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Abstract 

 

The relationship between plants and their environment has been described as a continuum, 

in which changes of a variable may have an effect on another. Ecological shifts in temperature, 

humidity, and soil chemistry can alter the microbiome associated with superficial or the internal 

plant structures. Halophytes are plants that require the abiotic stress of salinity for optimum growth 

and development. Previous studies have highlighted the differences in their unique microflora in 

contrast with mesophilic plants.   

Avicennia germinans, also known as black mangrove, is an ecologically important 

halophyte found at the intertidal areas of tropical and subtropical regions. This study was targeted 

at evaluating the biodiversity of the prokaryotic halophilic or halotolerant endophytes in different 

strata in Avicennia germinans, as well as their community shifts based on salinity gradients using 

culture-independent techniques. These analyses can increase our understanding on the associated 

microbiota and metabolic processes that help the black mangrove thrive in such harsh conditions 

in their ecosystems, as there are no studies that assess the endophytic prokaryotic diversity in this 

plant species.  

Two mangrove patches located at the Solar Saltern System of Cabo Rojo, Puerto Rico, 

denominated in this study as HS and Sal, were selected based on their variable water source (saline 

pond vs. hypersaline pond). Using classical culture techniques and phylogenetic analyses, one 

archaeal and eight different bacterial genera were recovered as endophytes of black mangroves. 

Diversity among sampling sites was determined using Shannon, Simpson and Jaccard diversity 

indexes. Based on the taxonomic analysis of three strains, this study proposes a bacterial and an 

archaeal new species and one new bacterial genus. Culture-independent analyses of prokaryotic 
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endophytes of black mangrove retrieved 16,285 OTUs total, of which 9,445 OTUs were obtained 

from HS samples and 6,840 OTUs from Sal samples. A total of five phyla were identified in both 

sampling sites (HS and Sal). On a genus level, 58 different genera were retrieved, of which only 

39 are shared among both sampling sites. Shannon, Simpson and Jaccard indexes were calculated 

to determine the diversity, evenness and similarities between samples. Highly represented genera 

were consistent in both samples, raising the question of the ecological role these organisms play 

in the development and physiology of the plant.  
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Resumen 

 

La relación entre las plantas y su medio ambiente ha sido descrita como un continuo en el 

que cambios en una variable pueden causar efectos en otra variable. Cambios ecológicos en 

temperatura, humedad y química del suelo pueden traer consigo alteraciones en el microbioma de 

las plantas, presentes en la superficie como en estructuras internas. Los halófitos son plantas que 

requieren altas concentraciones de sales en el suelo para tener un crecimiento y desarrollo óptimo; 

estudios previos han resaltado las diferencias del microbioma asociada a halófilos en contraste con 

plantas mesofílicas. 

Avicennia germinans, también conocido como mangle negro, es un halófilo 

ecológicamente importante localizado en las zonas entre mareas de regiones tropicales y 

subtropicales. Este estudio fue destinado a evaluar la biodiversidad cultivable de endófitos 

procariotas halofílicos y halotolerantes a través de distintas estratas de la planta, así como los 

cambios en comunidades de endófitos de mangle basados en gradientes de salinidad utilizando 

técnincas independientes de cultivo. Estos análisis pueden incrementar nuestro entendimiento 

acerca de la presencia microbiana en estos ambientes, así como los procesos que puedan permitir 

que el mangle negro se establezca en estas condiciones severas debido a que, hasta el momento, 

no existen estudios que se enfoquen en la diversidad de endófitos en esta especie de planta. 

Dos áreas de bosque de mangle fueron seleccionados en el sistema de Salinas de Cabo 

Rojo, Puerto Rijo, denominadas en este estudio como HS y Sal (laguna hipersalina y laguna salina, 

respectivamente). Utilizando técnicas dependientes de cultivo y análisis filogenéticos, ocho 

distintos géneros del domino Bacteria y uno del dominio Arquea fueron aislados como endófitos 

de Avicennia germinans. La diversidad en cada lugar de muestreo fue determinada utilizando los 
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índices de diversidad Shannon, Simpson, así como el índice de similitud de Jaccard. Basado en la 

identificación taxonómica de tres cepas aisladas, este estudio propone una nueva especie del 

dominio Bacteria y una del dominio Arquea, así como un género bacteriano novel. En cuanto a los 

análisis independientes de cultivo, 16,285 OTUs totales fueron adquiridos, de los cuales 9,445 

pertenecían a las muestras HS y 6,840 a las muestras Sal. Un total de 5 filos fueron identificados 

en ambas muestras. Al nivel de género, 58 distintos géneros fueron adquiridos, de los cuales sólo 

39 son compartidos entre ambos sitios de muestreo. Los índices de Shannon, Simpson y Jaccard, 

fueron calculados para determinar la diversidad y similitud entre las muestras. Los géneros 

altamente representados fueron similarmente dominantes en ambas muestras, aumentando la 

incertidumbre del rol ecológico que estos organismos tienen en el desarrollo y fisiología del 

mangle negro. 
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Introduction 

 

Mangroves are woody plants that possess a variety of morphological and physiological 

adaptations for life. They are usually found in the intertidal areas of tropical and sub-tropical 

regions, with a world-wide total coverage area of 137,760 km2 in the 2000 [1]. These plants 

provide a suitable habitat for multiple species, including animals, plants, fungi, and prokaryotes, 

mainly due to the litter production that allow biogeochemical processes to occur [2–5]. Thus, 

mangrove forests are considered the major coastal ecosystem [2]. These forests are vital for the 

protection of extensive diversity of marine life including coral reefs, sea grass beds and associated 

organisms [6,7]. Furthermore, they contribute to the stabilization of coastlines, avoid shore 

erosion, and protect the shore from tidal waves [4,8–11]. However, a high incidence of mangrove 

mortalities have been reported in the past decades due to anthropogenic impact [12].  

In Puerto Rico, the mangrove coverage includes 4 main species: Rhizophora mangle, 

Laguncularia racemosa, Conocarpus erectus, and Avicennia germinans [13]. The latter, also 

known as black mangrove, is a halophyte that grows in tropical and subtropical areas, 

predominating in hot, arid climates with nutrient deprived soils and high concentration of 

precipitated salts [10,12,14]. These conditions often come in hand with anoxia, periodical flooding, 

and heavy metal deposition [15,16]. To endure these conditions, black mangroves have developed 

morphological and physiological adaptations including pneumatophores – aerial roots to optimize 

oxygenation [14,17], dwarfism [13] and salt excretory glands [18]. Although these morphological 

traits have enabled the plant to thrive in hostile environments, it is desired to determine other 

factors that can promote their establishment and growth.  
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Studies regarding microbial-plant interactions have elucidated that several naturally 

occurring processes in plants can be improved or mediated by organisms associated to their host 

[19–21]. To understand these relationships, it is imperative to know the microbial organisms that 

colonize the plant, and the source of diversity – if its host dependent or environment dependent. 

Few studies have been conducted to understand the prokaryotic diversity associated to Avicennia 

germinans and its importance for plant functioning. These studies include the analysis of the 

microflora associated with the rhizosphere and surface of Avicennia germinans [6,11,22–24]. 

Thus, the analysis of endophytic microorganisms associated with the black mangrove could 

increase our understanding about the potential metabolic processes that help this plant thrive in 

such harsh conditions in their ecosystems. This information can be useful to further develop 

mangrove conservation strategies, as well as to improve crop production in salinized soils. The 

main goal of this study is to determine the prokaryotic biodiversity of halophilic or halotolerant 

endophytes within the black mangrove, focusing on the diversity in different areas of the plant and 

among different environments (saline and hypersaline), as a stepping stone towards the 

understanding of mangrove-microbe interactions.  
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Literature review 

  

1. Halophytes  

 Globally, 950 million hectares of dry land and 250 Mha of agricultural land, are in contact 

with sea-water or affected by soil salinization [25,26]. This phenomenon, carried by the deposition 

of salts in the soil, generally Na+ and Cl- ion, can be caused naturally or anthropogenically. 

Naturally-occurring salinity stresses mostly happen as result of high evaporation rates, causing 

drought in the soil and an increase in salt ion deposition [27]. Known sites where the associated 

soil presents this trait include salt marshes, solar salterns, salt lakes, coastal shores, among others. 

Anthropogenically impacted soils can also increase soil salinization, especially after continuous 

irrigation with low-quality water. Reports by Munns and Tester show that currently 20% of the 

irrigated soils have been reported with an increase in salt deposition, with a yearly estimate 

increase of 0.5-1% [28].   

 Even though most plants, denominated as glycophytes, cannot withstand the osmotic 

stresses caused by increased salinity in soil, a specialized group of plants can. Halophytes are 

plants that, can grow in the presence of salt in the soil [29]. This definition has been analyzed and 

modified multiple times, to the extent where the creation of subcategories has occurred. Real 

halophytes require soil salinization to complete their life cycle, whereas natural halophytes has 

been attributed to plants that do not live in saline conditions but can tolerate it [30]. The range of 

salt tolerance varies from one species to another, however, “true” halophytes can resist over 200 

mM NaCl [31,32].  

This group encompasses a wide variety of plants, both terrestrial and marines. Highly 

studied terrestrial-halophytes include to Suaeda maritima, Atriplex spongiosa, Puccinellia 
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peisonis, Spartina townsendii, and Arthrocnemum machrostachyum [30]. On the other hand, 

mangroves and seagrasses are marine halophytes studied as well. [6,11,22–24,33]. Both these 

groups are subject of research to understand some salt tolerance strategies developed for survival.   

 

1.1 Salt Tolerance Traits 

Increased soil salinity can be detrimental for plant development in the absence of tolerance 

mechanisms. Ions precipitated in the soil, including Na+ and Cl-, can be thoroughly absorbed and 

transported from the roots to the rest of the plant. In this scenario, photosynthesis can become 

impaired, and cell toxicity due to the excess generation of reactive oxygen species (ROS) can end 

in the fatality of the plant[34]. Lacking the necessary machinery to thrive in higher salinity and 

decreased water potential, can cause the cellular homeostasis to be impaired, for which 

physiological/morphological modifications occur [35]. Halophytes have developed diverse salt 

tolerance mechanism to bear various abiotic stresses, being salinity the primordial stressor. These 

strategies include osmoregulation, ion exclusion, and ion compartmentalization.   

  Increased soil salinity has been associated with diminished water uptake through the roots 

causing plant dehydration. To avoid the inhibition of water uptake, halophytes developed a positive 

turgor adjustment with the accumulation of solutes in the cells [30,31]. Nevertheless, no 

glycophyte or halophyte can thrive with high concentrations Na+ in the cytoplasm, for which 

halophytes developed specialized vacuoles to store these ions through an Na+/H+ antiporter 

[34,35]. The functionality of this antiporter is mediated by Salt Overly Sensitve (SOS) stress 

signaling, a pathway that, in the presence of salt, produces a series of proteins that activate the 

antiporter [35]. Halophytes have these proteins overexpressed for tolerance. In the case of 

halophytic succulents from the family Chenopodiaceae, two thirds of the solute concentration in 
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the cells was attributed to the solutes Na+  and Cl- in the specialized internal structures[30], a 

phenomena observed in dry soils to maintain turgor [28]. On the other hand, other plants that 

accumulate Na+ internally require epidermal bladder cells to tolerate the salinity stress. In these 

cells, or glands, after salt ions are accumulated, an energy-expensive process of salt excretion to 

the environment occurs [36]. Halophytes exhibiting this trait are denominated as recretohlophytes, 

a term used to explain their salt exclusion modifications [37]. Even with this physiological change, 

the plant also suffers morphological changes to compensate for the low water potential. As a 

response to osmotic stress, halophytes might also reduce cell expansion causing young leaves to 

grow smaller, as well as roots [28].  

Another technique for salinity tolerance is the accumulation of osmolytes. Osmolytes are 

compatible solutes that do not interfere with natural cell metabolism [35]. These include proline, 

glycine betaine, sugars and polyols [38]. In Avicennia marina, the solute accumulated varies 

according to the life stage of the plant [39]. In young plants, the Na+ excess is being compensated 

by glycine betaine in the leaves, whereas in the stem a distribution of glycine betaine and the sugar 

stachyose equally compensate for the salt presence. As the organism matures, less glycine betaine 

is produced to compensate for the osmotic stress in the leaves, as well as in the stem. In the roots, 

a low content of osmolytes are produced [39]. In contrast, the mangrove Aegiceras corniculatum 

has a preference forwards mannitol as compatible solute, whereas pinitol is the predilected 

osmolyte of Aegialitis annulata [40].  

 

2. Mangroves  

Mangroves are woody plants that comprise around 200,000 km2 of tropical and subtropical 

coastal vegetation (figure 1) [1,41–43]. They are divided in 9 orders, 20 families, 27 genera and 
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over 70 species  [7]. These  are characterized by growing in the sea-land interface, usually in 

anaerobic soils with variable salinity concentrations, high temperatures, and high tides [44,45].  

Despite the fact that these characteristics may limit nutrient uptake, mangrove forests are 

considered enriched ecosystems based primarily on their productivity, diversity and uses [9]. 

Simultaneously, such forests contribute to the carbon cycle allowing carbon fixation into biomass. 

When extrapolated, due to their limited coverage (2% of the worlds surface), they can be easily 

compared to tropical forests [46]. Ecologically, they contribute to the stabilization of coastlines, 

storm and erosion protection, and production of organic matter; also, mangroves serve as habitat 

for other plants, animals and microorganisms, among others [9]  

 

Figure 1: Worldwide distribution of mangrove forests (green lines). [1]  

 

  In spite of their ecological importance, tolerance to variable environmental 

conditions and their role in coastal stabilization, these forests have decreased world-wide since 

1980 at a rate of 2.1% per year [45]. This population decline has been linked mostly to 

anthropogenic factors, such as increase in human population, industrialization, land use and 

aquaculture [7,12,45]. However, in Puerto Rico, the decline of mangrove forests occurred from 

the 1800s up to the 1972, when the legal protection of all mangroves in the island was approved 

[45]. Up to this date, 2000 hectares of mangrove forests have been recovered.  
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In Puerto Rico, mangrove forests have been reported to be found in 97 different locations 

throughout the island [45], composed of four different species: Rhizophora mangle (red 

mangrove), Laguncularia racemosa (white mangrove), Avicennia germinans (black mangrove) 

and a pseudo-mangrove Conocarpus erectus (buttonwood mangrove) [13]. Each species, 

excluding buttonwood mangroves, exhibit morphological adaptations based on soil oxygenation 

and salinity. Red mangroves present aerial roots, that allow the plant to situate in the interface 

between sea water and shore, as well as to inhabit a wide variety of marine life [47]. Black and 

white mangroves may exhibit pneumatophores, a root modification that is correlated to soil anoxia 

and heavy metal deposition [48].  Other adaptations include accelerated canopy development and 

mechanisms for nutrient retention [7]. 

 

2.1 Black mangrove, Avicennia germinans  

Avicennia germinans, from the family Avicenniaceae and known as black mangrove, is 

classified as a recretohalophyte due to the presence of salt excretion glands for salt tolerance and 

its soil salinity requirements [49]. In the south of Puerto Rico, such trait allows A. germinans to 

become the colonizing species during secondary succession in Rhizophora and Laguncularia-

dominated forests, avoiding mortality due to salinity increase in the soil [13].  

Multiple prokaryotic organisms have been reported in association with the rhizosphere and 

leaf surface of A. germinans. Some include representatives from the genera Staphylococcus, 

Pontibacillus, Kushneria and Halobacillus [6,11,23,24]. However, few studies have been 

conducted on the prokaryotic diversity of the endosphere of the black mangrove and its relative 

importance. Studies regarding fungi-mangrove interactions have reported various representatives, 

including Colletotrichum, Glomerella, Nodulisporium Phomopsis and Sordaria, as endophytes of 
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the Avicennia individuals  [50]. Even though most of these genera were were ubiquitous in the 

three mangrove genera under study (Avicennia, Laguncularia and Rhizophora), the genera 

Hormonema, Microsphaeropsis and  Phoema were only found in Laguncularia, whereas 

Phyllosticta and Sphaerosporium were specific for Rhizophora [50].   

 

3. Endophytes 

Endophytes are eukaryotic or prokaryotic organisms that live within a plant at some point 

of their life, without causing harm to their host [51–53]. Multiple studies have identified that 

endophytes provide the plant with: insecticide, antifungal or antibiotic metabolites [52,53], in 

addition to hormones, and enzymes [17,54]. Furthermore, it has been elucidated that the 

endophytic production of the mentioned compounds provides the host with the ability to resist 

pathogens, tolerate adverse environmental conditions and thus, to expand their habitat.  All of these 

may be mediated through:  (a) phytohormone signaling [55], a process where certain bacteria 

regulate plant growth by producing hormones required by the plant; (b) nutrient acquisition [55–

57],where specialized bacteria perform nutrient recycling within the plant, (c) protection against 

pathogens [51,52,58]; and (d) tolerance towards abiotic stress (i.e. drought, low temperatures) [55]. 

Since the high presence of diluted salts in the soil is considered an abiotic stress, a plant-microbe 

interaction that provides the plant with halotolerance is suggested.  

 

3.1.1 Phytohormone and phytocompound production 

Direct benefits microbes can provide to plants are germination and growth, performed by 

plant growth-promoting (PGP) organisms [59–61]. For instance, Navarro-Torre et al. [62,63] have 

isolated and analyzed the germination and growth-promotion that bacterial endophytes provide to 
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their host, Arthrocnemum macrostachyum. This study unveiled the increase in velocity and count 

of  germinated seeds in presence of endophytic PGP bacteria of the genera Bacillus and 

Gracibacillus in the presence of NaCl [63]. Another halophyte analyzed for its PGP endophytes 

was Limonium sinense, by Qin et al. [64]. Aiming to determine the potential endophytes to provide 

stress tolerance during germination, the endophytes Isoptericola sp., Arthrobacter sp., 

Streptomyces sp., and Bacillus sp. were tested. With an increase in salinity of the germination 

media, a decrease in germination was observed in the control. Similarly, a decrease in germination 

was observed in the inoculated plants. Nevertheless, a higher germination rate when compared to 

the control was observed, indicating that retardation of the effects of salinity stress is provoked 

with the inoculation of these endophytes. The best yield in germination was provided by Bacillus 

sp. [64]. 

PGP properties have been associated with the production or modification of compounds. 

Desale et al. [65] discovered some moderate halophiles are capable of providing the plants with 

phytohormones. In this study, the genera Halobacillus and Halomonas were analyzed for their 

production of indole-3-acetic acid (IAA), a phytohormone required for plant growth and 

development. These two genera were able to produce 95-168 µg/mL of this hormone in low 

concentrations of heavy metals. Other studies in the halophyte Limonium sinense, also determined 

the potential of endophyte-mediated IAA production [64]. In this study, out of the multiple 

endophytes isolated, some strains identified within the genera Streptomyces, Klebsiella, Serratia, 

Pseudomonas, and Bacillus were producers of IAA. In contrast with the studies by Desale et al. 

[65], lower IAA production was observed (ranging from 0.15-8.24µg/mL), where Bacillus sp. was 

the isolate with lower IAA production rate and Streptomyces sp. with the highest [64]. These 

results go in hand with studies in glycophytes, as observed in the studies by Phecharat and 
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Duangpaeng [66]. This study identified Pseudomonas sp., Bacillus sp., Azotobacter sp., and 

Enterobacter sp. as endophytes of rice with the potential of IAA production. All strains produced 

IAA in values higher than 10µg/mL, however the highest value of IAA production was not higher 

than 15 µg/mL. In a similar manner, researchers reported multiple endophytic strains in Solanum 

lycopersicum (tomato), among which Bacillus sp. presents the highest IAA production (8.7µg/mL) 

[67]. In these scenarios, both glycophytes and halophytes have associated PGP microbiota but the 

phytohormone production by Halobacillus spp. and Halomonas spp. is substantial. 

 

3.1.2 Nutrient cycling 

The endosphere of halophytes can be an environment with nutrient limitations due to low 

transport of compounds in a usable redox state. Endophytes have been known to collaborate in 

biogeochemical processes for nutrient availability. Phosphate solubilization is a trait multiple 

endophyte provide the plant with. In this process, microorganisms transform inorganic phosphate 

compounds to soluble phosphate compounds [68]. In studies analyzing the PGP bacteria from rice, 

the genera Flavobacterium  was denominated as the phosphate solubilizer with the highest potency 

and highest tolerance to salinity stress [69]. Other investigations focused on detecting the 

capability of phosphate solubilization include other bacterial genera such as Bacillus, 

Halobacillus, Pseudomonas, Paenibacillus, Enterobacter  and Proteus [68,70–72].      

Archaea have been observed in metagenomes as part of endophytic communities, but yet 

have to be isolated from plant tissue. Nevertheless, studies conducted by Yadav et al. [73] selected 

previously described strains of haloarchaea to test their phosphate solubilization potential. Strains 

used are part of the following genera: Halolamina, Halobacterium, Halococcus, Haloferax, 

Halosarcina, Haloterrigena, Haloarcula, Halobacterium, Halostagnicola., Natrinema, and 
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Natrialba [73]. From these strains, the ones that solubilized the highest quantities of phosphate 

were Natrinema sp. and Halococcus sp. with 134.61 and 112.56 mg/L, respectively. This raises 

the question of the ecological role archaea in plants.  

Nitrogen fixation is a role commonly associated with soil bacteria or rhizobacteria [74]. 

However, endophytic bacteria have also been reported to conduct this process. As reported by Li 

et al. [75], the capacity of nitrogen fixing will vary from one endophyte to the other. The 

endophytic isolates of elephantgrass (Sphingomonas sp., Bacillus sp., Pantoea sp., and 

Enterobacter sp.) presented differences in nitrogen fixing potential. In this study, all strains were 

able to fix nitrogen, but Sphingomonas sp. and Pantoea sp. had higher fixing capacities. In contrast, 

all strains had a very low capacity of ammonia production [75].  

 

3.1.3 Pathogen protection 

Endophyte-mediated resistance to infections occurs with the production compounds that 

alleviate, repel or suppress infections. The first study that recorded pathogen protection by 

endophytes was focused on the Dutch elm disease in the plant Ulmus glabara, caused by 

Ceratocystis ulmi [76]. The infection was avoided thanks to the fungal endophyte Phomopsis 

oblanga by decreasing the pathogenesis of C. ulmi with the production of toxic compounds that 

repelled the vector [51]. This study was conducted by Joan Webber in 1981 [76], serving as 

stepping stone for the analysis of endophytes for their protection properties.  

One group of compounds that can be regulated by the presence of endophytes in plants are 

the flavonoids. These have been suggested to work as microbial-infection suppressors. That is the 

case of the cedar-apple rust, caused by the fungal pathogen Gymnosporangium yamadai, where 
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this compound is key in the signal-transduction pathway to combat pathogenesis. Thus, flavonoid 

production by the plant limits the pathogenic infection [77].   

Flavonoids tend to be produced and accumulated in the plant Limonium sinense due to 

abiotic stress. In the study performed by Qin et al. [64], salinity stresses and endophyte-mediated 

flavonoid production were assessed. The individual inoculum  of the endophytes Arthrobacter sp, 

Streptomyces sp., Isoptericola sp., and Bacillus sp. showed a dramatic increase of flavonoid 

production was observed compared to the control. Interestingly, all endophytes presented lower in 

flavonoid production in 200mM NaCl, but this value increased with the salinity increase [64]. This 

pattern indicates that in the presence of endophytes less pathogenic diseases may occur due to a 

rapid infection response.  

The production of bioactive compounds by endophytes has also been recorded. The 

endophytic fungi Pestalotiopsis jester, isolated in Papua New Guinea, produces a compound 

denominated as jesterone. This secondary metabolite presents activity against oomycetes (now 

Stramenopiles), fungal-like protists [78]. The importance of this compound relies on the 

catastrophic damages on the agriculture caused by oomycetes with diseases including root rots, 

downy mildews, blights, and damping off [79]. Plant treatments for these infections in the absence 

of compounds specified for oomycetes require the mixture of fungicides, a practice that affects the 

natural microbiota, rather than eliminating the pathogen. Other isolated and identified bioactive 

compounds from endophytes include the antifungals: cryptocandin A and cryptocin, obtained from 

the fungi Cryptosporiopsis cf. quercina; and ambuic acid, produced by Pestalotiopsis microspora 

[78]. 

 

3.1.4 Abiotic stress tolerance 
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Studies previously discussed by Navarro-Torre et al. [63] have also assessed the tolerance 

towards saline stresses by the halophyte Arthrocnemum macrostrachyum. For this, plants 

inoculated with the PGP bacteria (genera: Bacillus sp. and Gracibacillus sp.) and uninoculated 

plants were exposed to two salinities, 510 mM NaCl– optimum for plant growth – and 1030 mM 

NaCl. No significant differences were observed in shoot to root dry mass, since the plants were 

growing on an optimum level. However, a decrease in plant growth was observed in 1030mM 

NaCl, but the effect was diminished in inoculated plants, suggesting a resistance towards the 

abiotic stress [63].  

To test the effects of salt in Limonium sinense, four endophytes (Arthrobacter sp, 

Streptomyces sp., Isoptericola sp., and Bacillus sp.) were selected as inoculum. Also, four 

variations in NaCl concentration (0 mM, 100 mM, 200 mM and 250 mM NaCl) were used as 

treatment. Changes in the morphology of the uninoculated plant were observed in salinity increases 

over 100 mM NaCl, since this is an optimum concentration for growth. In 200 and 250 mM NaCl, 

a decrease in root and leaf presence was evident. However, once again the endophytes buffered 

the effect on the salinity in the plant, suggesting that there is mitigation of the abiotic effects [64].  

In 2016, Li et al. [75] decided to test the abiotic resistance mediated by endophytes from 

the glycophyte Pennisetum purpureum (elephant grass) to a Hybrid Pennisetum. Four strains from 

the genera Sphingomonas, Bacillus, Pantoea, and Enterobacter were isolated from the elephant 

grass, and co-inoculated into a Hybrid Pennisetum. After exposure to control and high salinity 

conditions, the plants with the inoculum showed increased growth in leaf and roots when compared 

to the uninoculated. Simultaneously, at 200 mM NaCl, the plants with the inoculum had better 

growth patterns than those inoculated at 0 mM NaCl. At 300 mM NaCl, the growth of inoculated 

plants decreased, indicating that salinity tolerance will plateau after a certain salinity 
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concentration. As a conclusion this study showed the viability of endophyte-mediated transferred 

resistance to abiotic stresses.  

 

3.2 Systematics of endophytes  

Systematic studies regarding the microbial composition of halophyte’s endosphere remain 

scarce.  However, metagenomic diversity analysis performed by Mora-Ruiz et al. [80] elucidated 

the endophytic composition of various halophytes of the subfamily Salicornioideae, originated 

from Chile and Spain. Representatives of the genera Chromohalobacter, Salinicola, Halomonas, 

Kushneria, Marinococcus, Halobacillus, Staphylococcus and Brevibacterium were observed as 

part of the microbiota of these plants [80]. A similar genera composition was reported from the 

halophyte Arthrocnemum macrostachyum, in the family Amaranthaceae. This plant presents 

physiological traits that allow growth in a wide range of salinities [62,81]. Additional genera were 

recorded in this study (Rudaea, Psychrobacter, Pseudomonas, Marinobacter, Marinimonas, 

Vibrio, Enterobacter, Burkholderia, Alkalibacillus, Rhodovibrio and Streptococcus) suggesting 

that certain communities are shared among various halophytes [81]. In contrast to previous 

research, Mora-Ruiz et al. [81] demonstrated the compartmentalization of microbiome of 

Arthrocnemum macrostachyum. This suggests that the relative abundance of each represented 

genus varies according to their location within the plant.  The evolution of this plant-microbe site-

specific interaction should be further explored since it may reveal biotechnological applications as 

well as conservation insights for the plant.  In this study, it was also elucidated how the microflora 

associated with the internal tissues of the plant increased abiotic-stress tolerance towards salt, 

allowing the normal internal processes to occur [63].   
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Objectives 

 

1. To assess the diversity of halotolerant and halophilic prokaryotes within Avicennia 

germinans by culture dependent techniques.  

2. Determine if there are differences in community composition among tree strata, and 

between saline and hypersaline forests.   

3. Provide a systematic metagenomic survey of black mangrove’s prokaryotic endophytes in 

saline and hypersaline environments.  
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CHAPTER 1: DETERMINING THE BIODIVERSITY OF 

PROKARYOTIC ENDOPHYTES OF AVICENNIA GERMINANS 

USING CULTURE-DEPENDENT TECHNIQUES 

 

Specific Aim 

 

To isolate, categorize and quantify the culturable halotolerant/halophilic prokaryotes 

within Avicennia germinans, and to assess differences in culturable diversity in mangrove forests 

due to proximity to aquatic systems with variable salinity.  

 

Methodology 

 

Description of Sampling Sites 

To assess the culturable variability in the diversity of halotolerant and halophilic 

prokaryotic endophytes of Avicennia germinans due to the proximity of the trees to saline and 

hypersaline ponds, the National Wildlife Refuge at Cabo Rojo (Figure 1) was selected as sampling 

location. Two mangrove forests were identified based on similar radiation, precipitation, and 

temperature parameters; nevertheless, the water systems proximal to the forests differed. The first 

sampling site (HS) was located near the crystallizer ponds (average NaCl content: 37% (w/v)) of 

the Solar Salterns of Cabo Rojo (coordinates: 17.9520001, -67.1958519), whereas the second 

sampling site (Sal) was located near a seawater-fed pond (average NaCl content: 3.5% w/v) 

(coordinates: 17.9538635, -67.2004355) (Figure 2). 
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Figure 2: Aerial view of sampling locations in National Wildlife Refuge at Cabo Rojo, Puerto 

Rico. The black dot is representative of the mangrove forest located near crystallizer ponds at the 

Solar Salterns (HS), whereas the red dot is indicative of the forest adjacent to the lagoon fed by 

seawater (Sal).  

 

 

 

 
 

Figure 3: Black mangrove forest patches used near seawater-fed lagoon (Panel A)  and crystallizer 

ponds at the Solar Saltern systems (Panel B), located at the National Wildlife Refuge at Cabo Rojo, 

Puerto Rico.  

 

 

A B 
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Samples Collection and Processing 

Three trees were selected per sampling site for leaf collection. Sun/shade exposure, height 

(3.0-3.5 m) and average distance (1.5 m) between each tree were remained constant in both 

sampling regions. Each tree was measured and divided into 3 equivalent strata (bottom, center, 

and top), from which 9 leaves from the tip of the branch were selected. Samples collected from 

each section of the tree were stored in sterile Whirl-Pak® bags and transported to the laboratory, 

where surface sterilization was conducted as indicated by Couto [33]. Sample collection was 

conducted twice per sampling site (HS: May 2016 and September 2017; Sal: July 2016 and 

September 2017).   

 

Culture, Isolation, and Purification 

Sterile leaves were sectioned using a sterile hole puncher, and the petiole was cut 

longitudinally. The obtained leaf disks and petiole fragments were placed in three different solid 

Sehgal-Gibbons (SG) culture medium having three different NaCl concentrations (10%, 15% and 

20% w/v), with three replicates per culture medium (Figure 3A). The inoculated Petri dishes were 

incubated at 30°C until growth was observed. The SG culture medium was prepared according to 

Sehgal (1960), using 20g MgSO4•7H2O, 3g trisodium citrate, 2g KCl, 2.3 μg/L FeCl2, 10g yeast 

extract, 7.5g casamino acids and 20g agar per liter[82]. The NaCl content was adjusted to the 

desired final salt percentages. The pH was adjusted to 7.1-7.3 using 1M NaOH.  

During incubation, growth was observed around the leaf disks and petiole fragments 

(Figure 3B). Different morphotypes were selected and transferred to SG medium. Gram staining 

for each isolate was performed, and morphology was determined.  
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Figure 4: Sterile mangrove-leaf disks and petiole fragments placed in SG medium (A) prior 

incubation and (B) post-incubation at 30°C. Prokaryotic growth can be observed emerging from 

the edges of the disks, however, no growth is observed on top of the plant tissue.   

 

Strain Cryopreservation 

Pure cultures were transferred to 930μL of liquid medium, with the salinity percentage of 

the solid culture media the strain was originally isolated in. Then, 70μL of DMSO was added to 

prevent cell death due to freezing. The mixture was homogenized thoroughly and stored at -80°C 

until further use.  

 

Genomic DNA Extraction Amplification of Molecular Marker: 16S rRNA gene  

Extraction of genomic DNA was performed to each strain using physical and chemical 

methods. This was completed by lysing the cells with glass beads, lysis buffer (Tris-Acetate 40mM 

pH 8.0, Sodium Acetate 20mM pH 8.0, 1mM EDTA pH 8.0, SDS 1% w/v, sucrose 0.75M), 

lysozyme and potassium acetate. DNA was cleansed using phenol-chloroform, precipitated with 

isopropanol 100%, and ethanol 70%. Nucleic acids were resuspended using PCR-grade water and 

A B 
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treated with RNase. ThermoScientific® NanoDrop™ spectrophotometer was used to determine 

the DNA concentration and quality, as well as 0.8% (w/v) agarose gel.  

 

PCR Product Purification and Sequencing 

PCR amplifications of the molecular marker 16S rRNA gene were performed using 

specific primers for bacterial and archaeal 16S. The primers 27F (5’-

AGAGTTTGATCMTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTT-3’)[83] 

were used to amplify bacterial 16S rRNA genes, whereas the primers 7F (5’-

TTCCGGTTGATCCTGCCGGA-3’)[84] and 927R (5’-CCCGCCAATTCCTTTAAGTTT-

3’)[85] were employed to target archaeal 16S rRNA genes. In the lack of amplification, the primers 

519F (5’-CCGTCAATTCMTTRAGTTT-3’) and 1392R (5’-ACGGGCGGTGTGTRC-3’) [86] 

were preferred. The PCR reactions were performed in a My Cycler™ thermocycler (BioRad) via 

the following conditions: 95°C – 5 min, (95°C – 1 min, 52°C – 1 min, 72°C – 3 min) x 25 cycles, 

72 °C – 10min, 4°C. After 16S rRNA gene amplification, PCR products were purified by 

precipitation using isopropanol 100% and ethanol 70%, and resuspended with PCR-grade water. 

Amplicon concentration and quality were measured using NanoDrop™ spectrophotometer from 

ThermoScientific® and 1% (w/v) agarose gel.  All amplicons were shipped for sequencing to 

Macrogen USA facilities. 

 

Data Analysis 

 

Phylogenetic analysis 
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The retrieved sequenced data was edited and concatenated in BioEdit[87] and uploaded to 

EZ-Taxon [88], where FASTA sequences of 16S rRNA gene from phylogenetically-relative 

strains were retrieved. Pairwise and multiple sequence alignments of each amplicon and closely 

related species were performed using  ClustalW, and a final sequence edition was conducted in 

Molecular Evolutionary Genetics Analysis 6.0 (MEGA6) software [89]. Phylogenetic distances 

were generated with the neighbor-joining tree method [90] using p-distance models parameters. 

An outgroup was selected according to the analyzed genus.  

 

 Statistical Analysis 

To determine presence and absence of different taxa among tree strata and between 

sampling sites a Jaccard index analyses were performed using a preferred richness index from 

culture-dependent procedures. Statistical analyses were conducted using the Paleontological 

Statistics Software (PAST). Venn Diagrams were created using R software and the VennDiagram 

package. 
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Results 

 

The 16S rRNA analysis revealed the composition of halophilic and halotolerant endophytes 

in sampling site HS and Sal, as well as in each stratum. Table 1 shows the number of isolated 

strains based successfully identified as archaea and bacteria per sampling site and strata. In both 

HS and Sal sampling sites, a similar overall number of isolated strains were 87 and 80, 

respectively. Seventeen percent of the isolates from Sal samples belonged to the Archaea domain, 

whereas a smaller percentage of this domain (7.5%) was found in the HS samples.  

 

Table 1: Comparison of quantity of sequenced strain per tree stratum in HS and Sal sampling sites.  

  

Sampling 

Site 

Sequenced Strains Per Strata  

Superior Center Inferior Total 

Bacteria Archaea Bacteria Archaea Bacteria Archaea  

HS 38 1 17 2 19 3 80 

Sal 36 6 17 3 19 6 87 

 

 

Sequencing and bioinformatics methods revealed that the isolated strains were closely 

related to the following: Palleronia spp. (Figure 5), Kushneria spp. (Figure 6), Marinococcus spp. 

(Figure 7), Halobacillus spp. (Figure 8), Salinisphaera spp. (Figure 9), Bacillus spp. (Figure 10), 

Staphylococcus spp. (Figure 11), Pontibacillus spp. (Figure 12) and Halococcus spp. (Figure 13). 

Of all 9 represented genera, only Halococcus spp. belongs to the Archaea domain. Phylogenetic 

trees were generated using the best curated sequences, and not every strain recovered from the 

genus is represented.  
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Figure 5: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates C3D1-1, B11Q-1, DI2-2 from Avicennia germinans leaf 

tissue and closely related strains. Bar represents 2 substitutions per 10 nucleotides. Kushneria 

avicenniae DSM 23439 was used as an outgroup. 
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Figure 6: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates (Q1T1-8A, DS3-1B, DS3-A, A2Q2-4, DI3-7B, QS3-7, 

QS2-4, VS1-5, QI1-1B*, Q2C1-1, Q2C1-4, MIIID4, DI3-7A, DI3-7C, QS2-2, QM1-1, IIIQ-1, 

QI3-13, V3B3-4, Q2C1-2, D2B1-1) from Avicennia germinans leaf tissue and closely related 

strains. Bar represents 1 substitution per 10 nucleotides. Escherichia coli J01859.1 was used as an 

outgroup. 
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Figure 7: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates (V2B1-6, B2Q-11, A1Q-11, V2B1-7, B2B1-4, A2Q-61, 

D3B1-3, A1Q-12, A2Q-23, A2V-21, A2V-31, A1V-22) from Avicennia germinans leaf tissue and 

closely related strains. Bar represents 2 substitutions per 10 nucleotides. Escherichia coli J01859.1 

was used as an outgroup. 
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Figure 8: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates (B1Q-11, Q1T1-6) from Avicennia germinans leaf tissue 

and closely related strains. Bar represents 2 substitutions per 10 nucleotides. Escherichia coli 

J01859.1 was used as an outgroup. 
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Figure 9: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates (Q1T1-1, Q1T1-3, Q1T1-5, B3V1-2) from Avicennia 

germinans leaf tissue and closely related strains. Bar represents 1 substitution per 10 nucleotides. 

Halothiobacillus hydrothermalis R2 M90662 was used as an outgroup.  
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Figure 10: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates (B3D1-5, VS1-10) from Avicennia germinans leaf tissue 

and closely related strains. Bar represents 5 substitutions per 100 nucleotides. Halobacillus 

locisalis MSS-155 was used as an outgroup.  
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Figure 11: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected bacterial isolates (QI3-5, VSA-5, QI1-10, A3D2-2, A3D2-3, B3V1-1, 

A3D3-5, B3D1-2) from Avicennia germinans leaf tissue and closely related strains. Bar represents 

2 substitutions per 10 nucleotides. Escherichia coli J01859.1 was used as an outgroup.  
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Figure 12: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of bacterial isolate Z21D-3 from Avicennia germinans leaf tissue and closely related 

strains. Bar represents 2 substitutions per 10 nucleotides. Kushneria aurantia A10 T was used as 

an outgroup.  
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Figure 13: Phylogenetic analysis using the neighbor-joining method of partial 16S rRNA gene 

sequences of selected archaeal isolates (B3Q1-4, ZIA-3, B3Q1-1, Z1A-2, A1A-3, Z1A-1, IIIV-

5B, V1T1-2) from Avicennia germinans leaf tissue and closely related strains. Bar represents 1 

substitution per 10 nucleotides. Halalkalicoccus tibetensis DS12 was used as an outgroup.  
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Table 2: Number of strains and their closely related genera per strata in sampling sites HS and 

Sal.  

Genera 
HS 

Total 
Sal 

Total 
Superior Center Inferior Superior Center Inferior 

Staphylococcus  0 0 0 0 4 2 2 8 

Bacillus  0 0 0 0 1 1 0 2 

Halobacillus  5 1 0 6 2 0 0 2 

Pontibacillus 0 0 1 1 0 0 0 0 

Marinococcus  8 1 9 18 4 0 0 4 

Kushneria  14 14 8 36 21 9 13 43 

Salinisphaera  10 1 1 12 4 4 2 10 

Palleronia  1 0 0 1 0 1 2 3 

Halococcus  1 2 3 6 6 3 6 15 

 

Table 2 shows the genera presence per sampling site, as well as per strata. The HS sample 

had representatives of the genera Halobacillus, Pontibacillus, Marinococcus, Kushneria, 

Salinisphaera, Palleronia and Halococcus. Sal isolates also were categorized in the genera 

Halobacillus, Marinococcus, Kushneria, Salinisphaera, Palleronia and Halococcus; however, no 

Pontibacillus representative was isolated from the Sal samples. The presence of Staphylococcus 

spp. and Bacillus spp. was also recorded in Sal sampling site (Figure 14). In both regions, 

Kushneria spp. showed the highest frequency of isolation, with 36 strains in HS (45%) and 43 

isolates in Sal (49%). Considering only the different isolates per sampling site, the calculated 

Jaccard index between the HS and Sal sampling sites had a shared frequency of ~0.67. 

 

Table 3: Jaccard index analysis of culture-dependent samples, comparing the genera presence in 

both HS and Sal sampling sites.  

 SAL 

HS 0.66666667 

  

 



 

 

33 

 
Figure 14: Venn diagram of total isolated and shared genera between samples from HS and Sal 

collection sites. 

 

Stratum variances were also tested focusing on isolated genera. In HS samples, as 

represented in Figure 15, a total of 6 genera (Halobacillus, Marinococcus, Kushneria., 

Salinisphaera., Palleronia and Halococcus.) were isolated from the superior section of the tree. 

Similar to the superior stratum, Halobacillus spp., Marinococcus spp., Kushneria spp., 

Salinisphaera spp., Palleronia spp. and Halococcus spp. were isolated from the central area; 

however, the genera Palleronia spp.was not recovered from this region. The inferior region of the 

tree also shared the genera Marinococcus, Kushneria, Salinisphaera and Halococcus. 

Furthermore, the genera Pontibacillus was also isolated from the lower stratum. Table 4 includes 

the Jaccard indexes of the comparisons among strata in the HS samples. The superior and center 

stratum of the mangroves presented frequency of shared genera of ~0.83, while the superior and 
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inferior regions showed an index of ~0.57. Furthermore, the Jaccard index calculated for the center 

and inferior regions was ~0.67.   

 

Table 4: Jaccard index of similarity of culture-dependent samples recovered  from different strata 

in the HS sampling site.  

 SUPERIOR CENTER INFERIOR 

SUPERIOR 1 0.83 0.57 

CENTER 0.83 1 0.67 

INFERIOR 0.57 0.67 1 

 

 

 

 
Figure 15: Venn diagram of isolated and shared genera within each stratum in HS sampling site.  

 

 

In Sal samples, the highest number of isolates (42) were recovered from the superior 

stratum of the tree (Table 1). These included Staphylococcus spp., Bacillus spp., Halobacillus spp., 

Marinococcus spp., Kushneria spp., Salinisphaera spp., and Halococcus spp. (Table 2). On the 

central region of the tree, 20 strains were identified and related to Staphylococcus spp., Bacillus 

sp., Kushneria spp., Salinisphaera spp., Palleronia spp., and Halococcus spp.. Finally, on the 
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lower strata, the genera were similar to those of the central region of the tree, excluding Bacillus 

spp. Even though the superior region presented 2 unique genera, the remaining taxa identified were 

shared between strata (Figure 16). The calculated Jaccard indexes based on taxon presence per 

stratum shown in Table 6 indicate a frequency of ~0.63 of shared genera in superior and center 

stratum, 0.5 between the superior and inferior regions and ~0.83 between the center and inferior 

areas of the mangroves. 

 

Table 5: Jaccard index of similarity of culture-dependent samples recovered  from different strata 

in the Sal sampling site. 

 SUPERIOR CENTER INFERIOR 

SUPERIOR 1 0.63 0.5 

CENTER 0.63 1 0.83 

INFERIOR 0.5 0.83 1 

 

 

 

 
Figure 16: Venn diagram of isolated and shared genera within each stratum in Sal sampling site.  
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 Discussion 

 

 Plants are part of the soil-plant-atmosphere continuum, which creates an intrinsic 

relationship between each component for an ultimate balance [91]. In the context of this 

continuum, plant associated microbiota will shift as an effect of an environmental or plant related 

disturbances. This concept fits the microbial composition of black mangroves because it is 

expected to have differences in culturable microbiota based on the changes in the soil. In this case, 

soil changes come as a result of the water source to which each forest is near. For the HS sampling 

site, these water sources are the crystallizer ponds of the Solar Salterns (Figure 2). On the other 

hand, the water source for the Sal sampling site is a naturally occurring pond fed by seawater 

(Figure 2).  

 From these sampling sites a total of 167 strains were isolated, purified and identified by 

phylogenetic analysis (Table 1). A similar number of isolates per sampling site was collected and 

identified (HS: 80; Sal: 87), and a higher percentage of those isolates belonged to the Bacteria 

domain (HS: 92.5%; Sal: 83.7%). Within each sampling site, the region from which a higher 

number of strains were isolated was the superior strata. Similar number of strains were collected 

from both center and inferior strata in both sampling sites. Other studies using culture-dependent 

techniques to assess the culturable diversity of endophytes have only been able to isolate bacterial 

strains [63,80,81]. However, the strain count values are not to be taken as significative since 

culture-dependent procedures are not able to represent all the present community and can be biased 

towards the organisms that grow optimally in the medium used [92]. Nevertheless, it culturable 

diversity is important in the study of the metabolic potential of endophytic organisms.  
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Figure 5 shows strains C3D1-1, B11Q-1, DI2-2 and their closest relatives in the genus 

Palleronia. This genus was first isolated from saline soil in 2005 [93] and currently consists of 

two species: Palleronia abyssalis [94] and Palleronia soli [95]. Even though Palleronia spp. seem 

to be the closest relatives, the error bar presents a difference of ~0.04, which translates to an ~96% 

homology. The accepted cut-off value for genus identification is >97% homology. Recent studies 

have argued for the use of 16S rRNA for classification up to the species level, using a cutoff of 

98.56% homology[96]. The results acquired from the latter require other steps for corroboration, 

including whole genome sequencing and average nucleotide identity or DNA-DNA hybridization 

[96–98]. These values indicate that the isolated strains are sufficiently variable genetically to their 

closest relatives, thus we propose these strains might belong to a new genus. With this in mind, 

these strains have to be studied further for proper classification.  

Figure 6 shows the phylogeny of the strains Q1T1-8A, DS3-1B, DS3-A, A2Q2-4, DI3-7B, 

QS3-7, QS2-4, VS1-5, QI1-1B*, Q2C1-1, Q2C1-4, MIIID4, DI3-7A, DI3-7C, QS2-2, QM1-1, 

IIIQ-1, QI3-13, V3B3-4, Q2C1-2, and D2B1-1 that are clustered in the genus Kushneria.  These 

strains form two clusters, one with Kushneria aurantia and another with Kushneria avicenniae. 

Virtually, no difference between these strains in each cluster with its closest relative can be seen, 

suggesting that these are the same species. This genus, initially part of the Halomonas genera, 

consists of 7 species, including K. aurantia, K. avicenniae, K. indalinina, K. marisflavi, K. 

pakistanensis, and K. sinocarnis. Interestingly, these two species K. aurantia and K. avicenniae 

were discovered as epiphytic isolates from Avicennia germinans in the Solar Salterns of Cabo Rojo 

[23,24]. This raises the question: are the Kushneria spp. present in the black mangrove transported 

to the surface of the leaf? Other plant diversity studies focusing on the halophytes Arthrocnemum 
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macrostachyum and orther members of the Salicornioidae have identified this organism as a 

regular member of the plant microbiome [80,81]. 

Phylogenetic analysis of V2B1-6, B2Q-11, A1Q-11, V2B1-7, B2B1-4, A2Q-61, D3B1-3, 

A1Q-12, A2Q-23, A2V-21, A2V-31, and A1V-22 clusters these strains within the genus 

Marinococcus (Figure 7). Similar to Figure 6, in Figure 7 no differences between the strains and 

close relatives are shown, suggesting that none of the isolates is a new species within the genus. 

This genus consists of 5 different species: Marinococcus halotolerans, M. tarijensis, M. luteus, M. 

salis, and M. halophilus. This genus was first proposed in the 1984, where two species were 

described (M. albus and M. halophilus) [99]. Currently the genus is emended, as M. albus was 

relocated to another genus. Usual isolation sites for these organisms include salt marshes, salt 

mines and salt lakes [100–103]. Similar studies, regarding the microbial composition of 

halophytes, have also identified Marinococcus spp. as part of their microbiota [22,80,81]. 

Strains B1Q-11 and Q1T1-6, clustered within the genus Halobacillus, show differences in 

percentage of identity  in the 16S rRNA gene sequence due to their placement on the phylogenetic 

tree (Figure 8). The genus Halobacillus is composed by 21 different species, one of which was 

also first reported as an epiphyte of the black mangrove in Cabo Rojo [11], and was also detected 

in the rhizosphere of Avicennia germinans [22]. Studies have reported the plant growth-promoting 

(PGP) capabilities of this genus [65], suggesting that these organisms partake in the salinity 

tolerance and growth of black mangrove.  

Figure 9 shows the phylogenetic distribution of strains Q1T1-1, Q1T1-3, Q1T1-5 and 

B3V1-2. These cluster correctly within the genus Salinisphaera;. however, differences can be 

observed. The strain B3V1-2 presents a 0.015 divergence with respect to its closest relative, 

suggesting this could be a new species within the genus. Longer sequences for 16S rRNA gene 
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indicate that Q1T1-3 and Q1T1-5 have lower homology with their closest relative, but 100% 

homology between them. This can result in the discovery of another species of Salinisphaera. This 

genus contains 8 identified species, including Salinisphaera hydrothermalis, S. japonica, S. 

halophila, S. orenii, S. dokdonensis, and S. shabanensis. All species have been isolated from saline 

environments, including saline water-systems, saline sediment and the surface of fishes [104–109]. 

Studies have associated this organism to halophytes as well [80].  

The strains B3D1-5 and VS1-10 were classified within the genus Bacillus (Figure 10). A 

small representation of the closely related species was selected, since Bacillus contains over 200 

species. This is one of the highly reported organisms in association with plants and has been 

reported numerously as a plant-growth promoting bacteria (PGP) [67,75,110,111]. The closest 

relative to the isolated strains is Bacillus zhangzhouensis, a species isolated in the 2016 from 

shrimp-aquaculture waters [112]. Low to no evolutionary distances were observed from the closely 

related strains to the isolates B3D1-5 and VS1-10. 

 Figure 11 shows the strains QI3-5, VSA-5, QI1-10, A3D2-2, A3D2-3, B3V1-1, A3D3-5 

and B3D1-2 clustered within the genus Staphylococcus. The strains are distributed across the tree, 

indicating differences between strains, but no new species were detected. Staphylococcus is a 

genus that, similarly to Bacillus spp., includes a wide variety of species. This genera has also been 

found in endophytic relationships with plants, like Corchorus olitorus [113]. In this plant, 

Staphylococcus expresses an ACC deaminase for the production of IAA. Furthermore, this genus 

was also identified as a part of the surface microbiome of black mangroves in past studies [6], 

suggesting that it might play an important role in the production of phytohormones for plant 

development.  
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 Pontibacillus was the genus in which the strain Z21D-3 was clustered, but few differences 

between the strain and its closest relative were observed (Figure 12). This genus contains 7 species, 

including Pontibacillus salipaludis, P. chungwhensis, P. marinus, P. litoralis, P. salicampi, P. 

yanchengensis and P. halophilus. Studies regarding both the ecto-microbiome and rhizo-

microbiome of black mangroves have detected this genus as a frequent member of the microbiota 

[6,22]. Even though it has been described as part of the microbiome of mangroves, in this study it 

was not easily isolated, showing the concept of culture bias clearly.  

 Figure 13 shows the phylogeny of strains B3Q1-4, ZIA-3, B3Q1-1, Z1A-2, A1A-3, Z1A-

1, IIIV-5B and V1T1-2, and its closest relatives. These strains cluster within the genus Halococcus, 

a genus composed by Halococcus hamelinensis, H. salifonidae, H. agarilyticus, H. 

saccharolyticus, H. sediminicola, H. dombrowskii, H. morrhuae and H. qingdaonensis. This genus 

has been shown to have PGP properties, with exceptional performance in phosphate solubilization 

[73]. This suggests that this archaeon may have a role within the plant to maintain homeostasis 

and thrive in hostile environments. Significative differences in sequence homology were observed 

in the 16S rRNA gene of all of the isolates, suggesting a new species within this genus. 

 Based on the strain distribution in Table 2, a trend of isolation can be observed. The genera 

with the highest number of isolates include Kushneria , Salinisphaera and Marinococcus With the 

results in Table 2, the Jaccard’s similarity index was calculated. This index formulates a proportion 

indicating the shared strains per location [114]. Table 3 shows that based on total identified genera, 

the similarity between HS and Sal locations was ~0.67.  Of the nine overall-identified genera, six 

are shared between sampling sites, as shown in Figure 14. Possible explanations for these 

phenomena are: 1) a bias towards Kushneria, Salinisphaera and Marinococcus because of the 
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culture media; 2) actual higher abundances of these strains in the plant; 3) the presence and absence 

of species are based on the salinity stresses in the sample.  

 Using the Jaccard Index with the stratification data revealed that in the HS samples, the 

superior and central strata share 0.83 of their genera, the superior and inferior strata share 0.57, 

and the central and inferior share 0.67 (Table 4). This means that, of the 9 total identified genera, 

4 are present in every stratum (Marinococcus, Kushneria, Salinisphaera and Halococcus), one is 

shared only between the superior and central strata (Halobacillus), and each of the superior and 

inferior include one unique genus (Palleronia and Pontibacillus, respectively) (Figure 15). Table 

5 highlights the Jaccard indexes for shared genus among strata in Sal sampling sites, in which the 

plants have a different water source. The superior and center presented a proportion of 0.63 shared 

genera, whereas the superior and inferior shared only half of the genera. Inferior and central strata 

presented a proportion of 0.833, presenting the highest Jaccard index value. The visualization in 

Figure 16 demonstrates how, once again, 4 of the 9 identified genera are present in all strata 

(Staphylococcus, Kushneria, Palleronia and Halococcus). The superior and central strata, as well 

as the central and inferior strata share one genus (Bacillus  and Palleronia, respectively), and the 

superior strata has more unique genera represented (Halobacillus  and Marinococcus). These 

results suggest that the culturable biodiversity will similar in adjacent regions, whereas distant 

strata will differ. 

 The analysis of diversity in terms of plant compartmentalization provides us with insights 

regarding the ecological and functional roles of the microbial isolates.  We could argue that an 

actual compartmentalization is occurring at low scales; for instance, in Sal samples the genera 

Halobacillus spp. was only isolated from the superior region of the mangrove, but in HS samples, 

the same genera was acquired from the superior and central strata. Nevertheless, the genera 
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Salinisphaera spp., Kushneria spp. and Halococcus spp. were ubiquitous in all stratum of 

mangroves in both sampling sites. There is a low basis of comparison because few articles have 

used culture dependent techniques to explain prokaryotic stratification in the plant. Mora et al.  

used compartmentalization to determine the plant microbiome in the rhizosphere, and internal 

structures, including the roots. Using metagenomics, the changes in abundance and maintenance 

of prokaryotic communities across the roots, stems and soil were observed in this study.  
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CHAPTER 2: DRAFT GENOME SEQUENCING OF STRAIN 

Q1T1-3, A NOVEL SPECIES OF THE GENUS SALINISPHAERA 
 

Specific Aim 

 

 To conduct a small subunit rRNA gene-based identification and genomic description of 

Q1T1-3, a novel species within the Salinisphaera genus.  

  

Methodology  

 

Genomic DNA extraction  

Cryopreserved Q1T1-3 strain was cultured in Sehgal-Gibbons medium containing NaCl 

15% (w/v), prepared as previously described, and incubated at 30°C. After sufficient growth was 

observed, genomic DNA extraction was performed using the Promega™ Wizard™ Genomic DNA 

Purification Kit. DNA concentration and quality were determined using NanoDrop™ 

Spectrophotometer from ThermoScientific® and 0.8% (w/v) agarose gel.  

 

Draft Genome Sequencing  

Aiming to obtain a draft genome sequence of Q1T1-3, 100 μL of diluted DNA of the 

sample (100 ng/μL) was shipped for sequencing to MicrobesNG facilities 

(http://www.microbesng.uk) at Birmingham, UK. Illumina HiSeq platform, with a 250bp paired 

end protocol, was used to perform the genomic sequencing. At the facility, the adapters were 

trimmed using Trimmomatic 0.30 [115], quality was verified and contigs were annotated with 

Prokka 1.11[116].        
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Data analysis 

Subsystem category distribution 

Following sequencing, the retrieved genome was uploaded for Rapid Annotation using 

Subsystem Technology server (RAST) [117–119]. A subsystem-based classification of coding 

sequences was obtained from the server where putative function of coding sequences within the 

genome were inferred.  

 

Phylogenetic divergence 

To determine phylogenetic distance from other Salinisphaera spp., the whole 16S rRNA 

gene was obtained from the RAST server and uploaded to EZ-Taxon [88], where taxonomically-

close relatives were observed. FASTA sequences were downloaded, aligned using ClustalW, and 

edited in Molecular Evolutionary Genetics Analysis 6.0 (MEGA6) software [89]. Neighbor-

joining tree method [90] and p-distance model were used to determine phylogenetic distances 

between Q1T1-3, closely related and distantly related (outgroup) strains.  

 

Average Nucleotide Identity 

Average Nucleotide Identity (ANI) of Q1T1-3 and its Salinisphaera hydrothermalis was 

performed to observe genetic difference between genomes. Using the Enveomics tool collection 

[120], both genomes were uploaded to the Average Nucleotide Identity calculator tool in FASTA 

format, and ANI was calculated. 
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Genomic Description of New Species 

 With the isolation and characterization of strain Q1T1-3 in the genus Salinisphaera, to 

further study this putative new species, a draft genome sequencing was performed at the 

MicrobesNG facilities (http://www.microbesng.uk). Genome sequencing of the strain can be 

retrieved using the accession number PRJNA490533. The obtained sequencing data was uploaded 

to the RAST server, and the complete 16S rRNA gene was downloaded and compared against 

multiple type strains available in the EZ-Taxon databases. This search retrieved a 97.40% 

homology of Q1T1-3 with Salinisphaera hydrothermalisT EPR70 (Figure 17), a value lower than 

the cutoff value do differentiate species [97]. 

 

 
Figure 17: Evolutionary inference using Neighbor-Joining method based on full 16S rDNA gene 

sequence of strain Q1T1-3. Bar represents 1 substitution per every 10 nucleotides. 

Ectothiorhodospira mobilisT DSM237 was used as an outgroup. 
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Table 6: Genomic features in the draft genome of Q1T1-3 strain isolated from HS sampling sites 

in Cabo Rojo, Puerto Rico. 

 

Characteristic  

Assembly size (bp) 3,875,893 

G+C content (%) 64.2 

Number of contigs 64 

Coding sequences 3539 

Ribosomal RNA genes 2 

Transfer RNA genes 50 

CRISPR repeats 2 

 

 

Based on the RAST annotation capabilities, the recovered draft genome had a size of 3.9 

Mb size with a G+C content of 64.2% (Table 6). Within this genome, 2 CRISPR repeats, 2 rRNA 

genes and 50 tRNA genes were identified, as well as 3,539 coding sequences (cds). Using RAST 

functional classification, these putative genes were clustered in subsystems, as shown in Figure 

18. A high number of cds from this genome are classified in the following subsystems: 

Carbohydrates (312 cds), Amino Acids and Derivatives (300 cds), Cofactors, Vitamins, Prosthetic 

Groups and Pigments (272 cds), Protein Metabolism (261 cds), Fatty Acids, Lipids and 

Isoprenoids (172 cds), RNA metabolism (141 cds), Stress Response (123 cds), DNA Metabolism 

(119 cds), Respiration (113 cds), and Cell Wall and Capsule (105 cds). Underrepresented 

subsystems include: Virulence, Disease and Defense (79 cds), Potassium Metabolism (20 cds), 

Photosynthesis (6 cds), Miscellaneous (49 cds), Phages, Prophages, Transposable Elements, 

Plasmids (1 cds), Membrane Transport (86 cds), Iron Acquisition and Metabolism (18 cds), 

Nucleosides and Nucleotides (87 cds), Cell Division and Cell Cycle (34 cds), Motility and 

Chemotaxis (60 cds), Regulation and Cell Signaling (42 cds), Secondary Metabolism (4 cds), 

Nitrogen Metabolism (20 cds), Metabolism of Aromatic Compounds (30 cds), Sulfur Metabolism 

(24 cds), and Phosphorus Metabolism (38 cds).  
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Figure 19: Identity distribution histogram of average nucleotide identity (ANI) of Q1T1-3 and 

Salinisphaera hydrothermalis T EPR70. The mean identity distribution between both genomes, 

obtained using the ANI calculator in the Enveomics toolset [120], retrieved a 78% nucleotide 

identity between genomes.  

 

 

The ANI-calculator from the Enveomics tool collection [120]  was used to determine the 

average nucleotide identity (ANI) of the strain Q1T1-3 and the closest related strain, Salinisphaera 

hydrothermalis. Therefore, based on the phylogenetic tree in Figure 19, the complete genome of 

Salinisphaera hydrothermalisT EPR70 was used as basis of comparison. A 78.98% mean identity 

distribution is observed after comparing the nucleotide composition of both strains. The cutoff 
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value established for ANI to be used as a substitute of DNA-DNA hybridization is 95-96% [96], 

indicating that Q1T1-3 is, in fact, a new species. 

This study proposes the etymology Salinisphaera endophytica for the new Salinisphaera 

species. Salinisphaera endophytica (en.do.phy'ti.ca.  Gr. pref. endo- within; Gr. n. phyton plant; 

L. fem. suff. -ica adjectival suffix used with the sense of belonging to; N.L. fem. adj. endophytica 

within plant, endophytic).  

 

  

http://ti.ca/
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CHAPTER 3: DRAFT GENOME SEQUENCING OF STRAIN IIIV-

5B, A NOVEL SPECIES OF THE GENUS HALOCOCCUS 
 

 

Specific Aim 

 

 To classify the strain IIIV-5B as novel species within the Halococcus genus using a 

genome-based approach.  

 

Methodology  

 

Genomic DNA extraction  

Cryopreserved IIIV-5B strain was cultured in Sehgal-Gibbons media containing NaCl 15% 

(w/v), prepared as described in Chapter 1, and incubated at 30°C. After growth was observed, 

genomic DNA extraction was performed using the Promega™ Wizard™ Genomic DNA 

Purification Kit. DNA concentration and quality were determined using NanoDrop™ 

Spectrophotometer from ThermoScientific® and 0.8% (w/v) agarose gel.  

 

Draft Genome Sequencing  

Aiming to obtain a draft genome sequence of IIIV-5B, 100 μL of diluted DNA of the 

sample (100 ng/μL) was shipped for sequencing to MicrobesNG facilities 

(http://www.microbesng.uk) at Birmingham, UK. Illumina HiSeq platform, a 250bp paired end 

protocol was used to perform the genomic sequencing. At the facility, the adapters were trimmed 
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using Trimmomatic 0.30 [115], quality was verified and contigs were annotated with Prokka 

1.11[116].        

 

Data analysis 

Subsystem category distribution 

The sequenced genome was uploaded in the Rapid Annotation using Subsystem 

Technology server (RAST) [117–119]. A subsystem-based classification of coding sequences was 

obtained from the server where possible function of coding sequences within the genome was 

inferred.  

 

Phylogenetic Tree Construction 

To determine phylogenetic distance from other Halococcus spp., the whole 16S rRNA gene 

was obtained from the RAST server and uploaded to EZ-Taxon [88], where taxonomically-close 

relatives were observed. FASTA sequences were downloaded, aligned using ClustalW, and edited 

in Molecular Evolutionary Genetics Analysis 6.0 (MEGA6) software [89]. Neighbor-joining tree 

method [90] was used to determine phylogenetic distances between IIIV-5B, closely related and 

distantly related (outgroup) strains.  

 

Average Nucleotide Identity 

Average Nucleotide Identity (ANI) of IIIV-5B and Halococcus hamelinensis was 

performed to observe genetic difference between genomes. Using the Enveomics tool collection 

[120], both genomes were uploaded to the Average Nucleotide Identity calculator tool in FASTA 

format, and ANI was calculated.  
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Genomic Description of New Species 

 

 Whole genome sequencing of strain IIIV-5B was performed in order to further investigate 

if this isolate is a new species of the genus Halococcus. After genomic DNA extraction, 

sequencing, and genome annotation, the complete 16S rRNA gene was obtained to classify the 

strain phylogenetically.  A sequence of ~1400 bp was used to create a phylogenetic tree (Figure 

20). This figure clusters the strain IIIV-5B (in red) in the genus Halococcus. A 98.06% of 

homology with the species Halococcus hamelinensisT 100A6 was observed after comparison with 

the EZ-Taxon database [88]. This homology percentage was the homology percentage lower than 

the cutoff value for species differences [97], suggesting a new species. 

 
Figure 20: Evolutionary inference using Neighbor-Joining method based on full 16S rRNA gene 

sequence of IIIV-5B isolated from HS sampling sites in Cabo Rojo, Puerto Rico.  
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Table 7: Genomic features observed in the draft genome of IIIV-5B strain.  

Characteristic  

Assembly size (bp) 3,877,752 

G+C content (%) 63.9 

Number of contigs 93 

Coding sequences 3,812 

Ribosomal RNA genes 3 

Transfer RNA genes 46 

CRISPR repeats 2 

 

 Within the genomic features of the strain IIIV-5B (table 7) a genome size of approximately 

3.88 Mb and a G+C content of 63.9% are shown. This draft genome included 2 CRISPR repeats 

and around 3,812 coding sequences (cds), from which 3 are suggested to encode rRNAs and 46 

encode tRNAs. Cds were grouped in the subsystems shown in Figure 21, retrieved from RAST 

server. Most coding sequences were classified in the subsystems related to: Amino Acids and 

Derivatives (267 cds), Carbohydrates (258 cds), Protein Metabolism (222 cds), Cofactors, 

Vitamins, Prosthetic Groups and Pigments (160 cds), Fatty Acids, Lipids and Isoprenoids (130), 

Membrane Transport (117), and RNA metabolism (106). Other subsystems with less number of 

cds include: Cell Wall and Capsule (46 cds), Virulence, Disease and Defense (19 cds), Potassium 

Metabolism (35 cds), Miscellaneous (17 cds), Iron Acquisition and Metabolism (7 cds), 

Nucleosides and Nucleotides (80 cds), Cell Division and Cell Cycle (6 cds), Motility and 

Chemotaxis (4 cds), Regulation and Cell Signaling (3 cds), Secondary Metabolism (6 cds), DNA 

Metabolism (79 cds), Nitrogen Metabolism (10 cds), Respiration (96 cds), Stress Response (79 

cds), Metabolism of Aromatic Compounds (10 cds), Sulfur Metabolism (23 cds), and Phosphorus 

Metabolism (32 cds).  
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Figure 22: Identity distribution histogram of average nucleotide identity (ANI) of IIIV-5B and 

Halococcus hamelinensis T 100A6. The mean identity distribution between both genomes, 

obtained using the ANI calculator in the Enveomics toolset [120], retrieved a 91.12% nucleotide 

identity between genomes. 
 

Average nucleotide identity (ANI) analysis retrieved from the ANI-calculator, using the 

Enveomics tool collection [120] is shown in Figure 22. A 91.12% mean identity distribution is 

observed after comparing nucleotide composition from the genomes of both strain IIIV-5B and 

Halococcus hamelinensis T 100A6. The cutoff value established for ANI to be used as a substitute 

of DNA-DNA hybridization is 95-96% [96]. This comparison states that IIIV-5B is a new species.  
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 This study proposes the etymology Halococcus salsifolii for the new Halococcus species. 

Halococcus salsifolii (sal.si.fo'li.i. L. adj. salsus salted; L. neut. n. folium leaf; N.L. gen. n. 

salsifolii of a salted leaf). 
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CHAPTER 4: PHYLOGENETIC ANALYSIS OF STRAIN B11Q-1, 

AND THE PROPOSAL OF SALINIROSEUM AS NOVEL GENUS 

 

Specific Aim 

 

 Small subunit rRNA gene-based identification of B11Q-1, a novel genus closely related to 

the genera Palleronia and Hwanghaeicola.  

 

Methods 

 

Genomic DNA Extraction and 16S rRNA Gene Amplification 

Cryopreserved B11Q-1 strain was cultured in Sehgal-Gibbons media containing NaCl 15% 

(w/v), prepared as previously described, and incubated at 30°C. After sufficient growth was 

observed, genomic DNA extraction was performed using the mechanic, chemical and physical 

procedures, as indicated in Chapter 1. DNA concentration and quality were determined using 

NanoDrop™ Spectrophotometer from ThermoScientific® and 0.8% (w/v) agarose gel.  

PCR of the molecular marker 16S rRNA gene were conducted using the primers 27F (5’-

AGAGTTTGATCMTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTT-3’) [83], 

using the specifications indicated in Chapter 1.  The amplification products were precipitated and 

purified using isopropanol and ethanol and subsequently resuspended with PCR-grade water. DNA 

concentration and quality were determined using NanoDrop™ Spectrophotometer from 

ThermoScientific® and 1% (w/v) agarose gel. Prior 16S rRNA gene amplification, purified 

samples were diluted and prepared for sequencing, as indicated by Macrogen USA sequencing 

facilities.  
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Phylogenetic Tree Construction 

  The obtained sequence (~1200bp) was uploaded to EZ-Taxon [88], where FASTA 

sequences of taxonomically-close relatives were retrieved. These sequences were aligned using 

Clustal W, and edited in Molecular Evolutionary Genetics Analysis 6.0 (MEGA6) software [89]. 

Neighbor-joining tree method [90] was used to determine phylogenetic distances between B11Q-

1 and selected sequences.  
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Genomic Description of New Genus 

 

 
Figure 23: Phylogenetic analysis using the neighbor-joining method using partial 16S rDNA 

sequences of strain B11Q-1. Bar represents 2 substitutions per 10 nucleotides. Kushneria 

avicenniaeT DSM 23439 was used as outgroup.  

 

Generated PCR amplicons of strain B11Q-1 were used for sequencing purposes. The 

results of partial 16S rRNA gene (~1200bp) sequencing was compared with available data of type 

strains in the server EZ-Taxon [88]. Full 16S rRNA gene was sequenced and used for the 

phylogenetic analysis of strain B11Q-1.  

This analysis located the strain B11Q-1 evolutionarily related to the genera Palleronia and 

Hwanghaeicola,  but low homology values (<97%) were recorded. These and other closely related 

type strains used to construct a phylogenetic tree in MEGA 6 software [89], also using partial 16S 

rRNA gene sequences and employing the neighbor-joining method [90]. The recovered cladogram 
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in Figure 23 locates B11Q-1 as closely related to the Hwanghaeicola and Palleronia genus, with 

2 nucleotide substitutions per every 10 nucleotides. Research based on species description indicate 

that 97% homology is a cutoff value, representative of a new genus. 

With this in mind, we propose the etymology of Saliniroseum as the genus, being 

Saliniroseum caribbense the type species. Saliniroseum (Sa.li.ni.ro'se.um. N.L. masc. adj. salinus 

saline; L. neut. adj. roseum rose-coloured; N.L. neut. n. Saliniroseum a rose-coloured saline 

organism.) Saliniroseum caribbense (ca.rib.be.en'se. N.L. neut. adj. caribbense of the Caribbean).  
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CHAPTER 5: ASSESSING THE TOTAL BIODIVERSITY OF 

PROKARYOTIC ENDOPHYTES WITHIN AVICENNIA 

GERMINANS USING CULTURE-INDEPENDENT TECHNIQUES 

 

Specific Aim 

 

 Analysis of endophytic community composition of black mangroves at different locations 

(HS and Sal sampling sites) employing 16S rDNA-based metagenomics, and statistical 

comparisons of the biodiversity to test whether there are community shifts based on salt deposition 

in the soil.   

 

Methodology 

 

Sample Collection and Processing 

To observe the metagenomic diversity and abundance of prokaryotic endophytes 

associated to Avicennia germinans, 27 leaves were collected from all the trees previously selected 

on each sampling site, as described in Chapter 1. All the leaves were pooled to create a compound 

sample per sampling region. As indicated in Chapter 1, the plant tissue was sterilized according to 

Couto (2009) using sodium hypochlorite 0.5% and prepared for total DNA extraction. 

 

Total DNA Extraction and Purification 
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The pooled leaf samples corresponding to each mangrove forest were frozen using liquid 

nitrogen and thoroughly macerated until a fine leaf powder was obtained. From the macerated 

powder, 30 g of each pooled sample were treated with the PowerSoil® DNA Isolation Kit (Mo 

Bio), as indicated by the manufacturer’s protocol. DNA quality and concentrations were 

determined using the ThermoScientific® NanoDrop™ spectrophotometer and a 0.8% (w/v) 

agarose gel, and both extraction products were shipped to Molecular Research DNA (MR DNA) 

(http://www.mrdnalab.com) laboratories for sequencing using Illumina MiSeq platform following 

the bTEFAP® methods established by Chiodini et al. [121]. The amplification of the 16S rRNA 

gene was performed using the primers 799F (5′-AACMGGATTAGATACCCKG-3’) [122] and 

1193R (5’- ACGTCATCCCCACCTTCC-3’) [123] for bacterial 16S, and the primers UniArc8F 

(5’-YCYGKTTGATCCYGSCRG-3’) [124] and a custom 515R for archaeal 16S. These primers 

were selected since they are prokaryote- limited and also to decrease plastid sequencing. All data 

quality verification and editing were performed by the bioinformatics department in the 

sequencing facility using QIIME bioinformatics pipeline [125].  

 

Data Analysis 

The retrieved data were modified to remove the sequences from virus and eukaryotes that 

were amplified using the bacterial and archaeal specific primers. The resulting sequences were 

utilized to create rarefaction curves and to determine the coverage of the samples. Similarly, 

relative abundance graphs and Venn diagrams were generated using the vegan, fossil, reshape, 

plyr, ggplot2 and VennDiagram packages within the R statistical computing software. Statistical 

analyses to determine similarity, diversity, and richness were created in PAST [126] using the 

Shannon, Simpson and Jaccard indexes.  

https://mobio.com/media/wysiwyg/pdfs/protocols/12888.pdf
https://mobio.com/media/wysiwyg/pdfs/protocols/12888.pdf


 

 

64 

 

  



 

 

65 

Results 

 The quantification and comparison of total community composition of endophytic 

prokaryotes within mangroves was completed with the leaf collection of three selected trees, as 

described in Chapter 1, and the creation of a composite sample per site. A total DNA extraction of 

the leaves was conducted, and the samples were sent for 16S rRNA gene sequencing, using specific 

primers for archaea and bacteria. The recovered data showed that from a total of 16,285 operational 

taxonomic units (OTUs), 9,445 corresponded to the HS samples and 6,840 were obtained from the 

Sal samples. These data, classified by genera, were used to create a rarefaction curve per sample, 

shown in Figure 24. Two curves representing species richness as function of the sample size can 

be observed. In both Sal and HS samples, a plateau is observed when 58 different species were 

identified but varied in the sample size necessary to target the full diversity. Sal samples reached 

a plateau with a smaller sample, whereas a larger amount of plant tissue was required to reach a 

plateau in HS samples.  

 
Figure 24: Rarefaction curve of OTUs sequenced per sampling site in the Solar salterns of Cabo 

Rojo Puerto Rico. The curve represents the accumulation of prokaryote species as a function of 
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OTUs found .  Both samples present a plateau indicating that the sample size was sufficient to 

represent all the prokaryotic diversity of the sites.  

 

Figure 25 presents a graphic visualization of the existing phyla per samples. Specific 

relative abundance of the identified phyla are shown in Table 8. The phyla Euryarchaeota, 

Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were present in both sites but 

Proteobacteria was the predominant phylum, with a relative abundance of 0.78 and 0.84 in HS 

and Sal samples, respectively. However, different underrepresented genera were observed in each 

sampling site; for instance, Actinobacteria were less frequent on HS samples while the Firmicutes 

were less frequent on Sal samples. Euryarchaeota and Bacteroidetes phyla were found equally 

represented on both sample sites, with relative abundances of 0.07 and 0.11 on HS, and 0.06 and 

0.10 on Sal, respectively.  
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Figure 25: Visualization of relative abundance of represented phyla per sampling site. Bacterial 

representatives are seen represented in 4 different phyla, where Proteobacteria dominates in both 

samples (0.77 in HS and 0.82 in Sal).  

 

 

 

 

 

 

 

 

 

 

 

 

 HS Sal 
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Table 8: Relative abundance of prokaryote phyla in sampling sites HS and Sal. Phyla with highest 

abundance are shown in green whereas the phyla with lowest representation is shown in orange.  

 

Phylum 
Sampling Site 

HS Sal 

Euryarchaeota 0.074885 0.062203 

Firmicutes 0.035863 0.005232 

Proteobacteria 0.779623 0.824735 

Bacteroidetes 0.106572 0.102456 

Actinobacteria 0.003057 0.005377 

 

 Statistical analyses were performed to determine differences in phyla abundance and 

shared/unique phyla per sampling site. Table 9 includes the values obtained for each calculated 

index (Shannon, Simpson and Jaccard indexes), used to estimate diversity and evenness. Shannon 

indexes for HS and Sal sites were 0.76 and 0.62, respectively. A similar result was observed using 

the Simpson index, where the index values obtained for HS and Sal were 0.63 and 0.69, 

respectively. The Jaccard index calculated based on phyla abundance was 1, restating that both 

samples were composed of the same phyla.  

  

Table 9:  Diversity indexes, evenness and similarities of prokaryote communities using 

metagenomic data from HS and Sal sampling sites. Shannon and Simpson indexes characterize 

both the richness and evenness of the individuals represented in the sample whereas the Jaccard 

index presents a proportion of the shared phyla in the sample.   

Sampling Site 
Shannon 

Index (H) 

Evenness 

(H/Hmax) 

Simpson 

Index (D) 

Jaccard 

Index 

HS 0.76383 0.4293 0.62607 
1 

Sal 0.62068 0.372 0.69461 
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Table 10: Metagenomic- based relative abundance of genera present in sampling sites HS and Sal. 

The genus with highest abundance is shown in green whereas the genera with lowest representation 

are shown in orange. 

 

Genus 
Sampling Site 

HS Sal 

Haloarcula 0.000611 0.000872 

Halococcus 0.011207 0.009882 

Halogeometricum 0.021192 0.004505 

Halalkalicoccus 0.011513 0.002907 

Haloferax 0.030362 0.044034 

Acetobacter 0.001732 0.000145 

Corynebacterium 0.000917 0.000581 

Maritalea 0 0.000436 

Parvularcula 0.000102 0.001017 

Pseudomonas 0.001732 0.001599 

Micavibrio 0 0.001017 

Salinisphaera 0.076516 0.025868 

Gracilimonas 0.003158 0.003052 

Cytophaga 0.094855 0.046941 

Sphingopyxis 0 0.000872 

Alcaligenes 0.000917 0 

Erythrobacter 0.000204 0.003052 

Sporobacterium 0 0.000436 

Hwanghaeicola 0.000509 0.001308 

Prevotella 0.000713 0 

Paracoccus 0.002853 0.000145 

Rubrobacter 0 0.002471 

Lactobacillus 0.028222 0.002616 

Granulicatella 0.000408 0.000145 

Marinococcus 0.001019 0.000436 

Salisaeta 0.000509 0.001017 

Flavobacterium 0.000306 0 

Lactococcus 0.00489 0.000581 

Helcococcus 0 0.000436 

Palleronia 0.002038 0.010609 

Kushneria 0.237799 0.114518 

Roseivivax 0.000306 0.003633 

Chromohalobacter 0.012837 0.000581 

Wolbachia 0 0.001163 

Thalassospira 0 0.001017 

Halomonas 0.372899 0.632612 

Rubrivirga 0.000917 0.005232 
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Table 10 Continued 

Genus 
Sampling site 

HS Sal 

Bacillus 0.000306 0.000581 

Zunongwangia 0.000306 0.007848 

Pseudokineococcus 0.000102 0.001744 

Sphingomonas 0.001223 0.003052 

Idiomarina 0.004585 0 

Arhodomonas 0.001426 0.002907 

Staphylococcus 0.000306 0 

Propionibacterium 0.002038 0.000581 

Candidatus_Liberibacter 0.060621 0.011626 

Rhodovulum 0 0.002035 

Maribius 0.000102 0.002035 

Delftia 0.000204 0.000436 

Sufflavibacter 0.000611 0.01991 

Roseisalinus 0 0.000872 

Devosia 0 0.001163 

Peptoniphilus 0.000713 0 

Burkholderia 0.000408 0 

Herbaspirillum 0.000408 0 

Leeuwenhoekiella 0.000102 0.001017 

Salinibacter 0.005094 0.017439 

Salinicola 0.000204 0.001017 

 

Sequenced data was also used to estimate a genus-based relative abundance. As shown in 

Figure 26, a notable predominance of the genus Haloarcula is observed in both samples (blue), 

but the relative abundance of this genus is strongly shown in HS (0.37) versus Sal (0.63). A similar 

trend is observed with the genus Kushneria (teal), where a high presence is shown but relative 

abundance shifts can also be detected. Table 10 include the specific relative abundance of all 

identified genera per sample. Dominant genera in both samples include Halomonas (HS: 0.37; Sal: 

0.63), Kushneria (HS: 0.24; Sal: 0.11), Cytophaga (HS: 0.09; Sal: 0.05) and Salinisphaera (HS: 

0.08; Sal: 0.03) (Table 10).   
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A Venn diagram in Figure 27 was generated using the R software and the Venndiagram 

package to visualize better the number of shared and unique genera detected in both samples. Out 

of the 58 genera identified in the metagenomes, 39 genera were shared in both samples (Jaccard 

index 0.67, Table 11). The HS sample had 8 unique genera when compared to the Sal sample. 

These include:  Alcaligenes, Prevotella, Flavobacterium, Idiomarina, Staphylococcus, 

Peptoniphilus, Burkholderia, and Herbaspirillum (Table 10). In contrast, Sal sample included 11 

exclusive genera, including Maritalea, Micavibrio, Sphingopyxis, Sporobacterium, Rubrobacter, 

Helcococcus, Wolbachia, Thalassospira, Rhodovulum, Roseisalinus and Devosia (Table 10).  

 
Figure 27: Venn diagram of genera count presenting each sampling site and shared among sites. 

Sal sampling site dominates with a higher amount (50) of identified OTUs, whilst HS site showed 

the presence of 47 genera, of which 8 are not shared with HS.  
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The Shannon and Simpson indexes were calculated to determine which sample represented 

higher genera diversity and evenness. The Shannon index for HS was higher than the index for Sal 

samples (2.01 versus 1.61 respectively). However, the Simpson diversity index revealed that Sal 

samples are less diverse (0.42) than HS (0.22). 

 

Table 11:  Statistical analyses for genera diversity and evenness of metagenomic studies in HS 

and Sal sampling sites. Shannon and Simpson indexes characterize both the richness and evenness 

of the individuals represented in the sample whereas the Jaccard index presents a proportion of the 

shared genera in the sample.   

Sampling Site 
Shannon 

Index (H) 

Eveness 

(H/Hmax) 

Simpson 

Index (D) 

Jaccard 

Index 

HS 2.0071 0.1583 0.21683 
0.6724 

Sal 1.6092 0.09998 0.41938 
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Discussion  

 

 Metagenomics is a relatively recent branch of science that aims to assess the genetic 

information of all the organisms present in a given environment avoiding the isolation by culture 

[92,127].  Through this approach we identified all prokaryotic communities associated to the 

endosphere of Avicennia germinans. Based on the rarefaction curves, there were a total of 16,825 

operational taxonomic units (HS: 9445 OTUs; Sal: 6840 OTUs) represented by 58 taxa, as 

indicated by the species count in Figure 24. This species accumulative curve revealed differences 

between the sampling sites. Furthermore, these curves suggest that the mangroves at the Sal 

sampling site provide the microbiome a more stringent habitat because of the fast identification of 

all the biodiversity.  

The recovered 16,825 OTUs were distributed in 5 different phyla: Euryarchaeota, 

Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria (Figure 25). Table 8 shows the 

relative abundances of each phyla, where high values were shown for the phylum Proteobacteria 

in both samples. This goes in accordance with previous recorded data on endophytes of both 

glycophytes [128] and halophytes [129], as the Proteobacteria includes 3 subgroups highly 

recovered in environmental samples (Alpha-, Beta-, and Gamma-proteobacteria) [130]. As 

reviewed in literature, an average of 18%, 10% and 25% of the endophytic biodiversity is 

associated to the Alpha-, Beta-, and Gamma-proteobacteria, respectively [128]. The tendency of 

high proteobacterial strains in this study, as both HS and Sal samples present a similar relative 

abundance of this taxon. The second most abundant phyla, with relatively equal representation 

between sampling sites, were the Bacteroidetes and Euryarchaeota. The latter taxa presents a 

higher presence in this study than other halophyte-focused investigations [129]. On the other hand, 

the phyla Actinobacteria and Firmicutes were underrepresented in both samples. This is not 
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consistent with previous studies in both glycophytes and halophytes, as the Firmicutes is the 

second highest recovered phyla in endophytic studies (due to the high association of the Bacillus 

taxon to plants) followed by Actinobacteria [80,123,128–131]. The relative abundances between 

sampling sites is not proper metrics of diversity since the abundance and richness of the sample 

are not taken into consideration. Therefore, the Shannon and Simpson indexes for diversity were 

used, as well as the Jaccard index of similarity (Table 9) Shannon indexes for HS and Sal samples 

resulted in ~0.76 and ~0.62, whereas the Simpson indexes were ~0.62 and ~0.69, respectively. 

These values demonstrate how the species abundances are more even in the HS samples than in 

Sal samples. The Jaccard index of similarity for these samples is 1, as this index creates a 

proportion of shared taxa per sample. In this case, all taxa were present in both samples. 

To analyze the prokaryotic diversity at a genus level, the relative abundances of the 

obtained OTUs were determined (Table 10) and a visualization was generated. Figure 10 includes 

the 58 genera present in both samples. Higher abundances per genera are observed in HS versus 

Sal samples, with the exception of the genera Halomonas, shown in sky-blue. This phenomenon 

correlates with other studies of the establishment and propagation of this genus in environments 

with lower salinity, as high salt concentrations tend to reduce growth rates and increase mortality 

in Halomonas [132] despite the fact that  some species are tolerant up to 30% NaCl (w/v) [133]. 

Nevertheless, Halomonas appears to be the most abundant genus in both samples. The abundance 

of this genera contributes to the higher incidence of the phyla Proteobacteria in both samples, as 

shown in Figure 25. Previous studies have assessed the potency of Halomonas sp. to act as a PGP 

bacteria by producing the phytohormone IAA [65], thus acting as a mutualist symbiont.  

The second most abundant genera reported was Kushneria, contributing also to the high 

abundance of the Proteobacteria. Multiple studies have associated this bacterial genus to plants, 
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as they have been found as epiphytes [6,23,24], endophytes [80], and part of the rhizosphere 

[22,80]. Other studies have also described several species of this genus as a PGP bacteria with 

phosphate solubilization properties [134].  

Figure 26 and Table 10 also show less abundant genera that includes Salinisphaera, 

Cytophaga sp., Lactobacillus sp., Chromohalobacter sp. and Candidatus Liberibacter. 

Salinisphaera sp. has been associated with plants, but no PGP trait has yet been described, whereas 

Chytophaga sp. and Chromohalobacter sp. are bacteria that have been widely described as normal 

microbiota of the rhizosphere [81,135]. The latter has also been identified as a putative ammonia 

oxidizer, a trait that may attribute this genus a role in biogeochemical cycling [136]. An interesting 

finding was the presence of Lactobacillus sp. as part of the microbiome of Avicennia germinans. 

The plant-colonization capabilities of the members of Lactobacillus have been studied since late 

1960s. Studies carried by Mundt and Hammer [137] aimed to determine the potential proliferation 

of this genera in plants, yet they were unsuccessful. To further question the high incidence of 

lactobacilli in both samples, studies of lactic-acid bacteria inhibition have been conducted using 

mangrove-derived extracts due to their high content of antibiotic compounds [138]. Data also 

shows presence of Candidatus Liberibacter, the genus of three phytopathogen that is without a 

free-living stage, this genus has evolved to infect plants but use insects as vectors [139]. As a 

phloem-specific pathogen, Candidatus Liberibacter has yet to be isolated, but symptomatology 

and molecular characterization are widely known. It can be argued that high abundances of this 

genus in black mangroves, especially in HS sampling site, might be the cause of the unexplained 

plant mortalities encountered while sampling. Nevertheless, no studies present the salinity stress 

as an inductor or as a preferred environment for pathogenesis.  
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Finally, other interesting groups observed as endophytes were the haloarchaea represented 

in the genera Haloarcula, Halococcus, Halogeometricum, Halalkalicoccus and Haloferax (Table 

10). These genera are often associated to salt lakes, salt marshes, solar salterns, saline soil and 

other saline environments. However, the genus Halococcus has been associated with plants, but 

mostly as epiphyte or part of the root environment [6,80,140]. Other archaeal representatives have 

not been associated with plant systems, which represents a novel report.  

The Venn Diagram was (Figure 27) shows that, of the 58 total genera identified in the 

metagenomes, 39 were shared between sampling sites. Sal samples included 11 unique genera, 

whereas HS only included 8. The high concentrations of salt ions the within black mangrove has 

been suggested as a factor that may reduce  biodiversity [63]. However, HS samples showed  a 

higher abundance of certain genera (indicated by the high Shannon index), whereas the Sal samples 

were richer and more even in genera (higher Simpson index) [141]. The HS sampling site provides 

a more restrictive environment, allowing specific organisms to colonize the plant and maintain 

evenness. On the other hand, the lower salinities associated with the Sal sampling site has more 

room for competition, which can cause a natural dominance of a few microorganisms. The Jaccard 

index revealed a community similarity of ~0.67 between HS and Sal (Table 11). The higher 

abundances but low richness in HS samples are expected since specialized groups may proliferate 

under stress conditions, while in the relatively mesophilic conditions provided by Sal sampling 

sites, more genera can establish in the plant, but with less abundance.  
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Conclusion 

 

• Various representatives of the microbial diversity within mangroves can be isolated using 

culture media with high content of salt. Being able to isolate species of Kushneria, 

Halobacillus, Pontibacillus, Bacillus, Staphylococcus, Salinisphaera, Palleronia, and 

Halococcus using SG media with 10, 15 and 20% NaCl (w/v) suggests halophily for these 

strains.  

• The strains IIIV-5B and Q1T1-3 were recommended as new species and the etymologies 

Halococcus salsifolii and Salinisphaera caribbense were proposed, respectively. 

Furthermore, the strain B11Q-1 was described as a new genus under the etymology 

Saliniroseum caribbense. There is still a high diversity of microorganisms to discover from 

halophytes with an immense promise for biotechnological and agricultural applications.  

• HS samples presented higher evenness (fewer dominant species) when compared to sale, 

thus showing higher diversity using both Shannon and Simpson indexes. Metagenomic 

studies remind us that the microbiome encompasses an unimaginable diversity of 

prokaryotes, and that plants from the same species will present microbiome variability.  

• Highly represented taxa in both samples, although with differences in relative abundances, 

included the genera Halomonas and Kushneria; the latter being the highest culture-isolated 

organism. Jaccard index for shared genera per sampling site indicated that around 67% of 

the identified taxa was present in both HS and Sal suggesting that even when a big part of 

the microbial communities is conserved among mangrove forests, the salinity conferred by 

the aquatic system feeding the vegetation has a role in shaping the microbiome.  
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Recommendations 

 

• Select mangroves creating a gradient of distance from the water-source out to have 

measurements of distance and its effect on salt deposition. 

 

• Analyze the chemical profiles from the soil and plant.  

 

 

• Perform metagenomic analyses per stratum. 

 

• Select multiple locations around the island of Puerto Rico to compare chemical profiles of 

the soil and their effect on the diversity.  

 

• Study the microbiota transmissible by seeds.  

 

• Observe the mechanisms by which Halomonas sp. and Kushneria sp. evade the plant’s 

immune responses and their colonization capabilities.  
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