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ABSTRACT 
 

Artificial neural network (ANN) techniques and functional group contributions 

were used to develop an algorithm to predict chemical activity coefficients.  The ANN 

algorithm was trained using experimental data for more than 900 binary systems obtained 

from DECHEMA, a phase-equilibrium database.  All experimental data binary systems 

used in this study are isothermal.  The prediction scheme is based on the fact that the 

atoms in a chemical compound can be grouped in a functional group with its own 

physical and chemical properties.  Thus, almost any chemical compound can be built by 

combining the right number of functional groups.  The functional group interactions 

among the components in a mixture are estimated and the combination of functional 

group interactions provides the intermolecular relationship among the components of a 

mixture and consequently the activity coefficients can be predicted.  The intramolecular 

interactions were not considered in this study.  The four-suffix Margules equation was 

used as the base thermodynamic model to calculate the activity coefficients.  The 

Margules equation is good for modeling enthalpic contributions to the activity coefficient 

but is not good for modeling entropic contributions to the activity coefficient.  The design 

of functional groups based on quantum mechanics was adopted to develop a method for 

predicting activity coefficients.  ANN techniques are especially useful for modeling a 

highly nonlinear interaction among the functional groups and the corresponding activity 

coefficient.  One of the major contributions of this research is to propose a method to 

identify the initial point and the structure of an ANN. The minimum mean squared 
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prediction error criterion was implemented to determine both a suitable initial point and 

the structure of the ANN.  A random search method was used to determine the optimal 

initial point and the Levenberg-Marquardt algorithm was used to train the ANN to 

generate a sample of prediction values and the trim mean based on 20% data elimination 

was selected as the best representation of the ensemble prediction of the Margules 

equation parameters.  The algorithm was validated with nineteen vapor-liquid 

equilibrium systems and results show that the ANN provides a relative improvement over 

the UNIFAC method.  The scope of this study is limited to some chemical compound 

families (i.e. alcohols, phenols, aldehydes, ketones and ethers), it is required to include 

more experimental data to cover additional chemical compound families such as 

carboxylic acids, anhydrides, esters, aliphatic hydrocarbons and halogens. 
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RESUMEN  
 

Se utilizaron redes neuronales artificiales y la contribución de grupos funcionales 

se utilizaron para desarrollar un algoritmo para predecir coeficientes de actividad.  El 

algoritmo de la red neuronal se adiestró utilizando datos experimentales para más de 900 

sistemas obtenidos de DECHEMA, una base de datos de equilibrio líquido-vapor.  Todos 

los sistemas binarios de data experimental utilizados son isotermales.  El esquema de 

predicción se basó en el hecho de que los átomos de un compuesto químico se pueden 

agrupar formando grupos funcionales con propiedades químicas y físicas únicas.  Por lo 

tanto, cualquier compuesto se puede construir a partir de la combinación exacta de grupos 

funcionales.  Las interacciones de grupos funcionales entre los compuestos de una mezcla 

son estimadas y la combinación de las interacciones de grupos funcionales provee 

información sobre las relaciones intermoleculares entre los componentes de la mezcla de 

modo que los coeficientes de actividad se pueden predecir.  Las interacciones 

intramoleculares no fueron consideradas en este estudio.  La ecuación de Margules fue 

utilizada como el modelo termodinámico base para calcular los coeficientes de actividad.  

La ecuación de Margules es eficaz para modelar las contribuciones entálpicas al 

coeficiente de actividad pero no es eficaz para modelar las contribuciones entrópicas.  Se 

adoptó un diseño de grupos funcionales basados en mecánica cuántica para desarrollar el 

método de predecir coeficientes de actividad.  Las técnicas de redes neuronales son útiles 

para modelar las relaciones no lineales entre los grupos funcionales y su correspondiente 

coeficiente de actividad.  Una de las contribuciones de mayor importancia de esta 
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investigación es el desarrollo de un método para identificar el punto inicial y la estructura 

de la red neuronal.  El criterio del promedio del cuadrado de los errores se utilizó para 

determinar tanto el punto inicial óptimo como la estructura óptima de la red neuronal.   

Un método basado en una búsqueda aleatoria se utilizó para determinar el punto inicial 

óptimo y el algoritmo de Levenberg-Marquardt se utilizó para entrenar la red neuronal 

generando una muestra de valores de predicción para la cual el promedio de muestra 

reducida basado en la eliminación de 20% de los datos se seleccionó como la mejor 

representación de la predicción de los parámetros de la ecuación de Margules.  El 

algoritmo desarrollado se validó con 19 sistemas de equilibrio líquido-vapor y los 

resultados muestran que el método de redes neuronales provee una mejora notable sobre 

el método UNIFAC.  Este estudio esta limitado a algunas familias de los compuestos 

químicos (alcoholes, fenoles, aldehídos, cetonas y éteres), es requerido incluir datos 

experimentales adicionales para cubrir familias de compuesto químicos adicionales tales 

como ácidos carboxílicos, anhídridos, esteres, hidrocarburos alifáticos y halógenos.   
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1 INTRODUCTION 

Several empirical models have been developed to estimate the activity 

coefficients for a mixture and the most accurate approach is the one that is based on 

experimental vapor-liquid equilibrium data.  Margules and van Laar are two of the 

empirical models that have been developed to estimate the activity coefficient (Smith et 

al., 1996).  Modern activity coefficient models are based on the local-composition 

concept, which was introduced by Wilson (1964).  Due to molecular size and 

intermolecular forces, local compositions are assumed to take into account the short-

range orders and nonrandom molecular orientations inside a liquid solution.  The success 

of Wilson equation on vapor-liquid equilibrium calculations was supported by the 

development of alternate local compositions models.  Two of the most well known 

models are the Non-Random-Two-Liquid (NRTL) developed by Renon and Prausnitz 

(1968) and the Universal QUAsi-Chemical (UNIQUAC) developed by Abrams and 

Prausnitz (1975).  These models are capable of correlating experimental activity 

coefficients for species i in a liquid solution over a wide composition and temperature 

range.  They are also capable of interpolating and/or extrapolating the experimental 

activity coefficients for a wide range of temperatures and compositions based on a few 

experimental points. 

In the absence of experimental data, group contribution methods have been used 

to predict activity coefficients.  In these methods, atoms in a chemical compound are 

grouped forming functional groups that are assumed to have their own physical and 
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chemical identity (Fredenslund et al., 1975).  Wilson and Deal (1962) introduced the 

Analytical Solutions of Groups (ASOG) method.  Fredenslund et al. (1975) developed the 

Universal Functional-group Activity Coefficients (UNIFAC) method to predict activity 

coefficients based on molecular functional groups contribution.  UNIFAC is one of the 

most prominent methods that uses a combinatorial and a residual part with functional 

groups parameters such as: group volume, group surface area, and binary group 

interactions to predict the activity coefficients.  The UNIFAC’s prediction capabilities 

have been improved by Weldlich and Gmehling (1987) and also by Larsen et al. (1987).  

They included a modified empirical combinatorial part, temperature dependant group 

interactions, and additional main groups (Gmehling, 2003). 

The group contribution strategy has also been used to estimate pure compounds 

physical properties.  Constantinou and Gani (1994) proposed a new group contribution 

design for estimating important physical and thermodynamic properties of pure 

compounds.  Essentially, they proposed a general linear regression model that relates the 

contribution of the functional groups to several physical and thermodynamic properties 

such as: critical temperature, critical pressure, critical volume, melting point, normal 

boiling point, standard Gibbs energy, and standard enthalpy.  Skander and Chitour (2002, 

2003) proposed a group-contribution method to estimate physical properties of 

hydrocarbons: boiling point, freezing point, and liquid density.  They separated 

experimental data and created the following compound families: n-paraffins, isoparaffins, 

olefins, alkynes, naphthenes, and aromatics.  They used a regression equation to 

extrapolate physical properties of heavier compounds.  More recently, Álvarez and 
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Valderrama (2004) and, Valderrama and Álvarez (2006) have also proposed group-

contribution methods to estimate critical properties.   

Almost any chemical compound can be built by combining the right number of 

functional groups.  Thus, in this research we have exploited the idea that functional group 

interactions among the components in a mixture can be estimated and, by adding these 

interactions appropriately, the activity coefficients can be predicted. 

 The aforementioned group-contribution methods use linear and nonlinear 

regression techniques to represent the relations among the variables of a given system.  

The relationship between the physical and thermodynamic properties is highly non-linear, 

and consequently an artificial neural network (ANN) can be a suitable alternative to 

model the underlying thermodynamic properties.  ANN is an especially efficient 

algorithm to approximate any function with finite number of discontinuities by learning 

the relationships between input and output vectors (Hagan et al., 1996).  Thus, an ANN is 

an appropriate technique to model the nonlinear behavior of chemical properties.  Chow 

et al. (1995) developed a method for estimating aqueous activity coefficients for aromatic 

organic compounds using ANN.  They demonstrated that when choosing the appropriate 

network parameters the ANN method provided more accurate predictions of the aqueous 

activity coefficients than the regression analysis approach.   

The purpose of this research is to derive a method to predict activity coefficients.  

The activity coefficient is a dimensionless parameter; its logarithm is a measure of the 

deviation of the behavior of a component in a mixture from the ideal-solution behavior.  

The activity coefficients are crucial in the design of separation processes equipment such 

as distillation and absorption columns (Smith et al., 1996).  Activity coefficients are 
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predicted to develop feasibility studies and preliminary chemical engineering calculations 

for separation processes equipment design.  Prediction results are usually confirmed with 

experimental studies on the final design stage of a project.  It should be noted that the 

ANN at the earlier design stage prediction of activity coefficients provides a cost 

effective decision tool.  Our proposed activity coefficients prediction tool based on ANN 

will provide an additional strategy that may reduce the uncertainties of predicting activity 

coefficients.  Thus, the development of the new method is not intended to fully replace 

the UNIFAC method but to enhance the forecast and minimize business risk. 

Chapter 2 deals with the justification for performing this research. A literature review 

of publications most relevant to this research is included in Chapter 3.  A theoretical 

background to introduce the fundamental concepts and principles for deriving the activity 

coefficients and the functionality of the neural networks is presented in Chapter 4.  The 

fifth chapter describes the proposed methodology to estimate activity coefficients.  

Chapter 6 presents a numerical example to illustrate step by step the application of the 

suggested methodology.  Chapter 7 presents a comparison between the ANN and the 

UNIFAC methods and Chapter 8 presents some conclusions and future work.  
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2 JUSTIFICATION 

Computer developments lead to use computers as a good design tool in all 

engineering disciplines.  Several computers software had been developed during the last 

two decades to help engineers in performing efficient designs.  Those programs help 

engineers to deeply study their designs and to predict with accuracy its performance by 

computer simulations before the construction step.  Thus, design process is faster and 

more efficient since computers development because engineers have more capacity to 

detect design errors and correct them during the design phase.    

Numerous computers simulation software are used in Chemical Engineering to 

design industrial processes equipment such as: chemical reactors, distillation columns, 

cooling towers, gas scrubbers, and boilers.   To perform the necessary calculations for 

designing those equipments it is necessary to know the chemical, physical and 

thermodynamic properties of the compounds present in a given process.  These properties 

can be obtained from experimental data or can be estimated from empirical models.  

Experimental data is the best way to obtain the properties of a chemical compound but it 

is not always possible because of economical and time limitations.  Thus, the analytical 

and/or empirical models are used to obtain the chemical, physical, and thermodynamic 

properties of compounds. 

The Gibbs free energy is a thermodynamic property that is intimated related to 

vapor-liquid equilibrium calculations, which are needed for separation processes 

equipment design.  Gibbs free energy also leads to calculations of other thermodynamic 
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properties such as: internal energy, enthalpy, and entropy.  If thermodynamic properties 

of compounds are known, then it is possible to calculate physical properties such as: 

boiling point, thermal expansivity, and heat capacity.  It should be noticed that the Gibbs 

free energy is obtained by calculating the activity coefficients, which can be estimated 

using experimental vapor-liquid equilibrium data or using empirical models.   The 

activity coefficient is a dimensioless variable that measures the deviation of a mixture 

behavior from ideal.  The important role of activity coefficients on thermodynamics is 

that it is possible to describe the real behavior of a given mixture by using a mathematical 

model derived for the ideal behavior.   

There are computer software with specific algorithms that make the necessary 

calculations to obtain chemical compounds properties and to design industrial process 

equipments.  However, if the approximate methods produce large deviations from the 

actual values, then design calculations will be incorrect causing either over specification 

of the equipment or that the designed equipment will not have the capacity to perform the 

designed task.  That situation leads to waste of time and money. 

The low accuracy of the existent models to predict activity coefficients causes the 

design of industrial processes equipment to be not completely reliable.  To obtain reliable 

design of industrial process equipment it is necessary to perform experiments by making 

pilot plants and then scale up to an industrial process.    

The main purpose of the current work was to develop a method to estimate 

activity coefficients to improve the accuracy of existent methods.  It has been shown that 

a neural network is an efficient tool to model nonlinear relationships among 
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thermodynamic variables (Chow et al., 1995).  Thus, it is expected that neural networks 

be an appropriate technique to model the nonlinear behavior of activity coefficients.  The 

proposed method uses molecules functional groups interactions contributions and 

experimental vapor-liquid equilibrium data to develop a model that could accurately 

predict activity coefficients when experimental data are not available.  An advanced 

optimization method using neural networks was used to model the nonlinear behavior 

between functional groups interactions and vapor-liquid equilibrium data. 
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3 LITERATURE REVIEW 

The reference more directly related to this study is the publication of UNIFAC 

method (Fredenslund et al., 1975).  It combines a functional-group-contribution concept 

with a model for activity coefficients based on an extension of the quasi-chemical theory 

of liquid mixtures, UNIQUAC.  The resulting method, UNIFAC, contains two adjustable 

parameters per pair of functional groups.  By using group interaction parameters obtained 

from experimental data reduction, activity coefficients for binary mixtures may be 

predicted.  Wu and Sandler (1991) improved the UNIFAC method by using quantum 

mechanics for functional groups.  This study provides a strong theoretical background for 

the identification of functional groups in molecules.   

This study is a combination of the use of the functional-groups concept with 

neural networks to predict activity coefficients.  The idea of using neural networks to 

predict activity coefficients was taken from a Project called Stability Prediction for Drug 

Products.  That project was sponsored by INDUNIV (Industry-University Research 

Center) during August 1997 to July 1999.  The main purpose of the project was to 

develop a mathematical method to predict expiration dates of pharmaceutical drug 

products for both liquids and solids formulations.  Prediction of the activity coefficients 

for the drug components were needed to predict the expiration dates.  Here comes the 

idea of using neural networks and functional-groups concept to predict activity 

coefficients since usually there are not experimental data available for pharmaceutical 

drugs.   



 

 10 

The proposed method consisted on training a neural network using a functional 

group coefficient that relates the interaction among the functional groups as input and 

NRTL interaction constants as outputs.  Once trained, the neural network was used to 

predict the NRTL interaction constants and the NRTL model for multicomponent 

mixtures to calculate the activity coefficients.  However, during this investigation it was 

found that the four-suffix Margules equation offered a better estimation of the activity 

coefficients for the 921 experimental vapor-liquid equilibrium data systems included in 

the database.  Therefore, the final proposed method used the four-suffix Margules 

equation as base thermodynamic model to calculate the activity coefficients.    

There are several publications regarding the use of ANN to predict physical and 

thermodynamic properties of chemical compounds.  Petersen et al. (1994) developed a 

predictive tool for activity coefficients using ANN.  However, their work was very 

limited on the data used for training the ANN.  Also, a methodology to determine the 

optimum network structure was not discussed.  A comparison with UNIFAC was 

performed resulting UNIFAC superior to the ANN method.  Bilgin (2004) used an ANN 

approach to estimate activity coefficients for isobaric binary systems.  The approach used 

was based on giving the low boiling component liquid concentration as input to the ANN 

and the activity coefficients as output.  The training of the ANN was performed with half 

the system experimental data in order to estimate the complete data set.  The results 

ontained were compared between ANN and UNIFAC and it was concluded that the ANN 

method was superior in estimating the activity coefficients.   
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Mitchell and Jurs (1998a) developed a model to predict infinite-dilution activity 

coefficients ( ∞
γ ) for organic compounds under the framework of molecular structure 

information and ANN.  Their model demonstrated to be equivalent to the linear solvation 

energy relationship (LSER) method reported by Sherman et al. (1996).   Mitchell and Jurs 

(1998b), in a second publication, also developed a model to predict aqueous solubility of 

organic compounds under the framework of molecular structure and ANN obtaining good 

results.  Rani and Dutt (2002) developed a method to predict infinite-dilution activity 

coefficients for halocarbons in water and organic compounds in hydrofluoroparaffins 

using ANN.  They obtained results equivalent to the method developed by Mitchell and 

Jurs (1998a).   

Dehghani et al. (2006) developed a method to predict the activity coefficient ratio 

of electrolytes in solutions containing amino acids using ANN.  The root-mean-square 

deviation for the predicted system was less than 0.01.  Urata et al. (2002) developed a 

method for predicting vapor-liquid equilibrium of binary systems containing 

hydrofluoroeters using ANN.  Even though they have good accuracy in the results, it was 

found that the predicted activity coefficient might not fulfill the restrictions of the Gibbs-

Duhem theorem.  Taskinen and Yliruusi (2003) performed a literature review on methods 

for predicting physicochemical properties (i.e. partition coefficient, water solubility, 

aqueous activity coefficients and boiling point among others) of organic compounds 

using ANN.  From the studied literature they have found that: most physicochemical 

properties can be predicted from the molecular structure using ANN modeling, it has not 

been shown that ANN methods are superior to other methods and that much of the 
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published work can be characterized as exploration of the area rather than development 

of serious models with properly validated performance.   

ANN have been used in several applications to model complex data systems.  

Design of a pH control system (Kadirkkamanathan and Regunath, 2001), motor fault 

diagnosis (Gao and Ovaska, 2001), properties of cast irons (Voracek, 2001), fuzzy 

proportional-integral-derivative controllers (Golob, 2001), image processing (Koppen 

and Ruiz-del-Solar, 2001), dynamic systems with time delays (Ramirez-Beltran and 

Montes, 2002) and planning of heating and cooling plants (Inaoka et al., 2001) are cases 

in which neural networks were applied demonstrating improvement in comparison to the 

commonly used methods for process data modeling.  It should be mentioned that neural 

networks had been widely applied on different technology disciplines with successful 

results.  The ability to learn the behavior of the data generated by a system gives neural 

networks its versatility. 
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4 THEORETICAL BACKGROUND 

To properly describe the proposed methodology, a fundamental background 

related to the theory of activity coefficients and neural network algorithms are provided. 

4.1 Activity Coefficients 

Given a closed system, the activity coefficient is a function of the temperature, 

pressure, and mole fraction of the compounds in the mixture.  Smith et al. (1996) pointed 

out that, for the case of non-ideal solutions, the actual thermodynamic properties are 

obtained by measuring the energy deviation from the ideal solution, which is called the 

excess property.  Thus, if M represents a molar thermodynamic property, i.e., enthalpy 

(H), entropy (S), internal energy (U), Gibbs free energy (G), and Helmholtz energy (A), 

the excess property, EM , is defined as the difference between the actual property, M, and 

the ideal-solution property, idM , at the same temperature, pressure, and composition.  

That is,  

idE MMM −=                                                     (1) 

Usually, when the activity coefficient is studied, the major property of interest is 

the excess Gibbs free energy, which can be expressed as follows: 

idE
GGG −=                                                        (2) 

where, E
G , G, and id

G are the excess, the actual, and the ideal-solution Gibbs free 

energy, respectively.  After some mathematical manipulations, the molar partial excess 

Gibbs free energy for the ith compound can be written as follows: 
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( )i

E

i RTG γln=                                                      (3) 

and 

ii

i

i
fx

f̂
γ =  ,                                                            (4) 

where, T is the temperature of the mixture, R is the universal gas constant, ix  is the liquid 

mole fraction for the ith compound, if  is the fugacity of the ith pure compound, and if̂  is 

the actual fugacity of the i
th compound in the mixture.  Fugacity is a property that 

measures the degree of freedom of a molecule moving inside of a given compound 

(Smith et al., 1996).  The variable, iγ , is called the activity coefficient for the i
th 

compound.  The activity coefficient is equal to 1 for a pure component.  Thus, when the 

activity coefficient of a compound in a mixture is larger than one, it indicates that its 

molecules have a larger degree of freedom for moving around comparing with a pure 

compound.  On the other hand, an activity coefficient less than one indicates that the 

molecules in the mixture are closer to each other due to intermolecular attraction and has 

a smaller tendency to escape by vaporizing than when comparing to a pure compound 

(Levine, 1988). 

The logarithm of the activity coefficient is a partial property with respect to 

RTG
E

i / according to the following relation (Smith et al., 1996): 

( )
jnTPi
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where, n is the total number of moles in the mixture, ni is the number of moles of 

component i, and nj is the number of moles of the other compounds in the mixture.  Also, 

the activity coefficient must fulfill the expression: 

∑=
i

ii

E

i x
RT

G
γln                                                     (6) 

and the Gibbs/Duhem equation: 

),(0ln PTconstdx
i

ii∑ =γ                                    (7) 

For a binary system the Gibbs/Duhem equation can be expressed as follows: 

),(0
lnln

1

2
2

1

1
1 PTconst

dx

d
x

dx

d
x =+

γγ
                            (8) 

The Gibbs/Duhem equation has the following effects on the activity coefficient behavior 

with respect to the liquid mole fraction: 

• At every composition, the slope of 1γ  curve is opposite in sign to the slope 

of 2γ  curve. 

• When x1 � 1, the slope of 1γ  curve is zero and 1γ  � 1 and when x2 � 1, 

the slope of 2γ  curve is zero and 2γ  � 1. 

Estimation of the activity coefficient can be obtained using experimental vapor-

liquid equilibrium data and selecting a suitable thermodynamic model.  While RTG
E

i /  

is a function of T, P and mole fraction, for liquid solutions at low to moderate pressures it 

is a weak function of P and the pressure dependence of activity coefficients can be 

neglected (Smith et al., 1996).  Therefore, if an empirical mathematical expression is 
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given for RTG
E

i / , then equation (5) can be used to derive an empirical model for the 

activity coefficients and equation (8) can be used to verify the model consistency with the 

Gibbs/Duhem theorem.  Among the most important thermodynamic models to estimate 

activity coefficients based on experimental data are the following: Margules, van Laar, 

Wilson, Non-Random Two Liquids (NRTL), and UNIversal QUAsi-Chemical 

(UNIQUAC).   

For instance, this study used the four-suffix Margules equation as base method for 

the activity coefficients calculation.  The expression for RTG
E

i /  for the four-suffix 

Margules equation is written as follows (Reid et al., 1987): 

( ) ( )[ ]2
212121 xxCxxBAxx

RT

G
E

−+−+=                                   (9) 

Using equation (5), the expressions for ln 1γ  and ln 2γ  are: 

( ) ( ) 4
2

3
2

2
21 124453γln CxxCBxCBA ++−++=                           (10) 

and 

( ) ( ) 4
1

3
1

2
12 124453γln CxxCBxCBA +−++−=                           (11) 

Thermodynamic models such as Margules, Wilson and van Laar can be used to 

estimate the activity coefficients.  Thus, it is required to obtain experimental data for the 

system of interest to determine the model parameters and generate the analytical 

expression, based on the chosen model, for calculating the activity coefficients.  However, 

when experimental data are not available, a prediction method is needed to obtain the 

activity coefficients. The available prediction methods for activity coefficients are based 

on functional groups contribution and the most well known are the Analytical Solution of 
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Groups (ASOG) method (Wilson and Deal, 1962) and the Universal Functional-group 

Activity Coefficients (UNIFAC) method (Fredenslund et al., 1975). These methods 

express the activity coefficient as a function of the liquid mole fraction in addition of 

some physical parameters.   

UNIFAC is an effective method for predicting the activity coefficients of various 

chemical mixtures.  The criterion for forming functional groups used in the UNIFAC 

model is based mostly on molecular geometry.  In this research, we proposed a 

thermodynamic model to predict the activity coefficients using a neural networks 

technique and functional groups based on quantum mechanics calculations introduced by 

Wu and Sandler (1991).  The list of the functional groups is presented in Appendix B.   

There are two fundamental conditions for identifying the functional groups in a 

given mixture.  The first condition states that the group should be independent of the 

molecule in which it appears and should always have the same geometry.  The second 

condition states that each atom in a group and the group as a whole should have 

approximately the same net charge independently of the molecule that it appears.  This is 

a very important requirement because it is considered that the intermolecular interaction 

energy between two groups on different molecules come mainly from electrostatic forces 

(due to charges on the groups), repulsion forces, van der Waals forces, London 

(dispersion) forces, and hydrogen-bonding forces. 
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4.2 Neural Networks 

Artificial neural network methodology is proposed to model the linear or 

nonlinear relationships among the functional groups interactions and the activity 

coefficients.  The ANN model technique can be viewed as a general nonlinear modeling 

approach.  Artificial neural networks are a biological inspiration based on various 

characteristics of the brain functionality.  Artificial neurons are simple computational 

devices that are highly interconnected and the connections between neurons determine 

the transfer function of the network (Hagan et al., 1996).  An artificial neural network 

determines an empirical relationship between the inputs and outputs of a given system.  

Where the inputs of the system are the independent variables (x’s) and the outputs are the 

dependent variables (y’s).  Therefore, it is important for the user to have a good 

understanding of the science behind the underlying system to provide the appropriate 

input and, consequently, to support the identified relationship. 

Figure 1 shows the selected structure of the implemented neural network for this 

study.  This figure shows that the identified neural network has three neurons in the 

hidden layer and three neurons in the output layer with a log-sigmoidal and linear transfer 

functions in the hidden and the output layers, respectively.   Hagan et al. (1996) provides 

a detailed discussion on the structure and functionality of neural networks.  The input P 

matrix to train the neural network is formed by physical parameters and functional groups 

interactions information of a given binary mixture system.  The variables w’s are the 

weight matrices, b’s are the bias vectors, n’s are the net input, and a is the output of the 
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neural network and represents the predicted Margules equation parameters.  An efficient 

procedure to identify the appropriate structure of a neural network is given by Ramirez-

Beltran and Montes (2002). 

 

Figure 1. The Neural Network Structure 
 

The input vector (left), the hidden layer (center) and the 
output layer (right) are the main components of the 
selected neural network.  pandt  are the temperature 

and the pressure of the system and η is the interaction 
proportion, w’s are the weights, b’s are the bias n is the 
net input and a’s is the output of the network, which are 
the Margules equation parameters.  

 

Once the structure of the neural network is identified, the next step is to use an 

optimization technique to estimate the weights and biases in such a way that the output of 

the network is as close as possible to the target values.  In this case the target values are 

the Margules equation parameters calculated from the experimental data.  This 

optimization strategy is known as the training process and the neural network will learn 
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the relation between the inputs and the outputs of a dynamic system.  Thus, once the 

neural network is trained the optimal weights are saved with the purpose of predicting the 

Margules equation parameters.   

There are various learning algorithms to train neural networks.  Some of the most 

useful are: Perceptron, Hebbian, Widrow-Hoff, and Backpropagation; the latter is a 

suitable algorithm for this research because it has the capability of training multilayer 

neural networks for function approximation (Hagan et al., 1996).  However, the original 

Backpropagation algorithm has several limitations and its major drawback is its low 

convergence rate for most practical applications.  Various modifications of the 

backpropagation algorithm have been developed and most of them are based on heuristic 

and numerical optimization strategies.   

The heuristic strategies are: the momentum and the variable learning rate.  The 

method of momentum is a heuristic algorithm that improves convergence by using a low-

pass filter to smooth out the oscillations of the surface response.   

( ) )(γ1)1(γ)( kwkyky −+−=                                             (12) 

where, w(k) is the input to the filter, y(k) is the output of the filter and the momentum 

coefficient γ must satisfy: 1γ0 <≤ .  The weight and biases are modified according to the 

following equations that represent the modification to the original backpropagation: 

( ) ( )Tm

m

mm
a

n

F
kWkW
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ˆ

αγ1)1(γ)( −

∂

∂
−−−∆=∆   for weights                    (13) 

and 
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m

mm

n

F
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∂

∂
−−−∆=∆

ˆ
αγ1)1(γ)(   for biases                               (14) 

where, k is the iteration number, am-1 is the output of the previous network layer, F̂  is the 

performance index and corresponds to the mean square error of the network, and α  is the 

learning rate. 

The key idea of the variable learning rate is to modify the weights and biases 

update by changing the momentum and learning rate, based on the behavior of the 

squared errors.  There are many variations of the variable learning rate algorithm (Hagan 

et al., 1996).  However, the general rules of the variable learning rate backpropagation 

algorithm are: 

1) If the squared error increases by more than a set percentage ζ after a 

weight update, then the weight update is discarded, the learning rate is 

multiplied by a factor 0 < ρ < 1, and the momentum coefficient γ is set 

to zero. 

2)  If the squared error decreases after a weight update, then the weight 

update is accepted and the learning rate is multiplied by another factor 

η > 1.  If the momentum coefficient γ has been previously set to zero, it 

is reset to its original value. 

3) If the squared error increases by less than ζ, then the weight update is 

accepted but the learning rate and the momentum coefficient are 

unchanged. 



 

 22 

  The heuristic techniques provide significant improvements over the conventional 

backpropagation algorithm; however, they also exhibit the disadvantage that a trial an 

error approach must be implemented to identify the appropriate set of training parameter.  

The improved techniques based on optimization algorithms are more promising since an 

automatic learning-rate adjustment can be designed.  The most prominent techniques are 

the conjugate gradient (CG) and the Levenberg-Marquardt (LM) algorithms.  The major 

advantage of the CG algorithm is that it does not require calculation of the second 

derivatives and yet it still has the quadratic convergence property, i.e., convergence is 

accomplished as if the surface functions were a quadratic function.  The CG algorithm 

applied to neural networks training consists on the following steps (Hagan et al., 1996): 

1) Interval location: The interval location step is used to find an initial 

interval that contains a local minimum.  First, the performance index of 

the network is evaluated at an initial point.  Then the performance 

index is evaluated at a second point, which is at a distance ε from the 

initial point along the first search direction p0.  The search direction can 

be obtained from the steepest descent direction obtained from the 

backpropagation algorithm.  The performance index is successively 

evaluated doubling the distance between the points until the function 

increases after two consecutive evaluations (see Figure 2).  The last 

three evaluations (points c, d, and e) will bracket the local minimum 

point defining the initial interval.   



 

 23 

 

0 

2 
4 

6 
8 

10 

12 

14 
16 
18 

0 1 2 3 4 5 6 7 8 
x 

F(x) 

ε 

2 ε 

4 ε 

8 ε 

a b c d e  

Figure 2. Interval location 
 

2) Interval reduction: This step reduces the size of the initial interval 

until the local minimum is reached to a desired accuracy.  The extreme 

points of the initial interval become points a and b respectively.  The 

performance index is evaluated at two points (points c and d) within the 

initial interval to reduce its size (see Figure 3).  A method called the 

Golden Section Search is used to determine the location of the internal 

points c and d.  The Golden Section search will reduce the interval until 

reaching the local minimum point with certain accuracy.  The algorithm 

for the Golden Section Search is as follow. 

For τ = 0.618, 

Set c1 = a1 + (1 – τ) (b1 – a1) , Fc = F(c1) 

 d1 = b1 – (1 – τ) (b1 – a1) , Fd = F(d1) 
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For k = 1, 2, … repeat 

 If Fc < Fd then 

  Set ak+1 = ak ; bk+1 = dk ; dk+1 = ck 

   ck+1 = ak+1 + (1 – τ) (bk+1 – ak+1) 

   Fd = Fc ; Fc = F(ck+1) 

  else 

  Set ak+1 = ck ; bk+1 = bk ; ck+1 = dk 

   dk+1 = bk+1 – (1 – τ) (bk+1 – ak+1) 

   Fc = Fd ; Fd = F(dk+1) 

 end 

end until bk+1 – ak+1 < tol 

where tol is the accuracy tolerance set by the user. 

 

Figure 3. Interval Size Reduction 
   



 

 25 

3) New search direction: This step determines a new search direction to 

continue with the neural network training until reaching the 

performance index function minimum.  The next gradient is calculated 

with the backpropagation algorithm and the conjugate gradient 

algorithm is used to update the weights.   

4) Convergence: The procedure will continue until reaching convergence 

where the difference between the network response and the targets 

reaches an acceptable level. 

The LM algorithm introduces an automatic calculation of a constant that ensure 

that the Jacobian matrix will be a positive definite matrix and consequently convergence 

is accomplished.  This method was designed to minimize functions that are sums of 

squared errors of other nonlinear functions.  The LM algorithm steps are as follow 

(Hagan et al., 1996): 

1. Using the inputs and the initial point to the network, calculate the 

corresponding network outputs.  The inputs are the chosen parameters for 

the system beign analyzed and the initial point consists of the initial 

values, randomly selected, of the weights and biases.  Calculate the errors 

using the network outputs and the targets values and, calculate the sum of 

squared errors (sse) for all inputs. 
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2. Calculate the Jacobian matrix. 
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The elements of the Jacobian matrix are calculated using the following equations: 
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3. Calculate the new weights and biases. 
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4. Re-calculate the sum of squared errors with the values for the weights and 

biases.  If the new sse is smaller that those calculated in step 1, then 

decrease the scalar µ, let the weights and biases become the new values 

and go back to step 1.  Otherwise, increase the scalar µ and go back to step 

3.  

5. The LM algorithm will converge when the gradient is less than a pre-

determined value or if the sse are reduced to an error goal.   

One of the limitations of this method is the large amount of memory required for 

performing calculations.  However, for the underlying application the LM algorithm 

becomes a suitable technique since a small data set is used to train the neural network.  It 

should be noted that only the systems that contain interactions of the system of interest 

are the ones that will be used to predict the activity coefficient and consequently the 

required memory is reduced.  In this research, heuristics and optimizations techniques 

were tested and it was determined that for the selected training patterns the best 

performance was obtained by the Levenberg-Marquardt algorithm.  The training patterns 

studied are presented in Table 1. 

The system chloroform (1) + n-butyl alcohol (Ohe, 1989) was selected to test the 

performance of each training pattern shown in Table 1.  The activity coefficients were 

predicted three times using the ANN method and the overall mean absolute error for γ1 

and γ2 was calculated for each training algorithm.  It can be shown that the Levenberg-

Marquardt algorithm gave the smaller overall mean absolute error and standard deviation 

for predicting γ1.  On the other hand, while the Levenberg-Marquardt algorithm did not 
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give the minimum overall mean absolute error for predicting γ2 it gave the smaller 

standard deviation.  Thus, the Levenberg-Marquardt algorithm offers the best 

performance in training the artificial neural network for predicting activity coefficients 

(see Table 2). 

Table 1. ANN Training Algorithms 

MatLab 

Command Training Algorithm Description 

traingdm Batch Gradient Descent with Momentum 
traingda Gradient descent with adaptive learning rate backpropagation 
traingdx Gradient descent with momentum and adaptive learning rate backpropagation 
traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates 
traincgb Conjugate gradient backpropagation with Powell-Beale restarts 
traincgp Conjugate gradient backpropagation with Polak-Ribiere updates 
trainscg Scaled conjugate gradient backpropagation 
trainoss One step secant backpropagation 
trainbfg BFGS quasi-Newton backpropagation 
trainrp Resilient backpropagation 
trainlm Levenberg-Marquardt backpropagation 

 

Table 2. Overall Mean Absolute Error by ANN Training Algorithm 

Algorithm 

MAE for 

γγγγ1 

STDEV 

for γγγγ1 

MAE for 

γγγγ2 

STDEV 

for γγγγ2 

traingdm 0.1491 0.1067 0.5057 0.4829 

traingda 0.1702 0.1643 0.3372 0.5224 

traingdx 0.1311 0.0954 0.3046 0.4882 

traincgf 0.1541 0.1217 0.2920 0.3735 

traincgb 0.1792 0.1357 0.2217 0.3208 

traincgp 0.1361 0.1715 0.2042 0.3695 

trainscg 0.1595 0.1325 0.2064 0.3529 

trainoss 0.0897 0.0826 0.3033 0.3388 

trainbfg 0.0491 0.0353 0.2371 0.3143 

trainrp 0.1424 0.1225 0.2724 0.3284 

trainlm 0.0194 0.0147 0.2815 0.2984 
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It should be noted that careful attention must be devoted to the application of 

neural networks, since an automatic application of the neural network may lead to 

misleading predictions and exaggeratedly large computational time.  Thus, a contribution 

of this research is to improve the method of identifying the appropriate neural network 

structure.  The mean squared prediction error criterion is proposed in this study to ensure 

that the identification of a network structure provides a reliable prediction scheme.  In 

addition, this method uses the ensemble prediction concept that consists on generating 

members of ensemble by using different initial conditions and selecting the best 

representation of the population central tendency as the ensemble prediction.   
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5 METHODOLOGY 

The conventional approach to obtain the activity coefficients in liquid solutions 

requires vapor-liquid equilibrium experiments.  The main purpose of this research is to 

predict the activity coefficients without experimental data, since in practice 

experimentation is extremely expensive and time consuming.  The proposed approach is 

possible because there is a large experimental equilibrium data set that can be used to 

train a neural network to recognize the relation among functional groups interactions and 

the Margules equation parameters (Sorensen and Arlt, 1979). 

5.1 ANN Method Description 

The entertained methodology in this research is based on decomposing the 

chemical compounds of a mixture into its functional groups, identifying the required 

interactions among functional groups, and training a neural network to predict the activity 

coefficients (see Figure 4).  The four-suffix Margules equation has been used as base 

method for calculating the activity coefficients.  Two MatLab programs were developed 

to perform the tasks required to apply this methodology.  A description of the programs 

and the MatLab code is included in Appendix C.  Figure 4 shows the steps of this 

methodology. 
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Figure 4. Methodology for Activity Coefficients Prediction with ANN 
 

Step 1: Experimental Data 

The vapor-liquid equilibrium data used in this study are limited to the systems of 

binary mixtures containing several equilibrium data points.  Nine hundred and twenty one 

(921) binary systems were used to create the information matrix and train a neural 

network.  The sample size (921) was limited because of the availability of experimental 

data systems and because of required computational time.  The experimental data were 

entered into a spreadsheet to be used by the MatLab program. 

Step 2: Decompose Molecules in Functional Groups and Determine Functional 

Groups Interactions 

 The functional groups used in this work were introduced by Wu and Sandler 

(1991) and are based on quantum mechanics calculations.  The list of the functional 
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groups is presented in Appendix B.  Figure 5 shows a symbolic representation of two 

molecules.  It is assumed that the first and second molecules contain 4 and 3 functional 

groups, respectively.  Figure 5 also shows all possible interactions (2 × 4 × 3=24) among 

the functional groups. 

 
Figure 5. Functional groups decomposition and interactions 

 
Molecule 1 is composed of 4 functional groups and molecule 2 is composed 
of 3 functional groups.  The total amount of possible functional groups 
interactions is 12 for each molecule. 

 

Step 3: Calculate the Experimental Activity Coefficients and the Margules Constants 

The experimental activity coefficients are calculated from the vapor-liquid 

experimental data using the modified Raoult’s law and the Antoine equation (Smith et al., 

1996).  That is, for the ith component in the solution: 

sat

iiii PxPy γ=      and      
Ct

B
AP sat

i ′−

′
−′=log                             (25) 
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where, iy  is the vapor-phase mole fraction, P is the pressure of the system, ix  is the 

liquid-phase mole fraction, iγ  is the activity coefficient, sat

iP  is the vapor pressure in mm 

Hg, A’, B’ and C’ are the Antoine constants and t is the temperature of the system in 

degree Celsius. 

The Margules constants were estimated for each of the experimental data systems 

using a quasi-Newton method.  The objective function consisted on minimizing the sum 

of squared errors (SSE).  The problem formulation was to find the Margules parameters 

such that: 

 ( )
2

1

ˆ)ˆ(min ∑
=

−=
m

i
iiiSSE γγγ                                              (26) 

where iγ  is the experimental value and iγ̂  is the predicted value calculated using the 

Margules equations (10) and (11).�

Step 4: Create the Experimental Data Information Matrix 

The vapor-liquid equilibrium experimental data for each system was organized in 

columns and rows within a three dimensional matrix called the experimental data 

information matrix.  The data in each row of the experimental data information matrix 

belong to one of the compounds of a binary system.  Thus, every two rows of data belong 

to the experimental data of one binary system.  The columns contain the information that 

belongs to the functional groups interactions.  The columns are expanded tri-

dimensionally into eight columns of data each containing the information of a functional 

group interaction (See Figure 6). 
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Figure 6. Experimental Data Information Matrix 

 
Each interaction column represents eight columns with 
experimental data information.  Note that the interactions are not 
sequentially ordered since the program position the information 
as it appears in the experimental data. 

 

The first column of a group of eight columns within the experimental data 

information matrix contains the chemical interaction number between the h and k 

functional groups.  The interaction number )( ,khN  is computed by using the following 

equation: 

khgN kh +−= )1(,                                                   (27) 

where, g is the total number of selected functional groups, h and k are the numbers 

associated to the first and the second functional groups, respectively.  For instance, this 

study includes a total of 186 functional groups and the interaction number between the 

second and fourth functional groups can be computed as follows:   
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1904)12(1864,2 =+−=N  

In a similar fashion, the interaction number between the fourth and second 

functional group would be: 

5602)14(1862,4 =+−=N  

The remaining seven columns from a columns group are used to save the following 

parameters: system temperature, system pressure, functional groups quantities, functional 

groups molecular weights, and functional groups mole fractions.  Thus, any interaction 

between a functional group and itself is not included in the neural network training 

because it is expected to follow an ideal behavior and thus would have no contribution to 

the activity coefficient.   

Step 5: System of Interest 

 The data from the system of interest is entered into a spreadsheet, similar to that 

used for the experimental data, to be used by the MatLab program. 

Step 6: Determine the Functional Groups and Functional Groups Interactions for the 

System of Interest 

 The molecules from the system of interest are decomposed into their respective 

functional groups and the functional group interactions are determined as described in 

step 2.  The data from the system of interest are arranged into an information matrix the 

same way as the experimental data.   

Step 5: Extract Necessary Data from the Experimental Data Matrix 

The next step is to extract the required data from the experimental data 

information matrix.  Searching techniques are used to identify the columns of the 
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experimental data information matrix that contains any of the functional group 

interactions of interest to create the training patterns.  The selected information is called 

the reduced experimental data information matrix and is used to train a neural network 

and finally the optimal weights are used to predict the Margules equation parameters.  

Then, the four-suffix Margules equation is used to calculate the activity coefficients. 

It should be noted that the proposed approach develops a model using only the 

required interactions with the purpose of reducing the computational effort and increase 

prediction capability.   

Step 6: Create Training Matrices 

The training patterns of the neural networks are formed by the input and output 

vectors.  In this study, the input vector, P, includes the following variables: system 

temperature, system pressure, and the proportions of the functional groups interactions.  

The target, T, of this prediction scheme contains the observed Margules equation 

parameters that are computed using experimental data.  Thus the training patterns can be 

expressed as follows: 

[ ]i

KH

i

kh

iptP ,,1,1,, ηηη LL=    and       [ ]MMM CBAT ,,=        mi ,...,2,1=              (28) 

where, t and p are the temperature and pressure of the system, respectively; m is the total 

number of rows of the reduced experimental data information matrix, the upper and lower 

supercripts corresponds to the ith row, and the subcripts corresponds to the th
h  functional 

group, and the th
k functional group, respectively.  The functional group h belongs to the 

compound in the ith row and the functional group k belongs to other compound in that 

mixture.  H and K are the total number of functional groups, respectively in the first and 



 

 37 

second compounds of the mixture.  The i

kh,η  is the amount of interactions between a 

functional group h and k divided by the total amount of possible interactions between the 

functional groups present in the mixture. 
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where, i

hq  is the amount of functional groups in the ith molecule and j

kq  is the amount of 

functional groups in the jth molecule. 

Step 7: Train the Neural Network 

A systematic method is introduced to identify the neural network structure for 

modeling the non-linear behavior between the functional groups interactions and the 

Margules equation parameters.  The neural networks with more than two layers were 

discarded since those networks over-parameterize the learning process causing reduction 

of skill prediction capability.  On the other hand, a neural network composed with a 

single layer was not used because it does not have the capability of modeling nonlinear 

relationships.  Therefore, the selected general structure included two layers, the hidden 

and the output layer (Figure 1).    

A searching procedure was implemented to identify the minimum number of 

neurons in the hidden layer and the type of transfer function that minimizes the mean 

squared prediction error.  The suggested identification procedure consists on selecting a 

transfer function and then varying the number of neurons in the hidden layer while 

measuring prediction accuracy by the mean squared prediction errors (mspe).  This 
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process was repeated for three different transfer functions and varying the number of 

neuron from 1 to 5 in the hidden layer.  Finally, the structure of the neural network is 

selected such that the mspe is minimized.  It should be noted that the prediction was done 

with data that were not used for training.  To perform this identification procedure, the 

data were split in two equal parts.  The first part of the data was used to perform training 

and the second part was used to predict the Margules parameters.  The mean squared 

prediction errors were calculated between the known experimental Margules parameters 

and the predicted values with the neural network.  The mean squared prediction errors 

were computed as follows: 

( ) ( ) ( )[ ]
2

1

ˆˆˆ
9

1
∑

=

−+−+−=
m

i

iMiMiMiMiMiM CCBBAAmspe                           (30) 

where, 
iMiMiM CandBA ˆˆ,ˆ  are the predicted Margules parameters,

iMiMiM CandBA ,  are 

the observed Margules parameters and were obtained from the experimental data, and m 

is the number of data rows of the reduced experimental data information matrix used to 

predict the Margules parameters.   

Three different transfer functions (TF) combinations for the neural network 

structure were explored in this research:  

• purelin-purelin combination: a linear TF used in both, the hidden and output 

layers.   

• logsig-purelin combination: a log-sigmoid TF in the hidden layer and a linear 

TF in the output layer. 
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• tansig-purelin combination: a hyperbolic tangent TF in the hidden layer and a 

linear TF in the output layer.  

The mathematical representation of the three different TF is the following: 

Linear function:  bwpnnf +==)(1                                                     (31) 

Log-sigmoidal function:  
ne

nf
−+

=
1

1
)(2                                             (32) 

Hyperbolic tangent function:  
nn

nn

ee

ee
nf

−

−

+

−
=)(3                                   (33) 

where, n represents the net input into the network, w is the weight matrix, and b is the 

bias vector. 

Thus, the structures of the neural network change depending on the natural 

relationship of the available data.  The minimum mspe criterion was used to identify the 

appropriate transfer functions and the number of neurons in the hidden layer.  The best 

performance was accomplished with a log-sigmoidal TF in the hidden layer, and a linear 

TF in the output layer.  The number of neurons in the hidden layer varies for every case, 

depending on the mspe values.  Once the optimal neural network is determined the 

network is trained with the LM algorithm using the training patterns from the reduced 

experimental data information matrix. 

Step 8: Predict the Margules Equation Parameters  

The input vector for prediction is constructed with the system of interest data following 

equation (28).  Then, the next step is to predict the Margules parameters with the trained 

ANN and the input vector constructed with the system of interest data.  It was observed 

that, even though the TF and the optimum number of neurons were determined, the 
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outputs of the ANN provide different prediction values.  This is due to the fact that the 

selected initial point to train the ANN is different every time the training is performed 

and consequently it may converge to a different local minimum.  Thus, the ensemble 

prediction strategy was used to derive consistent prediction values.  A searching process 

was designed to select the initial point that minimizes the mspe and perform prediction.  

The neural network was trained nine times with a different initial point and each time a 

new member of ensemble prediction was obtained.  Finally, the Margules equation 

parameters were obtained by computing the trim mean based on 20% data elimination 

from the ensemble members.  In this study just nine members of the ensemble population 

were generated because of computational effort limitations.  

Step 9: Calculate γγγγ using the Margules Equation 

 Once the Margules parameters are obtained, the activity coefficients are 

calculated using the four-suffix Margules equations as shown in equations (10) and (11).  

In this study, a feedforward ANN was trained to predict the Margules parameters 

to calculate the activity coefficients.  It was shown that it is possible to combine the 

interactions of the functional groups from a mixture and reasonable prediction of activity 

coefficients can be obtained under the framework of the artificial neural networks.  The 

accuracy of the prediction tool is illustrated by comparing the neural network approach 

with the conventional functional groups contribution procedure UNIFAC.    

5.2 Limitation of the Proposed Methodology 

The proposed methodology is limited to estimate activity coefficients for binary 

liquid mixtures.  A list of the DECHEMA database books is presented in Table 3.  The 
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selected 921 systems used to build the experimental database are limited to alcohols, 

phenols, aldehydes, ketones and ethers. In the case of a system of interest is out of the 

mentioned compound families it is possible that all the interactions of the system may not 

be available and consequently the ANN method will provide either no results or a poor 

estimation of the activity coefficients.  Thus, an expansion of the experimental database 

built during this work is recommended to include a wider range of compound families 

and functional group interactions. 

Table 3. DECHEMA Chemistry Database 

Part Title ISBN Pages Published 

Number of 

Systems 

1 Aqueous-Organic Systems 3-926959-30-4 750 1991 7 

1a Supplement 1 3-926959-90-8 750 1998 0 

1b Supplement 2 3-921567-91-2 658 1988 0 

2a Alcohols 3-921567-62-9 750 1986 189 

2b Alcohols and Phenols 3-926959-18-5 620 1990 147 

2c Alcohols Supplement 1 3-921567-29-7 730 2001 197 

2d Alcohols and Phenols Supplement 2 3-921567-43-2 830 1982  0 

2e Alcohols and Phenols Supplement 3 3-921567-92-0 650 1988 96 

2f Alcohols and Phenols Supplement 4 3-926959-16-9 716 1990 76 

3/4 Aldehydes, Ketones, Ethers 3-921567-14-9 650 1979 113 

3a Aldehydes, Supplement 1 3-921567-93-9 280 1993  0 

3b Ketones, Supplement 1 3-921567-44-4 750 1993  0 

4a Ethers, Supplement 1 3-921567-86-6 534 1996  0 

4b Ethers, Supplement 2 3-926959-98-3 476 1999  0 

5 Carboxylic Acids, Anhydrides, Esters 3-921567-20-3 750 2001  0 

5a Carboxylic Acids, Anhydrides, Supplement 1 3-89746-040-8 500 2002  0 

5b Esters, Supplement 2 3-89746-041-6 600 2002  0 

6a Aliphatic Hydrocarbons C4-C6  3-926959-42-8 716 1997  0 

6b Aliphatic Hydrocarbons C7- C18  3-926959-87-8 540 1997  0 

6c Aliphatic Hydrocarbons Supplement 1 3-921567-51-3 689 1983  0 

6d+e Aliphatic Hydrocarbons C4- C30 3-89746-007-6 1011 1999  0 

7 Aromatic Hydrocarbons  3-926959-88-6 600 1997 77 
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Part Title ISBN Pages Published 

Number of 

Systems 

7a/7b Supplement 1 3-89746-012-2 789 2000 19 

8 
Halogen, Nitrogen, Sulfur and other 
Compounds 3-921567-24-6 600 1984  0 

8a 
Halogen, Nitrogen, Sulfur and other 
Compounds, Supplement 1 3-89746-028-9 600 2001  0 

 

Because the activity coefficient is derived from the molar partial Gibbs free 

energy it has two thermodynamic contributions, the enthalpic and the entropic, as defined 

by the Gibbs energy,  

Gi = Hi – TSi                                                        (34) 

where, Gi is the Gibbs energy, Hi is the enthalpy and Si is the entropy for the i
th 

compound in a mixture.  The enthalpic contribution to the activity coefficient is 

associated to the molecular interactions while the entropic contribution is associated to 

the molecules size and geometry.  It is known that the Margules equation takes into 

consideration only the enthalpic contribution to the activity coefficient while the 

UNIFAC is based on the UNIQUAC equation, which takes into account both the 

enthalpic and the entropic contributions to the activity coefficient.  It is expected that the 

UNIFAC method will better predict the activity coefficient for a system where the 

entropic contribution domains over the enthalpic contribution due to large molecular size.  

The ANN method should be able to use other thermodynamic models such as NRTL and 

UNIQUAC, to increase its capability of predicting the activity coefficient for systems 

with large molecular size.  
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6 NUMERICAL EXAMPLE 

The purpose of this example is to illustrate a step-by-step calculation of predicting 

the activity coefficients for a binary system.  An arbitrary binary system was selected and 

corresponds to a mixture of 2,4-dimethylpentane and benzene (Ohe, 1989).  Table 4 

shows the vapor-liquid equilibrium data for the system.  Table 5 shows the Antoine 

constants of the selected system and eight steps were designed to predict the activity 

coefficients. 

Table 4. VLE Data for the system 2,4-dimethylpentane (1) + benzene (2) 

 

x1 y1 
Temperature 

(ºC) 

Pressure 

(mmHg) 

0.078 0.125 77.3 757 
0.106 0.164 77.0 757 
0.140 0.195 76.5 757 
0.152 0.219 76.3 757 
0.192 0.242 76.1 757 
0.224 0.268 75.9 757 
0.251 0.292 75.7 757 
0.281 0.318 75.5 757 
0.335 0.357 75.4 757 
0.378 0.392 75.4 757 
0.432 0.432 75.2 757 
0.480 0.469 75.4 757 
0.525 0.504 75.3 757 
0.572 0.541 75.5 757 
0.616 0.576 75.5 757 
0.662 0.614 75.9 757 
0.700 0.652 76.1 757 
0.74 0.686 76.3 757 

0.785 0.731 76.6 757 
0.839 0.785 77.2 757 
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Table 5. Antoine Constants 

Component A B C 

1 6.82621 1192.041 221.634 
2 6.90565 1211.033 220.790 

 

Step 1.  Structural formula. The structural formula for each compound of the 

mixture is written to facilitate the identification of the functional groups.  Figure 7 shows 

the structural formula for each chemical compound. 

 

 

 

 

Figure 7. Chemical Structures 

 

Step 2.  Identifying chemical structures functional groups. The number of 

functional groups associated to each compound was identified. Table 6 sumarizes the 

functional groups associated to each compound, which are: 

• 2,4-Dimethylpentane has two units of the functional group number 2, (CH); one unit 

of the functional group number 3, (CH2); and four units of the functional group 

number 4, (CH3).  Appendix B shows the enumeration of the functional groups.   

• Benzene has six (6) units of the functional group number 135, (aCH).   

Table 6. Compounds Functional Groups 
 

Compound Functional Groups and Quantities 

2,4-Dimethylpentane 2 × G2 1 × G3 4 × G4 
Benzene 6 × G135 

H

H

H H

H

H

H C C C C C H

H

H H

H

CH3

H H CH3

H H

2, 4-Dimethylpentane Benzene 
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Step 3.  Identify functional groups interactions.  The functional group interaction 

numbers are calculated and arranged into the system of interest information matrix.  

Calculations are obtained by using equation (27) and Table 7 shows the functional group 

interactions for the system 2, 4-dimethylpentane (1) + benzene (2). 

Table 7. System Interactions 
 

Interactions 1-2 

Interaction 

Number Interactions 2-1 

Interaction 

Number 

G2 G135 321 G135 G2 24926 
G3 G135 507 G135 G3 24927 
G4 G135 693 G135 G4 24928 

The functional groups numbers were assigned using Appendix B. 

Step 4.  Develop the information matrix. The system of interest information matrix 

is similar to the experimental data information matrix. The data is arranged in a tri-

dimensional matrix as presented in Figure 8.   

 

 
Figure 8. System Information Matrix 

 
This system information matrix was generated by the MatLab program 
NNvsUNIFAC.m and is used to create the input matrix required to predict the 
Magurles parameters with the trained neural network. 

 
The data contained for each functional group interaction along the 3rd dimension of the 

system information matrix are presented in Table 8. 
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Table 8. System Functional Group Interactions Data 

Int#1 t p GF1 GF2 wGF1 wGF2 Ones 
321 76.005 757 2 6 26 78 1 

24926 76.005 757 6 2 78 26 1 

Int#2 t p GF1 GF2 wGF1 wGF2 Ones 
507 76.005 757 1 6 14 78 1 

24927 76.005 757 6 1 78 14 1 

Int#3 t p GF1 GF2 wGF1 wGF2 Ones 
693 76.005 757 4 6 60 78 1 

24928 76.005 757 6 4 78 60 1 

 

The system information matrix is used to search within the experimental data 

information matrix for all systems that contain at least one of the functional group 

interactions of interest and build a reduce experimental data information matrix.  The 

reduced experimental data information matrix consists of all systems within the 

experimental data, whose functional group interactions match at least one of the 

interactions of interest.  The reduced experimental data information matrix was used to 

train the neural network. 

Step 5.  Generate the training patterns. The training patterns are obtained from the 

reduced experimental data information matrix and are organized to perform the neural 

network-training task following equation (28).  All available training patterns for the 

system of interest were arranged using the reduced experimental data information matrix 

with 165 rows and 208 columns, i.e., there were 165 systems out of the 921 systems 

within the experimental data information matrix that contain at least one of the 

interactions of interest. 
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Step 6.  Train the neural network.  The neural network is trained with the reduced 

experimental data information matrix.  The inputs patterns include the variables described 

by equation (28).  The target includes the Margules parameters as shown by equation 28.  

The structure of the network includes a log-sigmoid transfer function in the hidden layer 

and a linear transfer function in the output layer.  The ANN was trained with nine 

different initial points and the optimum initial point is the one that minimizes the mspe.  

Figure 9 shows the training process of the MatLab software.  The horizontal axis shows 

the number of epochs, which represents the number of time the training patterns are 

presented to the ANN and the vertical axis represents the mspe. 

 

Figure 9. Neural Network Training 
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Step 7.  Predicting the Margules parameters.  The ensemble prediction technique 

was use to generate the nine ensemble members and the trim mean with 20% data 

elimination was used to calculate the predicted value for the Margules parameters.  Table 

9 shows the members of the ensemble prediction.  Note that within the nine predicted 

values for the Margules parameters, there are outliers that deviate considerably from the 

other values.  The ensemble prediction method is capable of eliminating those outliers 

from the calculation of the predicted Margules parameters giving more consistent results 

(see Table 10). 

Table 9. Predicted Margules parameters values 
 

Predicted 

Value AM BM CM 

1 0.5958 0.1204 -0.0262 
2 0.5301 0.0993 0.0394 
3 0.9227 -0.0641 0.0164 
4 0.9226 -0.0641 0.0163 
5 0.5253 -0.1985 -0.1219 
6 -1.0525 -1.3918 -1.7782 
7 0.5188 0.0518 0.1006 
8 0.9453 -0.2725 -0.0657 
9 0.5453 0.0926 -0.0054 

 
Table 10. Predicted Margules parameters values with 20% data elimination 

 
AM BM CM 

0.5253 -0.1985 -0.0657 

0.5301 -0.0641 -0.0262 

0.5453 -0.0641 -0.0054 

0.5958 0.0518 0.0163 

 

0.9226 0.0926 0.0164 
Average 0.6238 -0.0365 -0.0129 

 

Step 8.  Predicting the activity coefficients using Margules equation.  The 

predicted Margules parameters are used to calculate the activity coefficients for both 



 

 49 

components of the mixture.  Figure 10 and Table 11 shows the results of the predicted 

activity coefficients using the ANN method.  This table also shows the activity 

coefficients predicted by the UNIFAC method and the observed activity coefficients 

obtained by the modified Raoult’s Law and the Antoine equation.   

Table 11. Activity Coefficients Estimation 
 

Mole fraction 

Activity Coefficient 
Estimated from 

Experimental Data 

Activity Coefficient 
Estimated from 

Neural Networks 
(using functional groups) 

Activity Coefficient 
Estimated from UNIFAC 
(using functional groups) 

1x  2x  
1γ  2γ  1γ  2γ  1γ  2γ  

0.078 0.922 1.7593 1.0313 1.7276 1.0041 1.5491 1.0054 
0.106 0.894 1.7142 1.0258 1.6693 1.0076 1.4863 1.0097 
0.140 0.860 1.5672 1.0431 1.6034 1.0133 1.4203 1.0162 
0.152 0.848 1.6312 1.0328 1.5814 1.0157 1.3992 1.0188 
0.192 0.808 1.4359 1.0587 1.5122 1.0252 1.3359 1.0287 
0.224 0.776 1.3714 1.0713 1.4614 1.0344 1.2925 1.0377 
0.251 0.749 1.3418 1.0803 1.4215 1.0434 1.2601 1.0460 
0.281 0.719 1.3134 1.0910 1.3801 1.0546 1.2280 1.0559 
0.335 0.665 1.2407 1.1157 1.3130 1.0783 1.1789 1.0753 
0.378 0.622 1.2073 1.1279 1.2658 1.1004 1.1467 1.0919 
0.432 0.568 1.1715 1.1612 1.2136 1.1323 1.1133 1.1142 
0.480 0.520 1.1375 1.1783 1.1734 1.1648 1.0889 1.1349 
0.525 0.475 1.1211 1.2087 1.1404 1.1988 1.0700 1.1552 
0.572 0.428 1.0977 1.2335 1.1105 1.2381 1.0536 1.1769 
0.616 0.384 1.0852 1.2700 1.0865 1.2784 1.0409 1.1979 
0.662 0.338 1.0632 1.2970 1.0650 1.3243 1.0300 1.2200 
0.700 0.300 1.0611 1.3091 1.0500 1.3652 1.0227 1.2387 
0.740 0.260 1.0495 1.3543 1.0366 1.4110 1.0163 1.2585 
0.785 0.215 1.0446 1.3898 1.0243 1.4661 1.0106 1.2810 
0.839 0.161 1.0303 1.4557 1.0131 1.5369 1.0056 1.3079 

 
This table presents the final results for the activity coefficients predicted by the ANN method in addition to 
the results from UNIFAC and the activity coefficients calculated from the experimental vapor-liquid 
equilibrium data for the system: 2, 4 – dimethylpentane (1) + benzene (2). 
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Figure 10. Comparison of activity coefficients for system:  

2,4-dimethylpentane (1) + benzene (2) 
 

This figure shows a graphical comparison for the activity coefficients γ1 and γ2 
between the experimental values, predicted by ANN method and predicted by 
UNIFAC method.  The prediction performance for both ANN and UNIFAC 
methods is about the same. 

 
One of the well-known measurements of prediction accuracy is the mean absolute 

error (MAE), which is defined as follows:  

∑
=

−=
n

j

jijii
n

MAE
1

,, γ̂γ
1

                                               (35) 

where, n is the number of concentration levels. iMAE  is the mean absolute error for the 

i
th compound, ji,γ and ji ,γ̂  are the activity coefficients obtained from experimental data 

and from the neural network methodology, respectively.  Subscript j refers to the applied 

concentration and the subscript i represents the chemical compound.  The MAE for the 

activity coefficients predicted by the ANN and UNIFAC methods for the system 
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presented above are shown in Table 12.  The ANN method shows an improvement of the 

activity coefficients prediction over the UNIFAC method, as also shown in Table 12.   

Table 12. Mean Absolute Error for the System: 2, 4-dimethylpentane (1) + benzene (2) 
 

Liquid Mole 

fraction 

Absolute Prediction 

Errors for 

Neural Networks 

Absolute Prediction 

Errors for 

UNIFAC 

1x  2x  1γ  Error 2γ  Error 1γ  Error 2γ  Error 

0.078 0.922 0.0317 0.0271 0.2102 0.0259 
0.106 0.894 0.0449 0.0181 0.2279 0.0161 
0.140 0.860 0.0362 0.0297 0.1469 0.0269 
0.152 0.848 0.0498 0.0170 0.2320 0.0140 
0.192 0.808 0.0763 0.0333 0.1000 0.0300 
0.224 0.776 0.0900 0.0367 0.0789 0.0336 
0.251 0.749 0.0797 0.0368 0.0817 0.0343 
0.281 0.719 0.0667 0.0362 0.0854 0.0351 
0.335 0.665 0.0723 0.0372 0.0618 0.0404 
0.378 0.622 0.0585 0.0273 0.0606 0.0360 
0.432 0.568 0.0421 0.0287 0.0582 0.0470 
0.480 0.520 0.0359 0.0133 0.0486 0.0434 
0.525 0.475 0.0193 0.0097 0.0511 0.0535 
0.572 0.428 0.0128 0.0048 0.0441 0.0566 
0.616 0.384 0.0013 0.0086 0.0443 0.0721 
0.662 0.338 0.0018 0.0275 0.0332 0.0770 
0.700 0.300 0.0111 0.0563 0.0384 0.0704 
0.740 0.260 0.0129 0.0569 0.0332 0.0958 
0.785 0.215 0.0203 0.0764 0.0340 0.1088 
0.839 0.161 0.0172 0.0814 0.0247 0.1478 
Mean Absolute 

Error 
0.0390 0.0331 0.0848 0.0531 

 
This table presents the absolute prediction errors for the activity coefficients 
predicted by the ANN and UNIFAC methods.  The mean absolute error is 
presented at the end of the table. 
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7 COMPARISON BETWEEN ANN AND UNIFAC 

Initially, we tried to find a data set from a source other than the DECHEMA 

database to perform a fair comparison between the ANN and UNIFAC methods; 

however, the identified number of systems was very small.  Nineteen systems were 

selected to perform a comparison between the ANN method and the UNIFAC method.  

Nine out of nineteen systems were obtained from Ohe (1989) and the other ten systems 

were taken directly from DECHEMA database (Sorensen and Arlt, 1979).  Although the 

information comes from different sources it was noticed that all of the nineteen systems 

are available in the complete DECHEMA database and the UNIFAC method was 

developed using all of the 8,600 systems available in the complete DECHEMA database 

(Gmehling, 2003).  The ANN method was developed using only 921 systems from 

DECHEMA.  The activity coefficients, γ1 and γ2 were predicted for the nineteen systems 

using the ANN and the UNIFAC methods (see Appendix A).  Appendix A also shows 

graphically the performance comparison between the ANN and UNIFAC methods for all 

nineteen systems.  Appendix A figures show that the prediction capabilities of the 

considered methods are about the same. 

The mean absolute errors (MAE) from the nineteen systems were used to measure 

the accuracy of the prediction methods.  The MAE’s do not follow a normal distribution 

due to the outliers’ results as shown in Figure 11.   
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Figure 11. MAE Populations Boxplot 
 

It is well known that the median is a better representation of the central tendency 

of the population when outliers are present.  Thus, a non-parametric test was used to 

prove whether or not the median of the MAE from the ANN method is smaller than the 

median of the MAE obtained from UNIFAC.  The selected non-parametric test was the 

Mann-Whitney (Hayter, 1996) test.  When predicting the activity coefficient γ1, the 

medians of the MAE from the ANN method and from UNIFAC show no significant 

difference at 95% confidence since the p-value was 0.6614.  The ANN method 

performance is slightly better, with a median of the MAE equal to 0.0483 while the 

median of the MAE for the UNIFAC method is equal to 0.0669.   
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Mann-Whitney Test and CI: MAE ANN1_M, MAE U1  
 
             N   Median 

MAE ANN1_M  19  0.04831 

MAE U1      19  0.06691 

Point estimate for ETA1-ETA2 is 0.00716 

95.3 Percent CI for ETA1-ETA2 is (-0.02561,0.05846) 

W = 386.0 

Test of ETA1 = ETA2 vs. ETA1 not = ETA2 is significant at 0.6614 

�

When predicting γ2 the medians of the MAE from the ANN method and from 

UNIFAC show no significant difference at 95% confidence since the p-value was 0.2933.  

The ANN method performance is slightly better, with a median of the MAE equal to 

0.0764 while the median of the MAE for the UNIFAC method is equal to 0.0842.  

Mann-Whitney Test and CI: MAE ANN2_M, MAE U2  
 
             N  Median 

MAE ANN2_M  19  0.0764 

MAE U2      19  0.0842 

Point estimate for ETA1-ETA2 is -0.0193 

95.3 Percent CI for ETA1-ETA2 is (-0.0785,0.0308) 

W = 334.0 

Test of ETA1 = ETA2 vs. ETA1 not = ETA2 is significant at 0.2933 

 
 Even though, the ANN method performs a slightly better than the UNIFAC 

method, the improvement is not statistically significant.  In summary, based on the 

nineteen systems studied, the performance of the ANN method is slightly better than the 

UNIFAC method.  Table 13 summarizes the results for the mean absolute errors. 
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Table 13. Mean Absolute Errors for the Activity Coefficients 
 

Mean Absolute 

Prediction Errors for 

Neural Networks 

Mean Absolute 

Prediction Errors for 

UNIFAC 

S
y

st
em

 

Molecule 1 Molecule 2 

γγγγ1 γγγγ2 γγγγ1 γγγγ2 

S
o

u
rc

e 

1 acetone methanol 0.0155 0.0268 0.0112 0.0227 1 

2 methanol 3-methylbutanol 0.0227 0.0732 0.0066 0.0957 1 

3 acetone ethanol 0.0536 0.0438 0.0875 0.0405 1 

4 tetrachloromethane 2-propanol 0.1254 0.0919 0.0276 0.4035 1 

5 methanol 1-propanol 0.0311 0.0598 0.0825 0.0504 1 

6 methanol 1-butanol 0.0398 0.0764 0.0669 0.0642 1 

7 methyl acetate methanol 0.0138 0.0214 0.0333 0.0329 1 

8 acetone benzene 0.0273 0.0138 0.0412 0.0291 1 

9 acetone hexane 0.0320 0.0794 0.0725 0.0677 1 

10 acetone toluene 0.0454 0.0390 0.0421 0.0804 1 

11 2,4-dimethyl pentane benzene 0.0390 0.0331 0.0848 0.0531 2 

12 cyclohexane isopropyl alcohol 0.2253 0.1311 0.1001 0.2922 2 

13 ethylcyclohexane isopropyl alcohol 0.3572 0.1501 0.0999 1.0492 2 

14 benzene isopropyl alcohol 0.1546 0.3573 0.0701 0.0842 2 

15 toluene isopropyl alcohol 0.0849 0.1542 0.0596 0.2226 2 

16 ethyl ether acetone 0.1240 0.1998 0.0971 0.2669 2 

17 acetone isopropyl alcohol 0.1585 0.3837 0.0938 0.4554 2 

18 isopropyl alcohol ethyl acetate 0.0483 0.0200 0.0355 0.0953 2 

19 chloroform n-butyl alcohol 0.2012 0.1355 0.0397 0.1548 2 

 Average 0.0947 0.1100 0.0606 0.1874  

 Median 0.0483 0.0764 0.0669 0.0842  

 Sources: (1) Sorensen and Arlt (1979) (DECHEMA);  (2)  Ohe (1989) 

 
This table presents the mean absolute errors for the activity coefficients for each of the nineteen systems 
studied.  The mean absolute error is used to standardize the data and compare the prediction results 
populations.  

 

The relative comparison between two prediction methods can be accomplished by 

using a skill score (SS) that relates the mean absolute prediction of the forecast methods.  

The skill score is widely used in different fields (Wilks, 2006) and is defined as follows:  

100×
−

−
=

refperf

ref

AA

AA
SS                                              (36) 
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where, A  is a particular measure of accuracy of the method to be compared such as 

MAE, MSE or RMSE. refA  is the measure of accuracy of the reference method, perfA  is 

the value of the accuracy measure that would be achieved by a perfect forecast and is 

equal to 0 when using MSE or MAE as accuracy measure. 

The skill score is a positive value when the method of interest is better than the 

reference method and negative otherwise.  The skill score based on the median of the 

MAE for the ANN method was 28% when predicting γ1 and 9% when predicting γ2. 
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8 CONCLUSIONS AND FUTURE WORK 

A new methodology using artificial neural networks was designed to predict the 

activity coefficients based on the knowledge of the structural formula, temperature, 

pressure and liquid molar composition for the compounds in a mixture.  The proposed 

methodology is a potential tool to estimate the activity coefficients of chemical 

compounds when experimental data are not available.  The neural network method was 

compared to the UNIFAC method and it was found that the performance of the ANN 

method was slightly better for the nineteen studied systems.  

The mean squared prediction error criterion was used to identify the appropriate 

structure of the feedforward artificial neural network.  The introduced methodology 

basically consists of selecting a neural network structure for a single neuron in the hidden 

layer and then the number of neurons increases until the mean squared prediction error 

has been accomplished.  Finally, the neural network structure that provides the minimum 

variance prediction with the least number of neurons is selected as the best neural 

network structure.   

The neural network method exhibits a high variability in the results.  However, 

the optimum initial point determination and ensemble prediction technique was able to 

stabilize the output of the neural network method and increase its prediction accuracy.  A 

practical tool was developed as an alternative method that may be used to obtain a 

reliable prediction of activity coefficients for a given chemical mixture and the MatLab 

code is presented in Appendix C.    
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As future work, it is recommended to expand the experimental database to other 

compound families not included in this work in order to cover a wider range of functional 

group interactions.  Also the ANN method should be trained with other thermodynamic 

models (i.e. Wilson, van Laar, NRTL and UNIQUAC) and the program should have the 

flexibility for the user to choose the thermodynamic model for predicting the activity 

coefficient.  The program for the ANN method should be capable of measuring the 

contribution to the activity coefficient of each functional group interaction.  A 

comparison between the ANN and UNIFAC methods to predict the activity coefficient at 

infinite dilution ∞γ should be performed.    
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Appendix A Graphical Comparison Between ANN and UNIFAC 

 
Figure 12. System 1: Acetone (1) + Methanol (2) 
This system is included in the 921 systems compiled from 
DECHEMA. None of the prediction methods were able to 
predict the deviation peak of γ2 at a low x2 value. 

 
Table 14. Activity Coefficients Results for System 1 

γγγγ1    γγγγ2    
Temp (ºC) x1 

ANN UNIFAC exp ANN UNIFAC Exp 

55 0.1046 1.6481 1.6532 1.6940 1.0085 1.0072 1.0016 

55 0.1357 1.5833 1.5956 1.6200 1.0140 1.0121 1.0080 

55 0.1452 1.5649 1.5789 1.5692 1.0160 1.0138 1.0260 

55 0.1663 1.5260 1.5431 1.5768 1.0207 1.0181 1.0148 

55 0.2173 1.4425 1.4637 1.4866 1.0344 1.0309 1.0266 

55 0.2390 1.4110 1.4328 1.4525 1.0412 1.0375 1.0286 

55 0.2787 1.3587 1.3803 1.3860 1.055 1.0511 1.0566 

55 0.3579 1.2715 1.2895 1.2755 1.0882 1.0850 1.1023 

55 0.4050 1.2285 1.2434 1.2346 1.1115 1.1096 1.1300 

55 0.4480 1.1939 1.2058 1.2151 1.1353 1.1353 1.1396 

55 0.5052 1.1540 1.1619 1.1576 1.1710 1.1743 1.1930 

55 0.5432 1.1307 1.1362 1.1469 1.1976 1.2035 1.1995 

55 0.6332 1.0844 1.0856 1.0940 1.2712 1.2844 1.2776 

55 0.6538 1.0754 1.0759 1.0767 1.2905 1.3055 1.3277 

55 0.6605 1.0726 1.0729 1.0741 1.2970 1.3125 1.3163 

55 0.6945 1.0592 1.0586 1.0542 1.3318 1.3500 1.3731 

55 0.7327 1.0458 1.0445 1.0375 1.3748 1.3958 1.4307 

55 0.7525 1.0395 1.0380 1.0428 1.399 1.4210 1.4070 

55 0.7752 1.0328 1.0313 1.0320 1.4283 1.4514 1.4841 

55 0.9080 1.0059 1.0052 1.0099 1.6460 1.6632 1.6438 

55 0.9088 1.0058 1.0051 1.0111 1.6476 1.6646 1.6545 

55 0.9197 1.0045 1.0039 0.9969 1.6698 1.6850 1.9194 

55 0.9448 1.0022 1.0019 1.0106 1.7242 1.7337 1.7461 
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Figure 13. System 2: Methanol (1) + 3-Methylbutanol 
This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 15. Activity Coefficients Results for System 2 

 
γγγγ1 γγγγ2 Temp 

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

60 0.1 1.2252 1.2288 1.2251 1.0025 1.0013 0.9703 

60 0.2 1.1717 1.1974 1.1926 1.0104 1.0060 0.9774 

60 0.3 1.1247 1.1655 1.1586 1.0243 1.0151 0.9994 

60 0.4 1.0853 1.1336 1.1253 1.0442 1.0305 1.0000 

60 0.5 1.0540 1.1023 1.0853 1.0694 1.0545 1.2579 

60 0.6 1.0306 1.0725 1.0653 1.0990 1.0908 1.0456 

60 0.7 1.0147 1.0452 1.0401 1.1311 1.1445 1.0468 

60 0.8 1.0053 1.0223 1.0228 1.1630 1.2238 1.1138 

60 0.9 1.0010 1.0062 1.0003 1.1910 1.3408 1.0420 
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Figure 14. System 3: Acetone (1) + Ethanol (2) 

This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 16. Activity Coefficients Results for System 3 

 
γγγγ1 γγγγ2 Temp 

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

40 0.025 1.8567 2.1767 2.0581 1.0005 1.0005 0.9954 

40 0.050 1.7939 2.0896 1.9530 1.0018 1.0021 0.9957 

40 0.075 1.7361 2.0085 1.8453 1.0040 1.0048 1.0025 

40 0.100 1.6827 1.9330 1.7657 1.0070 1.0085 1.0129 

40 0.150 1.5875 1.7968 1.6483 1.0154 1.0190 1.0366 

40 0.200 1.5053 1.6782 1.5519 1.0269 1.0339 1.0530 

40 0.250 1.4338 1.5747 1.4672 1.0415 1.0532 1.0741 

40 0.300 1.3713 1.4842 1.3904 1.0592 1.0771 1.1013 

40 0.400 1.2677 1.3358 1.2630 1.1050 1.1400 1.1733 

40 0.500 1.1859 1.2226 1.1755 1.1670 1.2255 1.2583 

40 0.600 1.1211 1.1375 1.1097 1.2502 1.3385 1.3565 

40 0.700 1.0703 1.0754 1.0642 1.3627 1.4856 1.4615 

40 0.800 1.0327 1.0330 1.0334 1.5177 1.6762 1.5654 

40 0.900 1.0087 1.0082 1.0127 1.7361 1.9240 1.6764 
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Figure 15. System 4: Tetrachloromethane (1) + 2-Propanol (2) 

This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 17. Activity Coefficients Results for System 4 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

70 0.086 2.5354 2.8327 2.8057 1.0060 1.0059 1.0641 

70 0.166 2.2720 2.5160 2.5406 1.0220 1.0234 1.0821 

70 0.238 2.0734 2.2670 2.2771 1.0460 1.0508 1.1110 

70 0.384 1.7384 1.8499 1.8277 1.1334 1.1527 1.2301 

70 0.559 1.4144 1.4744 1.4780 1.3671 1.4154 1.4922 

70 0.711 1.1957 1.2352 1.2669 1.8399 1.9353 1.9684 

70 0.815 1.0865 1.1128 1.1656 2.5117 2.7205 2.5806 

70 0.945 1.0086 1.0137 1.0574 4.3935 5.5942 4.5631 

70 0.975 1.0018 1.0031 1.0355 5.1647 7.2058 5.1094 
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Figure 16. System 5: Methanol (1) + 1-Propanol (2) 
This system is included in the 921 systems compiled from 
DECHEMA. 

 

Table 18. Activity Coefficients Results for System 5 
 

γγγγ1    γγγγ2    Temp 

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

60.02 0.0368 1.0792 1.1830 1.0128 0.99996 1.0001 1.0537 

60.02 0.0528 1.0797 1.1789 1.0236 0.99994 1.0003 1.0592 

60.02 0.0611 1.0799 1.1768 1.0212 0.99993 1.0004 1.0538 

60.02 0.0649 1.0799 1.1759 1.0354 0.99993 1.0005 1.0537 

60.02 0.0764 1.0799 1.1740 1.0354 0.99992 1.0007 1.0615 

60.02 0.1007 1.0794 1.1668 1.0184 0.99997 1.0012 1.0550 

60.02 0.1393 1.0774 1.1570 1.0210 1.0002 1.0023 1.0562 

60.02 0.1842 1.0734 1.1457 1.0100 1.0010 1.0042 1.0624 

60.02 0.2151 1.0698 1.1379 1.0100 1.0018 1.0059 1.0640 

60.02 0.2625 1.0635 1.1261 1.0103 1.0037 1.0092 1.0648 

60.02 0.3206 1.0547 1.1117 1.0062 1.0071 1.0146 1.0718 

60.02 0.3806 1.0452 1.0972 1.0098 1.0121 1.0218 1.0722 

60.02 0.4459 1.0350 1.0819 1.0040 1.0191 1.0321 1.0834 

60.02 0.5022 1.0269 1.0691 1.0111 1.0263 1.0432 1.0781 

60.02 0.552 1.0205 1.0583 1.0078 1.0336 1.0551 1.0858 

60.02 0.597 1.0154 1.0489 1.0032 1.0406 1.0678 1.0981 

60.02 0.6338 1.0117 1.0417 1.0044 1.0466 1.0798 1.0986 

60.02 0.7034 1.0063 1.0290 1.0022 1.0580 1.1068 1.1143 

60.02 0.737 1.0043 1.0235 0.9987 1.0633 1.1223 1.1379 

60.02 0.783 1.0023 1.0166 0.9984 1.0700 1.1464 1.1346 

60.02 0.8275 1.0010 1.0109 0.99896 1.0756 1.1734 1.1448 

60.02 0.8804 1.0002 1.0055 0.99903 1.0807 1.2110 1.1353 

60.02 0.9238 1.0000 1.0023 0.99873 1.0829 1.2469 1.1705 

60.02 0.9707 0.99998 1.0004 0.99953 1.0830 1.2918 1.1305 
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Figure 17. System 6: Methanol (1) + 1-Butanol (2) 
This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 19. Activity Coefficients Results for System 6 

 
γγγγ1    γγγγ2    Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

25 0.0871 1.1979 1.2169 1.0929 1.0022 1.0010 1.0585 

25 0.0953 1.193 1.2144 1.0980 1.0026 1.0012 1.0579 

25 0.1200 1.1793 1.2069 1.0743 1.0040 1.0020 1.0520 

25 0.1295 1.1743 1.2040 1.0919 1.0047 1.0023 1.0625 

25 0.1690 1.1556 1.1919 1.0748 1.0075 1.0041 1.0554 

25 0.2340 1.1299 1.1720 1.0693 1.0132 1.0084 1.0646 

25 0.2654 1.1194 1.1624 1.0696 1.0163 1.0111 1.0719 

25 0.3072 1.107 1.1496 1.0650 1.0209 1.0156 1.0813 

25 0.3173 1.1042 1.1465 1.0664 1.0221 1.0169 1.0786 

25 0.3557 1.0942 1.1349 1.0603 1.0268 1.0222 1.0868 

25 0.3628 1.0925 1.1327 1.0631 1.0277 1.0232 1.0928 

25 0.4172 1.0800 1.1165 1.0562 1.0352 1.0328 1.0891 

25 0.4258 1.0782 1.1139 1.0565 1.0365 1.0345 1.0952 

25 0.4569 1.0718 1.1048 1.0543 1.0414 1.0413 1.1081 

25 0.5048 1.0624 1.0909 1.0467 1.0499 1.0535 1.1214 

25 0.5845 1.0481 1.0689 1.0367 1.0672 1.0796 1.1441 

25 0.6544 1.0363 1.0509 1.0281 1.0870 1.1100 1.1621 

25 0.7237 1.0255 1.0348 1.0182 1.1127 1.1488 1.2094 

25 0.8164 1.0129 1.0168 1.0088 1.1604 1.2188 1.2827 

25 0.8660 1.0074 1.0094 1.0046 1.1944 1.267 1.3519 

25 0.9290 1.0023 1.0028 1.001 1.2491 1.3422 1.4593 
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Figure 18. System 7: Methyl Acetate (1) + Methanol (2) 
This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 20. Activity Coefficients Results for System 7 

 
γγγγ1 γγγγ2 Temp 

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

55 0.125 2.1741 2.0455 2.1343 1.0131 1.0133 1.0284 

55 0.250 1.7972 1.7131 1.7839 1.0590 1.0557 1.0426 

55 0.378 1.5006 1.4617 1.5055 1.1505 1.1354 1.1404 

55 0.480 1.3243 1.3113 1.3372 1.2638 1.2321 1.2466 

55 0.625 1.1510 1.1568 1.1778 1.5025 1.4387 1.4433 

55 0.652 1.1274 1.1346 1.1318 1.5586 1.4888 1.5592 

55 0.750 1.0608 1.0692 1.0573 1.7972 1.7117 1.8197 

55 0.875 1.0137 1.0175 1.0185 2.1856 2.1232 2.1559 
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Figure 19. System 8: Acetone (1) + Benzene (2) 
This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 21. Activity Coefficients Results for System 8 

 
γγγγ1 γγγγ2 Temp 

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

40 0.0570 1.5766 1.4501 1.5333 1.0021 1.0011 1.0089 

40 0.1027 1.4944 1.4091 1.4592 1.0068 1.0036 1.0126 

40 0.1608 1.4050 1.3600 1.2695 1.0163 1.0090 0.9662 

40 0.2615 1.2824 1.2824 1.2442 1.0413 1.0250 1.0557 

40 0.3240 1.2229 1.2390 1.1951 1.0619 1.0398 1.0728 

40 0.3734 1.1832 1.2072 1.1605 1.0809 1.0544 1.0947 

40 0.4636 1.1244 1.1547 1.1081 1.1212 1.0887 1.1297 

40 0.5300 1.0906 1.1207 1.0859 1.1553 1.1213 1.1698 

40 0.5892 1.0663 1.0937 1.0670 1.1889 1.1566 1.1964 

40 0.7325 1.0256 1.0417 1.0253 1.2821 1.2726 1.2834 

40 0.8051 1.0130 1.0228 1.0107 1.3357 1.3527 1.3445 

40 0.8807 1.0047 1.0088 1.0042 1.3959 1.4564 1.4197 
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Figure 20. System 9: Acetone (1) + Hexane (2) 

This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 22. Activity Coefficients Results for System 9 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

45 0.0651 3.8874 4.3018 3.7694 1.0068 1.0080 1.0175 

45 0.1592 3.0064 3.1826 2.9722 1.0399 1.0470 1.0764 

45 0.2549 2.3976 2.4547 2.3331 1.1031 1.1203 1.1431 

45 0.3478 1.9805 1.9822 1.9260 1.1979 1.2283 1.2537 

45 0.4429 1.6703 1.6479 1.6352 1.3391 1.3859 1.4005 

45 0.5210 1.4776 1.4493 1.4539 1.5009 1.5618 1.5664 

45 0.5907 1.3414 1.3140 1.3105 1.6942 1.7656 1.7287 

45 0.6202 1.2923 1.2663 1.2709 1.7941 1.8686 1.8321 

45 0.7168 1.1615 1.1430 1.1446 2.2260 2.2978 2.2188 

45 0.7923 1.0876 1.0760 1.0878 2.7256 2.7672 2.6746 

45 0.8022 1.0796 1.0689 1.1058 2.8058 2.8404 2.5458 

45 0.8692 1.0355 1.0302 1.0274 3.4712 3.4271 3.3264 

45 0.9288 1.0108 1.0090 1.0116 4.3058 4.1224 4.2642 

45 0.9658 1.0025 1.0021 0.9884 4.9897 4.6660 4.7251 
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Figure 21. System 10: Acetone (1) + Toluene (2) 

This system is included in the 921 systems compiled from 
DECHEMA. 

 
Table 23. Activity Coefficients Results for System 10 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

35 0.1469 1.5461 1.3612 1.4453 1.0152 1.0051 1.0650 

35 0.1988 1.4624 1.3309 1.4012 1.0271 1.0098 1.0273 

35 0.2126 1.4424 1.3230 1.3677 1.0308 1.0114 1.0714 

35 0.2757 1.3608 1.2868 1.3066 1.0503 1.0205 1.0624 

35 0.3761 1.2581 1.2309 1.2022 1.0908 1.0428 1.1293 

35 0.4541 1.1954 1.1891 1.1469 1.1311 1.0688 1.1853 

35 0.5234 1.1492 1.1536 1.1007 1.1746 1.1003 1.2444 

35 0.5821 1.1158 1.1251 1.0738 1.2183 1.1350 1.2570 

35 0.6450 1.0850 1.0963 1.0492 1.2736 1.1828 1.3524 

35 0.7043 1.0603 1.0713 1.0283 1.3359 1.2409 1.3634 

35 0.7519 1.0434 1.0530 1.0178 1.3947 1.2994 1.3632 

35 0.8026 1.0282 1.0357 1.0055 1.4679 1.3769 1.4446 

35 0.8578 1.0152 1.0199 0.9967 1.5628 1.4848 1.5315 

35 0.9257 1.0043 1.0060 0.9893 1.7078 1.6649 1.6577 
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Figure 22. System 11: 2,4-Dimethylpentane (1) + Benzene (2) 

This system was not included in the 921 systems compiled from 
DECHEMA. 

 
Table 24. Activity Coefficients Results for System 11 

 
γγγγ1    γγγγ2    Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

77.3 0.078 1.7276 1.5491 1.7593 1.0041 1.0054 1.0312 

77 0.106 1.6693 1.4863 1.7142 1.0076 1.0097 1.0257 

76.5 0.14 1.6034 1.4203 1.5672 1.0133 1.0162 1.0430 

76.3 0.152 1.5814 1.3992 1.6312 1.0157 1.0188 1.0327 

76.1 0.192 1.5122 1.3359 1.4359 1.0252 1.0287 1.0585 

75.9 0.224 1.4614 1.2925 1.3714 1.0344 1.0377 1.0711 

75.7 0.251 1.4215 1.2601 1.3418 1.0434 1.0460 1.0802 

75.5 0.281 1.3801 1.2280 1.3134 1.0546 1.0559 1.0908 

75.4 0.335 1.3130 1.1789 1.2407 1.0783 1.0753 1.1155 

75.4 0.378 1.2658 1.1467 1.2073 1.1004 1.0919 1.1277 

75.2 0.432 1.2136 1.1133 1.1715 1.1323 1.1142 1.1610 

75.4 0.48 1.1734 1.0889 1.1375 1.1648 1.1349 1.1781 

75.3 0.525 1.1404 1.0700 1.1211 1.1988 1.1552 1.2085 

75.5 0.572 1.1105 1.0536 1.0977 1.2381 1.1769 1.2333 

75.5 0.616 1.0865 1.0409 1.0852 1.2784 1.1979 1.2698 

75.9 0.662 1.0650 1.0300 1.0632 1.3243 1.2200 1.2968 

76.1 0.700 1.0500 1.0227 1.0611 1.3652 1.2387 1.3089 

76.3 0.74 1.0366 1.0163 1.0495 1.4110 1.2585 1.3541 

76.6 0.785 1.0243 1.0106 1.0446 1.4661 1.2810 1.3897 

77.2 0.839 1.0131 1.0056 1.0303 1.5369 1.3079 1.4555 
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Figure 23. System 12: Cyclohexane (1) + Isopropyl Alcohol (2) 
This system is included in the 921 systems compiled from 
DECHEMA as an isothermal system at a different temperature. 

 
Table 25. Activity Coefficients Results for System 12 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

67.3 0.029 5.8966 4.2363 4.5675 1.0025 1.0010 1.1364 

67.0 0.068 4.7907 3.8929 3.7706 1.0131 1.0053 1.0328 

63.1 0.138 3.5330 3.3805 3.2967 1.0488 1.0225 1.0833 

61.2 0.213 2.7561 2.9176 2.7533 1.1052 1.0557 1.1213 

60.1 0.266 2.3999 2.6403 2.4872 1.1543 1.0901 1.1672 

59.1 0.313 2.1646 2.4239 2.2774 1.2038 1.1294 1.2508 

58.3 0.408 1.8285 2.0534 1.9303 1.3234 1.2412 1.3775 

58.0 0.475 1.6574 1.8386 1.7335 1.4303 1.3552 1.5011 

57.8 0.556 1.4901 1.6203 1.5438 1.6021 1.5512 1.6984 

57.8 0.637 1.3495 1.4395 1.3758 1.8560 1.8488 2.0065 

57.9 0.734 1.2068 1.2640 1.2500 2.3732 2.4592 2.4882 

58.5 0.818 1.1066 1.1433 1.1363 3.2129 3.4869 3.2916 

59.1 0.884 1.0471 1.0688 1.0686 4.4163 5.1331 4.6018 

61.9 0.963 1.0054 1.0093 1.0192 7.2844 10.364 8.1042 
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Figure 24. System 13: Ethylcyclohexane (1) + Isopropyl Alcohol (2) 

This system was not included in the 921 systems compiled from DECHEMA. 
 

Table 26. Activity Coefficients Results for System 13 
 

γγγγ1    γγγγ2    Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

66.5 0.059 5.1585 5.4078 5.7770 1.0099 1.0063 1.0344 

66.25 0.100 4.2455 4.7320 4.7842 1.0270 1.0180 1.0583 

66.34 0.120 3.8974 4.4444 4.7150 1.0379 1.0259 1.0538 

66.3 0.130 3.7423 4.3109 4.3936 1.0439 1.0304 1.0666 

66.3 0.113 4.0132 4.5422 4.7387 1.0339 1.0230 1.0558 

66.4 0.161 3.3276 3.9310 4.0579 1.0650 1.0467 1.0770 

66.5 0.239 2.6015 3.1712 3.2597 1.1321 1.1043 1.1418 

66.4 0.216 2.7790 3.3709 3.5390 1.1103 1.0847 1.1188 

67.7 0.377 1.9077 2.2803 2.4396 1.2976 1.2778 1.2537 

67.5 0.348 2.0160 2.4316 2.6274 1.2575 1.2322 1.2134 

68.8 0.558 1.4502 1.6084 1.6792 1.6506 1.7364 1.6517 

70.8 0.786 1.1244 1.1613 1.2921 2.8320 3.4287 2.9582 

77.5 0.89 1.0369 1.0485 1.0434 4.3350 5.6805 4.0146 

78.3 0.909 1.0258 1.0344 1.0380 4.7710 6.3847 4.5875 

84.1 0.951 1.0079 1.0106 1.0335 6.0371 8.3865 5.7276 

85.1 0.954 1.0070 1.0094 1.0266 6.1476 8.5371 5.7134 

92.1 0.977 1.0018 1.0024 1.0165 7.1086 9.8605 6.6209 

92.9 0.979 1.0015 1.0020 1.0046 7.2028 9.9750 6.8637 

101.6 0.994 1.0001 1.0002 1.0141 7.9729 10.6650 8.4350 

101.1 0.993 1.0002 1.0002 1.0081 7.9178 10.6120 8.0210 
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Figure 25. System 14: Benzene (1) + Isopropyl Alcohol (2) 
This system is included in the 921 systems compiled from 
DECHEMA as an isothermal system at a different temperature. 

 
Table 27. Activity Coefficients Results for System 14 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

69.5 0.039 3.1057 3.0254 3.5011 1.0025 1.0013 1.0210 

67.1 0.089 2.6948 2.8018 2.9422 1.0122 1.0069 1.0392 

65.4 0.142 2.3655 2.5814 2.6093 1.0295 1.0183 1.0500 

63.9 0.197 2.1047 2.3733 2.3984 1.0543 1.0366 1.0652 

62.9 0.255 1.8925 2.1739 2.1215 1.0874 1.0642 1.1086 

61.8 0.355 1.6262 1.8768 1.7724 1.1620 1.1364 1.2058 

61.0 0.414 1.5083 1.7275 1.6761 1.2179 1.1979 1.2677 

60.9 0.495 1.3772 1.5476 1.4992 1.3137 1.3134 1.3528 

60.3 0.566 1.2835 1.4141 1.3972 1.4228 1.4562 1.5141 

60.2 0.640 1.2016 1.2949 1.2816 1.5730 1.6655 1.7310 

60.1 0.716 1.1315 1.1930 1.1976 1.7860 1.9809 2.0360 

60.3 0.797 1.0715 1.1061 1.1206 2.1170 2.5075 2.5360 

63.0 0.942 1.0067 1.0105 1.0104 3.2457 4.6252 4.5911 

64.7 0.976 1.0012 1.0019 0.9953 3.6938 5.5995 6.2019 
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Figure 26. System 15: Toluene (1) + Isopropyl Alcohol (2) 

This system was not included in the 921 systems 
compiled from DECHEMA. None of the prediction 
methods was able to predict the deviation peak of γ21 at a 
low X2 value. 

 

Table 28. Activity Coefficients Results for System 15 
 

γγγγ1 γγγγ2 Temp 

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

81.6 0.067 3.0777 3.1255 3.0223 1.0069 1.0052 1.0237 

81.2 0.142 2.5265 2.6786 2.5740 1.0302 1.0236 1.0529 

81.2 0.185 2.2816 2.4636 2.3817 1.0510 1.0404 1.0696 

81.4 0.220 2.1118 2.3070 2.1813 1.0718 1.0578 1.0854 

81.5 0.258 1.9523 2.1544 2.1034 1.0986 1.0807 1.0997 

81.5 0.296 1.8148 2.0178 1.9673 1.1297 1.1082 1.1353 

81.8 0.324 1.7254 1.9252 1.8546 1.1557 1.1316 1.1525 

82.2 0.426 1.4680 1.6437 1.5846 1.2731 1.2439 1.2749 

83.2 0.531 1.2856 1.4234 1.3654 1.4376 1.4178 1.4330 

84.0 0.603 1.1949 1.3046 1.2723 1.5820 1.5873 1.5742 

85.4 0.688 1.1151 1.1918 1.1935 1.7941 1.8664 1.7752 

86.6 0.744 1.0758 1.1321 1.1279 1.9641 2.1188 1.9817 

88.5 0.797 1.0469 1.0853 1.0778 2.1521 2.4286 2.1768 

91.0 0.851 1.0250 1.0475 1.0584 2.3762 2.8441 2.4000 

94.4 0.897 1.0119 1.0234 1.0244 2.5980 3.3017 2.6305 

96.6 0.922 1.0068 1.0136 1.0242 2.7325 3.6029 2.7742 

104.6 0.970 1.0010 1.0021 0.7619 3.0227 4.2603 5.3889 
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Figure 27. System 16: Ethyl Ether (1) + Acetone (2) 
This system is included in the 921 systems compiled from 
DECHEMA as an isothermal system at a different temperature. 
The prediction for the activity coefficient of molecule 2 from the 
UNIFAC and ANN methods were close to each other but far 
from the experimental values. 

 
Table 29. Activity Coefficients Results for System 16 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

0 0.156 1.8182 1.6010 1.8281 1.0214 1.0154 1.1136 

0 0.192 1.7304 1.5429 1.4276 1.0321 1.0233 1.1643 

0 0.364 1.4183 1.3220 1.2933 1.1140 1.0861 1.2191 

0 0.510 1.2447 1.1901 1.0588 1.2330 1.1786 1.4402 

0 0.617 1.1516 1.1178 1.0588 1.3634 1.2780 1.6908 

0 0.835 1.0306 1.0238 1.0028 1.8394 1.6189 2.1738 
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Figure 28. System 17:  Acetone (1) + Isopropyl Alcohol (2) 
This system is included in the 921 systems compiled from 
DECHEMA even though was taken from a different experimental 
database. 

 
Table 30. Activity Coefficients Results for System 17 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

25 0.175 1.8681 1.7034 1.4823 1.0384 1.0238 1.1202 

25 0.339 1.4848 1.4127 1.3108 1.1225 1.0923 1.2898 

25 0.514 1.2678 1.2090 1.1242 1.2620 1.2265 1.6016 

25 0.669 1.1395 1.0938 1.0516 1.4751 1.4180 1.9182 

25 0.839 1.0397 1.0220 1.0409 1.9681 1.7471 2.8548 
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Figure 29. System 18: Isopropyl Alcohol (1) + Ethyl Acetate (2) 
This system is included in the 921 systems compiled from 
DECHEMA even though was taken from a different experimental 
database. 

 
Table 31. Activity Coefficients Results for System 18 

 
γγγγ1 γγγγ2 Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

40 0.0915 2.0621 2.2288 2.0862 1.0078 1.0086 1.0101 

40 0.1860 1.7757 1.8928 1.8919 1.0324 1.0355 1.0331 

40 0.3595 1.4155 1.4788 1.5003 1.1238 1.1357 1.1293 

40 0.4600 1.2757 1.3197 1.3103 1.2078 1.2290 1.2020 

40 0.5385 1.1922 1.2245 1.2235 1.2921 1.3243 1.2771 

40 0.6150 1.1286 1.1515 1.1706 1.3924 1.4399 1.3895 

40 0.7100 1.0699 1.0836 1.1233 1.5460 1.6225 1.5160 

40 0.7300 1.0601 1.0721 1.0954 1.5829 1.6675 1.5749 

40 0.8010 1.0319 1.0387 1.0771 1.7290 1.8492 1.7242 

40 0.8500 1.0178 1.0219 1.0740 1.8446 1.9977 1.9641 

40 0.8845 1.0105 1.0129 1.0532 1.9341 2.1156 1.9337 

40 0.9300 1.0038 1.0047 1.0395 2.0634 2.2905 2.0824 

40 0.9500 1.0019 1.0024 1.0372 2.1246 2.3752 2.1279 

40 0.9620 1.0011 1.0014 1.0407 2.1627 2.4285 2.2248 
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Figure 30. System 19: Chloroform (1) + n-Butyl Alcohol (2) 
This system was not included in the 921 systems compiled from 
DECHEMA. None of the prediction methods was able to predict the 
deviation peak of γ21 at a low X2 value. 

 

Table 32. Activity Coefficients Results for System 19 
 

γγγγ1    γγγγ2    Temp  

(ºC) 
x1 

ANN UNIFAC exp ANN UNIFAC exp 

115.1 0.0180 2.1604 1.4168 1.2632 1.0004 1.0000 0.9987 

113.8 0.0300 2.1075 1.4136 1.2811 1.0010 1.0001 0.9855 

106.4 0.0764 1.9334 1.4038 1.3392 1.0058 1.0009 1.0404 

99.7 0.1388 1.7581 1.3855 1.3514 1.0173 1.0031 0.9932 

93.4 0.2016 1.6285 1.3652 1.3401 1.0333 1.0073 0.9835 

90.3 0.2272 1.5853 1.3571 1.3528 1.0409 1.0096 1.0354 

89.3 0.2484 1.5527 1.3485 1.3062 1.0477 1.0119 1.0304 

84.8 0.3036 1.4790 1.3272 1.3063 1.0672 1.0195 1.0352 

84.4 0.3156 1.4647 1.3219 1.2770 1.0719 1.0215 1.0502 

82.2 0.3452 1.4315 1.3096 1.2849 1.0841 1.0271 1.0330 

80.0 0.3838 1.3917 1.2925 1.2541 1.1018 1.0360 1.0942 

78.7 0.4060 1.3702 1.2825 1.2510 1.1130 1.0420 1.0894 

77.5 0.4244 1.3531 1.2741 1.2564 1.1230 1.0475 1.0802 

75.1 0.4798 1.3043 1.2470 1.2144 1.1576 1.0680 1.1595 

74.6 0.4940 1.2922 1.2398 1.2065 1.1678 1.0743 1.1376 

73.0 0.5300 1.2625 1.2216 1.1980 1.1968 1.0926 1.1293 

70.8 0.598 1.2084 1.1854 1.1511 1.2668 1.1387 1.2364 

69.2 0.6524 1.1670 1.1556 1.1225 1.3428 1.1906 1.2764 

67.2 0.7220 1.1171 1.1171 1.0920 1.4788 1.2874 1.4204 

66.3 0.7698 1.0857 1.0905 1.0591 1.6085 1.3843 1.5972 

65.4 0.8084 1.0626 1.0698 1.0462 1.7435 1.4909 1.6087 

64.5 0.8528 1.0393 1.0471 1.0269 1.9442 1.6614 1.7834 

63.9 0.9032 1.0183 1.0241 0.9762 2.2540 1.9565 4.0908 

62.6 0.9536 1.0045 1.0067 0.9932 2.6918 2.4646 2.1655 
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Appendix B Functional Groups Table 

Table 33. Organic Functional Groups Table Based on Quantum Mechanical Calculations 
Family name Group # Functional Group Family name Group # Functional Group 

G1 C G95 CH2CN 

G2 CH 

Nitrile 

G96 CH3CN 

G3 CH2 G97 CNO2 

G4 CH3 G98 CHNO2 

Alkane 

G5 CH4 G99 CH2NO2 

G6 C= 

Nitro 

G100 CH3NO2 

G7 CH= G101 CSH 

Alkene 

G8 CH2= G102 CHSH 

G9 Cº G103 CH2SH Alkyne 

G10 CHº 

Thiol 

G104 CH3SH 

G11 COH G105 CCl 

G12 CHOH G106 CHCl 

G13 CH2OH G107 CH2Cl 

Alcohol 

G14 CH3OH 

Chloroalkane 

G108 CH3Cl 

G15 GCOH G109 CHF 

G16 GCHOH G110 CH2F2 

Glycol 

G17 gCH2OH G111 CF 

G18 COC G112 CF2 

G19 CHOCH G113 CF3 

G20 CH2OCH2 G114 CHF2 

G21 CH3OCH3 G115 CHF3 

G22 COCH G116 CH3F 

G23 COCH2 

Fluoroalkane 

G117 CH2F 

G24 COCH3 G118 CClF2 

G25 CHOCH2 G119 CCl2F 

G26 CHOCH3 G120 CClF3 

G27 CH2OCH3 G121 CCl3F 

G28 CH3OC G122 CHClF 

G29 CH3OCH G123 CHCl2 

G30 CH3OCH2 G124 CHCl3 

G31 CH2OC G125 CCl2 

G32 CH2OCH G126 CCl3 

Ether 

G33 CHOC 

Chlorofluoroalkane 

G127 CHClF2 
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Family name Group # Functional Group Family name Group # Functional Group 

G34 HCHO G128 CHCl2F 

G35 CCHO G129 CClF 

G36 CHCHO G130 CH2ClF 

G37 CH2CHO G131 CH2Cl2 

Aldehyde 

G38 CH3CHO G132 CCl2F2 

G39 CCOC G133 CCl4 

G40 CHCOCH G134 aC 

G41 CH2COCH2 G135 aCH 

G42 CH3COCH3 G136 aCOH 

G43 CCOCH G137 (aCH)2aCNH2 

G44 CCOCH2 G138 (aCH)2aCNO2 

G45 CCOCH3 G139 (aCH)2aCCl 

G46 CHCOCH2 

Arene 

G140 aCHNaCH 

G47 CHCOCH3 G141 CCONH2 

G48 CH2COCH3 G142 CHCONH2 

G49 CH3COC G143 CH2CONH2 

G50 CH3COCH 

Amide(1) 

G144 CH3CONH2 

G51 CH3COCH2 G145 CCONHC 

G52 CH2COC G146 CHCONHCH 

G53 CH2COCH G147 
CH2CONHCH

2 

Ketone 

G54 CHCOC G148 
CH3CONHCH

3 

G55 HCOOH G149 CCONHCH 

G56 CCOOH G150 CCONHCH2 

G57 CHCOOH G151 CCONHCH3 

G58 CH2COOH G152 CHCONHCH2 

Carboxylic Acid 

G59 CH3COOH G153 CHCONHCH3 

G60 HCOOC G154 
CH2CONHCH

3 

G61 HCOOCH G155 CH3CONHC 

G62 HCOOCH2 G156 CH3CONHCH 

Ester(1) 

G63 HCOOCH3 G157 
CH3CONHCH

2 

G64 CCOOC G158 CH2CONHC Ester(2) 

G65 CHCOOCH 

Amide(2) 

G159 CH2CONHCH 
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Family name Group # Functional Group Family name Group # Functional Group 

G66 CH2COOCH2 G160 CHCONHC 

G67 CH3COOCH3 G161 CCONC2 

G68 CCOOCH G162 CHCON(CH)2 

G69 CCOOCH2 G163 
CH2CON(CH2

)2 

G70 CCOOCH3 G164 
CH3CON(CH3

)2 

G71 CHCOOCH2 G165 CCON(CH)2 

G72 CHCOOCH3 G166 CCON(CH2)2 

G73 CH2COOCH3 G167 CCON(CH3)2 

G74 CH3COOC G168 
CHCON(CH2)

2 

G75 CH3COOCH G169 
CHCON(CH3)

2 

G76 CH3COOCH2 G170 
CH2CON(CH3

)2 

G77 CH2COOC G171 CH3CONC2 

G78 CH2COOCH G172 
CH3CON(CH)

2 

G79 CHCOOC G173 
CH3CON(CH2

)2 

G80 CNH2 G174 CH2CONC2 

G81 CHNH2 G175 
CH2CON(CH)

2 

G82 CH2NH2 

Amide(3) 

G176 CHCONC2 

Amine(1) 

G83 CH3NH3 Water G177 H2O 

G84 C2NH Furan G178 Furan 

G85 (CH)2NH DMF G179 DMF 

G86 (CH2)2NH Carbon Monoxide G180 CO 

Amine(2) 

G87 (CH3)2NH Carbon Dioxide G181 CO2 

G88 C3N Carbon Disulfide G182 CS2 

G89 (CH)3N Pyrrolidone G183 CH2NHC=0 

G90 (CH2)3N Vinyl Chloride G184 CH2=CHCl 

Amine(3) 

G91 (CH3)3N 3,3,3-Trifluoropropene G185 CF3CH=CH2 

Hydrogen Cyanide G92 HCN Methoxide G186 OCH3 

G93 CCN       Nitrile 

G94 CHCN       
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Appendix C MatLab Programs 

The first MatLab program developed was called Create.m and it purpose is to 

organize the vapor-liquid equilibrium experimental data within the information matrix.  

The following diagram shows the algorithm developed to perform the mentioned task. 

 

Figure 31. Algorithm flowchart for Create.m 
 

The vapor-liquid equilibrium experimental data was entered into a spreadsheet 

using the format specified in the following table.   
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Table 34. Experimental raw data spreadsheet format 
 

System # 0 0 0 0 0 0 0 

0 Temp A12 A21 alfa12 0 0 0 

0 A1 B1 C1 0 0 0 0 

0 A2 B2 B3 0 0 0 0 

0 G11 G12 G13 G14 G15 G16 G17 

0 n11 n12 n13 n14 n15 n16 n17 

0 G21 G22 G23 G24 G25 G26 G27 

0 n21 n22 n23 n24 n25 n26 n27 

0 P1 X1 Y1 T1 �U11 �U21 0 

0 P2 X2 Y2 T2 �U12 �U22 0 

0 P3 X3 Y3 T3 �U13 �U23 0 

0 P4 X4 Y4 T4 �U14 �U24 0 

0 P5 X5 Y5 T5 �U15 �U25 0 

0 P6 X6 Y6 T6 �U16 �U26 0 

0 Pn Xn Yn Tn �U1n �U2n 0 

0 0 0 0 0 0 0 0 
This table presents the format used to organize the experimental vapor-liquid equilibrium data 
taken from DECHEMA. 

 

where, 

System # is the data system number. 

Temp is the temperature of the system if isothermal in ºC. 

A12, A21and alfa12 are the NRTL model constants. 

A1, B1 and C1 are the Antoine constants for molecule 1. 

A2, B2 and C2 are the Antoine constants for molecule 2. 

G11 to G17 are the number of the functional groups for molecule 1. 

n11 to n17 are the quantity of each functional group for molecule 1.  

G21 to G27 are the number of the functional groups for molecule 2. 

n21 to n27 are the quantity of each functional group for molecule 2. 

P1 to Pn are the system pressure for each data point. 
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X1 to Xn are the liquid mol fraction for molecule 1 for each data point. 

Y1 to Yn are the vapor mol fraction for molecule 1 for each data point. 

T1 to Tn are the system temperature for each data point. 

γU11 to γU1n are the activity coefficient predicted by UNIFAC for molecule 1 for 

each data point. 

γU21 to γU2n are the activity coefficient predicted by UNIFAC for molecule 2 for 

each data point. 

Filling all unused cells of the spreadsheet data table with zeros is required by 

MatLab to load the file.  The MatLab program reads the data file, process the 

experimental raw data and creates the information matrix.  The Create.m program uses 

the MatLab function fminunc and the function Createfun_Margules3.m to calculate the 

Margules equation parameters.  The information matrix is saved in a file to be used by 

the second MatLab program.  The MatLab code for program Create.m is presented below. 

% Program Create.m 
% This program will create the data base for the activity 
coefficients 
% estimation program. 
% The raw data was taken from DECHEMA data series. 
 
clear 
clc 
 
% Load the data file where experimental data is contain. 
filename = input('Enter the experimental data file name:','s'); 
s = ['load ' filename '.txt']; 
disp('A large data file is loading. This may take a few minutes.') 
disp('Please wait!') 
eval(s); 
disp('Data had been loaded!') 
g = 186; 
MW = [12 13 14 15 16 12 13 14 12 13 29
 30 31 32 29 30 31 40 42 44 46 41
 42 43 43 44 45 43 44 45 42 43 41 30 41 42
 43 44 52 54 56 58 53 54 55 55 56 57
 55 56 57 54 55 53 46 59 58 59 60
 57 58 59 60 68 70 72 74 69 70 71
 71 72 74 71 72 73 70 71 69 28 29
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 30 31 39 41 43 45 50 52 56 59 27
 38 39 40 41 58 59 60 61 45 46 47
 48 47.5 48.5 49.5 50.5 32 52 31 50 69 51
 70 34 33 85.5 102 104.5 137.5 67.5 84 119.5 83
 118.5 86.5 103 66.5 68.5 85 121 154 12 13 29
 54 84 73.5 40 56 57 58 59 67 69 71
 73 68 69 70 71 72 73 70 71 72 69
 70 68 66 81 85 87 80 82 84 83 85
 86 81 83 85 80 82 79 18 68 73 28
 44 32 57 62.5 96 31]; 
s2 = ['data = ' filename ';']; 
eval(s2) 
% Raw data manipulation 
systems = [nonzeros(data(:,1)) find(data(:,1))]; 
systems_Margules3 = [nonzeros(data(:,1)) find(data(:,1))]; 
systems_Margules3 = [systems_Margules3; length(systems_Margules3)+1 
length(data(:,1))]; 
X = []; 
X1mol = []; 
X2mol = []; 
Y1mol = []; 
Y2mol = []; 
GF1 = []; 
GF2 = []; 
Antoine1 = []; 
Antoine2 = []; 
Gammas1E = []; 
Gammas2E = []; 
Gammas1U = []; 
Gammas2U = []; 
P_exp = []; 
T_exp = []; 
Max = max(systems(:,1)); 
for i = 1:length(systems(:,1)) 
   S = int2str(i); 
   M = num2str(Max); 
   %clc 
   sysnumber = ['Manipulating data of system #' S ' of ' M '.']; 
   disp(sysnumber); 
 
%  X, Y and Gammas matrices creation 
 
 % Margules equation parameters calculation 
   X1_Margules3 = []; 
   X2_Margules3 = []; 
   Y1_Margules3 = []; 
   Y2_Margules3 = []; 
   T_Margules3 = []; 
   P_Margules3 = []; 
   Antoine1_Margules3 = []; 
   Antoine2_Margules3 = []; 
   points_Margules3(i) = systems_Margules3(i+1,2) - 
systems_Margules3(i,2) - 8; 
   X1_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,3)'; 
   X2_Margules3 = 1-X1_Margules3; 
   Y1_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,4)'; 
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   Y2_Margules3 = 1-Y1_Margules3; 
   T_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,5)'; 
   P_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,2)'; 
   Gamma1U = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,6)'; 
   Gamma2U = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,7)'; 
   Antoine1_Margules3 = 
[nonzeros(data(systems_Margules3(i,2)+2,:))']; 
   Antoine2_Margules3 = 
[nonzeros(data(systems_Margules3(i,2)+3,:))']; 
   if 
or(or(X1_Margules3(1)==0,Y1_Margules3(1)==0),or(X1_Margules3(1)==1,Y
1_Margules3(1)==1)) == 1 
      X1_Margules3(1) = []; 
      X2_Margules3(1) = []; 
      Y1_Margules3(1) = []; 
      Y2_Margules3(1) = []; 
      T_Margules3(1) = []; 
      P_Margules3(1) = []; 
      Gamma1U(1) = []; 
      Gamma2U(1) = []; 
      points_Margules3(i) = points_Margules3(i)-1; 
   else 
   end 
   if 
or(or(X1_Margules3(points_Margules3(i))==0,Y1_Margules3(points_Margu
les3(i))==0),or(X1_Margules3(points_Margules3(i))==1,Y1_Margules3(po
ints_Margules3(i))==1)) == 1 
      X1_Margules3(points_Margules3(i)) = []; 
      X2_Margules3(points_Margules3(i)) = []; 
      Y1_Margules3(points_Margules3(i)) = []; 
      Y2_Margules3(points_Margules3(i)) = []; 
      T_Margules3(points_Margules3(i)) = []; 
      P_Margules3(points_Margules3(i)) = []; 
      Gamma1U(points_Margules3(i)) = []; 
      Gamma2U(points_Margules3(i)) = []; 
      points_Margules3(i) = points_Margules3(i)-1; 
   else 
   end 
 % Calculate Gamma i experimental 
   Gamma1E_Margules3 = 
(Y1_Margules3.*P_Margules3)./(X1_Margules3.*10.^(Antoine1_Margules3(
1)-(Antoine1_Margules3(2)./(T_Margules3+Antoine1_Margules3(3))))); 
   Gamma2E_Margules3 = 
(Y2_Margules3.*P_Margules3)./(X2_Margules3.*10.^(Antoine2_Margules3(
1)-(Antoine2_Margules3(2)./(T_Margules3+Antoine2_Margules3(3))))); 
   GeRT_exp_Margules3 = (X1_Margules3.*log(Gamma1E_Margules3)) + 
(X2_Margules3.*log(Gamma2E_Margules3)); 
   Gamma1E_Gamma2E = [Gamma1E_Margules3 Gamma2E_Margules3]; 
   save expdata X1_Margules3 X2_Margules3 T_Margules3 
Gamma1E_Margules3 Gamma2E_Margules3 GeRT_exp_Margules3 
Gamma1E_Gamma2E 
   options = optimset('MaxFunEvals',1000,'MaxIter',1000); 
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   A0_Margules3 = [1;1;1]; 
   A_Margules3_fminunc(i,:) = 
fminunc('Createfun_Margules3',A0_Margules3); 
   Antoine1 = [Antoine1;Antoine1_Margules3]; 
   Antoine2 = [Antoine2;Antoine2_Margules3]; 
   Gammas1E = [Gammas1E;Gamma1E_Margules3']; 
   Gammas2E = [Gammas2E;Gamma2E_Margules3']; 
   X1mol = [X1mol;X1_Margules3']; 
   X2mol = [X2mol;X2_Margules3']; 
   Y1mol = [Y1mol;Y1_Margules3']; 
   Y2mol = [Y2mol;Y2_Margules3']; 
   Gammas1U = [Gammas1U;Gamma1U']; 
   Gammas2U = [Gammas2U;Gamma2U']; 
   P_exp = [P_exp;P_Margules3']; 
   T_exp = [T_exp;T_Margules3']; 
   P = data(systems(i,2)+8,2); 
   points = 0; 
   point = 0; 
   while P ~= 0 
      xpoint = 1; 
      ypoint = 1; 
      if data(systems(i,2)+point+8,3) == 0 
         xpoint = 0; 
      end 
      if data(systems(i,2)+point+8,4) == 0 
         ypoint = 0; 
      end 
      if data(systems(i,2)+point+8,3) == 1 
         xpoint = 0; 
      end 
      if data(systems(i,2)+point+8,4) == 1 
         ypoint = 0; 
      end 
      if and(xpoint,ypoint) == 1 
         points = points + 1; 
      else 
      end 
      point = point + 1; 
      P = data(systems(i,2)+8+point,2); 
   end 
   systems(i,3) = points; 
   NGF1 = length(nonzeros(data(systems(i,2)+4,:))); 
   NGF2 = length(nonzeros(data(systems(i,2)+6,:))); 
   [o,p] = size(X); 
   k = 1; 
   l = 0; 
 
 % Suma de la cantidad total de interacciones. 
   sumINT(o+1) = 0; 
   sumINT(o+2) = 0; 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            sumINT(o+1) = sumINT(o+1) + 
(data(systems(i,2)+5,r+1)*data(systems(i,2)+7,s+1)); 
            sumINT(o+2) = sumINT(o+2) + 
(data(systems(i,2)+5,r+1)*data(systems(i,2)+7,s+1)); 
         else 
         end 
      end 
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   end 
 
 % 1)Posisionar el numero de la interacción. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            GF1 = [GF1;data(systems(i,2)+4,r+1)]; 
            GF2 = [GF2;data(systems(i,2)+6,s+1)]; 
            X(o+1,l+k) = g * (data(systems(i,2)+4,r+1) - 1) + 
data(systems(i,2)+6,s+1); 
            X(o+2,l+k) = g * (data(systems(i,2)+6,s+1) - 1) + 
data(systems(i,2)+4,r+1); 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
 % 2)Posisionar la Temperatura del sistema. 
   if systems(i,1) > 943 
      for r = 1:NGF1 
         for s = 1:NGF2 
            if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
               X(o+1,l+k) = mean(T_Margules3); 
               X(o+2,l+k) = mean(T_Margules3); 
               l = l + 8; 
               else 
               end 
            end 
         end 
   elseif systems(i,1) > 921 
      for r = 1:NGF1 
         for s = 1:NGF2 
            if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
               X(o+1,l+k) = mean(T_Margules3)-273.15; 
               X(o+2,l+k) = mean(T_Margules3)-273.15; 
               l = l + 8; 
            else 
            end 
         end 
      end 
   else 
      for r = 1:NGF1 
         for s = 1:NGF2 
            if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
               X(o+1,l+k) = mean(T_Margules3); 
               X(o+2,l+k) = mean(T_Margules3); 
               l = l + 8; 
            else 
            end 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
 % 3)Posisionar la Presión del sistema. 
   if systems(i,1) > 943 
      for r = 1:NGF1 
         for s = 1:NGF2 
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            if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
               X(o+1,l+k) = mean(P_Margules3); 
               X(o+2,l+k) = mean(P_Margules3); 
               l = l + 8; 
            else 
            end 
         end 
      end 
   elseif systems(i,1) > 921 
      for r = 1:NGF1 
         for s = 1:NGF2 
            if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
               X(o+1,l+k) = mean(P_Margules3) * 7.500617; 
               X(o+2,l+k) = mean(P_Margules3) * 7.500617; 
               l = l + 8; 
            else 
            end 
         end 
      end 
   else 
      for r = 1:NGF1 
         for s = 1:NGF2 
            if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
               X(o+1,l+k) = mean(P_Margules3); 
               X(o+2,l+k) = mean(P_Margules3); 
               l = l + 8; 
            else 
            end 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
 % 4)Posisionar la cantidad de GF de la molécula #1 en la 
interacción. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            X(o+1,l+k) = data(systems(i,2)+5,r+1); 
            X(o+2,l+k) = data(systems(i,2)+7,s+1); 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
 % 5)Posisionar la cantidad de GF de la molécula #2 en la 
interacción. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            X(o+1,l+k) = data(systems(i,2)+7,s+1); 
            X(o+2,l+k) = data(systems(i,2)+5,r+1); 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
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   l = 0; 
   sumMW1 = 0; 
   sumMW2 = 0; 
 % 6)Posisionar el peso molecular del grupo funcional de la molécula 
#1. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            X(o+1,l+k) = 
data(systems(i,2)+5,r+1)*MW(data(systems(i,2)+4,r+1)); 
            X(o+2,l+k) = 
data(systems(i,2)+7,s+1)*MW(data(systems(i,2)+6,s+1)); 
            l = l + 8; 
         else 
         end 
      end 
      sumMW1 = sumMW1 + 
data(systems(i,2)+5,r+1)*MW(data(systems(i,2)+4,r+1)); 
   end 
   k = k + 1; 
   l = 0; 
 % 7)Posisionar el peso molecular del grupo funcional de la molécula 
#2. 
   for s = 1:NGF2 
      for r = 1:NGF1 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            X(o+1,l+k) = 
data(systems(i,2)+7,s+1)*MW(data(systems(i,2)+6,s+1)); 
            X(o+2,l+k) = 
data(systems(i,2)+5,r+1)*MW(data(systems(i,2)+4,r+1)); 
            l = l + 8; 
         else 
         end 
      end 
      sumMW2 = sumMW2 + 
data(systems(i,2)+7,s+1)*MW(data(systems(i,2)+6,s+1)); 
   end 
   k = k + 1; 
   l = 0; 
 % 8)Posisionar 1 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+4,r+1) ~= data(systems(i,2)+6,s+1) 
            X(o+1,l+k) = 1; 
            X(o+2,l+k) = 1; 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
end 
disp('End of experimental data manipulation process!') 
disp('Matrices X Y and Gammas had been created succesfully!') 
disp('Saving data matrices to file Databasenew_Margules3.mat') 
save Databasenew_Margules3 X X1mol X2mol Y1mol Y2mol systems 
Antoine1 Antoine2 Gammas1E Gammas2E Gammas1U Gammas2U sumINT 
A_Margules3_fminunc P_exp T_exp 
disp('Data had been save succesfully!') 
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% Program Createfun_Margules3.m 

% This program will determine the Margules constants A, B and C for 
liquid 
% binary systems. 
 
function SSE = Createfun_Margules3(A) 
load expdata 
A1 = A(1); 
B = A(2); 
C = A(3); 
X1 = X1_Margules3; 
X2 = X2_Margules3; 
GeRT = (A1+B.*(X1-X2)+C.*(X1-X2).^2); 
Gamma1M = exp(((A1+3*B+5*C).*(X2.^2))-
((4*(B+4*C)).*(X2.^3))+((12*C).*(X2.^4))); 
Gamma2M = exp(((A1-3*B+5*C).*(X1.^2))+((4*(B-
4*C)).*(X1.^3))+((12*C).*(X1.^4))); 
Gamma1_Gamma2 = [Gamma1M Gamma2M]; 
delta = Gamma1_Gamma2 - Gamma1E_Gamma2E; 
SSE = diag(delta * delta'); 

 

The second MatLab program developed was called NNvsUNIFAC.m and it 

purpose is to search and choose the required vapor-liquid equilibrium experimental data 

within the information matrix, create the training matrices, train the neural network, 

predict the Margules parameters and, calculate the activity coefficients using the four-

suffix Margules equation.  The following diagram shows the algorithm developed to 

perform the mentioned tasks. 
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Figure 32. Algorithm flowchart for NNvsUNIFAC.m 
 

The program saves the predicted activity coefficients and plots a graph comparing 

the results given by the ANN and UNIFAC methods with the experimental data.  The 

MatLab code for program NNvsUNIFAC.m is presented below. 

 
 



 
 
 
 

 96 

%Program NNvsUNIFAC.m 
% This program will compare the results of predicting the activity 
coefficients using the UNIFAC 
% and the Neural Networks methods based on the experimental data 
taken from DECHEMA series. 
 
  clear 
  clc 
  close all 
  warning off all 
  totalsys = 1000; 
  Predsys1 = []; 
  Predsys2 = []; 
 
% Specify system(s) to be evaluated 
% evalsys = [960 954 955 957 944 950 951 948 949]; 
% evalsys = [22 50 74 202 358 366 550 736 771 772]; 
  evalsys = input('Enter the experimental data system number:'); 
  for loop = 1:length(evalsys) 
     sys = evalsys(loop); 
     tic % Start time counter. 
   % Load the experimental database file from DECHEMA. 
     load Databasenew_Margules3.mat 
     sse3 = []; 
     [f,c] = size(X1mol); 
 
   % Determine systems data position in Matrix X. 
     systems(1,4) = 1; 
     systems(1,5) = 1; 
     for i = 2:length(systems(:,1)) 
        systems(i,4) = systems(i-1,4) + 2; 
        systems(i,5) = systems(i-1,5) + systems(i-1,3); 
     end 
     A_Margules3_eval = []; 
     tfsys = []; 
     nneusys = []; 
     Gammaspred = []; 
     GammasT = []; 
     errorssys = []; 
     Xevalc = []; 
     Xeval = []; 
     Xexp = []; 
     Yeval = []; 
     Y1exp = []; 
     Y2exp = []; 
     Peval = []; 
     Pexp = []; 
     Teval = []; 
     Texp = []; 
     Gamma1Ueval = []; 
     Gamma2Ueval = []; 
     Antoine1eval = []; 
     Antoine2eval = []; 
     TPeval = []; 
     TPexp = []; 
     X1eval = []; 
     X2eval = []; 
     X1X2exp = []; 
     Gammaseval = []; 
     Gammasexp = []; 
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     systemseval = []; 
     systemsexp = []; 
     IntXeval1 = []; 
     IntXeval2 = []; 
     S = num2str(sys); 
     sysnumber = ['Evaluating system #' S '.']; 
     disp(sysnumber); 
     Xeval = X(systems(sys,4):systems(sys,4) + 1,:); % Matriz de 
evaluacion = sistema extraido. 
     IntXeval = Xeval(:,1:8:length(Xeval(1,:))); 
     Xevalc = X(systems(sys,4):systems(sys,4) + 
1,1:8*length(nonzeros(IntXeval(1,:)))); % Matriz de evaluacion con 
la cantidad de interacciones del sistema a ser extraido. 
     Xexp = X(1:2*921, :); 
     Y1eval = Y1mol(systems(sys,5):systems(sys,5) + systems(sys,3) - 
1);   % Vector de fracciones molares de fase vapor del sistema a 
extraer. 
     Y2eval = Y2mol(systems(sys,5):systems(sys,5) + systems(sys,3) - 
1);   % Vector de fracciones molares de fase vapor del sistema a 
extraer. 
     Y1exp = Y1mol(1:f-740); 
     Y2exp = Y2mol(1:f-740); 
     Peval = X(systems(sys,4),3); 
     Peval_Y = P_exp(systems(sys,5):systems(sys,5) + systems(sys,3)-
1); 
     Pexp = X(1:2*921,3); 
     Teval = X(systems(sys,4),2); 
     Teval_Y = T_exp(systems(sys,5):systems(sys,5) + systems(sys,3)-
1); 
     Texp = X(1:2*921,2); 
     Gamma1Ueval = Gammas1U(systems(sys,5):systems(sys,5) + 
systems(sys,3) - 1); 
     Gamma2Ueval = Gammas2U(systems(sys,5):systems(sys,5) + 
systems(sys,3) - 1); 
     Antoine1eval = Antoine1(sys,:); 
     Antoine2eval = Antoine2(sys,:); 
     A_Margules3_eval = A_Margules3_fminunc(sys,:); 
     sumINTexp = sumINT(1:2*921);   % Vector de cantidad de 
interacciones del sistema a extraer. 
     sumINTeval = sumINT(systems(sys,4):systems(sys,4) + 1); 
     X1eval = X1mol(systems(sys,5):systems(sys,5) + systems(sys,3) - 
1); 
     X2eval = X2mol(systems(sys,5):systems(sys,5) + systems(sys,3) - 
1); 
     Gammas1Eeval = Gammas1E(systems(sys,5):systems(sys,5) + 
systems(sys,3) - 1); % Vector de coeficientes de actividad 
experimentales del sistema a extraer. 
     Gammas2Eeval = Gammas2E(systems(sys,5):systems(sys,5) + 
systems(sys,3) - 1); % Vector de coeficientes de actividad 
experimentales del sistema a extraer. 
     Gammas1Eexp = Gammas1E(1:f-740); 
     Gammas2Eexp = Gammas2E(1:f-740); 
     systemseval = systems(sys,:); % Matriz de informacion del 
sistema a extraer. 
     systemsexp = systems(1:length(systems(:,1))-39,:); 
     IntXeval1 = Xevalc(1,1:8:length(Xevalc(1,:))); % Interacciones 
en Xevalc parte de Gamma1. 
     IntXeval1 = reshape(IntXeval1,1,prod(size(IntXeval1))); % 
Arreglo de las interacciones en un solo vector. 
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     IntXeval1 = unique(nonzeros(IntXeval1)); % Interacciones 
presentes en el sistema de interes para determinar Gamma1. 
     IntXeval2 = Xevalc(2,1:8:length(Xevalc(2,:))); % Interacciones 
en Xevalc parte de Gamma2. 
     IntXeval2 = reshape(IntXeval2,1,prod(size(IntXeval2))); % 
Arreglo de las interacciones en un solo vector. 
     IntXeval2 = unique(nonzeros(IntXeval2)); % Interacciones 
presentes en el sistema de interes para determinar Gamma2. 
 
   % Training Matrices Creation 
     message = ['Creating Training Matrices for system ' S '!']; 
     disp(message); 
     Xe1 = []; % Experimental Data Training Matrix for Gamma1. 
     TG1 = []; % Targets Matrix for Gamma1. 
     TA1 = []; 
     TY1 = []; 
     T1 = []; 
     P1 = []; 
     sumINTe1 = []; 
     sumINTe2 = []; 
     monitor1 = []; 
     Xe2 = []; % Experimental Data Training Matrix for Gamma2. 
     TG2 = []; % Targets Matrix for Gamma2. 
     TA2 = []; 
     TY2 = []; 
     T2 = []; 
     P2 = []; 
     monitor2 = []; 
     [f,c] = size(Xexp); % Experimental Matrix rows and columns. 
     int = c/8; % Maximum number of interactions for systems in the 
Experimental Matrix. 
     [fp,cp] = size(Xevalc); % Evaluation Matrix rows and columns. 
     intp = cp/8; % Number of interactions for the system of 
interest. 
 
   % Training Matrix Creation for Gamma1 
     monitor1 = zeros(1,length(IntXeval1)); 
     L = 1; 
     o = 0; 
     p = 0; 
     s = 0; 
     t = 0; 
     SysXe1 = []; % Chosen systems matrix to determine Gamma1. 
     SysXe2 = []; % Chosen systems matrix to determine Gamma2. 
     for i = 1:length(systemsexp(:,1)) % Evaluation of all available 
systems in the Experimental Matix. 
        s = s + 1; 
        t = t + 1; 
        while s <= 2 
           p = 0; 
           for j = 1:intp 
              L = 1; 
              if s <= 2 
                 for m = 1:int 
                    if and(Xexp(t,L) == 
IntXeval1(j),monitor1(j)<totalsys) 
                       o = o + 1; 
                       monitor1(j) = monitor1(j)+1; 
                       SysXe1(o,:) = systemsexp(i,:); 
                       Xe1(o,:) = Xexp(t,:); 
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                       TG1(o) = Gammas1Eexp(t); 
                       TA1(o,:) = A_Margules3_fminunc(i,:); 
                       TY1(o) = Y1exp(t); 
                       T1(o) = Texp(t); 
                       P1(o) = Pexp(t); 
                       sumINTe1(o) = sumINTexp(t); 
                       L = 1; 
                       p = 1; 
                       break 
                    else 
                       L = L + 8; 
                    end 
                 end 
              else 
                 break 
              end 
              if p == 1 
                 break 
              end 
           end 
           s = s + 1; 
           t = t + 1; 
        end 
        s = 0; 
        t = t - 1; 
     end 
 
   % Training Matrix Creation for Gamma2 
     monitor2 = zeros(1,length(IntXeval2)); 
     L = 1; 
     o = 0; 
     p = 0; 
     s = 0; 
     t = 0; 
     for i = 1:length(systemsexp(:,1)) % Evaluation of all available 
systems in the Experimental Matix. 
        s = s + 1; 
        t = t + 1; 
        k = 1; 
        while s <= 2 
           p = 0; 
           k = 1; 
           for j = 1:intp 
              L = 1; 
              if s <= 2 
                 for m = 1:int 
                    if and(Xexp(t,L) == 
IntXeval2(j),monitor2(j)<totalsys) 
                       o = o + 1; 
                       monitor2(j) = monitor2(j)+1; 
                       SysXe2(o,:) = systemsexp(i,:); 
                       Xe2(o,:) = Xexp(t,:); 
                       TG2(o) = Gammas2Eexp(t); 
                       TA2(o,:) = A_Margules3_fminunc(i,:); 
                       TY2(o) = Y2exp(t); 
                       T2(o) = Texp(t); 
                       P2(o) = Pexp(t); 
                       sumINTe2(o) = sumINTexp(t); 
                       L = 1; 
                       p = 1; 
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                       break 
                    else 
                       L = L + 8; 
                    end 
                 end 
              else 
                 break 
              end 
              if p == 1 
                 break 
              end 
           end 
           s = s + 1; 
           t = t + 1; 
        end 
        s = 0; 
        t = t - 1; 
     end 
 
   % Training Matrices manipulation and re-arrangement 
     if isempty(Xe2) == 0 
        Xe12 = [Xe1 Xe2]; 
        Xeval12 = [Xevalc(1,:) Xevalc(2,:)]; 
        sumINTe12 = sumINTe1 + sumINTe2; 
        sumINTeval12 = sumINTeval(1) + sumINTeval(2); 
        IntXe12 = Xe12(:,1:8:length(Xe12(1,:))); % Interactions in 
Xe12. 
        IntXe12 = reshape(IntXe12,1,prod(size(IntXe12))); % Re-
arrangement in one vector for interaction in Xe12. 
        IntXeval12 = Xeval12(1,1:8:length(Xeval12(1,:))); % 
Interactions in Xeval12 to determine Margules equation parameters. 
        IntXeval12 = reshape(IntXeval12,1,prod(size(IntXeval12))); % 
Re-arrangement in one vector for interactions in Xeval12. 
        Intjun12 = 
unique(union(nonzeros(IntXe12)',nonzeros(IntXeval12)')); % All 
interactions toghether. 
        Xe12mod = zeros(length(Xe12(:,1)),length(Intjun12)*8); % 
Initialization for Modified Experimental Matrix. 
        Xeval12mod = zeros(1,length(Intjun12)*8); % Initialization 
for Modified Evaluation Matrix. 
 
      % Verifing that all interactions from the system of interest 
are 
      % present in the Experimental Matrix 
        IntXe12 = unique(nonzeros(IntXe12)); % Interactions present 
in the experimental data to determine Margules parameters. 
        IntXeval12 = unique(nonzeros(IntXeval12)); % Interactions 
present in the system of interest to determine Margules parameters. 
        tf12 = ismember(IntXeval12,IntXe12); % Interactions from the 
system of interest present in the experimental data to determine 
Margules parameters. 
        Intfound12 = sum(tf12); % Interactions from the system of 
interest found in the experimental data to determine Margules 
parameters. 
        Ints12 = length(tf12); % Interactions from the system of 
interest available to determine Margules parameters. 
        Match12(sys,:) = [Intfound12 Ints12]; 
        s12 = 0; 
 
      % Modifying evaluation and experimental variables to align 
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      % interactions data 
        for i = 1:length(nonzeros(SysXe1(:,1))) 
           for j = 1:8:length(Xe12(1,:)) 
              u12 = find(ismember(Intjun12,Xe12(s12+1,j))); 
              if Xe12(s12+1,j) == 0 
              else 
                 Xe12mod(s12+1,8*u12-7:8*u12) = Xe12(s12+1,j:j+7); 
              end 
           end 
           s12 = s12 + 1; 
        end 
        for j = 1:8:length(Xeval12(1,:)) 
           ueval12 = find(ismember(Intjun12,Xeval12(1,j))); 
           if Xeval12(1,j) == 0 
           else 
              Xeval12mod(:,8*ueval12-7:8*ueval12) = 
Xeval12(1,j:j+7); 
           end 
        end 
        datapoints(loop) = sum(SysXe1(:,3)); 
 
      % Extracting excess data from Experimental Training Matrices 
        j = 0; 
        PG12 = []; % Training Matrix with only information to be 
used to determine Mergules parameters. 
        PG12 = [T1',P1']; 
        for i = 1:length(Intjun12) 
           PG12 = 
[PG12,(Xe12mod(:,j+4).*Xe12mod(:,j+5))./sumINTe12']; 
           j = j + 8; 
        end 
 
      % Extracting excess data from Evaluation Training Matrices 
        j = 0; 
        SG12 = []; % Evaluation Matrix with only information to be 
used to determine Margules parameters. 
        SG12 = [Teval,Peval]; 
        for i = 1:length(Intjun12) 
           SG12 = 
[SG12,(Xeval12mod(:,j+4).*Xeval12mod(:,j+5))./sumINTeval12(1)']; 
           j = j + 8; 
        end 
        TGeval1 = Gammas1Eeval(1:systemseval(1,3)); % Targets Matrix 
for Gamma1. 
        TGeval2 = Gammas2Eeval(1:systemseval(1,3)); % Targets Matrix 
for Gamma2. 
        TYeval1 = Y1eval(1:systemseval(1,3)); 
        TYeval2 = Y2eval(1:systemseval(1,3)); 
        PG12 = PG12'; 
        SG12 = SG12'; 
        TA1 = TA1'; 
 
      % Neural Networks Training 
        [fPG1 cPG1] = size(PG12); 
        [fTA1 cTA1] = size(TA1); 
        P11 = PG12(:,1:ceil(cPG1/2)); 
        P21 = PG12(:,ceil(cPG1/2)+1:cPG1); 
        T11 = TA1(:,1:ceil(cTA1/2)); 
        T21 = TA1(:,ceil(cTA1/2)+1:cTA1); 
        P31 = SG12; 
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        T31 = A_Margules3_eval'; 
        n2 = 3; 
        pp1 = [P11 P21]; 
        tt1 = [T11 T21]; 
        mmax1 = minmax(PG12); 
        pack 
        b111 = []; 
        W111 = []; 
        b121 = []; 
        W121 = []; 
        e = []; 
        a31 = []; 
        max_n = 5; 
      % NN Optimum Structure Search 
        tf = {'logsig' 'purelin'}; 
        for i = 1:9 
           disp(i) 
           e1 = []; 
           for j = 1:max_n % Hidden layer optimum number of neurons 
search. 
              nneu = [j n2]; 
              net1 = newff(mmax1,nneu,tf); 
              net1.trainParam.show = NaN; %Instruction to disable 
training graphics. 
              net1.trainParam.mem_reduc = 4;  %Instruction to reduce 
memory requirement for Jacobian Matrix calculation. 
              [net1 tr1] = train(net1,P11,T11); 
              a1 = sim(net1,P21); 
              e1(j,:) = mean(T21 - a1); 
              pack  % Instruction to reduce memory space used for 
variables. 
           end 
           SSE1 = diag(e1 * e1'); 
           [m1 pos1] = min(SSE1); 
           nno1(loop) = pos1; 
           nneu1 = [nno1(loop) n2]; 
           a1 = []; 
           app1 = []; 
           e1 = []; 
         % Optimum initial point search 
           for k = 1:20 
              net1 = newff(mmax1,nneu1,tf); 
              net1.trainParam.show = NaN; 
              net1.trainParam.mem_reduc = 4; 
              [net1 tr1] = train(net1,pp1,tt1); 
              eval(['b11',num2str(k),' = net1.b{1,1};']) 
              eval(['b21',num2str(k),' = net1.b{2,1};']) 
              eval(['W11',num2str(k),' = net1.iw{1,1};']) 
              eval(['W21',num2str(k),' = net1.lw{2,1};']) 
              a1(:,:,k) = sim(net1,pp1); 
              e1(k,:) = mean(tt1 - a1(:,:,k)); 
              pack 
           end 
           SSE1 = diag(e1 * e1'); 
           [m1 pio1] = min(SSE1); 
           net1 = newff(mmax1,nneu1,tf); 
           eval(['net1.b{1,1} = b11',num2str(pio1),';']) 
           eval(['net1.b{2,1} = b21',num2str(pio1),';']) 
           eval(['net1.iw{1,1} = W11',num2str(pio1),';']) 
           eval(['net1.lw{2,1} = W21',num2str(pio1),';']) 
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           net1.trainParam.show = NaN; 
           net1.trainParam.mem_reduc = 4; 
           [net1 tr1] = train(net1,pp1,tt1); 
           app1 = sim(net1,pp1); 
           a31(i,:) = sim(net1,P31); 
        end 
 
      % Final results determination based on data central tendency. 
        aSG1 = sort(a31); 
        for e = 1:2 
           aSG1(1,:) = []; 
        end 
        for e = 7:-1:6 
           aSG1(e,:) = []; 
        end 
        aSG1med = mean(aSG1); 
        A_NN = aSG1med(1); 
        B_NN = aSG1med(2); 
        C_NN = aSG1med(3); 
        Gamma1M = exp(((A_NN+3*B_NN+5*C_NN).*(X2eval.^2))-
((4*(B_NN+4*C_NN)).*(X2eval.^3))+((12*C_NN).*(X2eval.^4))); 
        Gamma2M = exp(((A_NN-3*B_NN+5*C_NN).*(X1eval.^2))+((4*(B_NN-
4*C_NN)).*(X1eval.^3))+((12*C_NN).*(X1eval.^4))); 
        eSG1 = TGeval1 - Gamma1M; 
        eSG2 = TGeval2 - Gamma2M; 
 
      % Data Plot and Saving 
        timett1 = 1:length(TG1); 
        time31 = 1:length(TGeval1); 
        eU1 = TGeval1 - Gamma1Ueval; 
        eU2 = TGeval2 - Gamma2Ueval; 
        Y1predANN = ((X1eval.*10.^(Antoine1eval(:,1)'-
(Antoine1eval(:,2)'./((Teval_Y)+Antoine1eval(:,3)')))).*Gamma1M)./(P
eval_Y); 
        Y2predANN = ((X2eval.*10.^(Antoine2eval(:,1)'-
(Antoine2eval(:,2)'./((Teval_Y)+Antoine2eval(:,3)')))).*Gamma2M)./(P
eval_Y); 
        Y1predU = ((X1eval.*10.^(Antoine1eval(:,1)'-
(Antoine1eval(:,2)'./((Teval_Y)+Antoine1eval(:,3)')))).*Gamma1Ueval)
./(Peval_Y); 
        Y2predU = ((X2eval.*10.^(Antoine2eval(:,1)'-
(Antoine2eval(:,2)'./((Teval_Y)+Antoine2eval(:,3)')))).*Gamma2Ueval)
./(Peval_Y); 
        eval(['figure(',num2str(sys),num2str(totalsys),')']) 
        subplot(2,2,1) 
        
plot(X1eval,TYeval1,'k',X1eval,Y1predANN,'g',X1eval,Y1predU,'r') 
        title(['System: Methanol(1) + n-Propyl Acetate (2)']) 
        legend('Exp','ANN','UNIFAC') 
        xlabel('X1'); 
        ylabel('Y1'); 
        subplot(2,2,2) 
        
plot(X1eval,TGeval1,'k',X1eval,Gamma1M,'g',X1eval,Gamma1Ueval,'r') 
        legend('Exp','ANN','UNIFAC') 
        xlabel('X1'); 
        ylabel('Gamma1'); 
        subplot(2,2,3) 
        
plot(X2eval,TYeval2,'k',X2eval,Y2predANN,'g',X2eval,Y2predU,'r') 
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        legend('Exp','ANN','UNIFAC') 
        xlabel('X2'); 
        ylabel('Y2'); 
        subplot(2,2,4) 
        
plot(X2eval,TGeval2,'k',X2eval,Gamma2M,'g',X2eval,Gamma2Ueval,'r') 
        legend('Exp','ANN','UNIFAC') 
        xlabel('X2'); 
        ylabel('Gamma2'); 
        toc 
        time(loop) = toc; 
        eval(['save system',num2str(sys),'_Margules3.txt Gamma1Ueval 
TGeval1 X1eval aSG1med Gamma1M Gamma2Ueval TGeval2 X2eval aSG1 
Y1predANN Y2predANN Y1predU Y2predU time -ascii']) 
        Predsys1 = 
[Predsys1;sys.*ones(length(Gamma1M),1),Gamma1M,Gamma1Ueval,TGeval1]; 
        Predsys2 = 
[Predsys2;sys.*ones(length(Gamma2M),1),Gamma2M,Gamma2Ueval,TGeval2]; 
     end 
  end 

 
 

 The third MatLab program was called Gamma_ANN_user.m and it purpose is to 

provide the users with the tool for using the ANN method for predicting activity 

coefficients for their own systems.  This program uses the function 

Create_Gamma_user.m that creates the required matrices from the system of interest 

data to be used as input for predicting the activity coefficients using the ANN method.  

The instructions for using the program Gamma_ANN_user.m are as follow: 

1) Create the system of interest data file in a Microsoft Excel spreadsheet following 

the format specified in Table 35.  Use the functional groups table in Appendix B 

to assign the functional groups numbers. 
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Table 35. System of interest data spreadsheet format 

System # 0 0 0 0 0 0 0 

0 A1 B1 C1 0 0 0 0 

0 A2 B2 B3 0 0 0 0 

0 G11 G12 G13 G14 G15 G16 G17 

0 n11 n12 n13 n14 n15 n16 n17 

0 G21 G22 G23 G24 G25 G26 G27 

0 n21 n22 n23 n24 n25 n26 n27 

0 T1 P1 X1 0 0 0 0 
0 T2 P2 X2 0 0 0 0 
0 T3 P3 X3 0 0 0 0 
0 T4 P4 X4 0 0 0 0 
0 T5 P5 X5 0 0 0 0 
0 T6 P6 X6 0 0 0 0 
0 Tn Pn Xn 0 0 0 0 
0 0 0 0 0 0 0 0 

This table presents the format used to organize the system of interest data. 
 

Where, 

System # is the data system number. 

A1, B1 and C1 are the Antoine constants for molecule 1. 

A2, B2 and C2 are the Antoine constants for molecule 2. 

G11 to G17 are the number of the functional groups for molecule 1. 

n11 to n17 are the quantity of each functional group for molecule 1.  

G21 to G27 are the number of the functional groups for molecule 2. 

n21 to n27 are the quantity of each functional group for molecule 2. 

T1 to Tn are the system temperature for each data point. 

P1 to Pn are the system pressure for each data point. 

X1 to Xn are the liquid mol fraction for molecule 1 for each data point. 
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2) Run the MatLab program Gamma_ANN_user.m by typing the program name 

without the “.m” extension at the MatLab command window and pressing Enter. 

3) The program will ask for the system of interest data file name. Type the system of 

interest data file name without the “.xls” extension and press Enter. 

4) The program will ask for the molecules names. Type the name of the first 

molecule and press Enter.  Then, type the name of the second molecule and press 

Enter. 

5) The program will predict the activity coefficients using the ANN method and at 

the end it will save the results in the same file created to store the data for the 

system of interest but in a different worksheet called Output1.  Also the program 

plots a graph of the predicted activity coefficients vs. the liquid molar fraction and 

the predicted vapor molar fraction of each molecule vs. its respective liquid molar 

fraction.  

The MatLab code for program Gamma_ANN_user.m and function 

Create_Gamma_user.m is presented below. 

%Program Gamma_ANN_user.m 
%This program will predict the activity coefficients using the 
%the Neural Networks method. 
 
  clear 
  clc 
  close all 
% Load the data file where user data is contain. 
  userdata = input('Enter your data file name:','s'); 
  Create_Gamma_user(userdata); 
  userdata = [userdata '.xls']; 
  load database_user.mat 
  disp('User data have been processed and loaded!') 
  warning off all 
  totalsys = 1000; 
  Predsys1 = []; 
  Predsys2 = []; 
  % Specify system(s) to be evaluated 
  evalsys = systems_user(:,1); 
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  for loop = 1:length(evalsys) 
     Header = []; 
     Data = []; 
     Molecule1 = []; 
     Molecule2 = []; 
     Molecule1 = input('Enter the name of molecule (1):','s'); 
     Molecule2 = input('Enter the name of molecule (2):','s'); 
     sys = evalsys(loop); 
     tic % Start time counter. 
   % Load the experimental database file from DECHEMA. 
     load Databasenew_Margules3.mat 
     sse3 = []; 
     [f,c] = size(X1mol); 
   % Determine systems data position in Matrix X. 
     systems(1,4) = 1; 
     systems(1,5) = 1; 
     systems_user(1,4) = 1; 
     systems_user(1,5) = 1; 
     for i = 2:length(systems(:,1)) 
        systems(i,4) = systems(i-1,4) + 2; 
        systems(i,5) = systems(i-1,5) + systems(i-1,3); 
     end 
     if length(evalsys) > 1 
        for i = 2:length(systems_user(:,1)) 
           systems_user(i,4) = systems_user(i-1,4) + 2; 
           systems_user(i,5) = systems_user(i-1,5) + systems_user(i-
1,3); 
        end 
     else 
     end 
     A_Margules3_eval = []; 
     tfsys = []; 
     nneusys = []; 
     Gammaspred = []; 
     GammasT = []; 
     errorssys = []; 
     Xevalc = []; 
     Xeval = []; 
     Xexp = []; 
     Yeval = []; 
     Y1exp = []; 
     Y2exp = []; 
     Peval = []; 
     Pexp = []; 
     Teval = []; 
     Texp = []; 
     Antoine1eval = []; 
     Antoine2eval = []; 
     TPeval = []; 
     TPexp = []; 
     X1eval = []; 
     X2eval = []; 
     X1X2exp = []; 
     Gammaseval = []; 
     Gammasexp = []; 
     systemseval = []; 
     systemsexp = []; 
     IntXeval1 = []; 
     IntXeval2 = []; 
     S = num2str(sys); 
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     sysnumber = ['Evaluating system #' S '.']; 
     disp(sysnumber); 
     Xeval = X_user(systems_user(sys,4):systems_user(sys,4) + 1,:); 
% Matriz de evaluacion = sistema extraido. 
     IntXeval = Xeval(:,1:8:length(Xeval(1,:))); 
     Xevalc = X_user(systems_user(sys,4):systems_user(sys,4) + 
1,1:8*length(nonzeros(IntXeval(1,:)))); % Matriz de evaluacion con 
la cantidad de interacciones del sistema a ser extraido. 
     Xexp = X(1:2*921, :); 
     Y1exp = Y1mol(1:f-740); 
     Y2exp = Y2mol(1:f-740); 
     Peval = X_user(systems_user(sys,4),3); 
     Peval_Y = P_exp_user(systems_user(sys,5):systems_user(sys,5) + 
systems_user(sys,3)-1); 
     Pexp = X(1:2*921,3); 
     Teval = X_user(systems_user(sys,4),2); 
     Teval_Y = T_exp_user(systems_user(sys,5):systems_user(sys,5) + 
systems_user(sys,3)-1); 
     Texp = X(1:2*921,2); 
     Antoine1eval = Antoine1_user(sys,:); 
     Antoine2eval = Antoine2_user(sys,:); 
     sumINTexp = sumINT(1:2*921);   % Vector de cantidad de 
interacciones del sistema a extraer. 
     sumINTeval = 
sumINT_user(systems_user(sys,4):systems_user(sys,4) + 1); 
     X1eval = X1mol_user(systems_user(sys,5):systems_user(sys,5) + 
systems_user(sys,3) - 1); 
     X2eval = X2mol_user(systems_user(sys,5):systems_user(sys,5) + 
systems_user(sys,3) - 1); 
     Gammas1Eexp = Gammas1E(1:f-740); 
     Gammas2Eexp = Gammas2E(1:f-740); 
     systemseval = systems_user(sys,:); % Matriz de informacion del 
sistema a extraer. 
     systemsexp = systems(1:length(systems(:,1))-39,:); 
     IntXeval1 = Xevalc(1,1:8:length(Xevalc(1,:))); % Interacciones 
en Xevalc parte de Gamma1. 
     IntXeval1 = reshape(IntXeval1,1,prod(size(IntXeval1))); % 
Arreglo de las interacciones en un solo vector. 
     IntXeval1 = unique(nonzeros(IntXeval1)); % Interacciones 
presentes en el sistema de interes para determinar Gamma1. 
     IntXeval2 = Xevalc(2,1:8:length(Xevalc(2,:))); % Interacciones 
en Xevalc parte de Gamma2. 
     IntXeval2 = reshape(IntXeval2,1,prod(size(IntXeval2))); % 
Arreglo de las interacciones en un solo vector. 
     IntXeval2 = unique(nonzeros(IntXeval2)); % Interacciones 
presentes en el sistema de interes para determinar Gamma2. 
 
   % Training Matrices Creation 
     message = ['Creating Training Matrices for system ' S '!']; 
     disp(message); 
     Xe1 = []; % Experimental Data Training Matrix for Gamma1. 
     TG1 = []; % Targets Matrix for Gamma1. 
     TA1 = []; 
     TY1 = []; 
     T1 = []; 
     P1 = []; 
     sumINTe1 = []; 
     sumINTe2 = []; 
     monitor1 = []; 
     Xe2 = []; % Experimental Data Training Matrix for Gamma2. 
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     TG2 = []; % Targets Matrix for Gamma2. 
     TA2 = []; 
     TY2 = []; 
     T2 = []; 
     P2 = []; 
     monitor2 = []; 
     [f,c] = size(Xexp); % Experimental Matrix rows and columns. 
     int = c/8; % Maximum number of interactions for systems in the 
Experimental Matrix. 
     [fp,cp] = size(Xevalc); % Evaluation Matrix rows and columns. 
     intp = cp/8; % Number of interactions for the system of 
interest. 
 
   % Training Matrix Creation for Gamma1 
     monitor1 = zeros(1,length(IntXeval1)); 
     L = 1; 
     o = 0; 
     p = 0; 
     s = 0; 
     t = 0; 
     SysXe1 = []; % Chosen systems matrix to determine Gamma1. 
     SysXe2 = []; % Chosen systems matrix to determine Gamma2. 
     for i = 1:length(systemsexp(:,1)) % Evaluation of all available 
systems in the Experimental Matix. 
        s = s + 1; 
        t = t + 1; 
        while s <= 2 
           p = 0; 
           for j = 1:intp 
              L = 1; 
              if s <= 2 
                 for m = 1:int 
                    if and(Xexp(t,L) == 
IntXeval1(j),monitor1(j)<totalsys) 
                       o = o + 1; 
                       monitor1(j) = monitor1(j)+1; 
                       SysXe1(o,:) = systemsexp(i,:); 
                       Xe1(o,:) = Xexp(t,:); 
                       TG1(o) = Gammas1Eexp(t); 
                       TA1(o,:) = A_Margules3_fminunc(i,:); 
                       TY1(o) = Y1exp(t); 
                       T1(o) = Texp(t); 
                       P1(o) = Pexp(t); 
                       sumINTe1(o) = sumINTexp(t); 
                       L = 1; 
                       p = 1; 
                       break 
                    else 
                       L = L + 8; 
                    end 
                 end 
              else 
                 break 
              end 
              if p == 1 
                 break 
              end 
           end 
           s = s + 1; 
           t = t + 1; 
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        end 
        s = 0; 
        t = t - 1; 
     end 
 
   % Training Matrix Creation for Gamma2 
     monitor2 = zeros(1,length(IntXeval2)); 
     L = 1; 
     o = 0; 
     p = 0; 
     s = 0; 
     t = 0; 
     for i = 1:length(systemsexp(:,1)) % Evaluation of all available 
systems in the Experimental Matix. 
        s = s + 1; 
        t = t + 1; 
        k = 1; 
        while s <= 2 
           p = 0; 
           k = 1; 
           for j = 1:intp 
              L = 1; 
              if s <= 2 
                 for m = 1:int 
                    if and(Xexp(t,L) == 
IntXeval2(j),monitor2(j)<totalsys) 
                       o = o + 1; 
                       monitor2(j) = monitor2(j)+1; 
                       SysXe2(o,:) = systemsexp(i,:); 
                       Xe2(o,:) = Xexp(t,:); 
                       TG2(o) = Gammas2Eexp(t); 
                       TA2(o,:) = A_Margules3_fminunc(i,:); 
                       TY2(o) = Y2exp(t); 
                       T2(o) = Texp(t); 
                       P2(o) = Pexp(t); 
                       sumINTe2(o) = sumINTexp(t); 
                       L = 1; 
                       p = 1; 
                       break 
                    else 
                       L = L + 8; 
                    end 
                 end 
              else 
                 break 
              end 
              if p == 1 
                 break 
              end 
           end 
           s = s + 1; 
           t = t + 1; 
        end 
        s = 0; 
        t = t - 1; 
     end 
 
   % Training Matrices manipulation and re-arrangement 
     if isempty(Xe2) == 0 
        Xe12 = [Xe1 Xe2]; 
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        Xeval12 = [Xevalc(1,:) Xevalc(2,:)]; 
        sumINTe12 = sumINTe1 + sumINTe2; 
        sumINTeval12 = sumINTeval(1) + sumINTeval(2); 
        IntXe12 = Xe12(:,1:8:length(Xe12(1,:))); % Interactions in 
Xe12. 
        IntXe12 = reshape(IntXe12,1,prod(size(IntXe12))); % Re-
arrangement in one vector for interaction in Xe12. 
        IntXeval12 = Xeval12(1,1:8:length(Xeval12(1,:))); % 
Interactions in Xeval12 to determine Margules equation parameters. 
        IntXeval12 = reshape(IntXeval12,1,prod(size(IntXeval12))); % 
Re-arrangement in one vector for interactions in Xeval12. 
        Intjun12 = 
unique(union(nonzeros(IntXe12)',nonzeros(IntXeval12)')); % All 
interactions toghether. 
        Xe12mod = zeros(length(Xe12(:,1)),length(Intjun12)*8); % 
Initialization for Modified Experimental Matrix. 
        Xeval12mod = zeros(1,length(Intjun12)*8); % Initialization 
for Modified Evaluation Matrix. 
      % Verifing that all interactions from the system of interest 
are 
      % present in the Experimental Matrix 
        IntXe12 = unique(nonzeros(IntXe12)); % Interactions present 
in the experimental data to determine Margules parameters. 
        IntXeval12 = unique(nonzeros(IntXeval12)); % Interactions 
present in the system of interest to determine Margules parameters. 
        tf12 = ismember(IntXeval12,IntXe12); % Interactions from the 
system of interest present in the experimental data to determine 
Margules parameters. 
        Intfound12 = sum(tf12); % Interactions from the system of 
interest found in the experimental data to determine Margules 
parameters. 
        Ints12 = length(tf12); % Interactions from the system of 
interest available to determine Margules parameters. 
        Match12(sys,:) = [Intfound12 Ints12]; 
        s12 = 0; 
      % Modifying evaluation and experimental variables to align 
      % interactions data 
        for i = 1:length(nonzeros(SysXe1(:,1))) 
           for j = 1:8:length(Xe12(1,:)) 
              u12 = find(ismember(Intjun12,Xe12(s12+1,j))); 
              if Xe12(s12+1,j) == 0 
              else 
                 Xe12mod(s12+1,8*u12-7:8*u12) = Xe12(s12+1,j:j+7); 
              end 
           end 
           s12 = s12 + 1; 
        end 
        for j = 1:8:length(Xeval12(1,:)) 
           ueval12 = find(ismember(Intjun12,Xeval12(1,j))); 
           if Xeval12(1,j) == 0 
           else 
              Xeval12mod(:,8*ueval12-7:8*ueval12) = 
Xeval12(1,j:j+7); 
           end 
        end 
        datapoints(loop) = sum(SysXe1(:,3)); 
      % Extracting excess data from Experimental Training Matrices 
        j = 0; 
        PG12 = []; % Training Matrix with only information to be 
used to determine Mergules parameters. 
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        PG12 = [T1',P1']; 
        for i = 1:length(Intjun12) 
           PG12 = 
[PG12,(Xe12mod(:,j+4).*Xe12mod(:,j+5))./sumINTe12']; 
           j = j + 8; 
        end 
      % Extracting excess data from Evaluation Training Matrices 
        j = 0; 
        SG12 = []; % Evaluation Matrix with only information to be 
used to determine Margules parameters. 
        SG12 = [Teval,Peval]; 
        for i = 1:length(Intjun12) 
           SG12 = 
[SG12,(Xeval12mod(:,j+4).*Xeval12mod(:,j+5))./sumINTeval12(1)']; 
           j = j + 8; 
        end 
        PG12 = PG12'; 
        SG12 = SG12'; 
        TA1 = TA1'; 
 
      % Neural Networks Training 
        [fPG1 cPG1] = size(PG12); 
        [fTA1 cTA1] = size(TA1); 
        P11 = PG12(:,1:ceil(cPG1/2)); 
        P21 = PG12(:,ceil(cPG1/2)+1:cPG1); 
        T11 = TA1(:,1:ceil(cTA1/2)); 
        T21 = TA1(:,ceil(cTA1/2)+1:cTA1); 
        P31 = SG12; 
        T31 = A_Margules3_eval'; 
        n2 = 3; 
        pp1 = [P11 P21]; 
        tt1 = [T11 T21]; 
        mmax1 = minmax(PG12); 
        pack 
        b111 = []; 
        W111 = []; 
        b121 = []; 
        W121 = []; 
        e = []; 
        a31 = []; 
        max_n = 5; 
      % NN Optimum Structure Search 
        tf = {'logsig' 'purelin'}; 
        for i = 1:9 
           disp(i) 
           e1 = []; 
           for j = 1:max_n % Hidden layer optimum number of neurons 
search. 
              nneu = [j n2]; 
              net1 = newff(mmax1,nneu,tf); 
              net1.trainParam.show = NaN; %Instruction to disable 
training graphics. 
              net1.trainParam.mem_reduc = 4;  %Instruction to reduce 
memory requirement for Jacobian Matrix calculation. 
              [net1 tr1] = train(net1,P11,T11); 
              a1 = sim(net1,P21); 
              e1(j,:) = mean(T21 - a1); 
              pack  % Instruction to reduce memory space used for 
variables. 
           end 
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           SSE1 = diag(e1 * e1'); 
           [m1 pos1] = min(SSE1); 
           nno1(loop) = pos1; 
           nneu1 = [nno1(loop) n2]; 
           a1 = []; 
           app1 = []; 
           e1 = []; 
         % Optimum initial point search 
           for k = 1:20 
              net1 = newff(mmax1,nneu1,tf); 
              net1.trainParam.show = NaN; 
              net1.trainParam.mem_reduc = 4; 
              [net1 tr1] = train(net1,pp1,tt1); 
              eval(['b11',num2str(k),' = net1.b{1,1};']) 
              eval(['b21',num2str(k),' = net1.b{2,1};']) 
              eval(['W11',num2str(k),' = net1.iw{1,1};']) 
              eval(['W21',num2str(k),' = net1.lw{2,1};']) 
              a1(:,:,k) = sim(net1,pp1); 
              e1(k,:) = mean(tt1 - a1(:,:,k)); 
              pack 
           end 
           SSE1 = diag(e1 * e1'); 
           [m1 pio1] = min(SSE1); 
           net1 = newff(mmax1,nneu1,tf); 
           eval(['net1.b{1,1} = b11',num2str(pio1),';']) 
           eval(['net1.b{2,1} = b21',num2str(pio1),';']) 
           eval(['net1.iw{1,1} = W11',num2str(pio1),';']) 
           eval(['net1.lw{2,1} = W21',num2str(pio1),';']) 
           net1.trainParam.show = NaN; 
           net1.trainParam.mem_reduc = 4; 
           [net1 tr1] = train(net1,pp1,tt1); 
           app1 = sim(net1,pp1); 
           a31(i,:) = sim(net1,P31); 
        end 
      % Final results determination based on data central tendency. 
        aSG1 = sort(a31); 
        for e = 1:2 
           aSG1(1,:) = []; 
        end 
        for e = 7:-1:6 
           aSG1(e,:) = []; 
        end 
        aSG1med = mean(aSG1); 
        A_NN = aSG1med(1); 
        B_NN = aSG1med(2); 
        C_NN = aSG1med(3); 
        Gamma1M = exp(((A_NN+3*B_NN+5*C_NN).*(X2eval.^2))-
((4*(B_NN+4*C_NN)).*(X2eval.^3))+((12*C_NN).*(X2eval.^4))); 
        Gamma2M = exp(((A_NN-3*B_NN+5*C_NN).*(X1eval.^2))+((4*(B_NN-
4*C_NN)).*(X1eval.^3))+((12*C_NN).*(X1eval.^4))); 
      % Data Plot and Saving 
        linex = [0 1]; 
        liney = [0 1]; 
        Y1predANN = ((X1eval.*10.^(Antoine1eval(:,1)'-
(Antoine1eval(:,2)'./((Teval_Y)+Antoine1eval(:,3)')))).*Gamma1M)./(P
eval_Y); 
        Y2predANN = ((X2eval.*10.^(Antoine2eval(:,1)'-
(Antoine2eval(:,2)'./((Teval_Y)+Antoine2eval(:,3)')))).*Gamma2M)./(P
eval_Y); 
        eval(['figure(',num2str(sys),num2str(totalsys),')']) 
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        subplot(2,2,1:2) 
        plot(X1eval,Gamma1M,'b',X1eval,Gamma2M,'r') 
        title(['System: ' Molecule1 ' (1) + ' Molecule2 ' (2)']) 
        legend('Gamma1','Gamma2','Best') 
        xlabel('X1'); 
        ylabel('Gamma'); 
        xlim([0 1]); 
        subplot(2,2,3) 
        plot(linex,liney,'k',X1eval,Y1predANN,'g') 
        xlabel('X1'); 
        ylabel('Y1pred'); 
        axis([0 1 0 1]); 
        subplot(2,2,4) 
        plot(linex, liney,'k',X2eval,Y2predANN,'g') 
        xlabel('X2'); 
        ylabel('Y2pred'); 
        axis([0 1 0 1]); 
        toc 
        time(loop) = toc; 
        Header = 
{'Temp(ºC)','P(mmHg)','X1','Y1_pred','Gamma1_ANN','Gamma2_ANN'}; 
        Data = [Teval_Y Peval_Y X1eval Y1predANN Gamma1M Gamma2M]; 
        eval(['xlswrite(''',userdata, ''', Header, ''Output', 
num2str(sys), ''');']); 
        eval(['xlswrite(''',userdata, ''', Data, ''Output', 
num2str(sys), ''', ''A2'');']); 
     end 
  end 

 
 
%Function Create_Gamma_user.m  

% This program will create the data base for the activity 
coefficients 
% estimation program. 
function g = Create_Gamma_user(userdata) 
% Load the data file where the user data is contain. 
s = ['data = xlsread(''' userdata '.xls'');'];  
eval(s); 
g = 186; 
MW = [12 13 14 15 16 12 13 14 12 13 29
 30 31 32 29 30 31 40 42 44 46 41
 42 43 43 44 45 43 44 45 42 43 41 30 41 42
 43 44 52 54 56 58 53 54 55 55 56 57
 55 56 57 54 55 53 46 59 58 59 60
 57 58 59 60 68 70 72 74 69 70 71
 71 72 74 71 72 73 70 71 69 28 29
 30 31 39 41 43 45 50 52 56 59 27
 38 39 40 41 58 59 60 61 45 46 47
 48 47.5 48.5 49.5 50.5 32 52 31 50 69 51
 70 34 33 85.5 102 104.5 137.5 67.5 84 119.5 83
 118.5 86.5 103 66.5 68.5 85 121 154 12 13 29
 54 84 73.5 40 56 57 58 59 67 69 71
 73 68 69 70 71 72 73 70 71 72 69
 70 68 66 81 85 87 80 82 84 83 85
 86 81 83 85 80 82 79 18 68 73 28
 44 32 57 62.5 96 31]; 
% Raw data manipulation 
systems = [nonzeros(data(:,1)) find(data(:,1))]; 
systems_Margules3 = [nonzeros(data(:,1)) find(data(:,1))]; 
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systems_Margules3 = [systems_Margules3; length(systems_Margules3)+1 
length(data(:,1))]; 
X = []; 
X1mol = []; 
X2mol = []; 
GF1 = []; 
GF2 = []; 
Antoine1 = []; 
Antoine2 = []; 
P_exp = []; 
T_exp = []; 
Max = max(systems(:,1)); 
for i = 1:length(systems(:,1)) 
   S = int2str(i); 
   M = num2str(Max);    
% X matrix creation 
   X1_Margules3 = []; 
   X2_Margules3 = []; 
   T_Margules3 = []; 
   P_Margules3 = []; 
   Antoine1_Margules3 = []; 
   Antoine2_Margules3 = []; 
   points_Margules3(i) = systems_Margules3(i+1,2) - 
systems_Margules3(i,2) - 8; 
   X1_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,4)'; 
   X2_Margules3 = 1-X1_Margules3; 
   T_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,2)'; 
   P_Margules3 = 
data(systems_Margules3(i,2)+8:systems_Margules3(i,2)+8+points_Margul
es3(i)-1,3)'; 
   Antoine1_Margules3 = 
[nonzeros(data(systems_Margules3(i,2)+1,:))']; 
   Antoine2_Margules3 = 
[nonzeros(data(systems_Margules3(i,2)+2,:))']; 
   if or(X1_Margules3(1)==0,X1_Margules3(1)==1) == 1 
      X1_Margules3(1) = []; 
      X2_Margules3(1) = []; 
      T_Margules3(1) = []; 
      P_Margules3(1) = []; 
      points_Margules3(i) = points_Margules3(i)-1; 
   else 
   end 
   if 
or(X1_Margules3(points_Margules3(i))==0,X1_Margules3(points_Margules
3(i))==1) == 1 
      X1_Margules3(points_Margules3(i)) = []; 
      X2_Margules3(points_Margules3(i)) = []; 
      T_Margules3(points_Margules3(i)) = []; 
      P_Margules3(points_Margules3(i)) = []; 
      points_Margules3(i) = points_Margules3(i)-1; 
   else 
   end    
   Antoine1 = [Antoine1;Antoine1_Margules3]; 
   Antoine2 = [Antoine2;Antoine2_Margules3]; 
   X1mol = [X1mol;X1_Margules3']; 
   X2mol = [X2mol;X2_Margules3']; 
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   P_exp = [P_exp;P_Margules3']; 
   T_exp = [T_exp;T_Margules3']; 
   P = data(systems(i,2)+7,3); 
   points = 0; 
   point = 0; 
   while P ~= 0 
      xpoint = 1; 
      ypoint = 1; 
      if data(systems(i,2)+point+8,4) == 0 
         ypoint = 0; 
      end 
      if data(systems(i,2)+point+8,4) == 1 
         ypoint = 0; 
      end 
      if and(xpoint,ypoint) == 1          
         points = points + 1; 
      else 
      end 
      point = point + 1; 
      P = data(systems(i,2)+8+point,3); 
   end 
   systems(i,3) = points; 
   NGF1 = length(nonzeros(data(systems(i,2)+3,:))); 
   NGF2 = length(nonzeros(data(systems(i,2)+5,:))); 
   [o,p] = size(X); 
   k = 1; 
   l = 0;          
 % Suma de la cantidad total de interacciones. 
   sumINT(o+1) = 0; 
   sumINT(o+2) = 0; 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
            sumINT(o+1) = sumINT(o+1) + 
(data(systems(i,2)+4,r+1)*data(systems(i,2)+6,s+1)); 
            sumINT(o+2) = sumINT(o+2) + 
(data(systems(i,2)+4,r+1)*data(systems(i,2)+6,s+1)); 
         else 
         end 
      end 
   end 
 % 1)Posisionar el numero de la interacción. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
            GF1 = [GF1;data(systems(i,2)+3,r+1)]; 
            GF2 = [GF2;data(systems(i,2)+5,s+1)]; 
            X(o+1,l+k) = g * (data(systems(i,2)+3,r+1) - 1) + 
data(systems(i,2)+5,s+1); 
            X(o+2,l+k) = g * (data(systems(i,2)+5,s+1) - 1) + 
data(systems(i,2)+3,r+1); 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
 % 2)Posisionar la Temperatura del sistema. 
      for r = 1:NGF1 
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         for s = 1:NGF2 
            if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
               X(o+1,l+k) = mean(T_Margules3); 
               X(o+2,l+k) = mean(T_Margules3); 
               l = l + 8; 
            else 
            end 
         end 
      end 
   k = k + 1; 
   l = 0; 
 % 3)Posisionar la Presión del sistema. 
      for r = 1:NGF1 
         for s = 1:NGF2 
            if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
               X(o+1,l+k) = mean(P_Margules3); 
               X(o+2,l+k) = mean(P_Margules3); 
               l = l + 8; 
            else 
            end 
         end 
      end 
   k = k + 1; 
   l = 0; 
 % 4)Posisionar la cantidad de GF de la molécula #1 en la 
interacción. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
            X(o+1,l+k) = data(systems(i,2)+4,r+1); 
            X(o+2,l+k) = data(systems(i,2)+6,s+1); 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
 % 5)Posisionar la cantidad de GF de la molécula #2 en la 
interacción. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
            X(o+1,l+k) = data(systems(i,2)+6,s+1); 
            X(o+2,l+k) = data(systems(i,2)+4,r+1); 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
   sumMW1 = 0; 
   sumMW2 = 0; 
 % 6)Posisionar el peso molecular del grupo funcional de la molécula 
#1. 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
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            X(o+1,l+k) = 
data(systems(i,2)+4,r+1)*MW(data(systems(i,2)+3,r+1)); 
            X(o+2,l+k) = 
data(systems(i,2)+6,s+1)*MW(data(systems(i,2)+5,s+1));                
            l = l + 8; 
         else 
         end 
      end 
      sumMW1 = sumMW1 + 
data(systems(i,2)+4,r+1)*MW(data(systems(i,2)+3,r+1)); 
   end 
   k = k + 1; 
   l = 0; 
 % 7)Posisionar el peso molecular del grupo funcional de la molécula 
#2. 
   for s = 1:NGF2  
      for r = 1:NGF1 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
            X(o+1,l+k) = 
data(systems(i,2)+6,s+1)*MW(data(systems(i,2)+5,s+1)); 
            X(o+2,l+k) = 
data(systems(i,2)+4,r+1)*MW(data(systems(i,2)+3,r+1)); 
            l = l + 8; 
         else 
         end 
      end 
      sumMW2 = sumMW2 + 
data(systems(i,2)+6,s+1)*MW(data(systems(i,2)+5,s+1)); 
   end 
   k = k + 1; 
   l = 0; 
 % 8)Posisionar 1 
   for r = 1:NGF1 
      for s = 1:NGF2 
         if data(systems(i,2)+3,r+1) ~= data(systems(i,2)+5,s+1) 
            X(o+1,l+k) = 1; 
            X(o+2,l+k) = 1; 
            l = l + 8; 
         else 
         end 
      end 
   end 
   k = k + 1; 
   l = 0; 
end 
X_user = X; 
P_exp_user = P_exp; 
T_exp_user = T_exp; 
X1mol_user = X1mol; 
X2mol_user = X2mol; 
systems_user = systems; 
Antoine1_user = Antoine1; 
Antoine2_user = Antoine2; 
sumINT_user = sumINT; 
save database_user X_user systems_user P_exp_user T_exp_user 
X1mol_user X2mol_user Antoine1_user Antoine2_user sumINT_user 
 

  
 


