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ABSTRACT 
 

This thesis presents an investigation of the buckling phenomenon and the 

consequences of stability theory for three-dimensional, thick solids. The theme structures 

considered are solid cylinders under axial compression. An analytical formulation using a 

linear fundamental path and an incremental displacement field is derived, leading to an 

eigenvalue problem. Bifurcation analyses are performed on the simplified analytical 

model for a variety of isotropic linear-elastic materials. Results predict bifurcations for 

very high deformations in modes that display a wavy pattern on the external surfaces of 

the cylinder. Bifurcation analyses are also performed using a general purpose finite 

element program. Predicted bifurcations are confirmed to appear at large deformation 

levels. Limit points for solid structures are also investigated with geometrically nonlinear 

analyses. Results show that limit point instabilities are found at smaller displacement 

levels than the bifurcations. A reduced energy method is developed in the thesis to obtain 

a lower bound to buckling loads in this problem. Earlier developments in lower bound 

approaches to stability problems were directed towards the buckling of thin-walled 

structures.  The reduced energy method is applied to the solid buckling problem using the 

analytical formulation. Results show reasonable agreement between the reduced 

methodology developed and the finite element nonlinear analyses, but not lower bounds. 

Imperfection sensitivity, inferred from the bifurcation analysis results, is also studied. 

Buckling modes obtained from the finite element bifurcation analyses are imposed as 

imperfections on the initial geometry of the solids and nonlinear analyses are performed. 

Results indicate reduced displacement capacity. The effect of imperfection amplitude is 

also studied. Increasing amplitude is shown to lower displacement capacity of the solid, 

though limitations of the finite element analyses become apparent at larger imperfection 

amplitudes. Finally, the behavior of solid three-dimensional cylinders made with 

nonlinear elastic materials, foams, is investigated, to elucidate the influence of material 

nonlinearity on the response. Results indicate that the phenomena investigated in this 

thesis holds for models of such materials as well. 
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RESUMEN 
 

Esta tesis presenta una investigación del fenómeno de pandeo y las consecuencias 

de la teoría de estabilidad para sólidos gruesos tridimensionales. Las estructuras 

consideradas son cilindros sólidos bajo compresión axial. Se deriva una formulación 

analítica usando una trayectoria fundamental lineal y un campo de desplazamientos 

incrementales, llegando a un problema de valores propios. Se realizan análisis de 

bifurcación con el modelo analítico simplificado para varios materiales isótropos y lineal-

elásticos. Los resultados predicen bifurcaciones para deformaciones muy altas en modos 

que reflejan patrones de ondas en las superficies externas.También se realizan análisis de 

bifurcación usando un programa de elementos finitos. Se confirma con éstos que tales 

bifurcaciones aparecen a grandes niveles de deformación. Se investigan puntos límite 

para estructuras sólidas con análisis geométricamente nolineales. Los resultados muestran 

que las inestabilidades de punto límite se encuentran a niveles de desplazamiento 

inferiores a los de bifurcaciones. Se desarrolla un método de energía reducida para 

obtener límites inferiores a las cargas de pandeo. Anteriormente estos métodos se han 

dirigido al pandeo de estructuras de pared delgada. El método se aplica usando la 

formulación analítica. Los resultados muestran similitud razonable entre la metodología 

reducida desarrollada y los análisis nolineales con elementos finitos, pero no límites 

inferiores. La sensibilidad a imperfecciones, inferida de los resultados de los análisis de 

bifurcación, también se estudia. Modos de pandeo obtenidos de los análisis de 

bifurcación se utilizan como imperfecciones en la geometría inicial y se realizan análisis 

geométricamente nolineales. Los resultados indican que se reduce la capacidad de 

desplazamiento. También se estudia el efecto de la amplitud de imperfección. Se muestra 

que al aumentar la amplitud se reduce la capacidad de desplazamiento del sólido, aunque 

limitaciones del programa de elementos finitos relucen para mayores amplitudes. 

Finalmente, se investiga el comportamiento de cilindros sólidos de materiales elásticos 

nolineales, “foams”, para determinar la influencia de la nolinealidad del material en la 

respuesta. Los resultados indican que el fenómeno también aplica a modelos con tales 

materiales. 
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CHAPTER 1  

 INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 

1.1 GENERAL INTRODUCTION 

One of the great advances in theories of engineering interest following the 

development of the general theory of elasticity was the development of the theory of 

stability. The field of stability of structures finds its modern beginnings with Euler’s 

studies of a column in the 1740’s (Euler, 1744). It is interesting to note that stability 

problems of columns were identified before the development of a theory of elasticity, 

which in turn was developed before the theory of elastic stability. The studies of stability 

revealed the limitations of considering only material strength as a failure criterion, 

because in certain cases a failure dependent on both the geometry of the structure and 

loading conditions was found to control the design process. Studies of stability were 

adapted from columns to shell structures, and these two topics have since dominated 

stability research literature, due to observed propensity of these structures to buckling 

failure in common applications (von Kárman and Tsien, 1941).  
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There are two general types of buckling: “snap buckling” and “bifurcation 

buckling”. These types of buckling can be visualized with a load-displacement diagram, 

where a displacement in some relevant point in the structure is plotted against the load. In 

such a plot, the path emerging from the unloaded state is the fundamental path. In snap 

buckling the load-displacement path is nonlinear, and reaches a maximum load where the 

path tangent becomes horizontal. This point is known as the limit point. In bifurcation 

buckling, the fundamental path may or may not be linear. Buckling occurs when the 

fundamental path intersects another equilibrium path, changing the trajectory of 

displacements - causing the geometric changes observed in buckling of this type. These 

deformed shapes are known as eigenmodes, eigenvectors, or simply buckling modes. 

Bifurcation buckling studies reveal that several paths may exist for a given 

structure and loading combination, and that such paths may intersect and/or be coincident 

or nearly so at a point in the fundamental path. Advanced topics in stability theory 

include such interactions between modes at coincident critical points and their effects on 

the structural system. One consequence that arises from buckling mode interaction is a 

most important theme since the second half of the twentieth century: imperfection 

sensitivity. Imperfection sensitivity was first found to be the cause of large discrepancies 

between predicted critical loads and experimental failure loads in shells by Von Kárman 

and Tsien (1941). Here, the actual geometry of the structure plays the critical part in the 

instability process. Imperfection sensitivity may greatly decrease a structure’s capacity to 

bear load, even in comparison to a predicted buckling load. This phenomenon was found 

to be greatly influenced by geometric symmetry by Koiter, who was able to explain the 

mechanics of coupling between modes of instability of structures and imperfections in the 
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geometry (Koiter, 1945). Structural forms prone to instability with imperfection 

sensitivity include mainly thin-walled structures such as cylindrical silo shells and 

sandwich beams (Evans et al., 1999). Through the insidious nature of imperfection 

sensitivity, instability processes surprised engineers and researchers until the 

phenomenon was recognized.   

Within this framework of stability knowledge, we now further the cause by 

applying the established precepts to a fully three-dimensional problem. 

1.2 JUSTIFICATION 

 Buckling is a physical phenomenon which occurs when a structure loses its 

geometric shape and becomes unstable. The study of buckling has historically been 

relegated to one-dimensional and two-dimensional structures (such as columns, plates, 

shells and thin-walled structures); however, there is no particular reason why this 

phenomenon should be restricted to such structures. The general criterion for stability of 

discrete systems is applicable to any structure (Thompson and Hunt, 1973, Godoy, 2000), 

and the equations in the study of stability have generally been derived with respect to 

three-dimensional systems. This research postulates that buckling can occur in three-

dimensional solid structures, and attempts to establish under what circumstances this may 

occur. 

 The historical focus of buckling studies in thin-walled structures (for example, in 

thin-walled cylinders, spheres or plates) is due to the readily apparent catastrophic 

failures exhibited by such structures. Research has been directed mainly to produce or 

evaluate design processes/codes that are meant to lead to relatively “safe” thin structures 

(see, for example, Song and Teng, 2003). Thus, investigation into a complex and not-
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readily-observable phenomenon, such as in three-dimensional solids, has not been found 

necessary in engineering practice. Furthermore, most engineers would consider that 

three-dimensional solids are not prone to buckling because they would fall under the 

category of stable structures. However, it is readily apparent that buckling is a three-

dimensional phenomenon, wherein the special cases of thin-walled structures are 

contained. Also, there is the possibility of buckling as a phenomenon in a non-continuous 

solid. Investigation into three-dimensional buckling will yield hitherto unknown 

information about stability. Clearly, these possibilities are well worth investigating. 

While great knowledge has been gathered about thin structures, the basic tenet 

regarding solids has been that stability considerations do not apply. This seems to stem 

originally from the time of Bryan and his work (Bryan, 1888), in which he writes: 

“… it follows that the equilibrium of an elastic solid acted on by any system of bodily 

forces or surface tractions, which produce only small strains of the substance, is 

essentially stable for all displacements…”. Seemingly confirmed by common engineering 

experience, and overshadowed by the readily apparent instability effects in columns and 

shells, interest in solid instabilities was quickly quelled. 

 In modern times, the study of three dimensional stability has not been curtailed by 

factors of impossibility; rather the forces which have relegated this research to a 

netherworld have been engineering sense and economics. Practical considerations and 

research evermore geared toward solutions to specific and immediate problems, have 

caused there to be an enormous gap in the body of knowledge regarding instabilities in 

thick solids. 
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 Engineering, by its very nature, cannot be, and cannot be regarded as, static. Even 

though an era span generations of engineers, where no great advances are seen, still there 

can never be an ultimate engineering method that no man will ever improve upon, 

modify, or even render obsolete. Advances in materials, construction and manufacturing 

methods, and theories all change engineering constantly, even in imperceptibly slow 

fashion.  

 It seems then, that even if common experience dictates that a certain postulate 

may hold true, it is worthwhile to investigate whether these really hold, or whether 

common engineering experience is grounded on special cases where assumptions have 

been observed or are expected to hold true. This is the primary motivation in our study. 

1.3 OBJECTIVES 

 The main objective of this research is to prove the existence of instability effects 

in three-dimensional, thick solids. 

 The specific objectives for this research are as follows: 

• To verify whether old results of essential solid stability are valid. 

• To extricate under what conditions instability processes may occur in a thick 

solid. 

• To investigate the role of material properties in buckling of linear elastic solids. 

• To determine whether imperfection sensitivity can occur in three-dimensional 

solids. 

• To explore the effect of material nonlinearity in solid stability. 
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1.4 LITERATURE REVIEW 

 As mentioned earlier, the first modern works of stability recognized are Euler’s 

studies of a column in the 1740’s (Euler, 1744). Kirchhoff (1877) follows with 

considerations upon the equilibrium of elastic bodies with given forces, in which he 

concludes that equilibrium is stable except in the case of rigid body motions, a conclusion 

now known to be erroneous. These, and Greenhill’s (1881) work in “vertical poles” and 

“thin wires” were noticed by Bryan (1888), perhaps the catalyst for efforts toward a 

theory of stability, who first took upon himself “… to give a general investigation of the 

circumstances under which an elastic system can be in unstable equilibrium for other than 

rigid body displacements of the various bodies forming the system”. His work contained 

considerations for three dimensional elastic bodies as well as wires, plates and shells; and 

 his conclusions in this respect were that equilibrium of three dimensional bodies would 

always be stable, unless rigid body motions were allowed. His work was critiqued by 

Southwell (1914), who pointed out several deficiencies in his work, the most important 

among them the assumption of small strains. Southwell himself is a step in the 

formulation of a general stability, as he considered a state of strain derived from the 

homogeneous state by infinitesimal displacements. However, Southwell’s work is proof 

that interest in solid, three-dimensional bodies has all but vanished even at this point in 

time, as he concentrated on thin-walled structures such as tubular struts.  

 Biezeno and Hencky (1928) followed with an attempt at a true general stability 

theory. They considered the body in an initially known loaded state, and then a state 

arrived at by infinitesimal displacements. Trefftz (1933) developed stability theory from 

an elasticity theory for finite deformations. He used the energy criterion to judge the 
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stability. Biot (1938) derived the equations for neutral equilibrium from a theory of 

elasticity for finite deformations. Stability considerations up to this point were 

specifically directed towards determination of the stability limit (critical load). Koiter 

(1945), in his doctoral dissertation, expanded the topic of stability, investigating 

postbuckling paths and imperfection sensitivity. This landmark work firmly established 

the field of stability. 

 Today, elastic stability theory is well defined and methods to implement it have 

been developed and are widely used. General equilibrium state definitions, linear 

perturbation techniques, exploration of bifurcation and limit point states and methods for 

obtaining postcritical paths are readily available (i.e., Croll and Walker, 1972; Thompson 

and Hunt, 1973; Godoy, 2000). Such methods, however, have been historically applied to 

two-dimensional bodies (or rather, structures which are dominated by a length or two 

lengths in three-dimensional space).  

Instabilities of thick solids have been predicted previously, but these have dealt 

with two-dimensional models of three-dimensional phenomena with in-plane loads. Kerr 

and Tang (1966) studied such a problem considering a harmonic “standard” material (a 

material derived from a strain energy density and whose constitutive relations are 

perfectly linear elastic); Wu and Widera (1969) likewise but using the Mooney-Rivlin 

constitutive relations. Burgess and Levinson (1972) also studied the instability of a 

rectangular solid in plane strain, using slightly compressible Blatz-Ko and compressible 

polynomial material models. Their differing results indicated the importance of the 

material model utilized when undertaking such investigations. However, pertinent to our 

investigation: all these studies on “thick solids” have been made on models with infinite 
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dimensions on the out-of-plane direction. Though reasonable to consider the in-plane 

behavior, the truth is that the infinite constraint imposed by the out-of-plane assumptions 

rob these studies of the potentialities of true three-dimensional behavior.  

Bažant and Cedolin (1991) discuss the nuances of the finite strain tensor and its 

implications for three-dimensional instabilities. They state that three-dimensional solid 

stability must be evaluated using finite strain tensors. Thus, the geometrically nonlinear 

nature of the tensor severely complicates the analysis, since even different definitions of 

the tensor stress must be used. However, this requirement is more an assumption based 

on the results obtained by Bryan (1888), than a strict research conclusion. They list 

possibilities of critical states on solids, and restrict them to the following cases: 

1) Highly anisotropic materials. 

2) Certain composite structures having soft components. 

3) Continuum approximations of latticed structures. 

4) Materials that undergo a drastic reduction of tangential stiffness due to damage, 

plasticity, or shear, cracking or crushing bands. 

These are hardly materials for elastic stability. Such a case-by-case approach, while 

practical and utilitarian, does not advance general knowledge: each case is a beautiful 

spire – with foundations still unseen. 

Three-dimensional studies of structures such as sandwich columns (Bažant and Beghini, 

2004) consider a mix of materials where the differing properties induce factors from 

which the instability effect cannot be extricated. In addition, such columns, while short, 

cannot be considered thick solids. The instability processes of sandwich panels with foam 

core material have been investigated previously and have gone as far as including the 
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interaction between global and local instabilities (Léotoing et al., 2005). However, the 

possibility of a macroscopic type of instability – that of the material in solid form - has 

not been studied. In this instability process, there would be imperfection sensitivity to 

geometric deviations of the solid from its ideal form. This type of macro sensitivity we 

enunciate is distinct and different from imperfection sensitivity of the foam 

microstructure, where morphological deviations play a crucial role in defining the 

material behavior: these imperfections catalyze the onset of instability that defines the 

elastic limit of a foam (Gong et al., 2005). Geometric structural deviations, on the other 

hand, would facilitate instabilities of the solid as a whole. 

In engineered systems, the elastic behavior is typical of small strains under 

service loads; however, most designs tend now to be based on limit state considerations, 

in which plasticity and fracture are taken into account. The instability of 3D bodies has 

been mainly investigated in the context of the failure of soils and granular solids, in 

which case there are failure surfaces and material plasticity plays an important role.  

But there are many systems in nature for which an elastic behavior is the only way to 

perform a function. For such systems, the elastic behavior is a key part of the normal 

functioning of the system. 

Consider for example the behavior of muscles in human and animal bodies, 

illustrated in Figure 1.1. Voluntary muscles consist of bundles of cells called myofibers. 

Inside the myofibers there are strands of myofibrils containing the proteins (actin and 

myosin).  
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Figure 1.1. Bundles of myofibers in a contracting muscle. 
 

In a contracting muscle, the myosin filaments overlap, making the muscle shorter. The 

contraction of a muscle is not a high speed action and is usually controlled by the animal 

or human being. In Figure 1.2, on the left the muscle is shown in a contracted position, 

whereas it is relaxed on the right of the image. The actual shape of the muscle illustrated 

in Figure 1.2 does not involve a significant change in shape, so that the external surface 

appears to coincide in both cases.  

 

 

Figure 1.2. Contracted and relaxed configurations of a muscle. 
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In the previous figure it is shown that a change in length is not accompanied by a 

change in the diameter of the filaments. However, the actual details of the shape of the 

contracted muscle have not been investigated in detail by researchers in this field; i.e. 

what are the mechanisms of deformation between the two configurations of a muscle in 

order to change its length? Are there volume changes during the process? Figure 1.3 

shows a section of an aortic valve. Notice the corrugations on the inside surface. The 

specialized extra cellular matrix enables dynamic aortic valve function (Schoen, 2006). 

 

Figure 1.3. Valve dynamics in cyclical cardiac function. 
  

 What does the preceding figure imply? Research could conceivably show that the 

valve deforms according to a preset shape. But it is also possible that the natural 

mechanism makes use of the buckling phenomenon.  

In contrast to the workings of the previously mentioned cases, there are many 

situations in which the problem has been studied in great detail, because the actual 

mechanism of contraction is vital to the understanding of the functioning of a muscle and 

the survival of the individual. One such case is the catch mechanism in Eucidaris 

tribuloides (a sea urchin), for which several hypotheses have been proposed (del Castillo 
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et al., 1995; Elphick and Melarange, 2001) and falsified (Takemae and Motokawa, 2005). 

In essence the problem consists of the organism being able to alter the stiffness of a non-

muscle type cellular structure. But loss of stiffness has the stamp of buckling process at 

work. These investigations do not consider this possibility. 

 Corrugations similar to those of Figure 1.3 can be seen in a man-made material. 

Figure 1.4 shows a synthetic rubber in a wrist rest of a mouse pad. Notice the surface 

corrugations under bending, which can be seen through the nearly transparent material. 

 

 

(a) 
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(b) 

Figure 1.4. Corrugations on man made rubber material under bending, (a) Front view;              
(b) Top view. 

 

 Why does this occur? What determines the number and size of the corrugations? 

These are unknowns at present, but one thing is clear: this is a buckling phenomenon at 

work, because for slight bending there are no corrugations. In this material, there is surely 

a buckling point being crossed. 

Another field in which the buckling process may be of relevance is the mechanics 

of glaciers, in which masses of fluidized ice under pressure deflect as the glacier moves, 

and the mechanics of snow. Similar changes in stiffness in the rock masses can also be 

seen as buckling processes (Bažant and Cedolin, 1991). Those are usually slow motion 

processes, however, and not immediately apparent as buckling consequences. 

 Considering the possibilities, 3D solid buckling is an interesting area for research; 

however, so far as we are able to see, a study of a thick, nonslender structure made of a 

single material has not been realized. Therefore, the nuances of an instability process in a 

three-dimensional solid cannot be considered to have been extracted at present. 
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1.5 SCOPE 

 This investigation focuses on three-dimensional solids, specifically solid cylinders 

under compression. The primary materials used follow the linear elastic model, although 

a nonlinear foam model is also utilized in the course of the investigation. All material 

models are isotropic. Linearity of the system response is assumed in the fundamental path 

used to develop an analytical formulation and in the linear analyses using finite elements. 

Nonlinearity (large displacement theory) is assumed in geometrically nonlinear finite 

element analyses. 

1.6 METHODOLOGY 

 In order to carry out this investigation, two approaches are taken: analytical and 

computational. An analytical formulation based on the total potential energy is developed 

and a simplified version is used to perform eigenvalue extraction analyses for various 

incremental displacement fields. These analyses correspond to critical states associated to 

bifurcations. Bifurcations are also evaluated with buckling analyses using finite elements. 

Finite elements are also used to evaluate limit point critical states, which necessitate 

nonlinear step-by-step methods such as that found in our finite element package. This 

research makes extensive use of the finite-element program ABAQUS. This program has 

been chosen because of its versatility, historical reliability, capabilities and availability. 

Linear, nonlinear and buckling analyses are performed with this program. 

 Further along in our investigation, we integrate the reduced energy methodology 

into our simplified analytical formulation. A trial and error approach is taken in order to 
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determine the relevant energy terms to be eliminated from the total potential energy when 

following this methodology. 

 The finite element method is again used when evaluating imperfection sensitivity. 

Imperfections are taken from eigenmodes which result from the bifurcation analyses 

using finite elements. The eigenmodes are imposed as imperfections on the initial 

geometry of the solid. 

1.7 ORGANIZATION 

 This thesis is organized in seven chapters and an appendix. The present chapter 

contains the general introduction to our investigation (instabilities of three-dimensional 

solids), as well as the motivation, objectives, literature review, scope and methodology 

followed in the course of the research.. 

 Chapter 2 presents a simplified analytical approach using the total potential 

energy formulation. A theme problem of solid cylinder under compressive load is 

studied. Linear elastic materials are assumed. Both the derivation of the problem and 

results of bifurcation buckling analyses are presented. Results are given for various 

materials and cylinder heights. 

 Chapter 3 includes bifurcation, linear and nonlinear analyses of the theme 

problem, using the finite element method. Comparisons are made between all results, 

including the ones obtained in the preceding chapter. 

 In Chapter 4, the reduced energy methodology is applied to the 3D solid problem 

using the analytical formulation developed in Chapter 2. The contributions of individual 

potential energy terms are evaluated. The results are compared to those of preceding 

chapters. 
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 Chapter 5 presents a study of imperfection sensitivity in the theme solid. Buckling 

modes are imposed as initial imperfections upon the solid geometry and nonlinear 

analyses are performed. The results are then compared to the nonlinear analyses without 

imperfections. 

 In Chapter 6, the effect of material nonlinearity on the solid buckling problem is 

evaluated using highly nonlinear materials, foams. Imperfection sensitivity was also 

explored for these materials. Both nonlinear analyses with and without imperfections 

were performed. Again, buckling modes are imposed as initial imperfections upon the 

solid geometry, and the effects of imperfection amplitude evaluated.  

 In closing, Chapter 7 gives our general conclusions and future work 

recommendations.  
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CHAPTER 2  

 SIMPLIFIED ANALYSIS OF 
BIFURCATIONS IN 3D SOLIDS  

 
 

 

 

 

 

 

2.1 INTRODUCTION 

As previously mentioned in Chapter 1, knowledge of stability of thick solids at 

present can hardly be considered more than pervasive belief . This in part is due to the 

conclusions of Bryan in his 1888 work (Bryan, 1888), which considered full three-

dimensional stability, however utilizing linearity assumptions which unwittingly 

produced negative results for the buckling of thick solids. Said conclusions at the 

forefront of the field, the initial assumptions were accepted tacitly - resulting in the 

persistence of the intuitive belief that solids could not buckle. In more recent times, 

works with other cases that might be considered three-dimensional (Kerr and Tang, 1966; 

Wu and Widera, 1969; Burgess and Levinson, 1972), while now including the full 

stability considerations, contained constraint assumptions which made said investigations 

little more than plane representations.  
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In this chapter we present the total potential energy and its use as stability 

criterion. A fully three-dimensional formulation for buckling of a solid is developed. 

Results of eigenvalue extraction analyses on models of solid cylinders under compression 

are presented and discussed. 

2.2 THE TOTAL POTENTIAL ENERGY 

The total potential energy is a functional used in theoretical elasticity and 

frequently in elastic stability problems. As its name indicates, it is a summation of all 

energy in the structure considered. The total potential energy is defined mathematically 

as: 

∫∫∫ ++≡
fSVV

SVV dddV ψρω                                                                                     (2.1) 

where V is the total potential energy, ω is the strain energy density per unit volume of the 

body, ρ is the potential of the forces in the volume of the body, ψ is the potential of the 

forces acting on the boundaries, dV is a differential of the volume of the body an dS is a 

differential of the surface space of the body. The integration limit Sf on the third term in 

the right side of equation 2.1 refers to the parts of the surface where forces are defined 

(even if they are zero on a free boundary condition). *  

The strain energy density per unit volume of the body, ω, refers to the internal 

energy produced by the stresses (σ) and strains (ε) in the body. In the material cases 

considered, which are linear elastic, the strain energy density becomes: 

                                                 
* Mixed boundaries, in which load and displacement components are both defined at the same location, are 
not considered in this work. 
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ijijεσω
2
1

=                                                                                                                     (2.2) 

where indicial notation implies a sum of terms for i = 1, 2, 3 and j = 1, 2, and 3.  

The potential of the forces in the volume of the body, ρ, and the potential of the 

forces acting on the boundaries, ψ, are usually taken in simple form as: 

iiuF−=ρ  
                                                                                                                                        (2.3) 

iiuf−=ψ                                                                                                        
                                                                                                                                                                             

where Fi’s are forces per unit volume and fi’s are forces per unit surface, while the ui’s 

refer to the displacements in the directions in which the forces act. Further assuming that 

these forces all increase at the same rate, they can be represented by a single control 

parameter, Λ: 

iiuFΛ−=ρ         
                                                                                                                                        (2.4) 

iiufΛ−=ψ  

The energy for a structure governed by a single load parameter, composed of a 

single linear elastic material is: 

∫∫∫ Λ−Λ−≡
fSVV

SVV
2
1 dufduFdV iiiiijijεσ                                                              (2.5) 

The displacements ui are used to obtain the strains εij with the kinematic equations 
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2
1ε                                                                                   (2.6) 

In which the ui’s represent the displacements in the i- direction, and the xi’s are the 

coordinate directions. 
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The stresses σij in turn are obtained from the strains εij by the material constitutive 

relations, which in the case of a linear elastic isotropic material take the form: 

⎟
⎠
⎞

⎜
⎝
⎛

−
+

+
= mmijijij

E εδ
ν

νε
ν

σ
211                                                                              (2.7) 

 
where E is Young’s modulus (or elastic stress-strain rate), ν is Poisson’s ratio (or ratio of 

lateral strain to axial strain caused by a load in the axial direction), and δij is Kronecker’s 

delta, which takes a unit value for i=j and is zero otherwise. 

2.2.1 Total Potential Energy and Stability 

The total potential energy’s usefulness primarily comes from the fact that higher 

order variations of it are directly related to critical stability states. The first variation of 

the  total potential energy with respect to the displacement field is related to the 

equilibrium of a state. For the form we have described previously (Equation 2.5 ), the 

first variation of the total potential energy becomes: 

∫∫∫ Λ−Λ−≡
fSVV

SVV
2
1 dufduFdδV iiiiijij δδδεσ                                      (2.8) 

According to the principle of virtual work, which states: “A necessary and 

sufficient condition for equilibrium of a set of forces and stresses is that, for any virtual 

displacement field, the internal virtual work should be equal to the external virtual work” 

(Washizu, 1968), the sum of internal and external work should be zero. Naming the 

virtual displacements iuδ , the virtual strains obtained from the virtual displacements 

following the kinematic equations (Equation 2.6) are ijδε . Letting σij be real stresses in a 

problem, the internal virtual work is: 
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∫=
V

V
2
1 dIVW ijijδεσ                                                                                            (2.9) 

If Fi and fi are the real forces of the problem, then the external virtual work is: 

∫∫ Λ+Λ=
fSV

SV dufduFEVW iiii δδ                                                   (2.10) 

Equality of internal and external virtual work implies that the summation of these 

terms should be zero. Therefore we obtain: 

0SVV
2
1

fSVV
=Λ−Λ− ∫∫∫ dufduFd iiiiijij δδδεσ                                    (2.11) 

This form matches exactly the terms of the first variation of the total potential energy if 

we let iuδ be the actual displacements of the problem, which obey the kinematic relations. 

The condition of equilibrium of a load state from the first variation of the potential 

energy is: 

0=δV                                                                                                                     (2.12) 

Furthermore, the total potential energy is also a criterion of stability for said equilibrium 

states, in the second variation. For stability of an equilibrium state, the total potential 

energy must be a minimum with respect to the displacement field.  

The energetic criterion of stability can be stated simply: 

if: 

02 >Vδ                        (2.13) 

Then the state is stable. If: 

02 <Vδ                           (2.14) 

the state is unstable.  

 21



 

The third alternative: 

02 =Vδ                        (2.15) 

indicates a state of neutral equilibrium, also known as a critical state. 

It is to the third condition that buckling is associated to. Critical states usually 

imply a deformation of the structure that changes its shape significantly. These changes 

may be considered adverse or beneficial, but more often than not, they represent a failure 

of the structure for all intents and purposes. That is why it has become an important part 

of structural engineering to evaluate structures and structural members for the possibility 

of failure by buckling. 

There are two general types of buckling: “snap buckling” and “bifurcation 

buckling”. These types of buckling can be visualized with a load-displacement diagram, 

where a displacement in some relevant point in the structure is plotted against the load. In 

such a plot, the path emerging from the unloaded state is the fundamental path.  

As shown in Figure 2.1, in snap buckling the load-displacement path is nonlinear, 

and reaches a maximum load where the path tangent becomes horizontal. This point is 

known as the limit point. 
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Figure 2.1. Sample load-displacement behavior for snap buckling. 
 

The fundamental path may or may not be linear in bifurcation buckling. Buckling 

occurs when the path intersects another equilibrium path, which changes the trajectory of 

the displacement (which causes the geometric changes observed in buckling of this type). 

This is illustrated in Figure 2.2. 

Displacement

Nonlinear path 

Limit Point

Lo
ad

 

Displacement

Lo
ad

 

Primary path

Secondary path

Bifurcation point 

 

Figure 2.2. Sample load-displacement behavior for bifurcation buckling. 
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In this work we aim to investigate the critical states of three-dimensional solids, 

but we do not seek to evaluate the stability of such states or explore post-critical paths. 

For further discussion on buckling, limit point and bifurcation paths, the reader is referred 

to Croll and Walker, 1972; Thompson and Hunt, 1973; and Brush and Almroth, 1975. 

2.3 STABILITY OF A SOLID USING THE TOTAL 
POTENTIAL ENERGY 

Considering a general solid structure, let us denote the total displacements of the 

structure as the sum of the fundamental path displacements and incremental 

displacements: 

i
F
ii uUU +=                       (2.16) 

where the represent the fundamental path displacements and the are the 

incremental displacements. This is a convenient way to investigate buckling because the 

displacements in the fundamental path may be derived in a simplified way, whereas a 

more detailed representation may be given to the incremental displacements . The 

strains obtained from kinematic relations, divided into the terms coming from the 

fundamental path and incremental displacements, are: 

F
iU iu

iu

'''
ijij

F
ijij εεεε ++=           (2.17) 

Where: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

=
i

F
j

j

F
iF

ij x
U

x
U

2
1ε  

 24



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

=
i

j

j

i
ij x

u
x
u

2
1'ε            (2.18) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

=
j

m

i

m
ij x

u
x
u

2
1''ε  

 The first line in Equation 2.18 is the linear contribution to the fundamental path; 

the second line is the linear contribution to the incremental strains, the third line 

represents the non linear contribution to the incremental strains. 

The total strains are comprised of the linear terms from the fundamental path, the 

linear terms from the incremental displacements and the nonlinear terms from the 

incremental displacements. As the fundamental path is assumed to be linear, there are no 

nonlinear terms arising from the fundamental path. 

The stresses, obtained from the constitutive equations, can be separated similarly: 

'''
ijij

F
ijij σσσσ ++=            (2.19) 

Substituting into Equation 2.5, we obtain: 
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       (2.20) 

Expanding the equation and separating the stress-strain terms according to their degree 

(constant, linear, quadratic, etc), the total potential energy is: 
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Listing the energy terms, represented as Vi, with increasing stress-strain order: 

43210 VVVVVV ++++=                        (2.22) 

V0 contains only fundamental path terms: 

∫ ∫ Λ−Λ−=
V V0
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ij εσ ∫S                                               (2.23) 

so it is a constant, independent of the incremental terms. 

 The terms that make up V1: 

∫ ∫ Λ−Λ−+=
V V
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1   SV) V)(

2
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dufduFdV iiii

F
ijijij

F
ij εσεσ ∫S                             (2.24) 

equal the first variation of the total potential energy with respect to the fundamental state.  

VV δ=1             (2.25) 

The solution of V1 =0 returns the fundamental path ( , ). The terms V2, V3 

and V4 have no load terms, only internal deformation energy. The terms that make up V2 

are the quadratic terms in incremental displacements:  

F
ijσ F

ijε

∫ ++=
V

''''''
2  V)(

2
1 dV F

ijijij
F
ijijij εσεσεσ                    (2.26) 

V2 equals the second variation of the potential energy: 
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VV 2
2 δ=             (2.27) 

We consider the case where the second variation is zero, and the fundamental path 

can be scaled by virtue of its linearity. We use the load control parameter  as the scale 

factor for the fundamental path terms. Denoting the fundamental path terms 

corresponding to a unit load system as 

Λ

F
ijσ for stresses and F

ijε for strains, we arrive at: 

∫ ∫ =+Λ+
V V

''''''  0V)(V dd F
ijijij

F
ijijij εσεσεσ                                                                       (2.28) 

which is an eigenvalue and eigenvector problem. The eigenvalue is , the load 

multiplier that increases the stresses and strains along the fundamental path. The 

eigenvector is not explicitly shown in Equation 2.28, but is evident when the incremental 

displacement field is defined. In explicit form: 
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  (2.29) 

2.4 PROBLEM FORMULATION 

To illustrate the behavior of a solid 3D elastic body, a simple problem has been 

considered in this thesis. We treat a thick cylindrical solid under uniform pressure P, as 

shown in Figure 2.3.  
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Figure 2.3. Coordinate axes and load in theme solid. 
 
This is a problem for which analytical approximations are possible, and which exhibits 

symmetry. Symmetry has been recognized as an important component in instability 

problems. An excellent account of the role of symmetry in instability is given in Fearful 

Symmetry: is God a Geometer? by I.Stewart and M. Golubitsky (1992). 

As the solid is cylindrical, a convenient coordinate system is the one presented in 

Figure 2.4, in which the position of each point is identified by a radius, a circumferential 

coordinate which follows the angle θ, and the elevation.  
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Figure 2.4. Coordinate axes in cylindrical system. 
 

In the preceding figure, X1 is the vertical direction, X3 the radial direction,  and X2 a 

circumferential direction (θ denotes the angular path of the X2 coordinate). 

 

2.4.1 Definition of the Linear Fundamental Path 

For this simple problem, the linear fundamental path can be defined by 

establishing the axial stress as load divided by the cross-sectional area, and the other 

stresses set to zero.  

PF =11σ        012 =
Fσ

022 =
Fσ                                       (2.30) 013 =

Fσ

033 =
Fσ       023 =

Fσ

This is clearly an approximation to the solution, because idealized boundary conditions 

are required to satisfy such a stress state. 
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The strains are obtained from the stresses using linear elasticity constitutive 

equations: 

⎟⎟
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Where E is Young’s modulus, ν is Poisson’s ratio, εij are the components of the strain 

tensor, σij the components of the stress tensor, and δij Kronecker’s delta in indicial 

notation, which is equal to one when the indices are equal and zero otherwise. 

The strain terms in the fundamental path become: 
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Since the shear stresses are zero and linear isotropic elasticity is considered, the 

shear strains along the fundamental path are also zero: 

012 =
Fε  

013 =
Fε                          (2.33) 

023 =
Fε  

The fundamental path stress and strain tensors are already in their principal form: 
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In summary, the linear fundamental path defined assumes that there are no shear 

stresses or strains and that linear elasticity is followed (no second order stress or strain 

terms). Furthermore, we assume the compressive uniformly distributed load P to have a 

unit value, and use the load parameter Λ as the load unknown in the total potential 

energy. 

2.4.2 Definition of the Incremental Displacement Field  

Stability problems, like many others in engineering, are usually discretized in 

order to reduce the number of unknowns to a manageable or desired quantity. This is 

typical of the finite-element method, where unknowns such as displacements are 

determined only at certain locations in the structure and functions are used to interpolate 

for the values in between such locations. With the potential energy it also serves well to 

use a discrete number of unknowns in the context of the Rayleigh-Ritz method. This can 

be achieved by utilizing generalized coordinates (degrees of freedom), which are not 

necessarily displacement unknowns at a point in the structure but might also be 

multipliers of displacement functions, or the variables that the displacements are 

functions of. Denoting the generalized coordinates as Qi’s, the displacements can be 

written as: 
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)( ijj Quu =                                   (2.35) 

with the discretized system the total potential energy V becomes a function of the 

generalized coordinates and the load parameter: 

],[ Λ= iQVV            (2.36) 

We employ such a discretized system in the definition of the incremental 

displacement field. Three displacement equations define the eigenmode. First, we assume 

that the eigenmode may be solely defined in terms of the radial displacement component 

u3, and that the axial and tangential displacements may be neglected. Thus, both the axial 

(1-direction) and angular (2-direction) incremental displacements are set equal to zero: 

01 =u  
                                             (2.37) 

02 =u  

The mode definition is completed by using a shape function for the radial incremental 

displacements as follows: 
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Where u3 is the radial incremental displacement, R the radius and L the length of the 

solid; M and N the number of waves in the axial and circumferential directions, 

respectively, for the mode described; x1, x2 and x3 the axial, angular distance and radial 

coordinates of the points inside the cylinder and Q is the radial generalized coordinate. 

This generalized coordinate represents the “primary” radial displacement, a magnitude 

that, multiplied by the other terms in the u3 function, gives the mode shape its ultimate 

size.  
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 The boundary conditions to be satisfied are: u3=0 at x1=0 and x1=L. The sine term 

in the x1 direction sets the radial displacements to zero on the top and bottom borders, 

allowing for the set number of waves. The sine term sets the number of waves in the x2 

(circumferential) direction. The radial displacement is set to increase linearly from zero 

outwards with increasing radius (the x3/R term). 

 Figure 2.5 is a three-dimensional plot of the shape function with the generalized 

coordinate Q set to 1, with the base radial coordinate x3 equal to unity, for a unit height. 

The number of waves M and N both set equal to 2. The axial coordinates are on the X1 

axis, while the circumferential coordinates are on the X2 axis. The radial displacements 

on the surface of the solid, normalized to unity, are plotted on the X3 axis. As can be 

seen, the figure is composed of two inward and two outward bulges.  

 

 

Figure 2.5. 3D plot of wave function for incremental radial displacement. 
 

 For the incremental state, the strains are obtained directly from the displacement 

functions. Considering first the linear components: 
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The associated stress tensor, obtained by constitutive relations, is: 
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Even though 11'σ and 22'σ are present in the tensor, they do not participate in the energy 

calculation, since the associated strain terms annul them. 
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The nonlinear strain components are: 
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For the nonlinear components we have complete tensors. The tensor of nonlinear 

components of incremental strains is:  
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The associated stress tensor, again obtained by constitutive relations, is: 
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 According to Equation 2.29, even though the nonlinear component tensors are 

complete, the individual terms only participate in the total potential energy when 

multiplied by their fundamental path stress-strain counterparts. For example, 22"ε  

appears in the total potential energy multiplied by , which was defined as zero, 

therefore the energetic contribution of the term as a whole is zero.  

F
22σ

 After eliminating all the terms that are made zero by the assumptions made in the 

fundamental path and incremental displacement field definitions, the eigenvalue problem 

is reduced to the seven-term equation: 
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The unknowns in this problem are: the eigenvalue, i.e. the load parameter Λ, which is the 

load multiplier, and the eigenvector, represented in this simple case by the radial 

displacement generalized coordinate Q. 

2.5 MATERIAL MODELS AND GEOMETRIES 

 The material models utilized were linear-elastic and isotropic, defined by the 

elastic modulus (also known as Young’s modulus, or E), which is the ratio of stress to 
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strain, and Poisson’s ratio, ν, the ratio of lateral strain to axial strain caused by a load in 

the axial direction. Isotropy indicates that the material properties are the same in all 

directions, which allows the material to be defined by only two constants (further 

discussion of material definitions and constants can be found in Malvern, 1969). 

 Three cylindrical geometries were used in this work, with radius of 100 mm in all 

cases and heights of 50, 70 and 90 mm. For easy reference, the material and geometry 

combinations presented in this work will henceforth be referred to by the Case ID 

presented in Table 2.1.  

Table 2.1. Case ID’s for material model/geometry combinations. 

Case ID 
Elastic 

Modulus 
[Mpa] 

Poisson’s 
Ratio 

Height
[mm] 

Radius 
[mm] 

Case .05-50 7 0.05 50 100 
Case .15-50 7 0.15 50 100 
Case .25-50 7 0.25 50 100 
Case .35-50 7 0.35 50 100 
Case .45-50 7 0.45 50 100 

Case .05-70 7 0.05 70 100 
Case .15-70 7 0.15 70 100 
Case .25-70 7 0.25 70 100 
Case .35-70 7 0.35 70 100 
Case .45-70 7 0.45 70 100 

Case .05-90 7 0.05 90 100 
Case .15-90 7 0.15 90 100 
Case .25-90 7 0.25 90 100 
Case .35-90 7 0.35 90 100 
Case .45-90 7 0.45 90 100 

 

 The cases are named by the Poisson’s ratio/solid height combination. A single 

value of elastic modulus is presented in Table 2.1; however, this is a consequence of the 
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investigation, which revealed that Young’s modulus does not affect the stability behavior 

of the solids (see Section 2.6.1). For any value that might have been used, the results 

pertinent to our investigation would have remained the same.  

2.6 RESULTS 

 With the incremental displacements set by Equation 2.38, several deformed 

shapes (or modes) were utilized, and the associated eigenvalues obtained by solving 

Equation 2.46 for each case. Since Equation 2.38 is defined in terms of sine waves, the 

modes were described by the number of circumferential and vertical “waves” in 

displacement. Figure 2.6 shows 3D plots of cylinders with deformed shapes according to 

the number of vertical waves, M, and circumferential waves, N, set to various values. 

Figure 2.6 (b), the mode shape for M = 2 and N = 2, corresponds to the function plot 

shown previously in Figure 2.5. The black lines in the figures represent the internal plot 

grids and are for visual effect only. They do not indicate a finite element mesh. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2.6. Mode shape for (a) M = 1, N = 1; (b) M = 2, N = 2;                                             
(c) M = 1, N = 5; (d) M = 5, N = 1. 

 

2.6.1 Influence of Material Properties 

 Several analyses were performed in order to test the influence of the material 

properties on the eigenvalues obtained. A fact that quickly became apparent was that the 

value for elastic modulus did not affect the eigenvalue obtained from the analysis. Figure 

2.7 demonstrates this fact for several material/mode/geometric cases. It must be noted 

that strictly speaking, the eigenvalue obtained in the eigenvalue extraction analyses 

performed is a load value for the variable P. However, since buckling manifests as a 

geometric phenomenon, in this thesis we have chosen to observe the associated 

displacement in the top surface where the load acts, for easy comparison between 

different material cases. The displacements are calculated from elasticity equations 

(Equation 2.31) using the obtained load eigenvalue. 
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(c) 

Figure 2.7. Constancy of  displacement eigenvalue with increasing elastic modulus         
(a) Case .15-50 (b) Case .25-70 (c) Case .35-90. 

 

 Although Figure 2.7 does not show results for every eigenmode and case, the 

displacement eigenvalue remained the same for all values of elastic modulus for each 

combination of geometry and Poisson’s ratio. 

 The effects of varying Poisson’s ratio were also studied. Poisson’s ratio, or ν, is 

defined as the ratio of lateral strain to axial strain when the axial direction is loaded, and 

can be used as a measure of compressibility in linear elastic materials. For these 

materials, the theoretical range of ν is from 0 to 0.5. A perfectly incompressible material 

would have a value of 0.5. For rubber, ν is almost 0.5, while for cork, a material that does 

not display transverse strains due to the presence of axial strains, ν is close to zero.  
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(c) 

Figure 2.8. Displacement eigenvalue versus Poisson’s ratio for various M and N:             
(a) Height = 50 mm; (b) Height = 70 mm; (c) Height = 90 mm. 

 

 Figure 2.8 shows the eigenvalues obtained for the three geometric cases for all the 

eigenmodes utilized (the combinations of M = 1, 2, 5, 10 and N = 1, 2, 5, 10), for five 

values of Poisson’s ratio. As Figure 2.8 demonstrates, the eigenvalue behavior with 

respect to Poisson’s ratio is not constant. In addition, the variation behavior is also not 

monotonic, but is instead dependent on the incremental mode shape applied. This is 

illustrated in Figure 2.9 and Figure 2.10, which show the eigenvalues obtained for the 

three geometric cases for M = 10, N = 1 and M = 2, N = 2. The figures show the results 

directly as obtained and also normalized with respect to the corresponding height for each 

case. 
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(b) 

Figure 2.9. Displacement eigenvalue versus Poisson’s Ratio for M=10, N=1;                   
(a) Direct results, (b) Results normalized with respect to height. 
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 Notice how the curves for M = 10, N = 1 descend smoothly with increasing 

Poisson’s ratio. When normalized, these curves lie almost on top of each other, which 

implies that this mode has a similar quantitative effect on each geometry. This is not the 

case for M = 2, N = 2, which exhibits both a U-shape and differing effects for each 

geometry. 
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(b) 

Figure 2.10. Displacement Eigenvalue versus Poisson’s Ratio for M=2, N=2;                  
(a) Direct results, (b) Results normalized with respect to height. 

 

 As can be garnered from the preceding figures, for lower M, the highest 

eigenvalues correspond to both highest and lowest Poisson’s ratio. However, for higher 

M, the eigenvalue obtained for the same mode and geometry tends to decrease with 

increasing Poisson’s ratio; therefore the curves do not all exhibit the same trend, but are 

dependent on the shape used for the incremental displacement field. 

 

2.6.2 Results of Eigenvalue Analyses 

 The associated eigenvalues, in terms of displacement, for each mode were found 

and plotted for increasing values of M and N. Figure 2.11 shows the results for all 

geometric/material cases. 
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(c) 

Figure 2.11. Displacement Eigenvalue versus M for various N: 
(a) Height = 50 mm; (b) Height = 70 mm; (c) Height = 90 mm. 

 

 As can be seen from the preceding figures, in all cases the trend is the same: A 

greater number of vertical waves (M), corresponds to decreasing eigenvalue, while with a 

greater number of circumferential waves (N) a slight increase in eigenvalue is obtained. 

The results display an asymptotic trend with increasing M. Though not shown on the 

plots, this behavior was seen to extend to infinity, and held for all geometric/material 

cases. Figure 2.12 illustrates the behavior two-dimensionally for three geometric/material 

cases. 
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(c) 

Figure 2.12. Displacement Eigenvalue versus M for various N, (a) Case .15-50; 
 (b) Case .25-70; (c) Case .35-90. 

 

 Again, we can see that the behavior is the same for the different 

material/geometry cases shown. Note that some of these displacement eigenvalues 

obtained, such as the cases for M=1, N=10 on the 70 mm and 90 mm tall cylinders, are 

larger than the initial solid heights, and therefore cannot occur. 

2.7 CONCLUSIONS 

 From the simplified analytical model presented in this chapter, it was observed 

that the eigenvalues are the same for all the values of elastic modulus (for the same 

geometry). This may be surprising at first glance, but it is not counterintuitive if thought 

of in terms of displacements: for larger modulus values, more load is required to reach 
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the same displacement level. However, since the reference Poisson’s ratio is unchanged, 

the deformed shape must be equal to that of a material of lesser modulus for the same 

displacement level – including the critical displacement.  

 While varying only Poisson’s ratio, the eigenvalues were seen to depend strongly 

on the number of vertical waves M: for lower M, the behavior is concave-upward 

increasing with Poisson’s ratio, with the highest values corresponding to the highest and 

lowest values of Poisson’s ratio. For higher M, the behavior is concave-upward, 

decreasing with Poisson’s ratio. Modes with higher N display the same shapes for the 

same M, only at higher displacement eigenvalue levels.  

 With respect to the mode shapes, it is seen that increasing M decreases the 

eigenvalue, while increasing N increases the eigenvalue. M has a much stronger 

destabilizing influence than N has a stabilizing influence. It comes as a surprise, in light 

of common experience in stability problems, that increasing M always has a destabilizing 

effect, since the usual behavior of buckling systems is that a particular mode will 

correspond to a lowest eigenvalue. The behavior observed in our models was asymptotic 

with increasing M. This would indicate that the lowest displacement eigenvalue 

corresponds to an infinite number of waves in the vertical direction – an intuitively 

unlikely result associated with the simple approximation adopted. 

 It is important to note that the magnitudes of displacement for buckling computed 

are very large for all cases: nearly a third of the total cylinder heights is the minimum for 

all cases. This indicates that indeed it would be extremely difficult to produce buckling 

on a structural solid made with constructional materials, if such were found to withstand 

the large strains. However, the problem would be more realistic in solids such as 
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biological tissues and foams, which may have large strains and still remain elastic. Most 

importantly, it is proved that buckling of a solid under compression is a structural 

possibility, unlike certain systems such as cylindrical shells under internal outward 

pressure and compression at the top of the shell. 

 The accuracy of the results reported in this chapter is still to be validated. For this 

purpose, a more refined method for a solution is utilized in the next chapter. 
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CHAPTER 3  

FINITE ELEMENT ANALYSES OF 
ELASTIC 3D SOLIDS  

 

 

 

 

 

 

3.1 INTRODUCTION 

 Investigations inside of a solid pose an obvious problem, to wit, finding out what 

goes on inside the solid during a loading cycle. In Chapter 2, we carried out eigenvalue 

extraction analyses to determine the bifurcation points for various cylindrical solids. In 

doing so, we introduced several assumptions, for example the linearity of the 

fundamental path. We also used only one degree of freedom, the radial displacement 

generalized coordinate Q. More refined solutions to the solid buckling problem are 

presented in this chapter. Finite element models, with multiple degrees of freedom in all 

three dimensions, are used to obtain the bifurcation critical points. Nonlinear incremental 

methods facilitated by finite elements also allow limit points to be found. 

 In this chapter, three types of analyses are presented: linear analyses, buckling 

analyses and geometrically nonlinear analyses. The linear analyses serve as a comparison 

for the linear fundamental path assumed in Chapter 2 and as a reference point for the 
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behavior of the system. The buckling analyses are used to verify the results obtained 

using the incremental displacement formulation, both eigenvalues and mode shapes. 

Finally, the nonlinear analyses carried out allow the limit point behavior to be explored, 

as well as the degree of linearity or otherwise in the systems studied. The results from all 

types are compared. 

3.2 MATERIAL MODELS, GEOMETRIES AND MESHES 

 The finite element eigenvalue extraction analyses were performed with the 

general purpose finite element program ABAQUS (Hibbit et al, 2003). The models had 

the same properties used previously on Chapter 2, both material and geometry-wise. A 

finite element mesh consisting of 20-node brick elements (identified as C3D20 in 

ABAQUS) was used. Active degrees of freedom for these elements are the displacements 

u1, u2 and u3. The assumed boundary conditions were fixed at the bottom surface of the 

cylinder and displacements restrained at the top surface in the x1x2 plane (i.e., u1 and u2). 

Eigenvalue and nonlinear incremental analyses were performed as displacement 

controlled experiments, applying a negative displacement at the top surface in the x3 

direction so as to cause compression. 

 For each of the three geometries investigated, an associated finite element mesh 

was constructed. The details of the meshes are given in Table 3.1. 
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Table 3.1. Mesh details for geometries utilized. 
 

Geometry Number of 
Elements 

Number of 
Nodes 

Characteristic  
Element 
Length 

R=100mm 
H=50mm 2,070 10,077 9.14 

R=100mm 
H=70mm 2,898 13,585 9.14 

R=100mm 
H=90mm 3,726 17,093 9.14 

 
 

3.3 LINEAR ANALYSES 

3.3.1 Introduction 

 A geometrically linear analysis is a usual first step in computational mechanics 

due to the low computational cost and assumptions of small rotations and strains. For the 

cases studied, linear analyses also represent the linear fundamental path described in 

Chapter 2, except for the boundary conditions (recall that for simplicity, the linear 

fundamental path was defined as having no constraints in the top or bottom planes - see 

Chapter 2, Section 2.4.1). In the finite element analyses, as well as the incremental 

displacements in Chapter 2, the top and bottom planes are constrained horizontally. The 

reasons for this are that in a practical reality an unbounded plane condition would be 

rather impossible to achieve; also, not having any constraints in the planes of the solid 

creates mathematical difficulties for the finite element solver. 

 Figure 3.1 shows the vertical top displacement versus circumferential 

displacement at midheight for all material and geometry cases. Linear analyses have no 

“endpoint”, as mathematically they continue forever, so the plots are presented only up to 
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a top displacement equal to half the solid height. The dashed lines indicate that the 

displacements would continue on with the same slope. As can be seen, the materials with 

lower Poisson’s ratio have steeper slopes, due to the lower radial displacement response. 
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 Figure 3.1. Top displacement versus radial displacement for linear analyses:                   
(a) Height = 50 mm; (b) Height = 70 mm; (c) Height = 90 mm. 
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 Finite elements allow results inside the solid to be investigated. Cutting into a 

deformed solid, we can view the displacement distribution. Figure 3.2 shows a typical 

quarter section in a linear analysis. The displacement U1 represents radial displacement. 

 
Figure 3.2. Radial displacements in quarter section of solid. 

 

 As can be seen from the color bands, which are not equal in size, the radial 

displacements do not behave linearly with respect to the radial coordinates. However, the 

distribution is dependent on Poisson’s ratio of the material used. Figure 3.3 displays the 

radial displacements, normalized to the maximum displacement, versus the radial 

distance from the center of the solid for all geometry and material cases. 
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Figure 3.3. Normalized radial displacements versus radial distance: 
(a) Height = 50 mm; (b) Height = 70 mm; (c) Height = 90 mm. 

 

 While the radial displacement distribution proved to be nonlinear, the vertical 

displacements did display linear behavior in all cases, with the maximum displacement at 

the top of the solid and zero displacement at the bottom as per the boundary condition. 

Figure 3.4 shows the typical vertical displacement distribution in color bands, where red 

represents the maximum vertical displacement, dark blue the minimum. 

 
Figure 3.4. Normalized radial displacements versus radial distance. 
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3.4 EIGENVALUE BUCKLING ANALYSES 

 In order to confirm the predicted findings of buckling of a linear elastic solid, a 

linear eigenvalue extraction procedure was performed with finite elements. The buckling 

analyses that can be performed in ABAQUS are also linear eigenvalue extraction 

analyses. The analyses were displacement controlled, therefore the eigenvalues obtained 

were values for the top displacement when the cylinder buckles. The analysis also yields 

mode shapes, which are the deformed shape the solid is predicted to take when the 

buckling load is reached. Mode shapes are usually different from the shapes seen from 

standard load-displacement effects. Figure 3.5 shows the typical deformed shape of a 

solid cylinder under compression from a linear analysis. Note that the circumference 

deformation has a characteristic “barrel” shape. In contrast, Figure 3.6 shows a buckling 

mode for the same cylinder. The buckling mode shape shows highly irregular 

circumferential displacements. This is one of the possible shapes a solid cylinder could 

take if a buckling load were reached.  The mode shapes given by ABAQUS as output are 

normalized to the greatest displacement, meaning the largest displacement magnitude is 

equal to 1.  

 
Figure 3.5. Typical barrel deformed shape of solid cylinder from linear analysis. 
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Figure 3.6. Mode shape obtained from eigenvalue extraction analysis. 

 
 
3.4.1 Influence of Material Parameters on Eigenvalues and 

Eigenmodes 

 
 As discussed previously in Chapter 2, the elastic modulus was observed to play no 

part in the displacement obtained with an eigenvalue analysis. This was confirmed by 

several finite element eigenvalue extraction analyses. Again, it was found that changing 

the modulus had no effect on either the eigenvalues or eigenmodes. Figure 3.7 shows the 

results of eigenvalue extraction analyses when varying the elastic modulus in cases .15-

50, .25-70 and .35-90. The flat lines demonstrate the null influence of Young’s modulus 

on the eigenvalues. Though only three sets of results are presented, the same behavior is 

observed in all cases. 
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Figure 3.7. Constancy of  displacement eigenvalue with increasing elastic modulus         
(a) Case .15-50 (b) Case .25-70 (c) Case .35-90. 

 

 The influence of Poisson’s ratio on eigenvalues or eigenmodes was also 

confirmed by performing eigenvalue extraction analyses for varying Poisson’s ratio and 

constant Young’s modulus. As Figure 3.8 shows, the eigenvalues decrease nonlinearly 

with increasing Poisson’s ratio. This behavior was also observed in the results from 

Chapter 2.  
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Figure 3.8. Variation of lowest eigenvalue with increasing Poisson’s ratio. 
 
 

 
3.4.2 Results for Buckling Analyses 

 Displacement controlled eigenvalue extraction analyses were carried out using 

ABAQUS. The obtained output consisted of eigenvalues and eigenmodes. Table 3.2 lists 

the first ten eigenvalues obtained for all the material/geometry cases. The mode numbers 

correspond to increasing eigenvalues. 
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Table 3.2. Eigenvalues obtained from finite element analyses. 
 

Displacement Eigenvalues [mm] 

Case ID Mode 
1 

Mode 
2 

Mode 
3 

Mode 
4 

Mode 
5 

Mode 
6 

Mode 
7 

Mode 
8 

Mode 
9 

Mode 
10 

.05-50 30.591 30.657 30.663 30.686 30.809 30.814 30.896 31.064 31.194 31.349 

.15-50 29.845 29.885 29.887 29.914 30.022 30.025 30.077 30.253 30.337 30.489 

.25-50 28.951 28.952 28.969 28.995 29.035 29.039 29.12 29.212 29.342 29.423 

.35-50 27.651 27.685 27.721 27.726 27.728 27.797 27.81 27.829 28.008 28.025 

.45-50 25.082 25.096 25.116 25.122 25.129 25.177 25.191 25.247 25.255 25.319 

.05-70 42.123 42.151 42.215 42.259 42.407 42.459 43.006 43.047 43.276 43.394 

.15-70 41.227 41.283 41.304 41.355 41.564 41.609 41.959 42.126 42.185 42.433 

.25-70 40.12 40.17 40.217 40.39 40.533 40.562 40.703 40.909 40.978 41.248 

.35-70 38.653 38.691 38.87 39.031 39.06 39.077 39.165 39.27 39.292 39.535 

.45-70 36.088 36.262 36.283 36.297 36.388 36.391 36.535 36.599 36.603 36.632 

.05-90 53.256 53.367 53.534 53.57 53.631 53.683 54.784 54.861 55.037 55.143 

.15-90 52.328 52.417 52.463 52.481 52.572 52.621 53.517 53.657 53.743 53.771 

.25-90 50.957 51.004 51.153 51.175 51.268 51.304 51.912 52.015 52.199 52.212 

.35-90 49.08 49.126 49.454 49.519 49.563 49.629 49.745 49.86 50.183 50.204 

.45-90 46.328 46.348 46.523 46.576 46.671 46.784 46.941 46.993 47.097 47.151 

 
 

 Immediately apparent is the fact that the eigenvalues are all very close in 

magnitude for each case. This is very important to note, because such cases can indicate 

some form of sensitivity of the solution with respect to design or imperfection parameters 

(Koiter, 1945). This effect is explored in Chapter 5. 

 The simplified results from Chapter 2 indicated that the lowest eigenvalues would 

correspond to a mode with an infinite number of vertical waves. This was not observed 

on the eigenmodes obtained from the more accurate finite element analyses. Instead, the 

number of vertical waves varied from one to three, four waves being the maximum seen 

for higher eigenvalues, for example the 23rd mode for the 05.-70 case. The general trend 
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observed was that the eigenvalue increased for increasing number of waves, both vertical 

and circumferential, though no exact pattern was observed.  

 Figure 3.9 shows some modal shapes obtained from the eigenvalue extraction 

analyses, along with analogous mode shapes used in Chapter 2. 

 

                     
                            (a)                                                                             (b) 

                
                            (c)                                                                             (d) 

                    
                            (e)                                                                             (f) 

 

Figure 3.9. Mode shapes from eigenvalue extraction analyses and simplified formulation 
analogues; (a) Case .25-70, Mode 1; (b) Mode with M=3, N=1; 

(c) Case .25-70, Mode 6; (d) Mode with M=2, N=2; (e) Case .25-70, Mode 7; 
(f) Mode with M=3, N=4. 

 
As can be seen from the preceding figures, some modes obtained from the finite element 

analyses closely matched the simplified displacement formulation modes utilized in the 

analyses in Chapter 2. However, some modes could not be described by the simple radial 

displacement function used in Chapter 2. Figure 3.10 shows some of these modes. 
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(a) 
 

 
 

(b) 
 

Figure 3.10. Mode shapes from eigenvalue extraction analyses with no simplified 
formulation analogue; (a) Case .05-70, Mode 1; (b) Case .45-70, Mode 5. 

 
 
 The mode shape displayed in Figure 3.10 (a) is an “elephant foot” mode, which 

has no inward displacements in the circumferential direction, thus cannot be 

approximated by the sinusoid function used for the simplified displacement formulation. 

Figure 3.10 (b) shows an irregular mode, with localized displacements. These also could 

not be considered with the displacement function utilized previously. 

 Another peculiarity of the eigenmodes occurred for the models with nearly 

incompressible materials (those with highest Poisson’s ratios): some modes displayed the 

largest displacements inside of the solid. This internal buckling was not simulated in the 

buckling analyses of Chapter 2, since the function used was assumed to increase outward 

linearly from the center. Figure 3.11 shows a mode cross-section with internal maximum 

displacements.  
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Figure 3.11. Cross-section of mode with internal maximum displacements. 
 

 
 Comparing the results obtained from our formulation and the finite element 

analyses, similarities and differences arise. The most important difference was in the 

magnitude of the eigenvalues obtained. In the case of the analytical formulation, the 

eigenvalues depended heavily on the mode shape assumed. The displacements obtained 

decreased with larger number of vertical waves and increased with a larger number of 

circumferential waves, though the effect of the vertical waves was much stronger. With 

increasing vertical waves, the eigenvalues were seen to decrease asymptotically to values 

that, in all cases, were lower than the lowest eigenvalue obtained from the corresponding 

finite element analyses. As previously seen, the eigenvalues obtained from finite 

elements were all very close to each other numerically. It was noted that there was the 

general trend of increasing eigenvalue with circumferential waves, similar to what was 

obtained with our formulation, but there was also a slight trend of increasing eigenvalue 
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with larger number of vertical waves – the exact opposite of the results obtained with the 

incremental displacement formulation. 

3.5 NONLINEAR ANALYSES 

3.5.1 Introduction 

 The stability analyses reported in Chapter 2 and in the previous section have been 

eigenvalue extraction analyses, which find bifurcation type instabilities. As discussed in 

Chapter 2, the second type of buckling is a limit point. These points can be found with 

geometrically nonlinear analyses. In these analyses, the strain and stress tensors account 

for second order effects on the geometry of the structure.  

 A nonlinear analysis will always end at some point, since the nonlinearity of the 

system response will cause the system to become unstable. This can be recognized in 

graphs of load displacement response, when the response tends to infinity for a given 

increase in load. Figure 3.12 shows the typical load displacement response of a nonlinear 

analysis of a solid thick cylinder under compressive displacement, where the radial 

displacement at a point in the circumference of the solid increases without bound for 

increasing top displacement. This is indicative of a loss of stiffness, which tends to zero 

as load is increased. 
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 Figure 3.12. Typical load-displacement curve for geometrically nonlinear analyses. 

 

 

 Geometrically nonlinear analyses are incremental, where the system response is 

obtained by iteration. Since we are searching for points of instability, we use the modified 

Riks method. In this method, the solution is found a single equilibrium path in a space 

defined by the nodal variables and the load parameter. Therefore the load parameter itself 

is an unknown in each increment, and is found as part of the solution for equilibrium 

along the path. The basic incremental algorithm utilized in ABAQUS is the Newton 

method, which, as an incremental method, is refined with smaller increments. According 

to the user manual (Hibbit et al, 2003): "In the modified Riks algorithm, as it is 

implemented in ABAQUS, the increment size is limited by moving a given distance 
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(determined by the standard, convergence rate-dependent, automatic incrementation 

algorithm for static case in ABAQUS/Standard) along the tangent line to the current 

solution point and then searching for equilibrium in the plane that passes through the 

point thus obtained and that is orthogonal to the same tangent line.". This method has 

been successful in dealing with unstable problems (Crisfield, 1981; Ramm, 1981). The 

conditions for use of this method are that loading be proportional (controlled by a single 

scaling parameter), and that the response not encounter bifurcations. Having already 

determined the results of bifurcation analysis, we can compare the results from both 

analyses. 

 

3.5.2 Nonlinear Analysis Results 

 Figure 3.13. through 3.15 show the top displacement versus circumferential 

displacement at midheight for all material and geometry cases. Both nonlinear and linear 

analysis results are presented for comparison. Unlike the linear analyses, the nonlinear 

analyses show a drop in the slope of these plots. These drops are indicative of the 

nonlinear geometric effects, which result in loss of stiffness and structure instability. For 

convenience and easy comparison, the five figures corresponding to the five material 

cases are all presented in one page per geometry. The three pages list the results for the 

three geometries in order of increasing solid height (i.e. 50mm, 70mm, and 90mm). 
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Figure 3.13. Top displacement versus radial displacement plots for cases with  

                            H = 50 mm; (a) Case .05-50; (b) Case .15-50; (c) Case .25-50;               
(d) Case .35-50; (e) Case .45-50. 

 
 
 
 

        

 73



0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5

Nonlinear Analysis
Linear Analysis

To
p 

D
is

pl
ac

em
en

t [
m

m
]

Radial Displacement [mm]      

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

Nonlinear Analysis
Linear Analysis

To
p 

D
is

pl
ac

em
en

t [
m

m
]

Radial Displacement [mm]  
                                    (a)                                                                     (b) 
 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Nonlinear Analysis
Linear Analysis

To
p 

D
is

pl
ac

em
en

t [
m

m
]

Radial Displacement [mm]      

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

Nonlinear Analysis
Linear Analysis

To
p 

D
is

pl
ac

em
en

t [
m

m
]

Radial Displacement [mm]  
                                    (c)                                                                     (d) 

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22

Nonlinear Analysis
Linear Analysis

To
p 

D
is

pl
ac

em
en

t [
m

m
]

Radial Displacement [mm]  
(e) 

 
Figure 3.14. Top displacement versus radial displacement plots for cases with  

                            H = 70 mm; (a) Case .05-70; (b) Case .15-70; (c) Case .25-70; 
 (d) Case .35-70; (e) Case .45-70. 
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Figure 3.15. Top displacement versus radial displacement plots for cases with  

                            H = 90 mm; (a) Case .05-90; (b) Case .15-90; (c) Case .25-90; 
 (d) Case .35-90; (e) Case .45-90. 
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In the preceding figures, more points are seen at the end of the plots. This is because at 

these points the equilibrium tolerances in the analyses necessitate smaller increments. 

This indicates the increasing difficulty in obtaining equilibrium that complies with 

program tolerances. Inspecting the plots closely we can see that for the materials for 

higher Poisson’s ratio (i.e., nearly incompressible materials), the response plots do not 

even approach the curvature that indicates that a limit point is close. The Riks method 

employed to follow a nonlinear equilibrium path, as utilized, handles limit points, 

obtaining even postbuckling paths. Performing straightforward nonlinear analyses (where 

the load is not an unknown), we found the analyses ending at the same top displacement 

magnitudes. We had solid ground to suspect a model limitation, which was confirmed by 

inspecting the deformed mesh at the end of the nonlinear analyses. Figure 3.16 shows a 

section of the solid for Case .45-70, where the extreme deformation of certain elements is 

evidenced, compared to the undeformed mesh: 

 As can be seen in Figure 3.16, the top and bottom edge elements are extremely 

deformed. This introduces a singularity in the stiffness matrix which makes it impossible 

to find equilibrium, and the analysis ends. Observing the deformations achieved, it is seen 

that a refinement of the kinematic model (strain-displacement relations) and the finite 

element mesh is needed to allow the analysis to continue.  
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                                    (a)                                                        (b) 

Figure 3.16. Extreme deformation in mesh elements for high Poisson’s ratio;                   
(a) Deformed mesh; (b) Undeformed mesh. 

 

 Some of the difficulties found in this class of behavior in incompressible materials 

are shown in Figure 3.17, where the solid starts to exhibit a bulging behavior which is 

closer to solid flow than to buckling. Figure 3.17 is an exaggeration of the scale of 

deformation of Figure 3.16, which demonstrates the deformed state the solid approaches. 

Such a phenomenon, typical of incompressible materials, is outside the scope of this 

thesis and is not explored further. 
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Figure 3.17. Extrapolation of system behavior for large Poisson’s ratio. 
 

 As can be seen from Figure 3.17, the solid will not only bulge outward, but 

upwards and downwards as well as it deforms past the initial boundary conditions in the 

axial direction. This would necessitate the elements to consider large rotations along with 

large displacements. Also, only large displacement theory is used for the nonlinear 

analyses in the program. As such, it seems that the problems with large Poisson’s ratios 

cannot be taken to their limit points with the present finite element formulation. We can, 

however, reasonably expect that the limit points would be found at greater top 

displacements magnitudes than those reached with the elastic finite element analyses. 

3.6 COMPARISON OF RESULTS 

 Table 3.3 lists the results for the minimum eigenvalues obtained from the finite 

element buckling analyses, the maximum top displacements from the nonlinear analyses, 

and the eigenvalues obtained using the incremental displacement formulation with M = 

10 and N = 1 (which was closest to the asymptotic value discussed in Chapter 2 in all 
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cases). The results for higher Poisson’s ratio are marked with an asterisk (*), to point out 

that these are not reasonable approximations to limit points. 

 

Table 3.3. Comparison of results obtained. 
 

 
ABAQUS 
Buckling 
Analysis 

ABAQUS 
Nonlinear 
Analysis 

Analytical 
formulation; 
M=10, N=1 

Case ID 
Top 

Displacement 
[mm] 

Top 
Displacement 

[mm] 

Top 
Displacement 

[mm] 

Case .05-50 30.59 21.35 23.85 
Case .15-50 29.84 21.47 21.78 
Case .25-50 28.95 20.59* 20.05 
Case .35-50 27.65 19.07* 18.58 
Case .45-50 25.08 16.72* 17.39 

Case .05-70 42.26 29.46 33.44 
Case .15-70 41.3 28.13 30.55 
Case .25-70 40.17 28.16* 28.13 
Case .35-70 38.69 26.50* 26.09 
Case .45-70 36.39 24.76* 24.54 

Case .05-90 53.25 37.52 43.09 
Case .15-90 52.32 34.24 39.37 
Case .25-90 50.95 34.28* 36.27 
Case .35-90 49.08 32.36* 33.7 
Case .45-90 46.32 32.16* 31.88 

 
 
 
 From the table we can see that in all cases the eigenvalues obtained from the 

analytical formulation analyses (performed with a significantly incident mode) were 

lower than those obtained with finite elements.  
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Table 3.4 contains a quantification in percen ults for all cases. 

 
 

Table 3.4. P rence ng results. 
 

ABAQUS Analytical 

t difference between the res

 

ercent diffe between buckli

 Buckling 
Analysis 

formulation; 
M=10, N=1 

 

Case ID 
Top 

Displacement Displacement Percent 
Dif ce [mm] 

Top 

[mm] feren

Case .05-50 30.59 23.85 22% 
Case .15-50 29.84 21.78 27% 
Case .25-50 28.95 20.05 31% 
Case .35-50 27.65 18.58 33% 
Case .45-50 25.08 17.39 31% 

Case .05-70 42.26 33.44 21% 
Case .15-70 41.3 30.55 26% 
Case .25-70 40.17 28.13 30% 
Case .35-70 38.69 26.09 33% 
Case .45-70 36.39 24.54 33% 

Case .05-90 53.25 43.09 19% 
Case .15-90 52.32 39.37 25% 
Case .25-90 50.95 36.27 29% 
Case .35-90 49.08 33.7 31% 
Case .45-90 46.32 31.88 31% 

 

As Table 3.4 shows, the percent differences vary from 19% to 33%, and are 

always larger for the material cases with larger Poisson’s ratio. However, they are both 

very large displacements in all cases. 

 In reference to the nonlinear results, we must discard our results for the larger 

Poisson’s ratio cases (see section 3.5.2). However, we call attention to the fact that all the 

maximum displacements from the nonlinear analyses for all the material/geometric 
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combinations are very close in magnitude relative to the solid height. Table 3.5, which 

shows the nonlinear analysis maximum displacements normalized to the solid height, 

illustrates this fact. Again, the results for higher Poisson’s ratio are marked with an 

sterisk (*), to point out that these are not reasonable approximations to limit points. 

 

Table 3.  results. 
 

AB ar An

a

5. Normalized nonlinear analysis

AQUS Nonline alysis 

Case ID 
Top 

Displacement 
No p 

Displacement 
[mm/mm] [mm] 

rmalized To

Case .05-50 21.35 42.7% 
Case .15-50 21.47 42.9% 
Case .25-50 20.59* 41.2% 
Case .35-50 19.07* 38.1% 
Case .45-50 16.72* 33.4% 

Case .05-70 29.46 42.1% 
Case .15-70 28.13 40.2% 
Case .25-70 28.16* 40.2% 
Case .35-70 26.50* 37.9% 
Case .45-70 24.76* 35.4% 

Case .05-90 37.52 41.7% 
Case .15-90 34.24 38.0% 
Case .25-90 34.28* 38.1% 
Case .35-90 32.36* 36.0% 
Case .45-90 32.16* 35.7% 

 

 As we can see from the preceding table, the maximum displacements achieved for 

all cases range from 33% to 43%, the highest percentage belonging to the highly 

nonlinear response of the lower Poisson’s ratio cases. However, even at the maximum 

displacements obtained, the cases with higher Poisson’s ratio exhibit very linear 
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behavior. This has a very important implication, which is: if limit points are to be found 

for these cases, then they must lie at higher displacement values than the other cases. 

This inference is drawn based on the linearity of the response up to the points that have 

been calculated, added to the fact that limit points must be arrived at smoothly – that is, 

there cannot be a sudden drop in the slope of the top displacement versus radial 

, we can compare to the 

igenvalue buckling analyses as well as the nonlinear analyses. 

 

Table 3.6. Comparis s for ma low Po . 
 

 Buckling Nonlinear form ; 

displacement plots (see Figure 3.13 through 3.15). 

 Considering only the materials with low Poisson’s ratio

e

on of result

ABAQUS 

terials with 

ABAQUS 

isson’s ratio

Analytical 

Analysis Analysis 
ulation

M=10, N=1 

Case ID 
Top 

Displacement Displacement Displacement 
[mm] 

Top 

[mm] 

Top 

[mm] 

Case .05-50 30.59 21.35 23.85 
Case .15-50 29.84 21.47 21.78 

Case .05-70 42.26 29.46 33.44 
Case .15-70 41.3 28.13 30.55 
Case .05-90 53.25 37.52 43.09 
Case .15-90 52.32 34.24 39.37 

 

 There is a clear pattern in all cases: the displacement eigenvalue obtained from 

finite element buckling analysis is the highest, followed by the eigenvalue calculated with 

the analytical formulation, and lastly the maximum displacement obtained from the 

nonlinear analysis. It is noted that of these three, the most similar are the nonlinear 

analysis and analytical formulation results. 
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3.7 CONCLUSIONS 

 Buckling of a solid has been investigated with buckling analyses for bifurcation 

and nonlinear analyses for limit point. Eigenvalues and mode shapes were obtained from 

the buckling analyses. These were found to resemble the results from Chapter 2. Again, 

the displacements required to find a bifurcation were found to be very large: the lowest 

eigenvalue amounted to close to half the total height for all cases. This, of course, is 

completely against the small displacement assumption of a linear perturbation analysis 

such as the eigenvalue analyses carried out. Thus, these eigenvalues may represent higher 

values than what would be found experimentally, or with a more advanced analysis 

considering large displacement theory. 

 The nonlinear analyses, which do consider large displacements effects, found the 

instability points at lower values than those found by eigenvalue analyses. However, it 

was found that for nearly incompressible materials (with high Poisson’s ratio) the 

geometrically nonlinear analyses ended due to limitations of the finite element models. It 

was inferred from the almost linear responses in these cases that the limit point was not 

approached, and the analyses ended prematurely. Consequently, we discard those results 

as not representing limit points. For those cases we can say we have obtained values of 

top displacement under which there are no instabilities, and we infer from the 

displacement response plots that the limit points must exist at higher top displacement 

values than those obtained form the analyses for materials with low Poisson’s ratio. 

Being so, it becomes evident that our interest must shift to materials with low Poisson’s 

ratio. 
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 Considering only the nonlinear results for the materials with low Poisson’s ratio, 

we found that there were clear instabilities of the limit point type. It was also seen that for 

these cases, the maximum displacements from the nonlinear analyses (the limit points) 

were very close to the lowest displacement eigenvalues found with the analytical 

formulation. This suggests that the analytical method is worth a closer look. We explore 

this in the context of the reduced energy method in the next chapter. 
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CHAPTER 4  

 REDUCED ENERGY METHOD  
 

 

 

 

 

4.1 INTRODUCTION 

 In the previous chapters we have determined that eigenvalue extraction analyses 

in finite elements predict eigenvalues that are high compared to the ultimate 

displacements found with a nonlinear analysis. This difference can be attributed to the 

small displacement/rotation assumption in a linear eigenvalue extraction analysis or the 

differing type of instability (limit point versus bifurcation). These factors could cause the 

instabilities of the system to be found at higher levels than when considering a fully 

geometrically nonlinear analysis. However, the asymptotic eigenvalues for displacement 

obtained in Chapter 2 very much resembled the maximum displacements achieved in 

nonlinear analyses for materials with low Poisson’s ratio. 

 The analytical solution presented in Chapter 2 is clearly a simplified version of 

the problem, in which some terms were retained but some were not included because they 

would lead to a cumbersome formulation not amenable to analytical solution. As 

explained in Chapter 3, the analytical results are an upper bound to the more accurate 

nonlinear finite elements results, in the sense that the critical loads computed analytically 
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are higher values than those limit points computed with finite elements. The eigenvalue 

results from finite element buckling analyses are also higher values than the nonlinear 

limit points, indicating that any eigenvalue model overestimates the actual maximum load 

that the solid can attain when considering geometric nonlinearity. This however, due to 

the finite element model limitations discussed in section 3.5.2 of Chapter 3, can only be 

affirmed to apply to materials with low Poisson’s ratio. 

 The differences in values obtained by bifurcation and limit point analyses are not 

new in the field of stability theory, and these have been the subject of much research in 

the context of thin-walled structures. The discrepancies between bifurcation loads 

computed from a linear fundamental path via eigenvalue analysis and an incremental 

geometrically nonlinear analysis (leading to a limit-point instability) may be due to 

various factors, which in thin-walled structures include the presence of geometric 

imperfections and mode interactions. However, the reasons for this discrepancy in the 

instability of 3D solids considered in this thesis cannot be considered as known a priori. 

As such, an exploration into the influence of geometric deviations from perfect 

geometries of 3D solids is reported in this thesis in Chapter 5.  

 However, the fact that the analytical bifurcation loads are lower than the 

bifurcations computed numerically seems to indicate that the complete energy of the solid 

is not a good measure of the energy that is actually involved in the process of instability 

in more realistic models, such as those including geometric nonlinearity. Thus, it seems 

reasonable to explore the energy terms that play a role in the instability process and those 

that, for some reason, are not employed by the solid in resisting external loads at 

buckling. This is the subject of this chapter.  
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 A procedure which has been developed for shells to obtain results from 

eigenvalue extraction analyses that agree with ultimate loading values from nonlinear 

analyses is the reduced energy method, also known as the reduced stiffness method. In 

this method, a part of the positive (stabilizing) energy is removed from the total potential 

energy before performing the eigenvalue buckling analysis. This method has been 

developed in the context of thin shells in the search for lower bounds for buckling loads 

(Croll, 1975; Batista, 1979). It has been shown to work well for shell systems, and even 

design procedures have been developed which employ the methodology (Croll and 

Ellinas, 1983). However, this is because of the particular importance of a membrane 

energy term which is easily identifiable within shell theory (Croll, 1995), so an analogue 

in a 3D solid is expected to be a different problem. Even so, this tantalizing avenue is 

clearly well worth exploring.  

 In this chapter, the contributions of  the integrated potential energy terms used in 

our analytical formulation are examined for several mode shapes. Positive and negative 

contributions to the total potential energy are identified and the reduced energy method is 

applied to solid buckling. 

4.2 INTEGRATED POTENTIAL ENERGY TERMS 

 Delving further into the potential energy, we look into the individual integrated 

energy terms for each case. The energy of the system is the summation of the integration 

of the product of stresses and strains. Negative terms are those that destabilize the system. 

Positive terms stabilize the system.  Since the total potential energy is a arithmetical sum, 

then the most relevant terms are those with the largest magnitudes. Recalling Equation 

2.46 in Chapter 2, in our incremental displacement model the energy terms that are 
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allowed to be nonzero are ∫σ'
33ε'

33, ∫σ'
13ε'

13, ∫σ'
23ε'

23, ∫σf
11ε''

11, ∫σ''
11εf

11, ∫σ''
22εf

22  and ∫σ''
33εf

33. 

Table 4.1 through 4.5 show the integrated energy terms for selected eigenmodes for all 

material/geometry cases. Note that for ∫σ'
13ε'

13 and ∫σ'
23ε'

23 the energy tabulated is actually 

twice that of the terms. Since σij = σji and εij = εji they are not considered separately. 

Table 4.1. Integrated energy terms for M=1 and N =1. 
Mode: M=1, N=1 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σf
11ε''

11 ∫σ''
11εf

11 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 213,262 1,329,352 8,418 -775,516 -782,997 2,454 5,027 
.15-50 194,537 1,054,121 6,675 -627,667 -672,382 19,506 25,209 
.25-50 201,022 881,783 5,584 -544,194 -670,953 59,589 67,170 
.35-50 269,897 819,625 5,190 -547,356 -917,414 180,086 189,971 
.45-50 1,051,927 1,258,436 7,969 -1,159,166 -4,692,988 1,754,381 1,779,440 
.05-70 756,791 2,406,839 29,873 -1,596,752 -1,618,832 5,850 16,231 
.15-70 710,729 1,964,878 24,388 -1,349,997 -1,466,052 46,007 70,048 
.25-70 770,967 1,725,428 21,416 -1,258,905 -1,591,938 149,329 183,704 
.35-70 1,141,016 1,767,877 21,943 -1,465,418 -2,556,245 519,478 571,349 
.45-70 5,976,220 3,647,677 45,274 -4,834,586 -20,759,020 7,859,793 8,064,641 
.05-90 2,167,587 4,170,220 85,563 -3,211,685 -3,274,003 13,901 48,418 
.15-90 2,095,489 3,504,515 71,904 -2,835,954 -3,135,435 107,998 191,483 
.25-90 2,381,343 3,223,993 66,148 -2,835,742 -3,705,439 370,848 498,849 
.35-90 3,844,766 3,603,639 73,938 -3,761,172 -6,903,420 1,461,085 1,681,163 
.45-90 25,133,904 9,280,273 190,408 -17,302,293 -79,951,819 30,718,814 31,930,712 
 

Table 4.2. Integrated energy terms for M=2 and N =2. 
Mode: M=2, N=2 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σf
11ε''

11 ∫σ''
11εf

11 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 171,545 4,277,266 27,086 -2,237,949 -2,252,789 6,745 8,095 
.15-50 151,944 3,293,307 20,855 -1,733,053 -1,838,112 51,098 53,961 
.25-50 149,187 2,617,635 16,576 -1,391,699 -1,684,140 144,458 147,983 
.35-50 179,312 2,178,143 13,793 -1,185,625 -1,928,808 369,645 373,538 
.45-50 457,793 2,190,659 13,873 -1,331,162 -5,153,880 1,908,743 1,913,975 
.05-70 511,683 6,509,268 80,792 -3,550,871 -3,578,987 11,959 16,156 
.15-70 457,799 5,062,520 62,835 -2,791,577 -2,973,453 86,419 95,457 
.25-70 457,517 4,095,704 50,835 -2,302,028 -2,808,150 247,346 258,775 
.35-70 571,973 3,544,835 43,998 -2,080,403 -3,428,179 667,193 680,582 
.45-70 1,719,814 4,198,859 52,116 -2,985,395 -11,783,895 4,387,750 4,410,750 
.05-90 1,209,242 9,305,839 190,933 -5,353,007 -5,404,574 20,554 31,014 
.15-90 1,095,107 7,325,866 150,309 -4,285,641 -4,590,749 141,085 164,023 
.25-90 1,117,679 6,052,704 124,187 -3,647,285 -4,496,475 409,628 439,562 
.35-90 1,462,073 5,481,513 112,467 -3,528,026 -5,912,489 1,173,465 1,210,998 
.45-90 5,209,344 7,693,851 157,859 -6,530,527 -26,434,293 9,910,300 9,993,466 
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Table 4.3. Integrated energy terms for M=1 and N =5. 
Mode: M=1, N=5 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σf
11ε''

11 ∫σ''
11εf

11 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 272,439 1,698,230 268,854 -1,119,762 -1,139,568 12,098 7,708 
.15-50 247,360 1,340,345 212,196 -899,951 -989,550 49,631 39,968 
.25-50 253,574 1,112,302 176,093 -770,985 -997,440 119,575 106,881 
.35-50 334,816 1,016,769 160,969 -756,277 -1,366,913 313,389 297,247 
.45-50 1,232,651 1,474,640 233,457 -1,470,374 -6,646,469 2,606,831 2,569,264 
.05-70 1,134,743 3,608,849 1,119,812 -2,931,702 -3,018,449 54,636 32,111 
.15-70 1,052,273 2,909,110 902,686 -2,432,034 -2,776,101 197,626 146,441 
.25-70 1,117,860 2,501,777 776,292 -2,197,964 -3,041,313 457,139 386,209 
.35-70 1,587,898 2,460,271 763,413 -2,405,791 -4,815,939 1,255,394 1,154,754 
.45-70 7,394,861 4,513,566 1,400,542 -6,654,484 -34,725,267 14,202,004 13,868,778 
.05-90 3,775,045 7,262,807 3,725,373 -7,381,613 -7,717,163 214,653 120,897 
.15-90 3,564,587 5,961,448 3,057,856 -6,291,946 -7,533,705 730,330 511,429 
.25-90 3,901,104 5,281,530 2,709,100 -5,945,867 -8,940,560 1,655,939 1,338,754 
.35-90 5,872,667 5,504,359 2,823,397 -7,100,211 -16,053,528 4,722,154 4,231,162 
.45-90 32,210,470 11,893,176 6,100,468 -25,102,057 -154,354,630 65,665,231 63,587,342 
 

 

Table 4.4. Integrated energy terms for M=5 and N =1. 
Mode: M=5, N=1 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σf
11ε''

11 ∫σ''
11εf

11 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 158,754 24,739,622 6,267 -12,452,322 -12,520,376 33,201 34,854 
.15-50 139,275 18,866,861 4,779 -9,505,457 -10,042,651 266,869 270,324 
.25-50 134,432 14,742,091 3,734 -7,440,128 -8,937,954 746,840 750,986 
.35-50 155,386 11,796,914 2,988 -5,977,644 -9,610,761 1,814,399 1,818,717 
.45-50 331,190 9,905,182 2,509 -5,119,440 -19,470,885 7,173,509 7,177,936 
.05-70 441,182 35,077,510 17,415 -17,768,053 -17,868,132 47,729 52,350 
.15-70 387,750 26,799,285 13,305 -13,600,170 -14,376,784 383,463 393,151 
.25-70 375,486 21,008,509 10,430 -10,697,213 -12,864,272 1,077,688 1,089,372 
.35-70 438,563 16,987,620 33,736 -8,729,959 -14,070,976 2,666,013 2,675,003 
.45-70 966,541 14,748,578 7,322 -7,861,221 -29,975,885 11,050,670 11,063,994 
.05-90 953,543 45,863,042 37,640 -23,427,113 -23,564,290 63,553 73,624 
.15-90 840,057 35,122,980 28,825 -17,995,931 -19,037,691 510,285 531,475 
.25-90 816,958 27,651,068 22,693 -14,245,360 -17,155,226 1,442,073 1,467,793 
.35-90 960,791 22,513,354 18,477 -11,746,311 -18,960,407 3,593,302 3,620,795 
.45-90 2,223,808 20,527,596 16,847 -11,384,126 -43,558,107 16,071,043 16,102,938 
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Table 4.5. Integrated energy terms for M=1 and N =10. 
Mode: M=1, N=10 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σf
11ε''

11 ∫σ''
11εf

11 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 504,014 3,141,736 1,989,528 -2,817,639 -2,938,283 97,707 22,937 
.15-50 453,274 2,456,113 1,555,352 -2,232,369 -2,652,186 291,040 128,776 
.25-50 457,087 2,005,010 1,269,687 -1,865,892 -2,768,423 555,245 347,285 
.35-50 582,735 1,769,649 1,120,643 -1,736,513 -3,851,359 1,182,866 931,980 
.45-50 1,889,705 2,260,684 1,431,595 -2,790,992 -16,729,818 7,210,757 6,728,069 
.05-70 2,807,547 8,928,909 11,082,424 -11,409,440 -12,308,991 746,487 153,064 
.15-70 2,550,144 7,050,116 8,750,495 -9,175,378 -12,064,984 2,098,394 791,211 
.25-70 2,616,046 5,854,725 7,266,794 -7,868,782 -13,817,980 3,834,061 2,115,137 
.35-70 3,459,284 5,359,774 6,652,469 -7,735,763 -21,708,736 8,081,770 5,891,203 
.45-70 12,800,974 7,813,268 9,697,707 -15,155,975 -122,873,874 56,427,674 51,290,226 
.05-90 11,654,071 22,421,261 46,002,912 -40,039,122 -45,119,143 4,261,257 818,763 
.15-90 10,656,035 17,821,253 36,564,828 -32,521,058 -48,264,267 11,701,051 4,042,157 
.25-90 11,055,628 14,967,720 30,710,078 -28,366,713 -60,114,334 20,995,544 10,752,077 
.35-90 14,967,850 14,029,131 28,784,326 -28,890,654 -103,741,526 44,187,349 30,663,523 
.45-90 59,974,902 22,144,727 45,435,532 -63,777,580 -696,752,029 334,355,824 298,618,625 

 

 

 Inspecting tables 4.1 through 4.5, we see that for all modes the negative 

(destabilizing terms) are ∫σf
11ε''

11 and ∫σ''
11εf

11. The dominant positive terms, however, are 

different per material and mode. This can be clearly seen if we consider the energy 

contributions of the positive terms as a percentage of the sum of positive energy. Table 

4.6 through 4.10 show the energetic contributions of the positive terms only in terms of 

percentages of the total positive energy. 
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Table 4.6. Percentages of total positive energy for M=1 and N =1. 
Mode: M=1, N=1 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 13.68 85.30 0.54 0.16 0.32 
.15-50 14.96 81.08 0.51 1.50 1.94 
.25-50 16.54 72.57 0.46 4.90 5.53 
.35-50 18.43 55.96 0.35 12.29 12.97 
.45-50 17.98 21.50 0.14 29.98 30.41 
.05-70 23.54 74.85 0.93 0.18 0.50 
.15-70 25.24 69.77 0.87 1.63 2.49 
.25-70 27.04 60.52 0.75 5.24 6.44 
.35-70 28.37 43.96 0.55 12.92 14.21 
.45-70 23.35 14.25 0.18 30.71 31.51 
.05-90 33.42 64.30 1.32 0.21 0.75 
.15-90 35.09 58.69 1.20 1.81 3.21 
.25-90 36.41 49.29 1.01 5.67 7.63 
.35-90 36.05 33.79 0.69 13.70 15.76 
.45-90 25.84 9.54 0.20 31.59 32.83 

 

 

 

Table 4.7. Percentages of total positive energy for M=2 and N =2. 
Mode: M=2, N=2 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 3.82 95.25 0.60 0.15 0.18 
.15-50 4.25 92.22 0.58 1.43 1.51 
.25-50 4.85 85.10 0.54 4.70 4.81 
.35-50 5.76 69.94 0.44 11.87 11.99 
.45-50 7.06 33.78 0.21 29.43 29.51 
.05-70 7.18 91.30 1.13 0.17 0.23 
.15-70 7.94 87.81 1.09 1.50 1.66 
.25-70 8.95 80.15 0.99 4.84 5.06 
.35-70 10.38 64.35 0.80 12.11 12.35 
.45-70 11.64 28.43 0.35 29.71 29.86 
.05-90 11.24 86.50 1.77 0.19 0.29 
.15-90 12.34 82.53 1.69 1.59 1.85 
.25-90 13.72 74.32 1.52 5.03 5.40 
.35-90 15.49 58.06 1.19 12.43 12.83 
.45-90 15.80 23.34 0.48 30.06 30.32 
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Table 4.8. Percentages of total positive energy for M=1 and N =5. 
Mode: M=1, N=5 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 12.06 75.17 11.90 0.54 0.34 
.15-50 13.09 70.94 11.23 2.63 2.12 
.25-50 14.34 62.90 9.96 6.76 6.04 
.35-50 15.77 47.89 7.58 14.76 14.00 
.45-50 15.19 18.17 2.88 32.12 31.65 
.05-70 19.07 60.65 18.82 0.92 0.54 
.15-70 20.20 55.86 17.33 3.79 2.81 
.25-70 21.34 47.75 14.82 8.73 7.37 
.35-70 21.99 34.07 10.57 17.38 15.99 
.45-70 17.87 10.91 3.38 34.32 33.52 
.05-90 25.00 48.10 24.67 1.42 0.80 
.15-90 25.78 43.12 22.12 5.28 3.70 
.25-90 26.21 35.48 18.20 11.12 8.99 
.35-90 25.36 23.77 12.19 20.39 18.27 
.45-90 17.95 6.63 3.40 36.59 35.43 

 

 

 

Table 4.9. Percentages of total positive energy for M=5 and N =1. 
Mode: M=5, N=1 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 0.64 99.07 0.03 0.13 0.14 
.15-50 0.71 96.52 0.02 1.37 1.38 
.25-50 0.82 90.01 0.02 4.56 4.59 
.35-50 1.00 75.68 0.02 11.64 11.67 
.45-50 1.35 40.28 0.01 29.17 29.19 
.05-70 1.24 98.43 0.05 0.13 0.15 
.15-70 1.39 95.79 0.05 1.37 1.41 
.25-70 1.59 89.16 0.04 4.57 4.62 
.35-70 1.92 74.50 0.15 11.69 11.73 
.45-70 2.55 38.98 0.02 29.21 29.24 
.05-90 2.03 97.60 0.08 0.14 0.16 
.15-90 2.27 94.84 0.08 1.38 1.44 
.25-90 2.60 88.06 0.07 4.59 4.67 
.35-90 3.13 73.32 0.06 11.70 11.79 
.45-90 4.05 37.36 0.03 29.25 29.31 
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Table 4.10. Percentages of total positive energy for M=1 and N =10. 
Mode: M=1, N=10 

Case ∫σ'
33ε'

33 ∫σ'
13ε'

13 ∫σ'
23ε'

23 ∫σ''
22εf

22 ∫σ''
33εf

33 
.05-50 8.76 54.58 34.56 1.70 0.40 
.15-50 9.28 50.28 31.84 5.96 2.64 
.25-50 9.86 43.26 27.40 11.98 7.49 
.35-50 10.43 31.67 20.05 21.17 16.68 
.45-50 9.68 11.58 7.33 36.94 34.47 
.05-70 11.84 37.65 46.72 3.15 0.65 
.15-70 12.01 33.19 41.20 9.88 3.73 
.25-70 12.06 27.00 33.51 17.68 9.75 
.35-70 11.75 18.20 22.59 27.45 20.01 
.45-70 9.27 5.66 7.03 40.88 37.16 
.05-90 13.69 26.33 54.02 5.00 0.96 
.15-90 13.19 22.06 45.26 14.48 5.00 
.25-90 12.49 16.92 34.71 23.73 12.15 
.35-90 11.29 10.58 21.70 33.32 23.12 
.45-90 7.89 2.91 5.97 43.96 39.26 

 

 

 All modes show a strongly dominant σ'
13ε'

13 term for all material cases, except for 

the nearly incompressible materials with Poisson’s ratio equal to 0.45 in the 70 mm and 

90 mm geometries. In those instances, the largest terms are the ∫σ"
22εf

22 and ∫σ"
33εf

33 

terms. It can be seen there is a pattern: at greater Poisson’s ratios, the ∫σ'
13ε'

13 term is 

smaller, while the ∫σ"
22εf

22 and ∫σ"
33εf

33 both increase. The same pattern applies to the 

∫σ'
23ε'

23 term, but this term is significant only when the modes consist of low M relative to 

N. This fact can be garnered from the tables for the modes with M=1, N=5 and M=1, 

N=10. The ∫σ'
33ε'

33 term accounts for a maximum of 25% of the positive energy (in the 

case of M=1, N=5), but it is seen that this importance is taken away by the ∫σ'
23ε'

23 term in 

modes with higher N (M=1, N=10). In short, it appears that controlling stabilizing terms 

are ∫σ'
13ε'

13, ∫σ"
22εf

22 and ∫σ"
33εf

33. 
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4.3 PROPOSED REDUCED ENERGY METHOD 

 The reduced energy method has been used on shell structures in order to find 

lower bounds for critical loads (Croll, 1975; Sosa, 2005)  It is found that the ultimate load 

capacity can be determined by performing an eigenvalue extraction analysis over the 

model energy without considering a certain energy term.  

 As seen previously in Chapter 2, when we utilized the energy retaining all the 

terms according to our formulation, the eigenvalues obtained depended on the number of 

waves in the vertical direction (M) and circumferential direction (N). However, these 

values all decreased to an asymptotical value with increasing M for all geometric/material 

cases. This is contrary to the usual behavior of buckling in structures with respect to the 

mode shape, where a certain mode (combination of M and N) is found to hold the lowest 

eigenvalue, and modes with higher and/or lower M and N all have larger corresponding 

eigenvalues. 

 In order to establish a reduced energy analysis, first the relevant energy terms 

must be identified. The ∫σf
11ε''

11 and ∫σf
11ε''

11 terms, since they are both naturally 

destabilizing (negative) terms, are always included. According to our formulation, this 

leaves five positive terms, out of which up to four can be retained for a reduced energy 

analysis. A total of thirty combinations of  these remaining positive terms can be 

assembled.  

 Because this is a new problem, for which there is no previous experience in the 

literature, all the possible combinations of positive terms were explored. The numeric 

trends of the eigenvalues were observed for increasing M (number of vertical waves in 

the mode) and N (number of circumferential waves). This was done by performing the 
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buckling analysis while varying either M or N and holding the other one constant for 

various values. The general behaviors of the eigenvalues with respect to the mode shapes 

are described in Table 4.11 through 4.14. 

 

Table 4.11. Eigenvalue behavior with respect to mode shape, retaining four terms. 

Case Terms retained Term eliminated 
Eigenvalue 

behavior with 
increasing M 

Eigenvalue 
behavior with 
increasing N 

1 l∫σ'
33ε'

33, ∫σ'
13ε'

13,  
∫σ'

23ε'
23, ∫σ''

22εf
22 

∫σ''
33εf

33 Decreases to 
asymptote 2 

Increases 
without bound 

2 l∫σ'
13ε'

13, ∫σ'
23ε'

23,  
∫σ''

22εf
22, ∫σ''

33εf
33 

∫σ'
33ε'

33 Decreases to 
asymptote 1 

Increases 
without bound 

3 l∫σ'
23ε'

23, ∫σ''
22εf

22,   
∫σ''

33εf
33, ∫σ'

33ε'
33 

∫σ'
13ε'

13 Decreases to 
zero 

Increases 
without bound 

4 l∫σ''
22εf

22, ∫σ''
33εf

33, 
∫σ'

33ε'
33, ∫σ'

13ε'
13 

∫σ'
23ε'

23 Decreases to 
asymptote 1 No influence 

5 l∫σ''
33εf

33, ∫σ'
33ε'

33, 
∫σ'

13ε'
13, ∫σ'

23ε'
23 

∫σ''
22εf

22 Decreases to 
asymptote 2 

Increases 
without bound 

 

Table 4.12. Eigenvalue behavior with respect to mode shape, retaining three terms. 

Case Terms retained Terms 
eliminated 

Eigenvalue 
behavior with 
increasing M 

Eigenvalue 
behavior with 
increasing N 

6 l∫σ'
33ε'

33, ∫σ'
13ε'

13,  
∫σ'

23ε'
23 

∫σ''
22εf

22, ∫σ''
33εf

33 
Decreases to 
asymptote 3 

Increases 
without bound 

7 l∫σ'
13ε'

13, ∫σ'
23ε'

23,  
∫σ''

22εf
22 

∫σ''
33εf

33, ∫σ'
33ε'

33 
Decreases to 
asymptote 2 

Increases 
without bound 

8 l∫σ'
23ε'

23, ∫σ''
22εf

22,   
∫σ''

33εf
33 

∫σ'
33ε'

33, ∫σ'
13ε'

13 
Decreases to 

zero 
Increases 

without bound 
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9 l∫σ''
22εf

22, ∫σ''
33εf

33, 
∫σ'

33ε'
33 

∫σ'
13ε'

13, ∫σ'
23ε'

23 
Decreases to 

zero No influence 

10 l∫σ''
33εf

33, ∫σ'
33ε'

33, 
∫σ'

13ε'
13 

∫σ'
23ε'

23, ∫σ''
22εf

22 
Decreases to 
asymptote 2 

Decreases to 
zero 

11 l∫σ'
33ε'

33, ∫σ'
23ε'

23,  
∫σ''

22εf
22 

∫σ'
13ε'

13, ∫σ''
33εf

33 
Decreases to 

zero 
Increases 

without bound 

12 l∫σ'
13ε'

13, ∫σ''
22εf

22,   
∫σ''

33εf
33 

∫σ'
23ε'

23, ∫σ'
33ε'

33 
Constant 

asymptote 1 
value 

Constant 
asymptote 1 

value 

13 l∫σ'
23ε'

23, ∫σ''
33εf

33, 
∫σ'

33ε'
33 

∫σ''
22εf

22, ∫σ'
13ε'

13 
Decreases to 

zero 
Increases 

without bound 

14 l∫σ''
22εf

22, ∫σ'
33ε'

33, 
∫σ'

13ε'
13 

∫σ''
33εf

33, ∫σ'
23ε'

23 
Decreases to 
asymptote 2 

Decreases to 
zero 

15 l∫σ''
33εf

33, ∫σ'
13ε'

13,  
∫σ'

23ε'
23 

∫σ'
33ε'

33, ∫σ''
22εf

22 
Decreases to 
asymptote 2 

Increases 
without bound 

 

Table 4.13. Eigenvalue behavior with respect to mode shape, retaining two terms. 

Case Terms retained Terms 
eliminated 

Eigenvalue 
behavior with 
increasing M 

Eigenvalue 
behavior with 
increasing N 

16 l∫σ'
33ε'

33, ∫σ'
13ε'

13  
∫σ'

23ε'
23, ∫σ''

22εf
22, 

∫σ''
33εf

33 
Decreases to 
asymptote 3 

Decreases to 
zero 

17 l∫σ'
13ε'

13, ∫σ'
23ε'

23 
∫σ''

22εf
22, ∫σ''

33εf
33, 

∫σ'
33ε'

33 
Increases to 
asymptote 3 

Increases 
without bound 

18 l∫σ'
23ε'

23, ∫σ''
22εf

22 
∫σ''

33εf
33, ∫σ'

33ε'
33, 

∫σ'
13ε'

13 
Decreases to 

zero 
Increases 

without bound 

19 l∫σ''
22εf

22, ∫σ''
33εf

33 
∫σ'

33ε'
33, ∫σ'

13ε'
13, 

∫σ'
23ε'

23 
Always zero Always zero 

20 l∫σ''
33εf

33, ∫σ'
33ε'

33 
∫σ'

13ε'
13, ∫σ'

23ε'
23, 

∫σ''
22εf

22 
Decreases to 

zero 
Decreases to 

zero 
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21 l∫σ'
33ε'

33, ∫σ'
23ε'

23  
∫σ''

22εf
22, ∫σ'

13ε'
13, 

∫σ''
33εf

33 
Decreases to 

zero 
Increases 

without bound 

22 l∫σ'
13ε'

13, ∫σ''
22εf

22  
∫σ''

33εf
33, ∫σ'

23ε'
23, 

∫σ'
33ε'

33 
Increases to 
asymptote 2 

Decreases to 
zero 

23 l∫σ'
23ε'

23, ∫σ''
33εf

33 
∫σ'

33ε'
33, ∫σ''

22εf
22, 

∫σ'
13ε'

13 
Decreases to 

zero 
Increases 

without bound 

24 l∫σ''
22εf

22, ∫σ'
33ε'

33 
∫σ'

13ε'
13, ∫σ''

33εf
33, 

∫σ'
23ε'

23 
Decreases to 

zero 
Decreases to 

zero 

25 l∫σ''
33εf

33, ∫σ'
13ε'

13   
∫σ'

23ε'
23, ∫σ'

33ε'
33, 

∫σ''
22εf

22 
Increases to 
asymptote 2 

Decreases to 
zero 

 

 

Table 4.14. Eigenvalue behavior with respect to mode shape, retaining one term. 

Case Terms retained Term eliminated 
Eigenvalue 

behavior with 
increasing M 

Eigenvalue 
behavior with 
increasing N 

26 ∫σ'
33ε'

33 l∫σ'
13ε'

13, ∫σ'
23ε'

23,  
∫σ''

22εf
22, ∫σ''

33εf
33 

Decreases to 
zero 

Decreases to 
zero 

27 ∫σ'
13ε'

13 l∫σ'
23ε'

23, ∫σ''
22εf

22,   
∫σ''

33εf
33, ∫σ'

33ε'
33 

Increases to 
asymptote 3 

Decreases to 
zero 

28 ∫σ'
23ε'

23 l∫σ''
22εf

22, ∫σ''
33εf

33, 
∫σ'

33ε'
33, ∫σ'

13ε'
13 

Decreases to 
zero 

Increases 
without bound 

29 ∫σ''
22εf

22 l∫σ''
33εf

33, ∫σ'
33ε'

33, 
∫σ'

13ε'
13, ∫σ'

23ε'
23 

Always zero Always zero 

30 ∫σ''
33εf

33 
l∫σ'

33ε'
33, ∫σ'

13ε'
13,  

∫σ'
23ε'

23, ∫σ''
22εf

22 
Always zero Always zero 
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 There are five ways the eigenvalues change with increasing M: decreasing to an 

asymptote, increasing to an asymptote, decreasing to zero, and remaining the same. With 

respect to increasing N, they either increase without bound, decrease to zero, or remain 

constant. The same behavior applies to all geometry and material cases. 

 Three asymptotes are found to occur when utilizing the reduced energy 

methodology. These are the ones referred to as asymptotes 1, 2 and 3 in Table 4.11 

through 4.14. They are numbered in order of decreasing magnitude. Asymptote 1 is the 

value that is approached with a straightforward buckling analysis. These asymptotes are 

distinctly different, but the values become very close for lower Poisson’s ratio. This is 

illustrated in a comparison between the .05-90 and .45-90 cases in Table 4.15. 

Table 4.15. Comparison between asymptote values. 
 

Case ID Asymptote 1 
[mm] 

Asymptote 2 
[mm] 

Asymptote 3 
[mm] 

.05-90 42.86 42.85 42.74 

.45-90 31.03 18.27 12.95 

 

 As the table shows, the three asymptotes obtained by using certain combinations 

of terms are very different for the case with higher Poisson’s ratio – the lower values are 

so low that it seems unlikely that instability will be found at such displacement levels. 

Technically, there is a fourth asymptote: the zero value found on some analyses. 

However, this instance is judged to be trivial, since a zero-displacement instability is not 

a reasonable result. 

 The most encouraging results we find, therefore, are those of the reduced energy 

method when retaining only these three terms: ∫σ'
13ε'

13, ∫σ"
22εf

22 and ∫σ"
33εf

33. In all cases, 
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using these terms results in a displacement eigenvalue equal to the asymptotic value 

approached by the standard buckling analysis as performed with our formulation in 

Chapter 2. The value is also independent of the mode shape imposed in the incremental 

displacement field. 

 It was seen in Chapter 3 that the asymptotic values from our incremental 

displacement formulation closely resembled the results from the nonlinear analyses 

performed with finite elements. Having obtained these asymptotic values with the 

reduced energy method, we now compare the results with the nonlinear analyses. 

4.4 COMPARISON OF RESULTS 

 It was determined that if the eigenvalue extraction analysis was carried out on a 

reduced energy that contained only the  ∫σ'
13ε'

13, σ"
22εf

22  and ∫σ"
33εf

33 terms along with the 

negative terms ∫σ"
11εf

11 and ∫σf
11ε"

11, the eigenvalue will always be that asymptotic value 

approached with increasing M in a regular buckling analysis (see Chapter 2, section 

2.6.2), no matter what mode (combination of M and N) is used. Figure 4.1 shows the 

reduced energy eigenvalues, for all geometric/material cases. 
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(b) 
Figure 4.1. Maximum top displacement versus Poisson’s ratio for reduced energy             

(a) actual results (b) displacements normalized to solid height. 
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 As seen from the figures, there is a clear decreasing trend with increasing 

Poisson’s ratio. It is also notable that the normalized plots follow a single curve, 

indicating that the buckling eigenvalues are scaled to the solid height. 

 Having determined the combination of terms that renders that asymptotic value 

with the reduced energy, we can now compare the reduced energy methodology with the 

results for nonlinear analyses obtained in Chapter 3. We compare only the materials with 

low Poisson’s ratio, given the limitations discussed in Chapter 3, section 3.5.2. Table 

4.16 lists the maximum displacements obtained for the reduced energy eigenvalue, as 

well as the nonlinear analyses, for all geometric cases with Poison’s equal to 0.05 and 

0.15. 

 
Table 4.16. Reduced energy and nonlinear analysis result comparison. 

 

 
ABAQUS 
Nonlinear 
Analysis 

Reduced 
Energy 
Method 

 

Case ID 
Top 

Displacement 
[mm] 

Top 
Displacement 

[mm] 

Percent 
Difference 

Case .05-50 21.35 23.85 10.5% 
Case .15-50 21.47 21.78 1.4% 

Case .05-70 29.46 33.44 11.9% 
Case .15-70 28.13 30.55 7.9% 
Case .05-90 37.52 43.09 12.9% 
Case .15-90 34.24 39.37 13.0% 

 

 As can be seen from Table 4.16, the reduced energy eigenvalues obtained do not 

constitute a lower bound to the finite element nonlinear results, as for all cases they 

overestimate the limit points obtained from the nonlinear analyses. It seems this behavior 
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is more pronounced as the solid becomes taller. However, there is a good overall 

agreement between the results obtained from both methodologies, with percent 

differences in the 10-15% range.   

4.5 CONCLUSIONS 

 In this chapter we have investigated the total potential energy following our 

analytical formulation developed in Chapter 2. Inspecting the energetic contributions of 

each term, we have found that the naturally destabilizing (negative) terms are ∫σf
11ε''

11,and 

∫σ''
11εf

11, which is expected since these are the stress-strain terms in the load direction. But 

the remaining terms are always positive, which implies that they are all stabilizing terms. 

 Of the stabilizing terms, it was found that three in particular dominated the 

positive energy, but the magnitudes depended heavily on the mode shape and Poisson’s 

ratio of the material. The ∫σ'
13ε'

13 term strongly dominated the energy of most mode 

shapes for materials for low to intermediate Poisson’s ratio (0.05-0.25) – approaching 

100% as the number of vertical waves (M) increased past the number of circumferential 

waves (N). For these materials, as N overtakes M the ∫σ'
23ε'

23 term can be seen to take 

precedence. For materials with high Poisson’s ratio (0.35-0.45), depending on the mode 

shape, the ∫σ''
22εf

22 and ∫σ''
33εf

33 terms gain importance (close to 30% of the positive 

energy each, simultaneously). Even so, the relationships are not direct, and the effects of 

varying number of waves in both directions are related to a combination of the proportion 

of M to N, as well as the magnitudes of M and N and the differences between M and N. It 

is not worth it to attempt to quantify these effects, but our exploration indicates the clear 

importance of the transverse energy (the ∫σ'
13ε'

13 term) in stability. Water can be taken as 
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an extreme example: if properly bounded, it can resist compression, but it has no shear 

resistance – therefore it collapses under self weight.  

 Comparing results, we have found good agreement between finite element 

nonlinear analyses and the reduced energy methodology. However, the reduced energy 

method as applied overestimates the maximum displacement compared to nonlinear 

analysis. This difference was seen to increase with the height of the solid.  

 The nonlinear analyses from Chapter 3 showed that the instability of a solid, at 

least for compressible materials, occurs in the form of a limit point. An eigenvalue 

extraction analysis, on the other hand, assumes the critical state to be a bifurcation, 

leading to higher results than those obtained by nonlinear analyses. The magnitude of 

error is highly dependent on the actual nonlinearity of the response of the system. 

Recalling from Chapter 3, the nonlinear analyses showed that the materials with lower 

Poisson’s ratio had a highly nonlinear response. Even so, the results are still quite similar 

for the highly compressible materials, even though there is a clear overestimation trend 

for the materials compared. As such, it seems that contrary to the initial intent of the 

reduced energy method, we have found an upper bound to limit points. 

 There are three distinct possible reasons for this: first, it is possible that part of the 

energy contributed by one, some, or all the terms that we have retained in the reduced 

energy analysis is also lost during the instability process, thereby lowering the 

displacement capacity. The second possibility is that the terms not considered in our 

analytical model due to the initial assumptions play a significant role in the instability 

process. The distribution of the energy contributions, both negative and positive, could be 

different enough from the models we have used to cause the discrepancy. It is judged 
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unlikely, however, that the important terms be those related to the circumferential 

direction, since none of the finite element analyses (linear, buckling, nonlinear) showed 

any circumferential displacements. Third, there is the previously mentioned relationship 

between linearity and approximating a limit point as a bifurcation, which is known to 

overestimate when using a linearized fundamental path. However, even with the noted 

differences the reduced energy method works well as a first approximation with a simple 

model. 
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CHAPTER 5  

 IMPERFECTION SENSITIVITY IN 
LINEAR-ELASTIC SOLIDS  

 

 

 

 

 

5.1 INTRODUCTION 

In the last chapter we have used the reduced energy methodology to approximate 

the limit point behavior of solid instability. This methodology was originally developed 

by Croll and coworkers (Croll 1975, Croll 1995) to model structural components that 

were very sensitive to their shape, such as thin-wall structures and shells.  Imperfection 

sensitivity refers to the effect that geometric deviations from the as-designed (perfect) 

shape of the system can have on its capacity to bear load before reaching a buckled state. 

The reason why some classes of structures have imperfection sensitivity and others do 

not exhibit this feature are rather complex, but it is now clear that this depends on both 

the geometry and the loads. What we know as imperfection sensitivity refers to a process 

in which several competing (isolated) buckling modes couple due to the presence of 

imperfections, and the coupled mode leads to lower values of buckling loads along a 

nonlinear equilibrium path. Thus, what initially may seem as a bifurcation behavior in an 

isolated mode from a linear fundamental path, becomes a limit point behavior in a 
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coupled mode from a nonlinear fundamental path. Mode coupling is the key element, and 

imperfections are the vehicle that makes coupling possible. Finally, modes couple if they 

are close to each other, i.e. if their eigenvalues show differences of only 2-5%, depending 

on the problem. Not all components of a geometric imperfection have the effect of 

triggering buckling, and extensive studies have been performed in the past on the shape 

of imperfections that are associated with sensitivity of buckling loads. The studies 

conclude that the worst geometries of imperfections are those given by the eigenmodes in 

the perfect system. Thus, an eigenmode indicates displacements in a direction of 

weakness of a structure, and if initial displacements are already present due to 

imperfections, then the structure has already given a first step towards buckling.  

In Chapter 3 we observed that the predicted eigenvalues using finite elements 

were very close to each other. As mentioned above, the general theory of elastic stability 

shows that when a system exhibits similar eigenvalues it may be indicative of 

imperfection sensitivity. Studies of thin-shell structures have found this effect to have an 

enormous importance in those systems (Thompson and Hunt, 1973). In this chapter, we 

show that imperfection sensitivity is also predicted for solids. To illustrate this effect, we 

follow the standard procedure of imposing a modal shape as imperfections on the initial 

geometry and performing a nonlinear analysis (Croll, 1995). A comparison with the 

control analysis with no imperfection reveals if there indeed is imperfection sensitivity.  
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5.2 IMPERFECTION SENSITIVITY IN SOLIDS 

5.2.1 Methodology 

In order to detect imperfection sensitivity, a common procedure is performed in 

this chapter. The displacements from a mode shape (or a combination of mode shapes) 

obtained from an eigenvalue buckling analysis on the same geometry and loads are 

imposed as imperfections on the initial, “perfect” geometry of the structure. A nonlinear 

analysis is then performed on this deformed initial geometry. A comparison of the load-

displacement responses for analyses with and without imperfections establishes whether 

or not the structure is imperfection sensitive.  

For our present work, we studied the cylindrical geometry with specific 

dimensions (radius R = 100 mm and height H = 70 mm) and followed the methodology 

outlined previously. The results from nonlinear analyses performed on models with no 

imperfections (from Chapter 3) were set as reference (control) cases. Nonlinear analyses 

were performed on models where mode shapes obtained from the finite element buckling 

analyses were imposed as three-dimensional imperfections. The imperfection sensitivity 

was established by comparing the maximum top displacement achieved by the system in 

each analysis with that of the nonlinear analysis with no imperfections.  

Imperfection sensitivity is evaluated in terms of the magnitude of the imperfection 

applied. For an imperfection sensitive structure, the larger the imperfection, the lesser the 

ultimate load capacity will be. The sensitivity to imperfection magnitude is determined 

by imposing the same imperfection mode, but with the initial displacements now 

multiplied by a factor called the imperfection amplitude. The amplitude is a multiplier 

that is used to either increase or decrease the imperfections initially applied to the 
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geometry. In our study, the unit imperfection amplitude is taken as the one that imposes a 

maximum radial displacement in the circumference of the cylinder equal to 1/100 of the 

cylinder radius (i.e., 1 mm). In other words, an imperfection amplitude of 1 indicates that 

the cylinder geometry will, at some point(s) in the circumference, have a radius at most 1 

mm longer or shorter than the perfect geometry. An imperfection amplitude of 5, for 

example, will mean that the maximum radius on a point on the circumference of the 

cylinder will be equal to 105 mm (or the minimum 95 mm, depending on whether the 

mode applied imposes an outward or inward displacement at the point in question).  

 

5.2.2 Results of Nonlinear Analyses with Imperfections 

Figure 5.1 shows the effect of applying the mode shapes from the buckling 

analyses as imperfections for both material cases studied. The modes are numbered in 

order of increasing their associated eigenvalues, and are generally different for each 

material case, i.e. the mode shape of mode 3 for the .05-70 case is not the same as the 

mode shape of mode 3 for the .15-70 case. In all cases the maximum displacement of the 

mode shape imposed is equal to 5% of the radius (or 5 mm), that is, the mode shape is 

normalized to 5. The horizontal lines in the plots represent the maximum displacement 

obtained in the nonlinear analyses with no imperfections applied. 
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(b) 

 
Figure 5.1. Effects of several mode shapes applied as imperfections                                   

(a) Case .05-70; (b) Case .15-70. 
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As can be seen from the preceding figures, there is a clear indication of  a 

reduction in the buckling loads due to the presence of imperfections for these 

compressible materials. Recalling that the imperfections were normalized to 5 mm, and 

that this represents only 5% of the cylinder radius, the adverse effect is clear. Comparing 

the points in the  plots, we can see that the sensitivity effect is dependent upon the mode 

shape. For example, a lower displacement capacity is found for imperfections with mode 

2  than for imperfections with mode 1 for both cases. However, we can surmise that, 

since all the modes have some effect, any imperfection will have some effect. 

Continuing our investigations, we now select two mode shapes from a buckling 

analysis and impose them on all the material cases for direct comparison. We have 

selected mode 6 from the buckling analysis of the .05-70 case and mode 8 of the .15-70 

cases because, as it will be seen, these modes produce clear adverse effects. We 

henceforth refer to these modes as modes 6-05 (mode 6 from the .05-70 buckling 

analysis) and 8-15 (mode 8 from the .15-70 buckling analysis), to differentiate from the 

modes corresponding to the same numbers in the buckling analyses of each material case. 

Figure 5.2 illustrates these mode shapes. 

 

 

(a) 
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(b) 

Figure 5.2. Mode shapes used as imperfections; (a) Mode 6-05; (b) Mode 8-15. 
 

Performing the nonlinear analyses, we can observe the changes in ultimate 

displacement. Again applying the imperfection modes to each case normalized to 5% of 

the radius, we can see the effect these modes have as imperfections.  

 

Table 5.1 lists the maximum displacements achieved under the two cases studied, 

long with the average for the analyses presented previously in Figure 5.1. 

Table 5.1. Maximum top displacem mplitude=5. 
 

Maximum Top Displacement [mm] 

a

 
ent for imperfection cases with a

Case ID Value 
obtained modes 1-10 for 

each case: 

No 
Imperfection 

Mode 
used 

Average, 

.05-70 Mode 
6-05 16.52 17.81 29.46 

.15-70 Mode 
8-15 17.37 19.31 28.13 

 

We can observe the instabilities developing in plots of the radial displacement response 

to the top displacement. However, a caveat is that a relevant point must be chosen for this 

purpose. As noticed by many authors (Brush and Almroth, 1975), a nonlinear analysis 
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may exhibit differing responses depending on the point observed. Obvious bad choices 

would be points in or near the fixed boundaries of the structure, or in the surface the 

displacement is being applied to. An imperfection mode affects each location in the solid 

differently, so points which may seem to be perfectly adequate may in fact give poor 

representations of developing instabilities. Figure 5.3 shows the locations of two nodes 

on a mesh in a model with mode 8-15 applied as imperfection and the displacement 

behavior of the two nodes for the same nonlinear analysis. The case is .15-70 with 

perfection amplitude = 5. 

 

im

 

 

 
(a) 
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(b) 

Figure 5.3. Comparison of displacement response in nonlinear analysis with 
imperfections for nodes in different locations of the same structure; (a) Node locations                     

(Node 8304 at left, 8641 right); (b) Radial displacement response. 
 

A comparison of the radial displacements of node 8304 with those of node 8641 

clearly illustrates that node 8641 does not exemplify the nonlinearity of the response. The  

displacement plot of node 8641 is almost linear, even though it was obtained from a 

geometrically nonlinear analysis. Nodal displacement behaviors may also differ for 

various amplitudes. A certain point may illustrate nonlinear behavior well for some 

amplitude and not another.  

In our work, one node was selected to illustrate the displacement response for 

each mode shape. The selected mode shapes produced comparable behavior for all the 

amplitudes investigated. These points were chosen for their relevance to the mode shape 
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and the clear response exhibited at their location. The coordinates for the points chosen 

for each mode shape are specified in Table 5.2. The origin of the coordinates is at the 

bottom center of the solid. The locations in the mode shape are shown in Figure 5.4. 

Table 5.2. Coordinates for selected points. 
 

Mode ID Node 
Number 

X 
Coordinate 

Y 
Coordinate 

Z 
Coordinate 

6-05 10357 51.11 -85.95 45.00 
8-15 8304 -82.29 -56.82 25.00 

 

 

(a) 

 

(b) 

Figure 5.4 Mode shape location of selected monitoring node for                                      
(a) Mode 6-05, (b) Mode 8-15. 
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  We now illustrate the displacement response for several amplitude/material cases. 

Figures 5.5 and 5.6 show the changes in response for each material case. The figures 

show plots of the top displacement versus radial nodal displacement of nonlinear analyses 

using the aforementioned modes as imperfections with amplitudes set equal to 0 (no 

imperfection), 1, 3, 5 and 9 for both material cases. In all plots, the vertical axis shows 

the control parameter of the problem, and the horizontal axis displays the response 

variable. 

0

5

10

15

20

25

30

35

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

No Imperfection
Amplitude = 1
Amplitude = 3
Amplitude = 5
Amplitude = 9

To
p 

di
sp

la
ce

m
en

t [
m

m
]  

   

Radial displacement [mm]

Case .05-70, using mode 
6-05 as imperfection

 
Figure 5.5. Top displacement versus radial displacement plots for varying                                  

imperfection amplitudes, Case .05-70 using mode 6-05.  
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Figure 5.6. Top displacement versus radial displacement plots for varying                                  

imperfection amplitudes, Case .15-70 using mode 8-15.   
 

The effect of increasing the imperfection amplitude of the same mode is 

illustrated in the plots. As the imperfection amplitude increases, the point where the 

radial displacement increases without bound is found at a lower top displacement level. 

The response is seen to reach a point of instability  Another effect is also seen in the 

graphs. For example, in Case .15-70 for imperfection amplitudes equal to 0 and 1, the 

radial displacement is always outward. However, for amplitudes 3 and 5, the mode shape 

makes the solid double back on itself, making the displacement curve reverse direction. 

This is illustrated in Figure 5.7. The initial outward effect is that of Poisson’s ratio, which 

is later overcome by the effects of the geometry of the solid. 
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(a) 

 
(b) 

Figure 5.7. Imperfect geometry influencing displacement direction. 
 

A limitation of the finite element model was encountered at large imperfection 

amplitudes. The upper and lower bulges of the mode shapes for higher amplitude 

analyses get close enough to each other during the analysis so that they “touch” and 

actually invade each other’s space in the latter stages of the analysis. Figure 5.8 illustrates 

this occurrence. 

 

 117



 

                                   (a)                                                                       (b) 

 

(c) 

Figure 5.8. Limitations of nonlinear analysis (a) Inward displacements allow approach of 
mode bulges (b) Bulges nearly touching (c) Bulges crossing. 

 

 This implies changes in the structure behavior and would require contact surfaces 

to be defined in the outer surface of the solid to be accurately modeled. The nonlinear 

model with imperfections alone is insufficient to represent such behavior. This effect 

appears at lower displacements with increasing amplitude. However, the results are still a 

reasonable approximation, since the bulge surfaces that would come in contact are quite 

small.  
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 Figure 5.9 shows the imperfection sensitivity curves for both cases studied. The 

latter portions of the plots in dotted lines indicate the last points in the analyses where the 

imperfection bulges still do not come into contact, referred to as “break points”. From 

then on, a look into the mesh deformation reveals crossing of the mode bulges. 
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(b) 

Figure 5.9. Maximum top displacement versus imperfection amplitudes                             
(a) Case.05-70, Mode 6-05 as imperfection (b) Case.15-70, Mode 8-15 as imperfection 

 

  As Figure 5.9 demonstrates, there is a clear effect of imperfection sensitivity for 

the solids studied. It is noted that the material with Poisson’s ratio equal to 0.05 exhibits a 

large drop in displacement capacity (from 29mm to 23mm, or 20%) with just a small 

imperfection amplitude (1%). The second material case, with Poisson’s ratio equal to 

0.15, seems to be less sensitive, as an amplitude of 2% is needed to achieve a similar 

effect. 

 The general trend of the plots seems to be a decrease without bound, but this is 

unrealistic. We must recall that the finite element results may have inconsistencies 

springing from the computation of limit points, because the ABAQUS program does not 

identify physical but numerical instabilities – points which are affected by factors such as 
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numerical roundoff, mesh size, and solver tolerances. There is also the additional 

consideration of the mode shape imposed: for larger amplitudes, the mode shape is so 

prominent that it can hardly be called an “imperfection” – it becomes a whole new 

geometry, so the problem becomes a more complex one. 

 Taking all the above into consideration, it is still evident that there is a detected 

imperfection sensitivity, that confirms the predictions of stability theory for symmetric 

structures. 

5.3 CONCLUSIONS              

Investigating the bifurcation process in a three-dimensional solid, we had 

previously found that the eigenvalues obtained from linear eigenvalue extraction analyses 

were very close in magnitude (Chapter 3). In stability theory, such similarities have been 

found to be indicative of imperfection sensitivity. In this chapter we have verified that the 

effect of imperfection sensitivity, implied by the close values of the results of the 

eigenvalue extraction analyses, can also occur for solids. 

In our investigation, we have focused on linear-elastic, isotropic materials with 

low Poisson’s ratio, given that our method of analysis only handled limit points 

accurately for such material cases. While it is not outside the realm of possibility that 

more incompressible materials may also exhibit such sensitivity (indeed, it seems likely, 

given that this is more a consequence of the symmetry in the geometry and not of the 

material of which the structures are comprised), we cannot extrapolate our results for 

these cases; therefore, for the time being, they remain obscure. 
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CHAPTER 6  

INFLUENCE OF MATERIAL 
NONLINEARITY  

 

 

 

 

 

6.1 INTRODUCTION 

As previously mentioned, within the field of elastic stability the most studied 

problems have been those involving columns, plates and shells. However, buckling as a 

phenomenon is not limited to these types of structures. Instability of thick structures has 

already been predicted for certain cases: highly anisotropic materials, composite 

structures with very soft components, continuum approximations of latticed structures 

and materials that undergo drastic reduction of tangential stiffness (Bažant and Cedolin, 

1991). Foams are generally modeled as continuum approximations of a latticed structure, 

falling under one of these categories.  

The material behavior of foams is defined by the microstructural behavior, usually 

dependent on strut or cell-wall bending or buckling (Gan and Chen, 2005). Foams exhibit 

a great capacity for deformation, which makes them useful for energy absorption 

applications. Foams are usually employed as core material in sandwich panels, the 

instability processes of which have been investigated previously and have gone as far as 
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including the interaction between global and local instabilities (Léotoing et al., 2005). 

However, the possibility of a macroscopic type of instability has not been taken into 

account: the buckling of a solid at a macro level, where there is imperfection sensitivity 

of the foam material to geometric deviations of the structure from its ideal form. This 

type of macro sensitivity is distinct and different from imperfection sensitivity of the 

foam microstructure where morphological deviations play a crucial role in defining the 

material behavior: these imperfections catalyze the onset of instability that defines the 

elastic limit of a foam (Gong et al., 2005). Geometric structural deviations, on the other 

hand, would facilitate instabilities in the structure as a whole. 

Thus, the problem to be studied is that three-dimensional instability processes in 

foam material, where according to the geometry of the structure, the expected capacity of 

deformation of the material may be reduced by instability processes.  

 Due to the exceedingly large displacements predicted for buckling of linear-

elastic solids, a possible application suggests itself: foam materials. Foams in general 

have a large deformation capacity; thus, they make an ideal target for a computational 

study of the effects of imperfections on solids on a large displacement range, because 

they are materials that are so complex that they require computational modeling. 

Additionally, their properties are such that they are geared toward thick solid 

configurations in their pure forms - as opposed to sandwich forms, which are covered 

with solid layers, generating more complex combined behaviors (Hunt et al., 1998). 

 Instability of thick structures has already been predicted for certain cases: highly 

anisotropic materials, composite structures with very soft components, continuum 

approximations of latticed structures and materials that undergo drastic reduction of 
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tangential stiffness. (Bažant and Cedolin, 1991). Foams are generally modeled as 

continuum approximations of a latticed structure, falling under one of these categories. 

 Foam materials are structurally comprised of small struts or walls that form 

polyhedrons, called cells. Foams can be open-celled, when the polyhedrons are delineated 

by material struts or fibers, or closed-celled, when the polyhedrons are defined by 

material walls. The main difference between a foam and the solid material from which it 

is made is the volume that is occupied by air. That property is quantified by the relative 

density, the ratio of the foam density to the solid density. Foams made from the same 

base material differ greatly in stress-strain properties as the relative density decreases. 

Since the relative density is controlled by the production process, foams are also different 

from their solid base materials in that they can, to an extent, be designed for particular 

properties.  

 The compression behavior of foams can be divided into three stages: the foam 

deforms in a linear elastic manner at small strains (5%). The next deformation stage is a 

plateau at almost constant stress, caused by the elastic buckling of the columns or plates 

that define the cell. Finally, the cells are crushed, bringing the cell walls or struts in 

contact and causing densification, which results in a rapid increase of compressive stress. 

Ultimate compressive nominal strains of 0.7 to 0.9 are typical (Gibson and Ashby, 1988) 

 Since foams exhibit complex nonlinear behavior, several material models have 

been developed to model them (see Arruda and Boyce, 1993, for example). Several of 

them are available on ABAQUS, all based on a strain energy potential. They include the 

polynomial form (including the neo-Hookean, Mooney-Rivlin and Yeoh forms), Ogden, 

Arruda-Boyce and Van der Waals forms (Hibbit et al, 2003). These models are 
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principally geared towards accurately capturing behavior of foams through calibration 

with experimental data. The abundance of models illustrates the desire for computational 

representation of advanced materials. 

 In this chapter, we investigate the imperfection sensitivity of a thick solid foam. 

This problem has an added complexity with respect to those investigated in previous 

chapters: here, not only are the kinematics of the problem nonlinear, but also the 

constitutive relations. However, the material nonlinearity is assumed to remain elastic at 

all times. Two hypothetical foams are modeled using a first-order strain energy potential 

model. The models are calibrated to resemble the behavior of a real polyethylene foam. 

Geometrically nonlinear analyses with and without imperfections applied are performed 

on solid cylinders, and the effects evaluated. 

6.2 FOAM MATERIAL MODEL 

 There are three main stress-strain behavior zones for foams: the linear portion, the 

plateau portion and the densification portion. A typical stress-strain curve for an 

elastomeric foam is presented in Figure 6.1. 
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Figure 6.1. Typical stress-strain curve for an elastomeric foam. 
 

 These materials have a highly nonlinear behavior as a whole, as such, complex 

material models are and have been developed to model them. Hyperelastic material 

models are available in ABAQUS. The appropriate material model option for foams in 

ABAQUS is the *HYPERFOAM option. This option handles hyperelastic behavior for 

highly compressible materials like foams (Hibbit et al, 2003). The specific model used 

was the ABAQUS *HYPERFOAM with a first-order strain energy potential.  

 Two hypothetical materials were investigated by setting the material parameters 

as shown in Table 6.1. In the specific material model utilized, the parameters are as 

follows: μ is the initial shear modulus, α is a curve shape factor, and ν is Poisson's ratio.  
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 Table 6.1. Material parameters used to define each model. 
 

Material μ 
[Mpa] 

α 
[Adimensional]

ν 
[Adimensional] 

Case A 0.5 10.0 0.0 

Case B 0.5 10.0 0.05 
 

 The material parameters were chosen so as to approximate the compressive 

behavior of a real material; in this case, the stress-strain curve of a polyethylene foam 

under compression with density equal to 29.4 kg/m3, as presented in page 181 of Gibson 

and Ashby (1988). An exact representation was attempted, but it was found that the 

material model utilized could not be calibrated to represent the exact same curve. 

However , since our purpose was to investigate a solid structure with a foam material 

model in general (not to model specific foams), our models will suffice in that they 

represent behavior not outside the realm of physical reality. Temperature dependency is 

not considered in the models used. Figure 6.2 shows the compressive stress-strain curves 

of the material models used as well as the reference polyethylene curve. 
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Figure 6.2. Stress-strain curves for two foam models used in computations and reference 
polyethylene foam. 

 

  

6.3 EFFECT OF MATERIAL NONLINEARITY 

 A foam material exhibits a very different stress-strain curve compared to a linear 

elastic material. The linear part of a foam curve is found at the very beginning, when the 

microstructural elements are still under loads small enough to induce no disproportionate 

displacement effects. For the foam cases studied, Figure 6.3 shows a comparison of the 

stress-strain curves of the foam materials with their completely linear counterparts. 
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(b) 

Figure 6.3. Stress-strain curves for foam models linear counterparts  
(a) Case A Material (b) Case B Material 
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 As shown in Figure 6.3, the foam models will attain much larger compressive 

strains after they exceed their linear portions, compared to their perfectly linear 

counterparts. This means the solid is more easily deformable.  

 Comparing the displacement responses obtained from linear materials and the 

nonlinear foam material we can deduce the effect of the material nonlinearity. Figure 6.4 

compares the responses between the Case B foam material and its linear counterpart. No 

curve is shown for the Case A material since a Poisson’s ratio of zero precludes any 

radial displacement, whether using a linear or nonlinear material. 
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Figure 6.4. Top displacement versus radial displacement plots for linear elastic material 
and Case B material, both with ν=0.05. 

 
 
 From Figure 6.4 we can see the effect of the material nonlinearity: the curve for 

the nonlinear material (foam) tolerates much higher top displacements, as the plateau 
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portion of the material induces much larger deformations for the same compressive 

displacement. We can also see that the limit point for a linear material is found at a much 

lower displacement level. The results indicate the material nonlinearity delays buckling, 

that is, shifts the limit point to a higher value. The high displacement achieved for the 

foam materials implies large strains. Figure 6.5 again plots the stress-strain curve for the 

Case B material, and shows the point where the nonlinear analysis encounters a limit 

point. 
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Figure 6.5. Limit point on stress-strain curve, Case B material. 
 

 As the figure shows, the limit point is found at a nominal strain of 0.73 – well into 

the densification part of the material behavior.  
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6.4 NONLINEAR ANALYSES ON FOAMS 

 In order to evaluate the imperfection sensitivity of the foam cylinders considered, 

geometrically nonlinear analyses were performed on finite element models, following the 

procedure detailed in Chapter 5 for linear elastic material models. Again, the first 

analysis was performed on a model with no imperfections. Then, nonlinear analyses were 

performed where an eigenmode obtained from a linear eigenvalue extraction analysis was 

imposed as three-dimensional imperfection. Since the foam material model is too 

complex to be used in a linear eigenvalue extraction analysis (Hibbit et al, 2003), the 

applied imperfection was obtained from the isotropic linear-elastic material model 

buckling analyses.  

 We have again selected a mode used previously in Chapter 5 – mode 6 from the 

buckling analysis of the .05-70 case, named Mode 6-05 (see Chapter 5, section 5.2.2). 

The imperfection sensitivity was evaluated by comparing the maximum top displacement 

achieved by the system in each analysis with imperfections with that of the nonlinear 

analysis with no imperfections.  

 As was expected, imperfection sensitivity is also detected in the analyses 

performed using a foam material model. Figure 6.6 and Figure 6.8 show the result of 

geometrically nonlinear analyses performed on solid cylinder models with material 

properties as  previously shown in Table 6.1. Changes in the displacement behavior are 

observed according to the imperfection amplitude.  

Figure 6.6 plots the top displacement versus radial displacement of nonlinear 

analyses using Mode 6-05 as imperfection with amplitudes set equal to 1, 3, 5 and 9 for 

the Case A material. The curve for the case with no imperfection is a vertical line from 
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the origin, as there is no radial displacement since Poisson’s ratio for this material is zero. 

Therefore, no Poisson’s “push” is ever exerted outward. This indicates that the radial 

displacement response observed in the cases with imperfections is due solely to the 

geometric effects.  
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Figure 6.6. Top displacement versus radial displacement plots for varying        
imperfection amplitudes, Case A material. 

 

 It is interesting to note the immediate and large displacement capacity reduction 

for a unit imperfection amplitude, a drop from 63 mm to 32.5 mm. In Figure 6.7 we plot 

the limit points on the material stress-strain curve. It is apparent that in the cases with 

imperfections the material does not even reach the densification portion. 
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Figure 6.7. Locations of limit points in stress-strain curve, Case A material. 

 

 Similarly, Figure 6.8 plots the top displacement versus radial displacement of 

nonlinear analyses using mode 6-05 as imperfection with amplitudes set equal to 1, 3, 5 

and 9 for the Case B material. The response of the case with no imperfections is also 

presented for comparison. It is notable that the response is quite different for increasing 

imperfection amplitudes. Also, in Figure 6.9 we again plot the limit points on the material 

stress-strain curve, for the Case B material. Unlike the Case A material, the unit 

imperfection case lies well into the densification portion of the material. 
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Figure 6.8. Top displacement versus radial displacement plots for varying        
imperfection amplitudes, Case B material. 
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Figure 6.9. Locations of limit points in stress-strain curve, Case B material. 
 

 135



 Again, the limitation of the finite element model was encountered, where the 

upper and lower bulges of the mode shapes get close enough to each other during the 

analysis to invade each other’s space in the latter stages of the analysis (see Chapter 5, 

section 5.2.2). The upper and lower bulges of the mode shapes for higher amplitude 

analyses get close enough to each other during the analysis so that they “touch” and 

actually invade each other’s space in the latter stages of the analysis. The dashed curves 

represent the last points in the analyses where the imperfection bulges still do not come 

into contact, referred to as “break points”. However, for small imperfections, where the 

bulges do not come into contact, the imperfection sensitivity effect is clear, as is indicated 

by the graphs in Figure 6.6 and 6.7. The imperfection sensitivity curves for both material 

cases are plotted in Figure 6.10. 
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Figure 6.10. Maximum top displacement versus imperfection amplitude for foams 
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 It is notable that the material with Poisson’s ratio of zero (Case A) has an 

immediate and large decrease in deformation capacity with just a small imperfection 

amplitude. For the Case A material the nonlinear analysis without imperfections yields a 

maximum displacement of 63.40 mm; with the unit imperfection mode it is 33.19 mm. 

That is a 47.65% difference in maximum top displacement. Case B also displays 

imperfection sensitivity, but displays a particular behavior: for small imperfection 

amplitudes the reduction is slight, but for cases with amplitude 3 and larger, the loss is 

considerable. The sensitivity curve for Case B resembles the curve for Case A, especially 

the curve considering the break points, which looks like the Case A curve shifted two 

amplitudes to the right. Decreased imperfection sensitivity with increasing Poisson’s ratio 

was also seen in the linear elastic materials used in Chapter 5. 

6.5 CONCLUSIONS 

 In this chapter we have explored the behavior of a foam in solid configuration. 

We have found that material nonlinearity affects the limit point behavior of a given 

geometry. In the materials studied, foams, the increased deformation capacity gave a 

greater maximum displacement before reaching a limit point compared to an equally 

compressible linear-elastic material. This is significant because it implies that the 

constitutive equations as a whole alter the buckling behavior of a geometry, not only a 

simple material property like a modulus or a measure of compressibility such as 

Poisson’s ratio. 

 The nonlinear finite element analyses indicated that imperfection sensitivity is 

predicted for these materials that are capable of very high strains. Displacement capacity 

reductions close to 50% were computed for small imperfection amplitudes. It is noticed 
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that the material modeled with a Poisson’s ratio equal to zero had a more noticeable 

susceptibility to imperfections. This could imply either real imperfection sensitivity of 

foams with ν equal to zero, or conversely that finite elements show a weakness in this 

regard, and that it might be better to model a very compressible material using a ν equal 

to slightly larger than zero.  

 It is important to understand that the results obtained are mathematical 

phenomena, not physical. Only actual experiments with foam materials in solid form with 

carefully controlled imperfections in the manufacture of specimens can establish whether 

the predicted results are representative of real behavior. If the predicted imperfection 

sensitivity is an accurate representation of physical phenomena, then a hitherto 

unexplored (and unconsidered) factor is discovered for materials in solid configuration. 

This would be important for material modeling because material properties are usually 

determined from specimens in solid configurations. Imperfection sensitivity could also 

account for part of the difference in measured response from specimen to specimen. 

 Conversely, if the predicted phenomenon does not represent physical reality, then  

it is implied that the theories and/or assumptions involved in the finite element models 

should be revised.  

 

 

 

 

 

 

 138



CHAPTER 7  

 CONCLUSIONS 
 
 

 

 

 

7.1 SUMMARY 

In this section we present a summary of the investigations in this thesis.  
 
Chapter 1 contains the general introduction to our investigation (instabilities of three-

dimensional solids), as well as the motivation, objectives, literature review, scope and 

methodology followed in the course of the research. 

 Chapter 2 introduced a simplified analytical approach using the total potential 

energy formulation. A theme problem of solid cylinder under compressive load was 

studied for linear elastic materials. Both the derivation of the problem and results of 

bifurcation buckling analyses were presented. Results were given for various materials 

and cylinder heights. 

 Chapter 3 presented bifurcation, linear and nonlinear analyses of the theme 

problem, using the finite element method. Comparisons were made between all results, 

including the ones obtained in the preceding chapter. 

 In Chapter 4, the reduced energy methodology was applied to the 3D solid 

problem using the analytical formulation developed in Chapter 2. Results were obtained 
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and the contributions of individual potential energy terms evaluated. The results were 

compared to those of preceding chapters. 

 Chapter 5 presented a study of imperfection sensitivity in the theme solid. 

Buckling modes were imposed as initial imperfections upon the solid geometry and 

nonlinear analyses performed for different imperfection amplitudes. The results were 

then compared to the nonlinear analyses without imperfections. 

 In Chapter 6, the effect of material nonlinearity on the solid buckling problem was 

evaluated using highly nonlinear materials, foams. Imperfection sensitivity was also 

explored for these materials. Both nonlinear analyses with and without imperfections 

were performed. Again, buckling modes were imposed as initial imperfections upon the 

solid geometry, and the effects of imperfection amplitude evaluated.  

 

7.2 CONCLUSIONS 

 After a thorough investigation of a theme solid under compression, we come to 

various conclusions. First and foremost, we have found that instability processes in a 

thick solid under compression are a structural possibility, a result that corrects erroneous 

“common knowledge” stemming from conclusions drawn more than a hundred years ago. 

We have obtained bifurcation points that indicate instabilities at large compressive strains 

for all materials described by perfectly linear-elastic constitutive equations. Limit points 

have also been found for very compressible linear elastic materials, and it is seen that 

these points fall below the eigenvalue buckling points. Therefore, for very compressible 

linear-elastic materials, the limit point is the controlling instability. 
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 Limitations of the finite-element models became apparent for incompressible 

materials, so it was impossible to determine limit point behavior for these materials. 

However, the general trend indicates that for a given geometry, more incompressible 

materials allow further loading before reaching a limit point. It is possible that the limit 

point is not the controlling instability for incompressible materials, but this would require 

further research to be firmly established. 

 Symmetry in our theme solid, as well as the nearly coincident results for buckling 

analysis eigenvalues, gave good reason to expect the effect of imperfection sensitivity so 

important in thin-shell structures. We have verified that there indeed can be imperfection 

sensitivity on a solid. With the usual method of inputting a mode shape as imperfection 

on the initial geometry, the capacity was seen to decrease significantly with even small 

imperfection amplitudes – even more so for the most compressible material studied.  

 A lower bound approach was attempted using a simplified analytical formulation 

of the problem. The importance of the energy term transverse to the load was identified. 

 It was found that the buckling results obtained with a reduced energy, while close in 

magnitude to the calculated limit points, did not represent lower bounds. However, they 

were close enough (10-15%) to be considered a reasonable first approximation. Also, the 

reduced energy methodology as developed was consistent in overestimating the limit 

points for the materials considered, so in this regard it functioned as an upper bound.

 Studies with highly nonlinear materials, foams, showed the influence of material 

nonlinearity on the solid stability. It was found that these highly deformable materials 

shift the limit point behavior upwards relative to that of an equally compressible linear-

elastic material, that is, the limit point occurs at a much higher displacement level. This 
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indicates that not only compressibility but the whole constitutive equations of the 

material enter into play in the development of instability. The effect of imperfection 

sensitivity was also seen to apply to these materials, with drastic displacement capacity 

reductions.  

 It is important to note that the results obtained are mathematical phenomena, not 

physical. Only actual experiments with materials in solid form can establish whether the 

predicted results are representative of real behavior. The importance of our findings lies 

in the extensive use of mathematical modeling, especially finite elements, in structural 

analysis in modern times. 

 If the predicted instabilities are an accurate representation of physical phenomena, 

then a hitherto unexplored (and unconsidered) factor is discovered for materials in solid 

configuration. This would be important for material modeling because material properties 

are usually determined from specimens in solid configurations, usually cylinders or 

cubes, precisely to avoid reaching instability points in slender structures and mistaking 

them for load capacities. Also, imperfection sensitivity could account for part of the 

difference in measured capacity from specimen to specimen of a given material. 

 Conversely, if the predicted phenomenon does not represent physical reality, then  

it is implied that the theories involved in finite element modeling need to be revised – 

opening up a whole new area of investigation. Even though a foam material model has 

been investigated, there is the very real possibility that imperfection sensitivity can also 

affect other materials such as concrete and soil, commonly tested for properties in 

cylindrical shapes. 
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7.3 ORIGINAL CONTRIBUTIONS OF THIS THESIS 

The original contributions of this thesis are: 

1) The identification of instabilities in three-dimensional solids. 

2) The understanding of the large strains required to reach points of instability. 

3) The determination of the effects of linear elastic material parameters on solid 

buckling. 

4) The identification of imperfection sensitivity in 3D solids. 

5) The interpretation of the effect of material nonlinearity in solid stability. 

7.4 RECOMMENDATIONS FOR FUTURE WORK 

As a theoretical and computational investigation, our work must first and 

foremost be confirmed by experimental research. This entails dealing with the greater 

level of complexity studied in this thesis, because real materials always display nonlinear 

behavior. In addition, material heterogeneity and anisotropy can be issues that can further 

obscure the effects of instabilities. This represents a truly formidable challenge; however, 

there are now foundations upon which a knowledge base can be built.  

The apparent path to take in order to evaluate the effects of 3D instability is to 

utilize the easiest constraint to change: the material geometry. Experiments with differing 

(and controlled) levels of imperfection can begin to establish instability effects.  

The use of highly deformable materials can be said to be required for further 

investigation in this area, since material failure is usually reached before any approach to 

instabilities in common materials such as concrete and soil.   
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 Our investigation was cut off at a material point because of the inadequacy of the 

finite element method to handle incompressible materials into limit points. However, it 

seems like incompressible materials such as man-made rubbers are good candidates for 

experimental testing, as long as they can withstand large strains. If buckling modes were 

to be found, they could be directly compared to the ones presented in this thesis; or 

alternatively, if a limit point were found then the maximum displacement could be 

compared to the results we have presented. 

 Once a solid experimental base has been garnered, the reduced energy 

methodology can be revised from the formulation presented in this thesis, since it is still 

quite possible that a lower bound method can be implemented with a more accurate 

formulation, or modified percentages of the energy terms. 

 Finally, in this thesis we have discussed the case of a cylindrical solid under pure 

compression, bounded in the top and bottom planes. This is certainly not the only 

geometric/loading/constraint case by any stretch of the imagination; therefore worlds of 

knowledge remain to be found regarding the instabilities of three-dimensional solids. 
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APPENDIX A 
PROGRAM USED FOR SIMPLIFIED 

ANALYTICAL FORMULATION 
 
  
 
 
 
 
 
 
 
 This Appendix presents the implementation in the symbolic manipulator Maple of 

the simplified analytical formulation presented in Chapter 2. The material and geometric 

properties are specified at the beginning, along with the number of vertical and 

circumferential waves that describe the eigenmode imposed. The calculation follows 

automatically, with the load eigenvalue and associated top displacement obtained at the  

end of the sheet. 
 
 
 
> #Simplified Analytical Formulation 
> restart: with(linalg): 
Warning, the protected names norm and trace have been redefined and 
unprotected 
> interface(prettyprint=0); 
> # INPUT 
> E:= 7;                # Elastic modulus [MPa] 
E := 7 
> nu:= 0.05;             # Poisson's ratio  
nu := .5e-1 
> R:=100;                # Cylinder radius 
R := 100 
> L:=70;                 # Cylinder Height 
L := 70 
> Ar:= evalf(Pi)*(R^2);  # Cylinder area 
Ar := 31415.92654 
> # Number of vertical and circumferential waves for mode shape 
> M:=3; N:=2 ;  
M := 3 
N := 2 
>  
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> # Calculation starts 
> # Lame's parameters for linear elasticity equations 
>  
> mu:=E/(2*(1+nu));   
mu := 3.333333333 
> lambda:= (nu*E/((1+nu)*(1-2*nu))); 
lambda := .3703703703 
>   
> # Linear fundamental path definition 
> sigma11f:=P/Ar; sigma22f:=0; sigma33f:=0; 
sigma11f := .3183098861e-4*P 
sigma22f := 0 
sigma33f := 0 
> epsilon11f:= simplify(1/E*(sigma11f-
nu*(sigma11f+sigma22f+sigma33f)+nu*sigma11f)); 
epsilon11f := .4547284087e-5*P 
> epsilon22f:= 1/E*(sigma22f-
nu*(sigma11f+sigma22f+sigma33f)+nu*sigma22f); 
epsilon22f := -.2273642043e-6*P 
> epsilon33f:=    1/E*(sigma33f-
nu*(sigma11f+sigma22f+sigma33f)+nu*sigma33f); 
epsilon33f := -.2273642043e-6*P 
> sigma12f:= 0; 
sigma12f := 0 
> sigma13f:= 0; 
sigma13f := 0 
> sigma23f:= 0; 
sigma23f := 0 
> epsilon12f:=1/2/mu*sigma12f; 
epsilon12f := 0. 
> epsilon13f:=1/2/mu*sigma13f; 
epsilon13f := 0. 
> epsilon23f:=1/2/mu*sigma23f; 
epsilon23f := 0. 
> # Incremental displacement field definition 
>  
> x2t:=2*(Pi)*R: 
> u1:=0; u2:=0; u3:= 
Q*(x3/R)*sin(M*evalf(Pi)*x1/L)*sin(N*evalf(Pi)*x2/x2t);      
u1 := 0 
u2 := 0 
u3 := 1/100*Q*x3*sin(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
> # Cylindrical plot for visualizing mode shapes 
> with(plots): 
Warning, the name changecoords has been redefined 
> setoptions3d(title=`Funeral Doom`, style=PATCH, axes=NONE, 
        scaling=CONSTRAINED); 
> cylinderplot( { ( 4.5+ ( sin(M*z)* sin(N*theta/2) ) /1.5 )} 
,theta=0..2*Pi,z=0..Pi, color = ( 4.5+(sin(M*z)*sin(N*theta/2))) 
,grid=[45,35] ); 
>  
> # Linear incremental field strain terms 
> for i from 1 to 3 do; for j from 1 to 3 do;  epsilon_lin||i||j:= 
(1/2)*( diff(u||i, x||j)+ diff(u||j, x||i)); print(epsilon_lin||i||j); 
end do; end do;  
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0 
0 
.6731984260e-3*Q*x3*cos(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
0 
0 
.1570796327e-3*Q*x3*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.6731984260e-3*Q*x3*cos(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
.1570796327e-3*Q*x3*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
1/100*Q*sin(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
> # Nonlinear incremental field strain terms 
> for i from 1 to 3 do; for j from 1 to 3 do;  epsilon_no_lin||i||j:=  ( 
(1/2)*(  add(diff(u||m, x||i)*diff(u||m, x||j), m=1..3)) ); 
print(epsilon_no_lin||i||j) ; end do; end do;  
.9063922415e-6*Q^2*x3^2*cos(.1346396852*x1)^2*sin(.3141592654e-
1*x2/Pi)^2 
.2114915230e-6*Q^2*x3^2*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.6731984260e-5*Q^2*x3*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)^2*sin(.1346396852*x1) 
.2114915230e-6*Q^2*x3^2*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.4934802202e-7*Q^2*x3^2*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)^2/Pi^2 
.1570796327e-5*Q^2*x3*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)/Pi*sin(.3141592654e-1*x2/Pi) 
.6731984260e-5*Q^2*x3*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)^2*sin(.1346396852*x1) 
.1570796327e-5*Q^2*x3*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)/Pi*sin(.3141592654e-1*x2/Pi) 
1/20000*Q^2*sin(.1346396852*x1)^2*sin(.3141592654e-1*x2/Pi)^2 
>  
> # Linear incremental field stress terms 
> for i from 1 to 3 do: for j from 1 to 3 do:   if i=j then  
sigma_lin||i||j:= 2*mu*epsilon_lin||i||j + 
lambda*add(epsilon_lin||m||m, m=1..3); else  sigma_lin||i||j:= 
2*mu*epsilon_lin||i||j; end if;print(sigma_lin||i||j); end do;  end do;  
.3703703703e-2*Q*sin(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
0. 
.4487989506e-2*Q*x3*cos(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
0. 
.3703703703e-2*Q*sin(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
.1047197551e-2*Q*x3*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.4487989506e-2*Q*x3*cos(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
.1047197551e-2*Q*x3*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.7037037036e-1*Q*sin(.1346396852*x1)*sin(.3141592654e-1*x2/Pi) 
> # Nonlinear incremental field stress terms 
> for i from 1 to 3 do: for j from 1 to 3 do:   if i=j then  
sigma_no_lin||i||j:= 2*mu*epsilon_no_lin||i||j + 
lambda*add(epsilon_no_lin||m||m, m=1..3); else  sigma_no_lin||i||j:= 
2*mu*epsilon_no_lin||i||j; end if; print(sigma_no_lin||i||j);end do;  
end do;  
.6378315772e-5*Q^2*x3^2*cos(.1346396852*x1)^2*sin(.3141592654e-
1*x2/Pi)^2+.1827704519e-
7*Q^2*x3^2*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)^2/Pi^2+.1851851852e-
4*Q^2*sin(.1346396852*x1)^2*sin(.3141592654e-1*x2/Pi)^2 
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.1409943487e-5*Q^2*x3^2*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.4487989506e-4*Q^2*x3*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)^2*sin(.1346396852*x1) 
.1409943487e-5*Q^2*x3^2*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)*sin(.1346396852*x1)*cos(.3141592654e-1*x2/Pi)/Pi 
.3472638586e-6*Q^2*x3^2*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)^2/Pi^2+.3357008301e-
6*Q^2*x3^2*cos(.1346396852*x1)^2*sin(.3141592654e-
1*x2/Pi)^2+.1851851852e-4*Q^2*sin(.1346396852*x1)^2*sin(.3141592654e-
1*x2/Pi)^2 
.1047197551e-4*Q^2*x3*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)/Pi*sin(.3141592654e-1*x2/Pi) 
.4487989506e-4*Q^2*x3*cos(.1346396852*x1)*sin(.3141592654e-
1*x2/Pi)^2*sin(.1346396852*x1) 
.1047197551e-4*Q^2*x3*sin(.1346396852*x1)^2*cos(.3141592654e-
1*x2/Pi)/Pi*sin(.3141592654e-1*x2/Pi) 
.3518518517e-3*Q^2*sin(.1346396852*x1)^2*sin(.3141592654e-
1*x2/Pi)^2+.3357008301e-
6*Q^2*x3^2*cos(.1346396852*x1)^2*sin(.3141592654e-
1*x2/Pi)^2+.1827704519e-
7*Q^2*x3^2*sin(.1346396852*x1)^2*cos(.3141592654e-1*x2/Pi)^2/Pi^2 
> # Assembly of the total potential energy by terms 
> # Combination of linear terms 
> Va:=  .5*int(int(int( (sigma_lin11*epsilon_lin11   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Va := 0. 
> Vb:=  .5*int(int(int( (sigma_lin22*epsilon_lin22   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vb := 0. 
> Vc:=  .5*int(int(int( (sigma_lin33*epsilon_lin33  ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vc := 386.8813174*Q^2 
> Vd:=  .5*int(int(int( (2*sigma_lin12*epsilon_lin12   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vd := 0. 
> Ve:=    .5*int(int(int( (2*sigma_lin13*epsilon_lin13   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Ve := 11073.67025*Q^2 
> Vf:=    .5*int(int(int( (2*sigma_lin23*epsilon_lin23   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf := 61.08652380*Q^2 
> # Combination of fundamental stress terms and nonlinear strain terms 
> Vf1:= .5*int(int(int( (sigma11f*epsilon_no_lin11   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf1 := .5287288080e-1*P*Q^2 
> Vf2:=.5*int(int(int( (sigma22f*epsilon_no_lin22   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf2 := 0. 
> Vf3:=.5*int(int(int( (sigma33f*epsilon_no_lin33  ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf3 := 0. 
> Vf12:=.5*int(int(int( (2*sigma12f*epsilon_no_lin12   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf12 := 0. 
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> Vf13:=.5*int(int(int( (2*sigma13f*epsilon_no_lin13   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf13 := 0. 
> Vf23:=.5*int(int(int( (2*sigma23f*epsilon_no_lin23   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
Vf23 := 0. 
> # Combination of nonlinear stress terms and fundamental strain terms 
> V1f:=   .5*int(int(int( (sigma_no_lin11*epsilon11f   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
V1f := .5321435985e-1*P*Q^2 
> V2f:=   .5*int(int(int( (sigma_no_lin22*epsilon22f   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
V2f := -.1568506546e-3*P*Q^2 
> V3f:=   .5*int(int(int( (sigma_no_lin33*epsilon33f  ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
V3f := -.1846284323e-3*P*Q^2 
> V12f:=.5*int(int(int( (2*sigma_no_lin12*epsilon12f   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
V12f := 0. 
> V13f:=.5*int(int(int( (2*sigma_no_lin13*epsilon13f   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
V13f := 0. 
> V23f:=.5*int(int(int( (2*sigma_no_lin23*epsilon23f   ), 
x2=0..2*evalf(Pi)*R), x3=0..R), x1=0..L); 
V23f := 0. 
> # Total potential energy 
> V:= Va+Vb+Vc+Vd+Ve+Vf  +  V1f+V2f+V3f + V12f+V13f+V23f  +  Vf1+Vf2+Vf3 
+  Vf12+Vf13+Vf23  ; 
V := 11521.63809*Q^2+.1057457615*P*Q^2 
> # Variation of potential energy; critical load eigenvalue 
> Vcu:=diff(V,Q);  
Vcu := 23043.27618*Q+.2114915230*P*Q 
> Pc:=solve(Vcu=0,P); 
Pc := -108956.0274 
> # Critical stress and strain 
> sigma11c:=Pc/Ar;  
sigma11c := -3.468178068 
> epsilon11c:= simplify(1/E*(sigma11c-
nu*(sigma11c+sigma22f+sigma33f)+nu*sigma11c)); 
epsilon11c := -.4954540097 
> # Top displacement associated to load eigenvalue 
> Q:=epsilon11c*L;  
Q := -34.68178068 
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