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ABSTRACT 
 

This dissertation is focused on the development of analytical methods to determine 

drug distribution throughout polymeric films using hyperspectral image analysis.   The 

NIR-CI and Raman mapping techniques have been used to analyze the distribution 

and quantification of drug in a novel pharmaceutical formulation. This pharmaceutical 

formulation was developed with the goal of maintaining the drug with a specific particle 

size in a non agglomerated form and to satisfy two commonly encountered 

pharmaceutical needs: enhanced dissolution rate of poorly soluble drugs and the 

content uniformity of drugs administered in low doses. In these films, the active 

ingredient is a poorly soluble drug, which is dispersed in the polymer and additionally; 

surfactant and lubricant are added. The water poorly soluble drugs have to be 

uniformly distributed in a film formulation to have an acceptable drug content 

uniformity. This is the reason why drug distribution is an important factor in these type 

of pharmaceutical formulations. In order to obtain the desired distribution it is 

necessary to find those areas of the film where the drug is agglomerated, and use this 

information to improve the process. 

 

Chapter 3 presents the results of the first methodology developed. The first 

methodology was based on determining the pixels of maximum intensity value at 2080 

nm. At this wavelength, pixels with positive values correspond to the drug. A film with 

large agglomerates was used to develop this methodology. Results show that the drug 

should be highly agglomerated to find pixels of pure drug. Therefore, the methodology 

was developed to evaluate the distribution of those pixels that are composed mainly of 

drug but also containing others components. Agglomerations of these pixels are called 

drug rich areas in this dissertation. The procedure followed to evaluate these drug rich 

areas is: to Identify of drug rich areas, observe the distribution of drug rich areas 

throughout the film surface, and do a visual comparison between different areas or 

films. This methodology was applied in the images analysis of the chapter 5-7.  
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Chapter 4 compares the previously developed methodology with a new approach using 

Multivariate Image Analysis (MIA).  The previously developed methodology is based on 

observing the distribution of drug rich areas at 2080 nm. The new methodology is 

based on the Bharati and MacGregor approach for incorporating the textural 

information of the image. MIA was used to explore the spectral and spatial relationship 

between the API and the different excipients. Results obtained with the two 

methodologies are comparable in terms of drug distribution. 

 

Chapters 5 -7 show the results obtained by applying the methodologies developed. 

These results are based on analysis of high intensity values at 2080 nm and score 

images. Nanosuspensions produced from wet stirred media milling (WSMM) were used 

to prepare these polymeric films. In these chapters the effect of stabilizers on 

controlling growth and agglomeration of the drug, the influence of the drug molecule on 

the distribution of drug rich areas and the impact of the drying process in the 

agglomeration of these drug rich areas, were evaluated.  

 

Chapter 8 shows the results obtained during the internship. The objective of this 

internship was to develop skills in solving challenging problems in both fundamental 

and applied research. This internship was conducted in a Pharmaceutical Chemical 

Plant during a period of 8 months. During this time, two NIR methods were developed 

in an effort by the Pharmaceutical Chemical Plant to implement techniques of analysis 

faster and cost effective.  A feasibility study using Raman Spectroscopy for the ID of 

raw materials also was completed. 

 

Chapter 9 summarizes the scientific contribution of this dissertation. 
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CHAPTER 1. Overview 
 

1.1 Motivation 

 

Analytical techniques are being developed to understand pharmaceutical processes. 

Process understanding allows the identification of parameters that can affect the 

quality of the final product. High quality products require quality by design, and 

production processes than can be monitored with faster and more efficient techniques. 

1,2 Analytical techniques capable of monitoring processes facilitate achieving 

operational excellence, which is the goal of the pharmaceutical industry. Process 

understanding has become an important aim for the pharmaceutical industry.3 

 

The ability to visualize and assess the compositional heterogeneity and structure of the 

end products is extremely important for both the development and manufacture of solid 

dosage forms in the pharmaceutical industry.4 A basic problem in pharmaceutical 

manufacturing is that even a relatively simple formulation may produce widely varying 

therapeutic performance depending on the distribution of ingredients in the final 

matrix.5,6 

The component distribution may impact bioavailability, dissolution, or other product 

performance attributes. The optimal determination of the distribution of the drug and 

excipients affect blend homogeneity, content uniformity, and may also affect 

dissolution. These issues are related, not only to the manufacturing process, but also 

to the solubility of the Active Pharmaceutical Ingredient (API). The solubility of drug 

molecules is an important factor to take into account during the development and 

design of new drug products. According to the Biopharmaceutical Classification 

System (BCS), Class II drugs are characterized by their poor solubility and high 

permeation in the human body.7 Most recently, the buccal route is getting more and 

more awareness for the application of API. The application via the buccal route offers 

different advantages: an easy application, no degradation of API by gastrointestinal 

fluids, bypassing the first hepatic metabolism and potentially improved bioavailability in 
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order to ensure rapid invasion and fast onset. Many advantages of this route have 

been recently recognized and various dosage forms are under development. 8 It is 

estimated that over 40% of all possible new active drug candidates have very low 

solubility. 7,9-11 A number of techniques were recently developed for online 

measurement of specific film properties, but those are mostly based on single-point 

probes (or probe arrays). Therefore, they have a limited spatial coverage of the film 

surface; spatial measurements are key in identifying local composition gradients and 

flow patterns that may compromise global quality of the films. 12,13 

1.2 Scope 

 

The scope of this dissertation is to assess the compositional uniformity of organic 

composites using hyperspectral imaging, with an emphasis in films formed by 

excipients and Active Pharmaceutical Ingredient (API) dispersed in polymeric matrices. 

1.3 Hypothesis 

 

One possible approach for improving the solubility, and hence dissolution, of poorly 

soluble drugs is to disperse them in a polymeric film, reducing surface tension, and 

thus, preventing them from aggregating.7,9-11  

A critical evaluation of the film formulation requires information on the spatial 

distribution of the active ingredient. Near Infrared Chemical Imaging (NIR-CI) can be 

used to identify the presence of drug-agglomerated clusters. The distribution of these 

drug agglomerates may be related with the results of the dissolution test. 

1.4 Goals of the dissertation 

 

The objective of this dissertation is the development of analytical methods to determine 

the distribution of drug throughout the surface of polymeric films using chemical 

imaging techniques. This research was performed within the Engineering Research 

Center for Structured Organic Particulate Systems (ERC-CSOPS) a center focused on 
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the scientific-based development of structured organic particle-based products and 

their manufacturing processes.  

 

Polymeric thin films are a novel pharmaceutical formulation; therefore new analytical 

methods are needed to characterize these new drug delivery forms. The approach 

used in this work was to relate the spatial distribution of the drug rich areas (drug 

clusters) within these films with the results of the dissolution test. It has been shown 

that by increasing/controlling specific surface area, the dissolution rate may be 

significantly improved. A commonly used approach to poor water solubility is drug 

particle size reduction, thus increasing its surface area, through either top-down or 

bottom-up techniques. The dissolution tests were performed at NJIT and Rutgers. The 

best results of the dissolution test were obtained in the films where the drug was more 

uniformly distributed. 

 

The research also required defining a drug rich area. This term was difficult to define 

because the poorly soluble drug is found on every area of the film; additionally, these 

drug rich areas depend on the particle size and polymer-API miscibility. In this 

dissertation, drug rich areas are those areas with the greatest concentration of API. 

These drug rich areas are found by analyzing the histograms of each score or intensity 

images. The number of standard deviations selected to establish the threshold value 

was determined as a function of the film and the problem to be resolved; based on the 

results obtained, two standard deviations from the mean was a good choice. 

The procedure followed to analyze the different hyperspectral images were: Identify the 

drug rich areas, determine the distribution of these drug rich areas throughout the film 

surface and compare them. 

1.5 Dissertation overview 

 

Chapter 2 presents the introduction and background describing the basic principles of 

NIR-CI, instrumentation, chemometrics and different tools used for image processing.  
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Chapter 3 presents the development of the methodology of the first approach used to 

analyze the NIR hyperspectral images. The first approach used was to observe the 

maximum intensity values of the second derivative at 2080 nm on films that contain 

only GF and Hydroxy Propyl Methyl Cellulose (HPMC E15LV). This chapter introduces 

the term drug rich areas.10 

 

Chapter 4 presents the second approach used in this dissertation; to develop a 

methodology where partial least squares discriminant analysis (PLS-DA) method 

determined drug or polymer distribution throughout the film. These images also were 

analyzed using a three step methodology based on the use of chemical oriented 

models using Multivariate Curve Resolution (MCR) and Classical Least Square(CLS) 

for extracting the chemical distribution maps (CDMs) from hyperspectral images, and 

afterwards performing multivariate image analysis (MIA) on the CDMs.  This approach 

transforms the spectral information into separated concentration maps; and MIA 

improves the interpretation when separating the joint variability into orthogonal 

information maps (the Score Images) with a clear physical interpretation (drug-HPMC 

blend and separation zones). The results obtained with both approaches are compared 

in terms of drug distribution.9 

 

Chapters 5 - 7 show the results obtained by applying the new methods developed.  

One method consists in observing the distribution of pixels of maximum intensity value 

at 2080 nm. The other method is based on observing the distribution of the pixel with 

the highest drug abundance based on the analysis of scores images obtained from 

PLS-DA. Chapter 5 presents the analysis of polymeric films produced via liquid 

antisolvent (LAS) method. These films contain all ingredients of the pharmaceutical 

formulation. The results of the analysis of the hyperspectral images evidence the dual 

role of stabilizers on controlling growth and agglomeration of griseofulvin (GF) 

particles.11 Chapter 6 presents the analysis of the distribution of three different API 

through the film surface.  The three drugs analyzed were: naproxen (NPX), GF and 
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fenofibrate (FNB). The particle sizes of the different API were reduced using wet stirred 

media milling (WSMM); the GF, FNB and NPX suspensions exhibited a median particle 

size of 163 nm, 201 nm, and 144 nm, respectively. Results obtained confirm the 

relationship between the distribution of the drug rich areas and the chemical structure 

of the drug molecule.7 Chapter 7 presents the impact of drying method over the 

distribution of API. The films were dried using a convective heating unit; this unit allows 

the variation of the temperature and air velocity.  The analysis of the distribution of the 

drug rich areas allows finding the optimal values of these variables.  The drug used in 

this study was GF.14  In summary, hyperspectral images analysis provided significant 

information on the distribution of drug particles in films prepared under different 

conditions. The chemical imaging information contributed to the optimization of the film 

formulation. 

Chapter 8 presents the research performed during the internship in an active 

pharmaceutical ingredient (API) manufacturing site.  NIR calibration models were 

developed to determine the amounts of toluene and ethyl acetate in recovered toluene 

and the amount of the component X in reaction completion. A feasibility study was 

conducted using Raman Spectroscopy as an alternate technique for the ID analysis of 

raw material.   

 

Chapter 9 summarizes the research contributions and future work. 

 

 

 



 
 

Chapter 2 - Background 
 

2.1 Summary 

 

Traditional quality control methods such as High Performance Liquid Chromatography 

(HPLC) and Mass Spectroscopy (MS) are time consuming, destructive, expensive, 

require lengthy sample preparation and do not provide information about the 

distribution of components within a sample. Due to the destructive and time consuming 

nature of these methods, only small samples of drugs may be tested from given 

production batches. Vibrational spectroscopic techniques such as Near Infrared (NIR) 

and Raman spectroscopy have emerged as alternative techniques due to the speed of 

analysis and because sample preparation is not required.3 

Hyperspectral imaging is being introduced in pharmaceutical research laboratories to 

overcome the above drawbacks of classical techniques and to increase the knowledge 

and understanding of many commercially important materials.15
 The additional 

information provided by the spatial perspective of NIR-CI offers access to greater 

understanding and therefore control of the manufacturing process of complex 

composite materials and products. In the pharmaceutical industry, solid dosage forms 

are used to confer physical stability to drug formulations and are considered more 

attractive due to their convenience and consumer preference aspects. Solid dosage 

forms are not composed of a single material; rather they are carefully designed 

mixtures to form a pharmaceutical formulation. A typical formulation may include one 

or more active pharmaceutical ingredients (APIs), fillers, binders, disintegrants, 

lubricants, and other materials. Each of these materials is chosen to provide desirable 

characteristics for manufacturing, storage, handling, and eventual release of the 

therapeutic agent.16 Throughout formulation development and the scale-up process, 

the primary goal is to produce a formulation and a manufacturing procedure that is 

robust and consistent.17-19 Modern formulations are further increasing the demands on 

product uniformity. Products containing more potent APIs may be formulated at 

quantities ranging from a few to even less than one milligram per dose, yet the finished 
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product must still be large enough for convenient handling. Therefore, the therapeutic 

agent may represent significantly less than 1% (w/w) of the bulk form, and maintaining 

content uniformity is absolutely crucial.5,6 Hyperspectral imaging techniques may be 

used to understand content uniformity and drug distribution within these formulations. 

2.2 Near Infrared Spectroscopy 

 

Near-infrared (NIR) spectroscopy is a very rugged and flexible technique that can be 

generally adopted for use in a wide range of chemical analyses in many different 

research and industrial applications. 
5,20-22 NIR spectroscopy has a number of 

advantages that have contributed to its wide adoption in process analytical 

applications. The principal advantage is the possibility of acquiring spectra without 

sample preparation, simultaneously obtaining, chemical and physical information; the 

dual dependence of the analytical signal on the physical and chemical nature of the 

sample facilitates both its identification and the determination of physical and chemical 

parameters. 20,23,24,NIR spectral range extends from 750 to 2500 nm, where most 

organic compounds absorb radiation with CH-, OH-, and NH- vibrations. 25-28 NIR 

absorption bands are typically broad, overlapping and 10–100 times weaker than their 

corresponding fundamental mid-IR absorption bands. Absorption in this spectral region 

is due to overtone and combination bands of molecular vibrations that modulate the 

dipole moment of the molecule.  

 

2.3 NIR-CI Literature Review 

 

Polymers are excellent materials for NIR analysis, since most polymer residues are 

rich in -CH, -NH, and -OH intramolecular bonds. The critical performance parameters 

of polymers, such as viscosity, yield strength, or glass transition, can be correlated to 

the long-range bonding structure of the material (e.g., chain length, cross-linking, 

crystallinity), residual monomer concentration, or the degree of substitution, which are 

readily detected using NIR spectroscopy.29 Polymeric materials, especially cellulose 
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derivatives, have served an important role in manufacture as either fillers or coating 

agents. Hydrophilic polymers, such as poly (ethylene glycol) (PEG), poly (lactic 

acid)(PLA), or poly (DL-lactic-co-glycolide) (PLGA), are increasingly utilized for 

sustained-release implant dosage forms.26 This section summarizes a number of 

previous NIR and NIR-CI methods for polymeric materials.  

 

Svensson et al.30
 demonstrated the combination of NIR spectroscopy and 

chemometrics methods to classify 11 cellulose derivatives among more than 400 

batches of pharmaceutical excipients with a high degree of accuracy. Gustaffson et 

al.31
 used NIR and FT-IR spectroscopy and chemometrics to accurately predict tablet 

performance quality parameters from the spectra of raw hydroxyl propyl methyl 

cellulose (HPMC E15LV). This study analyzed 12 grades of HPMC E15LV in terms of 

methoxy- and hydroxylpropyl concentrations, total degree of substitution, 

methoxy/hydroxypropyl ratio, apparent density and specific surface area.  

 

Furukawa et al.32
 studied four kinds of PHB/PLLA blends with the PLLA content 

ranging from 20 to 80 wt% using NIR-CI to elucidate the blend quality of PHB/PLLA 

blends. This work discusses the possible interactions that exist between the excipients 

and the API. The domains for each blend component were dispersed as smaller 

crystallized or amorphous particles. The interfacial energy between PHB and PLLA 

may be so small that they make extremely fine dispersions within each other. This 

small difference in interfacial energy produces PHB/PLLA blends with a high degree of 

homogeneity. 

 

Polymer hydrogels are increasingly being considered for sustained release of 

injectable biotechnological therapeutics and oral delivery of gastric labile protein or 

peptide therapeutics. Early work in this area by Nerella and Drennen33 utilized 

dispersive NIR spectroscopy with a novel controlled aperture to develop a method for 

depth-resolved determination of drug content in a polymer hydrogels. The researchers 

utilized the NIR method to solve the diffusion constants of salicylic acid through a 

hydrogel matrix, which served as a practical in vitro model for a transdermal drug 



 

9 
 

 
Background 

 

  

delivery system. In much later work, Blanco and Romero34 demonstrated the use of 

NIR transflectance spectroscopy for the determination of dexketoprofen in a hydrogel. 

 

One of the problems in the design of new delivery drug is the lack of analytical 

techniques to characterize these new products.  Garsuch8 used Scanning Electron 

Microscopy (SEM) and Near Infrared chemical Imaging for the morphologic 

characterization of fast-dissolving buccal wafers, using caffeine as model drug 

because is well absorbed buccally.  

Gendrin et al.35
 compared Partial Least Squares (PLS) with at least two response 

variables (PLS2) and the Classical Least Squares (CLS) algorithm in predicting API 

and excipient content by NIR hyperspectral imaging in simple binary mixtures of API 

and cellulose. This is a pharmaceutical product quantification strategy using 

hyperspectral imaging with and without calibration.   

2.4 Principles of NIR-CI 

 

In conventional NIR spectroscopy a bulk NIR spectrum is measured providing an 

average composition of the measured sample. Recent advances in spectroscopic 

detector technologies have enabled spectral as well as spatial information to be 

recorded simultaneously. NIR Chemical Imaging (NIR-CI) offers the opportunity to 

explore not only what chemical species are present at a micro-scale level but also 

provides spatial information on their distribution within a sample. 4A hyperspectral 

image consists of a three-dimensional data cube (Figure 2.1), where two dimensions 

are spatial coordinates (pixels) and the third contains spectral information 

(wavelengths). NIR-CI provides one spectrum per pixel and hence a vast amount of 

both spatial and spectral information (usually more than 80,000 spectra per sample) 

that can be acquired in a very short time (1–2 min).3,22,36,37Each element within the 

cube contains the intensity-response information measured at that spatial and spectral 

index. The hypercube can be treated as a series of spatially resolved spectra (called 

pixels) or, alternatively, as a series of spectrally resolved images (called image planes 

or channels).5The hyperspectral data cube can either be viewed as an array of spectra 
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(one for each pixel) from which images can be created or as a row of images from 

which spectra can be extracted. Selecting a single pixel (xy-coordinate) through the z-

plane will show the spectrum recorded at this particular spatial location, which provides 

the spectral signature of chemical components present in that exact part of the sample. 

Selecting an image plane (xy-plane) at a specific wavenumber (z-value) will show the 

intensity values for all pixels at that wavenumber also called a single wavenumber 

image. The single wavenumber image contains spatial distribution information about a 

chemical component with a distinct spectral characteristic at that particular wavelength. 

 

Figure 2.1 Three-dimensional hyperspectral data cube (x×y×z). 

 

All images require some type of contrast to differentiate regions of interest in a field of 

view. The most common source of image contrast is variation in the intensity of diffuse 

reflectance.28 
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The expectations on Chemical Imaging are focused on obtaining quantitative 

information about the content of each component and provide reliable information 

about the distribution of the component.35 Spatial information provides a better 

understanding of the sample or as a problem-solving tool, and also statistical and 

quantitative parameters to evaluate the quality of the final product.38 In recent years, 

NIR-CI has been used in different fields of the pharmaceutical industry. 32,39,40 This 

diverse applicability is due to its capability of providing robust and reliable chemical 

and spatial information on the distribution of components in pharmaceutical solid 

dosage forms.41-44  

The acquisition of extensive data could be a limiting factor in applications of Process 

Analytical Technology (PAT). However, this extensive data can be reduced with the 

elimination of background pixels, image and spectral data compression, and data 

processing. Spectral image data do not have an intrinsically high information density 

because much of the data are correlated in all three dimensions.26 

2.5  NIR-CI Instrumentation 

 

 

Figure 2.2 Two methods of acquiring a hyperspectral imaging data cube: Point 
mapping and Global imaging- Focal plane array (FPA). 

 

In classical spectroscopy a spectrum includes the integrated spectral information of the 
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sample surface, which depends on the spot size generated by the beam of light. There 

are two main types of NIR-CI systems to obtain the raw data hyperspectral data cube: 

line mapping and global imaging.41
 Only the global imaging system has been used in 

the experimental studies in this dissertation.   

The mapping system consists of a classic spectrometer combined with a moving stage. 

In the mapping system regular spatial positions are defined above the sample surface. 

A spectrum is measured at one position, the sample moves to the next measurement 

point on the grid, a further spectrum is recorded, and so on for all positions in the area 

defining the image, In this way a grid of spectral information is created from the lines of 

spectra until spectra from all pixels in the defined sample area are obtained to 

constitute the hyperspectral data cube (Figure 2.2). Global imaging measures the NIR 

absorption intensity values in each pixel of the defined sample area at one particular 

wavelength at a time. The imaging technique uses two-dimensional focal plane arrays 

(FPA), where these optical detectors are composed of several thousand elements 

forming a matrix of pixels. FPA enable thousands of spectra to be acquired 

simultaneously. The number of pixels in an image is thus fixed for global imaging 

systems and the pixel size and sample areas are defined by the magnification optics 

(e.g. 10 μm/pixel objective leading to a 2.8 × 3.2 mm image using a 320×256 pixels 

FPA). The NIR absorption intensity values are measured in every pixel of the FPA at 

each individual wavelength, which is sequentially changed by the tunable filter.  

The major advantage of global imaging is the faster acquisition time. The larger field of 

view is also an advantage, and the possibility of reducing the volume of data by 

choosing a specific wavelength. In global imaging, due to its smaller area, a single 

pixel element of a 2D detector integrates less signal than a single-element detector 

used in a mapping study, therefore, the signal to noise ratio (SNR) is lower in global 

imaging than in mapping when the same detector illumination is used.38 During a 

global imaging experiment, other sources of noise due to the optics and the 

nonuniform pixel illumination must also be taken into account.  

2.6 Spectral correction 
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In the absorbance-based spectral measurements, the intensity data represented in a 

raw (single beam) chemical image is a combination of the spectral response of both 

the instrument and the sample. In order to remove the instrument response 

component, it is necessary to ratio the data to a background reference. For diffuse 

reflectance measurements, the background is a separate data cube typically acquired 

from a uniform, high-reflectance standard such as a white ceramic. In addition to a 

background correction, dark current from the detector must be subtracted from both, 

the sample and background. The dark scans are collected by using a mirrored surface 

in the place of the sample. The correction to reflectance (R) is therefore: 

R = (Sample – Dark) / (Background – Dark)             (2.1) 

 

Further processing is also usually performed to transform the reflectance image cube 

to its log10(1/R) form, which is the sample absorbance. After the correct pretreatment, 

the chemical image brightness is often related with the analyte concentration. The 

brightness in the images is useful for comparative as well as quantitative purposes.5 

2.7 Chemometrics for the analysis of Hyperspectral Images 

2.7.1Data Pretreatments 

 

Interference of spectral parameters, such as light scattering, path length variations and 

random noise, generate variations in the sample properties or instrumental effects. 

Mathematical correction, so-called data pre-processing is necessary to eliminate or 

standardize their impact on the spectra. 

The most widely used pre-processing techniques in NIR-CI spectroscopy (in both 

reflectance and transmittance mode) can be divided into two categories: scatter- 

correction methods and spectral derivatives. Mathematical treatments used to 

compensate for scatter-induced baseline offsets include multiplicative scatter 

correction (MSC) and standard normal variate (SNV). Baseline shifts and intensity 

differences resulting from variable positioning or pathlength variations may be reduced 

or eliminated by normalization algorithms. Derivatives can be applied to improve the 
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resolution of overlapping bands,  and eliminate baseline offsets. Since spectral noise is 

also amplified by the use of derivates, derivatives are usually combined with Taylor or 

Savitzky-Golay smoothing algorithms.45-47  

2.7.2 Reduction of variables by principal component analysis (PCA) 

 

Principal component analysis (PCA) is widely used variable reduction method. PCA is 

a mathematical procedure that resolves the spectral data into orthogonal components 

whose linear combinations approximate the original data. The new variables, called 

principal components (PC), eigenvectors or factors, correspond to the largest 

eigenvalues of the covariance matrix, thus, accounting for the largest possible variance 

in the data set.48 The first PC represents maximum variance amongst all linear 

combinations and each successive Principal Component accounts for as much of the 

remaining variability as possible. The first step is to do mean centering: 

     xcenteredi,j = xi,j - x.j,        (2. 2) 

 

where xcentered i,j was the corrected absorbance (sample i and wavelength j), xi,j the raw 

data and x.j the mean absorbance at wavelength j. The new coordinates were 

computed as follows: T=Xc.P, where T was the scores matrix, P the loadings matrix 

and Xc the mean centered spectral matrix. 49 

2.7.3 Multivariate calibration for quantitative analysis 

 

The spectrum obtained at a pixel is represented by the concentration-weighted sum of 

the contributions of the pure spectra of the image constituents. These concentration 

weights vary from pixel to pixel, depending on the composition of the material, but the 

pure spectra of the constituents are the same along the whole image. Raw images can 

be decomposed into the product of a matrix of pure spectra by the concentration 

weights of these pure components in each pixel, D = CST + E. The matrix ST contains 

the pure spectra of the image constituents and the matrix C the concentration values of 
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these constituents in every pixel, E contains the experimental error due to signal 

variation not due to the signal provided by the chemical compounds. 50 

The Multivariate Curve Resolution (MCR) method allows for the resolution of individual 

contributions when the spectra of pure components are not available, under certain 

specific constraints that can be introduced in the model.51 Different algorithms can be 

used for obtaining C and S. When the original constituents of the mixture and their 

spectra are known a priori, the Classical Least Square (CLS) model may be used. CLS 

regression consists of projecting each sample spectrum forming an X matrix on the 

pure spectra, hence obtaining the concentration directly related to the chemical 

compounds in it. 52,53 

2.7.4 PLS-DA classification 

 

 

Figure 2.3 Classifying images: PLS-DA approach 

 

Partial least squares discriminant analysis (PLS-DA) is a parametric and linear 

regression method that is used for classification. The purpose of PLS-DA is to achieve 

maximum discrimination among classes of objects on the basis of their X-variables by 

means of a model, providing a quantitative estimation of the discriminatory power of 

each descriptor. 54,55 
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In this method, X contains the input information about the objects to be classified and Y 

the class membership information. The regression coefficient matrix B is calculated 

with the training set: Ytraining=Xtraining.B, where Ytraining is constructed with ones and 

zeros in each column as shown in Figure 2.3.49The calibration set is created with the 

spectra of pure components; PLS-DA156 is calculated using only one pure component 

and PLS-DA2 is calculated using all pure components. As a result of the prediction, 

scores images with values between 0 and 1 are obtained for each component included 

in the model. These maps will indicate the XY spatial distribution of each pure 

component in the mixture analyzed. 

The score images analyzed in this dissertation are based on applying Partial Least 

Square Discriminant Analysis (PLS-DA).  Images obtained by applying Multivariate 

Image analysis (MIA) and PLS-DA are compared in the chapter 4 of this dissertation.  

2.8 Concatenation 

 

Figure 2.4 Concatenation of NIR-CI images 

 

Concatenation may be used to compare different areas of the same film.  Images are 

acquired and concatenated and the distributions of the pixels of drug rich areas are 

then observed.  Concatenation is useful to link two or more data sets so that they are 

processed in exactly the same way. An A × B image means an image of A pixels in x-

axis and B pixels in y-axis. The data cubes (A × B × x wavelengths) of the samples 

were grouped together in order to help image interpretation. Concatenation has been 

performed along the x and y axis to create a larger data cube (Figure 2.4).57,58 
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2.9 Histogram 

 

Figure 2.5  Histogram plot. 

A histogram is a bar graph where different values of intensity of all the pixels can be 

seen as shown in Figure 2.5. The intensity values are on the x-axis and the numbers of 

pixels associated with each of these intensity values are on the y-axis. Figure 2.5 

shows that the cursors truncate only the pixels of higher intensity; in this case, these 

pixels are directly related to the presence of API. Binary images may be obtained by 

assigning the pixels that are within the cursors a value of one and the remaining have 

a value of zero. This is an excellent way of isolating the pixels of interest, those that 

may be associated spectrally with API.  One disadvantage of using histograms to 

generate binary images is that practically the same number of pixels are always 

observed.  

 

Also the histograms can be used to evaluate the grade of distribution of the different 

components in the polymeric film. Three statistical parameters were computed to 

quantify their differences. First the mean value of the distribution is estimated: 
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                    (2. 3) 

 

 

In equation 2.3 n represents the total number of pixels within the image and    the 

value of the pixel i. The variance will also be calculated: 

 

         
 

   
        

 

   
           (2. 4) 

 

The kurtosis gives information about the shape of the histogram peak (equation 2.5). 

 

              
         

   

                 (2. 5) 

 

Kurtosis characterizes the relative peakedness or flatness of a distribution compared to 

the normal distribution.  Positive kurtosis indicates a relatively peaked distribution. 

Negative kurtosis indicates a relatively flat distribution. Normal distributions produce a 

kurtosis statistic of about 0. The statistics of the intensity distributions from image to 

image can be compared to evaluate the degree of uniformity of the samples. Many 

other statistical characteristics can be calculated, including the center of mass, and 

number of domains of each component. The same image can be used to look at 

proximity of ingredients and reveal if two ingredients tend to co-agglomerate or 

disperse normally amongst the other components. 



 
 

CHAPTER 3. Near-Infrared Chemical Imaging of Pharmaceutical Thin 
Films: Maximum Intensity Values Approach. 

 

Published in Journal of Pharmaceutical Science, 2011, Volume 5, 4888-4895. Jerez -
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3.1 Summary 
 

The drugs analyzed in this dissertation are poorly soluble. It is very important to 

determine the distribution of drug in formulations that use these type of drugs. The 

drug distribution in a polymeric film can impact many properties of the formulation such 

as the dissolution test and potency, among others. These polymeric films are a novel 

pharmaceutical formulation developed to achieve and maintain the drug dispersed, 

thus preventing agglomeration. It is necessary to develop analytical imaging 

techniques to assess the distribution of poorly soluble drugs in such novel 

pharmaceutical formulations. This chapter describes the first approach developed, 

characterized by the rapid collection of information from a hyperspectral image. 

Therefore, this approach can be used for real time analyses. 

In this dissertation, a methodology was developed to evaluate drug distribution. This 

methodology was based on the analysis of hyperspectral images. In order to develop 

the technique, a film with highly agglomerated drug was analyzed. Results show that 

although the drug is highly agglomerated, pixels of pure drug are difficult to find. The 

term drug rich areas were introduced in the analysis, which allows analyzing films with 

more uniform drug distribution. This chapter contributes to  hyperespectral images 

analysis with the introduction and definition of the term drug rich areas. Defining this 

term is difficult since small agglomerates will always be found through the sample 

because the active pharmaceutical ingredient (API) is poorly soluble. The scope of this 

work is to develop the methodology to find those areas with the highest griseofulvin 

(GF) concentration per pixel. One of the challenges was to establish the threshold 

value to find these areas of interest. It is very difficult to find pixels of pure drug in a 

film, and thus, if the drug is distributed uniformly, most of the pixels will have the 
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contribution of the polymer and GF. Chemical composition of each pixel will be affected 

by the fact that the drug is poorly soluble and therefore will be dispersed throughout 

the film surface and the scattering of the NIR radiation. The NIR radiation passes 

through the film, this radiation is reflected by the ceramic disk and again passes 

through the film. Part of this radiation will be absorbed by the film, whereas other 

photons will be reflected specularly and will not be detected. The radiation that arrives 

at the detector will contain mixed information from various locations in the polymeric 

film. The spectral information at each pixel will be influenced not only by the 

components of the measured pixel, but also by neighboring pixels.  

 

NIR and Raman mapping techniques have been used to study the distribution of drug 

particles suspended in a polymeric film.10 A total of four film batches were prepared for 

this study using Hydroxyl Propyl Methyl Cellulose (HPMC) with griseofulvin as the 

active pharmaceutical ingredient. The NIR method analyzed a film area of 3 mm × 2.6 

mm, whereas Raman mapping analyzed an area of 10 µm × 10 µm. Every sample was 

analyzed by the two methods.  

3.2 Materials and Instrumentation 

 

GF ((2S,6'R)- 7-chloro- 2',4,6-trimethoxy- 6'-methyl- 3H,4'H-spiro [1-benzofuran- 2,1'-

cyclohex[2]ene]- 3,4'-dione )(Figure 3.1),  is a poorly soluble drug used as an active 

pharmaceutical ingredient (API). A micronized drug, with a particle size below 10 µm 

was used in the study. Hydroxy propyl methyl cellulose (HPMC E15LV) was chosen as 

the film-forming excipient. These materials were purchased from Sigma-Aldrich 

Corporation (Milwaukee, WI). Blends of API and HPMC E15LV were prepared by first 

dispersing the two components together in hot water (80oC), followed by stirring for 12 

hours and drying at room temperature.  
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Figure 3.1 Chemical structure of pure components. Images were obtained from Fisher 

Scientific. 

 

The film strips produced had a thickness of 100 µm. The four film batches used for this 

study were prepared at the New Jersey Institute of Technology (Table 3.1). 

 

Table 3.1 Composition of the films of other batch. 

 GF (% wt/wt) HPMC E15LV (%wt/wt) 

Film 1 57 43 

Film 2 50 50 

Film 3 44 56 

Film 4 36.4 63.6 

 

3.2.1 NIR Chemical Imaging 

 

Near infrared hyperspectral images were acquired using the Malvern SyNIRgi Near 

Infrared Chemical Imaging System (Malvern, UK). The images were obtained in 

transflectance mode by placing the gel strips over a white ceramic disk with a diameter 

of 28 mm. NIR was chosen to be used since the NIR radiation easily penetrates these 

gel strips. The spectra of the HPMC E15LV and GF were obtained as pure powders in 

the diffuse reflectance mode. The spectra were collected with the system’s focal plane 

array detector that has 320 X 256 pixel elements, with a total collection time of about 2 

minutes. The optical magnification was 10 µm providing images of an area of 

approximately 3.2 x 2.6 mm. The spectra were obtained with 5 scans using a spectral 
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range of 1200 - 2400 nm, analyzing two different areas within the same gel strip. The 

data collected was analyzed using the ISys software (Version 5.0.0.14). 

3.2.1.1 Spatial resolution issues 

 

When the incident radiation reaches the sample surface, it may be immediately 

reflected (specular reflectance) or enter the sample. The photons that arrive at the 

detector will contain mixed information about the sample components at various depths 

and locations in the sample. The final result is a spectral pattern influenced not only by 

the components of the measured pixel, but also by neighboring pixels and by the depth 

of penetration.59,60 As the contrast in NIR chemical images is based on NIR spectral 

signatures, it therefore implies that the depth of penetration, will limit the highest useful 

lateral magnification; depending on wavelength, approximately the 70% of the photons 

coming from the sample in a diffuse reflectance measurement will have interacted with 

a spherical region with a diameter of approximately 60 - 90μm.61 

The images of the polymeric films were acquired in transflectance mode, the radiation 

passes through the film. The hyperspectral image provides chemical information of the 

bulk and of the surface of the polymeric film, therefore, special care must be taken in 

the interpretation of the chemical image obtained. Several areas of the same polymeric 

films were analyzed using different optical magnifications to guarantee the results 

obtained.  

The acquisition of high quality spectra require consideration of the intensity of the light, 

since, the illumination sources generate high levels of energy that induce strong 

heating of the samples. Therefore the polymeric films were placed under a transparent 

window to keep the samples flat and reduce any drying effects due to heat from the 

lamps. It is preferable to analyze the flat surface to minimize specular reflection of the 

light source owing to the roughness of the surfaces.41 Pyrex windows were also placed 

over the lamps to absorb any mid-infrared radiation as an additional precaution to 

reduce any heating effects. In imaging, it is very difficult to eliminate completely the 

variation in illumination, but this effect can be minimized.  It is better to use lamps with 
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polarizers, and ensure that the lamps are illuminating the center of the film and 

preferably work the lamps at low intensities.  

 

3.2.2 Data treatment for NIR spectra 
 

NIR spectra were obtained in the reflectance mode. The logarithm, log10(1/R), was first 

applied to the data cube to convert the spectra to absorbance units. Pixel correction 

was applied in order to remove areas of non-uniform illumination and to remove the 

effect of unresponsive pixels on the detector. A low-pass Fourier filter was applied to 

reduce spectral noise caused by the use of transflectance for a semi-transparent 

matrix. The spectra were normalized using the Standard Normal Variate and Savitzky-

Golay second derivative (filter order 3, filter width 9). 

3.2.3 Raman Mapping 

 

Raman mapping spectra were collected using a Jobin Yvon/Horiba LabRAM micro-

Raman spectrometer, with 632.81 nm He/Ne laser excitation and a 10x objective, 

producing a laser spot size of 3 µm. The Raman spectra were recorded in the 800-

1650 cm-1 range. A typical chemical map consisted of 30x30 pixels, with a step size of 

0.3 μm. These Raman images were acquired at New Jersey Institute of Technology. 

3.2.3.1 Data treatment for Raman spectra 

 
A spatial mask was initially applied in order to eliminate background pixels, followed by 

a low pass filter, baseline correction, standard normal variate (SNV) transformation and 

Savitzky-Golay second derivative (filter order 3, filter width 13). Spectra from film 3 

were used to create a reference library based on partial least squares discriminant 

analysis PLS-DA. Spectra were obtained from pixel with maximum intensity value at 

1620 cm-1. At this wavelength, griseofulvin has a strong vibrational mode. Partial least 

squares discriminant analysis (PLS-DA) was performed to provide a chemical image 

based on the distribution of the drug throughout the gel strip. 
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3.3 Methodology 

 
The methodology used was as follows: the drug rich areas were identified in the films, 

after the distribution of GF was observed throughout the film surface and finally, a 

visual comparison was carried out amongst the different areas chosen. This visual 

analysis is based on comparison of the drug rich areas in term of: their number, their 

mean value, and their standard deviations (STD). 

 
Images were acquired and concatenated and the distributions of the pixels of drug rich 

areas are then observed and compared for different areas of the film.   

3.4 Results and discussion 

 
The best approach is from simplest to more complex observation. In this case, the first 

film analyzed was one that exhibited a high agglomeration of drug visible to the naked 

eye as shown in Figure 3.2. This film was prepared in this manner, to facilitate method 

development, by having one film with significant large agglomerates. This polymeric 

film was composed of drug (GF) and the main excipient (HPMC E15LV). A GF 

suspension was mixed with the HPMC E15LV solution without proper agitation to 

facilitate the agglomeration of the drug within this film. The diameter of the drug 

agglomerate obtained was approximately 0.3 mm.  
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Figure 3.2 Films prepared with larger drug agglomerates. a. Image obtained with a 
microscope coupled to an NIR-CI using a magnification of 10 µm per pixel. b. Image 
obtained with the SEM 

 

 

Figure 3.3 Spectra of HPMC E15LV and GF. a. Raw spectra of pure components. b. 
Second derivative spectra of pure components. 
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Figure 3.3 shows that it was not possible to identify a characteristic absorption band for 

the pure components due to the large band overlapping. A series of pretreatments 

were applied to the spectral data to differentiate between these two components (GF 

and HPMC E15LV). The spectral differences between API and HPMC E15LV are more 

clearly observed in the second derivative spectra. Differences were observed at 

several wavelengths, but the 2080 nm band was used since it represents an 

absorption maximum for GF and the minimum absorption for the HPMC E15LV. 

Therefore, positive values at 2080 nm indicate the presence of GF, while negative 

values indicate the presence of HPMC E15LV.  
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Figure 3.4 Image and histograms for the different components within film at 2080 nm. 

 

Figure 3.4 shows a second approach to provide an easy detection of drug clusters, 

based on observing only the pixels with the highest second derivative intensity at 2080 

nm. Figure 3.4 provides important information on the distribution of GF and HPMC 

E15LV throughout the gel strip; however it is still difficult to observe clusters of the 

drug. The pixels with the highest intensity correspond to the sections of the gel strip 

that are richest in GF. These images provide a qualitative assessment of the 

distribution of different components within the films. Assuming the histogram is a 
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normal distribution, these histograms show a symmetric distribution and low 

heterogeneity of the components within the film. Under the criteria that only pixels with 

a positive value correspond to drug, film 1 is the only film in which areas of pure drug 

would be observed because the drug is more agglomerated.  

 

Figure 3.5 Images obtained with a microscope coupled to an NIR-CI using a 
magnification of 10 µm per pixels Image at 2080 nm. a. Average spectra of HPMC 
E15LV and GF. b. Spectra of different points of the gel strip formed by GF and HPMC 
E15LV. 

 

The red areas in Figure 3.5 do not correspond to all of the areas of drug observed 

under the microscope. Some drug agglomerates are observed in yellow at 2080 nm. 

These areas represent the drug but they are not red because they also have HPMC 

E15LV. In others words, in these areas the drug is not pure. If there are no pure drug 

pixels, what is seen is the distribution of those pixels that have the maximum drug 

contribution. This is the definition for drug rich pixels or drug rich areas. For this type of 

pharmaceutical formulation, drug rich pixels will be identified as the ones that have the 

maximum signal intensity at 2080 nm. The selection of these pixels is based on 
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histograms. Histograms are used to impose the threshold value. A histogram is a bar 

graph where different values of intensity of all the pixels can be seen. The intensity 

values are on the x-axis and the numbers of pixels associated with each of these 

intensity values are shown on the y-axis.  

Figure 3.6 explains the importance of establishing the threshold value to generate 

binary images. Clusters observed in the binary images vary depending on the selected 

threshold value. Binary images are created by setting a threshold value in the 

histograms. Histogram cursors truncate only the pixels of high intensity with maximum 

intensity values in second derivatives. The pixels that are within the cursors have a 

value of one and the remaining have a value of zero; this is a way of isolating the 

pixels of interest. The number of standard deviations selected to establish the 

threshold should be determined as a function of the sample and the problem to be 

resolved.  In this case, the areas of interest are the ones of greater concentration of 

GF, so the values higher than two standard deviations from the mean are a good 

choice. Once the clusters were identified, a binary image was generated in which the 

clusters were isolated from the surrounding matrix.  
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Figure 3.6 Binary Image of films with larger agglomerates of drug obtained with different threshold values. 
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Figure 3.7 GF rich areas observed at 2080 nm. 

Image analysis was then used to evaluate the number of particles observed in each image using the ISys software 

(Version 5.0.0.14). Figure 3.7 shows the binary image obtained to apply the threshold value. Visual examination of the 

binary images also indicates that in Films 1 and 4 the particles are not as widely dispersed as in the other films. The 

threshold value used in the analysis of these images was the mean + 2 times standard deviation. In film 1, two of the 

approaches were used.  



 

32 
 

 
Near-Infrared Chemical Imaging of Pharmaceutical Thin Films: Maximum Intensity Values Approach 

 

  

Table 3.2 Domain Size Statistic Results of API Based on Binary Images Generated 
from Intensity Value at 2080nm 

 

 

 

Number 
of 

domains 

 

Largest 
domain 
(µm2) 

 

Mean 
area 
(µm2) 

 

Area 
STD 
(µm2) 

Threshold (Positive Intensity) 
Avg. Film 1  

(57% wt/wt API) 

 

373 

 

12000 

 

1034 

 

1386 

Avg. Film 1 

(57% wt/wt API) 

283 5100 672 698 

Avg. Film 2 

(50% wt/wt API) 

211 3500 444 412 

Avg. Film 3 

(44% wt/wt API) 

248 1900 304 411 

Avg. Film 4  

(36.4% wt/wt API) 

229 12800 558 926 

 

Image analysis was then used to evaluate the number of particles observed from the 

previous binary images as reported in Table 3.2. All films show drug clusters when this 

approach is followed. This evaluation confirms the absence of large clusters in the film. 

However in films 1 and 4, the particles are not as widely dispersed as in the other films; 

the mean area of the clusters varies from about 300 to 670 µm2. Films 1 and 4 show 

the largest domains found and they have the largest standard deviations. The clusters 

that are identified by this approach have a high drug concentration but include the 

presence of HPMC E15LV. 

 

The advantage of observing only pixels with positive values at 2080 nm is that this 

strictly defines drug rich areas, provided that the drug is highly agglomerated within the 

polymeric film. The advantage of observing drug rich areas is that it allows the 

visualization of drug rich areas in optimized processes. The disadvantage is that using 

this threshold value (2σ of the mean), approximately the same numbers of pixels are 

observed.   
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Figure 3.8 Histograms providing quantitative descriptions of the API and HPMC 
contents for Films 1, 2, 3, and 4. These histograms are based on Raman scores 
images. 

Figure 3.8 shows the histograms based on PLS-DA scores of the Raman images for 

the different films. The histograms show a very low number of areas with high scores. 

The high scores are indicative of high concentrations of HPMC or griseofulvin.  

However, a large number of areas are observed where the scores range from 0.4 – 0.6 

indicating a lower concentration of the griseofulvin or polymer. These intermediate 

concentration values indicate that the Raman method is detecting both griseofulvin and 

polymer, and that these are mixed throughout the film strip. This type of information is 

unique to hyperspectral images and is not available from spectra recorded from 

sample averaging or integrating spectrometers. 

 

NIR-CI and Raman are complementary techniques. The two techniques are also 

complementary in that water and O-H bonds are poor Raman scatterers, while 

providing strong absorbance bands in the NIR spectral region. There are also 

complementary differences in the scale of scrutiny of the two methods. The NIR-CI 
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method provides a larger scale of scrutiny than the Raman method and hence an 

ability to rapidly analyze larger areas of a sample.  

 

3.5 Conclusions 

 

Pure drug pixels were observed only in film 1, since in this film, the drug is more 

agglomerated. Drug rich areas were observed in all films when was used as threshold 

value the mean + 2 times standard deviation. The advantage of applying this approach 

is that it allows to find drug rich areas in films with better drug distribution. Each 

approach has its advantages and disadvantages. NIR-CI can be used to find and 

analyze drug rich areas distribution. This is an important consideration because drug 

load uniformity is particularly a critical quality attributes of products where the dose of 

the API is low. Independently of how low is the dose of API, the dosage form must be 

of “regular” size if handled by the patient.  Even though the sample analyzed in this 

case consisted of a gel strip covering an area of approximately 3.2 mm x 2.6 mm, NIR-

CI could also be used at a lower magnification covering a larger area. The results 

obtained indicate that the NIR-CI approach could be particularly helpful to determine 

distribution uniformity in low dose products.   

 

Polymer film strips loaded with small (submicron) API particles represent API 

composite materials with many possibilities for functionalization and use as drug 

delivery matrices in different types of dosage forms. Trapping fine API particles in a 

polymeric matrix offers an advantageous way of harvesting engineered particles. 

However, to fully take advantage of API particles immobilized in film strips, it is 

necessary to develop the ability to assess the distribution of particles in the film.



 
 

Chapter 4. MIA and NIR Chemical Imaging for pharmaceutical 
product characterization. 
 

Published in Chemometrics and Intelligent Laboratory Systems, 2012, Volume 117, 

Pages 240-249. Prats-Montalbán, J. M.; Jerez-Rozo, J. I.; Romañach, R. J.; Ferrer, A. 

 

4.1 Analysis of hyperspectral images of polymeric films; comparison between 

Multivariate Image Analysis (MIA) and Partial Least Square Discriminant Analysis 

(PLS-DA). 

 

This chapter describes the effort to introduce MIA in the hyperspectral image analysis 

of polymeric films. This research began as a collaborative work with the Universidad 

Politécnica de Valencia Departamento de Estadística e I.O. Aplicadas y Calidad in 

Spain, with a desire to learn about MIA and its possible benefits to extract this 

information from NIR-CI.  Part of this work was performed in Spain. This work is 

pioneering effort in using multivariate image analysis to evaluate drug distribution in 

this type of pharmaceutical formulation. The results of this collaboration were rather 

important in the development of the analytical technique. The use of MIA made it 

possible to obtain spatial distribution information of each of the components of the 

formulation, and understand how these components are mixed. 

The scientific contribution of this chapter was to obtain the spatial distribution 

information between HPMC E15LV - GF; the spatial distribution of the chemical 

segregation zones, and the spatial distribution of the chemical mixing zones. This 

spatial distribution was obtained using MIA on hyperspectral images. 

Chemometric tools have to be applied to hyperspectral images because they contain 

large quantities of spectral information, and it is impossible to extract this information 

without a well-structured scientific approach. Different chemometric techniques have 

been developed to analyze hyperspectral images.62-65 The majority of these techniques 

are based on algorithms that require a deep knowledge in programming and 

chemometrics. Additionally, these techniques require a large time of analysis.42,66,67 
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Simpler hyperspectral analyses must be developed to extract information in a fast and 

effective way. 

 

This chapter describes the methodology for the use of partial least squares 

Discriminant analysis (PLS-DA) to analyze the hyperspectral images. PLS-DA is a 

multivariate inverse least squares discrimination method where the response variable 

is a categorical one, useful for classification tasks.  

In this chapter, PLS-DA was used to generate models to distinguish between GF and 

HPMC E15LV. The images were analyzed using two methodologies: MIA and PLS-

DA.9 Results obtained with both methodologies are comparable in terms of drug 

distribution.  

4.2 Reagents, Instrumentation and Data Pretreatment 

 

During the development of this collaborative work several aspects in relation with the 

acquisition of the hyperspectral image were optimized. One of the improvements in the 

image acquisition process was verifying the quality of the image by performing a PCA 

to the data row. Another improvement was to wait one hour before acquiring the 

images when turning on the NIR equipment. In some images, when all the 

wavelengths were used, the MCR model generated poor results. Residuals of the MCR 

model were larger at the beginning and end of the spectral range. Therefore it was 

decided to acquire the hyperspectral images in the spectral range of 1300-2300 nm.  

 

This chapter analyzes the same films as in Chapter 3. The reagents, instrumentation 

and data pretreatment followed are described in Chapter 3.  

4.3 Methodology 

 

The films were analyzed using two different approaches. The first approach applied 

was MCR and CLS to extract the chemical distribution maps (CDMs) from 

hyperspectral images, and thereafter performing multivariate image analysis (MIA) on 

the CDMs. The Bharati and MacGregor approach was applied to avoid textural 
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(spatial) information loss during the unfolding stage. Texture describes the distribution 

of the chemical compounds in the image. This analysis was done at the Universidad 

Politécnica de Valencia Departamento de Estadística e I.O. Aplicadas y Calidad in 

Spain.9 

  

The other approach used was to apply a supervised chemometrics method called PLS-

DA using the ISys software (Version 5.0.0.14). A library was generated with the films 

with the largest GF agglomerates. The abundance68 (an approximation of 

concentration) of GF was obtained without requiring a calibration set, thus, the 

resulting model is then applied to each image to produce score predictions related to 

the abundance of GF in each image. The term abundance refers to the presence of 

API in each pixel. The intensity of each pixel is determined by the quantity of GF 

predicted at that spatial location, based on the reference spectra.  Higher scores 

indicate more similarity to the pure component spectra. The variation in relative 

abundance of GF across of the polymeric film is then visualized. 

4.3.1 Multivariate Image Analysis (MIA) 

 

Once the hyperspectral images have been translated into real multivariate images, 

they can be analyzed by traditional Multivariate Image Analysis (MIA) techniques. MIA 

unfolds the images in the same fashion as in the previous MCR; it obtains a matrix 

where the rows are linked to the pixels and the columns to the channel.  

During the unfolding stage, the textural (spatial) information is lost. In this variable 

reduction stage, each pixel position is changed. Therefore, the new low dimensional 

matrix does not represent exactly the original matrix. These two matrices can be 

equivalent if the information of its nine immediate neighbors is incorporated to each 

pixel before performing the unfolding. This way, the information is maintained during 

the entire process. One simple and effective way to do this is to apply the Bharati and 

MacGregor approach to incorporate the textural information in the unfolding process. 

This procedure is illustrated in the scheme presented in Figure 4.1. 
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From this matrix, a PCA model can be built, obtaining the scores matrix T and loadings 

matrix P, which can be used to obtain the Score Images (by re-folding the pixels into 

their original 2D dimension) and to interpret the relationship that exists within and 

between the chemical compounds.9,69  

 

Figure 4.1 Procedure to obtain the data structure used to perform the color-textural 
MIA. 3×3 neighborhood window. 

 

4.4 Results and discussion 

4.4.1 Films with larger GF agglomerated 

 

A PCA model was built, thus obtaining the different loadings and score images. The 

score image information was used to interpret the relation that exists within and 

between HPMC E15LV and GF. 
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The scatter plot from Figure 4.2 shows the distribution of the first two Principal 

Components from the PCA. These two Principal Components explain 99.89% of the 

variability in the film. In this scatter plot, the pixels that remain tightly clustered possess 

similar variability, while pixels that are separated represent the main source of 

variation. The spatial location of this main source of variation can be determined if 

these separate pixels are selected; in other words, select the pixels that do not seem to 

behave as a normal distribution. The main source of variation corresponds to the areas 

where GF is highly agglomerated. Based on the results of the previous chapter, these 

areas contain pixels with 100% GF and pixels that are composed mostly of GF but that 

also contain HPMC E15LV. 

Figure 4.3 shows the score images of the first six Principal Components. The first PC is 

mainly showing areas around the larger cluster that contains pixels with average 

contribution of GF and HPMC E15LV. The second PC shows the areas of the pixels 

that are constituted mainly of GF or of HPMC E15LV. The rest of the Principal 

Components provide spatial information of each chemical compound separately.  

Principal Components 3 and 5 gather the textural aspects of the GF whereas Principal 

Components 4 and 6 explain textural aspects of the HPMC E15LV. It is very difficult to 

find pixels exclusively of HPMC E15LV or GF in this film, which represents the worst 

case of GF distribution. This information helps to understand how the drug is dispersed 

throughout the film surface. The film was prepared via casting; the surface tension 

between HPMC E15LV and GF is reduced causing the GF to be dispersed. Drug 

dispersion is an important factor to take in account in formulations with poorly soluble 

drugs. 

 

GF is an poorly soluble drug, therefore, the only two ways to obtain pure GF for the 

acquisition of its image is as a powder or tablet. In both cases, specular reflection is a 

problem. Consequently, the film with large clusters was used to generate the reference 

library. The approach used to create the library with two classes, GF and HPMC 

E15LV, was the following: observe the maximum and minimum values of the second 

derivative intensity at 2080 nm. Figure 4.4 shows the pixels used to create a reference 
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library; 2816 pixels were used to create the GF class and 2204 pixels for the HPMC 

E15LV class. These two classes have pixels with pure GF or pure HPMC E15LV, but 

also have GF/HPMC E15LV rich pixels. A GF rich pixel is a pixel that is composed 

mainly of GF but that also contains HPMC E15LV.  A HPMC E15LV rich pixel is a pixel 

that is composed mainly of HPMC E15LV but that also contain GF.  

 

 

Figure  4.2 Score images from PCA. Scatter plot displaying the distribution of the first 
and second Principal Components. 
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Figure 4.3 Score image of the first six Principal Components Analyses. 
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PLS-DA analysis based on a reference library was applied to calculate the contribution 

of GF at every pixel. The contribution or abundance of GF in a pixel is given by a score 

value. A score value of 1 or 100% means that the pixel is of pure drug. The abundance 

of GF in this film is of 21.7%( wt/wt). This value is obtained from an area of 

approximately 2.8 x 3.2 mm by pixels that are composed mainly of GF but also contain 

HPMC E15LV. A way to observe the distribution of each component on the film is by 

generating composite images. 

 

Composite images are a way to visualize, simultaneously, the distribution of different 

components in a polymeric film. Composite images provide a visualization of the 

distribution of the different components and are very useful because the different 

components are shown together. This image is created by overlaying two single 

channels, each assigned the colors, red or green. RG image was obtained from the 

score image. The color intensity of each pixel in a red or green image is proportional to 

the intensity values from the score image it is generated from.  

 

Figure 4.5 shows the false color spatial mapping for the predicted distribution of API 

(red) and HPMC E15LV (green). A red-green color-coded composite image was 

developed to show the localization of two components simultaneously. The RG image 

provided an assessment of drug distribution throughout the film. This image is easy to 

interpret; the drug clusters can be easily observed. This RG image obtained is 

consistent with the images obtained using the microscope coupled to an NIR-CI and 

with the image obtained with the SEM, mentioned in the previous chapter.  

4.4.2 Films with a better drug distribution 

 

Two films with a better distribution of GF were analyzed using the same methodology 

applied to films with larger clusters.  These films contain a 44% and 50% of (wt/wt) GF.   
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Figure 4.4 Pixels used to create the reference library.
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Figure 4.5 a. Red-green (RG) color-coded NIR images wherein red represents the 
distribution of the API, GF and green that of the excipient, HPMC E15LV.  b. Image 
obtained using the microscope coupled to an NIR-CI. 

 

Two areas were analyzed in each film; these areas were concatenated for a better 

visualization of the results.  The abundance results reported are based on the analysis 

of these concatenated images. 

Figure 4.6 shows the distribution of the pixels when analyzing the scatter plot of the 

first vs. the second Principal Component of the PCA of the film with 50% (wt/wt) of GF. 

These two Principal Components explain the 99.86% of the variability in this film. 

Figure 4.6 shows that most of the pixels are together; and few pixels are separated.  

The next step is to observe the spatial distribution of these separate pixels. The spatial 

distribution of these pixels is localized on the edges of the film. The variability 

explained by these pixels is probably due to an issue related with the illumination. 

Illumination problems are presented in the edge of the images, where the lighting is not 

similar as in the center of the image. In imaging, it is very difficult to eliminate 

completely the variation in illumination, but this effect can be minimized.  It is better to 

use lamps with polarizers, and make sure that the lamps are illuminating the center of 

the film and preferably work the lamps at low intensities. 
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Figure 4.6 Scores images from PCA. Scatter plot displaying the distribution of the first and second Principal Component. 
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Figure 4.7 Score image of the first six Principal Components Analyses. 
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Figure 4.8 Score image of PLS-DA. Concatenated images show the distribution of HPMC E15LV and GF throughout the 
film surface. 
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The film in Figure 4.7 has a 50% (wt/wt) content of GF; it has greater drug content than 

the film with the larger cluster. Figure 4.7 confirms that regardless of drug content, 

when the drug is uniformly distributed, it is more difficult to find the relationship 

between drug-excipient. The graph of the first six Principal Components shows some 

contrast at the edges of the films, but no evidence of agglomerates.  

Table 4.1 Statistical analysis of PLS Score values derived from the analysis of the two 
polymeric films analyzed. 

 

Nominal 
value 

(% w/w) Predicted 

Statistical Analysis 

Number 
of 

pixels 

1 STD 
%(w/w) 

Number 
of 

pixels 

3 STD 
%(w/w) 

44 44.6 105,436 4.6 162,862 9.0 

50 52.4 104,768 4.2 162,884 8.4 

 

Figure 4.8 shows the score images from PLS-DA.  The score value scale is an 

indication of the spatial distribution and relative abundance of the drug and HPMC 

E15LV. Abundance refers to the drug distribution by a pixel. The top of the scale 

(green color in the color bar) indicates the highest contribution of drug or HPMC E15LV 

to any pixel. NIR-CI is used to evaluate the overall drug distribution throughout the film. 

 

PLS-DA allows the comparison of the abundance results obtained throughout the 

surface of the films. Table 4.1 provides a summary of the abundance values for the two 

films. The predicted values shown in Table 4.1 are based on the abundance values of 

more than 100,000 pixels.  The mean value is therefore comparable to the 

concentration value that could be obtained with a single standard NIR spectrum of the 

film. The nominal and predicted values are comparable. Based on the STD results, the 

films have a good GF distribution. The STD values of the score images are the same 

as the standard errors of prediction (SEP) for the response variable in the results of the 

ISys software (Version 5.0.0.14). Therefore, based on the STD results, NIR-CI can 

give quantitative results with small standard errors of prediction. 
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Figure 4.9 Red-green (RG) color-coded NIR images wherein red represents the 
distribution of the API, GF and green that of the excipient, HPMC E15LV. 

 

Based on scores images from PLS-DA, RG images were generated. Figure 4.9 shows 

the RG images of the two films analyzed. In these images, each component is 

assigned to a separate color channel.  In this case, the distribution of GF is red and the 

distribution of HPMC E15LV is green. In these images drug agglomerates are not 

observed, but the drug rich areas are not uniformly distributed.  

The PLS-DA results are similar to those reported in reference 9. This reference uses a 

methodology based on the use of chemical oriented models (MCR and CLS) to extract 

the chemical distribution maps (CDMs) from the hyperspectral images, and afterwards 
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performing multivariate image analysis (MIA) on the CDMs, and finally extracting 

“channel” and textural features from the score images related to quality characteristics. 

PLS-DA and MIA can be used to evaluate the drug distribution throughout the surface 

of the polymeric film.  

4.5 Conclusions 

 

The present work demonstrated that PLS-DA can perfectly analyze this novel 

pharmaceutical formulation. The analysis of the film with larger GF agglomerates 

permitted the extraction of spectral and spatial information about the relationship 

between HPMC E15LV and GF. In films with better GF distribution, the relationship 

between HPMC E15LV and GF are not easy to visualize using PCA; it is necessary to 

work with scores images from PLS-DA. Results obtained are analogous with the 

results obtained in Reference 9 except in explaining the mixing of the materials. MIA-

texture approach used in Reference 9 provided information about the spatial 

distribution of the chemical segregation zones, and the spatial distribution of the 

chemical mixing zones. This work also helped improve the image acquisition 

conditions. 

 

   



 
 

CHAPTER 5. Hyperspectral image analysis to evaluate the effects of 
stabilizers on particle dispersion from polymer films. 
 
Published in Powder Technology, 2013, Volume 236, Pages 37-51. Beck, C.; Sievens-

Figueroa, L.; Gärtner, K.; Jerez-Rozo, J. I.; Romañach, R. J.; Bilgili, E.; Davé, R. N. 

5.1 Summary 

This dissertation is focused on the development of an analytical technique to evaluate 

the distribution of a poorly soluble drug on the surface of polymeric films. It is very 

important to recognize and understand how each component affects the distribution of 

the drug. The ultimate goal is to achieve a formulation of the film with a uniform drug 

distribution. In this chapter the effect of the surfactant on dispersion of the drug was 

evaluated.   

The scientific contribution of this chapter was to understand the role of stabilizers to 

control growth and agglomeration of particles and study the formation of  agglomeration 

of drug rich areas formed under these conditions using the methodology developed in 

this dissertation. The methodology identified the drug rich areas, determined the 

distribution of these drug rich areas throughout of the film surface and compared the 

distribution of drug rich areas between films. 

This chapter evidences the dual role of stabilizers to control growth and agglomeration 

of particles formed via a liquid anti-solvent (LAS) process. Stabilization was examined 

using two surfactants: the non-ionic surfactant PLURONICF127 (PF- 127) and the 

anionic surfactant Sodium Dodecyl Sulfate (SDS).  The chemical structures of these 

surfactants are shown in Figure 5.1. Reduction in agglomeration and increase in growth 

of GF were observed when using the PF127.  
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Figure 5.1 Chemical structure of the PF-127 and SDS 

 

5.2 Materials and Methods 

 

Griseofulvin was purchased from Letco Medical (Livonia, MI, USA). Low and high 

molecular weight hydroxyl propyl methyl cellulose (HPMC LV 15 Methocel, 80–120 cp) 

was provided by DOW Chemical (Newark, DE, USA). The wetting agent, poly (ethylene 

oxide)–poly (propylene oxide)–poly (ethylene oxide) (PF 127) was obtained from Sigma-

Aldrich (Saint Louis, MO, USA) and glycerin (Gly) was purchased from Sigma-Aldrich 

(Saint Louis, MO, USA). All these materials were used as received.   

 

5.2.1 Polymeric films 

 

An appropriate amount of GF (GF) was briefly dissolved in acetone with some 

surfactant, while Hydroxy Propyl Methyl Cellulose (HPMC E15LV) was dissolved in 

deionized water.  Following precipitation, the suspensions were centrifuged to remove 

most of the organic solvent, to increase the compounds concentrations. A small amount 

of water was added to disperse the particles and the resultant suspensions were then 

mixed with a high viscosity polymer solution followed by film casting and drying. 
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Reference 11 explains in detail the methodology used to prepare polymeric films. Table 

5.1 describes the composition of the three films analyzed. 

 

Table 5.1. Composition of the three films analyzed. 

 HPMC E15LV SDS PF-127 

HPMC E15LV (wt %) 1.49 1.49 1.49 

Glycerin (wt %) 1.49 1.49 1.49 

GF (wt %) 0.498 0.498 0.498 

SDS (wt %) - 0.01 - 

PF 127 (wt %) - - 0.05 

 

GF, HPMC E15LV and glycerin contents are the same for all films.  Four different areas 

of the films were analyzed independently with the 10 µm/pixel objective, and for better 

visualization of the results, the images were concatenated.  

 

5.2.2 NIR chemical imaging 

 

Near infrared hyper spectral images were acquired using the Malvern SyNIRgi NIR-CI 

System (Malvern, UK). These images were obtained in transflectance (transmission) 

mode by placing the film strips over a white ceramic disk of 28 mm diameter. The 10 

μm/pixel objective used provided images of an area of approximately 2.8×3.2 mm.  

Spectra were obtained with only 1 scan in the spectral range of 1300–2300 nm. The 

data collected was analyzed using the ISys software (Version 5.0.0.14). The data cube 

was converted to absorbance units. Pixel correction was applied in order to remove 

areas of non-uniform illumination and to remove the effect of un-responsive pixels on 

the detector. A low-pass Fourier filter was also used and spectra were normalized using 

mean center unit variance by spectrum and a Savitzky–Golay second derivative (filter 

order 3, filter width 7) in order to eliminate variations in slope. 
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5.3 Results and Discussion 

 

The objective is to produce a polymeric film with GF particles widely dispersed. In a 

supersaturated medium, GF particle coarsening due to variations in radii of curvature 

results in the growth of GF particles to reduce Gibbs free energy and surface area. It is 

necessary that GF particles be kept separate from each other, in order to prevent 

aggregation. An important factor to take in account is to stabilize GF suspensions.  The 

surfactant reduces hydrophobicity of GF particles by reducing interfacial or surface 

tension producing more stable suspensions due to electrosteric stabilization. It is 

necessary to examine the use of surfactants to prevent that the growth dominates the 

precipitation of GF particles. The effect of surfactant on the agglomeration of the GF 

particles was studied using NIR-CI. 

 

The approach followed for the NIR image analysis of these films was to identify those 

pixels with the highest second derivative intensity at 2080 nm.  Positive values at 2080 

nm are indicative of presence of pure GF. Concatenation was used to link the four areas 

analyzed of each polymeric film so that they are processed in exactly the same way, 

facilitating the visualization as well as comparison of the results.  

 

The second derivative intensity recorded at the different pixels of the data cube at a 

wavelength of 2080 nm was used to generate the chemical images and histograms 

shown in Figures 5.2, 5.3 and 5.4. The histograms of the four areas of each film show 

subtle differences in the symmetry of their distributions. Differences in symmetry can be 

related with differences in the distribution of GF rich areas.  These differences are 

based on the intensity distribution of all pixels on each area; if the GF rich areas are 

uniformly distributed, the histograms are symmetric. The HPMC E15LV stabilized film 

and the HPMC E15LV-SDS stabilized film present the greatest differences in the pixel 

distribution. The distribution of pixels corresponding to the HPMC E15LV- PF-127 

stabilized film is better; their histograms are centrally located. These images provide a 

qualitative assessment of the heterogeneity of the polymeric thin films. 
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Table 5.2 Intensity values at 2080 nm of the different films analyzed. 

 High Intensity Value Low Intensity Value 

HPMC E15LV -0.006786 -0.02753 

SDS -0.005185 -0.02533 

PF-127 -0.003479 -0.02945 

 

Table 5.2 shows the high and low signal intensity value of pixels different at 2080 nm.  

 

 

Figure 5.2 Image and histograms for the HPMC E15LV stabilized film at 2080 nm. This 
film does not contain stabilizers. 
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Figure 5.3 Image and histograms for the HPMC E15LV-SDS stabilized film at 2080 nm. 
This film does not contain stabilizers. 

 

Figure 5.4 Image and histograms for the HPMC E15LV- PF-127 stabilized film at 2080 
nm. 
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These films did not have pixels of pure GF.  The pixels with maximum intensity value 

observed at 2080 nm correspond to those pixels with the highest concentration of GF, 

but, these pixels also have the contribution of the different excipients. Pixels associated 

with a greater contribution of GF are those that have the highest signal intensity or 

those which are closer to zero. The pixels of the HPMC E15LV- PF-127 stabilized film 

have the highest contribution of GF per pixel: the GF is more agglomerated per pixel. 

This agglomeration of GF may be due to the Ostwald ripening effects.70 With progress 

of time, the larger particles in the dispersion grow in size at the expense of the finer 

particles.  

 

The addition of stabilizers impacts the GF particle distribution and different surfactants 

lead to different degrees of agglomeration of the GF rich areas. The decrease in 

agglomeration is due to the suppression of GF particle interactions via surface 

shielding. In the absence of stabilizers, significant rapid agglomeration occurs.
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Figure 5.5 GF drug rich areas observed at 2080 nm. 
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Table 5.3 Domain size statistic results of API based on binary images generated from 
intensity value at 2080 nm. 
 

 Number of 
domains 

Largest domain 
(µm2) 

Mean area 
(µm2) 

Area STD 
(µm2) 

HPMC E15LV 2255 35300 410 867 

HPMC E15LV-SDS 2193 19700 392 545 

HPMC E15LV-PF-127 1665 4200 358 308 

 

Areas of high contrast seen in the intensity images are due to the chemical differences 

in the constituents. However, chemical differences and drug clusters are somewhat 

difficult to observe in intensity images. Thus, binary images were used to observe the 

drug clusters more clearly. Binary images were created with those pixels with values 

greater than 2 standard deviations of the mean of the second derivative intensities 

observed at 2080 nm. These pixels with the highest intensity are considered GF rich 

areas. The pixels that are within two standard deviations of the mean are assigned a 

value of zero and those that exceed are given a value of one. Consequently, GF rich 

areas are isolated and binary images are obtained, also shown in Figure 5.5. Visual 

examination of these binary images indicates that the GF rich areas are not widely 

dispersed in the HPMC E15LV stabilized film. Image analysis was then used to 

evaluate the number of GF rich areas observed as reported in Table 5.3.  

Table 5.3 shows the statistics from the binary image analysis, where the pixels 

exceeding two standard deviations indicate the presence of GF rich areas. The HPMC 

E15LV stabilized film has the highest standard deviation, the highest number of GF 

rich domains, and the largest domain. All of this indicates that the GF particles are not 

uniformly distributed in the HPMC E15LV stabilized film as compared to the HPMC 

E15LV-PF127 and HPMC E15LV-SDS stabilized films. The best dispersion was 

observed for the HPMC E15LV-PF127 case. 
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The area covered is the number of pixels associated with GF rich areas in binary 

image (dark pixels) as a percent of the total number of image pixels. The percent area 

covered gives a rough estimate of the API concentration. As the three films have the 

same concentration of API, it is expected that the percentage of the area is similar in 

the three films. The percentage of the area covered is lower for the HPMC E15LV-PF-

127 stabilized film (1.82%) compared with the other two films (2.82% for the HPMC 

E15LV stabilized film and 2.62% for HPMC E15LV-SDS stabilized film). These GF rich 

areas are uniformly distributed in the four areas of the HPMC E15LV-PF127 stabilized 

film in comparison with the others two films. The discrepancy in absolute values is 

attributed to the fact that the drug may not distribute in the same way along the depth 

of the films and that the API signal does not necessarily translate to the exact amount 

of drug but rather to the 2-D distribution and the extent of the agglomeration.  

 

Results suggest that the GF rich areas in the HPMC E15LV-PF127 stabilized films are 

more dispersed, are smaller, and show less variation in their size. These results should 

be interpreted together. The film with better drug distribution will be the film that has 

the smallest area STD and domains of all the films that are being compared. The 

percentage of the area covered is important when the films have a similar number of 

GF rich areas. Films with lowest percentage of the area covered show the better drug 

distribution. Another important point is the comparison of areas within each film. 

Number and distribution of GF rich areas should be consistent through the different 

areas analyzed for each film. The information obtained confirms that the films with the 

best distribution of GF rich areas is the HPMC E15LV-PF127 stabilized film. 

 

Additionally, the dissolution rate was substantially higher and more distinct for the films 

where the suspension was stabilized using HPMC E15LV-PF127 compared to films 

where the suspensions were stabilized using HMPC and SDS.11  
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Figure 5.6 shows the main difference in the mechanism of stabilization of these two 

surfactants; SDS and PF-127. In the adsorption process, HPMC E15LV displaces 

SDS, eliminating their stabilization effect. When PF-127 is used, on the other hand, the 

adsorption of the HPMC E15LV occurs without replacing it. The mechanism of stability 

of the GF/HPMC E15LV/PF-127 system may occur in the following manner: the 

hydrophobic core of PF-127 anchors onto the surface of the GF particle leaving its 

hydrophilic side chain protruding in solution, and the HPMC E15LV backbone attaches 

itself on the particle surface. NIR-CI results indicated that the combination of PF-127 

and HPMC E15LV provides stability against agglomeration.     

              

 

Figure 5.6 Adsorption model of the two surfactants used. Adapted from Changhoon 
Chai, “Hierarchical structures of micro and nano API particulates on gelling polymeric 
matrix”, Presented at Rutgers University, New Jersey- ERC-SOP. 
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5.4 Conclusions 

 

The addition of surfactant and polymer resulted in the reduction of particle size and the 

minimization of agglomeration. NIR-CI helped assess agglomeration behavior in the 

films. NIR-CI provided important information about the distribution of GF rich areas 

when two different surfactants were used. The HPMC E15LV- PF-127 stabilized film 

has the highest contribution of GF per pixel; the GF is more agglomerated per pixel. 

 

These GF rich areas are uniformly distributed throughout the four areas analyzed. NIR-

CI results enable concluding that the combination of PF-127 and HPMC E15LV 

provides stability against agglomeration. These results are consistent with the results 

obtained using other characterization techniques.11  

 

 

 

 

 

 

 



 
 

CHAPTER 6. Hyperspectral image analysis of polymeric films 
containing different BCS Class II drugs  
 
Published in International Journal of Pharmaceutics, 2012, Volume 423, Pages 

496-508.  Sievens-Figueroa, L.; Bhakay, A.; Jerez-Rozo, J. I.; Pandya, N.; 

Romanach, R. J.; Michniak-Kohn, B.; Iqbal, Z.; Bilgili, E.; Dave, R. N. 

 
6.1 Summary 
 

Over 40% of the new pharmaceutical formulations contain poorly soluble drugs as 

API.7  Griseofulvin was the first poorly soluble drug analyzed with the analytical 

methods developed and described in this dissertation. The methods were also 

used to study formulations of polymeric films containing other poorly soluble APIs. 

Three BCS Class II drugs were studied in this chapter. This investigation was 

based on the analysis of their API distribution rich areas. Results demonstrate that 

the methodology developed can be applied to formulations with other very poorly 

soluble drugs. This increases the capability of the analytical method developed. 

This is the scientific contribution of this chapter. 

 

This chapter is based on the analysis of polymeric films that contain three different 

BCS Class II drugs: naproxen (NPX), fenofibrate (FNB), and griseofulvin (GF). 

Differences in aggregation behavior of APIs in these films were observed through 

NIR chemical imaging analysis. NPX exhibited the strongest aggregation 

compared to the other drugs. The aggregation had a direct effect on drug content 

uniformity in the film.  

6.2 Samples 

 

The drug molecules utilized were griseofulvin (Sigma–Aldrich), naproxen (Medisia), 

and fenofibrate (Ja Radhe Sales). The particle sizes of these drugs were reduced 

using a wet stirred media mill (WSMM). 
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Sodium Dodecyl Sulfate (SDS) (Sigma–Aldrich), low molecular weight Hydroxyl 

Propyl Methyl Cellulose (HPMC E15LV) (Dow Chemical) and Glycerin (Sigma) 

were used without further processing. In this work, each one of these three films 

(NPX, FNB, GF) drugs were dispersed in HPMC E15LV using SDS as a surfactant 

and glycerin as a moisturizer. The concentrations of the films are shown in Table 

6.1.  

Table 6.1 Nominal concentrations of the polymeric films. 

API 28% (wt/wt) 

HPMC E15LV Methocel E-15LV 39% (wt/wt) 

Sodium Dodecyl Sulfate (SDS) 1.0% (wt/wt) 

Glycerin 32% (wt/wt) 

 

The procedure of preparation of all the suspensions was identical.7 A solution 

containing HPMC and glycerin was prepared by adding the glycerin to water and 

heating to 80°C. At this temperature, the polymer was then added until well 

dispersed and the temperature was decreased to room temperature to dissolve the 

polymer completely. The components were mixed until a clear solution was 

obtained. The resulting solution was then let to rest until no bubbles were seen. 

The polymer solution was then added to the drug nanosuspension produced from 

WSMM and then mixed for 3 h and left to rest until no bubbles were observed. The 

GF, FNB and NPX nanosuspensions had a median particle size of 163 nm, 201 

nm, and 144 nm, respectively. The final viscous suspension was then casted onto 

a stainless steel plate. The film was then dried overnight in an oven at 42°C.  

 

Different areas of the films were analyzed independently with a 10µm/pixel 

objective, and the images were concatenated for better visualization of the results. 

The whole film was analyzed using the131 µm/pixel objective which has a field 

view of 34 x 42 mm capturing the whole film. 

6.3 Instrumentation 
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Near infrared Hyperspectral images were acquired using the Malvern SyNIRgi NIR-

CI System (Malvern, UK). The images were obtained in transflectance mode by 

placing the film or gel strip over a white ceramic disk of 28 mm diameter.  The 

optical magnifications used were 10 μm and 131 µm which provided images of an 

area of approximately 2.8 x 3.2 mm and 34 x 42 mm, respectively. The spectra 

were obtained with 1 scan in the spectral range of 1300-2300 nm. The data 

collected was analyzed using the ISys software (Version 5.0.0.14). 

6.4 Data treatment 

 

The spectra acquired by the NIR-CI System are reflectance spectra. Therefore, the 

logarithm, log10(1/R), was first applied to the data cube to convert the spectra to 

absorbance units. Pixel correction was applied in order to remove areas of non-

uniform illumination and to remove the effect of unresponsive pixels on the 

detector. A low-pass Fourier filter was also used to reduce spectral noise. The 

spectra were normalized using Standard Normal Variation (SNV) and a Savitzky-

Golay second derivative (filter order 3, filter width 7) in order to eliminate variations 

in slope. The spectral range was restricted to 2000-2300 nm as shown in Figure 

6.1. The greatest differences between excipients and different APIs were observed 

in this region of the spectrum. Pure component imaging data was collected from 

powder samples of the APIs and excipients and processed in the same manner. A 

reference library with the pure components spectra was built. These training 

spectra were used as predictors to build a Partial Least Squares Discriminant 

Analysis (PLS-DA) in the classification model. The intensity of each pixel in the 

resultant scores image is determined by the degree of membership (scaled from 0 

to 1) predicted for the spectrum at that spatial location. Based on reference 

spectra, brighter pixels (red in the color bar), are the ones that have the stronger 

degree of membership with regard to the API classes predicted at that location. 

The variation in pixel intensity reflects the variation in concentration across the 

sample. These scores images were evaluated morphologically using a particle 

statistics tool.  
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6.5 Results 

. 

Figure 6.1 shows the spectral range selected. Some of the bands observed in this 

spectral range correspond to the second overtone of the carboxylate anion 

stretching and the stretch combination of a double bond. These types of vibrations 

are not present in the excipients. Additionally, in this region, the greatest difference 

between the APIs and the excipients spectra can be observed. Therefore, the 

spectral changes observed in this range can be related to variations in API 

concentration. This is important because it helps to develop a more selective PLS-

DA model.   

Figure 6.2 shows the distribution of NPX, GF and FNB throughout the surface of 

the films using the 10µm/pixel objective. Twelve areas of each film were analyzed 

with this objective; each area generating a score image. These scores images 

were concatenated for a better visualization of the results. The score value scale is 

an indication of the spatial distribution and relative abundance of API. Abundance 

refers to the API distribution at a particular sampling point which is the film area 

analyzed by a pixel from the NIR chemical imaging system. The top of the scale 

(red color in the color bar) indicates the highest contribution of API to any pixel. 

Pixels rich in API are observed in each of the analyzed areas. Areas of pure API 

are evidenced by an abundance value of 1.0 or 100%. Pixels that show only the 

spectrum of the API are not observed when using the 10 µm/ pixel objective (the 

largest magnification objective used). Pixels rich in API(0.25-0.6 or 25%(wt/wt)- 

60%(wt/wt)) are observed in these polymeric films. This confirms that each 

spectrum acquired by a pixel is a mixture of excipients and API. Therefore, this 

indicates that the API is not highly agglomerated in these films. These results are 

consistent with results of past analyses using different approaches.9,10  
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Figure 6.1 Structural formula of different API and average spectra of pure components. 
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Figure 6.2 API binary images using 10 µm/pixel objective. Domain threshold is set to include only those pixels of highest 
abundance of API according to the maximum value of each color bar. 
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Figure 6.3 API Score images using 131 µm/pixel objective. 



 

70 
 

 
Hyperspectral Images Analysis of polymeric films containing different BCS Class II drugs 

 

  

 

The maximum score value observed is about 0.6 (60%) in the NPX film. This means 

that NPX is more agglomerated by pixel in comparison with the other APIs.  The mean 

value of the scores of API in the entire set of pixels provides the bulk abundance, 

which estimates the API concentration in the bulk (Lewis et al., 2005). The mean value 

obtained was 15.0% for GF, 31.3% for FNB, and 23.4% for NPX, as shown in Table 

6.2.The lowest mean value obtained was for GF (15%) using the 10 µm/ pixel 

objective. Differences in film thickness and in surface roughness of the films are 

observed with this objective. This type of physical information affects the results 

obtained. This was probably the cause for the GF film to exhibit deviations from the 

nominal value. The other mean values obtained are near the nominal value (27% w/w).  

 
Table 6.2 Distribution of APIs in thin films according to drug score image using NIR-CI 

with a 10µm/pixel objective. 

 

 

GF FNB NPX 

Mean 
value 15.0% 

Mean 
value 31.3% 

Mean 
value 23.4% 

No. of domains: 7046 3913 4681 

Mean area (mm2): 2.2 x10-4 4.1x10-4 3.2x10-4 

SD area (mm2): 6.1x10-4 2.1 x10-3 4.3x10-3 

Largest domain (mm2): 3.3x10-2 7.5x10-2 0.265 

Lowest domain (mm2): 1.0x10-4 1.0x10-4 1.0x10-4 

Area covered: 1.60% 1.65% 1.51% 

 

Figure 6.2 also shows binary images generated with the pixels of highest abundance of 

drug, as a way to facilitate the visualization of areas rich in API and to estimate the size 

of these areas. The pixels with scores that exceeded the mean value + 2 standard 

deviations were given a value of 1 (dark), and all others a value of zero. Visual 

examination of these images shows that the NPX film presents the greatest 

agglomerations of API rich areas. Table 6.2 shows that this film also exhibits the  
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largest differences in standard deviation and the largest domain found in the three 

films. Films that have GF and FNB as active ingredients show better distribution of 

pixels rich in drug. 

 

Table 6.3 Distribution of APIs in thin films according to the drug score images using 
NIR-CI with a 131 µm/pixel objective. 

 

GF FNB NPX 

Mean 
value 34.0% 

Mean 
value 29.3% 

Mean 
value 30.0% 

No. of domains: 241 115 464 

Mean area (mm2): 3.5x10-2 2.7x10-2 8.8x10-2 

SD area (mm2): 3.4x10-2 2.8x10-2 1.8x10-1 

Largest domain (mm2): 2.2x10-1 2.1x10-1 1.6 

Smallest domain (mm2): 1.7x10-2 1.7x10-2 1.7x10-2 

Area covered: 0.71% 0.23% 3.16% 

 

Figure 6.3 shows the distribution of NPX, GF and FNB throughout the surface of the 

films using the 131 µm/pixel objective. The maximum score observed is about 0.6 

(60%) in the NPX film. The mean value obtained was 34% for GF, 29% for FNB, and 

30% for NPX, as shown in Table 6.3. The mean values of the bulk abundance are all 

very close to the targeted 27% (w/w) film composition. Table 6.3 also reveals 

differences in the standard deviation of the score values. NPX had the highest 

standard deviation in the score values, and thus the greatest variation in API 

distribution throughout the film. The FNB film has the mean value closest to the 

nominal value, as indicated in Table 6.3, and the lowest standard deviation. 

Additionally, this film shows the lowest difference between the mean value and the 

minimum and maximum values observed in the PLS-DA classification scores. These 

results indicate that this film has the best API distribution through the analyzed surface 

in comparison with the other two films. 

 

Agglomeration in NPX was also observed in SEM images.7 This aggregation of 

particles might have occurred during film drying. This behavior could be attributed to 
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the strong hydrogen bonding of the carboxylic group in NPX.71,72 

 

 

Figure 6.4 FT-IR spectra of NPX and NPX film. 

 

Figure 6.4 shows the spectra for NPX and NPX film. The top spectrum of pure NPX 

exhibits an infrared band at 1730 cm−1 attributed to the free or non hydrogen bonded 

carboxylic group(monomer) and a band at 1684 cm−1 corresponding to the hydrogen 

bonded carboxylic group (dimer). In the film, the monomer peak decreases in intensity. 

The reduction in intensity of the monomer peak suggests the involvement of the 

unassociated NPX in hydrogen bonding with the other components of the 

pharmaceutical formulation. Additionally, the band at 1730 cm-1 shifts to a lower 

wavenumber, indicating the presence of intermolecular hydrogen bonds between NPX 

and the other components. This observation confirms the effect of the hydrogen 

bonding in the NPX film. 

 

 

 



 

73 
 

 
Hyperspectral Images Analysis of polymeric films containing different BCS Class II drugs 

 

  

6.6 Conclusions 

 

Results showed that the aggregation behavior is dependent on the drug used. The 

aggregation could be due to strong hydrophobic interactions of drug particles. The 

difference in aggregation also has a strong effect on the drug content in the films. The 

strong hydrogen bonding interactions between NPX and other excipients were 

evidenced with the presence of larger agglomerations of API rich areas.  

 

The analytical method developed can be used to investigate film formulations 

containing different poorly soluble drugs. In this type of formulations it is very important 

evaluate the drug distribution through of film surface. Drug distribution impacts drug 

content of the polymeric film formulation. Polymeric films have a potential applicability 

on pharmaceutical industry. Film formation may offer a more economical and scalable 

option if compared to several ways of making solid dosage forms from drug nano-

suspensions such as freeze drying, lyophilization, and spray drying.  

 

The drug loading achieved in this type of formulation is higher than for current products 

that contain drug nanoparticles. The amount of drug in the film could be increased by 

increasing the film thickness. These results set the foundation for process development 

of films containing poor water-soluble drugs, for different drug delivery applications.  

 

 

 

 

 

 



 

 
 

CHAPTER 7.  Hyperspectral Image Analysis to evaluate the effect 
of drying on drug distribution. 
 

Submitted to International Journal of Pharmaceutics, April 2013.  

7.1 Summary 

 

Drying is one of the most important processes in the production of polymeric films. 

The drying temperature affects the thickness and roughness of the film; therefore it 

is essential to maintain a uniform drying temperature throughout the film surface. A 

NIR-CI method was developed to assess the manner in which these parameters 

affect drug distribution. This chapter describes film image analyses where several 

parameters related to the drying process, such as drying temperature and air flow, 

were varied. The results show that the parameters studied do affect drug 

distribution.   

Some of the parameters evaluated were: temperature, air velocity, and film-

precursor viscosity. Films were produced using Griseofulvin (GF) as the active 

component. . Convective drying was carried out in a custom made unit designed to 

provide uniform heating of polymer-based suspensions. Convective drying helped 

reduce drying times from about 12 hours to an hour or less, minimizing the 

aggregation of GF. NIR-CI results indicate that a better API rich area distribution 

was obtained for films formed using higher viscosity film-precursor.  

7.2 Samples 

 

Griseofulvin (Sigma-Aldrich) was utilized as active component. Sodium Dodecyl 

Sulfate (SDS) (Sigma- Aldrich) and low molecular weight Hydroxyl Propyl Methyl 

Cellulose (HPMC E15LV) (Dow Chemical) were used as stabilizers. HPMC E15LV 

was also used as a film former. Glycerin (Sigma-Aldrich) was used as a plasticizer. 

GF particle size was reduced using a wet stirred media mill (WSMM). All other 

materials were used without further processing. 
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In this work, eight films with two different GF concentrations were analyzed. These 

films were prepared at New Jersey Institute of Technology (NJIT) using a D-

Optimal design. The GF was dispersed in HPMC E15LV using SLS as a surfactant 

and glycerin as a moisturizer. The concentrations and the factors included in the D-

Optimal design are shown in Table 7.1, 7.2 and 7.3.  

 

Table 7.1 Factors included in the D-Optimal design and Nominal concentration of 
the polymeric films. 

 

Factor 1 Factor 2 Factor 3 Factor 4 

 
Wet Thickness 

(micro) 
Viscosity 

(cP) 
Air Temperature 

(º C) 
Air flow 

(m/s) 

A1 1000 2400 40 0.6 

A3 1000 2400 40 1.5 

A7 1000 2400 60 0.6 

A9 1000 2400 60 1.5 

B1 1000 6200 40 0.6 

B3 1000 6200 40 1.5 

B7 1000 6200 60 0.6 

B9 1000 6200 60 1.5 

 

The polymer solution was prepared by adding weighed amount of HPMC and 

glycerin to water at 90 °C. The solution was then allowed to cool down to room 

temperature while being stirred continuously. The resulting solution was then let to 

rest overnight until no air bubbles were seen. This polymer solution was then 

added to the nanosuspension produced from WSMM in 2:1 ratio and mixed for 4 h. 

The resulting suspension was left to rest at room temperature for a period of 30 

min until no bubbles were observed. Two compositions, A and B, were formed by 

mixing about 12% HPMC E15LV and 15% HPMC E15LV solutions with GF 

nanosuspension. The resulting viscosities for the two suspensions used in this 

study were 2400 cP and 6200 cP respectively. Approximately 6 grams of the final 

viscous suspensions were then cast manually onto a stainless steel substrate. The 

casting thickness was set at 1000 µm. The dimensions of wet films cast were kept 

at about 8cm x 9cm. The film was dried using a convective drying unit. 
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Table 7.2 Composition A:  Mixed in (2:1) ratio (12% HPMC E15LV+5% Glycerin: 
API nanosuspension) 

Film composition 
  

 
w/w 

GF 19 

HPMC E15LV 58 

SDS 1 

Glycerin 22 

 

Table 7.3 Composition B:  Mixed in (2:1) ratio (15% HPMC E15LV+5% Glycerin: 
API nanosuspension) 

Film composition 
  

 
 (w/w) % 

GF 17 

HPMC E15LV 62 

SDS 2 

Glycerin 19 

 

Convective drying was carried out in a custom made unit designed at NJIT. The 

unit is equipped with a heating element, an air blower with a heating coil, a rotating 

vane anemometer, and an automated balance connected to the sample stage. It is 

controlled by a computer-based acquisition system which records the sample 

weight every 15 seconds during drying. The drying process was reduced to an 

hour or less using this convective drying unit. 

7.3 Instrumentation 

 

Near infrared Hyperspectral images were acquired using the Malvern SyNIRgi NIR-

CI System (Malvern, UK). The images were obtained in transflectance mode by 

placing the film or gel strips over a white ceramic disk of a 28 mm diameter. The 

entire film was also analyzed using the131µm/pixel objective which has a field view 

of 34 x 42 mm. For better visualization of the results, the images are shown 

concatenated. Spectra were obtained with 1 scan in the spectral range of 1300-
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2300 nm. The data collected was analyzed using the ISys software (Version 

5.0.0.14).  

7.4 Data treatment 

 
The spectra acquired by the NIR-CI System are reflectance spectra. Therefore, the 

logarithm, log (1/R) was first applied to the data cube to convert the spectra to 

absorbance units. Pixel correction was applied in order to remove areas of non-

uniform illumination and to remove the effect of unresponsive pixels on the 

detector. The spectra were normalized using Standard Normal Variate (SNV) and a 

Savitzky-Golay second derivative (filter order 3, filter width 7) in order to eliminate 

variations in slope. The spectral range was restricted to 2000-2300 nm.  Pure 

component imaging data was collected from powder samples of the API and the 

excipients where spectral pretreatment was performed in the same manner. 

 

A reference library with the pure components spectra was built. The pure 

component training spectra were used as predictors to build a PLS-DA in the 

classification model. The intensity of each pixel in the resultant scores image is 

determined by the degree of membership (scaled from 0 to 1). The variation in 

pixel intensity is related to the variation in GF abundance across the sample. The 

abundance values obtained were used to create the score images shown in this 

report. These score images were evaluated morphologically using particle statistics 

tools. The ISys software (Version 5.0.0.14) has a complete particle statistics 

package for determining particle/domain size and distribution of individual chemical 

species within chemical images. 

7.5 Results 

 

NIR chemical imaging was used to study the spatial distribution of the GF 

throughout the 34 x 42 mm films. The drug distribution within the film was 

evaluated with the abundance values determined with the PLS-DA. This algorithm 

was used to create all score images shown in Figure 7.1. This figure divides the 

films analyzed into three columns; each column representing one of the 
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preparation conditions evaluated. The preparation conditions evaluated were 

viscosity, air temperature, and air flow. The films were concatenated to observe the 

impact of each one of these preparation conditions. The criteria used for the 

concatenations are based in the similar conditions of their preparation. For 

example, the first score image of the column of air flow shows the concatenated 

films A1 and A3. These two films were prepared with the same viscosity and with 

the same air temperature, but with different air flow. This condition (air flow) is 

different in each concatenated score image, as shown in the first column. This 

same criterion was used to create the other two columns (one related to viscosity 

and the other to temperature). 

 

Each column shows concatenated scores images with their respective score 

values which is an indicator of the abundance of GF. The top of the scale (red color 

in the colorbar) indicates the highest contributor of GF to any pixel. The maximum 

percentage of GF in each pixel ranges between: 0.25 (25%) -0.58 (58%). Pixels 

rich in GF are observed in each one of the analyzed areas.  

 Areas of pure GF have an abundance value of 1.0 or 100%. Therefore, pixels 

showing areas of pure GF are not observed. The mean value obtained indicates 

the abundance of GF in each polymeric film. The mean values shown in Table 7.4 

are based on the abundance values of more than 80,000 pixels (encompassed 

within three standard deviations from the mean). This mean value is therefore 

comparable to the concentration value that could be obtained with a single 

standard NIR spectrum. Mean values, range, and standard deviation of different 

films are presented in Table 7.4. The mean values obtained were close to the 

nominal values. The standard deviation values also help to explain the variation in 

GF abundance in the films. 
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Figure 7.1 PLS predicted API images are displayed on the same scale color using the 131 µm/pixel objective. The images 
show how the variation in air flow (m/s), viscosity (cP , and temperature    C) affects the API distribution.  Pixel values used 
to create binary images are shown on each colorbar. Binary images were created for pixels where the intensity is greater 
than the mean value + 2 standard deviations. 
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Figure 7.2 Binary image generated from the scores images using the 131 µm/pixel objective. A threshold was established 
such that only those pixels with values beyond + 2 standard deviations of the mean are shown. 
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Table 7.4 Nominal and predicted values of the different films analyzed. 

  131µm/pixel 

   
Nominal value 

 
Predicted value 

Range   

Film Lowest Highest STD 

1A 19 19.6 3.16 43.1 0.039 

3A 19 19.8 4.28 39 0.036 

7A 19 19.4 1.16 46.5 0.040 

9A 19 21.2 1.41 54.1 0.047 

1B 17 19 2.59 39.8 0.031 

3B 17 19.1 1.53 47.9 0.034 

7B 17 17.4 1.33 39.1 0.033 

9B 17 16.4 1.59 40.4 0.031 

 

 

Table 7. 5 Domain Size Statistic Results of API based on binary images generated from scores images. 

 

 

 

 

 

 

 
 

* Largest clusters are in bold. 

 
2400 cP  -   40 °C 2400 cP  -   60 ° C 6200 cP  -   40 ° C 6200 cP  -   60 ° C 

Air flow (m/s) 0.6 1.5 0.6 1.5 0.6 1.5 0.6 1.5 

Films 1 A 3 A 7 A 9 A 1 B 3 B 7 B 9 B 

Number of Drug Rich Particles 185 185 61 208 225 264 809 885 

Mean Area (mm2) 0.322 0.273 0.326 0.217 0.235 0.228 0.108 0.110 

Area STD (mm2) 0.905 0.405 0.674 0.427 0.489 0.352 0.375 0.287 

Largest domain size (mm2) 9.49 2.78 3.04 4.31 4.61 3.36 9.35 6.11 

Lowest domain size (mm2) 0.0172 0.0252 0.0257 0.0172 0.0172 0.0267 0.0172 0.0273 
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40  °C - 0.6 m/s 40  °C  - 1.5 m/s 60 ° C  - 0.6 m/s 60 ° C  - 1.5 m/s 

Viscosity (cP) 2400 6200 2400 6200 2400 6200 2400 6200 

Films 1 A 1 B 3 A 3 B 7 A 7 B 9 A 9 B 

Number of Drug Rich Particles 186 71 147 66 198 48 317 20 

Mean Area (mm2) 0.317 0.191 0.228 0.138 0.358 0.159 0.314 0.083 

Area STD (mm2) 0.905 0.305 0.296 0.172 1.05 0.165 0.576 0.108 

Largest domain size (mm2) 9.49 1.7 2.04 0.841 11.9 0.755 6.57 0.515 

Lowest domain size (mm2) 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 

 

 

 

* Largest clusters are in bold. 

 
2400 cP - 0.6 m/s 2400 cP - 1.5 m/s 6200 cP - 0.6 m/s 6200 cP - 1.5 m/s 

Temperature (° C) 40 60 40 60 40 60 40 60 

Films 1 A 7 A 3 A 9 A 1 B 7 B 3 B 9 B 

Number of Drug Rich 
Particles 180 181 60 207 191 87 259 55 

Mean Area (mm2) 0.333 0.345 0.125 0.216 0.234 0.19 0.236 0.137 

Area STD (mm2) 0.933 0.97 0.147 0.426 0.509 0.226 0.391 0.155 

Largest domain size (mm2) 9.49 10.5 0.704 4.31 5.32 1.2 3.67 0.738 

Lowest domain size (mm2) 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 
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Relatively good particle distributions are observed for all film samples. Binary images 

were created to facilitate the visualization of GF rich areas. These binary images were 

created by applying a threshold value, where only pixels with intensity greater than the 

mean + 2 standard deviations are observed.  In other words, the distribution of the 

pixels observed is the one that has the highest API content per pixel.  

Figure 7.2 shows the binary images created by applying the threshold value.  The dark 

areas are those with GF abundance higher than the mean + 2 standard deviations. The 

white areas in the binary images correspond to the GF abundances that did not exceed 

+ 2 standard deviations from the mean.  Hence, Figure 7.2 provides qualitative visual 

information about drug distribution within the film in addition to the variation between 

films. Qualitatively, images with predominantly white areas indicate absence of drug 

rich areas and a better overall drug distribution.  In images with a higher proportion of 

white areas, the GF is more uniformly distributed by pixel. Figure 7.2 shows that the 

most prominent influence is from the difference in viscosity, because all higher 

viscosity cases exhibited more uniformly distributed white areas. Consequently, 

qualitative observation suggests that viscosity has the most dominating effect on the 

distribution of drug.  

For particles suspended in a solution, mobility is dominated by Brownian motion. The 

Brownian motion is regulated by the number of collisions as well as the probability of 

effective collisions. The collision frequency is a function of diffusion coefficient and 

particle radius. The collision frequency is inversely proportional to suspension 

viscosity. At lower polymer concentrations, collisions between hardly or partially 

covered particles lead to higher collision frequencies and higher probabilities of 

sticking. However, as polymer loading increases, the agglomeration decreased due to 

a reduction in collision rates.11  

 

Table 7.5 shows the results of the statistical analysis of binary images from Figure 

7.2.The distribution of the pixels rich in GF is different in each one of the score images. 

The largest agglomerates have a size of 6.11mm2 - 11.9 mm2. Most of the 

agglomerates (GF rich areas) were found in films with low viscosities, thus indicating 
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that the viscosity is the factor with the major effect on the distribution of GF rich areas. 

Some tendencies observed using the 131 µm/pixels objective are:  

 

- With a viscosity of 6200 cP, the air flow and air temperature does not affect the 

distribution of these pixels. At this viscosity, the drug is distributed uniformly per 

pixel. 

- The best distribution in films with high viscosity was observed when working at 

60 °C.  

-  The best distribution in films with minor viscosity was observed when working 

with an air flow of 0.6 m/s and a temperature of 40 °C. 

 

The drying times was reduced from about 12 h to 1 h or less using the convective 

drying unit, this unit allow controlled the evaporation process. The evaporation is a 

diffusion process and when it occurs rapidly causes the agglomeration of GF particles. 

The evaporation also generates a flow through the surface of polymeric films that 

involves changing from a liquid to solid state. This flow causes gradient (horizontally 

and vertically) across of the film surface. If the air surrounding the drying film is flowing 

then evaporation is enhanced by convection. The convective drying unit was designed 

such that the air flow pattern is laminar and the air temperature over the sample stage 

does not vary across the chamber cross-section. 

 

In summary, higher viscosity films have fewer GF rich areas, and their average sizes 

are smaller. This suggests that although there are GF rich areas in all cases, the 

distribution is much better for the higher viscosity cases. The lowest average size 

generates a viscosity of 6200 cP, a temperature of 60oC, and an air flow of 1.5 m/s. 

The lower viscosity has the largest domain and the bigger number of GF rich areas for 

each preparation condition. Large drug rich areas have a low viscosity while small drug 

rich areas have a high viscosity, further suggesting the improvement of distribution by 

using higher viscosities. 
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7.6 Conclusion 

 

Drying of polymer films is one of the most important parameters to produce polymeric 

films with reproducible drug content. The drug content depends on the drug distribution 

throughout the film surface. An analytical imaging method was developed with the 

objective to understand how the drying parameters affect the drug distribution. NIR-CI 

evaluation helped to identify the best conditions of the drying process to obtain films 

with a good GF rich areas distribution. NIR-CI helped overcome API irreversible 

agglomeration, one of the problems of pharmaceutical film formulations in the drying 

process. This agglomeration affects the API content throughout the film surface. The 

film with the best drug distribution is obtained when using a viscosity of 6200 cP, a 

temperature of 60 ºC, and an air flow of 1.5 m/s. The polymeric films prepared with a 

viscosity of 2400 cP have the highest number of GF rich areas and present the largest 

agglomerates. In contrast, the film prepared with a viscosity of 6200 cP presents the 

smallest number of drug rich areas, the smaller domains, and the best drug rich area 

distribution. 

 



 

 
 

Chapter 8. Development of Raman and Near Infrared (NIR) Methods in a    
pharmaceutical chemical plant. 
 

8.1 Objective 

 

The objective of the following chapter is to present the research performed during the 

internship in a pharmaceutical chemical plant. 

8.2 Summary 

 

NIR calibration models were developed to determine the amounts of toluene and ethyl 

acetate in recovered toluene and the amount of alcoholic monomethylamine (MMAA) in 

reaction completion of an arylation. A feasibility study was conducted using Raman 

Spectroscopy as an alternate technique for the ID analysis of raw material.  NIR and 

Raman techniques have advantages over the current methods, such as: High-performance 

liquid chromatography (HPLC) and gas chromatography (GC); because sample 

preparation is not required since the analysis is non-destructive.   

This chapter is divided in three sections, according to the original objectives of the 

internship: Perform a preliminary feasibility study to use portable Raman technology for the 

ID testing of raw and starting material used at manufacturing site; Perform a feasibility 

study for use NIR to monitor process reaction completion and Perform a feasibility study 

for implementation of NIR for solvent recovery process. 

8.3   Perform a preliminary feasibility study to use portable Raman technology for 

the ID testing of raw and starting material used at manufacturing site 

8.3.1 Problem 

 

The requirement to perform identification for all raw materials and starting materials 

received at the manufacturing site significantly increases the lead time and work load of 

the Quality Control (QC) laboratory.  An alternate analytical technique needs to be 

implemented to simplify and streamline the ID testing process. 
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8.3.2 Background 

 

8.3.2.1 Raman Spectroscopy 

 

Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational, 

and other low-frequency modes in a system.It is predominantly applicable to the qualitative 

and quantitative analyses of covalently bonded molecules.  Raman scattering occurs only 

when the net polarizability of the molecule is altered during the vibration. Qualitatively, 

Raman spectroscopy measures changes in the electron cloud of the molecules. Covalent 

bonds are more polarizable than ionic bonds and the intensity of the vibration increases 

with bond order. A Raman spectrum is a plot of the intensity of Raman scattered radiation 

as a function of its frequency difference from the incident radiation (usually in units of 

wavenumbers, cm-1). This difference is called the Raman shift. Wavenumber Δν shift is 

defined as the difference in wavenumbers (cm-1) between the observed radiation and that 

of the source. 

              Δν Raman shift = ν Laser - ν Scattered               (8.1) 

 

Shifts in wavenumber depend on the chemical structure of the molecule responsible for the 

scattering. Raman spectroscopy is good for fingerprinting, probing molecular symmetry 

and is also a non-destructive method of analysis.73 

8.3.3 Methodology 

 

Raman spectra were acquired for each reagent and compared with a similar structure 

reagent in order to perform an exploratory analysis and evaluate the spectral differences 

(selectivity). 

 

8.3.3.1 Instrumentation 

 

http://en.wikipedia.org/wiki/Spectroscopy
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Raman spectra were acquired using a Raman RXN1-RA-785 system from Kaiser Optical 

Systems  Ann Arbor, MI  and the PhAT™ probe accessory that was installed in vertical 

position. The laser wavelength in the system is 785 nm, with spectral coverage from 150 to 

1900 cm-1with a resolution of 4 cm-1, with integration time of 15 seconds per scan. The 

Raman spectrum was the result of the average of 3 scans. Intensity and wavelength 

calibration were performed immediately before obtaining the samples, using Kaiser 

Software version HOLOGRAMS 4.1. 

8.3.4 Reagents used in this report 

 

Figure 8.1 Structures of the eight reagents used in this report. 

 

Figure 8.1 shows the chemical structures of the reagents used in this study.  

Dimethylsulfoxide,  Isopropyl Alcohol, Sodium Carbonate, Tetrahydrofuran and Toluene 

have some level of symmetry which makes easier the study of specificity. Spectra will be 

different if changing the chemical structure of these reagents; causing the appearance of a 

new vibrational mode. 
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8.3.5 Results 

 

Table 8.1 show the raw materials that are being used actually and the technique used for 

ID analysis.  Based on chemical structure of the starting materials, it is very likely that 

Raman technique will provide the desired selectivity and performance. All the reagents are 

excellent candidates for analysis by Raman technique, except NaOH and KOH, whose 

signals are weak. This technique can be employed as additional method for identification 

in order to reduce the number of drums to be tested with registered analytical method.  In 

order to change the registered ID method, regulatory change must be pursued.  

 

Figures 8.2-8.8 show the Raman spectra of the raw materials. Spectral differences can be 

observed among raw material with similar chemical structure. Raman spectroscopy is very 

susceptible to changes in chemical composition and structure. The alteration of the atoms 

in a molecule causes changes in their vibrational frequencies; therefore, the Raman 

spectra also change.  
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Table 8.1 Raw materials of the pharmaceutical chemical plant. 

Raw Materials Current ID analysis 

1-Fluoronaphthalene 
Identification of 1- Fluoronaphthalene by Infrared Spectroscopy 

Potassium Hydroxide Identification of Potassium (USP/NF) 

Sodium Hydroxide Identification of Sodium Test – USP 

Dimethylsulfoxide Identification of Dimethyl Sulfoxide by GC 

Ethyl Acetate ID of Ethyl Acetate by GC 

Isopropyl Alcohol Identification of Isopropyl Alcohol by GC 

Monomethyl amino alcohol Identification of Monomethyl Amino Alcohol by IR Spectroscopy 

Monomethylamine Identification of monomethylamine by FTIR spectroscopy. 

Sodium Carbonate Carbonate Identification Test – USP 

Tetrahydrofuran Identification of Tetrahydrofuran by GC 

Toluene Determination of Toluene by GC 

Chloroacetyl Carboline Identification of QA500X using FT-RAMAN 
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8.3.6 Raman Spectra 

8.3.6.1 Sodium carbonate 

 

 

Figure 8.2 Structures and spectra of sodium bicarbonate, sodium carbonate, sodium 
carbonate monohydrate and sodium acetate. 

 

Sodium carbonate shows an intense Raman vibrational mode at 1081 cm−1, which can be 

assigned to the ν1 symmetric stretch.74 Additionally, the spectrum presents a vibrational 

mode at 701 cm-1; this vibration al mode is a reliable source for their identification. 
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8.3.6.2 DimethylSulfoxide 

 

Figure 8.3 Structures and spectra of Methyl Phenyl sulfoxideand DimethylSulfoxide 
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Dimethylsulfoxide shows three Raman vibrational modes at 305, 334 and 384 cm−1, which 

can be assigned to C-S-C bend, C-S-O antisymmetric bend and C-S-O symmetric bend 

respectively. The 668 cm-1 vibrational mode is commonly assigned to the symmetric 

stretch of the C-S and the 698 cm-1 vibrational mode correspond to C-S anti-symmetric 

stretch. The other three vibrational mode correspond to the vibrations that involving the 

CH3 functional group.75
          

             

8.3.6.3 Ethyl acetate 

 

 

Figure 8.4 Structures and spectra of Ethyl acetate and Methyl acetate 

Ethyl acetate has three characteristic vibrational mode at 376, 632 and 845 cm−1; the 376 

cm−1vibrational mode corresponding to C-C bending, the 632 cm−1 vibrational mode 

corresponding to C-C-O bending and the 845 cm−1 vibrational mode corresponding to CH3 

rocking.76 
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8.3.6.4 Isopropanol 

 

Figure 8.5 Structures and spectra of 1-propanol and Isopropanol 

 

The intense Raman vibrational mode at 817 cm-1 corresponds to stretch in phase of C-C-

O;77 this is the most important mode vibrational in isopropanol. The CH3 bend 

(deformation) is near 1465 cm-1. 
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8.3.6.5 KOH 

 

Figure 8.6 Spectrum of KOH 

 

Each molecular unit has a preferred orientation due to interactions with the nearby 

molecules; additionally also has librational modes corresponding to small rotations about 

this preferred orientation. The  librational mode  for  KOH  occur  in  the region  of  700-

1200  cm-1. 78 

 

 

 

 

 



 

96 
 

 
Development of Raman and NIR methods in a pharmaceutical chemical plant 

 

  

8.3.6.6 Tetrahydrofuran 

 

Figure 8.7 Structures and spectra of 2-methyltetrahydrofuran and Tetrahydrofuran 

 

This spectra show an intense band at 913 cm-1 that corresponds to ring breathing and at 

1027 cm-1 that corresponds to ring stretch.79 
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8.3.6.7 Toluene 

 

 

Figure 8.8 Structures and spectra of Toluene, Bromobenzene, Phenol and Benzene 

 

Toluene spectrum shows the ring deformation vibrations at 1000-1040 cm-1, also present 

the out-of-plane vibrational band at 786 cm-1.80 
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8.3.7 NIR Spectra 

 

Figure 8.9 NIR Spectra of Ethyl acetate (EtOAc), DimethylSulfoxide (DMSO), Isopropanol, 
Tetrahydrofuran (THF) and Toluene. 

 

Figure 8.9 shows the NIR spectra of the different reagents. Spectra show overlapping 

bands; therefore it is difficult to differentiate between the spectra. Sodium Carbonate and 

KOH do not show NIR spectra.  Table 8.2 and 8.3 summarizes the correlation between 

spectra using the two techniques. The correlation between the Raman spectra is low, this 

was the technique selected for implement as alternative technique for ID analysis of the 

pharmaceutical chemical plant. 
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Table 8.2 Correlation between Raman spectra. 

  DMSO EtOAc Isopropanol KOH Na2CO3 THF Toluene 

DMSO 1 
   

 

  EtOAc 0.099 1 
    Isopropanol 0.075 0.440 1 

    KOH 0.061 0.065 -0.159 1 
   Na2CO3 0.196 0.071 0.046 0.339 1 

  THF 0.050 0.346 0.291 0.026 0.056 1 
 Toluene 0.017 0.251 0.148 -0.051 0.041 0.118 1 

 

Table 8.3 Correlation between NIR spectra. 

  EtOAc DMSO Isopropanol THF Toluene 

EtOAc 1 

    DMSO 0.651 1 

   Isopropanol 0.686 0.454 1 

  THF 0.751 0.610 0.419 1 

 Toluene 0.778 0.452 0.529 0.453 1 

 

 

Figure 8.10 show a scores plot of the Raman spectra, the main source of variation is the 

physical state of the reagents.  
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Figure 8.10 Score plot using Raman Spectra. 

 

8.3.8 Future Studies and Tasks 

 

The pharmaceutical chemical plant purchased two Thermo Scientific TruScan- Handheld 

Raman units for Pharmaceutical-Raw Material Identification. The Thermo Scientific 

TruScan analyzer is a lightweight, handheld instrument for rapid raw material identification. 

This equipment is easy to use; its non-destructive point-and-shoot operation enables 

material identification through sealed packaging to minimize risk of exposure and 

contamination. It is used for incoming raw material identity verification, process 

troubleshooting, counterfeit identification etc.  

 

The resolution that offers the TruScan RM is sufficient to differentiate the spectra of the 

reagents used in PR06 as shown in Figures 8.2-8.8 and Tables 8.2 and 8.3; the main 

vibrational modes are well defined and separate. The spectral range of the equipment 

covers the range of the main vibrational modes and is very similar to used for the feasibility 

study. Currently, the units are being qualified and the next step is the development of the 

method. 
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8.4 Perform a feasibility study for use NIR to monitor process reaction completion. 

 

8.4.1 Problem 

 

The Arylation process consists of a single reaction step followed by isolation/purification 

steps. The Arylation is carried out under basic conditions using excess of potassium 

hydroxide (KOH) flakes at 85 °C over 10-13 hours. The target for reaction completion 

using HPLC method is NMT 1.0% MMAA remaining (area % relative to Duloxetine). The 

lead time of HPLC in-process testing for this analysis is approximately 2-3 hours.   

8.4.2 Background 

 

8.4.2.1 Near Infrared Spectroscopy 

 

In recent years, the use of Near Infrared (NIR) spectroscopy has become widespread in 

process analysis and within pharmaceutical industry for raw material testing, product 

quality control and process monitoring.  NIR absorption bands are typically broad, 

overlapping and 10–100 times weaker than their corresponding fundamental mid-IR 

absorption bands. NIR spectroscopy is a vibrational spectroscopic method belongs to the 

infrared light spectrum which is very close to the visible region (from about 750 to 2500 

nm), where the most of organic and some inorganic compounds shows good reflectance or 

transmission properties, therefore exhibiting good absorption of light at the NIR region25 as 

discussed in Chapter 2 of this dissertation. 

8.4.3 Methodology 

 

A NIR Partial Least Square (PLS) predictive model was developed by running arylation 

reactions at laboratory scale; using   the Bruker FT-NIR spectrometer and HPLC to monitor 

the reaction completion. Samples were obtained at 5, 6, 7 and 10 hours of reaction. Plant 

samples also were used to create a NIR model. Figure 8.11 shows the set up of the 

arylation reaction of duloxetine. 
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8.4.4 Instrumentation 

 

MPA (Multi Purpose Analyzer) FT-NIR spectrometer equipment was used for spectra 

acquisition.  NIR spectra were obtained in transmittance mode using a PbS detector.  Each 

spectrum was an average of 128 scans at a resolution of 8 cm-1, over the range of 12,000 - 

3500 cm-1. The NIR models were developed using OPUS Quant Software version 6.5. 

 

 

Figure 8.11 Set up of the arylation reaction. 

8.4.5 Results 

 

The first step in developing the NIR model is to select the set up of the equipment. The 

most important parameters to select are the number of scans and the resolution (128 

scans and 8 cm-1); the noise in the spectra depends on these two parameter. Additionally, 

the spectral range selected should contain the main spectral variation. 

For consistent results, it is necessary to analyze the samples at room temperature and to 

wait for that the excess KOH settle to the bottom of the vial (see Figure 8.12). NIR 

radiation source is obtained from a tungsten lamp, this lamp may cause an increase in 

temperature during the analysis, causing fluctuations within the sample. To prevent these 
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fluctuations affect the results, three spectra are acquired for each sample and the average 

value was reported.   

 

Figure 8.12 Interference of KOH in excess. 

 

Figure 8.13 Spectra of an arylation reaction. 

 

The display indicates the

instrument Status and

whether you measurement

passed or failed.

The OPUS/LAB software enables a rapid analysis.

OPUS/QUANT software provides

Accurate quantitative analysis of

Complex mixtures.
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Figure 8.13 shows some of the advantages of using MPA FT-NIR. Bruker offers several 

software packages that make its use easier. Two packages used in this work 

are:OPUS/LAB: Dedicated QA/QC software and OPUS/QUANT: Self-optimizing 

chemometric quantification software. 

The NIR model was created using the OPUS/QUANT software. OPUS/LAB provides the 

platform to implement the model. The advantage of using the computer software is that the 

measurement can be made by the operator (a person that is not a chemist and is not 

thoroughly familiar with the instrument). The operator introduces the date and the batch 

number. The vial is placed directly on the sample compartment and in few seconds, the 

results are obtained.  

 

Figure 8.14 Spectra of an arylation reaction. Subtle differences are observed in this 
spectral range. These differences are increased with the pretreatment. 
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Figure 8.14 shows the spectra at four different times of the arylation reaction. These 

spectra show overlap between the main bands. Chemometrics tools are needed with this 

technique due the overlap between spectra. Chemometrics is the science of extracting 

information from chemical systems using tools of statistics and mathematics as discussed 

in Chapter 2 of this dissertation. 

 

 

Figure 8.15 PCA of the laboratory and plant samples. 

 

Principal Component Analysis (PCA) and pretreatments are examples of chemometrics 

tools used in this work. The function of the pretreatment is to increase the spectral 

differences between spectra. In this case, SNV and first derivative was applied. PCA 

defines the significant sources of variance within the sample set as a series of ranked 

components or factors and assigns each spectrum a score based on the relative 

contribution of each factor. PCA analysis is often a very effective method for highlighting 

subtle spectral variations between different objects or regions in a sample, also helps 



 

106 
 

 
Development of Raman and NIR methods in a pharmaceutical chemical plant 

 

  

visualize the principal sources of variation in data sets, removes irrelevant or random 

variation, by retaining only the principal components that capture relevant variation and 

helps to visualize relationships between samples in a data set.  

 

Figure 8.16 PCA of the laboratory samples. 

 

The objective to create a model that includes the greatest possible variation, so the 

optimum is to create a model that includes plant samples and laboratory samples. Figure 

8.15 shows a scores plot. This figure shows that laboratory and plant samples are 

separated; this indicates that the main source of variation is the origin of samples and not 

the changes in concentration of the target. Probably, these differences are because one of 

the components of the arylation was used with a purity different to that used in the plant 

process. Therefore the NIR model was created using only the plant samples. 

Figure 8.16 shows the score plot of the laboratory samples. Most of the scores are 

organized according to the changes in relative peak area of MMAA with respect to 

Duloxetine, except for samples 3.4551% and 3.1258%. This is a reaction very difficult of 

reproduce because the reaction must be under anhydrous conditions. 
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Figure 8.17 shows the PCA scores of the plant samples, each arylation is identified by 

colors. The samples are uniformly distributed; the samples are organized according to the 

changes in concentration, fromhighertolower concentration. Table 8.4 and 8.5 summarizes 

the evaluation and results of the model obtained.  

The true values are the result obtained using HPLC method and the fit and predicted 

values are the results obtained using the NIR model. The values obtained withthe 

twomethodsare similar; the variability observed is of 0.1 %. 

8.4.6 Next Steps 

 

Validate the model with samples of other Arylations (samples that are not included in the 

model).     
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Figure 8.17 Spectra and PCA of the plant samples. 
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Table 8.4 MMAA calibration model statistics. . 

 

MMAA 

Range 4.9 - 0.2 

Processing First derivative and SNV 

Smooth points 13 

Mean centering on 

Region (cm-1) 6619 -5593 

R2-cal 99.78 

RMSEE 0.0698 

R2-val 99.63 

RMSEP 0.0871 

Rank 4 

 

Table 8.5 Calibration and Validation values* obtained with the NIR model using plant 
samples. 

 

* This values correspond to relative peak area of MMAA with respect to Duloxetine 

TRUE (%) Fit
4.4 4.4
4.9 4.9
3.2 3.2
3.3 3.2
2.8 2.9
1.8 1.8
2.1 2.1
1.4 1.4
0.4 0.4
0.2 0.2

Calibration

TRUE (%) Prediction
4.4 4.4
4.9 4.8
2.8 2.9
3.2 3.2
3.3 3.2
1.8 1.8
2.1 2.2
1.4 1.4
0.2 0.1
0.4 0.4

Validation
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8.5 Perform a feasibility study for implementation of NIR for solvent recovery 

process. 

 

8.5.1 Problem 

 

The QC laboratory analyzes on a weekly basis X batches of recovered ethyl acetate 

(EtOAc) for testing (%) and from Y batches of recovered Toluene. Each analysis is 

performed with Gas Chromatography (GC) taking around 5 hours. Batch release has 

been delayed several times the due to equipment upsets.  Delay in ethyl acetate 

testing negatively impacts the Toluene release process.  As a result, the Toluene batch 

has to be reprocessed. This generates a greater amount of waste and the need to buy 

more Toluene to continue with the normal process. It is necessary to implement 

alternative technique of analysis faster.    

8.5.2 Methodology 

 

A new NIR predictive model was developed using data acquired previously. GC was 

used for determine the EtOAc content of the different samples.  

8.5.3 Instrumentation 

 

MPA (Multi Purpose Analyzer) FT-NIR spectrometer equipment was used for spectral 

acquisition.  NIR spectra were obtained in transmittance mode using a PbS detector.  

Each spectrum was an average of 128 scans at a resolution of 8 cm-1, over the range 

of 12,000 - 3500 cm-1. The NIR models were developed using OPUS Software version 

6.5. 

8.5.4 Results 

 

NIR spectra were obtained using two different size vials. The vial size affects the 

optical path of the radiation.  Figure 8.18 shows a greater spectral differentiation 

between samples in the spectral range selected. This spectral range corresponds to 

first and second overtones, the intensity of this bands increased according as increase 
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sample absorption. The best predictionswere obtained usinga vialof 21 mm-od crew 

cap PTFE lined(Kimble, part no 60940A 16) or equivalent.  

 

 

Figure 8.18 Selected spectral range. 

 

Table 8.6 shows the parameters and evaluation of the NIR model. This model has a 

very narrow range due to that the target is 99.5% of EtOAc. The temperature is 

monitored to ensure that most of the distilled product is ethyl acetate. 
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Table 8.6 Specification of the EtOAc Model. 

 
EtOAc 

Range 100-97.5 

Processing First derivative and SNV 

Smooth points 13 

Mean centering on 

Region (cm-1) 
9103.1-8061.6 

7510-6630.6 

R2-cal 99.97 

RMSEE 0.0173 

R2-val 99.92 

RMSEP 0.0165 

Rank 3 

 

 

Again, the true values are the result obtained using HPLC method and the fit and 

predicted values are the results obtained using the NIR model. Table 8.7 shows that 

the values obtained with the two methods are similar; the variability observed is of 

0.1%. 
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Table 8.7 Calibration and Validation values* obtained with the NIR model using solvent 
recovery samples. 

 

* These values correspond to relative peak area of EtOAc with respect to toluene 

 

TRUE Fit

100 100

100 100

100 100
100 100

100 100

100 100

99.5 99.5

99.5 99.5
99.5 99.5

99.5 99.5

99.5 99.5

99.5 99.5

98.7 98.7
98.7 98.7

98.7 98.7

98.7 98.7

98.7 98.8

98.7 98.7
97.6 97.7

97.6 97.6

97.6 97.6

97.6 97.6

97.6 97.6
97.6 97.7

97.5 97.5

97.5 97.5

97.5 97.5

97.5 97.5
97.5 97.5

97.5 97.5

TRUE Prediction

99.73 99.73

99.73 99.73

99.72 99.72

99.72 99.72

99.74 99.74

99.73 99.73

98.96 98.97

98.99 99

98.98 98.99

98.98 98.98

98.99 99.01

98.97 98.98

98.43 98.43

98.43 98.44

98.44 98.44

98.43 98.44

98.42 98.42

98.41 98.42

98.26 98.27

98.25 98.25

98.26 98.26

98.23 98.22

98.27 98.28

98.21 98.21

Calibration Validation
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8.5.5 Next Steps 

 

Continue the validation of the model analyzed more samples of solvent recovery 

process. Additionally, do a repeatability study. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

9. Research Contribution 
 

During the development of the polymeric films formulation a factor important to take in 

account is the distribution of API through the film surface. Drug distribution impacts the 

drug content of the polymeric films. The objective of this pharmaceutical formulation is 

to obtain a reproducible film with unagglomerated drug. Therefore, it is very important 

to develop a technique to evaluate the drug distributions in the polymeric films. This 

research was directed at developing an analytical method to analyze the API 

distribution in the polymeric films. This developed method is based on the analysis of 

hyperespectral images obtained in the near infrared range. Based in the literature 

review, this is the first methodology developed to evaluate drug distribution in this type 

of pharmaceutical formulation. Additionally, this research also introduced the term drug 

rich areas in the hyperspectral image analysis. Drug rich areas are those areas where 

pixels with greater contribution of drug per pixel are present. Pure drug pixels are 

observed only when the NIR image comes from a film with highly agglomerated drug. 

Drug rich areas are used when analyzing films with improved drug distribution.  
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The previous image show the approach developed during this dissertation. 

 

The Identification of drug rich areas was based on analysis of score images or on 

analysis of images acquired at a specific wavelength. The identification of drug 

throughout the film surface was developed applying a threshold value to generate 

binary images. Binary images are a powerful in line tool that allow evaluating the image 

in a simple way.  These binary images identify the drug rich areas, where the drug is 

agglomerated per pixel. The second evaluation consisted of determining the drug 

distribution through the entire film sample, thus representing drug distribution over an 

area of at least one potential dose. These drug distributions were evaluated in based of 

the number of drug rich areas, mean area, area STD, largest domain size and lowest 

domain size. Visual comparison among different areas of the same film or in films 

prepared with similar conditions was evaluated using concatenation.  

9.1 Future Work 

 

Develop a methodology to quantify the degree of distribution of the drug through the 

film surface. This is important because it would facilitate comparison of results between 

different batches. Develop a methodology to assess the stability and aging of the 

polymeric films. 
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