝑖𝑖 = 1,2, … ,𝑛𝑛 ( 50 ) 

 
Figure 7: Example of choosing 𝜸𝜸that produce the smallest error per pixel 
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After selecting the class and 𝛾𝛾 the image is re-inverted and can be classify using any classification 

method. The selected classification algorithms for this project are explained on section 3.6. 

2.6.2 Pseudo Code 
The regularization algorithm operates in the following way: 

• For each pixel  

o Convert 𝑅𝑅𝑟𝑟𝑟𝑟 to 𝑟𝑟𝑟𝑟𝑟𝑟  

o For each endmember 

 For each regularization parameter 

• For each wavelength (𝝀𝝀) 

o Invert pixel using endmember and current 𝛾𝛾.  

 Calculate error between 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 and current endmember 𝑃𝑃0 

 Calculate point of maximum curvature of the error curve 

o Select 𝛾𝛾 and optimum bottom either based on the point of maximum curvature 

or the point of the minimum error.  

o Invert using 𝛾𝛾 and Optimum Bottom 

o Classify 

2.7 TiO2 – Titanium Dioxide 
Titanium dioxide (TiO2) is an odorless, insoluble, inflammable, chemically inert, non-toxic white 

solid chemical compound with interesting optical properties. TiO2 has one of the highest refractive 

index among materials known to man. It’s a Lambertian reflector [21] and its reflectance is almost 

perfect on the visible region (See figure 8). Around 1930 was discovered its photolytic activity and, 

since then, the number of studies has been increasing significantly. Its wide list of applications 

includes sunscreen lotions, paints, environmental decontamination, self-cleaning surfaces, water 

purification, solar cells, photocatalists, biocides, food, and many more. [22]–[28] 

TiO2 is being used in this project as light scattering agent. Since the compound is insoluble the 

particles will be suspended on the water column and will scatter the light in all direction making it 

difficult for the hyperspectral camera to measure the reflected light from the bottom of a water tank.  
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Figure 8: Measured Reflectance of TiO2 

 

2.8 HyCIAT 2007  
HyCIAT 2007 is a toolbox developed using MATLAB 2007a for the estimation of the water 

optical properties, bathymetry and fractional abundances of the bottom using a hyperspectral image 

of shallow waters. After MATLAB 2008b this algorithm seized to work due to changes in defaults 

parameters of some MATLAB’s native functions across MATLAB versions. One of the main 

objectives of this project was to update and enhance this legacy toolbox to use it on a more recent 

MATLAB platforms. This section will name and described the important interfaces as they will be 

named through the rest of the document.  

HyCIAT’s main interface is showed in figure 9. It contains a toolbar on the top with all the 

included functionalities, processing algorithms and tools. For example, it has a scroll bar to browse 

through the image. Also, it has some tools to visualize the image either by creating an RGB 

composite or by automatically calculating a true color image of it.  
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Figure 9: Main Interface 

The integration of Lee based algorithms: LIGU, CIUS and CIUB algorithms into the toolbox was 

performed in the following way: 

 

Figure 10: Block diagram of the implementation of the unmixing algorithms into HyCIAT[1] 

The HSI before being process needs to be converted into reflectance and corrected. Remotely 

sensed hyperspectral images of shallow environments usually are corrected in two ways: 

atmospherically and the sun glint must be removed. The field spectra and the spectral endmembers 

are inputs to the inversion model implemented that retrieve the water column properties and 
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calculated the fractional abundances of each endmember to the measured spectra. The toolbox was 

developed and tested using three endmembers: sand, coral and algae by Torres-Madroñero on [1]. 

Also, on the same work, it was demonstrated that results can be improved by integrating LIDAR 

derived bathymetry by eliminating one unknown from the inversion algorithm.  

The inversion model needs another set of parameters to work, they are adjusted before the 

algorithm start in an interface called “Initial Parameters” showed on figure 11. As can be observed 

in the mentioned figure, the interface consists of initial values, optimization parameters, tools to 

select the abundances algorithms, tools to select the optimization algorithm and finally tools to 

include bathymetry data (data fusion). This interface was modified on this project to increase 

functionality and to include new features (see section 4.1). 

At the end of every process, the interface showed in figure 12 shows the result in a graphical 

format. The Results interface includes tools to browse through the results where they can be 

visualized with the use of color pallets and color bars.  The interface has two types of results: 1) the 

optical properties and 2) the fractional abundances of each endmember to the measured signal. 

Abundances can be visualized also by creating RGB composite by assigning an endmember to a 

certain RGB band.  

 

Figure 11: Initial Parameters Interface (HyCIAT 2007) 
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Figure 12: Results interface 
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3 Materials and Methods 
This project consisted of two main software development aspects. The first one is the 

enhancement of a legacy toolbox named HyCIAT. The enhancement includes updating several 

functions that already were implemented on [1] but ceased to work after MATLAB 2008b. Other 

changes ensures better usability and result compatibility between the ones published in [1] and the 

ones obtained in this new version of the toolbox. Moreover, the second software development aspect 

includes the integration of a new algorithm of classification based on regularization techniques. The 

methodology and background, of this new algorithm, were developed by Luis O. Jiménez and its 

former graduate student Eladio Rodriguez [6]. Furthermore, additional tools and functions to manage 

HSI, create and save endmember files, manipulate regions of interest and extract its data for later 

processing were also integrated into the updated version of the toolbox. 

An experiment was performed, to have a dataset to validate the new algorithms and tools, using a 

water tank with a fixed bottom and multiple layers of water. Also, this dataset consists of a controlled 

environment in a tank. A light scattering agent was added to the water to resemble a more realistic 

environment of coastal shallow waters (See section 2.7 for details on the chemical compound used).  

 The next section (section 3.1) will explain and describe the experiment performed to obtain the 

new dataset, including the experimental setup and how it was conducted. The succeeding section 

(section 3.2) will explain the needed pre-processing of the image for the validation of the algorithms. 

The specific procedure to retrieve empirically 𝑎𝑎 and 𝑏𝑏, which are needed parameters of Lee’s 

algorithm discussed on section 2.3, will be described on section 3.4. How the Regions of Interest6 

(ROI) were selected will be explain in section 3.3 including the ROIs that were selected and used to 

validate the algorithm. The two different methods used to calculate the Maximum Curvature will be 

discussed on section 3.5. On section 3.6 the different classification methods used to validate the 

regularization algorithm are explained. 

3.1 Dataset Acquisition for Validation Data 
An experiment was performed in a laboratory controlled environment to obtain a unique dataset 

for the validation of the algorithms. The experiment consists of a water tank with a fixed bottom 

and multiple layers of water. TiO2 was added to the water as a scattering agent in order resemble a 

more realistic environment. With this data set the optical properties "𝑎𝑎" and "𝑏𝑏" are going to be 

                                                   
6 ROI are specific regions of the HSI that are being studied usually represent a single object. 
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empirical derived (see section 3.4). Also, this data set is used to test the accuracy obtained from the 

classification algorithms. On the following section materials, setup and the experimental procedure 

will be discussed.  

3.1.1 Materials 
The following materials were used to perform the experimental procedure that will be 

discussed in the following section: 
Table 1: Material List 

Material Name Material Name 
1. Plastic Tank  
2. Dark Spray Paint  
3. Laminated Bottom 
4. Water  
5. 1 Gallon Water Bottle  
6. Ruler 
7. Hyperspectral Camera SOC 700 with 

Tripod 

8. White Standard (99.9%) 
9. Lamp  
10. Tungsten Light Bulb 
11. Titanium Dioxide  
12. Transparent Tape 
13. Computer 
14. Data Acquisition Equipment 

3.1.2 Experimental Setup 
The experiment was performed in a closed room sealed from sunlight. A bottom sample was 

prepared to have a known object in the bottom of tank. The bottom sample consists of four color 

regions (red, yellow, green and blue) printed on a standard sheet (8 in by 11 in). The object was 

laminated and taped to the bottom of the tank and the white standard 7 was placed in the center of 

it, see figure 13. The white standard was then used for calibration purposes and retrieving 

empirically the absorption and backscattering vectors: "𝑎𝑎" and "𝑏𝑏". 

  
Figure 13: Known bottom with the white standard over it 

                                                   
7 White standard, also known as calibration standard, is an object used to measure the amount of light that is reaching 
the surface of the object being imaged. The calibration standard used on this work reflects 99.9% of the incident light 
over it. The measured light over this region on the image without the effect of water is then used to calibrate all the 
images (see section 3.2). 

Blue Yellow 

Green Red 
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The Hyperspectral Camera, the water tank and the lamp were carefully placed to avoid glint 

over the region of interest. The tank was painted with non-gloss black paint spray. See figure 14 

for the image of the setup. The setup was marked and never moved during the experiment.  

 

Figure 14: Image of the setup 

3.1.3 Experimental Procedure 
The purpose of the experiment was to obtain a data set from a controlled environment to be 

used to validate the algorithms and to study the effect of water and TiO2 on the measured 

reflectance from the bottom. The setup was fixed and never moved during the whole experiment. 

The experimental setup were configured to avoid glint over the colored regions of the sample. 

The room air conditioner’s air stream was blocked to avoid vibration on the camera, also walking 

and talking activities were stopped during the image acquisition. Any vibration cause stripping 

noise in the captured HSI.  

The experimental procedure established was as follows: 

1. Take an HSI of the setup without water.  
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2. Pour gallons of water and measure the water depth. 

3. Leave the water to rest so that is not moving and take an HSI. 

4. Continue step 2 and 3 until the water depth reach 12.0 in. 

5. Weight steps of 0.5 g of TiO2 and add it to the water. 

6. Stir the water until the TiO2 is visually uniformly distributed. 

7. Leave the water to rest so that is not moving and take an HSI. 

8. Repeat steps 5 through 7 until 2.0 g of TiO2 were successfully imaged. 

Using this procedure several images were obtained and they will be explained on the next 

section. 

3.1.4 Images Names and Descriptions 

The following table has the names and description from which each image is going to be 

referenced during the rest of the document. On figure 15 there are some examples of the images 

taken without any pre-processing. 
Table 2: Images names with their respective water levels and TiO2 amount 

Image Name Type of Water # Gallons Depth Volume (cm^3) 
0.0 in without TiO2 Clean 0 0 in 0 
0.6 in without TiO2 Clean 1 0.6 in  3785 
1.2 in without TiO2 Clean 2 1.2 in 7570 
1.8 in without TiO2 Clean 3 1.8 in 11356 
3.0 in without TiO2 Clean 5 3.0 in  18927 
4.7 in without TiO2 Clean 8 4.7 in 30283 
6.0 in without TiO2 Clean 10 6.0 in 37854 
8.3 in without TiO2 Clean 15 8.3 in 56781 
10.8 in without TiO2 Clean 20 10.8 in 75708 
12.0 in without TiO2 Clean 22 12.0 in 83279 
12.0 in with 0.5 g of TiO2  Turbid 22 12.0 in 83279 
12.0 in with 1.0 g of TiO2 Turbid 22 12.0 in 83279 
12.0 in with 1.5 g of TiO2 Turbid 22 12.0 in 83279 
12.0 in with 2.0 g of TiO2 Turbid 22 12.0 in 83279 
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Figure 15: Example of some of the images taken with no processing 

 

3.2 Image Pre-Processing 
Images were masked, calibrated, registered and cropped before being processed by the 

algorithms. In the following section, each one of these steps are going to be explained in detail.  

3.2.1 Image Masking 
Images were masked to eliminate saturated pixels. In this experiment, saturated pixels are 

encounter due to the glint of the lamp on the water surface and/or on wrinkles that occurs on the 

surface of the laminated bottoms (See figure 16). Experimental setup was carefully placed to avoid 

saturated pixels over the Region of Interest. See figure 17 to see the difference between a saturated 

pixel and the spectral response of the white standard. 

1.8’’ 10.8’’ 

12.0’’ 12.0’’ 0.5g 

6.0’’ 

12.0’’ 2.0g 
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Figure 16: 12.0 in image with saturated pixels 8 

 

Figure 17: Spectral Response of A) Saturated Pixels vs. B) White Standard  

To automatically mask bad pixels a special interface was developed to assist the researcher in 

accomplishing this task. Since the experiment was designed to have the white standard on every 

image, this region is conveniently used by the algorithm to mask saturated pixels.  

To masked saturated pixels, the user first selects a region over the white standard, then the 

algorithm will calculate the average this region and divide each pixel in the image by the obtained 

value. The algorithm will zero every pixel that contains a spectral response bigger than 𝑦𝑦 on any 

of its bands (𝑦𝑦 is configurable). Figure 18 shows the image from figure 16 with no calibration and 

with saturated pixel being masked. 

                                                   
8 Image was calibrated and conditioned for representation purposes. 
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Figure 18: 12.0 in image with saturated pixels being masked (un-calibrated) 

3.2.2 Calibration 
The experiment was design to have a White Standard as part of the known bottom. In this 

project calibration means converting the image into reflectance. Two steps were required to achive 

this. The first step is to obtain a calibration vector. This vector is obtained by averaging the pixels 

enclose in a region selected over the white standard without the effect of water (Dry). The second 

step, for calibrating the image, is to divide every pixel by the obtained calibration vector. The 

calibration vector 𝑐𝑐 𝜖𝜖 ℜ𝑚𝑚×1 where 𝑚𝑚 is the number of bands. See figure 19 for the visual 

differences between the obtained normal radiance image and reflectance image (Calibrated 

image). 

  
Figure 19: Difference between A) Radiance image and B) Reflectance image 
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Masked Pixels 
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3.2.3 Image Registration 
The increasing water levels make the region of interest shift due to the optics of the water. 

Figure 20 is a RGB image crated by assigning a band from the 0 in image to the red channel and 

assigning the same band of the 12 in image to the blue channel. It can be observed that shapes 

don’t fall within each other.  

 
Figure 20: Optical offset created by 12.0 in of water 

Due to the nature of this experiment, images need to be registered so that the region of interest 

overlaps within each other. Registered images are going to be used for the empirical retrieval of 

the optical properties vector 𝑎𝑎 and 𝑏𝑏 (The procedure will be explained in section 3.4). An 

algorithm was developed around MATLAB Image Processing Toolbox’s functions: cpselect, 

cp2tform and imtransform for registering the images. As explained by The MathWorks Inc. 

• cpselect – “Control point selection tool”  

•  cp2tform – “Infer spatial transformation from control point pairs” 

• imtransform – “Apply 2-D spatial transformation to image” 

The function cpselect provides an interface to select corresponding point pairs on the 

reference image and the image to be registered. This function generates two variables which 

contains the control point pairs selected by the user. These generated variables are then given to 

the cp2tform function that will generate the variables that include all the necessary information 

so that imtransform function can transform the image. imtransform was selected because it 

has a functionality very convenient to HSI images. If the image to be registered has more than 

two dimensions the same spatial transformation is applied to every plane along the higher 

dimensions [29]. 
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cp2tform can infer 7 different spatial transformations: non-reflective similarity, similarity, 

affine, projective, polynomial, piecewise linear and lwm9. The selected transform was projective. 

As explained by The MATLAB Works, Inc.  Projective transformation must be used “when the 

scene appears tilted. Straight lines remain straight, but parallel lines converge toward vanishing 

points that might or might not fall within the image” [29]. The algorithm will be explained on the 

next section.  

3.2.3.1 Registration Procedure 

The algorithm starts by opening the reference image and the image to be registered. Then 

they are passed to the cpselect function and the following interface that shows the given 

images side by side, will appear: 

 

 

 
The interface will show the image to be registered on the left and the selected reference image 

on the right. Then, the user proceeds to select corresponding point pairs. Each point must be 

matched on both sides. See figure 22. Depending on the algorithm there are a minimum of points 

                                                   
9 For more information on each one of them visit MATLAB Online Documentation. Search for cp2tform MATLAB 
2013a. 

Figure 21: MATLAB cpselect function GUI 

Image to be Register Reference Image 
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needed so that the transform can be performed. A total of 12 points were selected between each 

HSI to be registered and the reference one.  

After all the points are selected the algorithm give the option to save the selected points, these 

points can be used to register other images. The algorithm proceeds by giving these points to 

cp2tform that infer the transformation for a single spatial plane, in this case projective algorithm 

was selected. After the transformation variables are computed by cp2tform they will be given 

to the imtransform function that will apply it to every spatial plane of the image. Figure 23 

shows: A) unregistered and B) the same image registered using this procedure.  

 
Figure 22: Selecting point on cpselect interface 

   
Figure 23: Resulting image after registration procedure 

A B 
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3.2.4 Final Images: After pre-processing 
After all pre-processing steps, each image were cropped into a 433×546×120 spectral cube 

where 433×546 is the spacial dimensions and 120 are the number of spectral bands between 

412 𝑛𝑛𝑚𝑚 and 908 𝑛𝑛𝑚𝑚. For showing the RGB images bellow, the bands selected for the 

corresponding channels were the following: Red – band 49, wavelength 605.9 𝑛𝑛𝑚𝑚; Green – 

band 32, wavelength 536.4 𝑛𝑛𝑚𝑚; Blue – band 18, wavelength 480.0 𝑛𝑛𝑚𝑚. 

3.2.4.1 Images with Different Water Levels 

This section shows the final images that were used to validate the algorithm, after all pre-

processing steps. (On the next table the word “without” was abbreviated as “w/o”) 

Table 3: Images Preprocessed – With different water levels  

  

  

  

0.6 in of water w/o TiO2 0.0 in of water w/o TiO2 

1.2 in of water w/o TiO2 1.8 in of water w/o TiO2 

3.0 in of water w/o TiO2 4.7 in of water w/o TiO2 
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Table 3: Images Preprocessed – With different water levels  

  

  
 

3.2.4.2 12.0’’ Images with Different TiO2 Concentrations 
Table 4: Images Preprocessed – 12.0’’ with different TiO2 concentrations 

  

  

6.0 in of water w/o TiO2 8.3 in of water w/o TiO2 

10.8 in of water w/o TiO2 12.0 in of water w/o TiO2 

12.0 in of water with 0.5 g of TiO2 

 

12.0 in of water with 1.0 g of TiO2  

 

12.0 in of water with 1.5 g of TiO2  

 

12.0 in of water with 2.0 g of TiO2  
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3.3 Regions of Interest 
The known bottom is composed of four different colors (Blue, Yellow, Green, Red). The White 

Standard was included as part of the bottom too, making five different regions of interest. A special 

interface was programmed to perform the task of selecting regions, extracting their information and 

saving them in a known format for later use. The coordinates of these regions are saved so that they 

can be used to create the same endmembers in similar or registered images.  

Two different regions per ROI were selected: one for training another for testing. Training 

regions were used to extract the endmembers on different images and testing regions were used to 

test how the classification performed. Figure 24 shows training regions (solid lines) and the testing 

regions (dashed line) selected for this project. 

 

Figure 24: Region of Interest Selected: Training (solid line) and Testing (dashed line) 

3.3.1 Endmembers  
Endmembers were extracted by averaging every pixel on the training regions resulting in a 

𝑚𝑚×𝑛𝑛 matrix where 𝑚𝑚 is the number of bands and 𝑛𝑛 is the number of endmembers. Two images 

were used to extract endmembers 0.0 in and 1.8 in. Dry image (0.0 in) was used because on the 

work presented by Rodríguez-Díaz on [6] the endmembers used to process the image were the 

representative ones of objects of interest without the effect of the water. 1.8 in was used as well 

in order to have the effect of a small layer of water this is the closest case to a realistic measure 

of the spectral signature of the objects of interest measured underwater. 
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Figure 25 shows the endmembers extracted from the 0 in image which does not contain any 

effect of water layers. Figure 26 shows the Normal Reflectance of endmembers extracted from 

the image 1.8 in  which has the effect of a small layer of water.  

 

Figure 25: Endmembers from 𝟎𝟎’’ hyperspectral image 

 

 

Figure 26: Endmembers extracted from 1.8’’ hyperspectral image 
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3.4 Optical Properties Retrieval thorough an Empirical Procedure 
The main algorithms used in this work are based on the Lee’s function presented on section 2.2. 

Particularly, the regularization algorithm the function for the remote sensing reflectance is the 

following: 

 𝑅𝑅𝑟𝑟𝑟𝑟 = 𝑓𝑓[𝑎𝑎, 𝑏𝑏,𝜌𝜌,𝐻𝐻,𝜃𝜃] ( 51 ) 

Where: 

• 𝑅𝑅𝑟𝑟𝑟𝑟 is the remote sensing reflectance.  

• 𝑎𝑎 is the absorption coefficient. 

• 𝑏𝑏 is the backscattering. 

• 𝜌𝜌 bottom albedo (spectral signature of the object without the effect of the medium). 

• 𝐻𝐻 is the bottom depth. 

• 𝜃𝜃 is the subsurface solar zenith angle. 

In the original work by Lee et. al. in [2], [3] the optical properties vectors 𝑎𝑎 and 𝑏𝑏 are estimated 

in the optimization routine (see section 2.2). In the regularization algorithm, these parameters need 

to be given so that the algorithm can work. It is important to understand that the regularization 

algorithm was designed to consider high uncertainties of these optical properties. These algorithms 

don’t need a high precision when it comes to 𝑎𝑎 and 𝑏𝑏. 

Many forms of 𝑎𝑎 and 𝑏𝑏 vectors can be used. For example, a constants value for each wave length 

(e.g. 1 or 0.5), or the values obtained using a new methodology that can empirically retrieve 𝑎𝑎 and 

𝑏𝑏 vectors from the same images that were obtained during experiments. This methodology will be 

described in the next section. 

3.4.1 Empirical derivation of 𝑎𝑎 and 𝑏𝑏 values 
This methodology starts by masking and dividing every region into multiple sub-regions. Since 

all the images are registered every region of interest between two images will coincide within 

each other. For this method, only one region of interest at a time is selected. The selected region 

is then divided into a given amount of sub-region which then they are averaged. The average of 

each sub-region is taken as a solution to equation 51. For example, if the region is divided into 9 

sub-regions then there will be 9 different solutions. Solutions must be more than the number of 

unknowns in the equations to retrieve the best solution in a least square sense.   
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The algorithm developed to retrieve the optical properties needs two images. One of them is 

the base image which, in this project, is the one without the effect of water and the second image 

is the one with the submerged bottoms. The mathematical description of the empirically retrieval 

of the optical properties vector 𝑎𝑎 and 𝑏𝑏 is described next. 

Based on the Lee model determine 𝑎𝑎 and 𝑏𝑏 that best fit the least square error: 

 �𝑎𝑎𝜆𝜆𝑖𝑖 , 𝑏𝑏𝜆𝜆𝑖𝑖� = 𝑚𝑚𝑖𝑖𝑛𝑛
𝑎𝑎,𝑏𝑏

���𝑟𝑟𝑟𝑟𝑟𝑟 (𝜆𝜆𝑖𝑖) − �̂�𝑟𝑟𝑟𝑟𝑟−𝑐𝑐𝑠𝑠𝑠𝑠�𝜆𝜆𝑖𝑖,𝐻𝐻,𝑎𝑎, 𝑏𝑏, 𝜃𝜃𝑧𝑧, 𝜌𝜌𝜆𝜆𝑖𝑖��
2

𝑅𝑅

� ( 52 ) 

Where: 

• 𝑟𝑟𝑟𝑟𝑟𝑟 is the measured reflectance  

• �̂�𝑟𝑟𝑟𝑟𝑟−𝑐𝑐𝑠𝑠𝑠𝑠 is the modeled reflectance using Lee’s equations 

• 𝑅𝑅 is the value that signifies all the regions (See section 3.4.2)  

The calculations are performed band by band. Each 𝑟𝑟𝑟𝑟𝑟𝑟 and  �̂�𝑟𝑟𝑟𝑟𝑟 are solutions vectors that 

contains the same amounts of elements as of non-cero regions on the image. The algorithm only 

needs three regions to retrieve empirically 𝑎𝑎 and 𝑏𝑏. The following sections will describe in details 

the steps performed to prepare the image and to obtain the solution of the optical properties 

vectors.  

3.4.2 Masks 
A mask is simply a binary matrix with the same spatial dimension of the main image. The mask 

contains a value 1 on the pixels that correspond to the region that is wanted to be isolated from 

the rest of the image and 0 elsewhere. The last operation is performed by multiplying the original 

image by the mask (See figure 27).  

 
Figure 27: Masking operation 

× = 
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The masks created for this project were carefully selected to avoid shadows. Five different 

mask were created, one per region of interest. Table 5 shows all the created masks. 

Table 5: Masks created for each Region of Interest 

Name Mask Resulting Image 

Blue 

  

Yellow 

  

Green 

  

Red 

  

White 

  
 

3.4.3 Dividing Sub-Regions 
After masking the image, the algorithm will divide each region into sub-regions of equal size 

like a square matrix of "𝑦𝑦"×"𝑦𝑦" elements where 𝑦𝑦 is configurable. See next figure for an example 

of dividing the white region with 𝑦𝑦 = 3 into a 3×3 matrix. 
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Figure 28: Divided sub-regions 

As explained before, each region is averaged and taken as a solution to equation 51. The result 

is a matrix 𝑅𝑅𝑟𝑟𝑟𝑟 𝜖𝜖 ℜ𝑚𝑚×𝑑𝑑 where 𝑚𝑚 is the number of bands and 𝑝𝑝 is the number of non-cero regions. 

Since the regions are divided evenly as a square region there are some cases when all the pixels 

on the sub-regions are cero. In these cases, the sub-region is discarded. See figure 29 for an 

example when this occur.  

 

Figure 29: Blue masked resulting image showing discarded sub- regions 

3.4.4 Absorption and Backscattering Empirical Calculations 
Calculations are preformed band by band solving equation 52. For this the MATLAB function 

lsqnonlin was used. This function is very convenient because allows for bounded problems. 

The function needs more equations than unknowns and initial values to perform bounded 

calculations. For retrieving 𝑎𝑎 and 𝑏𝑏 only lower bounds were used leaving the upper bound 

open, [0,∞). Initial values were selected to be 0.2 for 𝑎𝑎 and 0.1 for 𝑏𝑏. With the same configuration 

𝑎𝑎 and 𝑏𝑏 vectors were retrieved using two image: one without the effect of water and another with 

12.0 in of water. Figure 30 shows the modeled vs measured scatter plot. It can be observed in that 

Sub-Regions discarded 

because all its pixels are 

cero 
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figure that the model could fit the measured reflectance successfully. Figures 31 and 32 shows an 

example of the empirically derived total absorption (𝑎𝑎) and backscattering (𝑏𝑏) vectors. 

 

Figure 30: Modeled Reflectance vs. Measured Reflectance 

 

 

Figure 31: Empirically Derived Total Absorption (𝒂𝒂) 
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Figure 32: Empirically Derived Backscattering (𝒃𝒃) 

 

3.5 Calculating Maximum Curvature 
As explained on section 2.6, and repeated here for simplicity, the mathematical expression for 

each component of 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 of the regularization algorithm is the following: 

 
𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆) =

𝑎𝑎𝑖𝑖2(𝜆𝜆)
𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2

𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆1)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜆𝜆) +

𝜂𝜂2

𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2
𝜌𝜌0 ( 53 ) 

where 𝜌𝜌0 is the spectral signature of individual objects of interest and 𝜂𝜂2 is expressed as follows: 

 𝜂𝜂2 =  
𝛾𝛾

1 − 𝛾𝛾  with  𝛾𝛾 ∈ [0,1). ( 54 ) 

where 𝛾𝛾 is the regularization parameter and is selected by using the point of maximum 

curvature which is calculated with the following formula: 

 
𝛾𝛾 = arg max𝑖𝑖 �

𝐸𝐸(𝛾𝛾)′′
(1 + (𝐸𝐸(𝛾𝛾)′)2)3/2� ( 55 ) 

where: 

 
𝐸𝐸(𝛾𝛾) = ��𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖) − 𝑃𝑃0(𝜆𝜆𝑖𝑖)�

2
𝑁𝑁

𝑖𝑖=1

 ( 56 ) 
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and 𝐸𝐸(𝛾𝛾)′ and 𝐸𝐸(𝛾𝛾)′′ is the first and second derivative of equation 56. Two methods were used to 

calculate the first and second derivative of the established error function. 1) Numerical 

Approximation described in section 3.5.1 and 2) Derived Equations described in section 3.5.2. 

3.5.1 Numerical Approximation 
𝛾𝛾 is a vector from 0 to 1 in 𝑑𝑑𝛾𝛾 steps and can be used to calculate the derivative numerically by 

using Forward Difference. The first derivative is formulated as: 

 
𝐸𝐸′(𝛾𝛾) =

𝑑𝑑𝐸𝐸(𝛾𝛾)
𝑑𝑑𝛾𝛾 = [𝐸𝐸(𝛾𝛾 + 1) − 𝐸𝐸(𝛾𝛾)]/𝑑𝑑𝛾𝛾 ( 57 ) 

And the second derivative is formulated as: 

 
𝐸𝐸′′(𝛾𝛾) =

𝑑𝑑2𝐸𝐸(𝛾𝛾)
𝑑𝑑𝛾𝛾2 = [𝐸𝐸′(𝛾𝛾 + 1) − 𝐸𝐸′(𝛾𝛾)]/𝑑𝑑𝛾𝛾 ( 58 ) 

3.5.2 Derived Equations 
Another method for calculating the derivative of the error function is by deriving the equations 

starting from: 

 
𝐸𝐸(𝛾𝛾) = ��𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖) − 𝑃𝑃0(𝜆𝜆𝑖𝑖)�

2
𝑁𝑁

𝑖𝑖=1

 ( 59 ) 

The first derivative is: 

 𝑑𝑑𝐸𝐸(𝛾𝛾)
𝑑𝑑η2 = 2��𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖) − 𝜌𝜌0(𝜆𝜆𝑖𝑖)�

𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖)
𝑑𝑑η2  ( 60 ) 

and the second derivative is: 

 𝑑𝑑2𝐸𝐸(𝛾𝛾)
(𝑑𝑑η2)2 = 2���

𝑑𝑑𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖)
𝑑𝑑η2 �

2

+
𝑑𝑑2𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖)

(𝑑𝑑η2)2 �𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖) − 𝜌𝜌0(𝜆𝜆𝑖𝑖)��
𝑁𝑁

𝑖𝑖=1

 ( 61 ) 

Now, the partial derivatives 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟
(𝜆𝜆𝑖𝑖)

𝑑𝑑η2 
 and 𝑑𝑑

2𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆𝑖𝑖)
(𝑑𝑑η2)2

 are needed. Expressing 𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖) as: 

 
𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆) =

𝑎𝑎𝑖𝑖2(𝜆𝜆)
𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2

𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆1)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜆𝜆) +

𝜂𝜂2

𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2
𝜌𝜌0 ( 62 ) 

and its first derivative with respect to 𝜂𝜂2 is computed as: 
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 𝑑𝑑𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖)
𝑑𝑑𝑛𝑛2 = 𝜌𝜌0(𝜆𝜆𝑖𝑖)(𝑎𝑎𝑖𝑖𝑖𝑖2 (𝜆𝜆𝑖𝑖) + 𝜂𝜂2)−1

− �𝑎𝑎𝑖𝑖𝑖𝑖�𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆𝑖𝑖) − 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑖𝑖)� + 𝜌𝜌0(𝜆𝜆𝑖𝑖)�(𝑎𝑎𝑖𝑖𝑖𝑖2(𝜆𝜆𝑖𝑖) + 𝜂𝜂2)−2 
( 63 ) 

and its second derivative with respect to 𝜂𝜂2 is computed as: 

 𝑑𝑑2𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆𝑖𝑖)
(𝑑𝑑𝑛𝑛2)2 = −2𝜌𝜌0(𝜆𝜆𝑖𝑖)(𝑎𝑎𝑖𝑖𝑖𝑖2 (𝜆𝜆𝑖𝑖) + 𝜂𝜂2)−2

+ 2�𝑎𝑎𝑖𝑖𝑖𝑖�𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆𝑖𝑖) − 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑖𝑖)� + 𝜌𝜌0(𝜆𝜆𝑖𝑖)�(𝑎𝑎𝑖𝑖𝑖𝑖2 (𝜆𝜆𝑖𝑖) + 𝜂𝜂2)−3 
( 64 ) 

These formulations allow for rapid integration into an algorithm because its functions can be 

performed while inverting the image. Figure 33 shows how a typical curvature graph looks like. 

  

Figure 33: Typical Curvature Graph of the Regularization Algorithm 

 

3.5.3 Single Regularization Parameter 
The implementation of this algorithm into HyCIAT also includes and additional capability of 

inverting the whole image using a single regularization parameter selected by the user. This 

additional functionality is called Single regularization parameter 

Recalling, regularization algorithm for each pixel, 

 
𝜌𝜌𝑟𝑟𝑠𝑠𝑔𝑔(𝜆𝜆) =

𝑎𝑎𝑖𝑖2(𝜆𝜆)
𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2

𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆1)− 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐(𝜆𝜆𝑖𝑖)
𝑎𝑎𝑖𝑖(𝜆𝜆) +

𝜂𝜂2

𝑎𝑎𝑖𝑖2(𝜆𝜆) + 𝜂𝜂2
𝜌𝜌0 ( 65 ) 
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where 𝜌𝜌0 is the spectral signature of individual objects of interest and 𝜂𝜂2 is expressed as follows: 

 𝜂𝜂2 =  
𝛾𝛾

1 − 𝛾𝛾  with  𝛾𝛾 ∈ [0,1). ( 66 ) 

where 𝛾𝛾, in this additional functionality, is a constant from 0 to 1 selected by the user. 

This additional capability is convenient for studying the effect of the automatic procedure for 

selecting the regularization parameter for each pixel. This functionality was used to produce 

baseline results by setting 𝛾𝛾 to 0 and then classifying results. By setting 𝛾𝛾 to 0 and then classifying 

the image the effect of the atumatically seclection of the regularization parameter can be studied.  

3.6 Classification Algorithms 
After the inversion of the image using 𝛾𝛾𝑠𝑠𝑑𝑑𝑎𝑎 and with the corresponding optimum bottom, the 

final image theoretically is a HSI reconstruction of the main image without the effect of the water 

column. This final image is called 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 and, since is an HSI, conventional classification method can 

be used to classify the image. 

In this project three classification methods were employed, two of them are common and one of 

them is an extension of the spectral unmixing algorithms explained in section 2.1. The first method, 

employed by Rodríguez-Díaz on [6], is the Minimum Euclidean Distance, the second method 

employed in this project is called Minimum Spectral Angle: 

• Minimum Euclidean Distance Classifier starts by calculating the Euclidean distance 

between and inverted pixel 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 with stored spectral signature 𝑃𝑃0𝑖𝑖. 𝑃𝑃0𝑖𝑖 corresponds to the 

endmember 𝑖𝑖, stored in the endmember matrix. The mathematical expression for this 

classifier is the following: 

 𝑔𝑔𝑖𝑖�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� = �𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 − 𝑃𝑃0𝑖𝑖�
𝑇𝑇�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 − 𝑃𝑃0𝑖𝑖� 

Choose class 𝑖𝑖 is and only if an only if: 

𝑔𝑔𝑖𝑖�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� ≤ 𝑔𝑔𝑗𝑗�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� for all 𝑗𝑗 = 1,2, …𝑚𝑚  

( 67 ) 

• Minimum Spectral Angle Classifier calculates the spectral angle between and inverted 

pixel 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 with stored spectral signature 𝑃𝑃0𝑖𝑖 in the following way: 



46 
 

 
𝑔𝑔𝑖𝑖�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� = 𝑐𝑐𝑒𝑒𝑐𝑐−1

𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔𝑇𝑇𝑃𝑃0𝑖𝑖
�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔�‖𝑃𝑃0𝑖𝑖‖

 

Choose class 𝑖𝑖 if and only if: 

𝑔𝑔𝑖𝑖�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� ≤ 𝑔𝑔𝑗𝑗�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� for all 𝑗𝑗 = 1,2, …𝑚𝑚  

( 68 ) 

The third classifier employed in this project is called: 

• Maximum Endmember Value Classifier: The algorithm will calculate the abundances 

of each endmember and will assign the pixel to the endmember that yields the highest 

abundance value. The mathematical expression of this classifier is the following: 

 𝐺𝐺 = 𝑈𝑈𝑛𝑛𝑚𝑚𝑖𝑖𝑥𝑥(𝐴𝐴,𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔) 

Choose class 𝑖𝑖 iff: 

𝑔𝑔𝑖𝑖�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� ≥ 𝑔𝑔𝑗𝑗�𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔� for all 𝑗𝑗 = 1,2, …𝑚𝑚 

( 69 ) 

Where: 𝐴𝐴 is the endmember matrix, 𝐺𝐺 is a vector containing the individual abundances of each 

endmember, 𝑚𝑚 is the number of endmembers and 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 is the regularized pixel. 
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4 Software Development and Implementation 
All the existing algorithms were carefully studied and improved by adding functionalities that 

make the Hyperspectral Coastal Image Analysis Toolbox (HyCIAT) more usable. Important new 

functions were developed and initially tested outside HyCIAT and then integrated into the toolbox. 

Additional tools were also included to have a unified system that can manage the dataset obtained 

for this project explained in section 4.3. Special tools were created for: Region of Interest (ROI) 

selection, obtaining spectral signature, obtaining calibration vectors, extracting data from each ROI, 

calibrating the image (Convert to Reflectance) using a calibration vector, and masking bad pixels.  

HyCIAT, now, can be also used for: data analysis, endmembers studies, unmixing studies, 

underwater classification and statistical analysis just to name a few applications. 

There were two main software development aspects on this project: 1) Updating and enhancement 

of HyCIAT from MATLAB 2007 to MATLAB 2013, and 2) Recoding, Experimentation and 

Integration of the regularization algorithm into HyCIAT (See section 1). Section 4.1 will explain the 

first development aspect and section 4.2 will explain the second development aspect. Then, section 

4.3 will described additional tools and changes implemented to enhance HyCIAT usability. 

4.1 Updating and Enhancement of HyCIAT Underwater Unmixing Functions 
HyCIAT underwater unmixing functions were enhanced and updated in several ways. The 

toolbox didn’t work properly on MATLAB 2013a. After all the main  functionalities were restore, 

it was observed that the obtained results were not the same as the ones published by Torres-

Madroñero on [1]. The differences were due to changes in some default parameters in the 

lsqnonlin function implemented after MATLAB version 2008b. These parameters were 

identified and are explained in section 4.1.1. Sections from 4.1.2 to 4.1.4 will explained some extra 

tools and functionalities that were added to the underwater unmixing toolbox to increase its 

usability.  

4.1.1 lsqnonlin Optimization Functions Default Parameters 

HyCIAT was developed by Torres-Madroñero on [1] based on the algorithms presented by Lee 

et al. on [2], [3]. The toolbox was developed in MATLAB 2007 and after MATLAB 2008b some 

MATLAB native functions, that are used in it, change their default parameters. This caused that 

results published on [1] and the ones obtained from MATLAB 2013a were different, see figure 

34. 
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Figure 34: Result of the same parameters between two MATLAB versions. 

 Last figure shows obtained depth in meters, from the same image, using the Lee’s algorithm 

developed and published on [1] without modifying its defaults parameters. The image on the left 

was obtained by using MATLAB 2007 and the image on the right by using MATLAB 2013a. 

figure 35 will show the difference, in meters, of the two images. It can be observed that in some 

large regions the results have up to 30m of difference.  

  

Figure 35: Difference of the two images show in figure 34 

The following Table, lists the parameters that their default values changed from MATLAB 

version 2007 to 2013a. 
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Table 6: lsqnonlin parameters default value between MATLAB versions 2007 and 2013a 

Parameter Name Default value: 2007 Default Value: 2013a 

DiffMaxChange 1e − 1 inf10 

DiffMinChange 1e − 8 0 

PrecondBandWidth 0 inf 

 
It was found that PrecondBandWith which is an input parameter of the lsqnonlin function 

was affecting results. On MATLAB 2007 this parameter was set to 0 and after MATLAB version 

2008b this parameter was change to ‘inf’. Therefore, this value was fixed to 0 before any 

optimization is performed on the current version of HyCIAT. The following results are obtained 

after changing this parameter: 

 

Figure 36: Same result as figure 34 but with modified parameters  

For demonstration purposes, the difference between the two images showed in the last figure 

is calculated and showed on figure 37. It can be observed that there are some differences up to 

30m per pixel but they are not concentrated on regions of the image, instead there are on random 

pixels. It is important to consider that the solution of the optimization problem is not necessarily 

unique. For more information of the MATLAB lsqnonlin function refer to [31]. 

                                                   
10 Value inf represents infinity on the MATLAB syntax. [30] 

2013a 2007 
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Figure 37: Difference of the two images showed in figure 36 

The initial parameters window, showed on the next figure, was modified so that the 

PrecondBandWidth parameter value can be changed as the researcher see fit. The default value for 

the parameter will be inf.  

 
Figure 38: Modification for default Parameter PrecondBandWidth 

To change the parameter, the user must select Set PrecondBandWidth option from the Settings 

menu. The form showed in figure 39 will appear. From there the use can select either ‘inf’ or ‘0’ 

from the drop-down menu. To save the parameter, the user must click save button otherwise the 

system will not save the modified value. 

 
Figure 39: Independent interface to change the PrecondBandWidth parameter 
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4.1.2 HyCIAT Spectral Region for Unmixing  
Lee’s equation was modified by Goodman on [4] to add an extra layer of processing by 

extending the algorithm capabilities into spectral unmixing of the resulting 𝑅𝑅𝑟𝑟𝑟𝑟 with the given 

endmembers. This spectral unmixing was performed in a specific region of the spectrum which, 

on the first version of HyCIAT, this specific region, corresponds to the one between 545 𝑛𝑛𝑚𝑚 

to 675 𝑛𝑛𝑚𝑚. When using the spectral unmixing algorithms on the obtained dataset some 

endmembers could not be detected successfully because certain features of its signatures were 

discarded since they were on parts of the spectrum outside the one from 545 𝑛𝑛𝑚𝑚 to 675 𝑛𝑛𝑚𝑚 that 

was being used. By studying the algorithms, it was found that these regions were embedded in the 

code not allowing the user to modify these regions conveniently. Since different unmixing regions 

yield different results, the initial parameter interface was modified to allow the user change these 

regions as it see fit. Therefore, adding an extra layer of study that can be conducted using this 

toolbox, see next figure. 

 

Figure 40: Functionality to selects a region to perform the unmixing 

Up to four regions can be selected. Each region can be specified by writing the wavelength of 

the starting band in the “From (nm)” column and writing the band of the final one in the “To 

(nm)” column. For example, if the region wanted to be used for unmixing is from 400nm to 900nm 

the user must configure the interface in the following way: 

 
Figure 41: Configuring a custom unmixing range in a single section of the spectrum 
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In another example,  if the user if the region wanted to be used for unmixing is from 400 to 

650nm and from 700 to 900 the user must configure the interface in the following way: 

 
Figure 42: Configuring a custom unmixing range in multiple section of the spectrum 

 

4.1.3 HyCIAT Default Bottom Spectral Signature 
Recalling equation (6), Lee’s equation that state that the Remotely Sensed Reflectance is a 

function of absorption, backscattering, bottom albedo, depth, the subsurface solar zenith angle, 

the subsurface viewing angle from nadir and the azimuth angle. 

𝑅𝑅𝑟𝑟𝑟𝑟 = 𝑓𝑓[𝑎𝑎, 𝑏𝑏𝑏𝑏,𝜌𝜌,𝐻𝐻, 𝜃𝜃𝑤𝑤 ,𝜃𝜃,𝜑𝜑] 

The variables 𝑎𝑎 and 𝑏𝑏 in the un-mixing algorithms are retrieved by the optimization algorithm. 

𝐻𝐻 can be retrieved or given, meanwhile 𝜃𝜃𝑤𝑤 ,𝜃𝜃 and 𝜑𝜑 are given. The bottom albedo 𝜌𝜌 as defined 

by the Lee’s model, is a representative spectral signature of the bottom normalized at 550 𝑛𝑛𝑚𝑚. In 

[1]–[5] the spectral signature of sand, on their respective environments of study, was used for 𝜌𝜌. 

The toolbox stored this value in a constant saved in a “.mat”11 file causing an inconvenience when 

the user wants to change this variable. To assess this problem, the initial parameters interface was 

modified to allow the user to input its own bottom spectral signature when needed12. This 

functionality adds another layer of studies by allowing the researcher to input its own bottom to 

the algorithm. The following figure shows the Custom Button Spectra section of the interface. 

This section is used to input custom button spectra to the algorithm.  

                                                   
11 “.mat” is a file extension used for files that contain MATLAB formatted data. Data can be loaded and or save from 
and or to files with this extension using the LOAD and SAVE functions respectively.  
12 The interface still loads up with the default variables published on [1]. 
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Figure 43: Added functionality: Custom bottom 

After pressing the Browse button, this functionality will bring up another interface after 

(see next figure) that assists the user in analyzing the opened spectrum and normalized it by 

using the measured value in a certain band of it. This is stored in a special variable that will 

be used during the underwater unmixing process as the known bottom. 

 

Figure 44: Interface to assist the user to analyze and modify its own custom bottom 

 

4.1.4 Other Functionalities 
On the first version of HyCIAT the initial parameter window the Lower and Upper bounds 

were programed in a way was not very clear for the user to know which value correspond to which 

variable (see figure 45-A). This problem was solved by modifying the interface to include 

individual textboxes and labels for every variable on both bounds (see figure 45-B). 



54 
 

      

Figure 45: Interface modification on the Optimization Parameters section  

Another new functionality was added to the initial parameter interface that save the configured 

parameters including custom bottoms, custom regions of the spectrum for the unmixing, initial 

values and bounds. These files can later be opened and it will configure the interface in the same 

way that it was saved.  

 

Figure 46: Load and save configuration menu 

 
4.2 Regularization Algorithm Development 

The regularization algorithms were proposed by Luis O. Jiménez and former student Eladio 

Rodríguez-Díaz. Rodríguez-Díaz has a thesis on this topic from the University of Puerto Rico 

Mayagüez campus [6]. This algorithm was carefully studied and implemented in MATLAB 2013a. 

Unfortunately, the code developed before was lost, therefore the algorithm was programmed from 

the beginning into multiple functions outside HyCIAT. The algorithms were developed while 

testing them. On early development stages, testing was oriented to identify all parameters and inputs 

that the algorithms need. Variation that could, somehow, improve the algorithm results were 

identified. See table 7 for the identified parameters that are needed and table 8 for parameters 

identified that are optional. 

A) 

B) 
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Table 7: Inputs Parameter of the Regularization Algorithm 

Parameter Name Description 
Pixels The HSI opened in HyCIAT.  

Regularization Parameter Resolution 

The resolution that the algorithm will construct 
the 𝛾𝛾 vector from 0 to 1. Is a mandatory input. 
During the testing phase, it was observed that this 
value affects considerably the results. 

Endmembers for Inversion 
Endmembers for inversion are mandatory and is 
a very important parameter during the inversion 
of the image (See section 2.6) 

Maximum Curvature Retrieval Algorithm 

Since there are there are two methods to retrieve 
the Maximum Curvature (see section 3.5), this is 
also a major parameter that impacts significantly 
the result.  The default parameter is ‘Derived 
Equations’. 

Classifiers 

This version of the toolbox has three different 
classification algorithms implemented: Minimum 
Euclidean Distance, Minimum Spectral Angle 
and Maximum Endmember Abundance Value. 
The default classifier is Minimum Euclidean 
Distance. (See section 3.6) 

Optical Properties 

Optical properties are very important since they 
are not retrieved by the algorithm. Consequently, 
they must be given. Optical properties impact 
result significantly. (See section 3.4 for the 
methodology implemented on this project to 
retrieved the optical properties) 
The implemented interface has the capacity to 
receive a single optical properties vector for the 
whole image or a 3-Dimensional Matrix (one 
vector for every pixel) for both, 𝑎𝑎 and 𝑏𝑏, 
properties. 

Regularization Parameter Selection Criteria 

There are two criteria to select the Regularization 
Parameter implemented on this project. (For 
details see section 2.6.1). Both methods yield 
different results. The default value is ‘Gamma of 
Minimum Error’ 

Other inputs 

There are another two extra parameters that the 
algorithm needs: Bathymetry (𝐻𝐻) and zenith 
angle. 
For 𝐻𝐻, the algorithm has the capacity of 
managing either a single value for the whole 
image or a 2-Dimensional matrix of the same 
spatial size as the original image with the depth at 
each pixel. 
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Table 8: Optional Input Parameters for the Regularization Algorithm 

Optional Parameter Name Description 

Endmembers for Classification 

Different endmembers can be input for 
classifying the image after the regularization is 
performed. During preliminary test, better results 
were obtained by processing the image with a 
reduced set of endmembers and then classifying 
the image using the complete set of 
endmembers.13  

Subset of the spectrum 

The algorithm includes functionalities so that the 
user can select specific region of the spectrum to 
perform the inversion and or another 
specification to perform the classification.14 

 

All the parameters showed in tables 7 and 8, and their descriptions, were considered when 

designing the final interface. The next section will describe how the actual algorithm was coded. 

After that, section 4.2.2 will described the final implementation into HyCIAT through an interface 

that offer the researcher multiple tools to modify parameters as it sees fit. After the regularization 

algorithm finish processing a final form will present results and contain several visualization tools 

that help in the analysis of results, this form will be described on section 4.2.3. 

4.2.1 General Functional Specifications 
An interface was designed to allow the user to process any image supported by HyCIAT using 

the regularization algorithm. The interface includes functionalities and tools to manipulate any 

parameter described in tables 7 and 8 as the researcher sees fits. The code can be divided in to 

five mayor components: Regularization Main Menu, Interfacing Function, Regularization 

Function, Classification Function and Result GUI. Regularization Main Menu is the main 

window were the user can configure all the parameters needed to run the algorithm, including the 

optional parameters. After the user press the ‘Ok’ button, the algorithm calls the Interfacing 

Function that will receive all the Handles Structure 15 from the Regularization Main Menu. This 

Interfacing Function process the initial parameters and calls the corresponding Regularization 

Function. After the image is regularized the same function process the classification parameters 

                                                   
13 Note: if the user does not input different endmember for classifying the image the endmember used to process the 
image will be used also to classify it.   
14 Note: if the user does not select a region to be used for processing and classifying, the whole spectrum of the image 
opened will be used. 
15 Handles Structure is a MATLAB structure usually used to store the pointers of every graphical component in an 
interface developed using GUIDE.  



57 
 

and call the corresponding Classification Function. When the classification is performed, the 

Interfacing Function saves all the results into a single file and pass the file path of it to the Result 

GUI so that it can be opened and reviewed. At the end, the Regularization Main Menu verifies 

that there were no errors during execution, and close itself. If the execution stops due to an 

unexpected error the interface will show a report of it and will remain opened with the last 

configuration loaded. Once the result GUI is opened it will remain opened until the user closes it. 

Figure 47 showed a sequence diagram showing the interaction among the mentioned components.  

 

 

Figure 47: Regularization Menu Sequence Diagram 
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The Interface function is responsible to read and prepared the input parameters, to call the 

corresponding Regularization Function, to compile and save the result variable and finally pass 

the result variable file path to the Results GUI. The regularization function takes by parameters: 

Pixels, Depth (𝐻𝐻), Zenith Angle (𝜃𝜃𝑤𝑤), Optical Properties (𝑎𝑎, 𝑏𝑏), Endmembers and Regularization 

Parameter Resolution (RPR). The RPR is used to construct a vector from 0 to 1 in RPR steps that 

will hold all the values that 𝛾𝛾 will have during the inversion process. This vector is constructed 

inside the regularization function before starting to invert the image. Figure 48 showed the 

important inputs and outputs of the regularization algorithm.  

 
Figure 48: Regularization Algorithm Block Diagram 1  

As can be observed in the previous figure, the regularization function outputs the following 

variables:  𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔, Time, Optimum 𝛾𝛾, Optimum Bottom. The next stage in the algorithm is 

classification. Variables used on the classification stage is 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 and Classification Endmembers. 

The user has the option of giving different endmembers to classify 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔. If the user does not input 

a new set of endmembers the ones used on the regularization algorithm will be used to classify 

the image too. As can be observed in figure 49 the outputs of the classification algorithms are: 

Classification Maps and Performance Matrices. Classification maps is a two-dimensional matrix 

per classifier that each pixel is assigned a number from 0 to the number of endmember that 

represent the class to which each pixel was assigned to. Performance Matrices is a matrix that 

summarize how the classification perform on every endmember. This last result variable is 

conditioned if the endmembers contains testing regions or not.   
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Figure 49: Regularization Algorithm Block Diagram 2 

All the results, including the ones from the regularization algorithm, will be saved on the Result 

File. See table 9 for the summary of every variable. After these operations are performed 

successfully the file path of the result file is then sent to the result windows so that they can be 

shown and analyzed. Only results 1, 2 and 5 to 7 will be showed on the result GUI (See table 9).  

 

Figure 50: Regularization Block Diagram 3 
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Table 9: Result File Variables Descriptions 

Number Name Description 

1 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔 

Main result of the regularization algorithm. In theory, this 
value represents the hyperspectral response of the bottom 
without the effect of the water column. This value is used 
to classify the bottom using a given Endmembers set. 

2 Time The time in minutes it takes the algorithm to invert the 
processed region of the HSI 

3 Optimum Regularization 
Parameter 

This variable is a matrix of the same size as the processed 
region of the image. It will contain the optimum 
regularization parameters  (𝛾𝛾) used to invert each pixel in 
the image. 

4 Optimum Bottom 
This variable is a matrix of the same size as the processed 
region of the image. It will contain the optimum bottom 
(𝜌𝜌0)used to invert the image.  

5 Regularization Parameter 
Resolution 

The resolution used to construct the vector of values that 
will have (𝛾𝛾) during the inversion process.  

6 Classification Maps 

Is a two-dimensional matrix per classifier that each pixel 
has an assigned number from 0 to the number of 
endmembers that represent the class to which each pixel 
was assigned to. 

7 Performance Matrix 
It is a matrix that summarizes how the classification 
performs on every endmember. This variable will be 
present only if the endmembers contain testing regions. 

 

The regularization algorithm has a unique sequence of steps; a pseudo code was presented on 

section 2.5.2 and was coded in the same way. Figure 51 presents a general operation flowchart of 

the regularization function. Basically, the algorithm first calculates the Optimum Regularization 

Parameter and the Optimum Bottom following the explanation on section 2.6. Then it uses this 

value to invert again the image and classify it using any classifier that the researcher sees fit. The 

classification stage is performed outside the regularization function for convenience and for future 

enhancement of the code. 



61 
 

 
Figure 51: Regularization Function General Operation Flowchart 



62 
 

4.2.2 Integration into HyCIAT 
The Regularization Menu can be opened directly on HyCIAT main interface on the 

classification menu as showed in the next figure: 

 
Figure 52: Opening Regularization Menu from HyCIAT GUI 

After clicking Regularization option on the menu, the Regularization main interface will open, 

see figure 53: 

 
Figure 53: Regularization Main Menu  

 The Regularization Menu contains the necessary functionalities to manipulate every parameter 

described on tables 7 and 8. This menu will open with almost all the functionalities disabled for 

control purposes. Once all the necessary parameters are configured the ‘Ok’ button will be 

enabled. On the next sections, all the panels and functionalities will be described.  
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4.2.2.1 Processing Settings Panel 

From top to bottom and left to right the first panel that is encountered is the Processing 

Settings (see figure 54). In this panel is where the endmembers that are going to be used to 

process the image. By loading the Endmember File for Processing Image will enable the 

controls for the rest of the parameters on the main window. 

 
Figure 54: Processing Settings Panel from the Regularization Menu 

 Another panel inside the Processing Settings is the Other Processing Settings panel, this is 

where the user can select the Maximum Curvature calculation algorithm from a drop-down 

menu. Also, the user can specify the resolution of the 𝛾𝛾 vector used. And last the user can mark 

if only a region of the image is wanted to be process. This last functionality is used when the 

researcher only wants to process a certain region of the image instead of processing it 

completely. There exist three different Maximum Curvature selections: Derived Equation, 

Numerical Approximation and Single Regularization Parameter. They are explained on section 

3.5. When Single Regularization Parameter is selected, the textbox called: Gamma Resolution 

changes to: Single Gamma. 

 
Figure 55: Maximum Curvature Algorithm Selection  
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The last panel in the Processing Settings is the one named ‘Bands for Processing Image’ this 

is where the user can select a subset of the bands to be used to process the image. The checkbox 

controls the Table. For example, if the main image contains bands from 500 to 1000 𝑛𝑛𝑚𝑚 and 

the user does not want to include the bands between 800 and 850 𝑛𝑛𝑚𝑚, the user must first check 

‘Use a subset of bands’ and fills the table as bellow16: 

 

Figure 56: Subset of bands for processing example.  

4.2.2.2 Classification Settings Panel 

The next panel is the one named ‘Classification Settings’ (see figure 57). This is where the 

user can manipulate the parameters of the classification stage. There are a couple of important 

things to discuss of this Panel: 

• The Endmembers for Classification are not mandatory. If Classification Endmembers are 

not specified on this panel the Processing Endmembers are going to be used for 

classification  

• The toolbox come with three different classification algorithms, they are presented and 

described in section 3.6  

• To specify a subset inside the specified processing subset the user must check ‘Use Diff. 

Bands for Class.’ and enters the corresponding region. For example, if the user only 

wants to use the bands from 400 to 650 nm, the Table must be filled as showed in figure 

58. It is important to know that this subset will be based on the selected processing subset 

described in the last section. 

                                                   
16 Note: up to 4 different regions can be specified. If the user doesn’t select a subset of bands the whole image’s 
spectrum will be use 
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Figure 57: Classification Settings Panel from the Regularization Menu 

 

Figure 58: Selecting a subset of bands for classification example 

 

4.2.2.3 Optical Properties, Optimal Gamma Selection and Extra Functions Panels 

The next panel is the ‘Opt. Gamma Selection Criteria’. The complete name is the Optimum 

Gamma Selection Criteria. There are two methods of selecting this important value, see section 

2.6.1. 

Finally, the last panel is the ‘Extra Functions’ (See figure 59) which contains only one 

functionality and is the Calculate Performance Matrices. If endmembers were selected using the 

ROI Tools (ROI Tools will be shortly explained on section 4.3) and testing regions where 

selected the algorithm will calculate automatically the performance matrices based on the 

classification results. 
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Figure 59: Optical Properties, Opt. Gamma Selection Criteria and Extra Functions Panels 

4.2.2.4 Other properties and Save Results Panels 

Other Properties Panel is used to configure two additional properties that the Regularization 

Algorithm needs: Bathymetry (𝐻𝐻) and Zenith Angle(𝜃𝜃). The last panel of the Regularization 

Menu is Save Results (See figure 60). The GUI will upload with this value checked by default. 

If the user doesn’t want the result to be automatically saved before the result windows opens it 

must uncheck the checkbox named Save Result When Finish. Also, in this panel, the user can 

configure the filename that the result file will have. The GUI creates a result file name 

automatically based on the time that the endmembers were input, opened Endmembers file name 

and Regularization Parameters Vector Resolution (Gamma Resolution). 

For example: Results_201410261651_1_8inches_Reflectance_5Colors_Gamma0_01 

 

Figure 60: Other Properties and Save Results Panels from the Regularization Menu 

Time Stamp Opened Endmembers 
Names 

Gamma 
Resolution 
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4.2.3 Regularization Result Analysis GUI 
The regularization algorithm saves all result variables on a file when it finishes. The file path 

of this result file is then passed to the result GUI that will display all results. The result GUI is 

designed to assist the user in the visualization and analysis of the results. The Result GUI consists 

of five main parts as can be observe in figure 61 and will be described in the next section.  

 

Figure 61: Regularization Result GUI 

4.2.3.1 Regularized Images 

The regularized images are the resulting 𝑃𝑃𝑟𝑟𝑠𝑠𝑔𝑔. Described in other words, the regularized 

images are the inverted images or the reconstructed bottoms. They can vary based on the 

selected Optimum Gamma Selection criteria. The panel includes a dropdown menu from which 

the user can toggle between both results. The panel also includes an Export button that by 

pressing it the image displayed will open in a separated figure so that it can be copied and 

exported to other programs.  
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Figure 62: Regularized Images Panel Form Regularization Result GUI 

 
4.2.3.2 Original Image 

The original image is the true color RGB representation of the opened image before 

processing it. This was added to the GUI for comparison purposes.  

 
Figure 63: Original Images Panel from the Regularization Result GUI 

 
4.2.3.3 Classification Maps 

The classification maps will present the actual classification by coloring each class based on 

a custom color map. This map is saved on a variable called ‘colormap.mat’ and can be changed 

to be adjusted to different classification maps by pressing the Color Map button. On the panel, 

it can be found a menu that will list all the classification algorithms applied to the image so that 

the user can toggle among them to see differences. It features an export button that by pressing 

it the classification map displayed will open in a separated figure so that it can be copied and 

exported to other programs. 
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Figure 64: Classification Maps Panel Form Regularization Result GUI 

Also at the bottom of the panel there is another panel called ‘Classification Info’ that will 

show up the filename of the endmembers used and the minimum and the maximum wavelength 

of the region used to classify the image. It also contains a button that, if the classification was 

performed with trainings regions, will open another GUI that will show up the performance 

matrices. These matrices can be used to compare numerically each classification, also they can 

be copied and passed on any spreadsheet software like Microsoft Excel.  As can be observed in 

figure 65, the Performance Matrices GUI contains the same drop down menu and list to toggle 

between results as the Regularization Result GUI.  

 
Figure 65: Performance Matrices GUI. 

The color map applied to the classification maps can be modified on the following interface 

that appears after pressing the Color Map button: 
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Figure 66: Update Color Map Interface 

To update the color assigned to each class, first the user selects the endmember from the list, 

then selects the wanted color from the available ones on the Available Colors drop down menu 

and finally pressing the Update button. The selected color map configuration will be updated, 

changed on the Regularization Result interface and saved as default colormap on the 

‘colormap.mat’ variable.  

4.2.3.4 Plot and Plot Options 

The Plot and Plot Options is a very useful feature that allows the user to visually compare 

any pixel selected with the available endmembers. The plot will show the reflectance vs 

wavelength plot of any selected pixel either on the Regularized Image or on the Classification 

Map image. By clicking any pixel, the interface will show the following information: Column 

Number, Row Number and the Class that the selected pixel was assigned to. Endmembers can 

be plotted on top of the resulting reflectance for comparison purposes. Multiple endmembers 

can be selected and plot by holding down the Ctrl key (See figure 67 and 68). 

 
Figure 67: Regularization Result GUI with a Reflectance plot of a certain pixel  
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Figure 68: Regularization Result GUI with multiple endmembers plotted 

4.2.3.5 Information 

The last panel is the Information Panel. This panel shows the selected Resolution of the 

Regularization Parameter’s Vector, the time it took the algorithm to process, the image name, 

the Optical Properties filename and the algorithm selected to calculate the derivative of the 

maximum curvature function.  

 
Figure 69: Information panel from the Regularization Result GUI 
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4.3 Additional tool: Region of Interest Tools 
Region of Interest Tools is a GUI that integrates several functionalities needed to create 

components and parameters derived from region of interest (ROI17). With this tool, the user can: 

• Visualize, create and manipulate ROIs. 

• Create Endmembers Files for the Underwater Unmixing Algorithm and the 

Regularization algorithm with their respective testing regions. 

• Extract data directly form ROIs, in known data formats, for external studies.  

• Mask Saturated Pixels based on a certain region of the image.  

• Export a real color image from the opened HSI that can include the selected regions of 

interest and its testing regions 

• Export Reflectance vs Wavelength graph of the selected endmembers and pixels. 

 

Figure 70: Region of Interest Tool GUI 

  

                                                   
17 Explained on Page 24. 
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5 Results 
This section summarizes the obtained results and is divided in tree main sections. The first section 

is 5.1 Underwater Linear Unmixing with AVIRIS Data, the data presented on this section was used 

to measure the difference of the obtained results between the two versions of the toolbox. The second 

section is 5.2 Underwater Linear Unmixing with Real Controlled Data.  This section shows the 

obtained results from the underwater unmixing algorithms when applied to the new dataset. These 

results were used to measure the impact of the additional functionalities included to the unmixing 

algorithms. The second section is 5.2 Regularization Algorithm; this section shows the obtained 

result from the regularization algorithm applied to the new dataset. These results were used to 

validate the functionality and to establish a baseline results for future studies using the Regularization 

algorithm.  

5.1 Underwater Linear Unmixing with AVIRIS Data 
One of the main objective of this project was to Update HyCIAT from MATLAB 2007 up to 

MATLAB 2013a. After restoring functionality, it was observed that results between both versions 

were not similar. It was discovered that some default parameters, of MATLAB’s lsqnonlin 

native function, change across platforms versions, see section 4.1.1. Parameters were modified so 

that both versions (2007 and 2013) had the same default parameter of the mentioned function. To 

test the impact of the parameter that was modified, results were produced in the following manner: 

Without Modifying Parameter18 and With Parameter Modifications19. The two images showed 

on figure 71 and published on [1], were selected to be processed on both version of the toolbox with 

and without parameter modifications without bathymetry using LIGU and CIUB algorithms. 

Unmixing results include per image: 5 optical parameters in some cases and 4 in others, plus one 

abundance map per endmembers given to the algorithms. The endmembers were sand, coral, and 

algae. The result set consists of more than 50 images, therefore the results obtained from Image A, 

shown in figure 71, will be showed on section 9.1 (Appendix). Image A and Image B are part of a 

set of hyperspectral images obtained from Kaneohe Bay Hawaii on 2000 using AVIRIS. Images 

were atmospherically corrected, subset from 224 bands to 42 in the 400 to 800 nm rage and the land 

was masked before being process by the unmixing algorithms. [1] 

                                                   
18 Without Modifying Parameters, it means that the images were processed on the current version of the toolbox (2013) 
without modifying the default value of the identified parameter. 
19 With Parameter Modifications, it means that the default value of the identified parameter of the optimization 
function was set to the same value that has on the previous version of the toolbox (2007).  
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Figure 71: AVIRIS Images: A and B selected from [1] 20 to be processed 

The calculated Sum of Squared Errors (SSE) was used as the mathematical foundation between 

results obtained from HyCIAT 2013 and from HyCIAT 2007. SSE results was used to perform a 

comparative analysis between the both results and measure the impact of the modified parameter. 

The SSE is obtained first by processing the image on the original version of the toolbox. Second, 

the same image will be process on the newer version of the toolbox without modifying the default 

parameters of the optimization function. Then, the SSE of the resulting optical properties and 

abundances will be calculated using the following formula: 

SSE of result 𝑉𝑉𝑎𝑎𝑉𝑉 =   ��𝑉𝑉𝑎𝑎𝑉𝑉𝑖𝑖2007 − 𝑉𝑉𝑎𝑎𝑉𝑉𝑖𝑖2013�
2

𝑠𝑠

𝑖𝑖=1

 ( 70 ) 

where, 𝑛𝑛 is the number of pixels, and 𝑉𝑉𝑎𝑎𝑉𝑉𝑖𝑖is the corresponding obtained result for each optical 

properties and abundances of pixel 𝑖𝑖. 𝑉𝑉𝑎𝑎𝑉𝑉 can represent: Depth, Bottom Reflectance, Backscattering, 

Absorption, Phytoplankton, Sand, Coral and Algae. Then this process will be repeated with the 

results obtained from HyCIAT 2013 with the default parameters configured as in HyCIAT 2007. 

The result is an SSE number for each underwater unmixing algorithm results from: HyCIAT 2013 

without modified parameters and HyCIAT 2013 with modified parameters, refer to table 10. Finally, 

two additional quantities were calculated to perform a comparative analysis with the obtained SSEs. 

One of them is the Individual Similarity. This quantity will be used to determine which individual 

                                                   
20 Images obtained from Kaneohe Bay Hawaii on 2000 using AVIRIS20.  In [1], image were atmospherically corrected, 
subset from 224 bands to 42 and the land was masked before being process by the unmixing algorithms. The images 
were processed with bathymetry data that comes from a survey of the Hawaiian Islands conducted around 2000 
compiled for US Naval Oceanographic Office, US Geological Service and US Army Corps of Engineers Honolulu 
District. This data was provided by Torres-Madroñero along with the existing version of HyCIAT. 

Image A Image B 
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results from 2013 were more like the obtained ones from HyCIAT 2007. The individual similarity 

is calculated by dividing the obtained individual SSE with parameter modifications by the obtained 

individual SSE without parameter modification. The second quantity is the Total Similarity that will 

be used to calculate how similar results obtained from HyCIAT 2013 are like the results obtained 

from HyCIAT 2007. The total similarity sums all the obtained individual SSE with parameter 

modifications and divide it by the sum of all the obtained individual SSE without parameters 

modifications. The individual similarity and total similarity will be calculated using equations 71 

and 72 respectively: 

 Individual Similarity = 1 −
𝑆𝑆𝑆𝑆𝐸𝐸 𝑀𝑀𝑒𝑒𝑑𝑑

𝑆𝑆𝑆𝑆𝐸𝐸 𝑈𝑈𝑛𝑛𝑀𝑀𝑒𝑒𝑑𝑑  ×100% ( 71 ) 

 
 

Total Similarity = 1 −
𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑉𝑉 𝑆𝑆𝑆𝑆𝐸𝐸 𝑀𝑀𝑒𝑒𝑑𝑑 

𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑉𝑉 𝑆𝑆𝑆𝑆𝐸𝐸 𝑈𝑈𝑛𝑛𝑀𝑀𝑒𝑒𝑑𝑑  ×100% 
( 72 ) 

Where 𝑆𝑆𝑆𝑆𝐸𝐸 𝑀𝑀𝑒𝑒𝑑𝑑 corresponds to the values on the Modified Parameters column and 𝑆𝑆𝑆𝑆𝐸𝐸 𝑈𝑈𝑛𝑛𝑀𝑀𝑒𝑒𝑑𝑑 

corresponds to the values on the Unmodified Parameters column. The following table present the 

calculated SSE of each individual result (SSE Modified Parameter and SSE Unmodified Parameter 

columns) with its calculated Individual Similarity and the Total Similarity. Refer to Appendix 

Section 9.2 for more resulting SSE comparison tables. 

Table 10: Result’s SSE Differences LIGU of Image A without Bathymetry 

Result Name 

SSE  
Modified 
Parameter  
(SSE Mod) 

Calculated SSE  
Unmodified 
Parameter 

(SSE UnMod) 

Individual  
Similarity 

Depth 71555.72 604876.09 88.17% 
Bottom Reflectance 174.58 312.56 44.14% 
Backscattering 0.26 0.74 65.31% 
Absorption 206.33 264.22 21.91% 
Phytoplankton 8.49 35.04 75.77% 
Sand 172.86 371.38 53.45% 
Coral  153.40 226.48 32.27% 
Algae 169.95 394.59 56.93% 

Total SSE 72441.58 606481.09   
Total Similarity 88.06% 

 

The following graphs compares the obtained similarities of each results after modifying the 

identified parameter. For interpretation purposes, please keep in mind that: 100% means that results 

obtained from HyCIAT 2013 with parameter modification were absolutely like the ones obtained 
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in HyCIAT 2007 by modifying parameters. 0% means that results obtained from HyCIAT 2013 

with parameter modification were absolutely similar to the ones obtained from HyCIAT 2013 

without parameter modification. Negative Values means that results obtained from HyCIAT 2013 

did not become similar that the ones obtained from HyCIAT 2013 without modifying parameters. 

 

5.1.1 Obtained Similarity of AVIRIS – Image A using LIGU algorithm: 

• Total Improvement: 88.06% 

 
Figure 72: Improvement by modifying parameters – Image A LIGU without Bathymetry 

 

5.1.2 Obtained Similarity of AVIRIS – Image B using LIGU 

• Total Improvement: 6% 

 
Figure 73: Improvement by modifying parameters – Image B LIGU without Bathymetry 
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5.1.3 Obtained Similarity of AVIRIS – Image A using CIUB algorithm 

• Total Improvements: 36.54% 

 
Figure 74: Improvement by modifying parameters – Image A CIUB without Bathymetry 

 
5.1.4 Obtained Similarity of AVIRIS – Image B using CIUB algorithm 

• Total Improvements: 3.54%  

 
Figure 75: Improvement by modifying parameters – Image B CIUB without Bathymetry 

 
5.2 Underwater Linear Unmixing applied to Real Controlled Data 

Recall from section 4.1 two functionalities where added to the underwater unmixing algorithms. 

These functionalities are called: Custom Unmixing Range and Custom Button, refer to sections 4.1.2 

and 4.1.3. The validation of these enhanced features of the underwater unmixing algorithms was 

performed using the following two images: 12.0 in without TiO2 and 12.0 in with 0.5 g of TiO2 

(Recall that TiO2 is being used to simulate turbid waters, see section 3.1 for image details). These 
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images were processed on HyCIAT 2007 and on HyCIAT 2013 so that a comparative analysis 

between results can be performed. Furthermore, HyCIAT 2013 will be configured in different ways, 

this will allow us to measure the impact of the modifications performed to the toolbox. Next table 

summarizes the different configurations used. From now on each configuration will be referenced 

by the Configuration Name: 
Table 11: Configuration Descriptions 

Configuration Name Description 

Baseline Images processed in HyCIAT 2007. 

2013-1 HyCIAT 2013 configured as HyCIAT 2007. 

2013-2 HyCIAT 2013 configured with extended unmixing ranges  

2013-3 HyCIAT 2013 configured with a custom sand spectral signature. 

2013-4 
HyCIAT 2013 configured with extended unmixing ranges, custom 
sand spectral signature and PrecondBandWidth parameter set to 0. 

To quantify unmixing results, the testing regions presented on section 3.3 were used as “pure 

pixel” of each class. The fractional abundance result of a pure pixel on the unmixing algorithm should 

be one on the training region selected for that class. This means that, after processing the blue region, 

the endmember “Blue” should yield a fractional abundance of 1 on its testing region and 0 on others. 

The accuracy of each endmember over its testing region will be calculated with the following 

formula:  

 𝐴𝐴𝑐𝑐𝑐𝑐𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑃𝑃
𝑗𝑗

∑ 𝑇𝑇𝑖𝑖,𝑗𝑗𝑃𝑃
𝑗𝑗

×100 ( 73 ) 

where: 𝐴𝐴𝑐𝑐𝑐𝑐𝑖𝑖 is the accuracy of the 𝑖𝑖𝑎𝑎ℎ endmember, 𝑥𝑥𝑖𝑖,𝑗𝑗 is the obtained abundance for the 𝑖𝑖𝑎𝑎ℎ 

endmember on the 𝑗𝑗𝑎𝑎ℎ pixel of the particular testing region, 𝑃𝑃 is the amount of pixel enclose by the 

testing region and 𝑇𝑇𝑖𝑖,𝑗𝑗 is the theoretical abundance value of the endmember that the testing region 

pertain to 𝑖𝑖. Since the testing region selected represent “pure pixels”, 𝑇𝑇𝑖𝑖,𝑗𝑗 is equal to 1.  

5.2.1 LIGU Results from the 12.0 in without TiO2 Image and 5 Colors Endmembers 
This section will show results obtained from the 12.0 in image without TiO2 using LIGU 

algorithm. In this case, five endmembers representing: Blue, Yellow, Green, Red and White 

regions from the 1.8 in hyperspectral image without TiO2 were used as input to the algorithm (See 

next figure, refer to section 3.3 for more information on the endmembers selected).). The obtained 

accuracies from each configuration are showed on Table 11.  
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Figure 76: Endmember used for the 5 colors underwater unmixing processing 

 

Table 12: LIGU results from the 12.0 in image without TiO2 and 5 color endmembers  

Configurations Overall Accuracy 
Endmembers 

Blue Yellow Green Red White 
Baseline 19.87% 0.00% 0.00% 0.00% 0.00% 99.35% 

2013-1 20.00% 0.00% 0.00% 0.00% 0.00% 100.00% 

2013-2 20.00% 0.00% 0.00% 0.00% 0.00% 100.00% 

2013-3 49.88% 93.53% 0.00% 0.02% 55.88% 100.00% 

2013-4 49.89% 93.53% 0.00% 0.02% 55.88% 100.00% 

5.2.2 LIGU Results from the 12.0 in without TiO2 Image and 4 Colors Endmembers 
This section will show results obtained from the 12.0 in image without TiO2 using LIGU 

algorithm with 4 endmembers that correspond to: Blue, Yellow, Green and Red regions extracted 

from the 1.8 in image without TiO2, (see next figure and refer to section 3.3 for more information 

on the endmembers selected). Table 12 shows the obtained accuracy from LIGU with the 12.0 in 

without TiO2image and 4 color endmembers.  
Table 13: LIGU results from the 12.0 in without TiO2 image and 4 color endmembers  

Configurations Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 25.00% 0.00% 100.00% 0.00% 0.00% 

2013-1 25.00% 0.00% 100.00% 0.00% 0.00% 

2013-2 40.63% 62.53% 100.00% 0.00% 0.00% 

2013-3 74.94% 100.00% 100.00% 0.00% 99.75% 

2013-4 74.94% 100.00% 100.00% 0.00% 99.75% 
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Figure 77: Endmembers used for 4 colors underwater unmixing processing 

 

5.2.3 CIUB Results from the 12.0 in without TiO2 Image and 5 Colors Endmembers 
This section shows the obtained results from the 12.0 in image without TiO2 using CIUB 

algorithm. The same five endmembers showed on section 5.2.1 representing the Blue, Yellow, 

Green, Red and White regions were used as input to the algorithm. These endmembers were 

extracted from the 1.8 in without TiO2 image. Table 13 summarize the obtained results: 
Table 14: CIUB results from the 12.0 in without TiO2 image and 5 color endmembers 

Configurations Overall Accuracy 
Endmembers 

Blue Yellow Green Red White 
Baseline 21.18% 0.55% 0.00% 5.36% 0.00% 100.00% 

2013-1 20.36% 0.00% 0.00% 1.78% 0.00% 100.00% 

2013-2 20.64% 3.18% 0.00% 0.00% 0.00% 100.00% 

2013-3 20.64% 3.18% 0.00% 0.00% 0.00% 100.00% 

2013-4 26.20% 31.00% 0.00% 0.00% 0.00% 100.00% 

5.2.4 CIUB Results from the 12.0 in without TiO2 Image and 4 Colors Endmembers 
This section shows the obtained results from the 12.0 in image without TiO2 using CIUB 

algorithm. The same endmembers, showed in section 5.2.2, that corresponds to the Blue, Yellow, 

Green and Red regions were used as input to the algorithm. These endmembers were extracted 

from the 1.8 in without TiO2 image. Table 14 summarize the obtained results:  
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Table 15 CIUB results from the 12.0 in without TiO2 image and 4 Color Endmembers 

Configuration Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 25.51% 2.05% 100.00% 0.00% 0.00% 

2013-1 25.04% 0.16% 100.00% 0.00% 0.00% 

2013-2 35.75% 43.00% 100.00% 0.00% 0.00% 

2013-3 36.45% 45.82% 100.00% 0.00% 0.00% 

2013-4 36.44% 45.75% 100.00% 0.00% 0.00% 

5.2.5 LIGU Results from the 12.0 in with 0.5 g TiO2 Image and 4 Colors Endmembers  
This section presents the obtained result from underwater unmixing algorithm LIGU using the 

12.0 in 0.5 g TiO2 image and the 4 colors endmembers as input. The selected image, that contains 

0.5 g of TiO2, was processed using Custom Bottom and Custom Unmixing Range functionalities 

with 4 color endmembers (Refer to section 4.1 for more information). This configuration 

corresponds to the one named 2013-3 described on table 10 and was selected because is the one 

that demonstrated to produce better overall accuracy (refer to section 5.2.1 to 5.2.4). The next 

table summarize the obtained accuracies from the 12.0 in with 0.5 g TiO2 image processed using 

LIGU: 
Table 16: LIGU results from the 12.0 in with 0.5 g TiO2 image and 4 colors endmembers 

Configuration Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 26.25% 0.00% 59.14% 0.00% 45.85% 

2013-3 43.00% 0.03% 82.25% 0.00% 89.70% 

5.2.6 CIUB Results from the 12.0 in with 0.5 g of TiO2 Image and 4 Colors Endmembers  
This section presents the obtained result from underwater unmixing algorithms using the 12.0 

in with 0.5 g of TiO2 image processed on CIUB. It is important to mention that a single 

configuration was used. The selected image was processed using Custom Bottom and Custom 

Unmixing Range functionalities with 4 color endmembers. Again, this configuration corresponds 

to the one named 2013-3 described on table 10 and was selected because is the one that produced 

better overall accuracy in the previously presented results (refer to section 5.2.1 to 5.2.4). The 

next table summarize the obtained accuracies from the 12.0 in with 0.5 g of TiO2 image processed 

using CIUB: 
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Table 17: CIUB results from the 12.0 in with 0.5 g of TiO2 Image and 4 Colors Endmembers 

Configuration Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 25.00% 0.00% 100.00% 0.00% 0.00% 
2013-3 27.22% 0.00% 100.00% 0.00% 8.88% 

5.3 Regularization Algorithm  
The regularization algorithm was programmed and implemented into HyCIAT as one of the main 

objective of this work (Refer to section 4.2 for the implementation). To validate the functionality of 

this algorithm, images 12.0 in without TiO2 and 12.0 in with 0.5 g of TiO2 (See Section 3.2 for 

image details) were processed using endmembers obtained from the 1.8 in without TiO2 image 

(endmembers extraction procedure is presented on Section 3.3). The regularization algorithm has 

several input parameters that affect its results. One of them is the gamma resolution. The gamma 

resolution sets the number of concrete steps between 0 and 1 that the vector 𝛾𝛾 can have. For 

example, if gamma resolution is set to 0.1 the vector will be: 

𝛾𝛾 = [0.0,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9, 1.0] 

Different gamma resolutions yield different results; therefore, two gamma resolutions were 

selected for this project: 0.1 and 0.01. For each gamma resolution, there are two different ways of 

selecting the optimum gamma per pixel: Gamma of Minimum Error and Minimum Gamma (See 

section 2.6.1 for theoretical background); also, two methods of calculating the maximum curvature: 

Numerical Approximations and Derived Equations (See Section 2.6). After processing, 

regularized images were classified with the three classification algorithms included in the toolbox 

(Minimum Euclidean Distance, Minimum Spectral Angle and Maximum Endmember, see section 

3.6). Summarizing, two images were selected to be processed using: two different gamma 

resolutions, two different maximum curvature algorithms, two different ways of retrieving the 

optimum γ per pixel and classified using three different classifiers. This constitutes a total of 48 

unique results that were evaluated using testing regions selected and showed on section 3.3. Results 

will be compare and analyzed based on the classification accuracy over the selected testing regions 

calculated in the following way: 

 
 

𝑃𝑃𝑖𝑖𝑥𝑥𝑒𝑒𝑉𝑉 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑇𝑇𝑉𝑉𝑦𝑦 𝐶𝐶𝑉𝑉𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒𝑑𝑑 
𝐴𝐴𝑚𝑚𝑚𝑚𝑒𝑒𝑢𝑢𝑇𝑇 𝑒𝑒𝑓𝑓 𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑉𝑉𝑐𝑐 𝑒𝑒𝑛𝑛𝑐𝑐𝑉𝑉𝑒𝑒𝑐𝑐𝑒𝑒𝑑𝑑 𝑒𝑒𝑛𝑛 𝑇𝑇ℎ𝑒𝑒 𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑔𝑔 𝑟𝑟𝑒𝑒𝑔𝑔𝑖𝑖𝑒𝑒𝑛𝑛𝑐𝑐×100 ( 74 ) 

For standardizing results, the input parameters were set for both images in the following way: 
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• Endmembers: In this case five endmembers representing the Blue, Yellow, Green, Red 

and White regions from the 1.8 in without TiO2 image (showed on section 3.3) 

• Bands for Processing: Full Image’s spectrum 

• Endmembers for classifying: Same as for Processing 

• Band for Classifying:  Full Image’s spectrum 

• Optical Properties: Average of all the empirically derived 𝛼𝛼 and 𝛽𝛽 vectors, one per each 

colored region (Refer to section 3.4).  

• Bathymetry File: Depth of the tank in meter, in this case 12.0 𝑖𝑖𝑛𝑛 =  0.3048𝑚𝑚. 

Finally, for visualization, each endmember was given the color that it represents on the 

classification maps. For example, the red endmember is colored red on the classification maps 

showed as results. The following sections summarized the obtained results from the Regularization. 

For a comprehensive set of result including classification maps and performance matrices refer to 

Appendix sections: 9.4 and 9.5. 

5.3.1 Regularization Baseline Results 
To create baseline results, images were classified with the proposed classification algorithms 

before being process by the Regularization algorithm. The following images were used to produce 

baseline results:  0”, 12.0 in without TiO2, 12.0 in with 0.5 g of TiO2, 12.0 in with 1.0 g of TiO2, 

12.0 in with 1.5 g of TiO2 and 12.0 in with 2.0g of TiO2 (Refer to section 3.1 for more image 

information). The following graphs summarized the obtained classification accuracy before 

regularization. To calculate the Classification Accuracy, the selected testing regions showed on 

section 3.3 were used. 

 
Figure 78: Baseline Classification Accuracy 
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5.3.2 Numerical Approximation Classification Results after Regularization 
Numerical Approximations is one of the algorithm implemented to calculate the point of 

maximum curvature which from now on will be referred as NA on this document. NA uses the 

method of forward difference to calculate the derivative of a vector of concrete values. Refer to 

section 3.5.2 for the theoretical background. The following two sections will show the obtained 

result from 12.0 in without TiO2 and 12.0 in with 0.5 g of TiO2. 

5.3.2.1 12.0 in without TiO2 Image Classification Results after Regularization   

There are two methods of selecting the optimum 𝛾𝛾: Gamma of Minimum Error and Minimum 

Gama and their results will be compared side by side throughout this section. Results obtained 

using a gamma resolution of 0.1 and 0.01 will be showed on figures 80 and 81 respectively. 

Baseline results were also included on these graphs for comparison purposes. The reader must 

keep in mind that the baseline results were obtained by classifying the images without any being 

processed with the regularization algorithm. 

 
Figure 79: Classification Accuracy of the 12.0 in without TiO2 Image using NA & 0.1 Gamma Res 

 
Figure 80: Classification Accuracy of the 12.0 in without TiO2 using: NA & 0.01 Gamma Res 
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5.3.2.2 12.0 in with 0.5 g of TiO2 Classification Results after Regularization  

Figures 82 and 83 summarize the obtained classification accuracy after Regularization from 

the 12.0 in with 0.5 g of TiO2 image using NA and Gamma Resolution of 0.1 and 0.01 

respectively. Baseline results will be included for comparison purposes. 

 
Figure 81: Classification Accuracy of the 12 in 0.5 g of TiO2 Image using: NA & 0.1 Gamma Res 

 
Figure 82: Classification Accuracy of the 12 in 0.5 g TiO2 Image using NA & 0.01 Gamma Res 

5.3.3 Derived Equations Classification Results after Regularization 
Derived Equations is another algorithm implemented to calculate the point of maximum 

curvature which from now on will be referred as DE. DE, uses mathematically derived equations 

to calculate the derivative of the error curves. These equations are presented on section 3.5.3 for 

the theoretical background. The following two sections will show the obtained results from the 

12.0 in without TiO2 and 12.0 in with 0.5 g of TiO2.  
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5.3.3.1 12.0 in without TiO2 Classification Results After Regularization  

Next graphs summarize the obtained classification accuracy after Regularization from the 

12.0 in without TiO2 image processed using Derived Equations with Gamma Resolution of 0.1 

and 0.01 on figure 84 and 85 respectively. 

 
Figure 83: Classification Accuracy of the 12 in without TiO2 Image using DE & 0.1 Gamma Res 

 
Figure 84: Classification Accuracy of the 12 in without TiO2 Image using DE & 0.01 Gamma Res 

5.3.3.2 12.0 in with 0.5 g of TiO2 Classification Result after Regularization 

Next graphs summarize the obtained classification accuracy after Regularization from the 
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and 0.01 on figure 86 and 87 respectively.  
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Figure 85: Classification Accuracy of the 12 in 0.5 g of TiO2 Image using DE & 0.1 Gamma Res 

 
Figure 86: Classification Accuracy of the 12 in 0.5 g of TiO2 Image using DE & 0.01 Gamma Res 

 
5.3.4 Example with Reduced Bands using SVD Algorithm – Derived Equations 

As an example, the 12.0 in without TIO2 image was processed using a band reduction 

algorithms. The bands were reduced from more than 120 to 40 bands using Single Value 

Decomposition (SVD) feature reduction algorithm present on HIAT21. Reducing the number of 

spectral features makes the regularization algorithm perform faster. SVD40 will be added to the 

images with reduced bands for identification. To have an accurate comparison, baseline results 

were produced by classifying the mentioned image without being process by the regularization 

                                                   
21 Stands for Hyperspectral Image Analysis Toolbox. HIAT Is a legacy toolbox, originally developed and maintained 
at LARSIP laboratory, which includes a comprehensive set of algorithms for the studies of Hyperspectral Images, for 
more information refer to: [32]–[34]. HIAT can be downloaded following reference: [35] 
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algorithm. The endmembers’ spectral features were also reduced from 120 to 40 bands. Figure 88 

shows the obtained accuracy from the 12 in without TiO2. 

 
Figure 87: Example with Reduce Bands Obtained Accuracy after Regularization 
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6 Discussion of Results 
After updating HyCIAT a huge amount of data was produced as results. The most important ones 

are going to be summarized and discussed on this section. Refer to section 4 for a complete 

description of the software development employed for: 1) the enhancement made to the underwater 

unmixing algorithm, 2) the integration of the regularization algorithm and 3) the integration of a new 

tool that increase the toolbox functionality. Refer to section 6 for a summary of results and section 9 

(Appendix) for a detailed set of results.  

6.1 Underwater Linear Unmixing with AVIRIS Data 
The underwater unmixing algorithms available at HyCIAT uses optimization algorithms to 

perform the inversion of pixels and retrieve the optical water properties (see section 2 for 

information on the unmixing algorithms). The function used on the toolbox’s algorithms is 

lsqnonlin which solves optimization problem using nonlinear least squares fitting. The default 

parameters of the mentioned function changed across MATLAB platform versions causing 

dissimilar results between them. The default parameters called PrecondBandWidth was identified 

as the one that produced the mayor discrepancies between results obtained on both versions of the 

toolbox. Therefore, the effect of PrecondBandWidth was studied by processing the selected images 

from AVIRIS (refer to section 6.1 for image details) on both versions of the toolbox without 

bathymetry. On HyCIAT 2013, images were processed with and without modifying the 

PrecondBandWidth default value. Please recall that “without modified parameters” means that 

the images were processed on MATLAB 2013a without modifying the default value that 

PrecondBandWidth had which is inf. Also, recall that “with modified parameters” means that 

the default value of PrecondBandWidth was set to 0 on MATLAB 2013a, which is the value that 

the parameter had on MATLAB 2007. To measure how results obtained from HyCIAT 2013 are 

similar to the results obtained on HyCIAT 2007, a comparative analysis was performed using the 

calculated Sum of Squared Errors (SSE, refer to equation 70) between them. The reader must keep 

in mind that when a result increase in similarity means that the obtained result from HyCIAT 2013 

with modified parameter was more similar to the results obtained on HyCIAT 2007 than the ones 

obtained from HyCIAT 2013 without modified parameter. At the other hand, when a result decrease 

in similarity means that the obtained result from HyCIAT 2013 with modified parameter was more 

dissimilar to the results obtained on HyCIAT 2007 than the obtained results from HyCIAT 2013 

without modified parameter. 
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Analyzing results, it can be observed on figure 88 that up to an 88% increase in similarity was 

achieved by modifying parameters. However, this elevated percentage was observed in a particular 

case that correspond to AVIRIS Image A processed in LIGU. The second highest increase in 

similarity was also AVIRIS Image A processed with CIUB with a 36% increase in similarity. The 

similarity of the other two results, one did not increase significantly and the other one was dissimilar. 

Let’s consider the result that corresponds to AVIRIS Image B processed with LIGU, the obtained 

similarity was negative. That means that, in that case, result from HyCIAT 2013 with modified 

parameters were 6% more different than the ones obtained without modifying parameters. 

 

 
Figure 88: Overall similarity improvement by Modifying Parameters 

 
It is also important to mention that when analyzing the obtained results, it was found that, in 

some cases, the individual improvements were significant. Next figure presents the calculated 

degree of similarity from results obtained from AVIRIS Image A processed in CIUB. It can be 

observed that Depth increase in similarity in a 36.81% follow by the abundance estimation of coral 

that increase in similarity in a 17.31%. Also, it can be observed that bottom reflectance decreases 

in similarity in a 37.72%. Another set of results were the individual results were significant is 

AVIRIS Image B processed in CIUB. It can be observed that also the Bottom Reflectance decrease 

in similarity and the rest of the parameters did not change significantly.  

Therefore, analyzing the obtained result, it is deduced that the overall similarity of results 

between both versions of the toolbox did not increase significantly when using AVIRIS data while 

modifying the identified parameter. Due to this, the initial parameters form was updated to include 

a mechanism to modify the PrecondBandWidth parameter as the researcher see fit, see section 4.1.1. 
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Figure 89: Similarity Improvement:  Image A CIUB without Bathymetry 

 
Figure 90: Similarity Improvement: Image B CIUB without Bathymetry 

 

6.2 Underwater Linear Unmixing with Real Controlled Data 
In another part of this project, the underwater unmixing algorithms were tested using the obtained 

image database on this project, refer to section 3.1 for a detailed explanation on them. Those images 

were used to validate the additional enhancement made to the underwater unmixing algorithms. 

There are two main modifications: Custom Unmixing Range and Custom Bottom. Custom 

Unmixing Range functionality allows the researcher to input a custom range of the spectrum were 

the algorithm will perform the unmixing, refer to section 4.1.2. Custom Bottom functionality allows 

the researcher to input its custom bottom to the Lee’s equation. Recall that 5 different 

configurations, described on the next table, were used to reproduced results to measure the impact 

of the included modifications: 
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Table 18: Configuration Descriptions 

Configurations Name Description 

Baseline Images processed in HyCIAT 2007. 

2013-1 HyCIAT 2013 configured as HyCIAT 2007. 

2013-2 HyCIAT 2013 configured with extended unmixing ranges  

2013-3 HyCIAT 2013 configured with a custom Sand spectral signature. 

2013-4 HyCIAT 2013 configured with extended unmixing ranges, custom 
Sand spectral signature and PrecondBandWidth parameter set to 0. 

To quantify unmixing results, the testing regions presented on section 3.3 were used as “pure 

pixel” of each class. The individual accuracy of each endmember over its testing region was 

calculated with equation 73 (Refer to section 5.2 for explanation). The overall accuracy of each 

configuration is calculated by averaging the obtained individual accuracies of each endmember given 

to the underwater unmixing algorithm. Results shows an increment in accuracy with the modification 

performed to the algorithms. It can be observed, on figure 91 that the obtained overall accuracy 

increases in around 29 % for configurations 2013-3 and 2013-4 by comparing it to the Results from 

HyCIAT 2007. The following two figure, 91 and 92 shows the Overall Accuracy results for images 

processed with LIGU using 5 colors endmembers and 4 colors endmembers.  

 
Figure 91: LIGU overall accuracy using the 12 in without TiO2 Image and 5 color endmembers. 
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2007 2013-1 2013-2 2013-3 2013-4
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Figure 92: LIGU overall accuracy using the 12 in without TiO2 Image and 4 color endmembers. 

 

There are several things that need to be discussed from the last two graphs. 1) It can be observed 

that the additional functionalities have a positive impact on obtained results. A 29% increase in 

accuracy was obtained with configuration 2013-3 where the overall accuracy came up to 49.88% 

when combining the new functionalities. 2) Results also show that by reducing the number of 

endmembers from 5 to 4 the accuracy increase. Accuracy improves close to a 25% on configuration 

2013-3 by reducing the number of endmembers. On this case, the overall accuracy increases from 

49.88% to 74.94% and comparing results from 2013-3 of figure 92 with Results from 2007 close to 

a 50% increase in accuracy was obtained. This establishes the trend that by reducing the amount of 

endmember more accuracy can be obtain from the underwater algorithms. 3) When using only the 

Custom Unmixing Range functionality with 5 Colors endmembers results did not increase. But, it 

also can be observed that when eliminating one endmember results improves in around 15%. 4) The 

accuracy obtained on configuration 2013-122, is almost similar as the accuracy obtained from 

Results from 2007. Both accuracies stay close to 20% when unmixing with 5 colors and close to 25 

% when unmixing with 4 colors. This stablish the fact that results are not affected by updating the 

toolbox when configured in the same way. 5) LIGU results doesn’t change by modifying the 

identified parameter of the optimization function. Both overall accuracies were around 49.88% 

using 5 Colors endmembers and 74.49%. when using 4 Colors endmembers. This is a restatement 

of fact presented on the section 6.1 where it was evidenced that the PrecondBandWidth parameter 

do not significantly affect the majority of the obtained results. 

                                                   
22 Recall that 2013-1 represent the results obtained from HyCIAT 2013 configured as HyCIAT 2007, see table 18. 
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In contrast, as can be observed on the next two figures (figures 93 and 94) the obtained accuracies 

from CIUB was not as high as LIGU when unmixing over the testing regions. The obtained overall 

accuracy, with 5 colors endmembers, from HyCIAT 2007 was 21.18% and when processing the 

same image on HyCIAT 2013 with the same parameter as 2007 (configuration 2013-1) was 20.36%. 

Again, restating the fact that results are not affected by updating the toolbox when they are 

configured in the same way. Looking at other configurations, an accuracy increment of 0.28% was 

obtained when increasing the unmixing rage (2013-2) and an additional 5.5% overall accuracy 

increment was obtained when modifying the optimization function parameter (2013-4). When 

contrasting the next two figure it can be observed that result didn’t improve significantly when 

reducing the number of endmember. Looking at figure 94 close to an accuracy increment of 10% 

was obtain with the enhanced features. Accuracy did not increase when modifying the default 

parameters of the optimization function. By observing CIUB results, it can also be said that updating 

the toolbox did not have an adverse impact on result. Again, restating the fact that results are not 

affected by updating the toolbox when configured in the same way. 

 

 
Figure 93: 12.0 in CIUB 5 Colors Blue Individual Accuracy 
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Figure 94: 12.0 in CIUB 4 Colors – Blue Individual accuracy 

Analyzing individual results, it can be observed that close to a 94% of accuracy was achieved by 

calculating fractional abundances of the Blue endmember with LIGU on the 12.0 in without TiO2 

image with 5 colors endmembers, see figure 95. Additionally, the accuracy increases considerably 

just by reducing the number of endmembers from 5 to 4 as can be appreciated on figure 96. On that 

figure, it can be observed up to 62.53% in accuracy increment was achieved by just adjusting the 

unmixing range and a 100.00% in accuracy was obtained by combining the custom unmixing range 

and the custom bottom functionalities on the 12.0 in without TiO2 image processed with 4 Colors 

Endmembers. The results obtained with the Blue endmember is being highlighted because is the 

one that obtained the major improvement with the proposed algorithm enhancements.  

 

 
Figure 95: 12.0 in LIGU 5 Colors – Blue Individual accuracy 

Results from
2007 2013-1 2013-2 2013-3 2013-4

 Overall Accuracy 25.51% 25.04% 35.75% 36.45% 36.44%

25.51% 25.04%
35.75% 36.45% 36.44%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

CIUB Overall Accuracy from Different Configurations 
Using the 12 in without TiO2 Image and 4 Colors Endmembers

Results from
2007 2013-1 2013-2 2013-3 2013-4

Blue 0.00% 0.00% 0.00% 93.53% 93.53%

0.00% 0.00% 0.00%

93.53% 93.53%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

12 in LIGU with 5 Color Endmembers 
Blue Individual Accuracy



96 
 

 
Figure 96: 12.0 in LIGU 4 Colors – Blue Individual accuracy 

In contrast, it is important to mention that accuracy was constantly cero over the Green testing 

regions by processing the image with 5 Colors Endmembers, as can be observed in figure 97. This 

accuracy was also obtained even when reducing the amount endmember to 4, as can be observed in 

figure 98. 

 
Figure 97: 12.0 in LIGU 5 Colors – Green Individual accuracy 

 
Figure 98: 12.0 in LIGU 4 Colors – Green Individual accuracy 
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This is due to the similarity that green and blue endmembers have between each other, see figure 

99. The algorithm does not discriminate between the green endmember correctly from the blue 

endmembers. The same figure shows the fractional abundances of the Blue endmember obtained 

form 12.0 in without TiO2 image processed in LIGU with 5 color endmembers. It can be observed 

high abundance of blue over the region that pertain to the green color. 

 

 
Figure 99: Blue and Green Endmember Spectral Signature and unmixing results 

 
6.2.1.1 Underwater Unmixing of the 12 in with 0.5 g of TiO2 

In another part of the project, Titanium Dioxide (TiO2) was used as light scattering agent in the 

water to decrease the visibility of the bottom of the tank. Obtained images with TiO2 were processed 

on both versions of the toolbox. In HyCIAT 2013 images were processed using custom bottom and 

custom unmixing range functionalities. This configuration corresponds to the one named 2013-3 

described on table 10 and was selected because is the one that demonstrated to produce better overall 

accuracy (refer to section 5.2.1 to 5.2.4). Result shows that when processing the 12.0 in 0.5 g TiO2 

image with LIGU a 23% accuracy increment over the yellow testing region and a close to a 44% 

accuracy increment over the red resting region were obtained, see figure 100. 
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Figure 100: 12.0 in 0.5 g TiO2 LIGU 4 Colors –Individual accuracy 

In contrast by processing the same image with CIUB on both versions of the toolbox only the 

accuracy of the red color increased to 8.88% as can be observed in the next figure: 

 
Figure 101: 12.0 in 0.5 g TiO2 LIGU 4 Colors –Individual accuracy 

 

6.3 Regularization Algorithm 
The final part of the project is the recoding, integration and validation of the Regularization 

algorithm. Refer to section 4.2 for the complete description on the implementation of this algorithm. 

Figure 102, shows the obtained classification accuracy of baseline results. Baseline results were 

produced by classifying the obtained images with the proposed classification algorithms before 

being process by the Regularization algorithm, refer to section 5.3.1. Analyzing the baseline results 

showed on figure 102, the classification accuracy of the Euclidean Distance classifier the Dry image 

was 100% but, by adding 12.0 of water the classification decreases down to 17.70% and stays at 

17.61% even when adding multiple quantities of TiO2. In the Spectral Angle classifier, the accuracy 

also was 100% on the Dry image and, by adding 12.0 in of water and multiple quantities of TiO2 its 
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classification accuracy decreases, see figure 102. It’s important to point out that, even though the 

accuracy decreases by adding water and TiO2, the Spectral Angle classifier performed better than 

the other two classifiers in the majority of the obtained images. A case, on the 12.0 in without TiO2 

image the Maximum Unmixing Value classifier performed excellent achieving a classification 

accuracy of almost 99% over testing regions.  

 
Figure 102: Comparative graph of baseline result with multiple TiO2 concentrations 

As mentioned before, two gamma resolutions were selected for this project: 0.1 and 0.01.  For 

each gamma resolution, there are two different ways of selecting the optimum 𝛾𝛾 per pixel: Gamma 

of Minimum Error and Minimum Gamma. Finally, two methods of calculating the maximum 

curvature: Numerical Approximations and Derived Equations were implemented. All these 

variations were tested in the selected images (12.0 in without TiO2 and 12.0 in with 0.5 g of TiO2).  

Obtained classification accuracy after Regularization of the 12.0 in without TiO2 image using 

Numerical Approximation are showed on figure 103. The most notable improvement is on the 

Euclidean Distance classifier where accuracy increase from a 17% to and 91.93% using gamma 

resolution of 0.1 and increase again up to a 96.73% using gamma resolution of 0.01 establishing the 

tendency that accuracy improve by increasing the gamma resolution. 

Figure 104 shows classification accuracy after Regularization of the 12.0 in without TiO2 image 

using Derived Equations. Also, as can be observed in the same figure, the most notable improvement 

was on the Euclidean Distance classifier where accuracy increase from 17.72% to 87.47% with a 

gamma resolution of 0.1 and ramp up to 98.30% with a gamma resolution of 0.01. This confirms 

the tendency accuracy increases with the increment of gamma resolution. This behavior is observed 
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only in Euclidean Distance and on Spectral Angle. Again, Maximum Unmixing Value baseline 

result was not outperformed by the rest of the experiments.  

 
Figure 103: 12.0 in Image Numerical Approximation Results Comparison with Baseline Results 

 
Figure 104: 12.0 in Image Derived Equations Results Comparison with Baseline Results 

Each class on the classification map were colored with the color that the class represents. This 

facilitate the analysis of results. Table 19 compares visually the classification maps obtained from 

regularized images using Minimum Gamma and Gamma of Minimum Error and classified with 

Euclidean Distance. Also, for this results, Numerical Approximations were used on the for 

processing the image and gamma resolution was set to 0.1 and 0.01. 

Baseline (No
Gamma

Resolution)
Min. Gamma Gamma of Min

Err Min. Gamma Gamma of Min
Err

0 Gamma Res: 0.1 Gamma Res: 0.01
Euclidean Distance 17.72% 91.93% 58.20% 96.73% 81.26%
Spectral Angle 75.37% 82.39% 63.49% 81.21% 77.46%
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Table 19: Euclidean Distance Classification after Regularization of the 12.0 in image 

Real Image 

 
Classification 

Algorithm 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

 
Minimum Euclidean 

Distance 

Gamma Resolution: 0.1 

 
Accuracy = 91.93% 

 
Accuracy = 58.20% 

 
Minimum Euclidean 

Distance 

Gamma Resolution: 0.01 

 
Accuracy = 96.73% 

 
Accuracy = 81.26% 

It can be observed, on the last table, that Minimum Gamma methodology could separate each 

class almost perfectly with Euclidean Distance. When using Gamma of Minimum Error some 

features in the classification map start to appear and the algorithm misclassifies some pixels. By 

increasing the gamma resolution to 0.01 the algorithm has more values to select the optimum 𝛾𝛾 

making calculations more precise therefore increasing accuracy. Visually and statically it can be 

observed that with a resolution of 0.01 the regions are more defined on the obtained classification 

maps. For a complete set of results refer to Appendix sections 9.4 and 9.5. 

Titanium Dioxide was added to the water as a light scattering agent that difficult the visibility of 

the bottom. This poses a big challenge while classifying because most the light reflected from the 

bottom is scattered by the chemical compound suspended in the water and does not reach the 

camera. Figure 105 compares visually multiple images where the effect of the TiO2 can be observed. 

Figure 106 shows the obtained endmembers from the testing regions of figure 105. Figure 107 
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shows the obtained classification accuracy from the 12.0 in with 0.5 g of TiO2 image regularized 

using Numerical Approximations. The most notable results also were obtained when using 

Euclidean Distance where baseline accuracy of 17.61% increase to 53.41% when using a gamma 

resolution of 0.01. It can be observed that results were not as good as the one obtained from the 12.0 

in without TiO2 image. But the accuracy obtained on regularized images tends to be higher than the 

accuracy obtained on the baseline. 

   

  
Figure 105: Multiple measure HSI images and Reconstructed ones with Regularization 

   

    
Figure 106: Obtained spectral signature from the training regions showed on figure 106 
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Figure 107: 12.0 in 0.5 g TiO2 Image Numerical Approximations Results Comparison 

Last figure showed the accuracy obtained using Numerical Approximations, next figure showed 

the obtained accuracy from the 12.0 in with 0.5 g of TiO2 image regularized using Derived 

Equations. It can be observed that results were not very good, but both tendency of increasing 

accuracy after regularizing the image and after incrementing the gamma resolution from 0.1 to 0.01 

prevails on results obtained from the Euclidean Distance classifier. 

 

Figure 108: 12.0 in 0.5 g TiO2 Image Derived Equations Results Comparison 

For comparison purposes the following 4 figures shows the Classification Improvement for each 

presented result. To interpret them the reader must keep in mind that a positive value means that the 
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classification accuracy improves after regularization. At the other hand, negative values mean that 

the classification accuracy did not improves after regularization. From these figures, it can be 

observed that Euclidean Distance (ED) classifier benefits more, than the other two, from the 

Regularization algorithm. Euclidean Distance results in an 80.58% increase in accuracy for 12.0 in 

image and a 36.23% in the 12.0 in 0.5 g TiO2 image with a gamma resolution of 0.01. Also, this 

graph reflects clearly that the Maximum Unmixing Value (MUV) classifier baseline results were 

not outperformed on any of results obtained after Regularization. Spectral Angle (SA) classifier did 

not improve significantly as ED because it performed relatively well while producing baseline 

results. 

 
Figure 109: 12.0 in Improvement by Regularization – Derived Equations 

 
Figure 110:  12.0 in Improvement by Regularization – Numerical Approximations 
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Figure 111: 12.0 in 0.5 g TiO2 Improvement by Regularization – Derived Equations 

 

Figure 112: 12.0 in 0.5 g TiO2 Improvement by Regularization – Numerical Approximations 
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camera. Also, light intensity variation due to the lamp used on the experiment affect result 

considerably, see figure 113.  

 

Figure 113: Circular light pattern created by the lamp over the water with TiO2 

 
2. There is a tendency that the accuracy improves by increasing the gamma resolution  

18 out of 24 presented cases showed an improvement in accuracy by increasing the resolution 

from 0.1 to 0.01. It is important to mention that from the obtained data it was observed that a bigger 

gamma resolution makes the regularization algorithms more sensitive to intensity variations on the 

measured signals. In the presented experiment, these intensity variations were induced by the lamp 

used, that drawback will be discussed in item 5 of this list. 

3. Minimum Gamma performed better than Gamma of Minimum Error 

In 14 of the 24 cases presented Minimum Gamma obtained a higher classification accuracy after 

regularization. In all the obtained result of the 12.0 in without TiO2 image Minimum Gamma 

outperformed Gamma of Minimum Error and in contrast on the 12.0 in with 0.5 g of TiO2 image 

most the presented cases it was the opposite. Also, as an attribute, Minimum Gamma is less sensitive 

to light intensity variation on the obtained images, as observed in section 9.4 when the classification 

maps are compared. 

4. Both methods to calculate the point of maximum curvature: Derived Equation and 

Numerical Approximation perform similarly in an overall accuracy sense. 

Both methods employed in the algorithm to calculate the point of maximum curvature yield 

similar classification accuracies. Derived Equation finish in an overall accuracy of 55.70% and 

Numerical Approximation finish with an overall accuracy of 56.62%. Leaving a 0.91% of difference 

in the overall accuracy.  
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5. The lamp used on the indoor experiment creates intensity variation on the surface of the 

water that induce error. 

When studying, classification maps some circular patters can be observed, see figure 114 for 

examples. The conventional lamp with a Tungsten light bulb, used in the performed experiments, 

does not project a uniform light pattern over the illuminated objects. Figure 115 shows the Dry 

image, observed the difference in the light intensity from the center of the white standard thorough 

its corners. Each corner of the standard is less bright than the center. The dry image give evidence 

that the projected pattern on our experiments is due to this. 

 
Figure 114: Example of the Circular Patterns obtained on the Classification Maps 

 

 

Figure 115: Dry Image to observed the light intensity variation over the white standard 

 
The applied methodology for calibrating the image is the following: divide all its pixel by a single 

calibration vector obtained from a white standard without the effect of water. This technique does 

not compensate for intensity variations projected by the lamp over our regions of interests. This is 

an issue since the designed preprocessing methodology obtains the endmembers used for processing 

image from the same data set. Figure 116 A shows 4 linearly selected regions from the center across 

the yellow region and B shows the average of all the pixels enclose on each selected region. It 

clearly demonstrates intensity variations and these variations affect the classification results. 
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Figure 116: A Linearly Obtained Regions; B Spectral Signatures of those regions 

 
6. Dimensionality reduction can become an important part of the algorithm 

The 12.0 in image was reduced using Single Value Decomposition (SVD) dimensionality 

reduction algorithm. The number of spectral features were reduced from more 120 to 40. This 

reduction minimizes the time of processing the image. The image reduced was the 12 in without 

TiO2, this reduced image will be referred as SVD40 on the next graphs. Figures 117 and 118 shows 

the comparison between the obtained results using reduced bands images with additional ones 

previously showed. It can be observed that result stay almost the same with a slight decrease in 

accuracy of around 5% from Euclidean Distance. For Spectral Angle this difference is around 2% 

and for Maximum Unmixing Value this difference is less than 1%. From these results, it can be said 

that for Minimum Gamma classification accuracy is not impacted considerably by reducing the 

number of spectral bands. 

 

Figure 117: Reduced bands images result comparison – Minimum Gamma 
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In contrast, when processing reduced band images using Gamma of Minimum Error the 

classification accuracy was observed to increase, as shown in figure 118. For Euclidean Distance 

Classifier accuracy rises around 12% and in the other two classifiers remains basically unchanged. 

This establishes the tendency that even by reducing the number of spectral features the 

regularization algorithm has a positive impact on results.  

 
Figure 118: Reduced bands images result comparison – Gamma of Minimum Error 
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7 Conclusions & Future Work  
In this section, the conclusions based on the importance of this toolbox and the algorithms within 

is presented. Also, another section will describe future research work that can be conducted to 

understand more benthic habitat, its simulations and to extend HyCIAT capabilities for a more 

complete and robust toolbox.  

7.1 Conclusion 
From the startup, this project was conducted to understand the underwater unmixing algorithms 

based on Lee’s bio optical model that has been the point of study of several works at LARSIP. Lee’s 

bio optical model combined with Underwater Unmixing and Bottom Classification using 

Regularization Techniques creates a very important tool set that could become the foundation of 

future software platforms designed for comprehensive studies of the underwater environment using 

remotely sensed data. This technology can be extended into different facets of environmental 

monitoring like health and ecological sustainability. Benthic environments are complex scenarios 

where its biodiversity and optical properties make it very interesting, very difficult and very 

important to study. HyCIAT integrates the algorithms into a single platform with tools and 

functionalities that provides the researcher with options to study multiple aspects of hyperspectral 

coastal images in a single interface. That is why it is important to maintain the operability of this 

toolbox.  

With this work, HyCIAT was enabled to be used in MATLAB 2013. All modifications were 

verified to have a positive impact on results. Validation data was obtained based on an experimental 

procedure (documented on section 3.1) that can be used as a guideline for future indoor/outdoor 

hyperspectral imaging acquisition experiments with a controlled real benthic environment. This 

work also, gather a broad review of literature and explanations of all the algorithm in the toolbox 

that can be used as an important reference in future studies. Mathematical procedures were 

established for the empirically retrieval of optical properties: absorption and backscattering, 

coefficients of water, using Lee’s equations and Hyperspectral Images of a real or simulated benthic 

environment. This project also, present a detailed explanation about the preprocessing steps 

followed that can benefit future studies. Moreover, this project presents a detailed explanation of 

the software implementation that can be used for reference of the delivered toolbox. And last, but 

not the least important aspects of the enhancement, this project establishes a baseline for future 

studies using HyCIAT. 
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This project and its results have been limited to the validation of different functionalities that the 

toolbox has, focusing on their applicability. Tools like custom bottom and custom unmixing range, 

implemented for the underwater unmixing algorithms, give the researcher the capability to 

manipulate parameters of the algorithms in a convenient way. Therefore, the obtained image 

database was intended to measure the impact of these new functionalities over the obtained results. 

That is why optical properties of the water column were out of scope when validating the 

Underwater Unmixing algorithms. These variables were neither being controlled nor measured 

when the experiment was conducted, therefore validation data for bottom reflectance, absorption, 

backscattering and phytoplankton were not available. Furthermore, the Regularization algorithm 

was developed and programmed in previous studies by Eladio Rodríguez-Díaz, and was 

reprogramed and integrated into HyCIAT in this version of the toolbox. Now, since this algorithm 

is designed to take high uncertainty on the measured signal, or in other words there is no need to 

have precise measurements of backscattering and absorption coefficients, the same data set was 

used to extract these parameters to test the implementation of the algorithm, its functionalities and 

therefore stablishing baseline results. 

Therefore, results show that HyCIAT 2013 produce similar results to those obtained in HyCIAT 

2007. It has been demonstrated that default parameters of MATLAB’s native optimization function 

do not have a considerable effect on the similarity of results obtained from both versions. For 

underwater unmixing, overall accuracy increases from 20% to 50% in one case and from 25% to 

75% in others. The algorithms implemented are prone to confuse similar endmembers like Green 

and Blue as showed previously. This disadvantage can be mitigated with the custom unmixing range 

functionality in future studies. When simulating turbid waters, individual improvements were 

achieved up to 44%. For results obtained from the regularization algorithm, it can be highlighted an 

increase from 18% up to 98% of classification accuracy on an object submerged in 12.0 in of water 

and up to a 53% in individual classification accuracy on simulated turbid water. Circular patterns 

were observed on the obtained classification maps from the regularization algorithm. These patterns 

were cause by the nature of the experimental setup where the lamp was not projecting a uniform 

light pattern over our regions of interests. This can be corrected by either using an instrument 

capable of projecting uniform light patterns or by conducting the data acquisition experiment using 

the Sun as the light source. 

In summary, HyCIAT has been updated and its functionality has been restored up to MATLAB 

2013. Result from current version of the toolbox are similar than the ones produced in the previous 
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version of the toolbox. Additional tools were added to increase functionality and convenience with 

a positive impact on result. The regularization algorithm was coded on MATLAB 2013 and 

integrated into the toolbox. Regularization algorithm functionality was validated and demonstrate 

once again to have promising results and a high applicability to problems where there is high 

uncertainty on the measured signal. Therefore, objectives have been fulfilled.  

7.2 Future Studies 
The following are ideas for future studies that can be integrated into HyCIAT using this work as 

the starting point: 

• The toolbox can be further enhanced by:  

o Including functionalities to save continuously the data or segment of the image to 

avoid losing data if the algorithm is forced to stop or accidentally stopped while 

processing.  

o Enable the functionality of forcing to stop and still obtain what the algorithm has 

processed so far. Perhaps the functionality of restarting from where it was left 

could be included. 

o Conduct time studies and further optimize the algorithms using MATLAB 

specials capabilities of efficiently managing matrices and vectors. 

• The implemented regularization algorithm can be enhanced by: 

o Integrate the methods of thresholding the regularized images presented by 

Rodriguez-Dias on [6]. According to the authors, resulting data from this 

thresholding algorithm demonstrated to have a great capacity of discriminating a 

single class on the whole image in highly turbid waters.  

o Integrate Lee’s equations for retrieving the optical properties of water: depth 

absorption and backscattering and pass them to the regularization algorithm.  

• Conduct studies on the separability of endmembers among its wavelength features and 

develop an automatic algorithm that tells the researcher the 2 to 4 distinct custom regions 

for maximum spectral separability. 

• Conduct exhaustive studies on all the functionalities that provides the recently 

implemented regularization interface. Including but not limited to the following:  

o Using Custom range for processing and a different range for classifying.  
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 The regularization interface contains functionalities so that the researcher 

can set a specific range to conduct the inversion and another range, within 

the established one for inversion, to classified the obtained the regularized 

image. This can be used to achieved more discrimination between similar 

endmembers.   

o Using a set of endmembers for processing and a different set for classifying  

 The regularization interface contains functionalities to regularize the 

image with a set of endmembers and perform the classification of the 

regularized image with another set of endmembers. This can be used, in 

example, for conducting studies on detection and classification of 

different types of algae. With these functionalities, the image can be 

regularized using a “generic” algae endmember and classified using the 

endmembers of different types of algae. The preliminary hypothesis, in 

this example, is that regularizing with a generic algae endmember will 

enhance the spectral features of the pixels that corresponds to algae on the 

image and the classification after regularization will be more precise. 

• Conduct experiments to determine what is the best way of measuring the absorption and 

backscattering coefficients. This will help us understand the optical impact of these 

properties and how they impact our classification algorithms. 

• Conduct an experiment of measuring the spectral signature of suspended sediments on the 

water column and how they can be simulated. This can be useful to extend the presented 

algorithms into detection and classification of materials suspended on water bodies. 

• Investigate on how the algorithms for dimensionality reduction affect results and what is 

the set of bands, if any, that produces the best results.  During this project, it was observed 

that in some results accuracy went up after reducing the number of bands of the image 

used.  

• More future work can be found on the thesis by Torres-Madroñero [1]. 
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9 Appendix 

9.1 Additional Results – Image A LIGU Unmixing Result 

9.1.1 Without Bathymetry: without parameter modification 
Table 20: Result LIGU w/o bathymetry and w/o Parameter Modifications 

Results 2007 Results 2013 Difference 
Depth 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 604876.09 

Bottom Reflectance 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 312.56 

Backscattering 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 0.74 

Absorption 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 264.22 

Phytoplankton 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 35.04 
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Table 20: Result LIGU w/o bathymetry and w/o Parameter Modifications 

Results 2007 Results 2013 Difference 
Sand 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 371.38 

Coral 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 226.48 

Algae 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 394.59 

 

9.1.2 With Bathymetry: without parameter modifications 
Table 21: Result LIGU with bathymetry and w/o Parameter Modifications 

Results 2007 Results 2013 Difference 
Bottom Reflectance 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 26471.90 

Backscattering 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 94.51 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

5

10

15

20

25

30

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

0

0.1

0.2

0.3

0.4

0.5



118 
 

Table 21: Result LIGU with bathymetry and w/o Parameter Modifications 

Results 2007 Results 2013 Difference 
Absorption 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 7665.83 

Phytoplankton 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 6910.40 

Sand 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 879.86 

Coral 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 637.34 

Algae 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 441.48 
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9.1.3 Without Bathymetry: with parameter modification 
Table 22: Result LIGU w/o bathymetry and with Parameter Modifications: Water Properties 

Results 2007 Results 2013 Difference 
Depth 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 71555.72 

Bottom Reflectance 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 174.58 

Backscattering 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 0.26 

Absorption 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 206.33 

Phytoplankton 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 8.49 

Sand 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 172.86 
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Table 22: Result LIGU w/o bathymetry and with Parameter Modifications: Water Properties 

Results 2007 Results 2013 Difference 
Coral 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 153.40 

Algae 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 169.95 

 

9.1.4 With Bathymetry: with parameter modifications 
Table 23: Result LIGU with bathymetry and with Parameter Modifications: Water Properties 

Results 2007 Results 2013 Difference 
Bottom Reflectance 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 26586.33 

Backscattering 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 69.49 

Absorption 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 7778.69 
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Table 23: Result LIGU with bathymetry and with Parameter Modifications: Water Properties 

Results 2007 Results 2013 Difference 
Phytoplankton 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 6896.11 

Sand 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 908.99 

Cora 

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 655.81 

Algae  

   
𝑆𝑆𝑆𝑆𝐸𝐸 = 441.49 
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9.2 Extended Results – Underwater Linear Unmixing Results with Previous Data 

9.2.1 LIGU Results Improvements: Image A without Bathymetry  
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image A using LIGU algorithm without Bathymetry. 

Table 24: Result’s SSE Differences LIGU of Image A without Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Depth 71555.72 604876.09 88.17% 
Bottom Reflectance 174.58 312.56 44.14% 
Backscattering 0.26 0.74 65.31% 
Absorption 206.33 264.22 21.91% 
Phytoplankton 8.49 35.04 75.77% 
Sand 172.86 371.38 53.45% 
Coral  153.40 226.48 32.27% 
Algae 169.95 394.59 56.93% 

Total 72441.58 606481.09   
Total Improvement 88.06% 

 

 

Figure 119: Improvement by modifying parameters – Image A LIGU without Bathymetry 
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9.2.2 LIGU Results Improvements: Image B without Bathymetry 
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image B using LIGU algorithm without Bathymetry. 

 Table 25: Result’s SSE Differences LIGU of Image B without Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Depth 20167.7088 19003.8662 -6% 
Bottom Reflectance 24.9852 39.3862 37% 
Backscattering 0.023579 0.072877 68% 
Absorption 84.6693 77.4388 -9% 
Phytoplankton 3.9703 14.5735 73% 
Sand 32.2958 19.9951 -62% 
Coral  32.8194 41.1619 20% 
Algae 35.7896 27.7195 -29% 

Total 20382.26198 19224.21408   
Total Improvement -6% 

 

 

Figure 120: Improvement by modifying parameters – Image B LIGU without Bathymetry 
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9.2.3 LIGU Results Improvements: Image A with Bathymetry 
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications.  This data corresponds to result 

obtained from Image A using LIGU algorithm with Bathymetry. 

Table 26: Result’s SSE Differences LIGU of Image A with Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Bottom Reflectance 26586.33 26471.90 -0.43% 
Backscattering 69.49 94.51 26.47% 
Absorption 7778.69 7665.83 -1.47% 
Phytoplankton 6896.11 6910.40 0.21% 
Sand 908.99 879.86 -3.31% 
Coral  655.81 637.34 -2.90% 
Algae 441.49 441.48 0.00% 

Total 43336.91 43101.32   
Total Improvement -0.55% 

 

 

Figure 121: Improvement by modifying parameters – Image A LIGU with Bathymetry 
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9.2.4 LIGU Results Improvements: Image B with Bathymetry 
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image B using LIGU algorithm with Bathymetry. 

Table 27: Result’s SSE Differences LIGU of Image B with Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Bottom Reflectance 54.5947 55.1209 0.95% 
Backscattering 7.0291 11.6431 39.63% 
Absorption 919.7675 919.6687 -0.01% 
Phytoplankton 404.5047 406.7838 0.56% 
Sand 271.1028 273.0824 0.72% 
Coral  238.8469 239.9439 0.46% 
Algae 198.0625 199.2629 0.60% 

Total 2093.9082 2105.5057   
Total Improvement 0.55% 

 

 

Figure 122: Improvement by modifying parameters – Image B LIGU with Bathymetry 
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9.2.5 CIUB Results Improvements: Image A without Bathymetry:  
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image A using CIUB algorithm without Bathymetry. 

Table 28: Result’s SSE Differences CIUB of Image A without Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Depth 2142385.82 3390652.15 36.81% 
Bottom Reflectance 6298.11 4573.28 -37.72% 
Backscattering 78.62 87.31 9.95% 
Absorption 2341.66 2319.68 -0.95% 
Phytoplankton 210.63 210.89 0.12% 
Sand 3634.61 3607.65 -0.75% 
Coral  5067.74 6132.78 17.37% 
Algae 6003.54 5734.04 -4.70% 

Total 2166020.72 3413317.79   
Total Improvement 36.54% 

 

 

Figure 123: Improvement by modifying parameters – Image A CIUB without Bathymetry 

36.81%

-37.72%

9.95%

-0.95%

0.12%

-0.75%

17.37%

-4.70%

-50.00%
-40.00%
-30.00%
-20.00%
-10.00%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%

Depth Bottom
Reflectance

Backscattering Absorption Phytoplankton Sand Coral Algae

Image A CIUB without Bathymetry
Individual Improvement



127 
 

9.2.6 CIUB Results Improvements: Image B without Bathymetry 
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image B using CIUB algorithm without Bathymetry. 

 Table 29: Result’s SSE Differences CIUB of Image B without Bathymetry 

Parameter Name SSE  
Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Depth 207551.2083 215752.5751 3.80% 
Bottom Reflectance 1147.2801 691.7502 -65.85% 
Backscattering 6.1631 6.8656 10.23% 
Absorption 776.2343 764.8338 -1.49% 
Phytoplankton 90.1098 89.6909 -0.47% 
Sand 663.0366 670.5677 1.12% 
Coral  242.2238 243.771 0.63% 
Algae 894.7559 908.3273 1.49% 

Total 211371.0119 219128.3816   
Total Improvement 3.54% 

 

 

Figure 124: Improvement by modifying parameters – Image B CIUB without Bathymetry 
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9.2.7 CIUB Results Improvements: Image A with Bathymetry 
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image A using CIUB algorithm with Bathymetry. 

Table 30: Result’s SSE Differences CIUB of Image A with Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Bottom Reflectance 44776.61 44755.51 -0.05% 
Backscattering 493.27 492.12 -0.23% 
Absorption 4619.36 4600.93 -0.40% 
Phytoplankton 7760.16 7773.34 0.17% 
Sand 4704.26 4714.45 0.22% 
Coral  4621.82 4607.52 -0.31% 
Algae 5043.03 5086.89 0.86% 

Total 72018.51 72030.76   
Total Improvement 0.02% 

 

 

Figure 125: Improvement by modifying parameters – Image A CIUB with Bathymetry 
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9.2.8 CIUB Results Improvements: Image B with Bathymetry 
The following Table shows the calculated SSE between results from HyCIAT 2013 and 

HyCIAT 2007 with and without parameters modifications. This data corresponds to result 

obtained from Image B using CIUB algorithm with Bathymetry. 

 Table 31: Result’s SSE Differences CIUB of Image B with Bathymetry 

Parameter Name 
SSE  

Modified 
Parameter 

SSE 
Unmodified 
Parameter 

Individual 
Improvement 

Bottom Reflectance 546.3297 545.7591 -0.10% 
Backscattering 50.4385 50.7122 0.54% 
Absorption 293.1214 296.9141 1.28% 
Phytoplankton 958.2156 964.5725 0.66% 
Sand 279.6945 280.7299 0.37% 
Coral  150.7805 149.0381 -1.17% 
Algae 294.4853 300.9449 2.15% 

Total 2573.0655 2588.6708   
Total Improvement 0.60% 

 

 

Figure 126: Improvement by modifying parameters – Image B CIUB with Bathymetry 
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9.3 Extended Results – Underwater Linear Unmixing with Real Controlled Data 

9.3.1 LIGU 12.0 in Image with 5 Colors Endmembers 
This section will show result obtained from the 12.0 in image using LIGU algorithm. In this 

case, five endmembers representing: Blue, Yellow, Green, Red and White regions from the 1.8” 

hyperspectral image were used as input to the algorithm (See next Figure). Obtained accuracy are 

showed on Table 33. Visual representation will be showed on Table 32 and at last, figure 129 will 

present the graph of the overall accuracy over testing regions.  

 
Figure 127: Endmember Used for the 5 Colors processing 

The resulting images represent the fractional contribution of the particular endmember to the 

measured signal. Colors has been applied to the results to facilitate the visualization of them (see 

figure 128 for the color scale). For example, a pixel showed as blue means that that particular 

endmember did not contribute to the measured spectra whatsoever and, in contrast, a dark red pixel 

means that that particular endmember contributes in a 100% to the measured spectra. The optical 

water properties are out of scope of this work since they were not controlled by the time of the 

experiment.  
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Figure 128: Enhanced color scale for reference. 
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Table 32: LIGU 5 Color Endmembers Results 

Real Image: 12.0 
in 

 
Configurations 

Baseline 2013-1 2013-2 2013-3 2013-4 
Blue 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 93.53% 

 
Accuracy = 93.53% 

Yellow 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 0% 

Green 

 
Accuracy = 0. % 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 0% 

 
Accuracy = 0% 

Red 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 55.86% 

 
Accuracy =55.88% 

White 

 
Accuracy = 99.35% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 
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Table 33: 12.0 in 5 Color Endmember LIGU Results 

Configurations Overall Accuracy 
Endmembers 

Blue Yellow Green Red White 
Baseline 19.87% 0.00% 0.00% 0.00% 0.00% 99.35% 

2013-1 20.00% 0.00% 0.00% 0.00% 0.00% 100.00% 

2013-2 20.00% 0.00% 0.00% 0.00% 0.00% 100.00% 

2013-3 49.88% 93.53% 0.00% 0.02% 55.88% 100.00% 

2013-4 49.89% 93.53% 0.00% 0.02% 55.88% 100.00% 
 

 

Figure 129: 12.0 in LIGU 5 Colors Overall accuracy graph 
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9.3.2 LIGU 12.0 in Image with 4 Colors Endmembers 
This section will show results obtained from the 12.0 in image using LIGU algorithm with 4 

endmembers that correspond to: Blue, Yellow, Green and Red regions form the 1.8” image. Next 

figure shows the endmembers used. Table 35 shows the obtained accuracy from LIGU with the 

12.0 in image with 4 color endmembers. Visual representations are presented on Table 34 and 

graph comparing the obtained overall accuracy of each configuration is showed on figure 131. 

 

Figure 130: Endmembers used for 4 Colors processing 
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Table 34: LIGU 4 Color Endmembers Results 

Real Image: 
12.0 in 

 
Configurations 

Baseline 2013-1 2013-2 2013-3 2013-4 
Blue 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 62.52% 

 
Accuracy = 
100.00% 

 
Accuracy = 
100.00% 

Yellow 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

Green 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Red 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 99.75% 

 
Accuracy =99.75% 
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Table 35: 12.0 in 4 Color Endmember LIGU Results 

Configurations Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 25.00% 0.00% 100.00% 0.00% 0.00% 

2013-1 25.00% 0.00% 100.00% 0.00% 0.00% 

2013-2 40.63% 62.53% 100.00% 0.00% 0.00% 

2013-3 74.94% 100.00% 100.00% 0.00% 99.75% 

2013-4 74.94% 100.00% 100.00% 0.00% 99.75% 
 

 
Figure 131: 12.0 in LIGU 4 Colors Overall accuracy graph 

  

Results
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9.3.3 CIUB 12.0 in Image with 5 Colors Endmembers 
This section shows obtained result from the 12.0 in image using CIUB algorithm. The same 

five endmembers representing the Blue, Yellow, Green, Red and White regions from the 1.8” 

hyperspectral image presented on section 9.3.1 were used as input to the algorithm. Each result 

will be compared visually on Table 37. Table 36summarized the obtained results. figure 132 

shows the obtained overall accuracy for each configuration used. 

Table 36: 12.0 in 5 Color Endmember CIUB Results 

Configurations Overall Accuracy 
Endmembers 

Blue Yellow Green Red White 
Baseline 21.18% 0.55% 0.00% 5.36% 0.00% 100.00% 

2013-1 20.36% 0.00% 0.00% 1.78% 0.00% 100.00% 

2013-2 20.64% 3.18% 0.00% 0.00% 0.00% 100.00% 

2013-3 20.64% 3.18% 0.00% 0.00% 0.00% 100.00% 

2013-4 26.20% 31.00% 0.00% 0.00% 0.00% 100.00% 
 

 

Figure 132: 12.0 in CIUB 5 Colors Overall accuracy graph 
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Table 37: CIUB 5 Color Endmembers Results 

Real Image: 
12.0 in 

 
Configurations 

Baseline 2013-1 2013-2 2013-3 2013-4 
Blue 

 
Accuracy = 0.55% 

 
Accuracy = 0.00% 

 
Accuracy = 3.18% 

 
Accuracy = 3.18% 

 
Accuracy = 31.00% 

Yellow 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Green 

 
Accuracy = 5.36% 

 
Accuracy = 1.78% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Red  

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 55.86% 

 
Accuracy =55.88% 

White 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 

 
Accuracy = 100.0% 
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9.3.4 CIUB 12.0 in Image with 4 Colors Endmembers 
This section shows obtained result from the 12.0 in image using CIUB algorithm wit 4 

endmembers that corresponds to the Blue, Yellow, Green and Red regions form the 1.8 

hyperspectral image previously showed on section 9.3.2. Each result will be compared visually 

on Table 39. Table 38 summarized the obtained results. Figure 133 show the obtained overall 

accuracy for each configuration used. 

Table 38: 12.0 in 4 Color Endmember CIUB Results 

Configuration Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 25.51% 2.05% 100.00% 0.00% 0.00% 

2013-1 25.04% 0.16% 100.00% 0.00% 0.00% 

2013-2 35.75% 43.00% 100.00% 0.00% 0.00% 

2013-3 36.45% 45.82% 100.00% 0.00% 0.00% 

2013-4 36.44% 45.75% 100.00% 0.00% 0.00% 
 

 

 

Figure 133: 12.0 in CIUB 4 Colors Overall accuracy graph 
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Table 39: CIUB 5 Color Endmembers Results 

Real Image: 
12.0 in 

 
Configurations 

Baseline 2013-1 2013-2 2013-3 2013-4 
Blue 

 
Accuracy = 2.05% 

 
Accuracy = 0% 

 
Accuracy = 43.00% 

 
Accuracy = 45.82% 

 
Accuracy = 45.75% 

Yellow 

 
Accuracy = 
100.00% 

 
Accuracy = 
100.00% 

 
Accuracy = 
100.00% 

 
Accuracy = 
100.00% 

 
Accuracy = 
100.00% 

Green 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Red  

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

 
Accuracy =0.00% 
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9.3.5 LIGU 12.0 in 0.5 g TiO2 Image with 4 Colors Endmembers  
This section presents the obtained result from underwater unmixing algorithms using the 12 in 

0.5 g of TiO2 image using LIGU. Titanium Dioxide images were processed using Custom Bottom 

and Custom Unmixing Range functionalities with 4 color endmembers. This configuration was 

selected because is the one that was demonstrated to produce better overall accuracy. Table 40 

summarizes the obtained accuracies and the graph of each individual accuracy is presented on 

figure 134. Table 41 shows the graphical representation of these results. 

Table 40: 12.0 in 0.5 TiO2 4 Colors Endmembers LIGU Results 

Configuration Overall Accuracy 
Endmembers 

Blue Yellow Green Red 
Baseline 26.25% 0.00% 59.14% 0.00% 45.85% 

2013-3 43.00% 0.03% 82.25% 0.00% 89.70% 
 

 

Figure 134: 12.0 in 0.5 TiO2 LIGU 4 Colors Individual Accuracy  
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Table 41: LIGU 12.0 in 0.5 g TiO2 Image with 4 Colors Endmembers 

Real Image: 
12.0 in 0.5 g 

TiO2 

 
Configurations 

Baseline 2013-3 
Blue 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Yellow 
 

 
Accuracy = 59.14% 

 
Accuracy = 82.25% 

Green 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Red  

 
Accuracy = 45.85% 

 
Accuracy = 89.70% 
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9.3.6 CIUB 12.0 in 0.5 g TiO2 Image with 4 Colors Endmembers  
This section presents the obtained result from underwater unmixing algorithms using the 12 in 

with 0.5 g of TiO2 image processed on CIUB. It is important to mention that a single configuration 

was used. Titanium Dioxide images were processed using Custom Bottom and Custom Unmixing 

Range functionalities with 4 color endmembers. Again, this configuration was selected because 

is the one that produced better overall accuracy in the previously presented results. Table 42 

summarizes the obtained accuracies and the graph of each individual accuracy is presented on 

figure 134. Table 43 shows the graphical representation of these results. 

Table 42: 12.0 in 0.5 TiO2 4 Colors Endmembers CIUB Results 

Configuration Overall Accuracy 
Endmembers 

Blue Yellow Green Red 

Baseline 25.00% 0.00% 100.00% 0.00% 0.00% 

2013-3 27.22% 0.00% 100.00% 0.00% 8.88% 

 
 

 

Figure 135: 12.0 in 0.5 TiO2 CIUB 4 Colors Individual Accuracy 
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Table 43: CIUB 12.0 in 0.5 g TiO2 Image with 4 Colors Endmembers 

Real Image: 
12.0 in TiO2 

 
Configurations 

Baseline 2013-3 
Blue 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Yellow 

 
Accuracy = 100.00% 

 
Accuracy = 100.00% 

Green 

 
Accuracy = 0.00% 

 
Accuracy = 0.00% 

Red  

 
Accuracy = 0.00% 

 
Accuracy = 8. 88% 
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9.4 Extended Results – Regularization Algorithm  
Results are going to be compare and analyzed based on the classification accuracy over the 

selected testing regions calculated in the following way: 

 
𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝑟𝑟𝑎𝑎𝑐𝑐𝑦𝑦 =  

𝑃𝑃𝑖𝑖𝑥𝑥𝑒𝑒𝑉𝑉 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑇𝑇𝑉𝑉𝑦𝑦 𝐶𝐶𝑉𝑉𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒𝑑𝑑 
𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑉𝑉 𝑒𝑒𝑓𝑓 𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑉𝑉 𝑒𝑒𝑛𝑛 𝑇𝑇ℎ𝑒𝑒 𝑖𝑖𝑚𝑚𝑎𝑎𝑔𝑔𝑒𝑒×100 ( 75 ) 

Finally, for visualization, each endmember was given the color that it represents on the 

classification maps.  For example, the red endmember is colored red on the classification maps 

showed as results. 

9.4.1 Baseline Results 
To create baseline results, images were classified with the proposed classification algorithms 

before being process by the Regularization algorithm. The following images were used to produce 

baseline results:  0”, 12.0 in, 12.0 in 0.5 g TiO2, 12.0 in 1.0g TiO2, 12.0 in 1.5g TiO2 and 12.0 in 

2.0g TiO2 (Refer to section 3.1.4 for image information). Since only the 12.0 in and 12.0 in 0.5 g 

TiO2 were used to test the Regularization algorithms these are the result that will be presented in 

the following Table. For performance matrices refer to appendix sections 9.5.1 for the 12.0 in 

image and 9.5.2 for the 12.0 in 0.5 g TiO2 image. 
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Table 44: Regularization Baseline Results Classification Maps 

Real Images: 

  

Classification 
Algorithm 

Classification Map 

12.0 in 12.0 in 0.5 g TiO2 

Minimum Euclidean 
Distance 

 
Accuracy = 17.72% 

 
Accuracy = 17.61% 

Minimum Spectral 
Angle 

 
Accuracy = 75.39% 

 
Accuracy = 50.24% 

Maximum 
Unmixing Value 

 
Accuracy = 98.84% 

 
Accuracy = 47.61% 

 

  

Euclidean Distance Euclidean Distance

Spectral Angle Spectral Angle

Unmixing Unmixing
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The following graphs summarized the obtained classification accuracy before regularization: 

 

Figure 136: Baseline Result - Obtained Accuracy before Regularization 

 

9.4.2 Numerical Approximation Classifications Results after Regularization 
Numerical Approximations (NA) is one of the algorithm implemented to calculate the point of 

maximum curvature. It uses the method of forward difference to calculate the derivative of a 

concrete value vector. Refer to section 3.5 for the theoretical background. The following two 

sections will show the obtained result from 12.0 in and 12.0 in 0.5 g TiO2 along with its 

comparative graphs with baseline results. Performance matrices are showed on appendix sections 

on section 9.5.3 and 9.5.4. 
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9.4.2.1 12.0 in Classification Results after Regularization   

As mentioned before there are two methods of selecting the optimum 𝛾𝛾: Gamma of Minimum 

Error and Minimum Gama their result will be compared side by side throughout this section. 

Results obtained using a gamma resolution of 0.1 will be showed on figures 137 and Table 45. 

Result for gamma resolution of 0.01 will be showed on figures 138 and on Table 46.  

 

Figure 137: 12.0 in Classification Accuracy after Regularization: NA, Gamma Res: 0.1 

 

Figure 138: 12.0 in Classification Accuracy after Regularization: NA, Gamma Res: 0.01 
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Table 45: 12.0 in Classification Maps after Regularization: NA, Gamma Res: 0.1 

Real Image: 
12.0 in 

 

Classification 
Algorithm 

Gamma Resolution: 0.1 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 91.93% 

 
Accuracy = 58.20% 

Minimum Spectral 
Angle 

 
Accuracy = 82.39% 

 
Accuracy = 63.49% 

Maximum 
Unmixing Value 

 
Accuracy = 82.39% 

 
Accuracy =52.42% 
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Table 46: 12.0 in Classification Maps after Regularization: NA, Gamma Res: 0.01 

Real Image: 
12.0 in 

 

Classification 
Algorithm 

Gamma Resolution  0.01 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 96.73% 

 
Accuracy = 81.26% 

Minimum Spectral 
Angle 

 
Accuracy = 81.21% 

 
Accuracy = 77.46% 

Maximum 
Unmixing Value 

 
Accuracy = 80.81% 

 
Accuracy = 79.03% 
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9.4.2.2 12.0 in 0.5 𝑔𝑔 TiO2 Classification Results after Regularization  

The following graphs summarize the obtained classification accuracy after Regularization 

from the 12.0 in 0.5 g TiO2 image using Numerical Approximation and Gamma Resolution of 

0.1 and 0.01. Results obtained using a gamma resolution of 0.1 will be showed on figure 139 

and Table 47. Result for gamma resolution of 0.01 will be showed on figure 140 and on Table 

48.  

 

Figure 139: 12.0 in TiO2 Classification Accuracy after Regularization: NA, Gamma Res: 0.1 

 

Figure 140: 12.0 in TiO2 Classification Accuracy after Regularization: NA, Gamma Res: 0.01 
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Table 47: 12.0 in TiO2 Classification Map after Regularization: NA, Gamma Res: 0.1 

Real Image: 
12.0 in TiO2 

 

Classification 
Algorithm 

Gamma Resolution  0.1 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 16.87% 

 
Accuracy = 43.21% 

Minimum Spectral 
Angle 

 
Accuracy = 28.29% 

 
Accuracy = 33.51% 

Maximum 
Unmixing Value 

 
Accuracy = 17.87% 

 
Accuracy = 37.73% 
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Table 48: 12.0 in TiO2 Classification Maps after Regularization: NA, Gamma Res: 0.01 

Real Image: 
12.0 in TiO2 

 

Classification 
Algorithm 

Gamma Resolution: 0.01 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 53.41% 

 
Accuracy = 35.76% 

Minimum Spectral 
Angle 

 
Accuracy = 50.31% 

 
Accuracy =50.80% 

Maximum 
Unmixing Value 

 
Accuracy = 32.66% 

 
Accuracy = 35.05% 
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9.4.3 Derived Equations Classification Results after Regularization 
Derived Equations (DE) is one of the implemented algorithms to calculate the point of 

maximum curvature. It uses mathematically derived equations to calculate the derivative of the 

error curves. These equations are presented on section 3.5. The following two sections will show 

the obtained results from 12.0 in and 12.0 in 0.5 g TiO2. Performance matrices are presented on 

Appendix section 9.5.5 for 12.0 in image and in 9.5.6 for 12.0 in 0.5 g TiO2 image. 

9.4.3.1 12.0 in Classification Results after Regularization  

Results obtained using a gamma resolution of 0.1 will be showed Table 49 and in Table 50 

for a gamma resolution of 0.01. Next graphs summarize the obtained classification accuracy 

after Regularization from the 12.0 in 0.5 g of TiO2 image processed using Derived Equations 

with Gamma Resolution of 0.1 on figure 141 and of 0.01 on figure 142. 

 
Figure 141: 12.0 in Classification Accuracy after Regularization: DE, Gamma Res: 0.1 

 
Figure 142: 12.0 in Classification Accuracy after Regularization: DE, Gamma Res: 0.01 
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Table 49: 12.0 in Classification Maps after Regularization: DE, Gamma Res: 0.1 

Real Image: 
12.0 in 

 

Classification 
Algorithm 

Gamma Resolution 0.1 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 87.47% 

 
Accuracy = 48.49% 

Minimum Spectral 
Angle 

 
Accuracy = 82.39% 

 
Accuracy = 73.47% 

Maximum 
Unmixing Value 

 
Accuracy = 78.09% 

 
Accuracy = 72.38% 
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Table 50: 12.0 in Classification Maps after Regularization: DE, Gamma Res: 0.01 

Real Image 

 

Classification 
Algorithm 

Gamma Resolution  0.01 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 98.30% 

 
Accuracy = 86.32% 

Minimum Spectral 
Angle 

 
Accuracy = 80.88% 

 
Accuracy = 79.57% 

Maximum 
Unmixing Value 

 
Accuracy = 80.86% 

 
Accuracy = 78.79% 
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9.4.3.2 12.0 in 0.5 𝑔𝑔 TiO2 Classification Result after Regularization 

The following graphs summarize the obtained classification accuracy after Regularization 

from the 12.0 in 0.5 g TiO2 image using Derived Approximation and Gamma Resolution of 0.1 

and 0.01 on figure 143 and 144 respectively. Results obtained using a gamma resolution of 0.1 

will be showed on Table 51 and using a gamma resolution of 0.01 will be showed on Table 52.  

 

Figure 143: 12.0 in TiO2 Classification Accuracy after Regularization: DE, Gamma Res: 0.1 

 

Figure 144: 12.0 in TiO2 Classification Accuracy after Regularization: DE, Gamma Res: 0.01 
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Table 51: 12.0 in TiO2 Classification Maps after Regularization: DE, Gamma Res: 0.1 

Real Image 

 

Classification 
Algorithm 

Gamma Resolution 0.1 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 21.64% 

 
Accuracy = 32.14% 

Minimum Spectral 
Angle 

 
Accuracy = 33.33% 

 
Accuracy = 22.48% 

Maximum 
Unmixing Value 

 
Accuracy = 19.91% 

 
Accuracy = 26.66% 
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Table 52: 12.0 in TiO2 Classification Maps after Regularization: DE, Gamma Res: 0.01 

Real Image 

 

Classification 
Algorithm 

Gamma Resolution  = 0.01 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 32.79% 

 
Accuracy = 53.84% 

Minimum Spectral 
Angle 

 
Accuracy = 32.71% 

 
Accuracy = 41.03% 

Maximum 
Unmixing Value 

 
Accuracy = 31.66% 

 
Accuracy = 40.68% 
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9.4.4 Example with Reduced Bands using SVD Algorithm – Derived Equations 
As an example, the 12.0 in without TiO2 and 12.0 in with 0.5 g of TiO2 images were processed 

using and band reduction algorithms. The bands were reduced from 120 to 40 bands using Single 

Value Decomposition (SVD) feature reduction algorithm present on HIAT.  

9.4.4.1  Baseline Results 

Baseline result were produced by classifying the image without being process by the 

regularization algorithm. Table 53 present the obtained classification maps from the two images 

mentioned before. Next figures showed the obtained classification accuracies. 

Table 53: Baseline Results from the 12.0 in without TiO2 SVD40 

Real Images: 

 
Classification Algorithm Classification Map 

12.0 in without TiO2 SVD40 

Minimum Euclidean Distance 

 
Accuracy = 100.00% 

Minimum Spectral Angle 

 
Accuracy = 100.00% 

Maximum Unmixing Value 

 
Accuracy = 100.00% 

 

Spectral Angle
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9.4.4.2 12.0 in without TiO2Classification Accuracy 

The following graph compare the obtained classification accuracy from the 12.0 in without 

TiO2 and table 54 show the obtained classification maps to be compared visually. 

 

Figure 145: Example with Reduce Bands Obtained Accuracy after Regularization 
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Table 54: 12.0 in SVD40 Classification Maps after Regularization: DE, Gamma Res: 0.01 

Real Image 

 

Classification 
Algorithm 

Gamma Resolution  = 0.01 
Classification Maps 

Minimum Gamma Gamma of Minimum Error 

Minimum Euclidean 
Distance 

 
Accuracy = 93.60% 

 
Accuracy = 93.60% 

Minimum Spectral 
Angle 

 
Accuracy = 79.36% 

 
Accuracy = 79.36% 

Maximum Unmixing 
Value 

 
Accuracy = 80.74% 

 
Accuracy = 80.74% 
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9.5 Performance Matrices of the Regularization Results 

9.5.1 Baseline Results 12.0 in image: 

• Minimum Euclidean Distance  

  Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 0 0 3402 0 0 
Yellow 0 25 4460 0 0 
Green 0 0 4030 0 0 
Red 0 0 3498 0 0 
White 0 7467 0 0 0 

 Correct Pixels:  4055 Accuracy: 17.72% 
 Total of Pixels: 22882 

• Minimum Spectral Angle  

  Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 479 0 0 4006 
Green 0 0 4030 0 0 
Red 0 0 0 1869 1629 
White 0 0 0 0 7467 

 Correct Pixels:  17247 Accuracy: 75.37% 
 Total of Pixels: 22882 

• Maximum Endmember Value: 

  Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4221 0 0 264 
Green 1 0 4029 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  22617 Accuracy: 98.84% 
 Total of Pixels: 22882 
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9.5.2 Baseline Results 12.0 in 0.5 g TiO2 image: 

• Minimum Euclidean Distance  

  Minimum Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 0 0 3402 0 0 
Yellow 0 0 4485 0 0 
Green 0 0 4030 0 0 
Red 0 0 3498 0 0 
White 0 0 7467 0 0 

 Correct Pixels:  4030 Accuracy: 17.61% 
 Total of Pixels: 22882 

• Minimum Spectral Angle  

  Minimum Spectral Angle 
  Blue  Yellow Green Red White 
Blue 0 0 3402 0 0 
Yellow 0 0 597 0 3888 
Green 0 0 4030 0 0 
Red 0 0 2316 0 1182 
White 0 0 0 0 7467 

 Correct Pixels:  11497 Accuracy: 50.24% 
 Total of Pixels: 22882 

• Maximum Endmember Value: 

  Maximum Unmixing Value 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 3092 0 1186 0 207 
Green 3979 0 51 0 0 
Red 3498 0 0 0 0 
White 25 0 0 0 7442 

 Correct Pixels:  10895 Accuracy: 47.61% 
 Total of Pixels: 22882 
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9.5.3 Numerical Approximations: 12.0 in  

9.5.3.1 Gamma Resolution = 0.1 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 2638 1619 228 0 
Green 0 0 4030 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  21035 Accuracy: 91.93% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18852 Accuracy: 82.39% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18852 Accuracy: 82.39% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 1056 0 0 0 2346 
Yellow 0 3283 0 1202 0 
Green 0 0 3360 0 670 
Red 0 0 0 2777 721 
White 0 4626 0 0 2841 

 Correct Pixels:  13317 Accuracy: 58.20% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 1056 0 0 0 2346 
Yellow 0 3323 0 1162 0 
Green 3360 0 0 0 670 
Red 0 393 0 2777 328 
White 0 0 96 0 7371 

 Correct Pixels:  14527 Accuracy: 63.49% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 1056 0 0 0 2346 
Yellow 0 3287 0 1198 0 
Green 3360 0 0 0 670 
Red 0 0 0 2777 721 
White 2818 0 1 1 4647 

 Correct Pixels:  11767 Accuracy: 51.42% 
 Total of Pixels: 22882 
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9.5.3.2 Gamma Resolution = 0.01 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3318 0 84 0 0 
Yellow 0 3821 0 664 0 
Green 0 0 4030 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  22134 Accuracy: 96.73% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4215 0 270 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18582 Accuracy: 81.21% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4124 0 361 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18491 Accuracy: 80.81% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 1458 0 1944 0 0 
Yellow 0 2284 752 1137 312 
Green 0 0 4007 23 0 
Red 0 0 0 3498 0 
White 0 119 0 0 7348 

 Correct Pixels:  18595 Accuracy: 81.26% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 2784 0 392 226 0 
Yellow 0 4089 0 84 312 
Green 1337 157 0 2536 0 
Red 0 0 0 3498 0 
White 0 0 113 0 7354 

 Correct Pixels:  17725 Accuracy: 77.46% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3192 0 1 209 0 
Yellow 0 3928 0 245 312 
Green 1337 40 113 2540 0 
Red 0 0 0 3498 0 
White 115 0 0 0 7352 

 Correct Pixels:  18083 Accuracy: 79.03% 
 Total of Pixels: 22882 
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9.5.4 Numerical Approximation: 12.0 in 0.5 𝑔𝑔 TiO2 

9.5.4.1 Gamma Resolution = 0.1 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 4027 458 0 0 0 
Green 4030 0 0 0 0 
Red 3498 0 0 0 0 
White 0 7467 0 0 0 

 Correct Pixels:  3860 Accuracy: 16.87% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 2773 0 629 0 0 
Yellow 0 0 4485 0 0 
Green 340 0 3690 0 0 
Red 0 0 3498 0 0 
White 0 0 7456 0 11 

 Correct Pixels:  6474 Accuracy: 28.29% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 4485 0 0 0 0 
Green 4030 0 0 0 0 
Red 3498 0 0 0 0 
White 7467 0 0 0 0 

 Correct Pixels:  3402 Accuracy: 14.87% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 199 2514 0 0 689 
Yellow 0 2222 0 0 2263 
Green 7 3439 0 0 584 
Red 0 3432 0 0 66 
White 0 0 0 0 7467 

 Correct Pixels:  9888 Accuracy: 43.21% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 199 0 0 0 3203 
Yellow 0 1 0 0 4484 
Green 6 0 1 0 4023 
Red 0 10 0 0 3488 
White 0 0 0 0 7467 

 Correct Pixels:  7668 Accuracy: 33.51% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 199 12 0 0 3191 
Yellow 0 967 0 0 3518 
Green 7 840 0 0 3183 
Red 0 1253 0 0 2245 
White 0 0 0 0 7467 

 Correct Pixels:  8633 Accuracy: 37.73% 
 Total of Pixels: 22882 
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9.5.4.2 Gamma Resolution = 0.01 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3317 24 0 0 61 
Yellow 469 1437 0 0 2579 
Green 3614 314 0 0 102 
Red 852 2276 24 0 346 
White 0 0 0 0 7467 

 Correct Pixels:  12221 Accuracy: 53.41% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3313 0 4 0 85 
Yellow 0 0 344 0 4141 
Green 2882 0 732 0 416 
Red 14 0 111 0 3373 
White 0 0 0 0 7467 

 Correct Pixels:  11512 Accuracy: 50.31% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3317 0 0 0 85 
Yellow 551 0 0 0 3934 
Green 3614 0 0 0 416 
Red 891 0 0 0 2607 
White 0 0 0 0 7467 

 Correct Pixels:  10784 Accuracy: 47.13% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3054 311 8 29 0 
Yellow 1246 3195 44 0 0 
Green 3404 560 66 0 0 
Red 564 990 590 1354 0 
White 426 6528 0 0 513 

 Correct Pixels:  8182 Accuracy: 35.76% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 2308 0 750 0 344 
Yellow 0 0 1221 0 3264 
Green 1954 0 1510 0 566 
Red 16 0 315 1063 2104 
White 0 0 722 1 6744 

 Correct Pixels:  11625 Accuracy: 50.80% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3088 0 0 119 195 
Yellow 1813 0 0 1368 1304 
Green 3474 0 0 143 413 
Red 1219 0 0 1610 669 
White 1454 0 0 2690 3323 

 Correct Pixels:  8021 Accuracy: 35.05% 
 Total of Pixels: 22882 
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9.5.5 Derived Equations: 12.0 in  

9.5.5.1 Gamma Resolution = 0.1 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 2638 1619 228 0 
Green 0 0 4030 0 0 
Red 0 0 35 3463 0 
White 0 985 0 0 6482 

 Correct Pixels:  20015 Accuracy: 87.47% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18852 Accuracy: 82.39% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 983 0 0 0 6484 

 Correct Pixels:  17869 Accuracy: 78.09% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 

  Blue  Yellow Green Red White 
Blue 535 0 2867 0 0 
Yellow 0 2920 0 1202 363 
Green 0 0 3283 747 0 
Red 0 0 0 3498 0 
White 0 6607 0 0 860 

 Correct Pixels:  11096 Accuracy: 48.49% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3389 0 0 13 0 
Yellow 0 2960 0 1162 363 
Green 2469 814 0 747 0 
Red 0 0 0 3498 0 
White 0 0 503 0 6964 

 Correct Pixels:  16811 Accuracy: 73.47% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3397 0 0 5 0 
Yellow 0 2924 0 1198 363 
Green 2469 814 0 747 0 
Red 0 0 0 3498 0 
White 646 0 0 78 6743 

 Correct Pixels:  16562 Accuracy: 72.38% 
 Total of Pixels: 22882 
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9.5.5.2 Gamma Resolution = 0.01 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3366 0 36 0 0 
Yellow 0 4132 4 349 0 
Green 0 0 4030 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  22493 Accuracy: 98.30% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4139 0 346 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18506 Accuracy: 80.88% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4136 0 349 0 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18503 Accuracy: 80.86% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 1712 0 1690 0 0 
Yellow 0 3044 19 1422 0 
Green 0 0 4030 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  19751 Accuracy: 86.32% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3389 0 0 13 0 
Yellow 0 3853 0 632 0 
Green 1817 0 0 2213 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18207 Accuracy: 79.57% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3393 0 0 9 0 
Yellow 0 3670 0 815 0 
Green 1817 0 0 2213 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18028 Accuracy: 78.79% 
 Total of Pixels: 22882 
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9.5.6 Derived Equations: 12.0 in 0.5 𝑔𝑔 TiO2  

9.5.6.1 Gamma Resolution = 0.1 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 4027 458 0 0 0 
Green 4030 0 0 0 0 
Red 3498 0 0 0 0 
White 0 6376 0 0 1091 

 Correct Pixels:  4951 Accuracy: 21.64% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 2773 0 629 0 0 
Yellow 0 0 4485 0 0 
Green 340 0 3690 0 0 
Red 0 0 3498 0 0 
White 0 0 6303 0 1164 

 Correct Pixels:  7627 Accuracy: 33.33% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 4485 0 0 0 0 
Green 4030 0 0 0 0 
Red 3498 0 0 0 0 
White 6314 0 0 0 1153 

 Correct Pixels:  4555 Accuracy: 19.91% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 199 2514 0 0 689 
Yellow 0 2222 0 0 2263 
Green 7 3439 0 0 584 
Red 0 3432 0 0 66 
White 1382 1151 0 0 4934 

 Correct Pixels:  7355 Accuracy: 32.14% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 199 0 0 0 3203 
Yellow 0 1 0 0 4484 
Green 6 0 1 0 4023 
Red 0 10 0 0 3488 
White 2 0 1380 1143 4942 

 Correct Pixels:  5143 Accuracy: 22.48% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 199 12 0 0 3191 
Yellow 0 967 0 0 3518 
Green 7 840 0 0 3183 
Red 0 1253 0 0 2245 
White 1382 7 0 1143 4935 

 Correct Pixels:  6101 Accuracy: 26.66% 
 Total of Pixels: 22882 
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9.5.6.2 Gamma Resolution = 0.01 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 6 6 0 0 3390 
Yellow 0 29 0 0 4456 
Green 18 77 0 0 3935 
Red 97 858 0 0 2543 
White 0 0 0 0 7467 

 Correct Pixels:  7502 Accuracy: 32.79% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 0 0 6 0 3396 
Yellow 0 0 0 0 4485 
Green 0 0 18 0 4012 
Red 0 0 38 0 3460 
White 0 0 0 0 7467 

 Correct Pixels:  7485 Accuracy: 32.71% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 6 0 0 0 3396 
Yellow 0 0 0 0 4485 
Green 18 0 0 0 4012 
Red 189 5 0 0 3304 
White 0 0 0 0 7467 

 Correct Pixels:  7473 Accuracy: 32.66% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 1141 2205 11 22 23 
Yellow 934 3447 0 0 104 
Green 1371 2604 46 0 9 
Red 279 2361 0 858 0 
White 506 133 0 0 6828 

 Correct Pixels:  12320 Accuracy: 53.84% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 120 0 1005 587 1690 
Yellow 0 0 1076 183 3226 
Green 0 0 1424 506 2100 
Red 0 0 312 902 2284 
White 0 0 525 0 6942 

 Correct Pixels:  9388 Accuracy: 41.03% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 1152 0 0 604 1646 
Yellow 1390 403 42 580 2070 
Green 1467 8 0 623 1932 
Red 890 26 0 902 1680 
White 529 0 0 87 6851 

 Correct Pixels:  9308 Accuracy: 40.68% 
 Total of Pixels: 22882 
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9.5.7 Derived Equations: Reduced Bands using SVD Algorithm 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 1 0 4029 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  22881 
Accuracy: 99.996% 

 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 0 0 4030 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  22882 
Accuracy: 100.00% 

 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 4485 0 0 0 
Green 1 0 4029 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  22881 
Accuracy: 99.996% 

 Total of Pixels: 22882 
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9.5.7.1 Baseline Results: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 3594 891 0 0 
Green 574 0 3456 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  21417 Accuracy: 93.60% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 3793 204 0 488 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18160 Accuracy: 79.36% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 1 4107 366 0 11 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18474 Accuracy: 80.74% 
 Total of Pixels: 22882 
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9.5.7.2 Gamma Resolution = 0.01 

• Performance matrices for Minimum Gamma: 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 3594 891 0 0 
Green 574 0 3456 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  21417 Accuracy: 93.60% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 3793 204 0 488 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18160 Accuracy: 79.36% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 1 4107 366 0 11 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18474 Accuracy: 80.74% 
 Total of Pixels: 22882 
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• Performance Matrices for Gamma of Minimum Error 

Euclidean Distance 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 3594 891 0 0 
Green 574 0 3456 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  21417 Accuracy: 93.60% 
 Total of Pixels: 22882 

    
  

Spectral Angle 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 0 3793 204 0 488 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18160 Accuracy: 79.36% 
 Total of Pixels: 22882 

    
  

Unmixing 
  Blue  Yellow Green Red White 
Blue 3402 0 0 0 0 
Yellow 1 4107 366 0 11 
Green 4030 0 0 0 0 
Red 0 0 0 3498 0 
White 0 0 0 0 7467 

 Correct Pixels:  18474 Accuracy: 80.74% 
 Total of Pixels: 22882 
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9.6 User Manual 
A user manual has been prepared to act as a secondary source of information for reference and 

for the usage of the toolbox. To obtain a copy of this document please contact: 

Name Contact 

Emmanuel Carpena  emmanuel.carpena@upr.edu 

ecarpena3@gmail.com 

 

 

mailto:emmanuel.carpena@upr.edu
mailto:ecarpena3@gmail.com
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