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In hyperspectral imaging, hundreds of images are taken at narrow and contigu-

ous spectral bands providing us with high spectral resolution spectral signatures that

can be used to discriminate between objects. In many applications, the measured

spectral signature is a mixture of the object of interest, and other objects within the

field of view of the sensor. To determine which objects are in the field of view of the

sensor, we need to decompose the measured spectral signature in its constituents

and their contribution to the measured signal. This research dealt with the unsuper-

vised determination of the constituents and their fractional abundance in each pixel

in a hyperspectral image using a constrained positive matrix factorization (cPMF).

Different algorithms are presented to compute the cPMF. Tests and validation with

real and simulated data show the effectiveness of the method. Application of the

approach to environmental remote sensing and microscopic imaging is shown.

ii



Resumen de Disertación Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Doctor en Filosof́ıa

UNSUPERVISED UNMIXING OF HYPERSPECTRAL IMAGERY
USING THE CONSTRAINED POSITIVE MATRIX

FACTORIZATION

Por

Yahya M. Masalmah

Julio 2007

Consejero: Miguel Veléz-Reyes, Ph.D
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En imágenes hiperespectralres cientos de imágenes son capturadas en bandas

estrechas y contiguas en el espectro proveyendo firmas espectrales a alta resolución

que pueden ser utilizadas para discriminar entre objetos. En muchas aplicaciones,

la firma espectral medida es una mezcla del objetos de interés y otros objetos en

el campo de visión del sensor. Para determinar que objetos estan en el campo

de visión del sensor, necesitamos descomponer la firma espectral medida en sus

constituyentes y su contribución a la señal medida. Esta investigación trata so-

bre la determinación no supervisada de los constituyentes y sus abundancias en

cada pixel de imágenes hiperespectrales utilizando factorazion de matrices positi-

vas con restriciones (cPMF). Diferentes algoritmos se presentan para el computo del

cPMF. Pruebas y validación con datos simulados y reales muestran la efectividad del

método. Aplicación del método a percepción remota del medio ambiente y imágenes

microscopicas es presentada.
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CHAPTER 1

Introduction

1.1 Motivation

Hyperspectral imaging (or imaging spectroscopy) is increasingly being employed

as a significant technology in the monitoring and management of terrestrial and

aquatic ecosystems. Advantages of this technology include both the qualitative

benefits derived from a visual overview (imaging), and more importantly, the quanti-

tative abilities (spectroscopy) for systematic assessment and monitoring. In addition

to the spatial and temporal capabilities of traditional remote sensing instruments,

hyperspectral instruments offer the spectral resolution necessary to extract multiple

layers of information from optically complex environments such as those present in

many environmental remote sensing scenarios. One important issue in hyperspectral

remote sensing is that, due to design tradeoffs, the spatial resolution of sensors flown

nowadays might not be enough to resolve objects of interest in the earth surface. In

those cases, the measured spectral signature is the mixture of the spectral responses

of the objects present in the field of view of the sensor. The problem of interest is

then to determine the objects in the field of view of the sensor and, in some applica-

tions, their fractional contribution. In the hyperspectral image processing literature,

this is the so-called unmixing problem.

1
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The general unmixing problem is an ill-posed problem. Well-posedness is achieved

by assuming that all the pixels in the hyperspectral image are generated by mixtures

of a limited number of materials (or endmembers). The unmixing problem is then

to determine these endmembers and their corresponding fractional area coverage

(or abundance). This problem had been approached in different ways as discussed

later. In most approaches, the endmembers are determined with significant interac-

tion from the image analyst. We call these approaches supervised unmixing. Our

interest in this research is to fully automate the unmixing process by having the

machine perform both the endmember selection and the abundance estimation. We

call this unsupervised mixing. This research focused on extending the positive ma-

trix factorization (PMF) to solve this problem. PMF has been used in the context

of machine learning and factor analysis to solve problems with similar mathematical

structure. The particular physical structure of the unmixing problem adds additional

physical constraints in the abundances which further complicates the application of

the traditional PMF to this problem.

A very important component of this work is to develop algorithms and imple-

mentations that will produce results in a timely manner. Hyperspectral images are

of large size (several hundreds of Megabytes per scene), and it is of importance,

to use this technology in many environmental applications, where the analyst uses

data products such as fractional abundance and thematic maps, as an inputs in a

decision making process.

1.2 Research Objectives

The main objectives of this research were to develop models and find computa-

tionally efficient solution to solve the unsupervised unmixing problem. The specific

objectives of this research were:
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• To develop algorithms to solve the constrained positive matrix factorization (cPMF).

• To demonstrate the applicability of the developed algorithms for monitoring ter-

restrial and coastal ecosystems.

• To study different approaches to determine the number of endmembers.

• To study the characteristics of the algorithm for an efficient implementation.

• To validate the developed algorithms using simulated and real hyperspectral im-

agery.

Figure 1–1: Unsupervised unmixing algorithm

1.3 Contributions of the Work

The contributions of this work are as follows. Our first contribution is an

unsupervised algorithm to solve the unmixing problem in hyperspectral imagery

using the constrained positive matrix factorization (cPMF). This algorithm consists

of three different steps: determination of number of endmembers, initialization, and

computing the constrained positive matrix factorization. The schematic diagram of

the algorithm is shown in Figure 1–1.
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Second, we have proposed to use the linear dimensionality of hyperspectral im-

agery as the number of endmembers. The linear dimensionality of the hyperspectral

data is the dimension of space spanned by a set of bands. The linear dimensionality

of hyperspectral is smaller than the component dimension which is the number of

spectral bands.

Third, we have proposed to use the SVD-subset selection approach to initialize

the endmembers. This approach selects the most independent pixels from the image

as initial endmembers.

Fourth, we showed that cPMF could be used to solve the unsupervised unmix-

ing problem by extracting simultaneously, the endmembers, and their abundances,

by solving the optimization Problem (2.3). We used the two-stage Gauss-Seidel it-

erative approach to compute the constrained positive matrix factorization. Unlike

other known endmembers extraction algorithms, our algorithm does not assume that

endmembers are pure pixels in the image.

We present the evaluation of the effect of number of endmembers, number of

spectral bands, and the signal-to-noise ratio on the results. We present analysis for

the quality of estimates using the percentage error, and the spectral similarity met-

rics in simulated data. We present analysis to measure the model fitness using the

square of sample correlation (R2) value, and the root-mean-squared (RMS) resid-

ual values. The applicability of the proposed approach to hyperspectral imagery

of different domains was shown with environmental and microscopy images demon-

strating the diverse problems similar solution vision of the Center for Subsurface

Sensing and Imaging Systems. The research combined elements of optimization,

linear algebra, and computing to solve several relevant problems.



5

1.4 Dissertation Outline

This dissertation is structured as follows. Chapter 2 presents a background and

previous work on spectral unmixing. Chapter 3 presents a detailed description of

Positive Matrix Factorization and its application in unsupervised unmixing. Chapter

4 presents the developed of algorithms to compute the PMF, it also presents the

metrics used to evaluate performance. Chapter 5 presents experimental results using

simulated data. Chapter 6 presents experimental results using real data. Chapter

7 presents ethical issues. Finally, Chapter 8 presents summary , conclusions, and

suggests directions for future work.



CHAPTER 2

Background

This chapter presents background material and review of previous work related

to this research.

2.1 Introduction

Materials reflect, absorb, and emit electromagnetic energy, at specific wave-

lengths, in distinctive patterns related to their composition. Imaging Spectroscopy

is the acquisition of images where, for each spatial resolution element or pixel in the

image, a spectrum of the energy arriving at the sensor is measured. These spectra

are used to derive information based on the signature of the interaction of matter

and energy expressed in the spectrum. The imaging spectroscopy concept is illus-

trated in Figure 2–1 that presents the so-called hyperspectral cube which is the way

in which hyperspectral data is usually represented.

Examples of hyperspectral scanners are the 224-band Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) developed by the NASA Jet Propulsion Labo-

ratory [21], the 210-band Hyperspectral Digital Imagery Collection Experiments

(HYDICE) [24] developed by the Naval Research Laboratory, and the HYPERION

satellite sensor [25] developed by NASA.

6
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Figure 2–1: Hyperspectral concept illustration

Figure 2–2: Types of spectral sampling in spectral imaging [69].

Multispectral sensors acquire images simultaneously at separate non-contiguous

wavelength intervals or bands. Multispectral scanners typically record up to 10, or

so, spectral bands with bandwidths on the order of 0.1 µm. More recently, remote

sensing imaging technology has advanced in two major ways: improvement in the

spatial resolution of images and improvement in the spectral resolution of images.

The hyperspectral images samples the spectra at hundreds contiguous wavelengths

with a spectral resolution in the order of 1-10 nm. Figure 2–2 illustrates the differ-

ence between multispectral and hyperspectral sensing.
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Figure 2–3: Spectral image cube methods [57]

2.2 Building up the Image Cube

It worths to talk briefly about the way the hyperspectral cube is constructed.

Most spectral imaging systems build up the cube by scanning through it. There are

three conventional methods to scan through the cube. Whiskbroom, filter/ Fourier

transform, and pushbroom. An illustration of the three conventional methods is

shown in Figure 2–3

We will talk briefly about some of these methods in the following sections.

2.2.1 Whiskbroom Scanning Method

Whiskbroom is a scanning method used in imaging systems to build the spectral

cube. It uses a one-dimensional array optical arrangement as shown in Figure 2–

4. Examples of whiskbroom spectral sensors are AVIRIS [21], and LANDSAT [66].

The whiskbroom scans in the direction orthogonal to the direction of sensor motion

(Cross Track) to obtain the first spatial dimension x. The second spatial dimension,

y, is obtained as the sensor is moved across the scene (Along Track) as shown in

Figure 2–5. This sensor acquires each pixel in each spectral image with the same
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detector array which simplifies calibration . Resulting images from this sensor have

relatively low spatial resolution. The artifacts in resulting images are simple and

easy to correct [57].

Figure 2–4: One dimensional array arrangement used in whiskbroom scanning
method [57]

Figure 2–5: Single spectrum image using whiskbroom scanner [57]

2.2.2 Pushbroom Scanning Method

The pushbroom scanner or linear array sensor is a scanner without any mechan-

ical scanning mirror but with a linear array of solid semiconductor elements which

enables it to record one line of an image simultaneously, as shown is Figure 2–6.

The pushbroom scanner has an optical lens through which a line image is detected

simultaneously perpendicular to the flight direction. Though the optical mechani-

cal scanner scans and records mechanically pixel by pixel. The pushbroom scanner

scans and records electronically line by line as shown in Figure 2–7.



10

Figure 2–6: Two dimensional array arrangement used in pushbroom scanning
method [57]

Figure 2–7: Single spectrum image using pushbroom scanner [57]

Pushbroom acquires each pixel of each image line with a different detector which

leads to the striping artifacts due to non perfect calibration. Examples of pushbroom

sensors are HYDICE [24], and HYPERION [25].

2.3 Linear Mixing Model

Classification is a common and recognized tool in information extraction from

remote sensing. To classify a given image, each pixel in the given image is assigned

one of several classes. Many classification algorithm assumes that each pixel is pure;

that is the response of that pixel is from a single material. This assumption is not

always valid since, for example, each pixel produced by the HYPERION instrument

covers approximately 900 (30mx30m) square meter area on the ground and many

spatial features of interest are smaller than the sensor resolution. Spectral unmixing

provides a method to identify elements at subpixel resolution by their contribution

to the measured spectral signature. Figure 2–8 illustrates the spatial degradation
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caused by low spatial resolution by comparing a visible color composite 1m resolu-

tion image of Enrique Reef in Parguera collected using the IKONOS multispectral

sensor with a 30m resolution HYPERION image of the same area. The effect of low

spatial resolution is evident. Our objective is to derive some of the sub-pixel spatial

information from the low spatial resolution by taking advantage of the information

available in the spectral dimension.

Figure 2–8: Enrique Reef Acquired by (a)IKONOS 1m Resolution Sensor
(b)HYPERION 30m Resolution Sensor

The simplest model of a mixed spectrum is a linear one where a single pixel is

constructed in a checkboard pattern (see Figure 2–9) of the different materials in

the pixel so the measured spectral response of a pixel is a linear combination of the

individual materials weighted by the fractional area coverage or abundances. Let

si (1 ≤ i ≤ P ) be the i-th endmember corresponding to one of the contributing

material spectral signatures, and let xj be the observed spectral signature at the

j-th pixel. The linear mixing model (LMM) relates the measured spectra xj with

the endmembers, si as follows

xj =
P∑

i=1

siaij + wj =Saj + wj, j = 1, 2, ......, N (2.1)

where S ∈ Rm×P
+ is the matrix of endmembers, aj ∈ RP×1

+ the vector of fractional

abundances, and wj is an additive noise term at the j-th pixel and N is the number



12

of pixels in the image. Furthermore, since the abundances aij represent fractional

area coverage they need to satisfy the following constraints

aij ≥ 0 and aT
j 1P =

P∑
i=1

aij = 1

where 1P is a vector of 1’s of dimension P.

For the entire image, the linear mixture model given in Equation 2.1 above can

be written in matrix form as follows

X = SA + W (2.2)

where X=[x1,...,xN], S=[s1,...,sP ], A=[a1,...,aN ], and W=[w1,...,wN ] are a ma-

trix representation for the hyperspectral image, N , and P are the number of pixels,

and the number of endmembers , respectively.

Spectral unmixing is the inverse procedure by which given the image X, we

want to determine the endmembers matrix S, and the abundance matrix A. Math-

ematically, this can be expressed in the following approximation problem

Ŝ, Â = arg min
Sij≥0,Aij≥0,

AT 1p=1N

||X− SA||2F (2.3)

where ‖‖F is the Frobenous norm, and 1N is a vector of 1’s of dimension N. If the

constraint AT1p = 1N was not present, this problem will be similar to the positive

matrix factorization problem studied in many areas [10], [11], [12], and [13]. We can

think of (2.3) then as a constrained positive matrix factorization (cPMF).

If the endmember matrix S is known, the problem becomes the abundance es-

timation problem which is a constrained linear least squares problem. This problem

has been solved using different approaches as will be discussed later.
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Figure 2–9: Mixed pixel illustration

Here we are interested in determining (i) the endmember matrix S and (ii) the

corresponding abundances matrix A. For example, if both matrices are assumed to

be deterministic but unknown then using Equation 2.1 and assuming wj to be un-

correlated zero-mean gaussian, we have that Equation 2.3 is the maximum likelihood

estimator for A and S.

2.4 Nonlinear mixing

The linear mixing model discussed in the previous section assumes that the

incident radiation bounces only once upon its surface. On the other hand, when the

incident radiation can experience reflections with multiple substances, and the ag-

gregate spectrum of reflected radiation may no longer uphold the linear proportions

of the constituent substance spectrum, the linear mixing model is inappropriate to

describe this interaction, this scenario, is referred to as nonlinear mixing [1]. The

nonlinear mixing model performs better than the linear mixing model [50] in some

applications. One question arise according to [50]. Why would we consider using a

linear mixing model at all to estimate abundance fractions, away from the fact that

it is computationally simpler? The answer is related to the scale of spatial resolu-

tion. When we work in the laboratory, the scale is millimetric scale; while in remote
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sensing application we work with meter scale. According to [50], in the meter scale,

the linear mixing model results in a good approximation to the physical reality.

2.5 Solving the Linear Unmixing Problem

Different approaches have been proposed to solve the linear unmixing problem.

The standard unmixing approach solves the unmixing in two stages: first estimates

endmembers from the image by using one of several approaches described in the lit-

erature [6], and then estimates the abundances. Even though most of the approaches

use similar mathematical procedures, they differ in the criteria and the assumption

on the original model followed by the algorithm. Keshava [1] introduced a taxon-

omy of the existing approaches. He built the taxonomy upon three main features:

output characteristics, input characteristics, and noise modeling. Figure 2–10 shows

a three level diagram illustrating the algorithm taxonomy. The first level is the data

interpretation. The second level is the data randomness and the third level is the

optimization criteria. There are three criteria that categorize existing algorithms

[1]: how mixed-pixel spectra is interpreted, how data randomness is incorporated,

and the objective function being optimized.

2.5.1 Endmember Determination Approaches

Endmembers determination is very important in hyperspectral data analysis.

It is the process to find pure signatures present in image data, which are generally

of major interest for image analysis. In [18], they define the endmember as an ide-

alized, pure signature for a class. Therefore, an endmember does not have to be

a full pixel in the image. In [18], endmembers are extracted from a sequence of

projections generated using projection pursuit (PP). PP is a linear mapping that

searches for interesting low-dimensional projections from a high-dimensional data

space via a projection index (PI). In particular, it can be designed to characterize
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Figure 2–10: Taxonomy of unmixing algorithms [1]

nonlinear structures in projected distributions. For example, if the desired direction

of a PI is one pointing to data variance, the PP is reduced to PCA. On the other

hand, if the PI measures statistical independence it results in independent compo-

nent analysis (ICA) [45]. So, PP is a powerful technique in many signal/image-

processing applications. Using PP for hyperspectral image classification has been

studied previously in [46], who designed a PI based on Bhattacharyya’s distance to

reduce the dimensionality of feature space and in [47], who used the information

divergence (relative entropy) as a PI looking for interesting projections that deviate

from Gaussian distributions. the information divergence is used as the PI for the

PP approach.

Pixel purity index (PPI) is a well known approach used in endmember deter-

mination [19]. PPI finds the most spectrally pure pixels in the image by repeatedly

projecting an n-dimensional scatter plot onto random unit vectors. The extreme

pixels in each projection are recorded and the total number of times each pixel is

marked as extreme is noted. Those Pixels marked as extreme above a certain thresh-

old are declared ”pure”. To exclude the redundant spectra in the pure pixel list,
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the actual endmember spectra are selected by a combination of intelligent review of

the spectra themselves and through N-dimensional visualization. This approach re-

quires data preprocessing and post processing before determining the endmembers

[27]. PPI is typically run on a principal component transformation or minimum

noise fraction (MNF) image excluding noisy bands.

Orasis [27] is another approach for endmember determination. This algorithm

does not do dimensionality reduction; instead it thins the data set using Exemplar

Selection process in which any redundant spectra are rejected. The rejection is done

by calculating the angle between spectral vectors; vectors that are not separated by

a threshold angle are thinned from the data. The algorithm then finds a basis set of

much lower dimension, than the original data using Gram-Schmidt orthogonaliza-

tion. The thinned data are then projected onto this basis subspace and a simplex

is found through a minimum volume transform [28].

Another set of algorithms is based on a geometric model where pixels are en-

closed in a simplex whose corners are the endmembers. The geometrical mixing

model provides an intuitive mean to describe the endmember determination prob-

lem which is reduced to determine the corners of the simplex that encloses the data

cloud [1, 4, 5]. Figure 2–11 shows examples of simplex in the plane.

Figure 2–11: Simplex illustration in 2-D
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Examples of geometric motivated algorithms are N-FINDR [5] and Vertex Com-

ponent Analysis (VCA) [6]. N-FINDR [5] attempts to find the simplex of maximum

volume that can be inscribed within the hyperspectral data set using a simple non-

linear inversion. The non-linear inversion procedure begins with a random set of

pixels as endmembers. In order to refine the estimate of endmembers, every pixel

in the image must be evaluated as to its likelihood of being a pure or nearly pure

pixel. To do this, the volume must be calculated with each pixel in place of each

endmember. A trial volume is calculated for every pixel in each endmember posi-

tion by replacing that endmember and recalculating the volume. If the replacement

results in an increase in volume, the pixel replaces the endmember. This is repeated

until there are no more replacements. VCA [6] algorithm is unsupervised and ex-

ploits two facts: i) the endmembers are the vertices of a simplex and ii) the affine

transformation of a simplex is also a simplex. It works with unprojected and with

projected data. As PPI and N-FINDR algorithms, VCA also assumes the presence

of pure pixels in the data. The algorithm iteratively projects data onto a direction

orthogonal to the subspace spanned by the endmembers already determined. The

new endmember signature corresponds to the extreme of the projection. The algo-

rithm iterates until all endmembers are found. VCA performs much better than PPI

and better than or comparable to N-FINDR; yet it has a computational complexity

between one and two orders of magnitude lower than N-FINDR. These algorithms

assume that pure pixels are present in the input image and encounter difficulties

when no pure pixels exist. In that case, they will find the least mixed pixel (e.g.

that most closely approximates the missing endmembers).

Other approaches to endmember determination use clustering to determine the

endmembers. For instance, in [7], K-means clustering is used to group the data
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and the cluster centroids are used as the endmembers. Notice that the clustering

approach does not require the presence of pure pixels in the image.

The mentioned endmember determination approaches discussed in this section

are not related to an optimization problem like Equation 2.3. Endmembers are

determined separately from their abundances.

2.5.2 Abundances Estimation

If the matrix of endmembers S is known, the optimization problem developed

in (2.3) reduces to the abundance estimation problem (AEP). It can be shown that

the cost function in (2.3) is separable in the abundance vectors for each pixel so we

can estimate the abundances for each pixel separately. The AEP for a particular

pixel is given by the constrained linear least squares problem

âj = arg min
aij≥0,1P

T aj=1
||xj − Saj||22 (2.4)

The objective function in Equation 2.4 and constraints are convex, therefore the

solution is unique [3]. For AEP, several solution methods have been proposed in the

literature.

The simplest solution presented in the abundance estimation literature is to

completely ignore the constraints which lead to an unconstrained linear least squares

problem with direct solution given by [3]

â = (STS)−1STx (2.5)

The simplest constraint to enforce is the sum to one constraint since a direct solution

still exists for this case and is given by [3]

âSTO = âULS + (STS)−1λ1P (2.6)
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where

λ =
(1− 1T

P âULS)

1T
P (STS)−11P

This is also simple to implement but still has the same disadvantage as ULS in that

negative abundances could be obtained.

A direct solution no longer exist when the positive constraints are enforced

[3, 4]. The linear least squares problem with positive constraints only is referred in

the linear algebra literature as the non-negative linear least squares problem (NNLS)

for which Lawson and Hanson’s algorithm [3] is the most commonly used algorithm

to compute a solution. The NNLS algorithm uses the Active Set Strategy presented

in [58]. The idea behind the active set strategy is to divide the constraint into two

groups: the set acting as active (℘) and the set acting as inactive set (Z ) [58]. The set

working as inactive, Z, would be ignored to find the solution of LS [58]. The NNLS

is an simplification of the Least Square problem with Linear Inequality Constraints

(LSI). The NNLS algorithm is described in details by Lawson and Hanson [3]. The

convergence of the NNLS algorithm has been shown in [3].

Other iterative algorithms can be used to solve the NNLS. For instance, mul-

tiplicative iterative algorithms to solve the NNLS and its application to positively

constrained unmixing are described in [4].

Algorithms to solve the fully constrained abundance estimation problem have

been proposed in [2, 15]. In [15], an algorithm for the fully constrained abundance

estimation problem is proposed where the unmixing problem is transformed to a

least distance (LSD) least squares (LS) problem and solved using duality theory as

described in [3]. The advantage of this approach is that the resulting dual problem

is a NNLS problem for which several algorithms exist for its solution as described

previously. In [2], a different approach is used to enforce the constraints by means
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of quadratic penalty terms. A nonlinear quadratic penalty term is used in [2] to

enforce the nonnegative restriction on the abundances.

2.5.3 Unsupervised Unmixing

We define unsupervised unmixing as an approach to estimate the endmembers

and their abundances together by solving an optimization problem (as in (2.3)). A

statistical approach is proposed in [8] to solve the unsupervised unmixing. There,

abundances and endmembers are modeled as random variables and the maximum

a posteriori(MAP) estimator is used. The algorithm in [8] solves the optimization

problem

ÂMAP , ŜMAP = arg max f(A,S/X) (2.7)

where f(A,S/X) is the a posteriori joint distribution for A and S.

The probabilistic model assumes that the abundances and endmembers are

independent random variables. The endmembers are independent for different ma-

terials, and the noise term in (2.1) is identically independent normally distributed.

2.6 Summary

This chapter presents a background about hyperspectral imaging. The hyper-

spectral imaging concept, sensors types, and image formation are introduced. The

mixing problem using linear and nonlinear mixing models is presented. Previous

work in unmixing is reviewed. The standard two-stage unmixing procedures was

discussed in detail. The techniques described in the literature for each stage of the

standard unmixing are described.



CHAPTER 3

Unsupervised Unmixing using the
Constrained Positive Matrix Factor-
ization

This chapter presents the constrained positive matrix factorization and its ap-

plication to unsupervised unmixing.

3.1 Positive Matrix Factorization

The Positive matrix factorization (PMF) also known as nonnegative matrix

factorization (NNMF), has recently been shown to be a very useful technique in

approximating high dimensional data where the data are comprised of positive com-

ponent. In [9, 11], Lee and Seung proposed the use of the PMF technique to find

a set of basis functions to represent image data where the basis functions enable

the identification and classification of intrinsic parts that make up the object being

imaged by multiple observations. During the past few years, several papers have

discussed PMF techniques and successful applications to various fields where the

data values are positive [10, 12, 41].

To formulate the Positive Matrix Factorization problem, we need to introduce

some notation. The set R+ = [0, +∞) is called the set of positive real numbers. Let

21
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Z+ = {1, 2, ...} be the set of positive integers, for n ∈ Z+, let Zn = {1, ..., n}. Denote

the set of natural numbers N = {0, 1, 2, ...}. Denote by Rk
+ the set of k-tuples of

the positive real numbers. The set Rn×m
+ is the set of n×m positive real matrices.

Definition 3.1.1. Let X ∈ Rm×n
+ for m, n ∈ Z+. If X=0, the positive rank of X is

defined to be 0. The positive rank of the matrix X 6= 0 is defined as the least integer

P ∈ Z+ for which there exists a factorization given by Equation 3.1.

Definition 3.1.2. (Positive Matrix Factorization): Given a positive matrix X ∈

Rm×n
+ , the standard PMF problem is to find two new reduced-dimensional matrices

S ∈ Rm×P
+ and A ∈ RP×n

+ such that

X = SA (3.1)

The smallest integer P for which such a factorization exists is called the positive

rank of X and the corresponding factorization is called a minimal positive matrix

factorization. The problem is to determine the positive rank of a positive matrix

and the corresponding minimal factorization [29]. Finding and exact solution for

PMF is an unsolved problem in linear algebra.

Clearly P cannot be smaller than the positive rank of X, but in many cases even

larger value of P do not guarantee the existence of an exact PMF. It is therefore,

of interest to consider the approximate PMF problem where, given X and P , one

minimizes distance between X and SA with respect to positive matrices S and A.

There are different distances that can be used in the minimization process. Later

in this chapter, we will discuss two well known distances; the divergence and the

Frobenous norm. Mathematically, the approximate positive matrix factorization can

be written as
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Definition 3.1.3. (Approximate Positive Matrix Factorization): Given a positive

matrix X ∈ Rm×n
+ , the approximate PMF problem is to find two new reduced-

dimensional matrices S ∈ Rm×P
+ and A ∈ RP×n

+ such that

Ŝ, Â = arg min
Sij≥0,Aij≥0

||X− SA||2F (3.2)

This optimization problem always has a solution [36].

3.2 Polyhedral Cones and Positive Matrices

Geometrically, finding the approximate PMF consists of finding the positive

rank P and the corresponding P vectors that generate the polyhedral cone in Rm
+

which are the P columns of S and then the n elements inside it which are the columns

of the product SA that best approximate the n columns of X. To understand the

concepts of polyhedral cones and positive matrices, we need the following definitions.

Definition 3.2.1. Convex set: A set S in Rm is said to be convex if, for each

x1,x2 ∈ S, the line segment λx1 +(1−λ)x2 for λ ∈ [0, 1] belongs to S. Points of the

form x = λx1 + (1 − λ)x2 for λ ∈ [0, 1] are called convex combinations of x1 and

x2.

Definition 3.2.2. Convex polyhedron: is the set of solutions to a finite system of

linear inequalities. Hence, a set C of vectors in R is called a convex polyhedron if:

C = {v|Av ≤ b} for some n×m matrix A and a vector b.

Definition 3.2.3. Polyhedral cone: is the set of solutions to a finite system of linear

inequalities: C = {v|Av ≤ 0} for some n×m matrix A.
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3.3 Approaches for Computing the Positive Matrix Factorization

PMF can be drawn back to 1994, when Pentti Paatero published his paper

[30] introducing PMF. This work was previous to the work of Lee and Seung [9] on

Nonnegative Matrix Factorization.

Since the work of Lee and Seung [9], a lot of published and unpublished work has

focused on the analysis and application of the PMF in science, engineering, and other

fields. The PMF problem had been formulated alternatively based on the application

and the corresponding constraints. In [34], PMF was used for document clustering.

Nonnegative matrix factorization was used for rapid recovery of constituent spectra

in magnetic resonance chemical shift imaging of the brain [13].

The PMF algorithms can be divided into three different general classes [32].

Multiplicative updating rules based algorithms is one class. These algorithms belong

to Lee and Seung [10] algorithms. This class uses either the mean squared error or

the divergence objective functions. In both cases, the rank of factorization P is

assumed known.

The least squares error approximation problem is given by

ŜLS, ÂLS = arg min
S≥0,A≥0

||X− SA||2F (3.3)

An algorithm developed in [10] to solve (3.3) is summarized as in Algorithm 1. where

ε is a small positive number added to avoid division by zero.

The divergence objective function problem is given by

Ŝ, Â = arg min
S≥0,A≥0

D(X||SA) (3.5)
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Algorithm 1 :Multiplicative update for solving (3.3)

Input: P, S0, A0, ε, and set k = 0
Output: Ŝ, Â : optimized solution
1. Let k=k+1, iterate until the stopping criteria is achieved
2. For all 0 ≤ i ≤ P , 0 ≤ j ≤ N , and 0 ≤ b ≤ M update the entries of A, and S using

âk+1
ij = âk

ij(
((̂Sk)T X)ij

(((̂Sk)T ((̂S)k̂Ak))ij+ε)
)

ŝk+1
bi = ŝk

bi(
(X(̂Ak+1)T )bi

((̂SkÂk+1 (̂Ak+1)T )bi+ε)
)

(3.4)

where

D(X||SA) =
∑
ij

(Xij log
Xij

(SA)ij

−Xij + (SA)ij)

The corresponding updating rules are given by an algorithm developed in [10]

to solve (3.5) and summarized as in Algorithm 2.

Algorithm 2 :Multiplicative update: minimizing the divergence (3.5)

Input: P, S0, A0, ε, and set k = 0
Output: Ŝ, Â : optimized solution
1. Let k=k+1, iterate until the stopping criteria is achieved
2. For all 0 ≤ i ≤ P , 0 ≤ j ≤ N , and 0 ≤ b ≤ M update the entries of A, and S using

âk+1
ij = âk

ij(

MP

r=1
ŝk
rixrj/(̂SkÂk)rj

MP

h=1
ŝk
hi

)

ŝk+1
bi = ŝk

ij(

NP

r=1
âk+1

jr xir/(̂SkÂk+1)ir

NP

h=1
âk+1

ih

)

(3.6)

Equations (3.4) and (3.6) are called multiplicative updating rules because at

each iteration the new parameter value is being updated by multiplying the current

value by a factor as shown in both Equations (3.4) and (3.6) for the minimum

squared error and divergence objective functions, respectively.

These algorithms have become a baseline against which the newer algorithms

are compared. Since the objective is convex in either S or A but not in both. The
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main contribution of [10] was the development of the updating rules that converge

to a local minima.

The second class of NMF algorithms are based on the gradient descent methods.

This class of algorithms update the S and A matrices in each iteration as follows:

Ak+1
ij = Ak

ij − ηAij

∂J
∂Ak

ij

Sk+1
ij = Sk

ij − ηSij

∂J
∂Sk

ij

(3.7)

where J is the objective function, ηA and ηS are the step size parameters.

The step size parameters can be chosen in different ways according to the algo-

rithm. Some algorithms initially set these step size values to 1, then keep changing

at each iteration by dividing by 2; this is also known as step halving method [33].

This type of algorithms does not guarantee that S and A entries to be nonnegative.

To overcome the negative value entries a projection step is added [16, 33–35, 60].

The projection step updates the elements of S and A by setting all the negative

elements to 0. Mathematically, this can be written as

Ak+1
ij = max{0, Ak

ij − ηAij

∂J

∂Aij

}

This class of algorithms is step size dependent; the convergence also depends

on step size selection. On the other hand, projecting the results in each iteration to

nonnegative values, makes the analysis even more difficult.

The last class of PMF algorithms are the alternating least squares (ALS) class.

This class of algorithms structure alternates between two least squares steps. These

algorithms were used first by Paatero [30]. The algorithms take advantage of the
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fact that the problem has bilinear structure, that is for fixed A the problem is linear

in S, and for fixed S the problem is linear in A.

This ALS algorithm structure at each iteration is summarized in the following

steps:

1. Solve for A using (STS)A = STX.

2. Set all negative elements in A to 0. (This is a projection step.)

3. Solve for S using (AAT )ST = AXT .

4. Set all negative elements in S to 0. (This is a projection step.)

The algorithms keep alternating between the previous steps until convergence

is achieved. These algorithms are different from the multiplicative ones in that

they are more flexible in changing the path to the fixed point. The multiplicative

algorithms have the drawback that once an element in S or A becomes 0, it stays at

0. This means that once the algorithm starts heading down a path towards a fixed

point, it must continue even if it is a poor path [31]. The ALS algorithms can be

very fast and requires less work than other PMF algorithms.

The ALS algorithm is a coordinate descent Gauss-Seidel type. It is similar to the

two-stage Gauss-Seidel algorithm we proposed to solve the unsupervised unmixing

problem. The two-stage Gauss-Seidel algorithm will be introduced later.

3.4 Multiplicative Updating Rules Convergence Issues

In this section, we present some convergence issues concerning the multiplicative

updating rules that optimize the least squares error objective function problem (3.3)

and the divergence objective function problem (3.5).
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3.4.1 Least Squares Error Objective Function

The algorithm to optimize the least squares error objective function is shown in

Algorithm 1. According to [10], the Euclidean distance is invariant under the given

updates if and only if S and A are at a stationary point of the distance (see [10] for

proof).

Theorem 1. If X has neither zero column nor row, and s0
bi > 0 and a0

ij > 0 ∀i, j, b,

then

s0
bi > 0 and a0

ij > 0 ∀i, j, b, ∀k ≥ 1.

By definition, (S,A) is a stationary point of (3.3) if it satisfies the Karush-Kuhn

Tucker(KKT) optimality conditions given in [59]as sij ≥ 0 and aij ≥ 0

(∇S(||X− SA||2F ))bi ≥ 0, (∇A(||X− SA||2F ))ij ≥ 0

sbi.(∇S(||X− SA||2F ))bi = 0, aij.(∇A(||X− SA||2F ))ij = 0,∀i, j, b
(3.8)

where

∇S(||X− SA||2F ) = (SA−X)AT

and

∇A(||X− SA||2F ) = ST(SA−X)

are respectively partial derivatives to elements in S and A.

In [10], the following properties are shown.

If f(S,A) = ||X− SA||2F then

1. The function value is non-increasing after every update: f(Sk,Ak+1) ≤ f(Sk,Ak)

and f(Sk+1,Ak+1) ≤ f(Sk,Ak+1)
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Algorithm (1) intends to have a fixed point update : if ak+1
ij = ak

ij = 0 and

((Sk)TSkAk)ij 6= 0, then ((Sk)TX)ij = ((Sk)TSkAk) which implies that (∇Af(Sk,Ak))ij =

0, which is part of the KKT conditions given in (3.8).

3.5 Using PMF to Solve Unsupervised Unmixing

The PMF was used as a base for the development of a constrained non-negative

matrix factorization (cNMF) algorithm for recovering constituent spectra in [13].

There, the multiplicative method of [9] was extended to include a constraint on the

minimum amplitude of the recovered spectra to enable the algorithm to deal with

observations having negative values by assuming they arise from noise distribution.

This algorithm does not enforce the sum-to-one on the abundances as required by

the linear mixing model. Our research work focused on developing an algorithm

that enforces the positive constraints on the enmembers and on the abundances and

the sum to one constraint on the abundances.

Factor analysis (FA) and principal component analysis (PCA) are other meth-

ods for data representation in lower rank, which are, in principle, also capable of

doing low dimensional data representation similar to PMF, when applied to a matrix

of spectra. The results of these methods are, however, often ambiguous and difficult

to interpret, since the basic factors and principal components may have negative

entries. The physical meaningful representation can be found only after a series of

transformations which are called rotations.

By requiring non-negativity for both the endmembers and the weights, PMF

is able to produce results which should have physical interpretation. Another im-

portant aspect of PMF is the optimal use of error estimates. PMF computes the

solution by minimizing the least squares error of the fit weighted with the error

estimates. Positive rank of a matrix is the minimum number for which the matrix
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factorization does exist [29]. The number of endmembers can be considered the

same as the positive rank.

3.6 Estimating Number of Endmembers

An important issue in endmember determination is how to select the desired

number of endmembers. If the number is too small, not all endmembers present in

the image can be extracted. On the other hand, if the number is too large, some

extracted endmembers may not be pure pixels.

Estimating the correct number of endmembers is an important issue in the so-

lution of the unmixing problem. In the case of the PMF, the number of endmembers

determines the dimension of the factorization. Different approaches can be used to

estimate this number. In the literature, the positive rank of a matrix is defined as

the minimum dimension for which the positive matrix factorization does exist [29].

If we consider the positive rank to be equal to the number of endmembers, then

we need to determine its values. In this section, we present some approaches to

estimate the number of endmembers.

3.6.1 Dimensionality Estimation

An approach to estimate the number of endmembers is to use the rank of the

image matrix. Dimensionality estimation approaches can be divided into linear

and nonlinear approaches. In [65], the dimensionality estimation approaches were

presented. Examples of methods for linear dimensionality estimation are PCA [17],

correlation PCA, Scree test, and continuous significant linear dimensionality method

(CSD). Examples of nonlinear dimensionality estimation approaches are the near

neighbor method (Pettis), Fukunaga and Olsen, and fractal dimension estimation
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method . The linear and nonlinear dimensionality estimation approaches mentioned

here, are presented in more details in [65].

3.6.2 Mean Squared Error Curve

Another approach to estimate the number of endmembers is by plotting the

modeling error as a function of number of endmembers, we can estimate the number

of endmembers as the after which the error does not further decrease significantly.

3.6.3 Virtual Dimensionality

In [20], the virtual dimensionality (VD) criterion is used to estimate the number

of endmembers. In this method, the eigenvalues from both sample correlation matrix

and sample covariance matrix are calculated, referred to as correlation-eigenvalues

and covariance-eigenvalues for each of spectral bands. A binary composite hypothe-

sis testing problem can be formulated with the null hypothesis representing the case

that correlation-eigenvalue is equal to its corresponding covariance-eigenvalue and

the alternative hypothesis corresponding to the case that the correlation-eigenvalue

is greater than its corresponding convariance-eigenvalues. By specifying a false alarm

probability, PF , a Neyman-Pearson detector can be further derived to determine

whether or not a distinct signature is present in each of spectral bands. How many

times the alternative hypothesis is true is an estimate of how many endmembers are

there.

In this research work, we seek to study linear and nonlinear dimensionality

estimation approaches, and the mean squared error curve to estimate the number

of endmembers.
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3.7 Optimality Conditions for the CPMF

The PMF and cPMF are constrained optimization problems. The method of

Lagrange multipliers is a powerful tool to analyze constrained optimization problems

[38]. The most important results used in this work are summarized next. Suppose

that we have the following constrained optimization problem:

min f(x)

subject to

g(x) = 0

h(x) ≥ 0

(3.9)

then to find the solution of the constrained optimization function, we need to mini-

mize the related Lagrangian function given by

L(x, λ, µ) = f(x) + λT g(x)− µT h(x) (3.10)

where λ ≥ 0 and µ ≥ 0 are called Lagrange multipliers.

Theorem 2. (Karush-Kuhn-Tucker(KKT) Theorem). Let x∗ be a local minimum

for the constrained optimization problem defined in (3.9), then, there exist λ∗ and

µ∗ such that

1. µ∗ ≥ 0;

2. ∇(f(x∗)) + λ∗T∇g(x∗)− µ∗T∇h(x∗) = 0T ;

3. µ∗jh(x∗j) = 0.

The KKT conditions for optimality are given by [38]

1. µ∗j ≥ 0;

2. ∇(f(x∗)) + λ∗T∇g(x∗)− µ∗T∇h(x∗) = 0T ;
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3. µ∗jhj(x
∗) = 0;

4. g(x∗) = 0;

5. h(x∗) ≥ 0.

Proof: See [38].

Using the vec operator and the kronecker product notation, (see Appendix A)

we can re-arrange the PMF and cPMF problems in the framework of (3.9). Let us

define x̄ = vec(X), s̄ = vec(S), and ā = vec(A), then, the cPMF Problem 2.3 can

be written as

f(S,A) = ||x̄−Mā||22 = ||x̄−Hs̄||22

g1(A) = Bā− 1N = 0

g2(A) = ā ≥ 0

g3(S) = s̄ ≥ 0

(3.11)

where

M = IN ⊗ S

B = IN ⊗ 1T
P

H = AT ⊗ Im

(3.12)

The Lagrangian function for the cPMF is given by

L(S,A, λ, ξ, γ) = ||x̄−Mā||22 + λT (Bā− 1N)− ξT ā− γT s̄ (3.13)

The KKT optimality conditions for the cPMF are given by

HT (Hs̄− x̄) = γ (3.14a)
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MT (x̄−Mā) = BT λ− ξ (3.14b)

λT (Bā−1N) = 0 (3.14c)

āi ≥ 0 (3.14d)

s̄j ≥ 0 (3.14e)

Bā = 1N (3.14f)

ξiāi = 0 (3.14g)

γj s̄j = 0 (3.14h)

The KKT optimality conditions for the positive matrix factorization were presented

by [16] and given by

(X− SA)AT ≤ 0

ST(X− SA) ≤ 0
(3.15)

3.8 Summary

This chapter presents the Positive Matrix Factorization. We discuss the geo-

metrical interpretation of the PMF and it relation with convex cones. We present

how the PMF is modified to solve the unsupervised unmixing problem. The KKT

conditions for the cPMF are presented. In addition, we present prior work on the

determination of the number of endmembers.



CHAPTER 4

Computing PMF

4.1 Introduction

Our research developed a solution to the unsupervised unmixing problem us-

ing the constrained Positive Matrix Factorization (cPMF). This is an optimization

problem with equality and inequality constraints. Different approaches can be used

to solve this optimization problem.

Figure 4–1: Unmixing process

35
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In this chapter, we present different approaches used in this work to compute

the PMF to solve the unsupervised unmixing problem. The basic unsupervised

unmixing concept is illustrated in Figure 4–1

4.2 Algorithms

Different algorithms can be used to solve the CPMF problem. As a nonlinear

least squares problem, we can solve it using the Gauss-Newton method [22] however,

because of its structure and large size of data sets being processed other approaches

such as Gauss-Seidel, multiplicative iterative methods, and penalty approaches are

easier to implement.

4.2.1 Gauss-Seidel Method

This method solves the optimization problem by decomposing the estimation

problem and solving it into stages. Let (α, β) be a partitioning of the parameter

vector and let

(α̂, β̂) = arg minV(α, β) (4.1)

be the optimization problem of interest.

Define the component mappings

α̂ = arg min
α

V(α,β) = V1(β) (4.2a)

β̂ = arg min
β

V(α,β) = V2(α) (4.2b)



37

The bilinear structure of (3.3) defines a natural partitioning of the parameter

vector with α = vec(S), β = vec(A). The Gauss-Seidel algorithm alternate iter-

atively between two steps. In the first step (4.2a), the abundance matrix will be

fixed and the endmember matrix is estimated. Notice that this is a nonnegatively

constrained linear least squares problem, NNLS described previously. Multiplica-

tive iterative rules [10] are used for endmembers update. In the second step (4.2b),

the endmember matrix will be fixed and the corresponding abundances will be esti-

mated using the Non-Negative Sum-To-One Least Squares (NNSTOLS) proposed in

[3]. NNSTOLS is a fully constrained abundance estimation algorithm. The method

alternates between the two steps until convergence achieved.

4.2.2 Penalty Approach

The penalty approach is a well known approach to solve optimization prob-

lem with equality and inequality constraints [38]. This method approximates the

constrained optimization problem (3.3) by a positively constrained optimization

problem. The positively constrained optimization problem is solved and the solu-

tion is used as an approximation to the solution of the original problem. The idea

behind the penalty approach is that, for each constraint in the original problem, a

penalty parameter and penalty function are added to the cost function. The penalty

function should satisfies the following conditions:

1. It is continuous.

2. It is nonnegative.

3. It is zero when the argument is feasible, i.e. when the argument satisfies the

constraints.

The role of the penalty function is to penalize deviations from the feasible set.

Therefore, it is natural that the penalty function be defined in terms of the constraint
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Algorithm 3 :

Gauss-Seidel Method

• Input P, S0, A0, ε, and set k = 0

• Let k=k+1, iterate until the stopping criteria is achieved

1. Estimate A

For i=1: Number of pixels

âk
i = arg min

aij≥0

aT
i 1p=1

||Xi − Ŝ(k−1)âi||22

2. Update

Ŝ(k) = argmin
∥∥∥X− ŜÂ

(k)
∥∥∥2

F

we can use multiplicative updating rules of Lee and Seung [9]

For i=1:number of bands

For j=1:P

Ŝ
(k)
ij = Ŝ

(k−1)
ij

(XÂT (k))ij

(Ŝ(k−1)Â(k)ÂT (k))ij

End

End

3. If the stopping criteria is satisfied then stop and return Ŝ(k), Â(k).
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functions. Consequently, to enforce the constraints introduced in Equation 3.3, the

objective function for our optimization problem should include a penalty terms in

addition to Equation 3.3. The modified cost function becomes

J(S, A) = ||X− SA||2F + λ1J1(A) + λ2J2(S) (4.3)

where J1(A) and J2(S) are penalty terms used to enforce the constraints on the

solution of Equation 3.3, and their corresponding weights are λ1 and λ2 used to

weight the degree of compliance against model fit. Different penalty terms may be

used depending upon the desired effects on the computed solution. An approximate

solution to the original constrained problem is obtained by minimizing (4.3). The

degree of model fitting and constraint compliance is dependent on the values of λ1

and λ2. The gradient of J with respect to the entries of A and S are given by,

∂J
∂Sij

=
∂||X−SA||2F

∂Sij
+ λ2

∂J2(S)
∂Sij

∂J
∂Aij

=
∂||X−SA||2F

∂Aij
+ λ1

∂J1(A)
∂Aij

(4.4)

An approximate solution to the cPMF problem is obtained by solving the pos-

itively constrained problem

ÂPA, ŜPA = arg min
A≥0,S≥0

J(S, A) (4.5)

where

J(S,A) = ||X−SA||2F + λ2
1

∥∥AT1P − 1N

∥∥2

2
=

∥∥∥∥∥∥∥
 X

λ11
T
N

−
 S

λ11
T
P

A

∥∥∥∥∥∥∥
2

F

(4.6)
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and 1N is an N-dimensional vector of 1’s,
∥∥AT1P − 1N

∥∥2

2
is a penalty term that

penalizes deviation from sum-to-one constraint, and λ1, is a penalty parameter.

For a given λ1, Problem 4.5 is a positively constrained nonlinear least squares

problem. The larger λ1 is the more weight to meet the sum-to-one constraint over

minimizing the fitting error.

4.2.3 Gauss-Newton Approach

Since (3.3) is a nonlinear least squares problem, we can solve it using the Gauss-

Newton approach. To solve our optimization problem using the Gauss-Newton ap-

proach, we need to rewrite the problem in vector form using the properties of the

vec operator (see Appendix A). The resulting equations are of large size due to the

Kronecker product (see Appendix A). The memory management and matrix size

limitation in MATLAB makes it difficult to implement the Gauss-Newton approach.

4.3 Initialization

As with any iterative algorithm, the PMF algorithms are sensitive to the ini-

tialization of S and A [39]. Different algorithms to solve PMF are presented in the

literature [40, 44]. Some algorithms require initialization of both factors S and A.

Other algorithms required the initialization of S only; using the initial S, A can be

found using known least squares algorithms. Good initialization has a direct impact

on the speed and accuracy of the algorithms.

For initialization of cPMF we used the work of Langville et al. [39] which

presents procedures for the initialization PMF and applicable as well. We also

introduced a new approach developed in this work based on the SVD-subset selection

method of [43]. These procedures are summarized next.
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1. Random initialization is the procedure by which S and A are initialized as dense

matrices of random number between 0 and 1. Both S and A should be in the

feasible region; i.e. S and A satisfy the constraints given in Equation 2.3. One

drawback of this procedure is that zero entries could be obtained in the initial

matrices. For the multiplicative updating rules presented in [9, 10], entries of S

initialized with zero will stay equal zero even if no minima is achieved.

2. A second initialization procedure is the centroid initialization. In this procedure,

S is chosen to be the centroids that resulted from clustering the data matrix X.

This procedure is an expensive initialization step.

3. The third initialization procedure is the singular value decomposition (SVD) -

centroid initialization. In this approach , the SVD for the image X is computed

X = UΣVT (4.7)

where, U and V are orthonormal matrices and Σ is the diagonal matrix of singular

values [42]. Let k be the number of the most significant principal components.

The SVD-centroid initialization procedure initializes S with a centroid decompo-

sition of the first k columns of the right singular vectors matrix V, Vk. This

procedure is less time-consuming than the centroid decomposition X ∈ Rm×N
+

4. Selection of the most P - independent signatures of the image. Notice that spectral

signatures are the columns of X. A procedure based on the SVD to find such

subset is described in [42]. This has been applied to hyperspectral band subset

selection in [43] we modified to select the most independent signatures. We will

refer to this as SVDSS initialization.

5. Another initialization procedure is Random Acol [39] which initializes each column

of S by averaging r columns of X selected at random. This procedure lies between

random and centroid initializations procedures in terms of performance.
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6. The last two initialization procedures are the random C initialization and the

co-occurrence initialization. The random C initialization is similar to the ran-

dom Acol method, except it chooses r columns at random from the longest (in the

2-norm) columns of X. The idea behind this is that these columns might be more

likely to be closer to the centroids.

In Chapter 5, we will present a comparison between the initialization methods

using simulated data.

4.4 Computational Complexity

In this section, we present the computational complexity of the developed al-

gorithms. The worst case computational complexity of the two-stage algorithm is

O(MNP ) per iteration, where M is the number of spectral bands, N is number of

pixels, and P is the number of endmembers, respectively.

The penalty approach has the same structure as the general Positive Matrix

Factorization described in [59]. The worst case computational complexity of the

penalty algorithm is O((M +1)NP ) per iteration, where M is the number of spectral

bands, N is number of pixels, and P is the number of endmembers, respectively.

4.5 Stopping Criteria

It is common in iterative algorithms to use a stopping criteria to terminate

your algorithm. Setting a maximum number of iterations is well known stopping

criteria. It is also important to monitor a metric in each iteration for stopping

purpose if the solution has progressed far enough to be satisfactory. This process

makes it possible to stop before reaching the maximum iteration. Another metric

for stopping criteria is to measure the solution difference in two successive iterations
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and stop the procedure if the difference is smaller than some threshold. Let us

assume that the solution obtained at iterations k and k+1 are given by Sk and Sk+1,

respectively. The stopping metric is given by

εS = ||Sk+1 − Sk||F

εA = ||Ak+1 −Ak||F
(4.8)

According to Schau [48], achieving this stopping criteria does not necessarily mean

that we are close to the solution.

ε = ||X− SkAk||F (4.9)

achieves convergence early but it does not mean that we are approaching the actual

solution. For any square matrix T, the following is always true

(SkT)(T−1Ak) = SkAk

Due to this effect, the product SkAk could be close to original matrix X, but indi-

vidual parameters Sk and Ak could be far from convergence. This presence of this

matrix makes it difficult to get a unique solution.

Different stopping metrics have been tried in the literature. A stopping metric

used in independent component analysis (ICA) [48], is the smoothness factor of the

solution during the iterations. For each column of S and A, the smoothness is

defined factor can be written as

msi
= ln(17.09σsi

)

mai
= ln(17.09σai

)
(4.10)

where σsi
and σai

are the standard deviation of the elements of the i-th columns of

S and A, si and ai, at each iteration, respectively. A typical plot of the solution
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smoothness factor for a given column is shown in Figure 4–2. If the solution smooth-

ness factor of each column si and ai is constant, then convergence is achieved. The

red line shown in Figure 4–2 indicates the iteration number after which the solution

smoothness factor reaches a plateau.

Figure 4–2: Solution smoothness factor typical plot

4.6 Convergence Analysis

Multiplicative updating rules are steepest descent approaches. At each iteration

k, the algorithm generates the point (Ŝk, Âk) which is calculated based on the point

preceding it. The method is descent because as each point is generated by the

algorithm, the corresponding value of the objective function decreases in value. We

say that an iterative algorithms is globally convergent if for any arbitrary starting

point the algorithm is guaranteed to generate a sequence of points converging to a

point that satisfies the first order necessary condition for a minimizer. When the

algorithm is not globally convergent, it may still generate a sequence that converges

to local point [38]. Our problem is a compound problem of two parameters S and

A. Also our problem is not convex in S or A but not in both S and A. This means

that no global minima is not guaranteed, however, local minima could be reached.
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A related issue of interest pertaining to a given locally or globally convergent

algorithm is the rate of convergence; that is how fast the algorithm converges to a

solution point.

Theorem 3. Rate of Convergence. Let x(k) be a sequence that convergence to x∗.

If

lim
k→∞

||x(k+1) − x∗||
||x(k) − x∗||ρ

= C (4.11)

then the order of convergence is at least ρ .

Proof: See [38].

There are three types of convergence.

• Linear: if ρ = 1 and 0 < C < 1.

• Quadratic: if ρ = 2.

• Superlinear: ρ = 1 and C = 0.

Finding the rate of convergence for our problem is not a trivial task. Rate of

convergence of unconstrained two-stage Gauss-Seidel algorithm was found in [70]

to be linear. If the convergence point is an interior point of the feasible region the

unconstrained results apply for rate of convergence as described in [70]. Since the

unconstrained Gauss-Seidel convergence rate is linear, then we can conclude that

the convergence rate of our constrained Gauss-seidel algorithm is also linear.

4.7 Analysis of Estimation Quality

For algorithms performance evaluation, we need to evaluate the quality of esti-

mated endmembers and the model fitness. In simulated data, we have access to the
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endmembers that generate the image data. So we can directly assess the quality of

the estimates.

4.7.1 Endmember Estimation Quality

Two metrics are used to measure how close the estimated endmember signature

ŝi and the true signature si. The Euclidean distance and the angular distance.

The Euclidean distance between the estimated and actual endmember signa-

tures, d(si, ŝi) is given by

d(si, ŝi) = ||si − ŝi|| =
√∑

j

(sji − ŝji)2 (4.12)

We suggest to use the relative error instead of using the absolute error measured

by the Euclidean distance. The relative error between the estimated endmember

signature ŝi and the true signature si is given by

error(si, ŝi) =
||̂si − si||
||si||

(4.13)

The angle between the estimated endmember signature ŝi and the true signature

si is given by

θ(si, ŝi) = cos−1

(
ŝT
i si

||̂si||.||si||

)
(4.14)

This is proper as a measure of spectral differences in hyperspectral image analysis

in [1, 64]. These two metrics could be used in the case of simulated data or real data
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with ground truth. In Chapter 5, we will use these metrics to evaluate the quality

of endmember estimation using simulated data.

4.7.2 Model Fitness

When evaluating the goodness of a model, the model should fit well the training

data used to derive its parameters. Here, we look at two important metrics used for

the measure of fit: R2 value, and root-mean-square of the residuals.

4.7.2.1 R2 Value

Let x̂j = Ŝâj be the estimated spectral signature of the j-pixel, and let xj be

the measured signature for the j-th pixel. Define the residual vector of the j-pixel

to be

rj = xj − x̂j

In [61], the R2 value for our linear model is given by

R2
j = 1−

M∑
i=1

(rij)
2

M∑
i=1

x2
ij

(4.15)

The R2 is the square of the sample correlation between xj and x̂j [61]. It gives

information about the fitness of the estimated model to the data points. The closer

R2 value to unity, indicates good fitness of the model to the measured data.

4.7.2.2 Root-Mean-Square (RMS) Residuals

The RMS residual is a convenient measure of the model fit. The RMS residuals

can be displayed as images. High residual values call attention to pixels that are

not modeled well using the given set of endmembers. The RMS residual is given by
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RMSj =

√√√√ 1

M

M∑
i=1

r2
ij (4.16)

We will use (4.15) and (4.16) to evaluate the quality of the obtained results.

4.8 Summary

This Chapter presents some approaches to compute the constrained PMF. Since

the developed algorithms are iterative, we describe initialization schemes.

The stopping criteria of the algorithms is presented as well as the solution

smoothing factor as a stopping criteria. We present some metrics for estimation

quality. We focus on the quality of estimated endmembers and the model fitness. For

the estimated endmembers quality, we propose the percentage error and the spectral

angle. We also present metrics to measure the fitness of the estimated endmembers

to the measured data. We use R2 value, and root-mean-square residual.



CHAPTER 5

Experimental Results using Simu-
lated Data

5.1 Introduction

This chapter presents an evaluation of the unsupervised algorithms using sim-

ulated data. We performed different experiments using simulated data to evaluate

initialization criteria, model fitness, and algorithms performance. We study the

sensitivity of the algorithms to these parameters.

5.2 Simulated Data Generation

In order to test the effectiveness of the developed algorithms to solve the unmix-

ing problem, we used two different synthetic data sets. The first data set consists

of 1000 pixels generated using the linear mixing model as in (2.1), with five known

endmembers selected from the ground truth of the AVIRIS Cuprite image. This is

an image taken over the Cuprite mining district, 2 km north of Nevada. The spec-

tral response of the endmembers were used to generate the data is shown in Figure

5–1. The data was generated with different signal-to-noise ratio to fit different of

experiments we conducted.

49
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Figure 5–1: Spectral response of the original endmembers

An other simulated data set was generated in the form of a cube with end-

members are located in its corners. The endmembers are used to mix along the

diagonals of the cube with different weights based on its position with respect to the

cube corners. The spectral signatures of the cube endmembers are shown in Figure

5–2. The corresponding abundances maps are shown in Figure 5–3

Figure 5–2: Spectral response of cube original endmembers
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(a) (b)

(c) (d)

Figure 5–3: Cube true abundance maps
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Since the true endmembers are known in both simulated data sets, then, these

data sets are useful to evaluate the developed algorithms. In this Chapter, we will

use the simulated data set to evaluate the performance of the developed algorithms

5.3 Estimating Number of Ednemembers

In this section, we estimate the number of endmembers using the linear dimen-

sionality of hyperspectral data. We used the linear approaches for estimating the

hyperspectral image dimension. The estimated dimension using linear and nonlinear

approaches of the simulated data is shown in Table 5–1. It can be seen that the

SVD approach with percentage variance equal to 99% gives the correct number of

endmembers. The rest of approaches estimated the same data dimension.

Table 5–1: Simulated data dimension estimate

Approach SVD KG CSD Fukunaga
Dimension 5 4 4 4

5.4 Effect of Initialization Schemes

To evaluate the effect of initialization schemes on the results, we conducted an

experiment using Cuprite simulated data. Simulated pixels were used to estimate

the endmembers and abundances using the Gauss-Seidel algorithm with different

initialization methods described in Chapter 4. Four initialization approaches, ran-

dom initialization, random Acol initialization, random C initialization, and singular

value decomposition subset selection (SVDSS) approach were used. We used the

angle, and the percentage difference of Euclidean distance between the estimated

and the true endmembers to evaluate the resulting endmember estimates. Table
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5–2 shows the angle between the estimated and the true endmembers for four ini-

tialization procedures for the two-stage algorithm. Table 5–3 shows the percentage

difference of Euclidean distance between the estimated and true endmembers. It

can be seen from Table 5–2 and Table 5–3 that for the estimated first endmember,

shown in Figure 5–4, the Random Acol initialization criteria performed the best

while the random initialization has the worst performance. Figure 5–5 together

with Table 5–2 and Table 5–3 show that the SVDSS initialization criteria gives the

best overall performance. Figures 5–6, to 5–8 show the spectral response of the

third, fourth, and fifth endmembers respectively. Table 5–2 and Table 5–3 show

that the SVDSS initialization criteria performed better than the other initialization

criteria. To minimize randomness effects on the results, we repeated the experiment

four times; we use the average of the four trials to compare between the initialization

procedures. Table 5–4 shows the initial and the final values of the objective function

for each initialization method; it also shows the execution time of the algorithm for

initialization method.

Table 5–2: Angle between the estimated and the true endmembers (degrees)

Random Random Acol Random C SVDSS
θ(s1, ŝ1) 14.27 1.24 2.60 1.43
θ(s2, ŝ2) 14.12 3.14 4.38 2.28
θ(s3, ŝ3) 12.95 9.35 8.20 6.65
θ(s4, ŝ4) 8.31 6.38 5.89 6.41
θ(s5, ŝ5) 25.24 6.47 5.63 0.12

Table 5–3: Percentage error of the estimated endmembers (%)

Random Random Acol Random C SVDSS
(s1, ŝ1) 3.85 0.45 0.81 0.71
(s2, ŝ2) 6.64 1.42 2.01 1.30
(s3, ŝ3) 6.72 7.88 7.81 2.66
(s4, ŝ4) 3.59 2.96 2.55 2.80
(s5, ŝ5) 6.66 1.61 1.61 0.03
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Table 5–4: Initial and final values of objective function and execution time

Random Random Acol Random C SVDSS
E0 532.734 186.935 360.814 6.205
Ef 0.733 0.0464 0.0689 0.0084

Time(sec) 576.75 608.22 607.68 612.81

Figure 5–4: True and estimated spectral response of the first endmember

Figure 5–5: True and estimated spectral response of the second endmember
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Figure 5–6: True and estimated spectral response of the third endmember

Figure 5–7: True and estimated spectral response of the fourth endmember
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Figure 5–8: True and estimated spectral response of the fifth endmember

Figure 5–9: Objective function
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The value of the objective function at each iteration is shown in Figure 5–9 for

the four initialization methods. It can be seen that for SVDSS initialization method

both the initial and the final values of the objective function are much smaller than

for the other initialization methods. If a threshold value of the objective function is

used as a stopping criteria, then this results in faster stopping. No useful information

can be taken from the execution time since we the maximum number of iteration as

a stopping criteria.

5.5 Evaluation of the Effect of Number of Spectral Bands

We studied the effect of the number of spectral bands on the performance

of the algorithms. For this purpose, we used the same simulated data set used for

initialization criteria evaluation. In this experiment, we used SVDSS -band selection

[43] to select different bands subsets. The two-stage approach was used to study the

effect of number of bands on the algorithm performance.

Table 5–5: RMS residuals result as a function of number of spectral bands (Two-
stage)

Num. spectral bands Min rms value(×10−6) Max rms value Average rms(×10−5)
10 1.08 0.0042 4.194
50 1.58 0.0045 6.092
100 1.40 0.005 6.49
150 1.26 0.0049 5.96
200 1.20 0.0049 5.47
224 21.2 0.0234 95.6

Table 5–6: RMS residuals result as a function of number of spectral bands (Penalty)

Num. spectral bands Min rms value(×10−4) Max rms value Average rms(×10−3)
10 4.44 0.045 6.0
50 3.37 0.0387 5.4
100 3.55 0.0388 5.3
150 4.02 0.0382 5.4
200 4.88 0.0377 5.4
224 22 0.1337 30.7
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Tables 5–5, and 5–6 show the minimum, maximum, and average values of the

rms residuals for different number of spectral bands obtained using the SVDSS

approach for the two-stage approach, and the penalty approach, respectively. It can

be seen from Tables 5–5 and 5–6, that when the number of bands is equal to 224,

the rms residual value are the worst. In the 10 spectral bands case, the rms residuals

are the best.

Figure 5–10 shows the plot of the rms residuals average as a function of the

number of spectral bands for the two-stage and penalty approaches. It can be shown

from Figure 5–10 that between 50 bands and 200 bands the variation in the rms

residuals average is so small for both approaches. On the other hand, the variation

in rms residuals average between 200 bands and 224 bands is noticeable, also it is

true for both approaches. Figure 5–10 shows that the rms average values are smaller

for the two-stage approach than that for penalty approach.

Figure 5–10: Plot of RMS residuals average plot as a function of number of spectral
bands
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5.6 Evaluation of the Effect of Number of Endmembers

We conducted an experiment using the cube simulated data and various number

of endmembers to study the effect of the number of endmembers on the results. The

cube data has four endmembers located on its four corners. Figure 5–2 shows the

spectral signature of the true four endmembers of the cube data, and Figure 5–3

shows their corresponding abundance maps.

Table 5–7 shows the R2 average, RMS residual average, and their standard

deviation for three, four, five, six, and eight endmembers experiments using the

cube simulated data. The R2 value average, and the RMS residual average shown

in Table 5–7, indicate that four endmembers is the best number which is expected

since the structure of the cube data is already known. Figure 5–11 shows that

when the number of endmembers is greater than four, the mean squared error does

not change. This is also an indication that four endmembers is the best choice for

number of endmembers for the cube data.

Figure 5–11: Cube mean squared error
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To show the effect of the number of endmembers on the results, we chose number

of endmembers less than four (three endmembers), four endmembers, and greater

than four (eight endmembers). The estimated spectral signatures for the three

endmembers, four endmembers, and eight endmembers are shown in Figures 5–12,

5–14, and 5–16, respectively. The corresponding abundance maps are shown in

Figures 5–13, 5–15, and 5–17, respectively.

Table 5–7: R2 and RMS results for different number of endmembers

Num. of Endmembers R2 Average R2 Stdev RMS Average RMS Stdev
3 0.9953 0.0467 3.8118 3.6646
4 1 0 3.1677×10−6 7.8225×10−7

5 1 1.488 ×10−5 0.0260 0.1516
6 1 4.927×10−6 0.0137 0.0780
8 1 4.368×10−6 0.0098 0.0636

Figure 5–12: Three endmembers estimated Spectral signatures

It can be seen from Figure 5–12, Figure 5–13, and Figure 5–2 that the first

estimated endmember (E1) is close to the fourth true endmember and the third

estimated endmembers (E3) is close to the second true endmember. The second

estimated (E2) is a linear combination of the first and the third true endmembers.

Comparing Figure 5–14 and 5–2, we can see that the four estimated endmembers

agree to the true endmembers.



61

(a) (b)

(c)

Figure 5–13: Cube abundance maps for three endmembers

Figure 5–14: Four endmembers estimated Spectral signatures
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(a) (b)

(c) (d)

Figure 5–15: Cube abundance maps for four endmembers

Figure 5–16: Eight endmembers estimated Spectral signatures
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5–17: Cube abundance maps for eight endmembers
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The estimated spectral signature for the eight endmembers and their corre-

sponding abundance maps are shown in Figures 5–16, and 5–17, respectively. We

can see from Figure 5–16 that

• The first (E1), the second (E2), and the third (E3) estimated endmembers are

similar and close to the second true endmember.

• The fourth (E4) and the sixth (E6) estimated endmembers are similar and close

to the third true endmember.

• The fifth (E5), and the seventh (E7) estimated endmembers are similar and close

to the first true endmember.

• The eighth (E8) estimated endmember is close to the fourth true endmember.

From the previous observations, we can conclude that for the cube simulated data,

when the number of endmembers (eight endmembers) is greater than the true num-

ber of endmembers (four endmembers), some of the estimated endmembers are of

similar shape. The whole estimated endmembers can be divided into number of

sets equal to the number of true endmembers. The estimated endmembers in each

set have similar spectral signatures and close to one spectral signature of true end-

member. The sum of the abundance fractions corresponding to each estimated

endmember in each set, is the same as the abundance fractions of the closest true

endmember in the original image.

5.7 Evaluation of the Effect of Noise

In nature, signals are mixed with some noise due to different factors. We studied

the effect of noise on the results of the developed algorithms. For this purpose, we

used the 1000 pixel generated from the five endmembers taken from the Cuprite

image. We added noise to these pixels such that the specified SNR is obtained. The
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added noise is a zero-mean white noise. According to [63], the signal-to-noise ratio

for the zero-mean white noise is given by

SNR =
E[XTX]

Mσ2
≈ ‖X‖2

F

NMσ2
(5.1)

where N is the number of pixels in the image, M is the number of spectral bands,

and σ2 is the variance of the white noise.

Table 5–8: R2 value average and RMS residuals average results for different SNR

SNR R2 Average Stdev RMS Average Stdev
5 0.8381 0.0343 0.1557 0.0071
10 0.9083 0.0218 0.1116 0.0053
20 0.9509 0.0126 0.0796 0.0038
50 0.9796 0.0056 0.0504 0.0023
100 0.9897 0.0028 0.0356 0.0017
1000 0.9990 2.8406×10−6 0.0112 5.185×10−4

Table 5–8 shows the R2 average value and the RMS residual average and the

corresponding standard deviations for different SNR values.

Figures 5–19, 5–20, 5–21, and 5–22, show the estimated spectral signature of the

second, third, fourth, and fifth endmembers, respectively, for different SNR values.

The estimated spectral signature of the second endmember is noisy for SNR=5, and

SNR=10. In the third endmembers case, we notice that for SNR less than 100,

the estimated spectral signatures were noisy and do not in amplitude to the true

spectral signature.

Figure 5–18 shows the estimated spectral signature of the first endmember for

different SNR values. It can be seen that for SNR=5, and SNR=10 the estimated

spectral signature is very noisy and not close to the true spectral signature. For SNR

equal or greater than 20, the estimated spectral signatures were clean and agree to
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the true spectral signature. For the four endmembers and five endmembers cases, it

can be seen that for SNR greater than 20, the estimated spectral signatures agree

to the true spectral signature.

Figure 5–18: First endmember estimated Spectral signatures

Figure 5–19: Second endmember estimated Spectral signatures

Previous results show that the two-stage approach deals with data where signal-

to-noise ratio is low or high. In the case of low SNR, the estimated spectral signatures
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Figure 5–20: Third endmember estimated Spectral signatures

Figure 5–21: Fourth endmember estimated Spectral signatures
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Figure 5–22: Fifth endmember estimated Spectral signatures

Figure 5–23: Mean squared error for different SNR values
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were close in shape with some noise. When the SNR is high, in our case for SNR

equal or greater than 20, the algorithm estimates the spectral signatures correctly.

5.8 Algorithm Evaluation

We evaluated the developed algorithms by conducting two experiments. The

purpose of these experiment was to measure the capability of the developed algo-

rithms for estimating the endmembers spectra using simulated data. Another pur-

pose was to compare between the developed algorithms based on ability to estimate

the endmembers from simulated data.

5.8.1 Experiment I: Cube simulated Data

To evaluate the performance of the algorithms, we conducted an experiment

using simulated data arranged in a cube of 101 rows, 101 columns, and 223 spectral

bands. This cube is constructed with the four endmembers placed at the corners of

the cube. The spectral responses of the endmembers used in mixing the cube pixels

and their corresponding abundance maps are shown in Figure 5–2, and 5–3.

The estimated cube data dimension is shown in Table 5–9. It can be seen from

Table 5–9 that the SVD approach estimates the correct number of endmembers. In

this experiment, we will use the estimated data dimension obtained using the SVD

approach as our number of endmembers. Hence, the number of endmembers is four.

Table 5–9: Cube data dimension estimate

Approach SVD KG CSD Fukunaga
Dimension 4 3 3 3

Figure 5–24 shows the spectral responses of true and the estimated first end-

member. The estimated spectral response from both the penalty and the two-stage
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approaches agree completely with the true spectral response. The abundance map

of the first endmember obtained from the two-stage and the penalty approaches are

shown in Figure 5–25(a) and Figure 5–25(b), respectively. It is clear from the abun-

dance maps that both approaches performed well in estimating the first endmember

spectral response and abundance map.

Figure 5–24: True and estimated spectral response of the first endmember

(a) (b)

Figure 5–25: Abundance map of the first endmember using (a)Two-stage approach
(b)Penalty approach
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Figure 5–26 shows the spectral response of the true and estimated second end-

member. A complete agreement between the true and the estimated spectral re-

sponse can be seen from the figure.

The abundance map of the second endmember obtained from the two-stage

and the penalty approaches are shown in Figure 5–27(a) and Figure 5–27(b), re-

spectively. As we know previously from the structure of the simulated data, the

high concentration of the second endmember exists in the upper right corner of the

cube and starts to reduce along the diagonal; this is clear in the abundance maps

obtained from both approaches.

Figure 5–26: True and estimated spectral response of the second endmember

Figure 5–28 shows the spectral response of the true and estimated third end-

member. The percentage error, and the spectral angle between the estimated and

the true endmembers were found to be 0 which shows, together with Figure 5–28

that both algorithms estimated the endmembers correctly.

The abundance map of the third endmember obtained from the two-stage and

the penalty approaches are shown in Figure 5–29(a) and Figure 5–29(b), respectively.
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(a) (b)

Figure 5–27: Abundance map of the second endmember using (a)Two-stage ap-
proach (b)Penalty approach

Again, the concentration of the third endmember is high in the lower left corner

of the cube and start to reduce along the diagonal toward the intersection of the

diagonals of the cube face. This also agree with the structure of the simulated data.

Figure 5–28: True and estimated spectral response of the third endmember

Figure 5–30 shows the spectral response of the true and estimated fourth end-

member. The estimated spectral response agrees completely with the true spectral

response.
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(a) (b)

Figure 5–29: Abundance map of the third endmember using (a)Two-stage approach
(b)Penalty approach

The abundance map of the fourth endmember obtained from the two-stage and

the penalty approaches are shown in Figure 5–31(a) and Figure 5–31(b), respectively.

The concentration of the fourth endmember is high in the lower right corner of the

cube and start to reduce along the diagonal toward the intersection of the diagonals

of the cube face. This also agree with the structure of the simulated data.

Figure 5–30: True and estimated spectral response of the fourth endmember

Figure 5–32, and Figure 5–33 show the R2 plot for the two-stage approach, and

the penalty approach, respectively. The R2 plot measures the fitness of the estimated



74

(a) (b)

Figure 5–31: Abundance map of the fourth endmember using (a)Two-stage approach
(b)Penalty approach

Figure 5–32: R-squared plot (Two-stage)

endmembers to simulated data cube. The obtained R2 plots from both approaches

were close to unity, hence the estimated endmembers fit well the simulated data.

This is expected since the spectral response of the four endmembers were correctly

estimated.
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Figure 5–33: R-squared plot (Penalty)

Figure 5–34 shows the mean squared error for the two-stage approach, and

the penalty approach. It can be seen from the mean squared error plot that the

two-stage approach goes to lower value than the penalty approach.

Figure 5–34: Cube data mean squared error curve

In addition to the spectral signatures plot (Figures 5–24, 5–26, 5–28, and 5–30)

and their abundance maps (Figures 5–25, 5–27, 5–29, and 5–31) for the estimated
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four endmembers of the cube simulated data, the percentage error and the spectral

angle between the estimated and the true spectral signatures were found to be 0,

hence both algorithms estimated correctly the four endmembers.

5.8.2 Experiment II: Simulated Data using Five Endmembers from Cuprite
Image

This experiment was conducted using the same simulated data as in Section

5.4. In addition to evaluating the performance of the developed algorithms, we

compare between the Gauss-Seidel approach and the penalty approach discussed

in Section 4.2. We compare the algorithms based on how close are the estimated

spectral signatures from the true spectral signatures obtained from ground truth of

the Cuprite image. The SVDSS initialization scheme will be used in this experiment.

Tables 5–10 and 5–11 show the angle and the percentage error between the true

and estimated signatures. We can see from Tables 5–10 and 5–11 that the two-stage

approach results in smaller spectral angles and smaller percentage error between the

true and estimated signatures than the penalty approach.

Table 5–10: Angle between the estimated and the true endmembers for Two-stage
and Penalty approaches(degrees)

Two-stage Approach Penalty Approach
θ(s1, ŝ1) 1.43 3.96
θ(s2, ŝ2) 2.28 9.26
θ(s3, ŝ3) 6.65 9.01
θ(s4, ŝ4) 6.41 11.83
θ(s5, ŝ5) 0.12 1.99

Table 5–12 shows the initial and the final values of the objective function for

both approaches. It also shows the execution times of processing 1000 simulated

pixels using the two-stage and the penalty approaches. In both approaches, we
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Table 5–11: Percentage error of the estimated endmembers for Two-stage and
Penalty approaches(%)

Two-stage Approach Penalty Approach
(s1, ŝ1) 5.99 15.45
(s2, ŝ2) 5.06 21.60
(s3, ŝ3) 13.56 18.42
(s4, ŝ4) 11.28 24.54
(s5, ŝ5) 0.24 7.23

Table 5–12: Initial and final values of objective function and execution time for
Two-stage and Penalty approaches

Two-stage Approach Penalty Approach
E0 6.2055 6.2055
Ef 0.0084 5.123

Time(sec) 650.55 125.15

started with the same initialization. The final value of the objective function is

lower for the two-stage approach. Although the execution time for the penalty

approach is smaller than that of the two-stage approach, the spectral angle and the

percentage error show that the two-stage performs better than penalty approach.

Figure 5–35: True and estimated spectral response of the first endmember
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Figure 5–36: True and estimated spectral response of the second endmember

Figure 5–37: True and estimated spectral response of the third endmember
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Figure 5–38: True and estimated spectral response of the fourth endmember

Figure 5–39: True and estimated spectral response of the fifth endmember
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Figure 5–35 through Figure 5–39 show the true and estimated spectral response

of the five endmembers used in this experiment. It can be seen from these figures

and the tables that the two-stage estimate of the spectral signatures is closer than

those obtained using the penalty approach.

Figure 5–40: objective function

Figure 5–40 shows the objective function for both the two-stage and the penalty

approaches. This figure shows that the two-stage goes to lower value of the objective

function than the penalty approach.

5.9 Summary

In this Chapter, we presented results using simulated data. We conducted ex-

periments using simulated data to make comparison between different initialization

schemes. We used two metrics to compare between results. We conducted exper-

iment to compare the two-stage approach and the penalty approach. The results

showed that the SVDSS performs better than other used initialization schemes. In

the comparison between algorithms, we can see that the two-stage approach per-

forms better than the penalty approach. For the rest of our experiments using
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real data, we will use the SVDSS as our initialization scheme. We estimated the

simulated data dimension using different approaches. We also presented results to

evaluate the effect of the number of spectral bands, the number endmembers, and

the noise on the results.



CHAPTER 6

Experimental Results using Real Data

6.1 Introduction

In this chapter, we apply the developed algorithm to real data. We conducted

different experiments using different real data sets. Based on the results of Chapter

5, we decide to use the SVDSS initialization scheme in our experiments for the rest

of this chapter.

In this chapter, we use real data set to validate the developed algorithms. We

use the Enrique Reef Hyperion image, Cuprite AVIRIS image, A.P. Hill AVIRIS

image, and Biochemical data sets.

6.2 Enrique Reef Data

Figure 6–1(b) shows a small subset (29x49x90) of a HYPERION image of the

Enrique Reef in southwestern Puerto Rico used in the experimental work shown

here. The HYPERION image is 30m resolution. The low resolution motivates the

spectral unmixing. The image contains areas of deep water, sea grass, carbonate

sand, and reef crest as shown in the reference image Figure 6–1(a).

82
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(a) (b)

Figure 6–1: Images of Enrique Reef acquired by: (a)IKONOS 1m resolution multi-
spectral sensor, and (b) HYPERION 30m resolution hyperspectral sensor

6.2.1 Determination of the Number of Endmembers

One important issue in unsupervised unmixing is to determine the number of

endmembers. In Chapter 2, we discussed some approaches to determine the number

of endmembers. Among these approaches was by plotting the mean squared error

for different number of endmembers. The obtained curve has a plateau; the number

of endmembers is chosen from the curve as the number where the plateau starts.

We plot the mean squared error curve for different number of endmembers using

the Enrique Reef HYPERION image; the obtained mean squared curve is shown in

Figure 6–2.

It can be seen from Figure 6–2, that the plateau starts when the number of

endmembers is five. We also used different approaches to estimate the dimensionality

of hyperspectral data. The dimension estimates of the used approaches are shown in

Table 6–1. It can be seen from Table 6–1 that all approaches estimated the dimension

to be five except the Kaiser-Guttman method which estimated the dimension to be

4. Since the number of endmember could be the same as or one greater than the data

dimension we used the number of endmembers to be five. The spatial distribution
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in the reference image (Figure 6–1(a)) makes the estimation of five endmembers to

be reasonable.

Figure 6–2: Mean squared error curve for Enrique Reef HYPERION image

Table 6–1: Enrique Reef data dimension estimate

Approach SVD KG CSD Fukunaga
Dimension 5 4 5 5

Herein, we present the results obtained by processing the HYPERION image

shown in Figure 6–1(b) using the two-stage approach, and the Penalty approach.

For comparison purposes, we present the results obtained by processing the same

image using PPI, and N-FINDR approaches. The two-stage approach and penalty

approach are discussed in details in Section 4.2. We present the spectral response

estimated using the mentioned approaches and the corresponding abundance maps.

Figure 6–3 shows the sea grass spectral response estimated using PPI, N-

FINDR, two-stage, and penalty approaches. Although the estimated spectral re-

sponse from all approaches agree in their shape, we can clearly see the difference
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Figure 6–3: Sea grass estimated spectral response

in amplitude; this is clear in the spectral region (380-600)nm. We can see that the

penalty approach and the N-FINDR approach agree completely in both shape and

amplitude. The PPI approach produces the lower amplitude where the two-stage

approach produces the maximum amplitude.

The sea grass abundance maps are shown in Figure 6–4. It can be seen from Fig-

ure 6–4 that the grass abundance maps obtained using penalty approach agree with

those obtained using PPI, and N-FINDR. The sea grass abundance map obtained

using the two-stage approach is different from those obtained using PPI, N-FINDR,

and penalty approaches. As discussed in the previous section, the magnitude of

the grass spectral response is higher for the two-stage case which results in lower

abundance fractions. The abundance maps obtained from does not completely agree

with the reference IKONOS image (Figure 6–1(a)). Abundance maps obtained from

the PPI approach produced the worst spatial distribution of the grass compared to

the reference image. The abundance maps obtained using the N-FINDR, the two-

stage, and the penalty approaches are more reasonable because the sea grass region
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(a) (b)

(c) (d)

Figure 6–4: Grass abundance maps obtained using (a)PPI (b)N-FINDR (c) Penalty
(d) Two-stage
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shown in the IKONOS reference image were recovered. Also the sand region were

recovered.

Figure 6–5: Crest reef estimated spectral response

Figure 6–5 shows the crest reef spectral response estimated using PPI, N-

FINDR, two-stage, and penalty approaches. It can be seen that the estimated

spectral response from all approaches agree in their shape, we can clearly see the

difference in amplitude; this is clear in the spectral region (380-700)nm. We can see

that the penalty approach and the N-FINDR approach agree completely in shape

and close in amplitude. The PPI approach produces the lower amplitude where the

two-stage approach produces the maximum amplitude.

Figure 6–6 shows the crest reef abundance maps obtained using the PPI, N-

FINDR, two-stage, and penalty approaches. Comparing the contained abundance

maps with the IKONOS reference image (Figure 6–1(a)), we can see that all the

approaches performed well in recovering the spatial distribution of the crest reef.

Although the concentration scale is smaller in the two-stage case; this is due to

the fact that the amplitude of the spectral response obtained using the two-stage

approach is higher than the other approaches.
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(a) (b)

(c) (d)

Figure 6–6: Crest reef abundance maps obtained using (a)PPI (b)N-FINDR (c)
Penalty (d) Two-stage

Figure 6–7: Sand estimated spectral response
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(a) (b)

(c) (d)

Figure 6–8: Sand abundance maps obtained using (a)PPI (b)N-FINDR (c) Penalty
(d) Two-stage
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Figure 6–9: Mangrove estimated spectral response

Figure 6–7 shows the sand spectral response estimated using PPI, N-FINDR,

two-stage, and penalty approaches. In this case, the spectral response looks different

for each approach. We can see that the N-FINDR approach produced a spectral

response with the lowest amplitude.

Figure 6–8 shows the sand abundance maps obtained using the PPI, N-FINDR,

two-stage, and penalty approaches. Comparing the obtained abundance maps with

the IKONOS reference image (Figure 6–1(a)), we can see that also for the sand, all

the approaches performed well in recovering the spatial distribution of the sand. We

can see from the abundance maps that there is an overlap between the sand and the

sea grass.

Figure 6–9 shows the mangrove spectral response estimated using PPI, N-

FINDR, two-stage, and penalty approaches. It can be seen that the estimated

spectral response from all approaches coincides, except in the two-stage which is

higher in amplitude in the spectral region greater than 700nm.
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(a) (b)

(c) (d)

Figure 6–10: Mangrove abundance maps obtained using (a)PPI (b)N-FINDR (c)
Penalty (d) Two-stage
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Figure 6–11: Water estimated spectral response

Figure 6–10 shows the mangrove abundance maps obtained using the PPI, N-

FINDR, two-stage, and penalty approaches. Comparing the contained abundance

maps with the IKONOS reference image (Figure 6–1(a)), we can see that all the

approaches performed well in recovering the spatial distribution of the mangrove.

Figure 6–11 shows the deep water spectral response estimated using PPI, N-

FINDR, two-stage, and penalty approaches. It can be seen that the estimated spec-

tral response from the N-FINDR approach has a different shape from all other ap-

proaches. The spectral response estimated using the PPI approach and the penalty

approach agree completely with a very small difference in amplitude.

Figure 6–12 shows the deep water abundance maps obtained using the PPI, N-

FINDR, two-stage, and penalty approaches. Comparing the abundance maps with

the IKONOS reference image (Figure 6–1(a)), we can see that all the approaches

succeeded in recovering the spatial distribution.
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(a) (b)

(c) (d)

Figure 6–12: Water abundance maps obtained using (a)PPI (b)N-FINDR (c)
Penalty (d) Two-stage
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6.2.2 Measure of Fitness

In this section, we use the R2 plots, and RMS residual plots to measure how

good are the estimated endmembers to fit the measured data.

Table 6–2 shows the minimum value, maximum value, average value, and the

standard deviation of R2 values for PPI, N-FINDR, two-stage, and penalty ap-

proaches. Figure 6–13 to 6–16 show the R2 plot obtained using PPI, N-FINDR,

two-stage, and penalty approaches, respectively. It can be seen from Table 6–2, and

the figures that the two-stage R2 has and advantage over the other approaches in

that, it has the highest average and the lowest standard deviation. On the other

hand, the N-FINDR has the lowest average and the highest standard deviation.

This indicates that in the two-stage case, most of the pixels were modeled well. The

low R2 value means that the estimated endmembers along with their abundance

fractions do not fit the corresponding measured pixel well.

Table 6–2: R2 value (Enrique Reef Image)

Approach Min R2 value Max R2 value Average R2 value Standard deviation
PPI 0.8820 1.000 0.9938 0.0086

N-FINDR 0.8590 1.000 0.9780 0.0170
Two-stage 0.9773 0.9999 0.9983 0.0016
Penalty 0.9409 0.9999 0.9954 0.0054

The R2 maps for the PPI, N-FINDR, two-stage, and penalty approaches are

shown in Figure 6–17. Pixels with low R2 values indicate that these pixels are not

modeled well by the estimated endmembers. It can be seen that Figure 6–17(a)

to 6–17(c) still have some spatial structure while Figure 6–17(d) does not. That

signals, in my opinion, that the retrieved model using the two-stage approach fits

well the data.
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Figure 6–13: R2 value for PPI approach

Figure 6–14: R2 value for N-FINDR approach

Table 6–3: RMS residuals (Enrique Reef Image)

Approach Min rms value Max rms value Average rms Standard deviation
PPI 0 259.05 21.06 21.25

N-FINDR 0 78.03 32.49 9.17
Two-stage 4.69 49.73 10.10 4.35
Penalty 5.85 100.42 15.92 7.40



96

Figure 6–15: R2 value for the two-stage approach

Figure 6–16: R2 value for the penalty approach
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(a) (b)

(c) (d)

Figure 6–17: R2 plot obtained using (a)PPI (b)N-FINDR (c) Penalty (d) Two-stage

Table 6–3 shows the minimum value, maximum value, average value, and the

standard deviation of RMS residuals for PPI, N-FINDR, two-stage, and penalty

approaches. Figure 6–18 was obtained using the mentioned approaches. We can see

from Table 6–3, and Figure 6–18 that the two-stage approach has the lowest average

and the lowest standard deviation, which indicates that the two-stage approach

produced a model that fits the measured data better than the other approaches.

Table 6–3 shows zero minimum RMS value for PPI, and N-FINDR approaches since

pixels from the image are used as endmembers.

Figure 6–19 shows how the objective function value decreases during the itera-

tions, it shows also the value of the objective function for the PPI, and the N-FINDR
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(a) (b)

(c) (d)

Figure 6–18: RMS residual plot obtained using (a)PPI (b)N-FINDR (c) Penalty (d)
Two-stage

approaches for comparison purposes. It is evident that the two-stage approach has

lower objective value than other approaches.

6.3 Cuprite Data

Figure 6–20(a) shows the Cuprite image segment used in this experiment. We

use hyperspectral data from the Airborne Visible and Infrared Imaging Spectrome-

ter (AVIRIS) which has been developed and is operated by the Jet Propulsion Lab-

oratory (JPL). The AVIRIS system consists of four spectrometers that produce a
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Figure 6–19: Objective function value at each iterations (Enrique Reef image)

hyperspectral image in the visible to short wave infrared band (320 to 2500 nanome-

ters) recorded on 224 channels in whisk broom mode. The Cuprite image was taken

over the mining district, 2 km north of Cuprite, Nevada. This image contains has

a total of 640x2378 pixels and 224 bands in the 370-2500 nm range. We selected a

portion of the Cuprite image, of size 191x250 pixels that corresponds to part of the

mineral mapping in the Cuprite mining district [62]. We selected from this image

188 bands that corresponds to the 390-2470 nm spectral range. We use the USGS

images as ground truth [62]. This image is usually used in unmixing studies. Dif-

ferent numbers of endmembers are identified. In [63], the number of endmembers

identified for the Cuprite image segment shown in Figure 6–20(a), was 15, and 21

endmembers using two different approaches (see [63] for more details about the used

approaches).

Our two-stage algorithm was applied to process the selected portion of the

cuprite image. Table 6–4 shows the dimension estimates of the cuprite image di-

mension. We will use the number of endemembers equal to the SVD dimension

estimate. Hence, the number of endmembers equal to five.
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(a) (b)

Figure 6–20: Cuprite image:(a)Band 30 of the subimage of AVIRIS cuprite Nevada
data set; (b)classification map

Table 6–4: Cuprite data dimension estimate

Approach SVD KG CSD Fukunaga
Dimension 5 4 6 3

Figure 6–21: Cuprite estimated endmembers spectral response.
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(a) (b)

(c) (d)

(e)

Figure 6–22: Cuprite abundance maps of (a)first (b)second (c) third (d) fourth (e)
fifth, endmembers

Table 6–5: Cuprite RMS residuals (Cuprite Image)

Approach Min rms value Max rms value Average rms
Two-stage 0.0018 0.055 0.0052
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(a) (b)

Figure 6–23: Cuprite (a)RMS residual image (b) R2 image

Figure 6–24: Cuprite Rsquared plot.
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Figure 6–25: Cuprite mean squared error.

6.4 A.P. Hill Data

The AVIRIS data used in this experiment was taken over Fort A. P.Hill, Vir-

ginia. A color composite of the Fort A.P.Hill image is shown in Figure 6–26.

Figure 6–26: Fort A. P. Hill AVIRIS data cube [53].
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Figure 6–27: Classified Segment of Fort A.P. Hill [53].

Figure 6–27 shows a classified segment taken from Fort A.P.Hill image, obtained

from [53]. The segment was classified using the spectral library developed in [53].

We need to compare the results obtained from our developed unmixing algorithms.

To estimate the number of endmembers of the A.P. Hill data we estimated the

data dimension using different approaches. The dimension estimates are shown in

Table 6–6. The mean squared error curve is shown in Figure 6–28. If we assume the

number of endmembers to be equal to the data dimension, then using the the SVD

dimension estimate shown in Table 6–6 we can estimate the number of endmembers

to be twelve.

Table 6–6: A. P. Hill data dimension estimate

Approach SVD KG CSD Fukunaga
Dimension 12 4 7 5

Table 6–7 shows the R2 value average, RMS residual average, and their standard

deviations. The R2 average value are close to one, which indicates that all choices

are working well. The effect of number of endmember is clear if look at the RMS

residual average in Table 6–7. It can be seen that after eight endmembers the RMS
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Figure 6–28: A.P. Hill mean squared error for different number of endmembers

Table 6–7: R2 and RMS results for different number of endmembers(A. P. Hill
Image)

Num. of Endmembers R2 Average R2 Stdev RMS Average RMS Stdev
4 0.9902 0.0610 8.0925 5.7095
6 0.9956 0.0274 6.2359 3.1639
8 .9968 0.0208 5.2704 2.8892
10 0.9971 0.0251 4.4434 2.0721
12 0.9974 .0249 4.0173 1.7745
15 0.9978 0.0224 3.553 1.5364
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average is slowly change. There is a tradeoff between the number of endmembers and

the RMS residual average. The smaller RMS residual average, which corresponds to

larger number of endmembers is the better. We need to evaluate the computational

cost due to the increase of the number of endmembers.

Figure 6–29 and 6–30 show the estimated four endmembers and their corre-

sponding abundance maps, respectively. The first abundance map Figure 6–30(a)

indicates that the high concentration of the first endmember shown in Figure 6–

29(a) is in the area classified as green ag field#1 in the classified segment shown in

Figure 6–27.

The second endmember abundance map is shown in Figure 6–30(b). The high

concentration of the second endmember with spectral response shown in Figure

6–29(b) is corresponding to the gravel in the classified segment.

The third endmember abundance map is shown in Figure 6–30(c). The high

concentration of the second endmember with spectral response shown in Figure

6–29(c) is corresponding to the soil #5 in the classified segment.

The fourth endmember abundance map is shown in Figure 6–30(d). The high

concentration of the second endmember with spectral response shown in Figure

6–29(d) is corresponding to the shaded vegetation in the classified segment.

We present results for different number of endmembers to study the effect of

having less or more endmembers on the results. To evaluate the quality of the

estimated endmembers and how good are they to model the measured image, we

present the RMS residual map for each case. Figure 6–31, 6–34, and 6–37 show

the RMS residual image for four, twelve, fifteen endmembers, respectively. For the

estimated endmembers to fit well the measured image, the RMS residual image
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(a) (b)

(c) (d)

Figure 6–29: A. P. Hill estimated four spectral signatures
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(a) (b)

(c) (d)

Figure 6–30: A. P. Hill abundance maps for four endmembers

Figure 6–31: Fort A.P. Hill four endmembers RMS residual map.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6–32: A. P. Hill estimated twelve spectral signatures
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6–33: A. P. Hill abundance maps for twelve endmembers
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Figure 6–34: Fort A.P. Hill twelve endmembers RMS residual map.

should not show any spatial structure. From the RMS residual images for the three

number of endmembers cases, it can be seen that in the three cases, we still have

spatial structure, but the RMS value in the four endmembers case is higher. We

expect twelve endmembers to be good choice for the number of endmembers.

6.5 Biochemical Data

To show the potential of the developed algorithms in meeting the CenSSIS

vision of diverse problems similar solutions, we study the application of the unsu-

pervised unmixing algorithms to microscopy data. We conducted two experiments.

The first experiment is to correct for dispersive component estimated using the un-

mixing developed algorithms. The other experiment is to use unsupervised unmixing

developed algorithms to find the cancerous areas in the tissue image. We present

and discuss results from both experiments. We also compare these results to those

obtained using other algorithms.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6–35: A. P. Hill estimated fifteen spectral signatures
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6–36: A. P. Hill abundance maps for fifteen endmembers
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Figure 6–37: Fort A.P. Hill fifteen endmembers RMS residual map.

6.5.1 Dispersion Artifact Correction

Dispersion artifact occurs in infrared microspectral data collected in transflec-

tion(reflection/absorption) mode [54, 56]. The artifact occurs along the edges of

tissue samples when the tissue does not adhere well to substrate [54, 56]. The pres-

ence of the artifact causes an unusual ratio of the amide I/II bands (Peaks ratio),

a significant shift (to lower wavenumbers) of the bands. The peak shifts and amide

ratio will have a significant influence on the statistical analysis of IR spectra. In

many cases, these effects totally dominate the statistical analysis, for example, Hi-

erarchical Cluster Analysis (HCA) as the magnitude of the changes caused by the

artifact are more significant than the subtle spectral changes that we are trying to

find Cancerous tissue.

The first experiment was conducted using IR lymph nodes. The dispersion

artifact component was located in the original image and the response was saved.

We use the two-stage approach to process the lymph nodes image. We compare

the resulting components with the saved response from the original lymph nodes
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image. We selected the closest component to the saved one in the spectral angle

sense (Figure 6–38(a)). From the abundance map of the selected component((Figure

6–38(b)), we know the concentration of that component in each pixel of the original

image. We subtracted weight of the selected component from the whole pixels of

the original image. We reconstructed the lymph nodes with the artifact component

removed. Finally, we compared the response of the shown pixel before and after

dispersion artifact component removal.

(a) (b)

Figure 6–38: Removed component (a)response (b)abundance map

Figure 6–39(a) shows a pixel response from the IR image before dispersion

artifact correction. Figure 6–39(b) shows the same pixel after the dispersion artifact

correction. We can see in Figure 6–39 the effect of the dispersion artifact on the

response of the pixels. The dispersion artifact cause the ratio between the main two

peaks is very small and the location of the peaks is shifted to lower wavenumbers.

Figure 6–40 shows a screen shot taken from the CYTOSPEC software ( see [55]

for more information about the software). The CYTOSPEC is a toolbox designed

to process the Raman and the IR hyperspectral data. The screen shots show the

original IR image (top right), the clusters means spectra(left), and the Hierarchical
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(a) (b)

Figure 6–39: Pixel response (a)before dispersion correction (b)after dispersion cor-
rection

Figure 6–40: Dispersion artifact in IR data.

Cluster Analysis (HCA) clusters map (bottom right). The Figure also shows the

location of the dispersive component in the clusters means spectra and the in the

clusters map.

Figure 6–41 shows a screen shot obtained after correction of the dispersive

component for the same image as in Figure 6–40.
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Figure 6–41: Dispersion artifact correction in IR data.

6.5.2 Bladder Tissue Results

In this section, we use a bladder tissue to check for cancerous areas. The bladder

tissue sample is shown in Figure 6–42. The Hierarchical Cluster Analysis (HCA) is

used to process this image in [56]. Using the HCA, the aim is to find the clusters and

their centroids. HCA is time consuming; the times needed to cluster the Bladder

tissue is more than 18 hours. We guessed that using unsupervised unmixing we can

estimated the endmembers and employ them the same way as the centroids. We

tried to minimize the processing time, and explore more potential of our developed

unsupervised unmixing algorithms in similar data sets.

Figure 6–44(a) shows the corresponding abundance map of the component

shown in Figure 6–43. The marked regions show the high concentration of the

component. Figure 6–44(b) shows the cluster map obtained using the hierarchical

clustering analysis (HCA). Using the HCA is computationally expensive, it took

about 18 hours to get the clustering map. It can be seen from Figure 6–44 that
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Figure 6–42: Bladder tissue.

Figure 6–43: Bladder tissue response.

the marked regions obtained from the unmixing algorithm agree to those marked

regions obtained using HCA.

(a) (b)

Figure 6–44: Component (a)abundance map (b)HCA clusters map
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The unmixing algorithm execution time is 30 minutes where the HCA approach

execution time is around 18 hours. This is an advantage of the unmixing algorithms

over the HCA.

6.6 Summary

In this Chapter, we present results obtained from processing real data. We use

Enrique Reef HYPERION image, Cuprite AVIRIS image, Fort A. P. Hill image, and

biochemical data. For all data set we conducted experiments to estimate the spectral

response of endmembers, and the corresponding abundance fractions. We use the

model fitness metrics to evaluate the obtained results. In the Enrique Reef case, we

compare the estimated spectral signatures to PPI and N-FINDR algorithms. We

also compare the abundance maps to the testing IKONOS reference image. For the

Cuprite image, in addition to evaluating the estimated spectral signatures using the

quality of estimation metrics mentioned in Chapter 4, we look at the ground truth

of the Cuprite image. The Fort A. P. Hill image is used. We compare the abundance

maps to the thematic map of the classified segment. We assume four endmembers in

the image. The R-squared plot and the RMS residual map show that the estimated

endmembers do not fit well the measured image.

In the biochemical data case, we present two different application of the de-

veloped unmixing algorithms. One application is the dispersion artifact correction,

while the other is recovering regions which has the potential to be cancerous. In

both applications, the developed algorithms perform well and show their potential

for such applications.



CHAPTER 7

Ethical Issues

As defined in Meriam-Webster, Ethics is a set of moral principles or values.

Sometimes you will hear someone refer to “computing ethics”, which is a whole

range of ethical questions surrounding computer science and the use of computers.

As the field of this research, the focus of this chapter will be on showing the main

ethical issues which are related to this type of research. During this research, we

touched important borders where ethical issues are strongly required and clearly

appear. As a Ph.D. research and when a literature review is done, we need to look

at others work in the area of interest. Researcher should be honest enough to avoid

repetition of work and especially in evaluating others work. Without being aware of

this point one of very important ethical rules could be broken and then the research

will be wrongly structured. Other important issue in this research is the honesty in

the research results. Accuracy in results analysis is important and should be carried

over by a big responsibility and honesty, if not as time passes inaccurate research

environment will be growing and this will be reflected negatively on the quality of

research. Giving credit to other people for using part of their work is important

issue. You as a researcher can use the available information in your research but

you can not be in any way the owner of that work.
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It is important to add that we should ensure a proper and achievable goals and

objectives for this research. As final issue, I would like to discuss in this part of the

research is that we are required to make this research beneficial and available for

other researchers. Knowledge should be reachable to all scientists in need for this

segment of the research environment.



CHAPTER 8

Conclusions and Future Work

8.1 Dissertation Summary

In this section, we summarize the major results from the dissertation. In Chap-

ter 1, we presented the hyperspectral imagery and describe their useful characteris-

tics such as high spectral and spatial resolution. We presented the problem spectral

umixing using the linear mixing model. The objectives and the main contribution

of this research are described.

Chapter 2 presents background about hyperspectral imaging. The hyperspec-

tral imaging concept, sensors types, and image formation are introduced. The poten-

tial of the hyperspectral data in different applications and the work done to develop

capable algorithms to process this huge amount of data is introduced. The mix-

ing problem using linear and nonlinear mixing models is presented. Previous work

in unmixing is reviewed. Different methods to estimate the linear dimensionality

of hyperspectral images were presented. The standard two-stage unmixing proce-

dures was discussed in detail. Standard unmixing is a two-stage approach where

the endmembers are determined in the first stage and abundances are estimated

in a second stage. The techniques described in the literature for each stage of the

standard unmixing are described.
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Chapter 3 presents the positive matrix factorization. The geometrical inter-

pretation of the positive matrix factorization and its relation to polyhedral cones is

described. We present different approaches used to solve the general positive matrix

factorization problem and discuss how to use PMF to solve the unsupervised unmix-

ing problem. Since our approach is based on the constrained PMF, we present the

formulation of the unmixing problem as a constrained PMF. We present optimality

conditions that any solution to the constrained PMF problem should satisfy. We

present the use of Lagrange multiplier to derive the optimality conditions of the

problem.

Chapter 4 presents some approaches to compute the constrained PMF. We

present a Gauss-Seidel or two-stage approach. We show how the two-stage approach

solves the optimization problem given in Equation 2.3 by alternating between two

iterative optimization steps until convergence is achieved. In the first stage, we

fix the endmember matrix and optimize with respect to the abundance fractions

matrix. In the second stage, we fix the abundance fraction matrix and optimize

with respect to the endmembers matrix. This problem decomposition was selected

since each stage is a constrained linear least squares problem. We also present

a penalty approach to compute the constrained PMF. This algorithm focuses on

incorporating the constraints into the general PMF problem to get what is called

augmented form of the PMF problem. Changing the variable of the augmented

form transforms the problem again into the general form. We use the multiplicative

rules to update the parameters and in each step we check the satisfaction of the

constraints.

Since the developed algorithms are iterative, we study initialization schemes

and discuss their impact on the convergence and quality of results.
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We discussed the convergence and the stopping criteria of the algorithms. We

introduced the solution smoothing factor as a stopping criteria. We presented anal-

ysis of estimation quality. We focused on the quality of estimated endmembers and

the model fitness. For the estimated endmembers quality, we used the percent-

age error and the spectral angle. This is possible in the simulated data case. We

also presented metrics to measure the fitness of the estimated endmembers to the

measured data. We used R2 value, and root-mean-square residual.

Chapter 5 presents results obtained using simulated data. An experiment to

evaluate the initialization schemes and their impact on computing the constrained

PMF algorithms was conducted. For this task, we used five endmembers selected

from the spectral library of the cuprite image and generated 1000 pixels using the

selected endmembers and randomly generated abundances fractions. The generated

abundance fractions satisfied the positivity and the sum-to-one constraints. We used

the random initialization, random Acol (also called random average) initialization,

random C (also called longest norm average) initialization, and the singular value

decomposition subset selection initialization. Since in the first three initialization

schemes we have randomization effect, the experiment was repeated four times. The

average values of the four trials were used as the final results. We estimated the

endmembers and compared the estimates with the true spectra. We used the metrics

mentioned in Chapter 4, to measure the endmembers estimation quality. We studied

the effect of number of spectral bands, number of endmembers, and the noise on the

results, we used the RMS residual metric to compare between the results obtained

for different number of spectral bands.

To evaluate the developed algorithms, we conducted two additional simulation

experiments. One experiment was conducted using a simulated data arranged in

a cube with the corners as the endmembers. The other experiment was using the
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1000 pixels generated using the five endmembers selected from the Cuprite image

spectral library. In this experiment we look at the performance of the developed

algorithms to estimated known endmembers. We also used the metrics mentioned

in Chapter 4, to look at the quality of estimation and the model fitness using the

mentioned metrics.

In Chapter 6, we use real data to evaluate the performance of the algorithms.

We use Enrique Reef Hyperion image, Cuprite AVIRIS image, Fort A.P. Hill image,

and Biochemical IR images. Herein, we use the R-squared value plot, and the RMS

residual plot to look at the quality of results. We present results from the biochemical

data to show the potential of the unmixing algorithms in different applications.

8.2 Conclusions

In this research, we developed an unsupervised algorithm to solve the unmixing

problem in hyperspectral imagery using the constrained positive matrix factorization

(cPMF). This algorithm consists of three different steps: determination of number

of endmembers, initialization, and computing the constrained positive matrix factor-

ization. The schematic diagram of the algorithm is shown in Figure 8–1. we showed

that cPMF could be used to solve the unsupervised unmixing problem by extracting

simultaneously, the endmembers, and their abundances, by solving the optimization

Problem (2.3). We used the two-stage Gauss-Seidel iterative approach to compute

the constrained positive matrix factorization.

Our developed algorithm has different advantages over other algorithms as N-

FINDR, VCA, and PPI. For example, N-FINDR, VCA, and PPI are geometric

approaches, and assume that endmembers are pure pixel from the image, while our

algorithm does not have this assumption. This assumption is not always true since

pure pixels are rarely found in real hyperspectral images. Our algorithm estimate the
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Figure 8–1: Unsupervised unmixing algorithm

endmembers and their abundance simultaneously by solving an optimization prob-

lem, while N-FINDR, VCA, and PPI extract the endmembers and their abundances

in separate stages, hence being more suitable for automated image analysis.

We evaluated the developed algorithms using simulated data to be able to com-

pare the results to a known reference. Since we use simulated data, we used two

metrics to evaluate the performance of the developed algorithms. We used the spec-

tral angle between the estimated and the true spectral signatures and the percentage

error of the estimated spectral signature to evaluate the goodness of the estimated

endmembers. Both metrics showed complete agreement between the estimated and

the true spectral signatures. comparison between initialization schemes are also

shown. Results showed that the SVDSS initialization scheme introduced in this

work is the best among the used initialization schemes.

In Chapter 6, we presented results using real data. The real data used to test

the potential of the developed algorithms to estimate the endmembers from a real

hyperspectral image. We used the Enrique Reef HYPERION image to test the



127

developed algorithms. We choose this image because the obtained results could be

compared to the image of the same region acquired using the IKONOS sensor. We

use the R2 value plot and the RMS residual plot to evaluate the obtained results.

The obtained results are acceptable with respect to the metrics.

We used the Fort A. P. Hill AVIRIS data. We conducted different experiments

using different numbers of endmembers. Our impression was that when we have

large number of endmembers, some estimated component are noise. We used twelve

endmembers as the best number of endmembers based on the linear dimension

estimate. To evaluate the effect of number of endmembers, we compared results

for four, twelve, and fifteen endmembers. We compared the obtained results with a

thematic map of the same image. The thematic map was obtained using the spectral

library developed for the Fort A. P. Hill image.

We also applied our algorithms to hyperspectral IR microscopy imagery. Results

show that unsupervised unmixing can be used to retrieve and correct for instrument

artifacts and in cancer detection. The first application was to estimate and remove

a dispersive artifact component from the IR image. We showed the effects that

removing the artifact had in improving the clustering results. We also tried to

estimate the component with high concentration in regions of the Bladder tissue

image that has to potential to be cancerous. Our results agreed to those results

obtained using the HCA. Our algorithms had an advantage over the HCA in that

the processing time is 30 minutes where the processing time for the HCA is more

than 18 hours. These results motivate the use of the developed algorithm in different

biomedical applications.
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In summary, the developed algorithms solve the unsupervised unmixing prob-

lem well and have the potential to process different type of data. This clearly

demonstrates CenSSIS vision of diverse problems similar solutions.

8.3 Future Work

Future work is possible in different directions. In the developed algorithms,

some issues are not solved yet. Reliable determination of the number of endmembers

is still a big unsolved issue. Although linear dimensionality was used here as a first

approach, this approach could not estimated correctly the number of endmembers in

the cases shown in Figure 2–11. We still think that positive rank is the appropriate

rank to look at but there are no methodologies to estimate it.

Because of the MATLAB memory management problem, when the number of

pixels and the number of bands are large, the step of computing the cPMF of our

developed algorithm face an out of memory problem. We need to address how to

remove these limitations. This issue can be addressed using the different memory

management approaches. ENVI/IDL has better memory management capabilities

and should be considered for future implementations.

Also, Because of the bilinear structure that the unmixing problem has, it is pos-

sible to develop parallel algorithms instead of the developed sequential algorithms.

The parallel algorithms could solve the image size limitation problem. In [68], an

algorithm based on PMF and alternating quadratic programming (AQP)was pre-

sented. The unmixing problem was written in subproblems which motivates the

parallelization of the unmixing problem. In [67], a framework for parallel processing

of hyperspectral imagery is presented. This framework could be followed to achieve

the parallelization of our developed algorithms. Parallelizing our algorithm is a com-

plex process. Although the abundance estimation problem can be solved for each
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pixel independently the endmember determination requires to look at the full image

hence, complicating problem decomposition. We expect the parallel implementation

to have direct effect on the results, and the convergence speed, so we need to parti-

tion the image in such a way that does not affect the results. I suggest to explore

the partition along the spectral dimension. that way we make sure that each process

is working on the same spatial area. We need to study the effect of noisy bands on

the results using this partition along the spectral dimension.

We presented some results using the biochemical data. The results show the

potential of the developed algorithms for different applications. One direction of the

future work could be to study the capability of the developed unmixing algorithms

to process biochemical data and extract information from this type of data.

In this research, we assumed no variability on the endmembers, this assumption

is not always valid. We suggest to investigate how to further refine existing linear

mixing models used to model spectral mixing in a measured spectral signature to

account for variability of the endmember and how this modeling assumption affects

the solution of the unmixing problem using supervised and unsupervised approaches.
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APPENDIX A

Matrix Operators and Differentia-
tion

A.1 Vector and Matrix Differentiation

Let f be a scalar valued vector function and let β ∈ <n,

f : <n → <

The Jacobian of f is given by

∂f(β)

∂β
= (

∂f(β)

∂β1

, ...,
∂f(β)

∂βn

) (A.1)

The gradient of f is given by

∇f(β) =

(
∂f(β)

∂β

)T

(A.2)

Similarly, if

f : <n → <
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[
∂f(A)

∂A
]ij =

∂f(A)

∂aij

(A.3)

We write <m×n for the space of all real-valued matrices. Then

• For A ∈ <m×n and β ∈ <n

∂(Aβ)

∂β
= A (A.4)

• For A ∈ <m×n and β ∈ <n

∂βTAβ

∂β
= βT (AT + A) (A.5)

• For A ∈ <m×n, β ∈ <n and α ∈ <m

∂αTAT β

∂A
= βαT (A.6)

∂αTAβ

∂A
= αβT (A.7)

∂αTAα

∂A
=

∂αTAT α

∂A
= ααT (A.8)

∂A

∂aij

= Jij (A.9)

where

Jij

is the single nonzero-entry matrix, with 1 at the entry (i,j) and zero elsewhere.

∂αTATAβ

∂A
= A(αβT + βαT ) (A.10)
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∂AT BA
∂aij

= ATBJij + JijBA

(Jij)kl = δikδjl, δik =

 1 if i = k

0 otherwise

(A.11)

For a full list of matrix identities and facts see [52].

A.2 The Kronecker Product

The Kronecker product is a binary matrix operator that maps two arbitrarily

dimension matrices into a large matrix with special block structure.

Definition A.2.1. (Kronecker Product): Given the matrix Am×n and the matrix

Bp×q

A =



a11 . . . a1m

. . .

. . .

. . .

an1 . . . anm


B=



b11 . . . b1q

. . .

. . .

. . .

bp1 . . . bpq


(A.12)

their Kronecker product, denoted A⊗B, is the np×mq matrix with the block structure

A⊗B =



a11B . . . a1mB

. . .

. . .

. . .

an1B . . . anmB


(A.13)



141

A.2.2 Kronecker Product Operator Properties

Assume that A, B, C, and D are real valued matrices. The following identities

hold for appropriately dimensioned matrices

1. The Kronecker product is a bi-linear operator. Given α ∈ R

A⊗ (αB) = α(A⊗B)

(αA)⊗B = α(A⊗B)
(A.14)

2. Kronecker product distributes over addition

(A + B)⊗C = (A⊗C) + (B⊗C)

A⊗ (B + C) = (A⊗B) + (A⊗C)
(A.15)

3. The Kronecker product is associative

(A)⊗B)⊗C = A⊗ (B⊗C)(A.16)

4. The Kronecker product is not in general commutative, i.e. usually

A⊗B 6= B⊗A (A.17)

5. Transpose distributes over the Kronecker (does not invert order)

(A⊗B)T = AT ⊗BT (A.18)

6. Matrix multiplication, when dimension are appropriate,

(A⊗B)(C⊗D) = (AC⊗BD) (A.19)

7. When A and B are square and full rank
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(A⊗B)−1 = (A−1 ⊗B−1) (A.20)

8. When An×n and Bm×n, the determinant of a Kronecker product is given by

det(A⊗B) = (det(A))m.(det(B))n (A.21)

9. The trace of a Kronecker product is

trace(A⊗B) = trace(A).trace(B) (A.22)

10. The vec of a matrix multiplication, when dimension are appropriate for the product

ABC to be well defined, is given by

vec(ABC) = (CT ⊗A)vec(B) (A.23)

A.3 The Vec Operator

There are situations in which it is useful to transform a matrix to a vector

that has as its elements the elements of the matrix. One such situation is when we

have a complicated matrix system of equations and a solution is needed. Usually,

it is easier to work with vector because most of algorithms are designed for vectors.

Least squares problem is well known example; all the algorithms are based on vector

form equations. Consequently, when we have a matrix form least squares problem,

it is usually more convenient mathematically to transform our problem into vector

form problem. In Chapter 4, we use this technique to simplify our problem and to

utilize developed solution to similar vector form problems.
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The operator that transforms a matrix to a vector is known as the vec operator.

If the m × n matrix A has ai as its ith column, then vec(A) is the mn × 1 vector

given by

vec(A) =



a1

.

.

.

an


(A.24)

Example. If A is the 3× 3 given by

A =


1 2 3

4 5 6

7 8 9


then vec(A) is the 9× 1 vector given by

vec(A) =



1

4

7

2

5

8

3

6

9
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The vec operator has the following properties [49]:

1. If a ∈ Rn×1, is a vector , then vec(a) = a

2. If Am×n, and vn×1 then

vec(Av) = Av

3. The vec operator is linear.

vec(A + B) = vec(A) + vec(B) (A.25)

4. Multiplication of three matrices

vec(ABC) = (CT ⊗A)vec(B) (A.26)

5. Multiplication of two matrices

vec(AB) = (In ⊗A)vec(B) = (BT ⊗ Im)vec(A) (A.27)

6. The trace of two matrices product

(vec(BT )Tvec(A) = tr(AB) = tr(BA) = (vec(AT ))Tvec(B) (A.28)

7. The trace of three matrices product

tr(ABC) = (vec(AT ))T (CT ⊗ I)vec(B) (A.29)
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