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Manifold learning, is one of the methods for nonlinear dimensionality reduction, which 

affords a way to understand and visualize the structure of nonlinear hyperspectral datasets.  

These methods use graphs to represent the manifold topology, and use metrics like geodesic 

distance, allowing embedding higher dimension objects into lower dimensional space. 

However the complexities of some manifold learning algorithms is	�(��), therefore they are 

very slow (high computational algorithms). In this project, we present a CUDA-based 

parallel implementation of the three most popular manifold learning algorithms: Isomap, 

Locally linear embedding, and Laplacian eigenmaps, using the CUDA multi-thread model. 

Each of these algorithms has three main parts: find � nearest neighbors, build the matrix of 

distances or weights, and compute the low dimension of the hyperspectral image. The first 

part was implemented in CUDA by (Garcia, Debreuve, & Barlaud, 2008), the second part 

was implemented by us in pure C++ and CUDA to measure the speedup between these 

implementations, and the third was carried out using the libraries of CULA and MKL 
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LAPACK. The manifold learning algorithms were implemented on a 64-bit workstation 

equipped with a quad-core Intel® Xeon with 12 GB RAM and two NVIDIA Tesla C1060 

GPU cards.  The CUDA implementation achieved 26� speedup compared to a pure C++ 

implementation. It also showed good scalability when varying the size of the dataset and the 

number of K nearest neighbors. 
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Manifold learning, es uno de los métodos de reducción de dimensionalidad no lineal, el cual 

proporciona  una manera para entender y visualizar la estructura no lineal de los conjuntos de 

datos hyperspectrales. Estos métodos usan grafos para representar la topología del manifold y 

métricas como la distancia geodésica, permitiendo representar un objeto de una dimensión 

mayor dentro de una dimensión menor. Sin embargo la complejidad algunos de los 

algoritmos de manifold learning es �(��),  por lo tanto estos son muy lentos (alto 

procesamiento computacional). En este proyecto presentamos  la  implementación en 

paralelo basado en CUDA de los tres más famosos algoritmos de manifold learning como son: 

Isomap, locally linear embedding y Laplacian eigenmaps, usando el modelo CUDA de multi- 

hilo. Cada uno de estos algoritmos tiene tres partes principales: encontrar los � vecinos más 

cercanos, construir la matriz de distancias o pesos, y calcular la dimensión baja de la imagen 

hiperespectral. La primera parte fue implementada en CUDA por (Garcia, Debreuve, & 



 
 
 
 

v 
 

Barlaud, 2008), la segunda parte se llevó a cabo por nosotros en C++ puro y CUDA para 

medir la aceleración entre estas implementaciones, y el tercero se llevó a cabo utilizando las 

bibliotecas de CULA y LAPACK MKL. Los algoritmos de manifold learning fueron 

implementados en un estación de trabajo de 64–bits equipado con un quad-core Intel® Xeon 

con 12 GB RAM y dos tarjetas GPU de Tesla C1060 de NVIDIA. La implementación en 

CUDA logro ser 26�  veces más rápido que la implementación en C++ puro. También 

muestra una buena escalabilidad al variar el tamaño del conjunto de datos y el número de los 

� vecinos más cercanos. 
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1 INTRODUCTION 

 

Even though hyperspectral images (HSI) have been used since the 1970s, this technology is 

investigated by researchers and scientists for detection and identification of materials. 

Hyperspectral imaging technology has applications in many fields, including agriculture, 

archeology, biology, defense, forensics, medicine, pharmaceuticals and remote sensing. For 

example, the national security system has used hyperspectral imagery to detect boats near to 

the coast.  

Since HSI has hundreds of spectral bands and huge amount of data, traditional image 

processing faces difficulties. In pattern recognition and image processing, data redundancy 

can take two forms: spatial and spectral. Spatial redundancy is behind the spatial context 

methods, like morphological operations. Spectral redundancy means that the information 

content of a band can be totally or partly predicted from the other bands in the data. Our 

work consist in reduce the spectral redundancy using nonlinear dimensionality reduction 

methods to accelerate the further analysis of the hyperspectral data. Also, there are many 

linear techniques such as principal components analysis (PCA) for dimensionality reduction. 

PCA reduces the dimensionality of a data set by finding a new set of uncorrelated bands with 

high variability, smaller than the original set of bands. This technique is very popular, due to 

their simplicity and efficiency when the data has normal distribution.  To achieve this 

reduction, PCA work with the correlation matrix of an image (or portion of an image); the 
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correlation matrix can be derived from the covariance matrix. High correlations between two 

bands indicate high degrees of redundancy between these two bands. However PCA assumes 

that the dependency between variables is linear, this can result in poor approximations when 

dealing with nonlinear datasets (Geiger, Urtasun, & Darrell, 2009). In some cases, PCA often 

obtains bad results when trying to project data lying on a nonlinear space, is desirable to 

reduce the dimensionality of the data while preserving the local structure of the original data, 

allowing for more efficient learning. Manifold learning algorithms have been developed to 

accomplish this task. Some of them are Isomap, Locally linear embedding, and Laplacian 

eigenmap. These methods are very effective when dealing with large datasets that are 

homogeneously sampled. “Many Manifold learning techniques provides guarantee that the 

accuracy of the recovered manifold increases as the number of data samples increases” 

(Talwalkar, Kumar, & Rowley, 2008). However, they are affected by the presence of noisy. 

The complexity of some manifold learning algorithms are �(��) , which measure the 

running time as a function relating the number of pixels in the image “�” to the number of 

steps needed to solve these algorithms. For this reason, manifold learning algorithms are very 

slow (high computational algorithms) and computationally challenging to estimate the 

desired � low dimension of the hyperspectral image. The goal of this work is to parallelize 

the three most important manifold learning algorithms to improve the running time. All these 

algorithms, previously mentioned, were implemented using CUDA over GPUs (an acronym 

for Graphics Processing Unit), which is a parallel computing architecture developed by 

NVIDIA®. 
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1.1 Objectives  

1.1.1 General objective 
 

The overall objective is to develop a parallel implementation of the three most popular no-

linear dimensionality reduction algorithms in CUDA over GPU and measure its running time. 

The main idea is to improve this running time, solving high computational problems in a 

more efficient way than on a CPU. 

 

1.1.2 Specific objectives  
 

The following are the specific objectives: 

� Implement in parallel using CUDA, the components of the nonlinear dimensionality 

reduction algorithms. 

� Implement in pure C++ the components of the nonlinear dimensionality reduction 

algorithms. 

� Test the efficiency of these algorithms using different sets of hyperspectral images. 

� Measure the speed up between pure C++ and CUDA parallel implementations of these 

algorithms. 

� Change the components of the nonlinear dimensionality reduction algorithms 

implemented in CUDA inside the complete algorithm, to test the efficient of these 

algorithms. 
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1.2 Contribution 
 

Nonlinear dimensionality reduction, also called manifold learning, exhibit the property that 

around every pixel of the manifold exits a neighborhood that is topologically the same or 

homeomorphic to an open subset of Euclidean space �� (�-lower dimension). This property 

shows that most of the computation around each pixel based on hyperspectral imagery is 

using their neighborhood and it’s independent of each other. Therefore, there is an inherent 

parallelism that can be exploited to develop new parallel algorithms of manifold learning. 

These algorithms are Isomap, Locally linear embedding and Laplacian eingenmaps, which 

are implemented using CUDA over GPU. GPU is a parallel computing architecture 

developed by NVIDIA. 

The algorithms have been analyzed for performance - including speedup CPU versus GPU 

implementation of different hyperspectral images, and efficiency of the algorithms (i.e. time 

and utilization of parallel architectures resources). This effort was a step towards improving 

when the data is analyzed and allow technicians to conduct better thorough, in a timely 

fashion. 
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2 THEORETICAL BACKGROUND 
 

In this chapter, we present a literature review of relevant concepts that we will use to develop 

our algorithm. 

 

2.1  Spectral Image Basics 
 

Hyperspectral imagery has many advantages respect other types of image like multispectral 

image because provides huge spectral reflectance information in hundreds of bands collected 

by the sensor. All materials in the earth absorb and reflect the radiation of the sun between 

0.4  and 3μm  spectral range. The visible light has wavelengths between 0.4  and 0.7�m   

(Figure 2-1). 

 

Figure 2-1: The electromagnetic spectrum (Center, 2011) 
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Reflectance is the percentage of the incident light in a material, which is, reflected by that 

material (as opposed to being absorbed or transmitted). A reflectance spectrum shows the 

reflectance of a material measured across a range of wavelengths, as shown in Figure 2-2. 

Each material on the earth has different properties that allow reflecting a wavelength, while 

other materials absorb the same wavelength. These material properties allow us to uniquely 

identify certain materials. 

 

Figure 2-2: Examples of reflectance spectrum 

 

The graph above illustrates the spectral response patterns of water, gray soil, and grass 

between about 0.3 and 6.0 micrometers. The graph shows that grass, for instance, reflects 

relatively little energy in the visible band (although the spike in the middle of the visible 

band explains why grass looks green). Like most vegetation, the chlorophyll in grass absorbs 

visible energy (particularly in the blue and red wavelengths) for use during photosynthesis. 

About half of the incoming near-infrared radiation is reflected, which is characteristic of 
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healthy, hydrated vegetation. Brownish gray soil reflects more energy at longer wavelengths 

than grass. Water absorbs most incoming radiation across the entire range of wavelengths. 

Knowing their typical spectral response characteristics, it is possible to identify forests, crops, 

soils, and geological formations in remotely sensed imagery, and to evaluate their condition. 

 

2.2 Hyperspectral Imagery 
 

The hyperspectral refers to the large number of measured wavelength bands. Hyperspectral 

imagery provides abundant spectral information to identify and distinguish between 

spectrally similar (but unique) materials. Consequently, hyperspectral imagery provides the 

potential for more accurate and detailed information extraction than possible with other types 

of remotely sensed data. However, the huge amount of data makes its information analysis 

difficult and image processing tools needed to summarize the information included in the 

data. The measurement, analysis, and interpretation of electro-optical spectra are known as 

spectroscopy. Combining spectroscopy with methods to acquire spectral information over 

large areas is known as imaging spectroscopy. Figure 3 illustrates the concept of imaging 

spectroscopy in the case of satellite remote sensing.  
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Figure 2-3: Hyperspectral imaging concept (Shaw & Burke, 2003) 
 

Hyperspectral sensors sample the expanded reflective portion of the electromagnetic 

spectrum from the visible region (0.4 to 0.7 µm) through the VNIR/SWIR (about 2.5 µm). 

The sensors measure reflected radiation as a series of narrow and contiguous wavelength 

bands. When the spectrum for a single pixel in hyperspectral imagery is displayed, it can 

provide more information about a surface than is available in a traditional multispectral pixel 

spectrum. In general, most hyperspectral sensors measure bands at 10 to 20 nm of intervals 

in the reflective portion of the spectrum. 

The detection of materials is dependent on the spectral and spatial resolution, if the pixels are 

too large, then multiple objects are captured in the same pixel and become difficult to 

identify. Another factor that affects the reliability is how much a signal has been corrupted by 
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noise (signal-to-noise) of the spectrometer, the abundance of the material and the strength of 

absorption features for that material in the wavelength region measured. 

 

2.3 Dimensionality Reduction 
 

Hyperspectral data sets often consist of hundreds to thousands of spectral bands, making 

them computationally expensive and impossible to fully visualize. Thus, it is often desirable 

to reduce the dimension of the data to a more manageable number of bands. One of the first 

steps in reducing the dimensionality of the data is to remove bands that don't carry any 

information about the scene or target of interest. For example, many sensors acquire data 

with very strong atmospheric absorption features. It is common practice to drop these bands, 

containing no signals from the ground, from further analysis. In addition, after atmospheric 

compensation (if employed), bands heavily influenced by atmospheric absorption may also 

be removed from further analysis. Finally, for specific targets, bands known to carry little or 

no information may be removed from subsequent analysis. In many cases, these processes 

only have a limited impact on reducing the total number of bands still needing to be analyzed.  

When computationally intensive algorithms are to be employed, additional dimensionality 

reduction may be necessary. A widely method of band combination uses the principal 

component method to preserve most of the variability from the original imagery in a reduced 

set of orthogonal bands. In this process, only the first 10-20 principal component bands are 

maintained and used for subsequent image analysis (Schott, 2007). This process is illustrated 

in Figure 2-4. In the first step, bands in the strong atmospheric absorption windows are 
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removed. In the second step, the remaining bands are transformed into the first � principal 

component bands, where the value of �  is set by the user to preserve. For example, 99.8% of 

the variability in the data set; in fact sometimes the suggestion is that the variability must be 

above a threshold	�, given by Equation 2.1. 

%	variability�d� & 100	x	
∑ λ)

*

)+, 	

∑ λ)
-
)+,

. T 2.1 

Where	01, are the eigenvalues in descending order of the image covariance matrix and � is 

usually selected above	95%.   

 

Figure 2-4: Typical steps in simple dimensionality reduction 
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2.4 The Manifold Learning Problem 
 

Prior to define manifold learning problem we have to review some ideas of topology. In 

mathematics, topology studies the properties of objects that are preserved through 

deformations, twisting and stretching. Tearing is the only prohibited operation; thereby 

guaranteeing that the intrinsic “structure” or connectivity of objects is not altered (Lee & 

Verleysen, 2007)  

 

2.4.1 A topological space 
 

A topological space is defined as set 2 together with 3 (the topology), as a collection of 

subset of		4, satisfying the following axioms. 

1. The empty set and	4 are in 3. 

2. The arbitrary union of any collection of sets in 3 is also in	3.  

3. The intersection of any finite collection of sets in 3 is also in	3. 

The collection 3 is called a topology on	4. The elements of 	4 are usually called points. The 

sets in 3  are called the open sets. For example, we have a set 	4	 & 	 {1, 2, 3}	  with the 

topology	3, is a collection 37 	 = 	 {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}	of five subsets of 4 that form 

the topology space. An open set 	4 ⊂ 	ℝ	is called open, if for each � ∈ 4 there exits and 

;	 > 	0 such that the interval  (� − ;, � − ;	) is contained in	4, such an interval if often called 

an ; - neighborhood of	�, or simply a neighborhood of	�.   

2.4.2 Manifold 
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First, we define formally the concept of a manifold; a manifold is an abstract mathematical 

space, which locally resembles the Euclidean space of a specific dimension, called the 

dimension of the manifold, but which globally (when viewed as a whole) may have a more 

complicated structure. More precisely, it is a space that can be identified locally within an 

Euclidean space such that the two topological spaces are homeomorphics. For example the 

Earth is spherical but looks flat on the human scale; the surface of the Earth is a manifold; 

locally it seems to be flat, but viewed as a whole from the outer space (globally) it is actually 

spherical (see Figure 2-5). A manifold can be constructed by ‘gluing’ separate Euclidean 

spaces together; for example, a world map can be made by gluing many maps of local 

regions together (Ivancevic & Ivancevic, 2007). 

 

Figure 2-5: The surface of the earth is a two-dimensional manifold. 

 

Another example of a manifold is a circle	>. A small piece of a circle appears to be like a 

slightly-bent part of straight line segment, but overall the circle and the segment are different 

1? manifold (see Figure 2-6).  A circle can be formed by bending a straight line segment and 

gluing the ends together. 
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Figure 2-6: The four charts map part of the circle, and together cover the whole circle 

 

Topology ignores bending, so a small piece of a circle is treated exactly the same as a small 

piece of a line. For instance, consider the top half of the unit circle,	�@ A B@ & 1, where the 

�-coordinate is positive (indicated by the blue arc in Figure 2-6). Any point of this semicircle 

can be uniquely described by its B-coordinate. So, the projection onto the first coordinate is a 

continuous, and invertible, mapping from the right semicircle to the open interval	�1, −1�: 

4C1DEF��, B� & B 2.2 

 Such functions along with the open regions they map are called charts. Similarly, there are 

charts for the top (yellow), bottom (red), and left (blue) parts of the circle. Together, these 

parts cover the whole circle and the four charts form an atlas for the circle.  

 

Finally, consider the curve shown in Figure 2-7. The curve has intrinsic dimensionality equal 

to one embedded in 	ℝ� . Note that the curve is in 	ℝ� , has zero area. Since the curve 

dimensionality is one, the curve can be represented by only unique variable, because it 
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locally looks like a copy of	ℝ,. We will say that the semi circumference is a one-dimensional 

manifold. 

 

Figure 2-7:  1-D curve embedded in 3-D. 

 

Topological manifold is a topological space which looks locally like Euclidean space. A 

topological space is called locally Euclidean if there is a non negative integer (greater than 

zero) � such that every point in 4 has a neighborhood which is homeomorphic to an open 

subset of Euclidean space in	ℝ�. In general any object that is nearly “flat” on small scales is 

a manifold. 

An embedding is a representation of a topological manifold in a certain space, usually ℝG for 

some 	? , is such a way that its topological properties are preserved. For example, the 

embedding of a manifold preserves open sets. More generally, a space 4 is embedding in 

another space H when the properties of H restricted to 4 are the same as the properties of	4. 
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We pass to define formally the concept of manifold recalling the following definitions from 

topology. This concept can be formalized introducing the mathematical concept of a 

manifold (Jianru & Nanning, 2009). 

Definition 1: A homeomorphism is a bijective mapping function I: 4	 ⟶ H for which I	and 

its inverse IL,	both are continuous.  

Definition 2: A diffeomorphism exits, if two manifolds M	and N	has a bijective mapping 

function I from M to N	such that both I and its inverse IL, are differentiable.  

Definition 3: A low � dimensional manifold M is it set that is locally homeomorphism with 

respecting to	ℝ�, in fact for each �	 ∈ M	an open neighborhood around	�, called 	�O	and a 

homeomorphism I:	�P 	 ⟶ 	 ℝ� 	exists. The neighborhood 	�O	 and the homeomorphism are 

respectively called the coordinate patches and coordinate chart.  The image of the coordinate 

chart is called the parameter space. 

A manifold is a very general concept. We are interested only in the special case where the 

manifold is a subset of	ℝG , that is,		M ⊂ ℝG	(? is the high dimension), where	� ≪ ?. In 

other words, the manifold lies in a high-dimensional space	ℝG, which is homeomorphic with 

a low-dimensional space	ℝ�. 

Manifold Learning Problem Given a data set 4 & {�,, … , �S} ∈ 		ℝG  lying on a � -low 

dimensional manifold M  described by a single coordinate chart I:	M → 	 ℝ� , find 4′ =
{� ′,, … , � ′S} ∈ 	��  such that		� ′1 = I(�1), for	U = 1, … , � . The solution of this problem is 

called manifold learning. 
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2.4.3 Characteristics of an analysis method 
 

The analysis of high-dimensional data aims identifying and eliminating the redundancies 

among the observed variables. The principal functionality is embedding data in order to 

reduce their dimensionality; this yields a low dimensionality representation of data. 

The knowledge of the intrinsic dimension � indicates that the data have some topological 

structure. The aims are both: get most data more easily. Typical applications are mostly for 

visualization and analysis. More exactly, if there exits an intrinsic dimensionality	�; probably 

hide a �	dimensional manifold that the manifold structure is preserved. 

Figure 2-8 (a), show a two-dimensional manifold embedded in a three-dimensional space.  

 

Figure 2-8: (a) A 3D space, (b) 2D manifold of (a), and (c) D.R. of (a) by PCA. 

 

After dimensionality reduction the structure of the manifold is now completely exposed in 

Figure 2-8 (b) and (c). The figure show as an example view, that the nonlinear dimensionality 

reduction work property and preserve the structure of the objects, is important to note in 

Figure 2-8 (b), the connectivity and local relationship between data points are preserved. 
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More important, the dimensionality reduction establishes a one-to-one mapping between the 

three-dimensional points and two-dimensional ones. This mapping allows us to go back to 

the initial embedding if necessary. 

PCA assumes that the dependencies between variables are linear. Therefore for this model, 

PCA frequently delivers bad results when trying to project the data lying on a linear subspace. 

This result is shown in Figure 2-8(c), where the data do not fit the model of PCA, and the 

initial distribution cannot be retrieval. Hence, nonlinear dimensionality reduction is 

preferable in these cases. 

 

2.5 Manifold learning algorithms 
 

Now we pass to review the most three popular manifold learning algorithms. 

 

2.5.1 Isometric feature mapping (Isomap) 
 

Isometric feature mapping (Isomap) was developed by (Tenenbaum, de Silva, & Langford, 

2000) as a way of improving classical multidimensional scaling (MDS). Isomap is one of the 

most popular algorithms for nonlinear dimensionality reduction method that uses the graph 

distance as an approximation of the geodesic distance.  

Figure 2-9 show an example of geodesic distance. In order to approximate the geodesic 

distance, vertices are associated with the points and a graph is built. The graph distance can 

be measured by summing the edges of the graph along the shortest path between both ends of 
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the curve. That shortest path can be computed by Dijkstra's algorithm. If the number of 

points is large enough, the graph distance gives a good approximation of the true geodesic 

distance. (Lee & Verleysen, 2007) 

 

Figure 2-9: Representation of geodesic distance 

 

Let high dimensional data set 4 = {�,, … , �S} ∈ 	M	 ⊂	9G	 with N data samples, sufficiently 

large, and a low dimensional embedding space 9�  with d << D. Isomap has the aim of 

finding a coordinate chart that allows projecting the data set in	9�.  Isomap assumes that an 

isometric chart exists, in fact a chart that preserves the distances between the points. 

Therefore, if two data points �1 , �V ∈ 	M have geodesic distance	WXY�?UZ[\��1, �V�, which is 

the distance along the manifold, then there is a chart  I:	M →	9�  such that satisfied the 

Equation 2.3. 

]I��1� = I��V�] = WXY�?UZ[\^�1, �V_ 2.3 

Besides, Isomap assumes the manifold M is smooth enough, such that the geodesic distance 

between close points can be approximated by a line. In order to compute the geodesic 
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distance, Isomap builds a neighborhood graph in the following way. Isomap computes for 

each data point �  the set of its neighbors ����  using �  nearest neighbors. After the 

computation of the set of neighbors for each data point	�, Isomap build a graph W	where each 

data point � is represented by a vertex in	W. In addition, each vertex, corresponding to a 

given point	�, is connected to its neighbors	����, by a weighted edge. The weighted of the 

edge is given by the Euclidean distances between two points, representing two vertices. Then 

Isomap computes the geodesic distance 	WXY�?UZ[\��1 , �V� between all data points of 4 by 

computing the shortest-path between the corresponding vertices on the graph 	W  using 

Dijkstra's algorithm. At the end of this step, Isomap produces a matrix 	WXY�?UZ[\ whose 

element 	WXY�?UZ[\�U, `�  is given by the geodesic distance between the data points 

	�1 	and	�V ,	 that is show in Equation 2.4. 

WXY�?UZ[\�U, `� = WXY�?UZ[\^�1, �V_ 2.4 

 

The final step of Isomap consists in applying a MDS to construct the lower dimensional 

space	�, which preserve as much as possible the structure of the manifold.  

Isomap can be summarized in the following steps: 

1. For each data point	�1 ∈ 4, find its � nearest neighbors.   

2. Build the neighborhood graph. 

3. Compute the shortest path graph given the neighborhood graph. 

4. Find the �- low dimensional embedding by MDS algorithm. 
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The parameter � controls the size of the neighborhood and this value is crucial. Isomap is 

strongly influenced by the size of neighborhood.  

 

2.5.2 Locally linear embedding 
 

Locally linear embedding (LLE) was proposed by (Roweis & Saul, 2000). The algorithm 

tries to preserve the topology by keeping all the neighbors close to each other. The idea of 

LLE is then to replace each point �1  where 1 ≤ U ≤ �,	with the linear combination of its 

neighbors. Therefore, the local geometry of the manifold can be characterized by linear 

coefficients that reconstruct each data point from its neighbors. Suppose high dimensional 

data set 4 = 5�,, … , �S6 ∈ 	9G	  with �  data samples, sufficiently large, and a low 

dimensional embedding space 9�  with 	�	 << 	? . The weight matrix c	 is computed by 

minimizing the reconstruction error	;�d�, where d1V are the coefficients of each point �1 and 

its neighborhood.  

;�d� =ef�1 =	ed1V�VV f
@S

1  2.5 

The sum of the coefficients of d1V must be equal to one:	∑d1V = 1. The cost matrix c	is 

expanded to a sparse �x� matrix c with d1V = 0	if �V does not belong to the neighborhood 

of	�1. 
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In the final step of LLE, each high-dimensional data point is mapped to a low-dimensional 

vector representing global intrinsic coordinate on the manifold. This is done by choosing 

�	dimensional coordinates to minimize the embedding cost function: 

 

g�H� =efB1 =	ed1VBVV f
@S

1  2.6 

 

This cost function sums the reconstruction errors caused by locally linear reconstruction. In 

this case, however, the errors are computed in the embedding space and the coefficients 

d1Vare fixed. The minimization of the function g�H� gives the low dimensional coordinates 

Y= 5B,, … , BS6 ∈ 	9� that best reconstruct B1 given c. 
The LLE algorithms is executes as follows 

1.  For each data point	�1 ∈ 4, find its � nearest neighbors.  

2.  Compute the weights matrix d1V that best linearly reconstruct x) from its neighbors and 

minimizes the Equation 2.5. 

     The sum of the coefficients of d1V must be equal to one:	∑d1V = 1 

3.  Find the d-dimensional embedding vectors y) by using the weights	d1V, which minimizing 

the Equation 2.6. 
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2.5.3 Laplacian eigenmap 
 

Laplacian eigenmap was developed by (Belkin & Niyogi, 2003). In contrast with Isomap, 

this method work locally, reproducing small linear patches around each point. In that sense, 

Laplacian eigenmap is closely related to LLE. Given a data set 4 = 5�,, … , �S6 ∈ 	9G, the 

algorithm construct a weighted graph incorporating � information’s neighbors, one for each 

point, and then uses the graph Laplacian to compute the low-dimensional representation 

while preserving local neighborhood information.  

The algorithmic procedure is formally stated below. 

1.   For each data point	�1 ∈ 4, find its � nearest neighbors.   

2.   Constructing the adjacency graph, by putting an edge between nodes U and	`, if �1 and �V  
are neighbors. 

3.   Assign edge weights. The edge weights are determined using one of the following 

variations: 

a) Heat kernel uses a parameter	; ∈ 9. Specially if two nodes U and ` are connected, put  

c1V = XLhijk	il	hmn  ; otherwise,	c1V = 0.  

b) Simple-minded is getting if 	; = 	∞  in 	c1V = XLhijk	il	hmn , no parameter is used. 

Where	c1V = 1, if vertices U and ` are connected by an edge and 	c1V = 0 otherwise. 

This simplification avoids the need to choose	;. 
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4.   Compute Laplacian eigenmap, solving the generalized eigenvalue problem	oH = 	0?H, 

where ?  is diagonal weight matrix, and its entries are column (or row, since c  is 

symmetric) sums of	c, 	?11 =	∑ c1VV . o = ? =c, is the Laplacian symmetric, positive 

semidefinite matrix.   

 

2.6 CUDA and GPU 
 

Compute Unified Device Architecture (CUDA) is a new parallel programming model that 

uses Graphics Processing Unit (GPUs) to solve different computational problems in a more 

efficient way than on a CPU. CUDA is accessible to software developers through variants of 

industry standard programming languages. Programmers use C for CUDA (C with NVIDIA 

library extensions and certain restrictions).  

 

2.6.1 Hardware architecture 
 

CUDA is all based on a common hardware architecture, which is outlined in Figure 2-10. 

Each device consists of a certain number of multiprocessors and its device memory. A 

multiprocessor consists of eight scalar processor cores, which operates in a SIMT (single 

instruction multiple thread) fashion, all cores in the same group execute the same single 

CUDA program called kernel at the same time in parallel. The device memory can be 

accessed by all multiprocessors of a device. A warp is 32 threads actives supported on each 
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multiprocessor. When one warp stalls on a memory operation, the multiprocessor selects 

another ready warp and switches to that one. 

 

2.6.2 Programming model 
 

From the point of view of a software developer, a CUDA compatible graphics card appears 

as a highly parallel processing unit for general purpose computations, which can be used in 

addition to the system’s CPU. The processing unit (commonly called CUDA device) is 

addressed by the system’s CPU (commonly called host) by methods of CUDA host API, 

which allows it to manage device resources and kernel invocations. This API acts as a new 

interface to CUDA capable graphics boards in addition to existing low-level. 

 

 

Figure 2-10: C Program sequential execution (Zone, 2011) 
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2.6.3 Kernel execution 
 

A kernel is executed on the CUDA device by a set of threads in parallel; a user defined group 

of 1 to 512 (1024 in some devices) threads called blocks. The instruction 

�Up3	�UpqrYst��, B� is used to define the number of threads per block, where �	is the 

number of columns and B is the number of rows in the block respectively. For identification 

and addressing purposes, each thread in a block has a unique thread index called [uvXw�x�� 

in �  and 	B . The [uvXw�x��. �  value ranges between 0  and yrYst?Up. � = 1  and the 

[uvXw�x��. B value between 0 and	yrYst?Up. B = 1. The Figure 2-11 shows, as example, 

the instruction �Up3	�UpqrYst�7,7�  where �	 = 	7 and	B = 7. 

 

Figure 2-11: Block of threads 

 

The second important concept is a	zvU�. A grid is a set of blocks that is organized in a grid of 

two dimensional arrays of equally sized thread blocks. All threads in a block share the same 

yrYstx� value. The grid and thread blocks may be chosen as one, two or three dimensional to 

ease data addressing. The instruction �Up3	�UpWvU���, B� serves to define the number of 
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blocks in a grid, where � is the number of colums and B is the number of rows respectively, 

each block in a grid has a unique block index called yrYstx�� in � and B.  The yrYstx��. � 

value ranges between 0 and zvU�?Up. � = 1  and the yrYstx��. B  value between 0 

and	zvU�?Up. B = 1. The grid has a maximum in � or B (dimension) of 65535 blocks of 

threads. Figure 2-12 shows a grid of 4 rows and 1 column using the instruction 

�Up3	�UpWvU��1,4�  where	�	 = 	1, and	B	 = 	4.  

 

Figure 2-12: Grid of blocks of threads 

 

The number of threads per block and the number of blocks per grid, give the total numbers of 

thread that will be executed on the device when a CPU invokes a kernel function. All threads 
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of a thread block are executed concurrently on one multiprocessor. The following instruction 

is an example of a kernel invocation by CPU.  

 

In CUDA is very important to define the number of threads per block, because this choice 

affects the performance of the kernels within a CUDA program. The Figure 2-13 summarizes 

the above description.  

 

Figure 2-13: Kernel execution configuration 

 

2.6.4 Kernel programming 
 

When a kernel is executed, each thread in a kernel is manage within a group of 32 threads 

called warp, which assigns a set of registers and local memory needed for its execution. 
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Shared memory is accessed by all threads of a block allowing cooperation between them and 

the exchange of data. Shared memory is much faster than global memory. The sequence of 

execution of a CUDA program has serial code that will be executed on the host while parallel 

code will be executed in parallel on the device; see Figure 2-14.  

 

 

 

Figure 2-14: Software execution model 

 

 

  



 
 
 
 

29 
 

3 IMPLEMENTATION OF MANIFOLD LEARNING 

ALGORITHMS IN CUDA  
 

The principal idea is to implement in parallel the three most popular nonlinear dimensionality 

reduction algorithms using CUDA over GPU to improve the running time of the algorithms 

and measure the speedup between CPU and GPU implementation. In addition, measure the 

speedup between CPU and GPU implementation. Figure 3-1, summarize this research 

method.  

All nonlinear dimensionality reduction algorithms require to compute the Euclidean distance 

matrix, to select the �-nearest neighbor, this means that the number of neighbor for each data 

point needed in the first part of the manifold learning algorithms is given by parameter �. 

This parameter � is entered by the user or observer and this value influence in the results 

dramatically.  

After the graph is built, each algorithm uses this information for specific purpose. In the case 

of Isomap, this compute the shortest path distances between all pair of points using Dijkstra's 

algorithm. LLE compute the reconstruction weights matrix, and Laplacian eigenmap build 

the weighted adjacency matrix. All these algorithms embed the graph built W into the low-

dimensional space.  
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Figure 3-1: Process for nonlinear dimensionality reduction 

 

3.1 Isomap in CUDA 
 

The implementation of Isomap is described in Algorithm 1, for more details see Section 

2.5.1. Isomap algorithm has three parameters: 4 is the data set of size	� { ?, � it the nearest 

neighbors of	�1, and the intrinsic desired low dimension	�. 

The parameter X is the hyperspectral image in high dimension D, which could be any data set 

with any number of features; the parameter � controls the size of the neighborhood and this 

value is crucial. Isomap is strongly influenced by the size of neighborhood, and the last 

parameter � is the desired low dimension.  
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Algorithm 1 Isomap (|,}, ~) 

1:  For each data point	�1 ∈ 4, find its K nearest neighbors.   
2:  Build the neighborhood graph. 
3:  Compute the shortest path graph given the neighborhood graph. 
4:  Find the d-dimensional embedding by MDS algorithm. 

 

The line 1 of Isomap algorithm was implemented in CUDA by (Garcia, Debreuve, & 

Barlaud, 2008). Given a reference point set 4	and a query point set 4 (the same data set),  the 

program returns first the matrix of distances between each query point and its k nearest 

neighbors in the reference point set, and second the matrix of indexes of its �  nearest 

neighbors. The matrix of indexes is also called the neighbors of	4. The graph in line 2 is 

implicitly represented by adjacency matrices of indexes and distance that serve to compute 

the shortest path graph in line 3. The implementation of line 3 was based in the previous 

work (Pawan & Narayanan, 2007), for a single source shortest path was modified to compute 

all pairs shortest path given a 4 data set (see Algorithm 2). Finally, the line 4 of Algorithm 1 

was implemented using CULA, that is a GPU-accelerated linear algebra library that utilizes 

the NVIDIA CUDA parallel computing architecture to improve the computation speed of 

sophisticated mathematics (Photonics, 2010). The premium package provides the 

computation of eigenvalues and eigenvectors. The instruction used was culaSsyevx. 

All pairs shortest path problem is, given weighted graph W��; �;c� with positive weights 

and a source S (in our approach, each entry in diagonal matrix is a source vertex), find the 

path with lowest cost (the shortest path) between the source vertex and every other vertex 

in	�. The common implementation of Dijkstra's algorithm is based on a min-priority queue 



 
 
 
 

32 
 

implemented by a Fibonacci heap that has a time complexity	���@	rYz�@ 	A ��. Now the 

memory space required store the cost matrix is show in Figure 3-2. If n=128, D = 64 with a 

single data type, the storage for 4 in 3D or 2D is: 

� { ? { 4	yB[XZ	 = 	128 { 128 { 64 { 4	yB[XZ &	 2@@yB[XZ & 4MB. 

Now the storage of the geodesic distance matrix is �@ { 	4 & 2��yB[XZ & 1GB, with	�	 &

	� { �	 & 	128 { 128, therefore to build the geodesic distance of 4Mq is required 1GB of 

storage. For this reason we work with images up to	�	 & 	128. All 3?	4 data set is reshaping 

in 2?	representation and with the matrices of indices and distances of � nearest neighbors, 

Dijkstra's Algorithm in line 3 finds shortest path for all points. 

 
 

 
Figure 3-2 Reshaping 3D hyperspectral image in 2D and the storage required for 

geodesic distance. 

 

Algorithm 2 shows a CUDA implementation of all pairs Shortest Path, the termination is 

based on the change in cost matrix > of size � { �. In this implementation, was used a an 

edge matrix	� that represent the matrix of neighbors or indices of size � { �,  a weight 

matrix c of size � { � that represent the matrix of neighbors’s distance of size � { �, a 
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boolean mask matrix M  of size � { �  and a updating matrix �  of size � { � . In each 

iteration of the Algorithm 2,  Algorithm 3 CUDA Shortest Path Kernel Step 1, checks for 

each vertex if it is in the mask matrix M. If yes, it fetches its current cost from the cost matrix 

> and its neighbor's weights from the weight matrix c. The cost of each neighbor is updated 

if greater than the cost of current vertex plus the edge weight to that neighbor. The new cost 

is not reflected in the cost matrix but is updated in an alternate matrix �. At the end of the 

execution of the kernel, a second kernel, Algorithm 4 CUDA Shortest Path Kernel Step2, 

compares cost in matrix C with updating cost. 

 

Algorithm 2 CUDA Shortest Path (Graph G (V; E; W)) 

1:  Create the square mask matrix M, cost matrix > and updating cost matrix � 
of size � { �  
2:  Initialize mask M to false, cost matrix > and �pdating cost matrix � to ∞ 
3:  M[�UwzY�wr] 	 ← 	[v�X 
4:  >[�UwzY�wr] 	 ← 	0 
5:  �[�UwzY�wr] 	← 	0 
6:  while M not Empty do 
7:      for each vertex �@ do in parallel 
8:          Invoke CUDA Shortest Path Kernel Step1 ( �,c,M, >, �) on the grid 
9:          Invoke CUDA Shortest Path Kernel Step2 (M,>, �) on the grid 
10:    end for 
11: end while 

 

Algorithm 3 CUDA Shortest Path Kernel Step1 (�,�,�, �, �) 

1:  tid ← get threadId 
2:  if M[tid] then 

3:      for all neighbors id_nb of tid do 

4:           if U[id_nb] > C[tid] + W[id_nb] then 

5:                U[id_nb] ← C[tid] + W[id_nb] 
6:           end if 

7:      end for 

8:      M [tid] ← false 
9:  end for 
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Algorithm 4 CUDA Shortest Path Kernel Step2 (�,�,�) 
1: tid ← get threadId 
2: if C[tid] > U[tid] then 
3:     C[tid] ← U[tid] 
4:     M[tid] ← true 
5: end if 
6: U[tid] ← C[tid] 

 

3.1.1 Process for Isomap 
 

The complete process for Isomap algorithm is shown in Figure 3-3. The user through the 

interface, enter the parameters 4, �, and � and call Isomap for execution, the interface call to 

the control program who is responsible for executing the complete program of Isomap. The  

control program execute some parts of the program inside the CPU and another parts inside 

the GPU. First the program reshape the image from 3?  into 2?  representation inside the 

CPU, next, the program create all the variables needed to execute the program inside the 

device and copy the data from the host to the device, after that, the control program invokes 

some CUDA function (called kernels) to be executed in parallel inside the device, these 

functions are: find Knn and build graph, compute the shortest path - step1, compute the 

shortest path - step2,and remove outliers, returning the cost matrix >  that contains the 

geodesic distance for all points. Finally the control program finds the low dimensional calling 

a function inside the CPU (with the cost matrix	> as a parameter) using the CULA library 

that internally calls some kernels functions inside the device for calculation and the results 

are presented to the user. 
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Figure 3-3: Process for Isomap 

 

 

3.2 Locally linear embedding in CUDA 
 

The naive implementation of locally linear embedding – LLE is described in Algorithm 5, for 

more details see Section 2.5.2. LLE algorithm has the same parameters as Isomap algorithm.  
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The LLE algorithm is show in Algorithm 5. Line 1 was also implemented in CUDA by 

(Garcia, Debreuve, & Barlaud, 2008) whose results are the matrices of distances and indexes 

of K nearest neighbors for each point	�1. Line 2 Compute the weights matrix d1V that best 

linearly reconstructs �1 from its neighbors and minimizes the cost function in the same line. 

The pseudocode of line 2 is given in Algorithm 6. Finally, the line 3 of LLE algorithm was 

implemented using CULA, but is too slow when trying to compute the eigenvalues and 

eigenvectors for dense matrix.  

 
Algorithm 5 LLE (|, }, ~) 

1. For each data point	�1 ∈ 4, find its � nearest neighbors.  
2. Compute the weights matrix d1V  that best linearly reconstruct �1  from its 

neighbors and minimizes following cost function:  
 

;(d) = e f�1 −	e d1V�VV f
@

1 . 
The sum of the coefficients of d1V must be equal to one: ∑d1V = 1. 

3. Find the � -dimensional embedding vectors y)  by using the weights w)� , 
which minimizing the following  cost function:   

g�H� =efB1 =	ed1VBVV f
@

1 . 
 

 

A good solution in line 3, is to implement a Mex function in Matlab to call a function 

implemented in CUDA, that return the matrix M thought the computation of line 1 and 2, 

after that, convert the dense matrix M  into a sparse matrix to find eigenvalues and 

eigenvectors in a faster way, needed to solve line 3. Algorithm 6 shows a CUDA 
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implementation to solve for reconstruction weights. This algorithm uses a data set 4 of size 

NxN and an edge Neighbors matrix that represent the neighbors or indices of size	� { �.  

 

 

Algorithm 6 CUDA Solve for reconstruction weights  (X, Neighbors) 

1:   for all points U ← 1: � do in parallel  

2:        Create matrix Z consisting of � neighbors of �1 
3:        Subtract �1 from every column of Z 
4:        Compute the local covariance >	 ← 	 �� × 	� 
5:        Regularization of C if (K > D) 
6:        Solve linear system >	�	d	 ← 	1	for w  
7:        Enforce sum(w)	←1 
8:        Fill c(1. . �, U� 	← 	d;	
9:    end 
10:  for all coefficient in W of �1 U ← 1: � do in parallel  
11:       Create matrix M	 ← 	 (x − c)′	 ×	 (x − c) 
12:  end 

 

 

In each iteration of Algorithm 6, each thread from line 2 to line 5 compute the local 

covariance > of size	� × � (small matrix). That is, input to solve the linear system in line 

6	>	 × 	d	 ← 1, which was implemented in parallel using LU decomposition described in 

(Press, Flannery, Teukolsky, & Vetterling, 1992). Finally the result of line 11 is the 

matrix	M. 

 

3.2.1 Process for LLE 
 

The complete process for LLE algorithm is shown in Error! Reference source not found.. 

The user through the interface, enter the parameters 4, �, and � and call LLE for execution, 

the interface call to the control program who is responsible for executing the complete 
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program of LLE. The  control program execute some parts of the program inside the CPU 

and another parts inside the GPU.  

 

Figure 3-4: Process for LLE 

 

First the program reshape the image from 3? into 2? representation inside the CPU, next, 

the program create all the variables needed to execute the program inside the device and copy 

the data from the host to the device, after that, the control program invokes some CUDA 

function (called kernels) to be executed in parallel inside the device, these functions are: find 
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Knn and build graph, shift �1  point to origin, find the local covariance, make a 

regularization, solve >d equal to one, enforce sum to one, and create the matrix M, returning 

the matrix M that contains the embedding from eigenvectors. Finally the control program 

finds the low dimensional calling a function inside the CPU (with the embedding matrix M as 

a parameter) using the sparse function in Matlab, because is faster that the CULA library for 

dense matrix to find the eigenvectors and the results are presented to the user. 

 

3.3 Laplacian eigenmap in CUDA 
 

The Laplacian eigenmap algorithm is show in Algorithm 7, for more details see 0. Laplacian 

eigenmpas algorithm has the same parameters like Isomap algorithm and LLE.  

Line 1 is the same as Algorithm 5, was implemented in CUDA by (Garcia, Debreuve, & 

Barlaud, 2008) whose results are the matrices of distances and indexes of �  nearest 

neighbors for each point	�1. Line 2 assign the edge weights, which are determined using one 

of the second variation option b, where	ε = 	∞, no parameter is used. Where	c1V = 1, if 

vertices i and j are connected by an edge and 	c1V = 0 otherwise. The pseudocode of line 2 is 

given in Algorithm 8. Finally, the line 3, of Laplacian eigenmap algorithm as LLE algorithm 

was implemented using CULA, but is too slow when trying to compute the eigenvalues and 

eigenvectors for dense matrix. A good solution in line 3 was to implement a Mex function in 

Matlab to call a function implemented in CUDA, that return the matrix ?  thought the 
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computation of line 1 and 2, after that, convert the dense matrix ? into a sparse matrix to find 

eigenvalues and eigenvectors in a faster way, needed to solve line 3.  

 Algorithm 7 Laplacian eigenmap (|,}, ~) 

1. For each data point	�1 ∈ 4, find its � nearest neighbors.   
2. Assign edge weights. The edge weights are determined using one of the 

following variations: 
a) Heat kernel uses a parameter	;	 ∈ 	9. Especially if two nodes U and ` are 

connected, put  c1V = XLhijk	il	hmn  ; otherwise, 	c1V = 0.  

b) Simple form is getting if	; = 	∞ in	c1V = XLhijk	il	hmn , no parameter is 
used. Where	c1V = 1, if vertices U and ` are connected by an edge and 	c1V = 0 otherwise. This simplification avoids the need to choose	;. 

3. Compute Laplacian eigenmap, solving the generalized eigenvalue 
problem	LY = 	λDY, where D is diagonal weight matrix, and its entries are 
column (or row, since W is symmetric) sums of W, 	D)) =	∑ W)�� . L = D =W, is the Laplacian symmetric, positive semidefinite matrix.   

 

Algorithm 8 shows a CUDA implementation to assign the edge weights according to the 

neighbors of	�1. This algorithm is similar to LLE algorithm.  

Algorithm 8 CUDA Assign edge weights (X, Neighbors) 

1:   for all points U ← 1: � do in parallel  

2:       if  �V 	 ∈ �XUzℎyYvZOj then      
3:            Set c1V = 1 and cV1 = 1 
4:       else 
5:            Set c1V = 0 and Set cV1 = 0 
6:       end 

7:   end         
9:   for all points U ← 1: � do in parallel 
11:       ?	 ←	Count in  cC��←1 where cC��,V:,..S = 1 
12:       Solve ?	 ← 	?	 = 	c 
13:  end 
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3.3.1 Process for Laplacian eigenmap 
 

The complete process for Laplacian eigenmap algorithm is shown in Figure 3-5. The user 

through the interface, enter the parameters 4 , � , and �  and call Laplacian eigenmap for 

execution, the interface call to the control program who is responsible for executing the 

complete program of Laplacian eigenmap. The  control program execute some parts of the 

program inside the CPU and another parts inside the GPU. First the program reshape the 

image from 3?  into 2?  representation inside the CPU, next, the program create all the 

variables needed to execute the program inside the device and copy the data from the host to 

the device, after that, the control program invokes some CUDA function (called kernels) to 

be executed in parallel inside the device, these functions are: find Knn and build graph, 

assign edge weights, and counting neighbors, returning the matrix	? . Finally the control 

program finds the low dimensional calling a function inside the CPU (with the matrix ? as a 

parameter) using the sparse function in Matlab, because is faster that the CULA library for 

dense matrix to find the eigenvectors and the results are presented to the user. 
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Figure 3-5: Process for Laplacian eigenmap 
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4 EXPERIMENTAL RESULTS   
 

All CUDA experiments were conducted on a 64-bit workstation equipped with a quad-core 

Intel® Xeon with 12 GB RAM and two NVIDIA Tesla C1060 GPU cards with total 

dedicated memory of 4 GB each one. Tesla C1060 is based on the massively parallel, many-

core Tesla processor, which is coupled with the standard CUDA C programming 

environment to simplify many-core programming.  

 

 
Figure 4-1 : Tesla C1060 computing processor board  (Zone, 2011) 

 

 

Table 4-1: Tesla Board Configuration 

# of Tesla GPUs  1 

# of Streaming Processor Cores  240 

Frequency of processor cores  1.3 GHz 

Single Precision floating point performance (peak)  933 

Double Precision floating point performance (peak)  78 

Floating Point Precision  
IEEE 754 single & 

double 

Total Dedicated Memory  4 GDDR3 

Memory Speed  800MHz 

Memory Interface  512-bit 

Memory Bandwidth  102 GB/sec 

Software Development Tools  C-based CUDA 
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With the operative system running Windows 7, the software installed is the driver for 

NVIDIA Tesla C1060 GPU card which supports the version of CUDA 3.2, an environment 

to compile and edit 64-bit CUDA applications, because CUDA compiler has a dependency 

with C++ compiler. This environment is supported by Visual Studio 2008 C++, which in 

combination with CUDA, allows developers to leverage the CPU for parallel tasks and the 

GPU for massively parallel computing, and finally Matlab was used to present all the result. 

 

4.1 Testing of the algorithms 
 

Indian Pines - Hyperspectral Image 
 

Indian Pines is provided by Laboratory of Applied Remote Sensing (LARS) at Purdue 

University (University, 2010). The image size is 128 by 128 pixels with 200 bands. The data 

intensities was normalized in the [0,1] range.  

(a) (b) 

  
Figure 4-2: a) Indian Pines image (RGB shows bands 29, 20, 11), b) Ground truth. 
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The image was taken in 1992, covering the NW Indiana's Indian Pines Site 3, an agriculture 

area. Figure 4-2 (a) shows the image for bands (RGB 29, 20, and 11). The ground truth here 

is available as an information image. There are 16 land cover classes (see Figure 4-2 (b)). 

 
Enrique Reef - Hyperspectral Image 
 

Enrique Reef, Puerto Rico: A high spatial-spectral resolution image of Enrique Reef Puerto 

Rico area has been collected using the NASA HYPERION sensor, which is located onboard 

the Earth Observing-1 satellite. This image contains 124 by 128 pixels and 204 bands.  

Enrique Reef data set includes ocean, reef, sand, mangrove, and sea grass habitats. The data 

intensities was normalized in the [0,1] range. Figure 4-3 shows the image for bands (RGB 32, 

21, and 14). 

 

Figure 4-3: Enrique Reef image (RGB shows bands 32, 21, 14) 
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Fish Boat - Hyperspectral Image 
 

The image size is 128 by 128 pixels with 60 bands. The data intensities was normalized in 

the [0,1] range. Figure 4-4 shows the image for bands (RGB 38, 47, and 56).  

 

 

Figure 4-4: Enrique Reef image (RGB shows bands 38, 47, 56) 

 

The nonlinear dimensionality reduction implementation in CUDA has been tested using the 

three hyperspectral images previously described. The results are summarized in Figure 4-5, 

Figure 4-6, and Figure 4-7. The intrinsic dimensionality considered for visualization 

was	�	 = 	3, and the number of the nearest neighbors are � = 7, 12, 17, and 22.  The value of 

this parameter affects the outcome.  

The algorithm Isomap produces better results thought increasing the number of neighbors, 

but requires a huge amount of memory space to compute the geodesic distance and is very 

slow.  In the case of LLE algorithm, produce good results similar to Isomap working with too 

much less information. This algorithm has to find a optimal solutions for each data point 
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using its neighbors, but is very sensible to the data and in some cases is not possible to find 

the solution, as shown in Figure 4-6 and Figure 4-7. Now Laplacian eigenmap is very similar 

to LLE because work with the information of its neighbors for each data point and create 

graph with the entries of each neighbor’s point. 

 
Figure 4-5: Manifold learning applied to Indian Pines 
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Figure 4-6: Manifold learning applied to Enrique Reef 

 

 
Figure 4-7:  Manifold learning applied to Fish Boat 
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4.2 Speedup between pure C++ and CUDA implementations 
 

To measure the speedup	�	��� between two different implementation was used the Equation 

4.1.  

				�� 	= �,�� 4.1 

Where:  

      is the number of processors 

    �, is the execution time of the sequential algorithm 

    �� is the execution time of the parallel algorithm with   processors. 

In order to compare the running time of CUDA implementation of manifold learning 

algorithm was necessary to develop the same program in pure C++. Additional libraries were 

used, like Intel® Math Kernel Library (Intel® MKL) (Intel®, 2011) to solve eigenvectors 

and eigenvalues, and the library OpenMP C++ (Board, 2010) application program interface 

to run the parallelizable parts of pure C++ implementation using multiple processors. 

However just the implementation part in pure C++ and CUDA that we developed, was 

compared to measure the speedup between this implementation. The following figures show 

the speedup of the implementation of Isomap, Locally linear embedding and, Laplacian 

eigenmap.  
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(a) (b) 

 
(c) 

Figure 4-8: Isomap implementation - (a) Using pure C++, (b) Using CUDA, and (c) 

Speedup between (a) and (b) 

 

In Figure 4-8 (c) the speedup of CUDA part of Isomap, is 26.81 times faster that its CPU 

counterpart for	� = 7. In the case of locally linear embedding, show in Figure 4-9 (c), the 

speedup is 18.46 for	� = 7, and Laplacian eigenmap, show in Figure 4-10 (c), has a speedup 

of 16.32  for 	� = 12 . In all of these algorithms as the number of �  nearest neighbors 

increase, the value of speedup decrease. Isomap has a lot time consuming to find the 

geodesic distance using Dijkstra’s algorithm. 
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(a) (b) 

 
(c) 

 

Figure 4-9: LLE implementation - (a) Using pure C++, (b) Using CUDA, and (c) 

Speedup between (a) and (b). 

 

In the case of LLE, see Figure 4-9, it is very sensible to data, because for each data we must 

find the coefficient of linear system solution, but in some cases it does not have a solution, 

and therefore it is not possible to build a graph for this point. The last algorithm Laplacian 

eigenmap, see Figure 4-10, is the easiest algorithm that is not sensible to the data and is faster 

that the other methods, but loses more information. 
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(a) (b) 

 
(c) 

 
Figure 4-10: Laplacian eigenmap implementation - (a) Using pure C++, (b) Using 

CUDA, and (c) Speedup between (a) and (b). 
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5 CONCLUSIONS AND FUTURE WORK 
 

Conclusions  

In this report, we presented CUDA implementations of three most famous manifold learning 

algorithms for real hyperspectral images. These algorithms have wide practical applications 

like visualization, segmentation, and classification. We presented fast solution for Isomap, 

locally linear embedding, and Laplacian eigenmap, whose CUDA part implementation runs 

26.81, 18.46, and 16.38 times faster respectively, than pure C++ implementation for matrices 

with order 2048 to 16384. The NVIDIA® Tesla™ C1060 transforms a workstation into a 

high-performance computer that outperforms a small cluster. Experiments showed good 

scalability on data sets. 

All our dimension reduction algorithms basically consisted of three general steps, the first 

step is to find the � nearest neighbors, while in step 2, it constructs a graph of distances (or 

weights), which will be used in step 3 to find the desired � low dimension representation. 

Our work consisted in implementing the step 2 in CUDA, because steps 1 and 3 were 

previously implemented in CUDA. The first one was developed by (Pawan & Narayanan, 

2007) and the third step was implemented using the optimized CULA library. 

An important detail is that Isomap working with dense matrices, while LLE and Laplacian 

eigenmap work with sparse matrices, therefore the step 3 of Isomap algorithm was 

implemented using the CULA library because this library works only for dense matrices, 
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while for sparse matrices was necessary to use the functions of Matlab to find the 

eigenvectors since it is much faster than the CULA implementation. 

 Another important thing was to develop a full version of the algorithm in pure C++ whose 

step 3 was implemented using the MKL LAPACK library to measure the speedup between 

this and the CUDA implementation. In this work we presented only the speedup of the 

second steps of the algorithms. 

 

Future Work 

 

The future work to this research will be to implement another variant of Isomap that avoid 

building the geodesic distance for all points, instead a subset of points. In the case of LLE 

and Laplacian eigenmap there is not a CUDA implementation at this moment to compute the 

eigenvectors and eigenvalues for sparse matrix.  
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