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ABSTRACT 
 

 Hyperspectral images have textured regions and in many cases there are not sufficient 

samples to train classifiers.  By simulating more samples that are self-similar to the original 

texture efficient classifiers can be trained and used for classification. This kind of tools 

provides a means to get synthetic data without the expense of data collection. The first step 

toward this goal is to develop a hyperspectral texture synthesis algorithm that efficiently 

combines both the spectral information and the spatial variability in the original image. Three 

algorithms are implemented to fulfill that purpose. To do the synthesis, the first algorithm 

uses neighboring pixel information, and this is done by a neighborhood search of a 

multiresolution pyramid constructed from the original sample that encodes the spectrum and 

spatial intensity gradients.  Gaussian decomposition is used for the multiresolution 

decomposition. The second approach is as simple as putting together blocks with a certain 

overlap, so that each new block is chosen so that it “agrees” with its neighbors in the region 

of overlap.  A third implementation uses 3D wavelet transform of the original sample. This 

encodes the spectrum and spatial intensity gradients.  The wavelet coefficients are a 

representation of the hyperspectral image as a compact code.  These coefficients are then 

synthesized by an image quilting algorithm. Results of the synthesis are presented using 

hyperspectral images from three different remote sensing scenarios.  Discriminant analysis 

and support vector classifier are used to classify the synthesized textures. It was verified that 

there is a substantial agreement between the input textures and the synthetic ones. 
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RESUMEN 

Las imágenes hiperespectrales suelen tener regiones con texturas. Muchas veces esas 

regiones no son lo suficientemente grandes para entrenar adecuadamente los algoritmos de 

clasificación de texturas. Simulando muestras que mantengan características similares a las 

de la textura original permitiría superar esta limitante. Este tipo de herramientas nos permite 

obtener datos sintéticos sin incurrir en los costos asociados con la adquisición de datos. Para 

alcanzar este objetivo es necesario desarrollar un algoritmo de síntesis de textura que 

combine eficientemente la información espectral y la variabilidad espacial de la imagen 

original. En este trabajo se muestran tres algoritmos implementados para cumplir con ese 

propósito. Para hacer la síntesis, el primer algoritmo utiliza información de píxeles vecinos y 

esto se realiza mediante una búsqueda de la vecindad en una pirámide con varias 

resoluciones, construida a partir de la muestra original que codifica el espectro y el gradiente 

de la intensidad espacial. El segundo enfoque es tan simple como unir  bloques tomados de la 

imagen de entrada con una región de superposición. Cada nuevo bloque es elegido de tal 

manera que la región de superposición encaje con sus vecinos. El tercer enfoque utiliza la 

transformada wavelet en 3D de la imagen original, y así se construye una representación de 

la imagen de hiperespectral más compacta.  Los resultados de la síntesis se presentan 

mediante imágenes hiperespectrales desde diferentes escenarios de percepción remota.  

Clasificador de vectores de soporte y análisis discriminante se utilizan para clasificar las 

propiedades de las texturas sintetizadas. Se comprobó que hay un acuerdo sustancial entre las 

texturas de entrada y las sintéticas. 
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1 INTRODUCTION 

 

 

Many texture surfaces can be synthesized by simulating their physical generation 

processes. Biological patterns such as fur, scales, and skin can be modeled using reaction 

diffusion [1] and cellular texturing [2]. Weathering effects in stones can be reproduced by 

detailed simulations [3]. These techniques can produce textures directly on 3D meshes so the 

texture mapping distortion problem is avoided. However, different textures are usually generated 

by very different physical processes so these approaches are applicable to only limited classes of 

textures. 

 

Texture synthesis techniques that generate an output texture from an example input can be 

roughly categorized into three classes. The first class uses a fixed number of parameters within a 

compact parametric model to describe a variety of textures. The second class of texture synthesis 

methods is non-parametric, which means that rather than having a fixed number of parameters, 

they use a collection of exemplars to model the texture. The third, most recent class of techniques 

generates textures by copying whole patches from the input. Due to the nature of hyperspectral 

images sometimes it is hard to have a big enough texture image and be able to synthesize from it 

using patches.  

 

In real world, „texture‟ is ubiquitous. Every perceivable object or scene has a texture 

associated with it and it is very easy for humans to perceive what texture is and the human mind 

is able to perceive and differentiate between two different types of textures with little difficulty. 

But in the field of machine learning and computer vision, making a computer learn and 
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understand what is the texture of a particular segment of an image, is a challenging task. The 

definition of texture is difficult because of its abstract nature and the fact that practically every 

object seen exhibits some texture. In our case we will define a texture as some visual pattern on 

an infinite 2-D plane which, at some scale, has a stationary distribution [4]. Since a given texture 

sample could have been drawn from an infinite number of different textures, our assumption of 

stationarity conditions helps us deal with this. The usual assumption is that the sample is large 

enough that it somehow captures the stationarity of the texture and that the approximate scale of 

the texture elements is known. It could also be defined as the structural pattern of surfaces which 

is homogeneous in spite of fluctuations in brightness and color.  In our case we want to 

synthesize hyperspectral texture images, which mean that each of the pixels contained in the 

image will be a vector with the spectral information of the material that has been sensed, as in 

Figure 1. A region in a hyperspectral image has a constant texture if a set of local statistics or 

other local properties of the spatial and spectral variability of the image are constant, slowly 

varying or approximately periodic.  

 

Figure 1: Goal of Hyperspectral Texture synthesis. 

 

Given a finite sample from some texture, an image, the goal is to synthesize other samples 

from the same texture, as shown in Figure 1. It is important to notice that most of the applications 
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of texture synthesis are for visual improvement of digital images, movies and video games. In our 

case it is essential to preserve the spectral signature of the input image in order to have a physical 

meaning of the sensed object.  

 

 The synthesis can be done in a raster scan approach by a deterministic sampling 

procedure as in [5]. Other texture synthesis methods are Gaussian pyramids, steerable pyramids 

[6] and wavelet pyramids [7]. The Gaussian pyramid [6] is constructed by successively filtering 

and down sampling operations. The steerable pyramid is a multiscale, multiresolution linear 

signal decomposition constructed from k oriented filters.  For the wavelet pyramid algorithm uses 

orthonormal filters. 

 

S. Sarkar et al [8] presented a hyperspectral texture synthesis algorithm and did the 

validation of their synthesis analyzing spectral angle deviation from
 
the mean curves that describe 

spectral properties between the original images and the synthetic ones and demonstrated
 
that a 

signature-based detection algorithm has similar performance against real
 
and synthesized 

hyperspectral backgrounds.   

 

1.1 Motivation 
 

 This work will provide a tool to generate hyperspectral images, which can be used to test 

image exploiting algorithms. Generating synthetic images will avoid the high costs associated 

with the collection of new real hyperspectral data.  It can also be used to synthesize target and 

background regions in images to validate target detection algorithms, providing them with 

images that would be very hard to acquire in the real world. 
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We also know that hyperspectral images have textured regions and in many cases there 

are not sufficient samples to train classifiers.  By simulating more samples that are self-similar to 

the original texture efficient classifiers can be trained and used for classification.   

 

Hyperspectral images have to be restored in many cases due to occluded objects, lost 

image parts or faulty image acquisition. So another potential application for a texture synthesis 

algorithm is that it can be used as a complementary part of a hyperspectral image inpainting 

algorithm. 

 

We would like to have an algorithm that could synthesize an output texture automatically. 

The resulting texture should not only look like the input hyperspectral texture image, but also 

share similar characteristics of its spectrum. The user should be able to specify the size of the 

resulting texture image.  

 

1.2 Objectives 
 

The main objectives of this work are as follows: 

 Implement hyperspectral texture synthesis algorithms performing corresponding 

modifications to the already existing texture synthesis algorithms for gray scale and color 

images. 

 Propose a validation framework using texture statistics; discriminant analysis and support 

vector classification techniques for synthetic textures, to verify the correspondence 

between synthetic images and the real ones.    
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1.3 Contributions of this work 

The main contribution of this work can be viewed as the following: 

 A modified set of texture synthesis algorithms that can be used for hyperspectral, vector or 

multichannel images. These algorithms provide hyperspectral texture results that maintain 

very good spatial correlation.    

 A validation method for the proposed algorithms that is composed of a feature extraction, 

classifier training and classification.  

 An evaluation of the three algorithms with different hyperspectral scenarios.  

 

 

1.4  Summary of Following Chapters 

We first develop the necessary background theory in Chapter 2.  Chapter 3 explains the 

implemented algorithms and the validation methodology. Chapter 4 shows the results of the 

synthesis as well as the confusion matrices of the classification of the synthetic images. 

Conclusions are presented in Chapter 5. 
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2 THEORETICAL BACKGROUND 
 

2.1 Hyperspectral Images 
 

In recent years the capability of generating hyperspectral images with several spectral 

bands has increased. In addition hyperspectral imagers offer high spectral resolution that 

allows recovering important characteristics of distinct objects placed on the scene of interest. 

The basic principle is that objects reflect, absorb, and emit electromagnetic radiation in ways 

characteristic of their molecular composition and shape. The spatially and spectrally sampled 

information is typically visualized as a cube, whose face is a function of the spatial 

coordinates and whose depth is a function of spectral band (See Fig. 2).  

 

 
Figure 2: Characteristics of Hyperspectral Image. Image Courtesy of [9]. 

 

 

In the wavelength dimension, each image pixel is a vector that provides a spectrum 

characterizing the materials within the pixel. Conversely, the data in each band corresponds to a 

narrow band image of the surface covered by the field of view of the sensor. This has led to 

numerous applications, especially in the recognition of materials spread out over the Earth‟s 

surface and target detection. 
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2.2 Image Classification 
 

Remote sensing image classification is one of the important approaches of 

information extraction. The traditional classification methods using spectral information 

alone are difficult to obtain satisfactory results, due to the spatial correlation among pixels 

and the similar spectral feature of different objects in remote sensing images. One of the 

effective solutions to the problem is to add spatial information to image classification, that is, 

to combine spatial and spectral information together in the classification process [10]. 

 

Image texture is a kind of spatial information that has been widely used in image 

classification and has shown higher classification accuracy [11, 12]. Image classification is 

the process of assigning all pixels in a digital image to particular classes according to their 

characteristics [13]. As a result we obtained a thematic map in which each pixel belongs to a 

particular class. Two main classification schemes are the Unsupervised and Supervised 

Classification. In our case we have a Supervised Classification scheme, since we already 

know to which class the testing samples belong.  

 

  Distance is a numerical description of how far apart objects are. In mathematics, a 

distance function or metric is a generalization of the concept of physical distance. A metric is 

a function that behaves according to a specific set of rules, and provides a concrete way of 

describing what it means for elements of some space to be "close to" or "far away from" each 
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other. A metric space is a set where a notion of distance between elements of the set is 

defined. [14] 

 

  Overall accuracy, O, is calculated as shown in equation 1, where A is the number of 

pixels assigned to the correct class and B is the number of pixels that actually belong to that 

class. It is a good measure of the accuracy of a classification scheme as it is not biased 

towards the smaller classes. 





B

A
O      (1) 

  Correctly assigned pixels may have been assigned by chance and not based on the 

classification decision rule. The kappa value κ indicates how accurate the classification 

output is after this chance, or random, portion has been accounted for. There are a number of 

ways to show how the kappa value is calculated. Equation 2 defines the kappa value, where r 

is the number of rows in the confusion matrix, xii is the number of observations in row i and 

column i (on the major diagonal), xi+ is the total observations in row i, x+1 is the total of 

observations in column i, and N is the total number of observations included in the matrix. 
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2.2.1 Discriminant analysis 
 

 

  Discriminant function analysis is used to determine which variables discriminate 

between two or more naturally occurring groups. The discriminant analysis situation is 



 

 9 

characterized by the following: one has two types of multivariate observations – the first, 

called training samples, are those whose group identity (i.e., membership in a specific one of 

say G given groups is known a priori), and the second type, referred to as test samples, 

consists of observations for which such a priori information is not available and which have 

to be assigned to one of the G groups. In this work, the input image is used as the training 

samples and the synthesized image as the test samples.  

 

A discriminant function that is a linear combination of the components of x can be 

written as 

,      (3) 

where w in the weight vector and w0 the bias or threshold weight.  

 

For a discriminant function of the form of Eq. 3, a two-category classifier implements 

the following decision rule: Decide ω1 if g(x) > 0 and ω2 if g(x) < 0. Thus, x is assigned to 

ω1 if the inner product w
t
x  exceeds the threshold –w0 and to ω2 otherwise.  

 

The equation g(x) = 0 defines the decision surface that separates points assigned to 

ω1 from points assigned to ω1 from points assigned to ω2. When g(x) is linear, this decision 

surface is a hyperplane. If x1 and x2 are both on the decision surface, then  

w
t
x1 + w0 = w

t
x2 + w0     (4) 

or 

w
t 
(x1 – x2 ) = 0,     (5) 
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and this shows that w is normal to any vector lying in the hyperplane. The distance of a point 

from the hyperplane is given by 

     (6) 

 

The linear discriminant function g(x) can be written as  

 

            (7) 

 

where the coefficients wi are the components of the weight vector w. By adding additional 

terms involving the products of pairs of components of x, we obtain the quadratic 

discriminant function  

    

(8) 

 

Because xixj = xjxi, we can assume that wij = wji with no loss of generality. Thus, the 

quadratic discriminant function has an additional d(d+1)/2 coefficients at its disposal with 

which to produce more complicated separating surfaces. The separating surface defined by 

g(x) = 0 is a second-degree or hyperquadric surface. If the symmetric matrix W = [wij] is 

nonsingular, the linear terms in g(x) can be eliminated by translating the axes. The basic 

character of the separating surface can be described in terms of the scaled matrix  = 

W/(w
t
W

-1
w – 4w0). If  is a positive multiple of the identity matrix, the separating surface 

is a hypersphere. If  is positive definite, the separating surfaces is a hyperellipsoid. If some 
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of the eigenvalues of  are positive and others are negative, the surface is one of the 

varieties of types of hyperhyperboloids. These are the kinds of separating surfaces that arise 

in the general multivariate Gaussian case. For a more detailed discussion of linear 

discriminant functions, see [15]. 

 

2.2.2 Support Vector Machines 
 

The original idea of Support Vector Machines (SVM) is to use a linear separating 

hyperplane to separate the training data into two classes [16]. Suppose the training data 

(x1, y1),···,(xl, yl),  xi   R
n
,  yi   {-1,+1} 

can be separated by a hyperplane  ω • x + b = 0 . We say that this set of vectors is separated 

by the optimal hyperplane if it is separated without error and the distance between the closest 

vector and the hyperplane is maximal. To describe the separating hyperplane let us use the 

following form: 

ω • xi + b ≥ +1  if yi = +1 

ω • xi + b ≤ -1  if yi = -1 

or equivalently 

yi (ω • xi + b) ≥ 1,  i = 1,…,l .    (9) 

It is easy to check that the optimal hyperplane is the one that satisfies the conditions (9) and 

minimizes the following function: ½ ||ω||
2
. Vapnik [29] has shown we may perform this 

minimization by maximizing the following function with respect to the variables αi : 

W(α) = 
 


l

i

jij

l

j

i

l

i

yy
1 11 2

1
  i (xi • xj) 
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Subject to 0 ≤ αi , i = 1,…,l and 



l

i

ii y
1

0 . Those xis with 0 ≤ αi are termed Support 

Vectors (SVs). They are usually a small subset of the training data set, denoted by XSVM. For 

an unknown vector xi classification then corresponds to finding 

f (x) = sign  















 SVMi X

iii by
x

xx  

Where 





SVMi X

iii y
x

xω   

and the sum is over those nonzero SVs with 0 < αi .  

To construct the optimal hyperplane in the case when the data are linearly 

nonseparable, SVM uses two methods to handle this difficulty: First, it allows training errors. 

Second, it non-linearly transforms the original input space into a higher dimensional feature 

space by a function φ(x). In this higher space, it is more possible that the data can be linearly 

separated. Then the problem can be described as: 

min 



l

i

iC
1

2

2

1
ω  

subject to  

yi(ω •  (xi) + b) ≥ 1 – ξi,  ξi ≥ 0, i = 1,…,l,  C > 0.    (10)   

A penalty term 


l

i

iC
1

 in the objective function and training errors are allowed. If the penalty 

parameter C is large enough and the data is linear separable, the problem (10) goes back to (9) 
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as all ξi will be zero. We can equivalently maximize W(α) but the constraint is now 0 ≤ αi ≤ C 

instead of 0 ≤ αi: 

W(α) = 
 


l

i

jij

l

j

i

l

i

yy
1 11 2

1
  i ( (xi) •  (xj)) 

Subject to 0 ≤ αi ≤ C,  i = 1,…,l and 0
1




l

i

ii y . The inner products  (xi) •  (xj) in the 

high-dimensional space can be replaced by some special kernel functions K(xi,xj) that can be 

easily calculated. By the use of kernels, all necessary computations can be performed directly 

in input space. Some popular kernels are radial basis function kernel 

)exp(),(
2

ii xxxxK    and polynomial kernel d

ii xxxxK )1(),(  , where γ and d are 

parameters. Using different expressions for kernel functions K(xi,xj), one can construct 

different learning machines with arbitrary types of decision surfaces. Hyperspectral image 

classification methods such as support vector machine that are most commonly used 

discussed in [17-19]. 

 

2.3 Texture Metrics 
 

The SAD between two vectors (ri, rj) is defined by the following equation,  

 

)

*

(cos)
*

(cos),(

11

111







 



N

t

jt

N

t

it

N

t

jtit

ji

ji

ji

rr

rr

rr

rr
rrSAD  

 

where N represents the size of the vector. 
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Edge-based texture descriptors and regional texture descriptors were implemented.  

Hence, we implemented 6 edge based metrics.  The SAD is used in the feature computation. 

These features are the average (f1), the standard deviation (f2), the average deviation of 

gradient magnitude (f3), the average residual energy (f4), the average deviation of the 

horizontal directional residual (f5) and, the average deviation of the vertical directional 

residual (f6). 12 other texture descriptors have been implemented. The average (f1), the 

standard deviation (f2), the average deviation of gradient magnitude (f3), and the average 

residual energy (f4) are given by, 
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where  BbnniIjijiX b  1,1,1,,),,( 21  j  , represent a hyperspectral image, n1 and n2 

and B are the number of rows, number of columns and number of bands, respectively.  
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where [.]SAD is the spectral angle distance between neighboring pixels.  
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The average deviation of the horizontal directional residual (f5) and the vertical directional 

residual (f6) are computed as below, 
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The 12 other features considered are the following: 
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This metric is a measure of randomness present in the neighborhood of current location.  A 

high value shows that the elements of M are equal. 
 

 

f8: Local Homogeneity (LH) 
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where M(i,j) represents the norm of the pixel at location (i,j). LH measures the similarity 

among pixels.   

 

f9: Skewness is given by: 
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where X represents the mean vector, N is the number of pixels in the window.  Skewness is a 

measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is 

symmetric if it looks the same to the left and right of the center point.  

The above equation is modified to be applied to the hyperspectral pixel vectors using 

the SAD in the following manner: 
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where SAD represents the spectral angle distance between two vectors, and   SAD  is given 

by: 
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f10: Kurtosis is given by, 
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Kurtosis is a measure of whether the data are peaked or flat relative to a normal 

distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, 

decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top 

near the mean rather than a sharp peak.   Using SAD the above equation can be rewritten as, 
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f11-f18: Eighth moments are given by, 
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where 20  p and 20  q , M(i,j) represents the norm of the pixel placed in (x,y) 

coordinates.  2-D feature images results from the feature extraction step using the texture 

metrics.  

 

2.4 Multidimensional Wavelet Transform 
 

In a sense, wavelet-bases are optimal for a large class of one dimensional signals 

(including many real signals). However, as has been recognized, the (separable) 2-D wavelet 

transform does not possess these optimality properties for natural images [20]. The reason for 

this is that while the separable 2-D wavelet transform represents point-singularities 

efficiently, it is inefficient for line and curve singularities (edges).  

 

Some of the important developments in recent wavelet research have been the 

implementation of 2-D multiscale transforms that represent edges more efficiently than does 

the separable wavelet transform. Examples include curvelets, [21, 22] directional filter banks 

and pyramids, [23, 24] complex filter banks,[25] the steerable pyramid, [26,27] and the 

complex dual-tree wavelet transform [28,29]. These transforms give superior results for 

image processing applications compared to the separable wavelet transform. In this paper, we 

investigate the use of the 3-D version of the dual-tree complex wavelet transform for 

hyperspectral texture synthesis. The dual-tree wavelet transform is nearly-shift invariant, 
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isolates edges with different orientations in different subbands, and has a manageable 

redundancy.  

 

In 3-D, the checkerboard artifact of the separable transform is more serious than in 2-

D. Correspondingly, the gain provided by using the oriented wavelet transform in place of 

the separable one is greater in higher dimensions. The shortcoming of the separable 2-D 

wavelet transform for image processing is further compounded for hyperspectral images, 

because with multidimensional separable transforms even more mixing of different 

orientations occurs.  

 

The principle by which the 2-D dual-tree DWT resolves the problem of the mixing of 

orientations, can also be used to resolve the mixing of orientations in the 3-D case. This dual-

tree wavelet transform is spectral-selective, while the separable 3-D wavelet transform is not. 

(Likewise, the 2-D dual-tree transform is direction-selective, while the 2-D transform is not.)  

 

The wavelet associated with the separable 3-D transform has the same checkerboard 

phenomenon present in the separable 2-D case, a consequence of the mixing of orientations. 

The wavelet associated with the dual-tree 3-D transform is free of this effect In addition; the 

dual-tree 3-D transform has many more subbands than the separable 3-D transform (28 

subbands instead of 7). These 28 subbands capture the spectral information having different 

directions and spectral variability, as can be appreciated in [16]. 
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The introduction of the wavelet decomposition into the synthesis procedure has two 

advantages. First, it facilitates the measurement of texture statistics at particular scales. The 

second advantage is the reduction in computational load, since the synthesis is done to the 

coarser scales, the original information is represented by fewer pixels, and this allows larger 

features to be represented by smaller neighborhoods. So when we synthesize the wavelet 

transform coefficients, we are trying to maintain the same statistical relationships that the 

input image has, while generating more coefficients. We are synthesizing the same image, 

but in a different domain, the wavelet domain.  
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3 ALGORITHMS 
 

 

The following flow chart shows the methodology followed to conduct this research 

work: 

 

 

 
 

Figure 3: Methodology's Flow Chart 

 

 

First, hyperspectral texture images were selected to be used as seed images to feed the 

hyperspectral algorithms. More details about the chosen images and their sensors can be 

found in chapter 4.  

 

For the texture model, Markov Random Fields (MRF) is used since they have been 

proven to cover the widest variety of useful texture types. MRF methods, model a texture as 

a realization of a local and stationary random process.  Each pixel of a texture image is 

characterized by a small set of spatially neighboring pixels, and this characterization is the 

same for all pixels. 

 

3.1 Pixel Based 
 

In this work Wei and Levoy‟s approach [30] for texture synthesis for color images 

was implemented to extend their algorithm for hyperspectral images [31]. The new texture is 
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generated pixel by pixel, and each pixel is determined so that local similarity is preserved 

between the example texture and the resulting image. 

 

 

 

 

 

 

 

 

 

The algorithm takes as inputs an example texture patch image, the size of the desired 

output image (X × Y) and the window size (w). The choice of the size of the neighborhood 

will be done in such a way that a texture primitive element is covered by the kernel. Let the 

input image have x × y pixels with λ spectral bands. Having this information, the algorithm 

proceeds as follows: 

 

1. Create an X × Y × λ image with random pixels. These random pixels are generated 

band by band using the first-order statistics of the input image, let Is be this image. 

This gives a better initial guess of the desired output image. Even though we do this 

procedure band by band, we are not considering the bands statistically independent. 

Figure 4: Pixel Based Algorithm 
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Indeed, they dependent, as you can see in step three where each pixel is treated as a 

vector.  

2. Calculate a distance matrix for the pixel to be synthesized. This is done by comparing 

the neighborhood of the current pixel with all possible pixel neighborhoods of the 

input image. If Ia is the texture primitive image, then Na={Na(t)} is the set of 

neighborhoods in Ia.  The neighborhood of pixel r in Is will be compared using a 

simple L2 norm (sum of squared difference) to measure the similarity between the 

neighborhoods. Figure 3 give a general idea of the algorithm Vectorized 

neighborhoods are used, as in Figure 4. Hence, the pixel Is(r) will be updated based 

on the comparison, 

 

The ||.|| norm is the Euclidean norm.  

 

3. Choose the minimum distance neighborhood and copy its corresponding pixel (λ-

dimensional vector) to the output image.  

4. Repeat for each of the pixels of the output texture image until finished. 

 

A multiresolution approach will help us better capture the structure of the original 

image. A Gaussian pyramid [32] is built from Ia and Is with L levels. The synthesis process 

is started using the lowest resolution with the same steps explained previously. Then to 

(1) 
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synthesize the next level, say level L, an interpolation of Is at level L+1 is done, and the 

synthesis process is repeated until we have synthesized at the highest resolution level.  

 

 

Figure 5: Neighborhood shape 

 

 

3.2 Image Quilting 
 

This texture synthesis method is presented in [33], but instead of taking just the 3 

RGB bands, the whole pixel spectral vector is used. A MATLAB implementation of this 

algorithm can be found in [34]. 

 

From the pixel based algorithm we can appreciate that neighbors are highly 

correlated. So in this case the idea is very similar, instead of obtaining the P(r | N(r)), we 

want P(B | N(B)), where B is the block.  This makes the algorithm much faster because we‟re 

synthesizing a whole block at once. This technique will fail for highly structured patterns due 

to boundary inconsistencies, but for many stochastic textures it works very well. For this 

algorithm we have two variables: block size and overlap size. The block must be big enough 

to capture the relevant structures in the texture. In our case the width of the edge overlap (on 
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one side) was 1/6 of the size of the block. The error was computed using the L2 norm on pixel 

values. The error tolerance was set to be within 0.1 times the error of the best matching 

block. The algorithm is explained next: 

Figure 6: Quilting Texture 

 

1. Pick size of block and size of overlap. 

2. Square blocks from the input texture are patched together to create a new texture 

sample. This is done in raster order. To start pick a block randomly.  

 

 

 

Figure 7: Overlap for the dotted block. 

 

3. Search input texture for a block that satisfies overlap constraints (above and left), 

within some error tolerance, as it can be appreciated in Figure 3. The blocks overlap 

and each new block is chosen so that it “agrees” with its neighbors in the region of 

overlap. 

4. Paste new block into resulting texture. 
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5. Use dynamic programming to compute the error surface between the newly chosen 

block and the old blocks at the overlap region, and then find the minimum cost path 

through the error surface at the overlap and make that the boundary of the new block. 

This is done to reduce blocking effect at the boundary between blocks.  

6. Repeat. 

3.3 Wavelet Based 
 

A general idea of the work presented in [35] was implemented.  Their concept was 

extended from color images to hyperspectral images by using a 3D wavelet transform and a 

different texture synthesis algorithm to obtain the unknown wavelet coefficients.  
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Figure 8: 3D Wavelet Algorithm 

 

 

Figure 7 shows a flow chart of this algorithm. Numbers at the left match the description of 

the steps presented next. Given the initial sample image Ia of size x × y pixels with λ spectral 

bands and the required output size X x Y of the image to be synthesized Is, the algorithm 

proceeds as follows: 
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1. Apply the 3D wavelet transform to the input texture Ia. A description of this 

transform can be found in [36] and its MATLAB code can be found in [37]. 

2. Concatenate the sub images obtained (coefficients) from the wavelet transform in the 

3rd dimension, this will result in a 3D matrix, with size x/2 × y/2 × (( λ∗k)/2) where k 

is the number of wavelet coefficient matrixes.  

3. Synthesize this new matrix using the algorithm presented in section 2.2, specifying 

the scale factor so that the resulting matrix is of size X/2  ×  Y/2  ×(( λ∗k)/2).  

4. Reassemble the wavelet coefficients. 

5. Do the wavelet reconstruction. This will result in N × M × l matrix, which was our 

goal.  

 

The resources used to run this experiment were: 

 SOC-700 VIS/NIR hyperspectral camera, to capture some texture images. 

 Desktop Computer from LARSIP 

 MATLAB R200b, to run all the algorithms mentioned in this work. 



 

 28 

4 DATA ANALYSIS AND VALIDATION 
 

 

In this Section we show the synthesis results of three hyperspectral scenarios using 

the three algorithms presented in Section 2. The RGB composite of the hyperspectral images 

is shown in the following order: first, the pixel based algorithm (Section 2.1), second, the 

image quilting algorithm (Section 2.2) and finally the 3D wavelet transform based algorithm 

(Section 2.3).  

 

To verify the correspondence between the original and synthetic textures, not only a 

visual check using different bands was made. After obtaining the texture features from both, 

the original and the synthesized hyperspectral images, we proceeded to train a Quadratic 

classifier (for SOC camera images and AVIRIS Cuprite Image) and a SVM classifier (for 

Enrique Reef) using the original images as the training set, and the synthetic ones as the 

testing set. Features f1 to f6 where calculated for each of the images, as described in chapter 

2. For the classification of the SOC camera textures, the following five classes were chosen: 

Dry Leaves, Brick, Wood, Bottled Water and Wet Sand. The resulting classification accuracy 

and kappa coefficient are shown in Table 10.  

 

4.1 SOC-700 VIS/NIR Hyperspectral Camera Textures 
 

4.1.1 Experiment 1 
 

Hyperspectral images of different textures are collected using the SOC-700 

hyperspectral camera. This camera has a spectral resolution of 4 nm with 120 bands and a 
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spectral range from 400 to 1000 nm. The texture synthesis results are presented in Figure 9. 

The images shown are the RGB color-composite from the original hyperspectral images 

using bands 90, 68 and 29. For the pixel based algorithm each texture is generated using a 3-

level Gaussian pyramid, with neighborhood sizes 3x3, 5x5 and 7x7, respectively, from lower 

to higher resolutions. For the image quilting algorithm, textures a,b,c,d and e were generated 

using patch sizes of 7x7 pixels, the rest of them using a 12x12 patch. For the wavelet based 

algorithm, all textures were generated using 7x7 patches for the image quilting algorithm and 

a single decomposition level for the wavelet transform. 

 

 

                     
(a) 

 

                     
(b) 

 

                     
(c) 

 

                     
 (d) 
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(e) 

 

                     
(f) 

 

                     
(g) 

 

                    
(h) 

 

                     
(i) 

 

Figure 9: Texture synthesis results. The smaller patches (size 41x41) are the input 

textures, and to their right are synthesized results using the pixel based algorithm, the 

image quilting algorithm and the wavelet based algorithm, respectively, which 

approximately double the spatial dimensions of the input size. SOC camera textures: 

(a) Dry Leaves (b) Brick  (c) Can  (d) Tire (e) Wood (f) Coral (g) Bottled water (h) 

Asphalt  (i) Wet Sand. 
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Table 1: Confusion Matrix using Pixel Based Algorithm and Quadratic 

Classifier for SOC Camera Textures 

 
Dry 

Leaves 
Brick Wood 

Bottled 

Water 

Wet 

Sand 
Total 

Dry Leaves 5348 0 0 0 1052 6400 

Brick 0 6340 58 2 0 6400 

Wood 0 529 5867 4 0 6400 

Bottled Water 0 0 0 6400 0 6400 

Wet Sand 48 0 0 0 6352 6400 

Total 5396 6869 5925 6406 7404 32000 

 

 

Table 2: Confusion Matrix using Image Quilting Algorithm and Quadratic 

Classifier for SOC Camera Textures 

 
Dry 

Leaves 
Brick Wood 

Bottled 

Water 

Wet 

Sand 
Total 

Dry Leaves 5864 0 0 0 536 6400 

Brick 0 6309 91 0 0 6400 

Wood 0 107 6286 7 0 6400 

Bottled Water 0 0 0 6400 0 6400 

Wet Sand 173 0 0 0 6227 6400 

Total 6037 6416 6377 6407 6763 32000 

 

 

Table 3: Confusion Matrix using Wavelet based Algorithm and Quadratic 

Classifier for SOC Camera Textures 

 Dry 

Leaves 
Brick Wood 

Bottled 

Water 

Wet 

Sand 
Total 

Dry Leaves 3857 0 0 0 2543 6400 

Brick 0 5960 435 5 0 6400 

Wood 0 2558 3810 32 0 6400 

Bottled Water 0 0 0 6400 0 6400 

Wet Sand 121 0 0 0 6279 6400 

Total 3978 8518 4245 6437 8822 32000 
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4.1.2 Experiment 2 
 

In order to consider more varied textures, a new set of experiment was run using 

different materials like cardboard and concrete, as well as natural materials such as coconut 

shell and a pod and also a group of “Big Ass” Ants stacked together. A similar procedure was 

followed as in Experiment 1. The results are shown below: 

 

Table 4: Confusion Matrix using Pixel Based Algorithm and Quadratic 

Classifier for SOC Camera 2
nd

 Textures 

  Ants Cardboard Concrete Coconut Pod Total 

Ants 9981 0 0 19 0 10000 

Cardboard 0 8149 0 0 1851 10000 

Concrete 0 0 8873 2 1125 10000 

Coconut 170 0 62 7673 273 8178 

Pod 33 7 289 944 4927 6200 

Total 10184 8156 9224 8638 8176 44378 

 

Table 5: Confusion Matrix using Image Quilting Algorithm and Quadratic 

Classifier for SOC Camera 2
nd

 Textures 

  Ants Cardboard Concrete Coconut Pod Total 

Ants 9964 0 0 36 0 10000 

Cardboard 0 9868 0 0 132 10000 

Concrete 0 0 8590 1 1409 10000 

Coconut 801 0 11 7355 11 8178 

Pod 0 10 123 0 6067 6200 

Total 10765 9878 8724 7392 7619 44378 

 

Table 6: Confusion Matrix using Wavelet based Algorithm and Quadratic 

Classifier for SOC Camera 2
nd

 Textures 

  Ants Cardboard Concrete Coconut Pod Total 

Ants 9956 0 0 44 0 10000 

Cardboard 0 9015 0 0 985 10000 

Concrete 0 0 9584 0 416 10000 

Coconut 10 0 0 8168 0 8178 

Pod 0 11 606 0 5583 6200 

Total 9966 9026 10190 8212 6984 44378 
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(a) 

 

                     
(b) 

 

                     
(c) 

 

                     
(d) 

 

                     
(e) 

Figure 10: Texture synthesis results. The smaller patches are the input textures, and 

to their right are synthesized results using the pixel based algorithm, the image 

quilting algorithm and the wavelet based algorithm, respectively, which 

approximately double the spatial dimensions of the input size. SOC camera 2
nd

 

textures: (a) Ants (b) Cardboard (c) Concrete (d) Coconut Shell (e) Pod. 

  

In Figure 10 we can notice that the spatial attributes are preserved between input and 

output images. To show that the spectrum of the input texture is very similar to the output 
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texture, the average spectrum of all the pixels in the input texture was calculated. This was 

also done for the output textures as shown in Figures 11-13, one figure for each algorithm. 

The similarity between input and output textures suggests that the spectral attributes are 

conserved.  
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Figure 11: Spectral Signature of Ants class for Pixel Based Algorithm 
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Figure 12: Spectral Signature of Ants class for Patch Based Algorithm 
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Figure 13: Spectral Signature of Ants class for Wavelet Based Algorithm 
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4.2 Enrique Reef 
 

The hyperspectral texture images are patches taken from an image collected over 

Enrique Reef in La Parguera, Puerto Rico using the AISA sensor (Figure 10). Each image 

has 128 bands. The texture synthesis results are presented in Figure 11. The smaller patches 

are the original textures and to the right are synthesized results, which are three times the size 

of the original textures. The texture images shown in Figure 11 are the RGB color-composite 

from the original hyperspectral images using bands 60, 38 and 19. For the algorithm pixel 

based each texture is generated using a 3-level Gaussian pyramid, with neighborhood sizes 

3x3, 5x5 and 5x5, respectively, from lower to higher resolutions. For the image quilting 

algorithm, textures were generated using a 7x7 patch. For the wavelet based algorithm, all 

textures were generated using 7x7 patches for the image quilting algorithm and a single 

decomposition level for the wavelet transform. 

 

 
Figure 14: Selected Texture primitives from Enrique Reef Image 
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(a) 

 

 

                     
(b) 

 

 

                     
(c) 

 

 

                    
(d) 

 

 

                      
 (e) 

 

Figure 15: Texture synthesis results. The smaller patches are the input textures and 

to their right are synthesized results the pixel based algorithm, the image quilting 

algorithm and the wavelet based algorithm, respectively, which approximately double 

the spatial dimensions of the input size. Enrique Reef textures: (a) Mangrove (b) Sand 

(c) Coral Reef (d) Water (e) Sea grass. 
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Table 7: Confusion Matrix using Pixel Based Algorithm and SVM Classifier for  

Enrique Reef Textures 

 Mangrove Sand 
Coral 

Reef 
Water 

Sea 

Grass 
Total 

Mangrove 3007 4 36 1438 289 4774 

Sand 0 6106 294 0 0 6400 

Coral Reef 409 2409 2883 0 59 5760 

Water 438 0 3 3510 657 4608 

Sea Grass 2723 0 113 2101 823 5760 

Total 6577 8519 3329 7049 1828 27302 

 

 

Table 8: Confusion Matrix using Image Quilting Algorithm and SVM Classifier 

for Enrique Reef Textures 

 Mangrove Sand 
Coral 

Reef 
Water 

Sea 

Grass 
Total 

Mangrove 1430 107 1207 90 1940 4774 

Sand 0 6329 71 0 0 6400 

Coral Reef 417 0 5278 7 58 5760 

Water 0 0 106 0 4502 4608 

Sea Grass 2122 0 52 2177 1409 5760 

Total 3969 6436 6714 2274 7909 27302 

 

 

Table 9: Confusion Matrix using Wavelet Based Algorithm and SVM Classifier 

for Enrique Reef Textures 

 Mangrove Sand 
Coral 

Reef 
Water 

Sea 

Grass 
Total 

Mangrove 2059 30 1671 26 988 4774 

Sand 0 5593 807 0 0 6400 

Coral Reef 0 791 4969 0 0 5760 

Water 44 0 30 4419 115 4608 

Sea Grass 668 99 491 0 4502 5760 

Total 2771 6513 7968 4445 5605 27302 
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4.3 AVIRIS Cuprite 
 

The AVIRIS Cuprite image was taken over the mining district, 2 km north of Cuprite, 

Nevada, by NASA/Ames on June 19, 1997. This image has 640 x 2378 pixels and 224 bands 

in the 370-2500 nm range. A 400 x 350 pixel portion of the fourth scene is used. 50 bands in 

172-221 that corresponds to the 2000-2480nm wavelength absorption region were selected 

by the USGS for mapping minerals in the Cuprite image. Figure 12 shows the RGB version 

for the bands 208, 206 and 215. The classes selected are: Goethite, nano Hematite, 

Amorphous Iron oxides and Fe
2+

 -bearing minerals + Hematite. For the pixel based algorithm 

each texture is generated using a 3-level Gaussian pyramid, with neighborhood sizes 3x3, 

5x5 and 5x5, respectively, from lower to higher resolutions. For the image quilting algorithm, 

textures were generated using a 7x7 patch. For the wavelet based algorithm, all textures were 

generated using 7x7 patches for the image quilting algorithm and a single decomposition 

level for the wavelet transform. Synthesis results are presented in Figure 13. 

 
Figure 16: Selected Texture primitives from Cuprite Image. 
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(a) 

 

                      
(b) 

 

 

                         
(c) 

 

                      
 (d) 

 

Figure 17: Texture synthesis results. The smaller patches are the input textures and to 

their right are synthesized results using the pixel based algorithm, the image quilting 

algorithm and the wavelet based algorithm, respectively, which approximately double 

the spatial dimensions of the input image.  Cuprite textures: (a) Goethite (b) nano 

Hematite  (c) Amorphous Iron oxides  (d) Fe
2+

 -bearing minerals + Hematite. 

 

Table 10: Confusion Matrix using Pixel Based Algorithm and Quadratic 

Classifier for Cuprite Image Textures 

 
Goethite 

nano 

Hematite   

Amorphous 

Iron oxides   

Fe
2+

 -bearing 

minerals + H. 
Total 

Goethite 3736 0 0 584 4320 

nano Hematite   0 4052 195 73 4320 

Amorphous Iron 

oxides   
0 770 3528 22 4320 

Fe
2+

 -bearing 

minerals + H. 
76 153 651 3440 4320 

Total 3812 4975 4374 4119 17280 
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Table 11: Confusion Matrix using Image Quilting Algorithm and Quadratic 

Classifier for Cuprite Image Textures 

 
Goethite 

nano 

Hematite   

Amorphous 

Iron oxides   

Fe
2+

 -bearing 

minerals + H. 
Total 

Goethite 3650 0 0 670 4320 

nano Hematite   0 4074 225 21 4320 

Amorphous Iron 

oxides   
0 444 3846 30 4320 

Fe
2+

 -bearing 

minerals + H. 
0 81 722 3517 4320 

Total 3650 4599 4793 4238 17280 

 

 

Table 12: Confusion Matrix using Wavelet Based Algorithm and Quadratic 

Classifier for Cuprite Image Textures 

 
Goethite 

nano 

Hematite   

Amorphous 

Iron oxides   

Fe
2+

 -bearing 

minerals + H. 
Total 

Goethite 4236 0 0 84 4320 

nano Hematite   0 3670 523 127 4320 

Amorphous Iron 

oxides   
0 767 3551 2 4320 

Fe
2+

 -bearing 

minerals + H. 
93 228 665 3334 4320 

Total 4329 4665 4739 3547 17280 

 

 

Table 13: Overall Accuracy and kappa Statistics (κ) 

Dataset 
Pixel Based Image Quilting Wavelet Based 

OA κ OA κ OA κ 

SOC Camera .9471 .9339 .9714 .9643 .8221 .7776 

SOC Camera 2
nd

 .8024 .8652 .9429 .9283 .9533 .9413 

Enrique Reef .5981 .4984 .5291 .4057 .7890 .7343 

AVIRIS Cuprite .8539 .8052 .8731 .8308 .8560 .8079 
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4.4 Histograms 

The following histograms were calculated after computing the SAD between each 

pixel and the spectral mean of the input textures. These histograms were calculated to verify 

if there is any relationship between the SAD differences of the generating textures that were 

classified with better overall accuracy than those that were not.  

4.4.1 SOC Camera Textures 
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Figure 18: Histogram of SAD feature space for Bottled Water 
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Figure 19: Histogram of SAD feature space for Tire 
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Figure 20: Histogram of SAD feature space for Brick 
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Figure 21: Histogram of SAD feature space for Coral 
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4.4.2 SOC Camera 2
nd

 Textures 
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Ants

 

Figure 22: Histogram of SAD feature space for Ants 
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Cardboard

 

Figure 23: Histogram of SAD feature space for Cardboard 
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Coconut shell

 

Figure 24: Histogram of SAD feature space for Coconut shell 
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Pod

 

Figure 25: Histogram of SAD feature space for Pod 
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4.4.3 AVIRIS Cuprite Images 
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Fe2+ -bearing minerals + Hematite.

 

Figure 26: Histogram of SAD feature space for Fe
2+

 -bearing minerals 
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nano Hematite

 

Figure 27: Histogram of SAD feature space for nano Hematite 
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4.4.4 Enrique Reef Image 
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Water

 

Figure 28: Histogram of SAD feature space for Water 
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Mangrove

 

Figure 29: Histogram of SAD feature space for Mangrove 
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Sand

 

Figure 30: Histogram of SAD feature space for Sand 
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Figure 31: Histogram of SAD feature space for Coral Reef 
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5 CONCLUSIONS AND FUTURE WORK 

 

 

5.1 Conclusions 
 

Three texture synthesis algorithms for hyperspectral images were successfully 

implemented. For most of the experiments it was verified that there is a substantial 

agreement between the synthetic textures and their generating input textures, as the OA and 

kappa coefficient show in Table 10. For the SOC camera textures and Cuprite textures there 

was very good agreement for the chosen classes. For most of the stochastic textures, good 

results were obtained, as well as for the more structured texures, as in Figure 10, specifically 

Ants (class a) and Cardboard (class b). It is important to mention that for Wood (class e) the 

directionality of the texture was preserved by the algorithms.  For the Bottled water class (g) 

in Figure 9, it can be appreciated that the input patch does not exhibit homogeneity, which 

means that the statistical properties of any one region of the image were not the same as any 

other region. This differs from our initial assumptions and due to this fact the synthetic 

images differ a lot from one another. This also happened for classes Sand (b) and Coral Reef 

(c) in Figure 11 and for class Fe
2+

 -bearing minerals + Hematite (d). 

 

Since some remote sensing images do not have good spatial resolution, sometimes it 

will happen that a big enough patch cannot be selected as the input texture, or those that are 

big enough do not comply with the initial assumptions. This happened with Sand and Coral 

Reef classes for Enrique Reef Textures and the resulting images were not as desired. For this 
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case the wavelet based algorithm gave the best results, since it better captures the underlying 

frequencies of the images. This resulted in a better OA for Enrique Reef.  

 

The histograms were calculated trying to find a relationship between them and the 

synthesis results. No relationship was found but histograms are a good tool to see the spectral 

differences between pixels. For example the Cardboard histogram in Figure 23 shows that the 

spectral differences are more similar than those of the Ants, shown in Figure 24. This could 

be because the Cardboard is a uniform material, and the Ants have different spectral response 

of the different parts of their bodies. 

 

In general, the image quilting algorithm gave better results, as the classification 

accuracy in Table 13 shows. This could be because for most of the experiments, a small 

patch is able to capture better the distribution of the input texture than a pixel based 

algorithm. The pixel based and the wavelet based performed similarly.  

 

5.2 Future Work 
 

 

 It is desired to have automatic window size selection to reduce the input 

parameters to the algorithm.  
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 A different validation framework for algorithms of hyperspectral texture 

synthesis is desired, in which we could have a measure of the probability of 

success given a single input texture.  

 Implement other texture synthesis methods for hyperspectral images using 

tensor algebraic approach, which would take advantage of the 3D nature of 

hyperspectral images. 

 Continue synthesizing textures using other hyperspectral data. More tests in 

other scenarios, like medical tissue textures should be done. 
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5.3 Contributions 
 

5.3.1 Publications 
 

 N. Diaz and V. Manian, “Hyperspectral texture synthesis by multiresolution 

pyramid decomposition.” In Proceedings of SPIE: Algorithms and 

Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery 

XV, Vol. 7334, April 2009. 

5.3.2 Poster Sessions 
 

 Gordon-CenSSIS NSF Site Visit at Boston University, Boston, MA. April 

14th – 15th 2010. 

 Computing Alliance of Hispanic-Serving Institutions (CAHSI) Annual 

Meeting. Redmond, Washington. April 5th – 7th 2010. 

 Gordon-CenSSIS NSF Site Visit at Boston University, Boston, MA. April 

22nd – 23rd 2009. 
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