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ABSTRACT 

Machine learning a specific subset of artificial intelligence, trains a machine to learn from 

data. It has become a robust method for the identification of patterns within complex 

physical systems to determine certain physical quantities without prior knowledge of their 

physics principles. In this thesis work, we apply an unsupervised machine learning 

technique, Principal Component Analysis, and a supervised learning technique, Artificial 

Neural Networks, to identify phases and phase transitions in square and hexagonal lattice 

Ising models. It can be drawn from the results that Principal Component Analysis can 

successfully identify phase transitions and locate the transition temperatures in both square 

and hexagonal lattice systems. Additionally, it was found that two principal components are 

related to the order parameter and the susceptibility of the systems. The weight vectors have, 

then, a physical explanation, which is helpful to better understand system behavior. On the 

other hand, by employing neural networks, it was possible to understand the training effects 

of the Ising model, as well as obtain a critical temperature value		𝑇# close to the real 

thermodynamic value. This confirms machine learning is suitable for approaching the type 

of complex systems studied in this research. Principal Component Analysis and neural 

network can learn from complex data, without the need of significant human intervention. 
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RESUMEN 

El aprendizaje automático, un subconjunto específico de inteligencia artificial, se entrena a 

la máquina para aprender de datos no explorados. Se ha convertido en un método robusto 

para la identificación de patrones dentro de sistemas físicos complejos para determinar ciertas 

cantidades físicas sin el conocimiento previo de sus principios físicos. En este trabajo de 

tesis, aplicamos una técnica de aprendizaje automático no supervisado, el Análisis de 

Componentes Principales (ACP) y una técnica de aprendizaje supervisado, Redes Neuronales 

Artificiales (RNA), para identificar fases y transiciones de fase en modelos de Ising de red 

cuadrada y hexagonal. Se puede deducir de los resultados que el análisis de componentes 

principales puede identificar con éxito las transiciones de fase y ubicar las temperaturas de 

transición tanto en los sistemas de red cuadrada como en los hexagonales. Además, se 

encontró que los primeros componentes principales están relacionados con el parámetro de 

orden y la susceptibilidad de los sistemas. Los vectores de peso tienen, entonces, una 

explicación física, que es útil para comprender mejor el comportamiento del sistema. Por otro 

lado, al emplear redes neuronales, fue posible comprender los efectos de entrenamiento del 

modelo de Ising, así como obtener un valor crítico de temperatura 𝑇# cercano al valor 

termodinámico real. Esto confirma que el aspecto iterativo del aprendizaje automático lo 

hace adecuado para abordar el tipo de sistemas complejos estudiados en esta investigación. 

Si los modelos ACP y RN están expuestos a datos complejos, se adaptan y aprenden de 

iteraciones anteriores, produciendo resultados que son confiables y repetibles, sin la 

necesidad de una intervención humana significativa. 

 

 



 

iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicado a Dios y a mi esposa. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

ACKNOWLEDGEMENTS 
 

• First, I want to thank God for allowing me to fulfill another dream in my life, and that 

without Him this would not have been possible. 

 

• Thank to my wife, Karla Echeverria for her love, support, understanding and help in 

all this time, because she was always with me and this work is dedicated to her. 

 
 

• To my parents jairo and Esperanza and my siblings Jose and Lisbeth for being a 

support in our lives and in all this time that we have been here in Puerto Rico. 

 

• To Dr. Lu and Dr. Ramos for their help and cooperation for the realization of this 

work. 

 
• Thanks to Alejandro Rigau for his great help in the calculations of Neural Network 

and for his constant interest in always giving me a hand for this work. 

 

• To my friends Camilo, Kevin, Larry, Mileydis, Marina, Wilito, Sonalí , Joseph, 

Joselito and Valerie for their companionship, friendship and emotional support that 

helped me to carry out this work. 

 
 

• To the University of Puerto Rico for opening the doors and letting me be part of this 

great institution. 



 

vi 
 

TABLE OF CONTENTS 
 

1 INTRODUCTION ........................................................................................................ 1 

2 MODELS AND METHODS ....................................................................................... 4 

2.1 Ising Model .............................................................................................................. 4 

2.2 Phase Transition and finite size scaling .................................................................. 6 

2.3 Monte Carlo Method ............................................................................................. 10 

3.3.1 The Metropolis Algorithm .............................................................................. 12 

3.3.2 Implementation of the Metropolis Algorithm in the Ising Model14 .............. 13 

3 LEARNING ALGORITHMS ................................................................................... 17 

3.1 Principal Components Analysis (PCA) ................................................................. 16 

3.3.1 Principal Components in the Ising Model ...................................................... 21 

3.2 Artificial Neural Network (ANN) ......................................................................... 23 

3.3 Simulation Details ................................................................................................. 27 

4  PREVIOUS WORK .................................................................................................. 29 

5 RESULTS AND DISCUSSIONS .............................................................................. 35 

5.1 Square Lattice ........................................................................................................ 35 

5.2 Hexagonal Lattice .................................................................................................. 43 

5.2 Neural Network ..................................................................................................... 48 

6 CONCLUSIONS ........................................................................................................ 53 

References ......................................................................................................................... 56 



 

vii 
 

LIST OF TABLES 

 

Table 3-1. Parameters of simulation ................................................................................. 27 

 

 
LIST OF FIGURES 

 

Figure 2-1. Ising model spin representation in a square lattice .......................................... 5 

Figure 2-2. Schematic of the spins representation of the hexagonal lattice. ...................... 6 

Figure 2-3. Susceptibility versus time for finite (dash lines) and infinity (red line) systems 

taken from [2.6] ................................................................................................................... 8 

Figure 2-4. Monte Carlo simulation of the ferromgnetic Ising model below Tc, over Tc, 

and above Tc in a finite size scale. The black dots are the spins -1 and the whites are spins 

+1 ....................................................................................................................................... 16 

Figure 3-1. Representation data in the variables. ............................................................. 18 

Figure 3-2. Representation components in the data. ......................................................... 18 

Figure 3-3. Principal components coordinates. ................................................................ 19 

Figure 3-4. Neuron Representation. .................................................................................. 24 

Figure 3-5. Simple neural network representation. .......................................................... 24 

Figure 3-6. Network representation used in this work. .................................................... 26 

Figure 4-1. a) Plotted weights of the second leading component, b) plot of the equation  

2-1  ..................................................................................................................................... 32 



 

viii 
 

Figure 5-1.  Shows PCA first explained variance ratios from the Ising configurations for 

square lattice. b) Weights of the first principal component for each lattice size for square 

lattice …………………………...…………………………………………………….….36  

Figure 5-2. a) The normalized quantified first leading component versus temperature 

which represent the magnetization of the system. b) The quantified second leading 

component versus temperature which represent the susceptibility of the system.  

c) Projection of the spin configurations onto the plane for the two principal components for 

lattice of size 10, 20, 30, 40 and 50 with 300 configurations for each temperature 

……………………………………………………………………………………………40  

Figure 5-3. Critical temperatures taken from the maximums of Fig 5.2b. versus the inverse 

of the lattice size. ............................................................................................................... 42 

Figure 5-4. a) Weighs for the second plotted on the square lattice L=20. b) plot of the 

equation (5-4). ................................................................................................................... 43 

Figure 5-5. a) PCA first explained variance ratios from the Ising configurations for 

hexagonal lattice. b) Weights of the first principal component for each lattice size 

….…………………………….………………………………………………….……….44 

Figure 5-6. a) The normalized quantified first leading component versus temperature for 

hexagonal lattice which represent the magnetization of the system. b) The quantified 

second leading component versus temperature for hexagonal lattice which represent the 

susceptibility of the system. c) Projection of the spin configurations onto the plane for the 

two principal components for lattice of size 20, 40, 80, 100 with 100 configurations for 

each temperature ……………………………….………………………………..………45  



 

ix 
 

Figure 5-7. Critical temperatures taken from the maximums of Figure 5.6b versus the 

inverse of the lattice size  .................................................................................................. 46 

Figure 5-8. a) The weighs for the second plotted on the hexagonal lattice L=20 b) plot of 

the equation (5-5)  .............................................................................................................. 47 

Figure 5-9. Arguments for a neural network with two Sigmoid neurons in the hidden layer 

before training. b) Arguments after the training ……………………………………………………………49 

Figure 5-10. Weights values in each neuron after the training  ........................................ 50 

Figure 5-11. Average output layer versus temperature T of a Neural network with two 

neurons in the hidden layer for the hexagonal lattice of L = 20  ....................................... 50 

Figure 5-8. Average output layer versus temperature T of a Neural network with 300 

neurons in the hidden layer for L = 20, 40, 60 and 80  ..................................................... 51



 
 

1 
 
 

1 INTRODUCTION 

 

In recent years, machine learning has been a helpful tool to discover new physics 

without prior human knowledge, specifically in complex problems in physics. This means 

we can know how a physical system behaves even without knowing its Hamiltonian. It has 

been possible to use machine learning to predict crystal structures [1.2], approximate density 

functions [1.3], model molecular atomization energy [1.4], and many other applications. 

Machine learning enables computers to learn from various experiences, events or data; once 

the computer learns, generalizes the knowledge learned to later solve problems without 

knowing the basis of the problem. Machine learning has had a great impact, through the 

different supervised and unsupervised machine learning techniques. In supervised machine 

learning, we have a data set and we already know what our correct outputs should look like. 

There is a relationship between the input and the output, this output is called label. 

Unsupervised machine learning allows us to approach problems with no idea of what our 

results should look like; we can make predictions of a certain problem without knowing the 

labels by clustering the data, based in the relationship among the variables in the data. 

For many years classifying and discovering phases and phase transitions is one of the 

most important topics in Condensed Matter Physics [1.1]; however, it is not an easy job to 

do, especially when we work with complex systems and the number of states is very large. 

One of the most important models in the theoretical physics to study phase transitions is the 

Ising model, given it was the first model that could successfully predict a phase transition 

[1.5,1.6].  The Ising model models a magnet; it is represented in a lattice and each site of the 
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lattice is occupied by a "spin," an arrow pointing up or down. These spins model the unpaired 

electrons in the atoms that have magnetic moments, for example the iron atoms. The lattice 

models the fact, that the atoms are in a crystal, with a regular structure. The Ising model has 

been studied in square and triangular lattices, but very rarely in hexagonal lattice. One of the 

most common methods used to study the Ising model is the Monte Carlo method. This 

method is used to calculate numerically the thermodynamic properties as it averages in a 

system by numerical simulations. The idea of the method is to find an algorithm to generate 

a long sequence of configurations of a system, such that after a while, each configuration is 

generated with the appropriate probability to describe the equilibrium of the system [1.8]. 

Recently, the Monte Carlo method has been used together with the machine learning 

techniques [1.1, 1.8, 1.7] for the study and discovery of phases and phase transitions. The 

Monte Carlo method is used for the creation of data to later implement the machine learning 

techniques.  

Motivated by the search of physical properties through the machine learning 

techniques, in this Thesis work, we apply unsupervised machine learning technique, the 

Principal Component Analysis (PCA), and supervised learning technique, the feed-forward 

Neural Network (NN), to study square and hexagonal ferromagnetic lattice Ising systems, in 

order to recognize phases, phase transitions, and related physical properties without knowing 

any information about the microscopic theory or the order parameters. We study the Ising 

model in square lattice as our toy model, once it was studied, we apply PCA in hexagonal 

lattice and later compare the results. The interest in the hexagonal ferromagnetic system is 

because this system has been rarely studied. The literature has only studied the square 
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ferromagnetic and triangular antiferromagnetic systems applying machine learning 

techniques. 

We also create a Feed-forward NN based on [4.8] and guided by Carrasquilla et al. 

[4.2], to show the training effects of the neural network in the Ising model using only two 

neurons. Also, a NN with 300 neurons in the hidden layer was employed to get a good 

accuracy of phase prediction in hexagonal lattice.  

   By means of these machine learning techniques, in this work, PCA was able to 

recognize phase transitions in both systems, to make a good approximation of the critical 

temperature Tc, and to observe the behavior of the magnetization (order parameter) and 

susceptibility. With neural networks, the critical temperature and the order parameter were 

also identified in the hexagonal system, making it possible to understand the training effect 

of the Ising model in the neural network and observe that the magnetization of the system is 

encoded in the hidden layer. In this thesis work we will prove that PCA and NN can 

successfully find physics properties in the Ising model, corroborating the efficiency of these 

machine learning methods. 

This document is organized as follows: Chapter 2 explains the models and methods 

used in this work, Chapter 3 discusses the different machine learning algorithm, while 

Chapter 4 provides a review of previous works. The results and conclusions are presented in 

Chapter 5 and Chapter 6, respectively. 
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2 MODELS AND METHODS 

 

In this chapter, I will present a general idea of the Ising model since this model covers 

a wide field of study. In addition, I will give specific concepts about it, which will help the 

reader to understand this thesis, by only focusing on the systems studied in this work. 

 

 

 

The Ising model is one of the simplest but non-trivial model of interacting spins.   

The Ising model in one dimension was proposed by Lenz in 1920, but later in 1925 was 

discussed by Ernst Ising [2.1].  The exact solution of the two-dimensional Ising model was 

made by Onsager in 1994 [2.2].  

The Ising model represents a magnet as a lattice in which each site of the lattice has 

a magnetic moment represented by a spin. The lattice can be in any dimension and any lattice 

structure. In our case, we studied the square and the hexagonal lattice. The spins will take the 

values of 1 for spins up and -1 for spins down. We can study the evolution of the system over 

time depending on two variables, which are the interaction strength and temperature. The 

energy of the Ising model includes two contributions: the interaction between neighbor spins 

J, which induce a parallel alignment of neighbors (ferromagnetic or antiferromagnetic 

interaction), and the effect of an applied magnetic field on each spin. The energy of the square 

system is  

2.1 Ising model 
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𝐻 = −𝐽 ( 𝑆*𝑆+
,*,+.

− ℎ(𝑆*
*

																																																						(2-1) 

Where < 𝑖, 𝑗 > means the sum over the nearest-neighbor pair of spins. This means the 

spin at site 𝑖, 𝑗 interacts with 𝑖 (𝑗 ± 1) and (𝑖 ± 1) 𝑗 assuming a periodic boundary condition; 

in other words, each spin interact with four other spins (see Fig 2-1, e.g. square lattice) 

regardless of their position on the finite lattice. J is the interaction, 𝐽 > 0 for ferromagnetic 

model and 𝐽 < 0	antiferromagnetic model. h is the external magnetic field which in our study 

will always be zero.  

 

Figure 2-1. Ising Model spins representation in a square lattice 

 

For this system Onsager [2.2] found the exact solution of the ferromagnetic-

paramagnetic second order phase transition at  

	𝑇# = 2𝐽/𝐾<ln	(√2 + 1) = 2.2692(𝐽/𝐾<).																																						(2-2)    
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The Hamiltonian of the hexagonal ferromagnetic Ising model is the same as the 

square lattice system, but the difference is in the spin interactions, which only occur among 

the nearest neighbors. In the square lattice each spin interacts with four spins as is shown in 

Figure 2-1. For the hexagonal lattice the interaction is among three spins as shown in Figure 

2-2.  

 

 

Figure 2-2. Schematics for the spin interactions of the hexagonal lattice. 

 

For the hexagonal lattice, a phase transition to an ordered state occurs when the 

temperature T is reduced below the critical value [2-3], 

 

					𝑇# = 2𝐽/𝐾<ln	(2 + √3) = 1.519(𝐽/𝐾<).																																							(2-3) 

 

 

 

The phase transition is one of the most common topics studied in physics in many 

problems such as crystal melting, ferromagnetism, Ising model among others, and it has 

2.2 Phase transition and finite size scaling 
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required the use of simulation for further study. The phase transition can be described by an 

order parameter, which is some thermodynamic quantity that becomes nonzero below the 

critical temperature and is used as a measure of the transition into an ordered phase. 

Mathematically, the order parameter is zero in one phase. Normally this is the disordered 

phase and the non-zero phase is the ordered phase. There are several transition orders, but 

most common are the 1st and 2nd order, which refer to the number of derivatives of the free 

energy. 

In the case of the Ising model the 1st derivative of the free energy gives the 

magnetization M and the 2nd derivative gives the magnetic susceptibility χm 

𝑀 =
1
𝑉
(𝑑𝐹/𝑑𝐻)JKL																																																												(2-4) 

		χ =
1
𝑉 (𝑑

O𝐹/𝑑𝐻O)JKL																																																											(2-5) 

The order transitions are classified by their critical exponents, which characterize the 

behavior at the critical point and establish universality classes for phase transition [2.5].  The 

most important are: 

 

Magnetization.   𝑀	~|𝑇 − 𝑇#|R 

Magnetic susceptibility.    𝜒	~|𝑇 − 𝑇#|TU 

Heat capacity.   𝐶~|𝑇 − 𝑇#|TW 

Correlation length.   𝜉	~|𝑇 − 𝑇#|TY 
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The critical exponents for the 2D Ising model are known exactly [2.5]:   

𝛽 = 0.125            𝛼 = 0		               𝛾 = 1.75	          𝜈 = 1 

 

On a finite lattice, which is our case, we have a finite number of degrees of freedom 

and everything is analytic, presenting no divergences. In an infinite system (L~∞), the 

correlation length (domain size) diverges or becomes infinite at TC. However, as we have a 

simulation in finite size, when the correlation length is 𝜉	~	𝐿 the system has already become 

ordered. Then we can say that the system has a pseudocritical point when: 

 

a𝑇#(b) − 𝑇#(c)a
TY~	𝐿.																																																			(2-6) 

 

Figure 2-3. Susceptibility versus temperature for finite (dash lines) and infinity (red line) 
systems taken from [2.6]. 
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If we consider the susceptibility for an infinite system, it becomes infinite at the 

critical temperature, but for finite systems we can say that the susceptibility  χ has a maximum 

at Tc(L). The susceptibility at that maximum point is  

𝜒	~𝐿U/Y.																																																														(2-7)  

 

With the analysis mentioned before about the finite size scaling, we can determine 

the critical temperature 𝑇#(b), using various lattice sizes and locate the maximum of 𝜒. Also, 

we can to determine the critical exponents 𝜈 and 𝛾 making a power law fit to the maximum 

location of 𝜒. 

 

				𝑇#(c) = 𝑇#(b) − 𝑎𝐿e	,																																																							(2-8) 

where 𝑇#(c) is the critical temperature of the different lattice sizes taken from the 

maximum of the susceptibility, 𝑎	is a constant to be found with the fit, and 𝑥 will be −1/𝜈 

after the fit. For an infinite system the order parameters are always zero or non-zero. For the 

ferromagnetic Ising model it is the total magnetization per site 

 

𝑀 = 〈
1
𝑁(𝑠*

*

〉	.																																																															(2-9) 

As we work with a finite size, the order parameter becomes, on overage, zero for all 

temperatures. Of these, 〈|𝑀|〉 is usable, since it is almost zero in the symmetric phase:  
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𝑀 = 〈l
1
𝑁(𝑠*

m

*Kn

l〉.																																																										(2-10) 

 

 

 

The Monte Carlo simulation helped us to generate the different configurations to feed 

the Machine Learning algorithm of this work. This method is used to calculate numerically 

the thermodynamic properties, as averages in a system using numerical simulations. The idea 

of the method is to find an algorithm to generate a long sequence of configurations of a 

system, such that after a while each configuration is generated with the adequate probability 

to describe the equilibrium of the system. For example, to simulate a system at a constant 

temperature T, each configuration X must be generated with the probability (frequency). The 

purpose of performing a Monte Carlo simulation is the generation of an appropriate random 

set of states according to the Boltzmann probability distribution. More specifically, the 

probability 𝑝p that a system is in a given state 𝜇 with energy 𝐸p is: 

𝑝p =
𝑒TRtu
𝑍 																																																														(2-11) 

Where 𝛽 = 1/𝐾<𝑇 and 𝑍 is the partition function: 

𝑍 =(𝑒TRtu																																																							(2-12)
p

 

2.3 Monte Carlo Method 
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We are using in Markov processes, which describe how given a system in one state 

𝜇, a new state of that system 𝜈 is reached [2.7]. The probability of generating the state 𝜈 given 

𝜇 is called the transition probability 𝑃(𝜇 → 𝜈) and should satisfy the conditions: 1) they 

should not vary over time, 2) they should depend only on the properties of the current state 

𝜇 and 𝜈, and 3) 

(𝑃(𝜇 → 𝜈) = 1.																																																						(2-13)
Y

 

A Markov process must also fulfill the condition of detailed balance. That is the 

equilibrium condition of the Boltzmann probability distribution, which establishes that the 

rate at which the system makes transitions into and out of any state 𝜇 must be equal.  

(𝑃p𝑃(𝜇 → 𝜈) =(𝑃Y𝑃(𝜈 → 𝜇).
YY

																																						(2-14) 

Using the equation 2-13 

𝑃p =(𝑃Y𝑃(𝜈 → 𝜇)																																																		(2-15)
Y

 

An additional condition to our transition probabilities is: 

𝑃p𝑃(𝜇 → 𝜈) = 𝑃Y𝑃(𝜈 → 𝜇),																																														(2-16) 

Thus, preventing the system from entering what is called a limit cycle, which means 

it can enter in a trajectory that is a closed cycle of states [2.8].  
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If we satisfied the conditions mentioned before, the equilibrium distribution of state 

in Markov process will be the Boltzmann distribution 

𝑃(𝜇 → 𝜈)
𝑃(𝜈 → 𝜇) =

𝑃Y
𝑃p
= 𝑒TR(tyTtu).																																											(2-17) 

2.3.1 The Metropolis Algorithm  

The Metropolis algorithm was made by Nicolas Metropolis and co-workers in 1953 

[2.9]. The idea of the Metropolis algorithm is to choose a set of selection probabilities, one 

for each possible transition from one state to another, 𝜇 → 𝜈, and then choose a set of 

acceptance probabilities 𝐴(𝜇 → 𝜈). The algorithm works by repeatedly choosing a new state  

𝜈, and then accepting or rejecting it at random with the chosen acceptance probability. If the 

state is accepted, the system changes to the new state 𝜈. If not, it just leaves it as it is, and the 

process is repeated again and again.  

In this algorithm the selection probability  𝑔(𝜇 → 𝜈) for each of the possible states 𝜈 

are all chosen to be equal 

𝑔(𝜇 → 𝜈) =
1
𝑁																																																						(2-18) 

Where 𝑁 , is the total number of states. The condition of detailed balance takes the form  

|(p→Y)
|(Y→p)

= }(p→Y)~(p→Y)
}(Y→p)~(Y→p)

= 𝑒TR(tyTtu)																																						(2-19)  

One possible acceptance ratio that satisfices this equation is  



 
 

13 
 
 

𝐴(𝜇 → 𝜈) = 𝐴L𝑒
T��R(tyTtu)																																													(2-20) 

The constant of proportionality 𝐴L	cancels in 2-19, so we can choose any value for it, 

but as is a probability, the maximum value that it can takes is 1. For a better understanding, 

suppose that the state 𝜇 has the lower energy, and the state 𝜈 has the higher 𝐸p < 𝐸Y. Based 

in this, the larger acceptance ratio 𝐴(𝜈 → 𝜇) is set to one, and in order to satisfy the equation 

2-19, 𝐴(𝜇 → 𝜈) must take the value 𝑒TR(tyTtu), in other words we can say: 

𝐴(𝜇 → 𝜈) = �𝑒
TR�tyTtu�, 𝑖𝑓	𝐸Y − 𝐸p > 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
																																	(2-21) 

 

2.3.2 Implementation of the Metropolis Algorithm in the Ising Model 

 

For the implementation of the Metropolis algorithm in the Ising model, we considered 

the case of zero magnetic field and a lattice of spins to work with. We used periodic boundary 

conditions to ensure that all spin have the same number of neighbors and local geometry.  

 

Based on the theoretical critical points of the square and the hexagonal lattices, we 

chose our temperature range in which we worked. We started with a disordered random state 

from a temperature above the critical point and ended at the equilibrium temperature. To start 

the simulation, we just pick a random single spin 𝑘 to be flipped. Next, we calculate de 

difference in energy before and after the flip 𝐸Y − 𝐸p, calling 𝜈 the new state and 𝜇 the old 

one. The way to calculate this energy difference is by substituting the values 𝑠*
p of spins in 



 
 

14 
 
 

state 𝜇 into the Hamiltonian to calculate 𝐸p , then flip the spin chosen 𝑘,	and calculate 𝐸Y. 

The change in energy between the two state is thus 

 

𝐸Y − 𝐸p = −𝐽(𝑠*Y
〈*+〉

𝑠+Y + 𝐽(𝑠*
p

〈*+〉

𝑠+
p																																			(2-22) 

 

As we flip a single spin, most of the terms in the calculation in the energy difference 

don’t change and the difference of energy is reduced to  

 

𝐸Y − 𝐸p = −𝐽 ( 𝑠*
p(

*	�.�	��	�

𝑠�Y − 𝑠�
p).																																					(2-23) 

 

The sum is over the nearest neighbors of the flipped spin 𝑘 and the fact that all these 

spins do not themselves flip, means that 𝑠*Y = 𝑠+Y. Now, if the spin that we chose is 𝑠�
p = +1, 

then after it has been flipped we have 𝑠�Y = −1, then 𝑠�Y − 𝑠�
p = −2 or in the other case that 

𝑠�
p = −1 and 𝑠�Y = +1, 𝑠�Y − 𝑠�

p = +2. Based on this, we can write the difference of energy 

as  

 

𝑠�Y − 𝑠�
p = −2𝑠�

p																																																				(2-24) 

And so 
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𝐸Y − 𝐸p = 2𝐽𝑠�
p ( 𝑠*

p

*	�.�	��	�

																																											(2-25)	 

Knowing the previous analysis, we can now implement the algorithm as follows: 

 

• If  𝐸Y − 𝐸p ≤ 0 we definitely accept the move and flip the spin 𝑠� → −𝑠�. 

• If 	𝐸Y − 𝐸p > 0 we still want to flip the spin with probability 𝐴(𝜇 → 𝜈) =

𝑒TR�tyTtu�. 

In the algorithm evaluate the acceptance ratio 𝐴(𝜇 → 𝜈) by using the value of equation 

2-25, and then we choose a random number 𝑟 between zero and one. If the number 𝑟 is less 

that our acceptance ratio 𝑟 < 𝐴(𝜇 → 𝜈), then we flip the spin. If it isn’t, we leave the spin 

alone. This process is repeated over and over, choosing a spin, calculating the energy change 

to see if we flip it, and then deciding whether to flip it according to the acceptance ratio. 
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𝑇 ≈ 𝑇𝑐 

𝑇 < 𝑇𝑐 

𝑇 > 𝑇𝑐 

figure 2-4.  Monte Carlo  simulation 

of the ferromagnetic Ising model 

below 𝑇𝑐, near 𝑇𝑐, and above 𝑇𝑐, 

for a finite-size scale. The black dots 

are the spins -1 and the whites are 

spins +1. 
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3 MACHINE LEARNING ALGORITHMS 

 

 

For this work, we used supervised and unsupervised machine learning.  In supervised 

machine learning, we have a dataset and already know what output to expect labelling the 

data, while unsupervised machine learning infers patterns from a dataset without reference 

to known outcomes.  We can make predictions about a certain problem without knowing the 

labels by clustering the data, based on the relationships among the variables in the data [3.1].  

In this work, two machine learning techniques will be implemented: Principal 

component analysis (PCA), an unsupervised technique, as well as Neural Networks (NN), a 

supervised technique. 

 

 

 

PCA is a powerful tool for compressing your data into small dimensions without 

much loss of information [3.2].   To understand this method, suppose that we have two 

variables 𝑥n  and 𝑥O, and a cloud of points. Each point 𝒊 is represented with the variables as 

𝑥*n  and 𝑥*O as shown in Figure 3-1. 

3.1 Principal Component Analysis (PCA)   
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Figure 3-1.  Representation of data in the variables. 

We need to find the variable combination that collects the most information, this is 

the space direction in which we get the highest variance. 

 

 

 

 

 

 

 

 

Figure 3-2. Principal component in the data. 

 

 

Cp2	
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It is expected that these directions collect the most information about the data. Once 

this direction has been found, we can see the data in terms of the principal components. Now, 

each point can be represented in terms of the principal component coordinates, 𝑦*n  and 𝑦*O  

 

  

 

 

 

 

Figure 3-3. Principal component coordinates. 

We can define the coordinate components in terms of the initial variables as: 

 

𝑦*n = 	𝑥*n𝑤nn +	𝑥*O𝑤On																																																							(3-1) 

𝑦*O = 	𝑥*n𝑤nO +	𝑥*O𝑤OO																																																							(3-2) 

 

where 𝑤*+ are coefficients called weights, which are vectors in the direction of those 

components.  

In general, for N dimensions we have the following expression for the principal 

components: 

y1 

y2 

(yi1, yi2) 

y2
c 

y1
c 
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𝒀𝒋 = 	𝑋n𝑊n+ +	𝑋O𝑊O+ …	𝑋m𝑊m+																																																(3-3) 

 

And the coordinate component 𝑖 in terms of the component 𝑗 is: 

 

𝑦*+ = 	 𝑥*n𝑤n+ +	𝑥*O𝑊O+ …	𝑥*m𝑤m+																																														(3-4) 

 

For all the coordinate components we have  

⎝

⎜
⎛

𝑦n+
.
.
.
𝑦nm⎠

⎟
⎞
= ¢

𝑥nn ⋯ 𝑥nm
⋮ ⋱ ⋮
𝑥�n ⋯ 𝑥�m

¦

⎝

⎜
⎛

𝑤n+
.
.
.

𝑤m+⎠

⎟
⎞
																																													(3-5) 

 

In matrix notation,  

 

𝒀	𝒋 = 	𝑿𝑾𝒋																																																																				(3-6) 

 

for all the data set of components 

 

¢
𝑦nn ⋯ 𝑦nm
⋮ ⋱ ⋮
𝑦�n ⋯ 𝑦�m

¦ = ¢
𝑥nn ⋯ 𝑥nm
⋮ ⋱ ⋮
𝑥�n ⋯ 𝑥�m

¦¢
𝑤nn ⋯ 𝑤nm
⋮ ⋱ ⋮

𝑤mn ⋯ 𝑤mm
¦ 
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𝒀 = 	𝑿𝑾																																																																				(3-7) 

 

3.1.1 Principal Components in the Ising Model 

 

Data was collected by a Monte Carlo simulation in 	matrix 𝑆, with dimensions 

𝑀𝑥𝑁,	where 𝑀 = 𝑛𝑇, T is the number of different temperatures, and 𝑛 is the number of 

configurations under the same temperature. Each row of the matrix will be a configuration 

sample. 

 

𝑆 = ¢
1 1 −1 ⋯ −1 1 −1

⋮ ⋱ ⋮
−1 1 −1 ⋯ 1 1 −1

¦
ªem

																												(3-8) 

 

Once we have matrix 𝑆, the next step is to apply PCA. 𝑆 must be centered, subtracting 

the mean value 𝑚*+ = (1/𝑀)∑ 𝑆*+*   of each column and the values from the entries in the 

column to obtain the matrix 𝑿.  

 

The PCA finds the principal components through a transformation vector of the original data: 

𝑌	 = 	𝑿𝑊																																																																(3-9) 
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For this case, PCA will find or identify patterns in the data with temperature change. 

The main goal of PCA is to find out one or a few directions where you can group all the 

datasets with the fewest possible losses of information. This is equivalent to searching for 

the maximum variance in which the data is distributed. 

 

The orthogonal transformation is due to vector 𝑊	 = 	 (𝑤n;	𝑤O;	… ;	𝑤m), where 𝑤’𝑠 

are called weights; the first weight is found by: 

 

										𝑤n = arg𝑚𝑎𝑥‖´‖Kn µ((𝑥*. 𝑤)O
*

¶																																						(3-10) 

 

Instead of employing the maximum variance, the eigenvector corresponding to the largest 

few eigenvalues of the matrix 𝑿𝑻(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) can be found by:  

 

𝑋¹𝑋𝑤� 	= 	 𝜆�𝑤�																																																	(3-11)	

The principal components are calculated as: 

 

𝑌� 	= 	𝑋𝑤�																																																									(3-12)	
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where w1 will be the vector corresponding to the largest variance, namely, the larger 

eigenvalue. 

Results are based on the ‘quantified principal components’ that are defined as the average: 

     

〈|𝑦�|〉 = 1/𝑛(|𝑦�|.
�

																																																				(3-13) 

 

 

 

Artificial Neural Networks (ANNs) have recently been widely used in machine 

learning. This is a technique inspired by the biological neurons in our brain and how they 

work. The neural network consists of a processing unit of neurons which have a direct 

weighted connection between other neurons [3-1]. The weights are responsible for the 

transfer of data between all neurons [3-1]. Like the neurons in our brain, the neuron of a 

neural network is represented in Figure 3-4, where the orange circle is the body of the neuron, 

the blue circles are the input and the gray one is the output.  

 

 

 

 

 

3.2 Artificial Neural Network (ANN) 
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Figure 3-4. Neural neuron representation. 

 

When we talk about neural networks, we are talking about many neurons connected 

to each other. An artificial neural network is composed of an input layer, hidden layers and 

an output layer. An example of this is seen in figure 3-5, where a neuron 𝑛n is connected with 

all the inputs that the other neurons are also connected to.  𝑛n could also be connected to 

many other neurons, creating other layers in the network or it could also be connected to the 

output of the network.  

  

 

 

 

 

 

 

Figure 3-5. Simple Neural Network representation. 
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In Figure 3-5, a neuron also called perceptron, receives the inputs (𝑥n, 𝑥O, 𝑥»)	and 

passes it though what is called an activation function.  This calculates a weighted sum of its 

input, adds a bias and then decides whether it should activate the neuron or not. There are 

several activation functions, but for this work, we will only focus in the Sigmoid activation 

function, since the probability exist only between the range of 0 and 1.  

																	𝐹(𝑧) =
1

1 + 𝑒TÆ 																																																				(3-14) 

 

Where 𝑧 = ∑ 𝑤+𝑥+ + 𝑏+  , and 𝑏 is the bias. 

To understand what happens mathematically in a neural network, consider the ANN 

example in Figure 3.6.  

 

Note that: 

 𝑛*
(+) is the unit 𝑖 in layer 𝑗 

 𝑊(+) is matrix of weights controlling function mapping from layer 𝑗 to layer 𝑗 + 1	[3.1]. 

 

𝑛nO = 𝐹È	𝑊nn
(n)𝑥n +𝑊nO

(n)𝑥O +𝑊n»
(n)𝑥» + 𝑏É																															(3-15) 

𝑛OO = 𝐹È	𝑊On
(n)𝑥n +𝑊OO

(n)𝑥O +𝑊O»
(n)𝑥» + 𝑏É																														(3-16) 

𝑛»O = 𝐹È	𝑊»n
(n)𝑥n +𝑊»O

(n)𝑥O +𝑊»»
(n)𝑥» + 𝑏É																														(3-17) 
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𝑦¼(𝑥) = 𝐹È	𝑊nn
(O)𝑛n

(O) +𝑊nO
(O)𝑛O

(O) +𝑊n»
(O)𝑛»

(O) + 𝑏É																									(3-18) 

  

where 𝑦¼(𝑥) is the final output in the neural network of Figure 3-6.  

 

The ANN presented in this thesis is based on Carrasquilla [4.2] and Dongkyu Kim’s 

previous works [4.8]. The input data are the different Ising configurations from Monte Carlo 

method, the same data that was used in PCA. The ANN was only made for the hexagonal 

lattice, which is the highlighted system of study in this work. To illustrate how the ANN 

works in the Ising model, two neurons in the hidden layer and a single output were used as a 

toy model, see Figure 3-7. The input layer values are determined by the raw spin 

configurations sampled by Monte Carlo simulation. After studing the toy model, we used 

300 neurons in the hidden layer to determine the critical temperature of the hexagonal Ising 

model.  

 

 

 

 

 

 

 

 

Figure 3-6. Network representation used in this work. Redrawn from [4.8]. 
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An Ising model simulation was performed with the Monte Carlo method and 

implemented in Python. The Metropolis Algorithm was implemented for square and 

hexagonal ferromagnetic Ising models ( 𝐽 > 0) with zero magnetic field. The ferromagnetic 

interaction was set to 𝐽 = 1. The details of the Monte Carlo simulation parameters are shown 

in table 3-1. 5000 configurations per temperature were collected, having a total of 545000 

configurations for the square lattice and 620000 temperatures for the hexagonal system.  

 

Table 3-1. Parameters in the simulation 

Lattice Lattice size (L) M.C steps TÎ*�/TÎÏe	(T/J) ∆𝑇 

 

Square 

10,20,30,40,50 30000 0.8/3.5 0.025 

 

Hexagonal 

20,40,60,80 30000 0.82/2.08 0.01 

 

 

The data collected from Monte Carlo was used to implement the machine learning 

techniques Principal Component Analysis and Artificial Neural Network. In NN, the data is 

divided in a training set and a testing set. In the training 196200 configurations were used, in 

the testing set 65400 and, in the validation, set 65400; for a total of 327000 configurations. 

147000 of these configurations are below critical temperature and 180000 are above it. 

Configurations below this critical temperature were labeled 0 and the ones above the critical 

temperature were labeled 1. The network was trained on 100 epochs which is the number of 

3.3 Simulation details  
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times that a given configuration passes through the neural network using the Adam optimizer 

with a learning rate of 0.001 to reduce the cross-entropy loss function. L2 loss was also 

applied to avoid overfitting with a 𝜆 = 0.001. This would give and average accuracy of 97%. 

The network was created with TensorFlow and trained on a 1080Ti GPU. 
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4 PREVIOUS WORK  

 

 Being able to classify and discover phase and phase transitions has been an important 

research topic in recent years and has been crucial in Condensed Matter Physics. In this 

chapter a thorough review of available literature on the discovery and the study of phases and 

phase transition with machine learning is presented. Since this study of machine learning is 

very recent, the literature will be presented in chronological order, highlighting the results 

and discoveries of each author.  

In 2016, Lei Wang [4.1] explored the application of unsupervised learning to solve 

many-body physics problems that focus on phase transitions. They considered the Ising 

Model in a square lattice, for which 100 uncorrelated spin configuration samples were 

generated using Monte Carlo simulation at some preset temperatures. These configurations 

are fed to the unsupervised learning algorithm. To identify phase transitions, they used 

Principal Components Analysis (PCA) which is a widely-used feature extraction technique 

[4.1]. Principal components are in orthogonal directions in which the variances of the data 

decrease monotonically. PCA finds the principal components through a linear transformation 

of the original coordinates. When PCA is applied to the Ising configuration, it locates the 

most significant differences of the data changes versus temperature. These variations are 

relevant features in the data, and they can indicate a phase transition [4.1]. In their results, 

they found one dominant principal component as the temperature changed. The Ising 

configurations are most significant along the first PC. In this case, PCA has identified the 

order parameter of the Ising Model upon a phase transition. They projected the sample in the 
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space where the first two principal components are contained, showing the formation of two 

clusters, one associated with the high-temperature phase and the other one with the low-

temperature phase. Once the baseline for applying the unsupervised learning technique is 

established in the prototypical Ising Model, they turn to a more complex case where the 

learner can no longer make any trivial findings. For this case, they considered the same Ising 

Model with a conserved order parameter (COP), where the occupation of each lattice site can 

be one or zero. In this case, they found four instead of one leading principal component. This 

indicated that in COP, the spin’s spatial distribution changes considerably as the temperature 

varies [4.1]. They also show the structure factor versus temperature for different system sizes 

and demonstrate that the structure factor decreases as the temperature increases, an indicator 

of phase transition. The PCA finds out the structure factor related to symmetry breaking, 

which is crucial in phase transitions and condensed matter physics [4.1].  

In the same year, Juan Carrasquilla and Roger G. Melko [4.2] identified phases and 

phase transitions using Feed-Forward Neural Network with TensorFlow (NN). They first 

employed the prototypical square-lattice ferromagnetic Ising Model, using Monte Carlo 

simulations to generate the spin configurations. They implemented the NN with an input 

layer by the spin configurations, a hidden layer of 100 neurons, and an analogous output 

layer. They used a cross-entropy cost function supplemented with an L2 regularization term 

to prevent overfitting. The NN was trained using the Adam method for stochastic 

optimization [4.3]. The neural network was able to identify the	𝑇# with a 99% accuracy for 

L=40, indicating that this NN is capable of methodically closing in on the true 

thermodynamic value of 𝑇# [4.2]. They used an already trained feed-forward neural network 

for the square lattice and applied it to a triangular lattice. The algorithm yielded a critical 
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temperature Tc/J =3.63581, which is close to the exact thermodynamic value (Tc/J = 

3.640957), differing by less than 1%.  Further, they applied these NN to problems of high 

interest in modern condensed matter, such as disordered or topological phases, in which they 

considered a two-dimensional square ice Hamiltonian. Through the neural network they were 

able to distinguish ground states from high-temperature states with 99% accuracy.  

In 2017, Hu et al., [4.4] applied PCA to analyze the phase behavior and phase 

transition of various classical spin models, such as [4.4] square and triangular lattice Ising 

model, Biquadratic-exchange Spin-one Ising model (BSI), the Blume-Capel model, and the  

two dimensional XY model.  

By applying the square lattice Ising model, Hu et al., were able to identify one 

dominant principal component.  They plotted the measured first leading component versus 

temperature to mimic the magnetization of the system and also plotted the quantified second 

leading component to represent the susceptibility of the system. Then, they took the peaks 

from the graph of the quantified second-leading component and plotted them versus the 

inverse of the lattice dimension to obtain an approximate value of the critical temperature  

Tc ~2.278 ± 0.015, which is close to the exact result Tc/J»2.269 [4.5].  

The order parameter of the system is the first principal component related with the 

first vector weigh 𝑊n. They plotted the weight that corresponded to the second leading 

component (𝑊O) (see Figure 2-1a, taken from [4.4]), in this Figure, the second weight 𝑊O is 

compared with 𝑊O
, ( see Figure 2-1b) which is a plot of: 
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𝑊O
, =

1
𝐿 [cos

(𝑟n𝑘n) , … , cos(𝑟m𝑘n)] +
1
𝐿 [cos

(𝑟n𝑘O) , … , cos(𝑟m𝑘O)].											(4.1) 

 

 

where ri is the lattice site and k1 = (0, 2𝜋/L), k2 =(2𝜋/L,0) are the lowest Fourier wave vectors. 

The first component was associated with the origin k0= (0,0).  

Based in the results mentioned above, they determined that for ferromagnetic Ising 

model in square lattice, PCA is building up in weight vectors which correspond to the Fourier 

modes of the spin configurations. finding an interesting result. 

 

Figure 4-1 a) plotted weights of the second leading component, b) plot of the equation 2.1.  

Also, in 2017, Ce Wang and Hui Zhai [4.6] studied phase and phase transitions 

working with Unsupervised Learning of Frustrated Classical Spin Models in triangular and 

union Jack lattices using the XY model for different temperatures. They also fed the 

algorithm with data generated by the classical Monte Carlo simulation and used Principal 

Components Analysis as a machine learning technique. They first analyzed the results based 

on a simple “toy model" in a square lattice which was useful for later discussion of triangular 

a) b) 

a) b) 
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and union jack lattices. PCA results showed two principal components which correspond to 

high and low temperature phases, that allowed the identification of a sphase transition at Tc 

= 0.9J29, below which a quasi-long range anti-ferromagnetic order is formed. Indeed, Wang 

and Zhai found that the two-major normalized eigenvalues are insensitive to system size for 

temperatures below Tc, and for temperatures above Tc. The two-major normalized 

eigenvalues decrease quickly as the system size increases.  

For the triangular lattice, they performed a similar PCA analysis, collecting the data 

from Monte Carlo simulations at nine different temperatures. Results show four principal 

components with their corresponding eigen-vectors and revealed how the large principal 

components depend on temperature. Below a certain temperature, the four normalized major 

principle eigenvalues are not sensitive to system size, while above a certain temperature, they 

decrease to quite small ones as the system size increases. This transition temperature scale is 

consistent with the KT transition expected for the XY model in a triangular lattice [4.6]. For 

the union jack lattice, they found that four eigenvalues are considerably larger than the others 

which form the principal subspace. In this case, the low-temperature ordered phase has four 

sites at each unit cell. The PCA analysis shows four major eigenvalues at the lowest 

temperature and two which gradually vanish as temperature increases, similar to the square 

and triangular lattices.  

Antonio Rebelo in 2017 [4.7] analyzed several physical models using Principal 

Component Analysis to study the square ferromagnetic Ising model, getting the same results 

of [4.4] and [4.1]. Next, he studied the both the square and triangular antiferromagnetic Ising 

models. For the square system, one leading principal component was obtained and again, 
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since the first principal component separates the configuration in clusters for low and high 

temperature, he plotted the second weight which corresponded to a Fourier mode of the 

system. In the triangular system, he obtained two dominant principal components, where the 

model remained disordered at every finite temperature with no obvious pattern that PCA 

could lock into. PCA, however, was able to distinguish between two phases when the data 

were projected in the first two principal components. After another treatment in the triangular 

Ising antiferromagnetic system, PCA yielded acceptable results for this frustrated model.  

In 2018, Kim et al., [4.8] investigated the Ising model’s phase transition learning. 

They found that having two hidden neurons with an optimized number of parameters through 

data-driven training was enough for an accurate prediction of critical temperature.  They 

started observing the feed-forward network trained in the square lattice with a 50-neuron 

single hidden layer. They noticed that the weights between the input and the hidden layer 

were constant, meaning the input {𝑆*} is reduced into its sum ∝ 	±	∑ 𝑆** . They also observed 

neurons effectively unlinked with vanishing weights, suggesting that the hidden layer size 

could be smaller. Based on their observations above, they proposed a small network model 

containing only two neurons in the hidden layer. One neuron is linked with a positive constant 

weight 𝑦 ∝ 	∑ 𝑆** , and the other neuron, with opposite sign −𝑦. They showed that the two-

neuron binary structure with two neurons successfully predicted the critical temperature in 

the different lattice systems, which aids in understanding the Ising model’s supervised 

learning accuracy. They also found that the scaling dimension of the order parameter is 

embedded into the system-size dependence in the learning process.  
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5 RESULTS AND DISCUSSIONS 

In this chapter, the PCA results for the study of the ferromagnetic Ising model in 

square lattices, for lattice sizes of L = 10, 20, 30, 40 and 50 are discussed, as well as the PCA 

results for the  hexagonal lattices using lattice sizes of L = 20, 40, 60 and 80. Finally, results 

are presented for two neural networks that were performed for the hexagonal lattice system 

with the same lattice sizes used in PCA. The first neural network was built with two neurons 

in the hidden layer for system size L = 20, with the purpose of understanding the training and 

functionality effects of the neural network. Afterwards, a neural network with 300 neurons 

in the hidden layer was created to obtain an accurate approximation of the thermodynamic 

critical value 𝑇# in the hexagonal system.  

 

 

 

 

Figure 5-1a presents the results of the first 10 principal components for the square 

system. It clearly shows one dominant principal component for the different lattice sizes. 

This means that in the Ising configurations, there is a dominant spin pattern; in this 

component, the Ising configurations vary significantly as the temperature changes [4.1], 

[4.4]. On the other hand, figure 5-1b shows a constant weight vector corresponding to this 

principal component. Notice that w1⋍1/L. This result demonstrates that with the first 

principal component we can identify the order parameter which corresponds to the 

5.1 Square Lattice 
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magnetization of the system, described by a given configuration from one of the rows of X.  

in equation (3-12).   

 

𝑌n 	=
1
𝐿
[𝑠n, 𝑠O, 𝑠» … ] Û

1
1
1
…

Ü = 	
1
𝐿(𝑠*	

m

*Kn

																																											(5-1) 

 

 

Figure 5-1. a) Shows the first ten PCA variance ratios from the Ising configurations for square 
lattice. b) Weights of the first principal component for each lattice size for square lattice. 

 

A physical explanation of why PCA obtained a dominant eigenvalue in the 

ferromagnetic Ising model can be seen in the analysis made by Rebelo [4-7]. If a lattice with 

only two spin interactions is considered and	𝑠n is the spin of the first lattice site, the most 

favorable configurations of the ordered phase of the system would be of the form: 

𝑥�ÝÞ = (𝑠n, 𝑠n) 
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and for the disordered phase: 

𝑥Þ*Ën = (𝑠n, 𝑠n)   			𝑥Þ*ËO = (𝑠n, −𝑠n) 

When PCA is fed with configurations of both phases, the covariance [equation (3-1)] 

to be computed is: 

𝐶 = 𝑋¹𝑋 =
1
𝑀(𝑥�¹

�

𝑥� 

where, 𝑀	is the total number of configurations and 𝑥� is the 𝑛𝑡ℎ configuration. 

If we consider a set of data 𝑝	which corresponds to the ordered phase, then (1 − 𝑝) 

will correspond to the disordered phase, hence, we can write: 

𝐶 = 𝑝𝐶�ÝÞ + (1 − 𝑝)𝐶Þ*Ë 

With enough data, it can be written: 

𝐶�ÝÞ = 〈𝑥�ÝÞ¹ 𝑥�ÝÞ〉 

Where < > denotes the average over the value that 𝑥�ÝÞ can take, then for this case: 

𝐶�ÝÞ =
1
2(𝑠nO ß

1	1
1	1à =

Ë�

ß1	11	1à 

For 𝐶Þ*Ë: 

𝐶Þ*Ë =
1
2
(〈𝑥Þ*Ën¹ 𝑥Þ*Ën〉 	+ 	〈𝑥Þ*ËO¹ 𝑥Þ*ËO〉) = Ι 

Solving equation (3-1) for 𝐶�ÝÞ, yields the eigenvalues with their corresponding 

eigenvectors.  
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𝜆n = 2, 𝑤n =
1
√2

ß11à 

𝜆O = 0, 𝑤O =
1
√2

ß−11 à 

In the example considered, the results obtained in the PCA, were: a leading eigenvalue 

and a constant vector corresponding to this eigenvalue. For the disordered phase, the identity 

matrix was obtained, therefore, the greatest eigenvalue came from the ordered phase. This 

example can be generalized for a matrix of size 𝐿𝑥𝐿	and for the case of the ordered phase, 

where only a matrix 𝑁𝑥𝑁	of ones would be obtainable.  

Solving for the eigenvalues and eigenvector of this matrix, we would obtain a 

characteristic polynomial of the form (𝜆 − 𝑁)𝜆mTn, where the highest eigenvalue would 

always be 𝜆n = 𝑁 and its vector: 

𝑤n =

⎣
⎢
⎢
⎢
⎢
⎡
1
1
.
.
.
1⎦
⎥
⎥
⎥
⎥
⎤

 

The analysis done previously demonstrates in the simplest way how PCA works and 

how the result for the first component is obtained, where only one spin was flipping while 

the others remained constants. Actually, the second component would be related to this first 

state of excitation mentioned above, but in this model with only two spins, it would be 

nonsensical. The interesting aspect about PCA is that it detects this behavior for a full data 

set in a full lattice. 
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In Figure 5-2a, the quantified first leading components <y1>, over the system size L versus 

temperature is plotted, in order to mimic the magnetization in the square system.   

 

𝑚 =
1
𝑁(𝑠*

m

*Kn

= 	
< 𝑃n >
𝐿 																																																														(5-2) 

 

where 𝒎 is the magnetization and 𝑁 = 𝐿	𝑥	𝐿. 

By increasing the size of the system, the phase transition approaching the theoretical 

value represented with the dash line can be appreciated. Figure 5-2b, on the other hand, shows 

the plot of quantified second leading components, <p2>, versus temperature, in this case, it 

represents the behavior of susceptibility (χ).  

Finally, Figure 5-2c depicts the spin configurations in a two-dimension spanned 

plane, where three different clusters can be observed. The points close the origin corresponds 

to the spin configuration above the critical temperature Tc and the separate other two regions 

correspond to the spin configurations below this critical temperature. With these results, PCA 

shows that there is a phase transition in the 2D square Ising system.  
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Figure 5-2. a) The normalized, quantified first leading component versus temperature which 
represents the magnetization of the system. b) The quantified second leading component versus 

temperature which represents the susceptibility of the system. c) Projection of the spin 
configurations onto the plane for the two principal components for a lattice of size 10, 20, 30, 40 

with 50 configurations for each temperature. 
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Following the treatment in chapter 3, based on the finite scaling relation in 

thermodynamic limit: 

 

                                                               𝑇#é = 𝑇# +	𝐾𝐿Tn																																																		(5-3) 

 

where 𝑇#é, is the maximum of the susceptibility (𝜒),  𝑇# and 𝐾 are the fitting parameters. 

An approximation of the critical temperature 𝑇#		was obtained by plotting the 

maximums in Figure 5-2b versus the inverse of the system size, 1/L. The intercept of the fit 

gave an excellent approximation of 𝑇# for the square system. We estimate the critical 

temperature to be 𝑇# = 2.26339	𝐽/𝐾<, which is close to the exact thermodynamic 𝑇# =

2.2692𝐽/𝐾<, differing from the true thermodynamic critical 𝑇#	by less than 0.5%. This result 

means that PCA was able to make a good prediction of the critical temperature 𝑇# in the 2D 

Ising model (see Figure 5-3).  
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Figure 5-3. Critical temperatures taken from the maximums of Fig 5-2b versus the inverse of the 

lattice size. 

 

Considering the weight vector of the second component (𝑤O) for the square lattice, a 

plot of the elements of  𝑤O was made using 7000 samples per temperature, (see Figure 5-4a). 

This plot is compared with the plot of the following equation represented in Figure 5-4b: 

 

						𝑊O
, =

1
𝐿 [cos

(𝑟n𝑘n) , … , cos(𝑟m𝑘n)] +
1
𝐿 [cos

(𝑟n𝑘O) , … , cos(𝑟m𝑘O)]															(5-4) 

 

where ri is the lattice site and k1 = (0, 2𝜋/L), k2 =(2𝜋/L,0) are the lowest Fourier wave vectors. 

The first component is associated with the origin in k0= (0,0).  
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It was determined in [4,4] that for the ferromagnetic Ising model in square lattice, 

PCA is building up in weight vectors which correspond to the Fourier modes of the spin 

configurations.  

 

 

Figure 5-4. a) Weighs for the second component plotted on the square lattice L=20. b) plot of 
equation (5-4) 

 

 

 

 

In the hexagonal system, we also noticed one leading principal component as in  the 

square system, (see Figure 5-5a), meaning that in the hexagonal system, the data is confined 

in the first component. Figure 5-5b shows constant weights of the first principal component 

with values of w1⋍1/L for each lattice size, again, the order parameter of this system was 

identified, namey magnetization.   

5.2 Hexagonal Lattice: 

a) b) 
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Figure 5-5. a) PCA first explained variance ratios from the Ising configurations for hexagonal 
lattice. b) Weights of the first principal component for each lattice size. 

 

Figure 5-6a represents the magnetization of the hexagonal system. As can be seen, as 

the size increases, it gets closer to the teorical transition value. This makes sense due to the 

fact that the teorical critical value was calculated for finite lattices. The quantified second 

leading component versus temperature, shown in Fig 5-6b for the different lattice sizes (20, 

40, 60 and 80), mimics the susceptibility in the hexagonal system. As discussed in Chapter 

2, the susceptibility for an infinite system becomes infinite or diverges at the critical 

temperature. As we work with finite lattices, these have peaks, which run to the left, 

approaching the critical theoretical temperature. This behavior was also seen in the results 

for susceptibility in the square lattices.  

 

0 2 4 6 8 10

1E-3

0.01

0.1

 

 
l n

n

 L = 20
 L = 40
 L = 60
 L = 80 0 50 100 150 200 250 300 350 400

0.045

0.050

0.055

0 200 400 600 800 1000 1200 1400 1600
0.024

0.025

0.026

0 500 1000 1500 2000 2500 3000 3500
0.0160

0.0165

0.0170

0 1000 2000 3000 4000 5000 6000
0.0120

0.0125

0.0130

 

 

L = 20

L = 80

L = 60

L = 40

 

 

 

 

 

 

Sites

W
1

a) b) 



 
 

45 
 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 5-6. a) The normalized quantified first leading component versus temperature for hexagonal 
lattice which represents the magnetization of the system. b) The quantified second leading 

component versus temperature for hexagonal lattice which represents the susceptibility of the 
system. c) Projection of the spin configurations onto the plane for the two principal components for 

lattice of size 20, 40, 60, 80 with 100 configurations for each temperature. 
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Figure 5-6c depicts the projected spin configurations onto the two principal 

components plane for the different lattice sizes. Clearly, two clusters are also shown, this was 

also seen in the square lattice, where the points grouped in the center correspond to the highly 

disordered configurations, while group configurations in the extremes represent 

configurations in an ordered state, proving that a phase transition also occurs in the hexagonal 

lattice. 

 

 

Figure 5-7. Critical temperatures taken from the maximums of Figure 5-6b versus the inverse of the 
lattice size. 

 

In the hexagonal system, the finite scaling relation using equation (5-3) can be 

employed to determine the critical temperature 𝑇#	 in the Ising hexagonal system (𝑇# ≈
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1.519	𝐽/𝐾<, representing a 0.5% percent error from the true thermodynamic critical 

temperature. This means that PCA is able to work with different lattice types.  

 

The results of the weight for the second component plotted on the hexagonal lattice 

were different from the square lattice (see Figure 5-8a). Based on the analysis from [4.4], we 

could say the hexagonal lattice system studied in this thesis has different Fourier modes of 

the spin configuration. The Fourier mode corresponding to the second weight is defined by 

equation 5-5. The graph of this Fourier mode is seen in Figure 5.8b which is compared with 

the result given by PCA (Figure 5.8a) 

 

 

Figure 5-8. a) The weighs for the second component vector plotted on the hexagonal lattice L=20 
b) plot of the equation (5-5) 

 

a) b) 
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𝑊OJëe
, = 	 cos

1
𝐿
[cos(𝑟n𝑘) , … , cos(𝑟m𝑘)]																					(5-5) 

where ri is the hexagonal x-coordinate lattice site and 𝑘	 = (2𝜋/𝐿, 0). 

 

A test neural network was built with only two neurons in the hidden layer for a size 

L = 20 hexagonal system to explain the training effects of the parameters weights (W) and 

bias (𝑏). Afterwards, a neural network with 300 neurons in the hidden layer was created to 

obtain an accurate approximation of the thermodynamic critical value 𝑇# in the hexagonal 

system.  

In Figure 5-9a, the argument of the neural network  𝑊�𝑥 + 𝑏L for the input layer is 

displayed as a function of magnetization 𝑚(𝑥) of the configurations 𝑥. 𝑊� and 𝑏L are the 

weights and bias at training iteration 𝑡 = 0, which were randomly initialized. Once the 

training begins, the parameters are adjusted, having an accuracy of ⋍ 94% . The components 

of the vector 𝑊�𝑥 + 𝑏� become approximately a linear function of the magnetization 𝑚(𝑥), 

as depicted in Figure 5-9b.  

Figure 5-10 shows the weights adjusted after the training. In one neuron, the weights become 

positive constants while in the other neuron, the weights are constant but with opposite sign. 

This result gives an indication that the weights are responsible for magnetization.  

 

 

 

5.3 Neural Network Results 
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Figure 5-9. a) Arguments for a neural network with two sigmoid neurons in the hidden layer before 
the training. b) Arguments after the training.  

 

The results shown in Figure 5-9 and Figure 5-10 explain that in the hidden layer of 

the neural network, the magnetization 𝑚(𝑥) is encoded and learned, corroborating 

Carrasquilla and Melko’s research when using three neurons in the hidden layer [4-2]. These 

results also indicate that with only two neurons, the order parameter, 𝑚(𝑥), can be found, 

and a prediction of the critical temperature, 𝑇#, of the system can be made, as seen in Figure 

5-11. 

  It is necessary to remark that the neural network does not have prior knowledge for 

the search of the critical temperature and the order parameter of the system, the NN only has 

the different configurations made by the Monte Carlo simulation.  
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Figure 5-10. Weight values in each neuron after the training. 

 

 

 

 

 

 

 

Figure 5-11. Average output layer versus temperature T of a NN with two neurons in the hidden 
layer for the hexagonal lattice of L=20. 

 

To improve the accuracy between the predicted value and the theoretical value of the 

critical temperature 𝑇𝑐, a neural network with 300 neurons in the hidden layer was 

implemented for hexagonal lattice sizes of 20, 40, 60, and 80.  
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For L=20, the neural network was able to correctly classify 95 % of the uncorrelated 

data in the test set, at the same temperature as the training set. As the system increases, the 

classification of the uncorrelated data improves, obtaining a 97% of accuracy for system with 

L=80. The closer predicted temperature  𝑇# = 1.546𝐽/𝐾<  was obtained for the system size 

L= 80, which make sense, since the real critical temperature of this system was calculated 

for an infinite system. Therefore, as the lattice size becomes larger, the transition temperature 

is closer to the real thermodynamic value. Also, by having a greater number of neurons in 

the hidden layer, the neural network learns better, given better accuracy results for the critical 

temperature.  

 

 

 

 

 

Figure 5-12. Average output layer versus temperature T of a NN with 300 neurons in the hidden for 
L=20, 40, 60 and 80 in hexagonal lattice. 
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 The discrepancy of the results in both PCA and NN for the predicted 

temperature in square and hexagonal systems can easily be attributed to finite-size effects 

[4.2] and to the temperature resolution used in each system.  

 In PCA, the average of the second component	𝑦O had to be calculated for a 

given temperature value, which generates another error factor. Based on the above, it is 

impossible to obtain an error difference between de predicted value of the critical temperature 

and the theoretical value for both systems.  
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6 CONCLUSIONS 

 

In this work, an unsupervised machine learning technique Principal Component Analysis 

was employed to study phase transitions in the Ising model for two specific systems: the 

square and hexagonal Ising model systems.  The supervised machine learning technique 

Artificial Neural Network was also implemented for the hexagonal system.   

Principal Component Analysis was able to recognize phase transitions in the Ising 

model.  PCA results yielded a leading component and a constant weight vector, related to 

this particular component, for both systems. From this main component, the order parameter 

of the system was identified. It was possible to mimic the magnetization and the susceptibility 

in the Ising model with the two-leading component. Also, the critical temperature	𝑇# in the 

square and hexagonal systems were determined. For the square system a 𝑇# = 2.26339	𝐽/𝐾< 

was obtained and  for the hexagonal system a 𝑇# = 1.51508	𝐽/𝐾<,  having a 0.5% percent 

error from the true thermodynamic critical temperature. 

 

When PCA was fed with spin configurations from Monte Carlo, spatial order patterns 

were recognized by clustering the data between the ordered and disordered phases as shown 

in Figures 5-2c and 5-6c. An interesting fact about the PCA technique for the ferromagnetic 

Ising model is that the weight vectors correspond to the Fourier modes of the spin 

configurations. The first weight vector is associated with the ordered phase and is enclosed 

in a single point, k0 = (0,0); hence, the physics of the Ising model is shown in a single 

dominant eigenvalue.  



 
 

54 
 
 

However, careful analysis reveals that further components also encase relevant 

information about the system. For example, information about the susceptibility of the Ising 

model for both the square and the hexagonal systems could be obtained from the second 

component. The weight vector associated with this component shows that the second Fourier 

mode corresponding to the spin’s configurations remains an unknown that can be addressed 

by future research. The other Fourier modes can potentially explain the physical meaning of 

other missing components, which could contribute to the Ising ferromagnetic model. 

 

It must be noticed that when employing PCA, no instruction is given to the model to 

look for physical properties, such as magnetization and susceptibility, nor to search for the 

Fourier modes of the different configurations. The model is only given the different 

configurations, which are provided from Monte Carlo simulation. 

 

Regarding the results obtained though NN, we observed the performance of the neural 

network based on the Ising model. With only two neurons in the hidden layer, the effect of 

the neural network training could be seen. It was determined that the order parameter is 

encoded in the training effect in the hidden layer. The weights (𝑊) were constant after 

training was achieved, observing the relationship they share with the magnetization. Also, by 

increasing the size of the network and the number of neurons in the hidden layer, it was 

possible to predict the critical temperature for the hexagonal Ising model. The closest value 

to the real thermodynamic value was obtained for the system size L = 80, corresponding to  

𝑇# = 1.546𝐽/𝐾<. 
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It is argued then, that the neural networks encode information of phase transitions by 

learning the order parameter, without knowledge of the Hamiltonian that represents the 

model.  
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