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Abstract. Using polynomial evaluation, we give some useful criteria to answer questions

about divisibility of polynomials. This allows us to develop interesting results concerning the

prime elements in the domain of coefficients of the polynomial. In particular, it is possible

to prove that under certain conditions, the domain of coefficients must have infinitely many

prime elements. We give alternative characterizations for D−rings and present various

examples.

Keywords: divisibility properties in ring of polynomials, unique factorization domain,

infinite primes property, D-rings.
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Resumen. Usando evaluación en polinomios, damos algunos criterios útiles para respon-

der preguntas sobre divisibilidad de polinomios. Esto también permite desarrollar algunos

resultados interesantes acerca de los elementos primos del dominio de coeficientes. En par-

ticular, es posible demostrar (bajo ciertas condiciones) que el dominio de coeficientes debe

tener infinitos elementos primos. Damos también caracterizaciones alternativas de D-anillos

y presentamos varios ejemplos.
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Alejo Torres, Marggie González, Vı́ctor López and his wife Yolanda, Trilce Encarnación,
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General Introduction

In an Abstract Algebra course, one studies Rings of Polynomials over an integral domain

(here simply domain). These rings do satisfy a property called the Division Algorithm.

This property allows one to decide if given two polynomials, one divides the other or not.

We give divisibility criteria in a ring of polynomials using evaluations with elements in the

domain of coefficients. This allows us to develop interesting theories about the prime ele-

ments in the domain of coefficients. In particular, it is possible to prove that under certain

conditions, the domain of coefficients must have infinitely many primes. In order to de-

velop this investigation it is necessary to approach classical results from Abstract Algebra

and therefore, this work serves as a motivation to increase the knowledge about this very

important branch of Mathematics.

Briefly, in this document we basically finish closing a certain diagram on some divisibil-

ity properties over rings of polynomials in a unique factorization domain, studied by Dr

Luis F. Cáceres in his doctoral thesis (see [3]).

IPP DPP

SEPP EPP
��

UFD

OO

��

UFD

//

9
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Also, we develop results that are consequences of this equivalence and the definitions of the

given divisibility properties.

In Chapter 0, we review basic concepts of Abstract Algebra that are used in the other

chapters for readers not familiarized with this topic. Nevertheless, the reader who is profi-

cient in Abstract Algebra can skip this chapter and move directly to Chapter 1. We have

assumed the usual notation given to the natural, integer, rational and real numbers. In

Chapter 1, the properties of divisibility under our study are defined and we give direct con-

sequences of each one of these definitions. In particular, we are interested in polynomials

with integer coefficients. This ring is very interesting, since it fulfills all the given divisi-

bility properties stated in this document. In addition, we prove interesting results about

the prime elements in the domain of coefficients. In Chapter 2, we give nontrivial examples

that involve the divisibility properties studied in Chapter 1 and concepts from elementary

Number Theory.



CHAPTER 0

Fundamentals

1. Commutative rings and unique factorization domains (UFD)

In this chapter we will present some basic definitions and properties from ring theory,

specifically from commutative rings theory.

Definition 0.1. Let D be a commutative ring with identity. An element c of D is irre-

ducible provided that:

(1) c is a nonzero nonunit;

(2) c = ab, with a, b ∈ D ⇒ a or b is a unit.

An element p of D is prime provided that:

(1) p is a nonzero nonunit;

(2) p|ab, with a, b ∈ D ⇒ p|a or p|b.

The set of units of D will be denoted by D×.

Definition 0.2. An integral domain D is a principal ideal domain (PID) provided that

every ideal A of D can be written as A = 〈a〉 for some a ∈ D.

11



1. Commutative rings and unique factorization domains (UFD) 12

Definition 0.3. An integral domain D is a unique factorization domain (UFD) pro-

vided that:

(1) every nonzero nonunit element a of D can be written as a = c1c2 · · · cn, with

c1, ..., cn irreducible elements of D.

(2) If a = c1c2 · · · cn and a = d1d2 · · · dm (ci, di irreducible elements of D), then n = m

and for some permutation σ of {1, 2, ..., n}, ci and dσ(i) are associates for every

i = 1, . . . , n. This is for each i = 1, . . . , n, there exists a unit u of D such that

ci = dσ(i)u.

Remark 0.1. In every UFD irreducible and prime elements coincide.

Definition 0.4. Let N be the set of non-negative integers and let D be a domain. D is a

Euclidean domain if there is a function φ : D − {0} → N such that:

(1) if a, b ∈ D and ab 6= 0, then φ(a) ≤ φ(ab);

(2) if a, b ∈ D and b 6= 0, then there exists q, r ∈ D such that a = qb + r with r = 0,

or r 6= 0 and φ(r) < φ(b).

Theorem 0.1. Every Euclidean domain D is a PID and every PID is a UFD.

Proof. See [6, pgs 138-139]. �

Definition 0.5. Let D be a commutative ring. An ideal P in D such that P 6= D is prime

if

ab ∈ P ⇔ a ∈ P or b ∈ P.

Definition 0.6. Let D be a commutative ring. An ideal M in D is said to be maximal if

M 6= D and for every ideal N such that M ⊆ N ⊆ D, either N = M or N = D.

Note that every maximal ideal is also a prime ideal.

Lemma 0.1. Every nonunit element of D is contained in a maximal ideal, therefore in a

prime ideal as well.

Proof. See [1, pg 4]. �
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Proposition 0.1. Let D be a domain. Let J(D) be the Jacobson Radical of D; this is,

J(D) is the intersection of all maximal ideals of D. Then, y ∈ J(D) if only if 1− yx ∈ D×

for all x ∈ D.

Proof. See [1, pg 6] or [7, pg 51]. �

Definition 0.7. A nonzero element a of a commutative ring D is said to divide an element

b ∈ D (notation: a|b) if there exists x ∈ D such that ax = b.

Definition 0.8. Let a1, ..., an be elements of a commutative ring D. An element d ∈ D is

the greatest common divisor of a1, ..., an (notation: d = g.c.d.(a1, ..., an)) provided that:

(1) d|ai for all i = 1, ..., n;

(2) if c|ai for all i = 1, ..., n with c ∈ D, then c|d.

Definition 0.9. Let a1, ..., an be elements of a commutative ring D. An element m ∈ D is

the least common multiple of a1, ..., an (notation: m = l.c.m.(a1, ..., an)) provided that:

(1) ai|m for all i = 1, ..., n;

(2) if ai|c for all i = 1, ..., n with c ∈ D, then m|c.

Lemma 0.2. Let a1, ..., an be elements of a domain D and assume that d = g.c.d(a1, ..., an)

exists. Then m = l.c.m(a1, ..., an) exists and moreover:

m =
a1 · · · an

d
.

Theorem 0.2. Let a1, ..., an be elements of a commutative ring D with identity. If D is a

UFD, then there exists a greatest common divisor of a1, ..., an.

Proof. See [6, pg 140]. �

Corollary 0.1. Let a1, ..., an be elements of a commutative ring D with identity. If D is

a UFD, then there exists a least common multiple of a1, ..., an.

Definition 0.10. Let D be a commutative ring and D[x] be the ring of polynomials with

coefficients in D. Let g(x) ∈ D[x]:
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(1) if g(x) = anxn + ... + a1x + a0 then a g.c.d.(an, ..., a0) is called a content of g(x)

and is denoted by C(g(x));

(2) if C(g(x)) is a unit in D we say that g(x) is primitive.

Lemma 0.3 (Gauss’ Lemma). Let D be a UFD. If a ∈ D, f(x), g(x), h(x) ∈ D[x] and

af(x) = g(x)h(x), where g(x) is a primitive polynomial, then h(x) = aq(x) for some q(x) ∈

D[x].

Proof. See [6, pg 162]. �

The proof of the following Lemmas may be found in [6, pgs 157-165].

Lemma 0.4. If K is a field, then K[x] is a Euclidean Domain.

Lemma 0.5. If D is a UFD, then D[x] is also a UFD.

2. Localization

The procedure by which one constructs the rational field Q from the ring of integers Z

(and embeds Z in Q) extends easily to any integral domain D and produces the “field of

fractions” of D.

Definition 0.11. A non-empty subset S of a ring R is multiplicative provided that

a, b ∈ S ⇒ ab ∈ S.

Theorem 0.3. Let S be a multiplicative subset of a domain D. The relation defined on the

set D × S by

(r, s) ∼ (r′, s′) ⇔ (rs′ − r′s) = 0

is an equivalence relation.

The equivalence class (r, s) ∈ D × S will be denoted by r
s , and let S−1D denote the

set of equivalence classes. We give a ring structure on S−1D by defining addition and
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multiplication of these “fractions” r
s in the same way as in elementary algebra: that is,

r

s
+

u

v
=

rv + su

sv
r

s

u

v
=

ru

sv

The ring S−1D is named as ring of quotients of D by S. If S is the set of non-zero

elements of D, the ring of quotients S−1D is a field, called the quotient field of D and

will be denoted as Q(D). Note that Q(Z) = Q.

If D is commutative ring with identity and P a prime ideal of D, then S − P is a multi-

plicative subset of D. The ring of quotients S−1D = DP is called the localization of D

at P.



CHAPTER 1

Definitions

1. Introduction

An interesting question about divisibility is the following: given f(x) and g(x) polynomials

with coefficients in the ring of integers Z such that for all n ∈ Z, f(n)|g(n), does one have

that f(x)|g(x) in Z[x]? Take for example f(x) = 5, and g(x) = x5 − x, as a consequence of

Fermat’s Little Theorem one has that for all n ∈ Z, 5|n5 − n in Z, but it is not true that

5|x5−x in Z[x]. However Z satisfies some properties showing that in many nontrivial cases

the answer to that question is affirmative. In order to answer this question, we study some

divisibility properties in arbitrary unique factorization domains (UFD) : infinite primes

property (IPP), degree polynomial property (DPP), evaluation polynomial property (EPP)

and strong evaluation polynomial property (SEPP). These properties give useful tools to

understand divisibility in the ring Z[x] and in any ring of polynomials D[x]. Another

property that will be useful is the D-ring property. In Section 3 we study this property

in detail, we give many examples and we prove that in a UFD all these properties are

equivalent.

16



2. Basic definitions 17

2. Basic definitions

Definition 1.1. An integral domain D satisfies the infinite primes property (IPP) if

given g(x) ∈ D[x] with deg g(x) ≥ 1 the set

{p ∈ P : (∃k ∈ D)(g(k) 6= 0 and p|g(k)}

is infinite, where P is the set of primes in D.

It is clear that fields do not satisfy IPP (there are no primes in fields!). It also follows from

the definition that rings satisfying the IPP property must contain infinitely many primes.

Example 1.1. Let g(x) = (x− 3)(x+2) ∈ Z[x]. Note that g(3) = 0. Let p be a prime such

that p|g(p+3) = p(p+5). Note that Z has infinitely many primes satisfying this condition.

Then

{p ∈ P : (∃k ∈ Z)(g(k) 6= 0 and p|g(k)},

where P is the set of primes of Z, is infinite.

In general, this set is infinite for any g(x) ∈ Z[x] with a root over Z. See proof of Proposition

1.11 below.

Example 1.2. Let p be a prime in Z such that p ≡ 1 mod 4. It is well-known (see [4,

pg 151]) that we can find an integer k such that k2 + 1 ≡ 0 mod p. It is also well-known

that the number of primes p such that p ≡ 1 mod 4, is infinite (see [2]). Therefore, the set

{p ∈ P : (∃k ∈ Z)(g(k) 6= 0 and p|g(k)},

where g(x) = x2 + 1 and P is the set of primes of Z, is infinite.

Example 1.3. Take the polynomial g(x) = x2 − 2. The congruence x2 ≡ 2 mod p is

solvable if only if p ≡ 1 mod 8. It is well-know that the set of primes having the form

p ≡ 1 mod 8
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is infinite. Hence the set

{p ∈ P : (∃k ∈ Z)(g(k) 6= 0 and p|g(k)},

where g(x) = x2 − 2 and P is the set of primes of Z, is infinite.

We show that the ring of integers Z satisfies IPP .

Lemma 1.1. The ring of integers Z satisfies IPP .

Proof. Let f(x) ∈ Z[x] with deg f ≥ 1. Suppose to the contrary that p1, p2, . . . , pm

with p1 < p2 < . . . < pm are the only primes of Z which divide f(k) for any k ∈ Z such

that f(k) 6= 0. Let f(x) = anxn + . . .+a1x+a0 and suppose an > 0. Clearly, a0 6= 0. Then

we can pick l large enough so that pi
l - a0 = f(0) for i = 1, . . . ,m. Since an > 0, we can

pick k > l such that pm
ml+1 < f(p1

kp2
k · · · pm

k), but p1
kp2

k · · · pm
k is an integer, hence by

hypothesis

f(p1
kp2

k · · · pm
k) = p1

j1p2
j2 · · · pm

jm , (1)

for some j1, j2, . . . , jm ∈ Z+ ∪ {0}.

Note that p1
j1p2

j2 · · · pm
jm ≤ pm

j1+...+jm , so f(p1
kp2

k · · · pm
k) ≤ pm

j1+...+jm . Hence,

pm
ml+1 < pm

j1+j2+...+jm . Therefore ml+1 < j1+j2+. . .+jm and so for some i, l ≤ ji. Hence

by (1), we obtain pi
l|f(p1

kp2
k · · · pm

k) = an(p1
kp2

k · · · pm
k)n + . . .+a1(p1

kp2
k · · · pm

k)+a0,

therefore pi
l|a0. This is a contradiction. �

The following Corollary provides many principal ideal domains (PID) satisfying IPP .

Corollary 1.1. For each n ∈ N, the ring Z
[

1
n

]
satisfies IPP .

Proof. Let D = Z
[

1
n

]
. Let g(x) ∈ D[x] with deg g ≥ 1. There exists m ∈ Z such that

mg(x) ∈ Z[x], then by Lemma 1.1

{p ∈ P : (∃k ∈ Z)(mg(k) 6= 0 and p|mg(k)}

is infinite, where P is the set of primes of Z. Therefore
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{p ∈ P : (∃k ∈ Z)(g(k) 6= 0 and p|g(k)}

is infinite. Hence, if H = P − {p ∈ P : p|n} is the set of primes of D, we obtain that

{p ∈ H : (∃k ∈ D)(g(k) 6= 0 and p|g(k)}

is infinite. Therefore D satisfies IPP . �

The following result generalizes the previous Corollary.

Proposition 1.1. Let D be a UFD and K = Q(D) the quotient field of D. Suppose

D ⊆ S ⊆ K, where S is a domain, and suppose dS ⊆ D for some nonzero element d ∈ D.

Then D satisfies IPP if only if S satisfies IPP .

Proof. (⇒) Suppose that D satisfies IPP . Note that S ⊆ D
[

1
d

]
. Let g(x) ∈ S[x] with

deg g ≥ 1. Because D is a UFD, there exists m ∈ D with m 6= 0 such that mg(x) ∈ D[x].

Moreover, since D satisfies IPP the set

{p ∈ P : (∃k ∈ D)(mg(k) 6= 0 and p|mg(k)}

is infinite, where P is the set of primes of D. Therefore

{p ∈ P : (∃k ∈ D)(g(k) 6= 0 and p|g(k)}

is infinite. Note that if p is a prime such that p|d then p is a unit of D
[

1
d

]
. The primes of

D
[

1
d

]
are the primes p in D such that p - d. So, the likely primes in S are the primes p ∈ P

such that p - d. Hence, if P − {p ∈ P : p|n} ⊇ H, where H is the set of primes of S, we

obtain that

{p ∈ H : (∃k ∈ S)(g(k) 6= 0 and p|g(k)}

is infinite. Therefore S satisfies IPP .

(⇐) Suppose that S satisfies IPP . Let f(x) ∈ D[x] with deg f ≥ 1. Suppose on the

contrary that p1, . . . , pm are the only primes of D which divide f(k), for any k ∈ D such

that f(k) 6= 0. Define g(x) = f(dx). Note that g(x) ∈ S[x] and deg g ≥ 1. Let k ∈ S such
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that g(k) 6= 0. Then g(k) = f(dk) 6= 0. Also dS ⊆ D, so dk ∈ D. Let p be a prime in S

such that p|g(k). Then p = pi for some i = 1, . . . ,m because primes in S are also primes in

D. Therefore S does not satisfy IPP and this is a contradiction. �

Definition 1.2. A domain D satisfies degree polynomial property (DPP) if given

g(x), f(x) ∈ D[x] such that for all k ∈ D, (g(k) 6= 0 ⇒ g(k)|f(k)) implies f(x) = 0 or

deg f(x) ≥ deg g(x).

There is no field K that satisfies DPP . To see this, take f(x) = 1 and g(x) = x in K[x]. For

all k ∈ K such that g(k) 6= 0 we have that g(k)|f(k) but f(x) 6= 0 and deg f(x) < deg g(x).

Example 1.4. In Chapter 2, we will show that the ring Z[W ], where

W := {1/p : p is prime and p ≡ 1 mod 4 or p = 2},

does not satisfy DPP . Units in this ring are elements c
d with c ≡ 0 mod p and p ≡ 1

mod 4. Therefore, this ring is not a field.

Lemma 1.2. Let g(x), f(x) ∈ Z[x] such that (g(k) 6= 0 ⇒ g(k)|f(k)), for k ∈ Z arbitrarily

large, then f(x) = 0 or deg f(x) ≥ deg g(x).

Proof. Let g(x) = anxn+. . .+a1x+a0 and f(x) = bmxm+. . .+b1x+b0 be polynomials

in Z[x]. Without loss of generality suppose an, bm > 0. Suppose (g(k) 6= 0 ⇒ g(k)|f(k)), for

k ∈ Z arbitrarily large. If deg f(x) = m < n = deg g(x) then by elementary calculus we can

to find k ∈ Z large enough such that g(k) 6= 0 and ankn+. . .+a1k+a0 > bmkm+. . .+b1k+b0.

This is a contradiction. �

The following result is an immediate consequence of Lemma 1.2.

Corollary 1.2. The ring Z satisfies DPP .

Proposition 1.2. Let D be a domain. Given g(y), f(y) ∈ D[x][y] such that g(xt)|f(xt),

for t arbitrarily large, then f(y) = 0 or degy f(y) ≥ degy g(y).

Proof. Let g(y), f(y) ∈ D[x][y] and suppose g(xt)|f(xt) for t arbitrarily large. By

degy f(y) we mean the highest exponent of y in f(y). Suppose on the contrary that f(y) 6= 0
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and m = degy f(y) < degy g(y) = n. Let g(y) = an(x)yn + . . . + a1(x)y + a0(x) and f(y) =

bm(x)ym + . . . + b1(x)y + b0(x). By hypothesis, g(xt)|f(xt), for t arbitrary large, therefore

if h(x) = g(xt) = an(x)xtn + . . . + a1(x)xt + a0(x) and l(x) = f(xt) = bm(x)xtm + . . . +

b1(x)xt + b0(x) we have h(x)|l(x). Pick t large enough such that deg h(x) = deg(an(x)+ tn)

and deg l(x) = deg(bm(x) + tm), f(xt) 6= 0 and t > deg bm(x)−deg an(x)
n−m , so deg h(x) >

deg l(x). Since h(x)|l(x), we obtain l(x) = 0 or deg l(x) ≥ deg h(x). In any case, we have a

contradiction. Therefore f(y) = 0 or degy f(y) ≥ degy g(y). �

The next Corollary shows that a ring of polynomials over any domain always satisfies DPP .

Its proof follows from Proposition 1.2.

Corollary 1.3. Let D be an integral domain. The ring of polynomials D[x] satisfies DPP .

In particular Z[x] satisfies DPP and using that D[x][y] = D[x, y] one has that Z[x1, ..., xn]

satisfies DPP . Furthermore, we have that K[x1, . . . , xn] satisfies DPP for any field K.

Definition 1.3. Let D be a UFD. D satisfies evaluation polynomial property (EPP)

if given f(x), g(x) ∈ D[x] with g(x) primitive, deg g(x) ≥ 1 and for all k ∈ D, (g(k) 6= 0 ⇒

g(k)|f(k)), then g(x)|f(x) in D[x]. Of course, this is only true when D is infinite (otherwise

D is a field).

There is no infinite field K satisfying EPP . To see that, take f(x) = 1 and g(x) = x in

K[x]. For all k ∈ K such that g(k) 6= 0 we have that g(k)|f(k) but g(x) - f(x). Note for

example that for any k ∈ Z, 5|k5 − k in Z, but 5 - x5 − x in Z[x].

The following Proposition provides a characterization of the EPP property.

Proposition 1.3. Let D be a UFD. D satisfies EPP if only if given f(x), g(x) polynomials

in D[x] with g(x) irreducible, deg g(x) ≥ 1 and for all k ∈ D, (g(k) 6= 0 ⇒ g(k)|f(k)), then

g(x)|f(x) in D[x].

Proof. See [3, pg 30]. �

Now we will see that in a UFD, satisfying DPP is the same that satisfying EPP .

Proposition 1.4. Let D be a UFD. D satisfies DPP if only if D satisfies EPP
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Proof. Let D be a UFD that satisfies DPP . Let f(x), g(x) ∈ D[x] with g(x) primitive,

deg g(x) ≥ 1 and such that for all k ∈ D, (g(k) 6= 0 ⇒ g(k)|f(k)). Since D satisfies DPP ,

we obtain f(x) = 0 or deg f(x) ≥ g(x). If f(x) = 0, we are done. Let g(x) = anxn + . . . +

a1x + a0. By the usual Division Algorithm, we can find s ∈ D and q(x), r(x) ∈ D[x] such

that

as
nf(x) = g(x)q(x) + r(x) (2)

with deg r(x) < deg g(x). Since for all k ∈ D, (g(k) 6= 0 ⇒ g(k)|f(k)), then for all k ∈ D,

(g(k) 6= 0 ⇒ g(k)|r(k)). But D satisfies DPP , so r(x) = 0 or deg r(x) ≥ deg g(x). Hence

r(x) = 0, then by (2), g(x)|an
sf(x). Since g(x) is primitive and deg g(x) ≥ 1, we obtain by

Gauss’ Lemma that g(x)|f(x) . Therefore D satisfies EPP .

Conversely, suppose D satisfies EPP . Let f(x), g(x) ∈ D[x] such that for all k ∈ D,

(g(k) 6= 0 ⇒ g(k)|f(k)). If deg g(x) ≤ 0, the result is clear. Suppose deg g(x) ≥ 1. Then

g(x) = C(g(x))h(x) where C(g(x)) is the content of g(x) and h(x) is a primitive polynomial

in D[x] with deg h(x) = deg g(x). By hypothesis, for all k ∈ D, (h(k) 6= 0 ⇒ h(k)|f(k)).

Since D satisfies EPP , h(x)|f(x), then f(x) = 0 or deg f(x) ≥ deg h(x) = deg g(x). There-

fore, D satisfies DPP .

�

By Proposition 1.4 and Corollary 1.2, the proofs of the following Corollaries are immediate.

Corollary 1.4. The ring Z satisfies EPP .

Corollary 1.5. Let D be a UFD. D[x] satisfies EPP .

So, by Corollary 1.5, we have in particular that Z[x1, ..., xn] and K[x1, . . . , xn] for any field

K, satisfy EPP .

Definition 1.4. Let D be a UFD. D satisfies strong evaluation polynomial property

(SEPP ) if for each f(x), g(x) ∈ D[x] where g(x) is irreducible with deg g ≥ 1 there exists

Ig(x) ⊆ D infinite, such that if H is infinite and H ⊆ Ig(x), then for all k ∈ H, (g(k) 6= 0 ⇒

g(k)|f(k)), implies g(x)|f(x).
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Proposition 1.5. Suppose f(x), g(x) ∈ Z[x] with g(x) primitive, deg g(x) ≥ 1 and such

that (g(k) 6= 0 ⇒ g(k)|f(k)), for k ∈ Z arbitrary large, then g(x)|f(x) in Z[x].

Proof. Let f(x), g(x) ∈ Z[x] with g(x) primitive, deg g(x) ≥ 1 and such that (g(k) 6=

0 ⇒ g(k)|f(k)), for k ∈ Z arbitrary large. By Lemma 1.2 we obtain that f(x) = 0 or

deg f(x) ≥ deg g(x). If f(x) = 0, we are done. Suppose deg f(x) ≥ deg g(x) and let

g(x) = anxn + an−1x
n−1 + . . . + a0. By the usual Division Algorithm, we can find s ∈ Z

and q(x), r(x) ∈ Z[x] such that as
nf(x) = g(x)q(x) + r(x) with deg r(x) < deg g(x). Since

(g(k) 6= 0 ⇒ g(k)|f(k)) for k arbitrary large, then

(g(k) 6= 0 ⇒ g(k)|r(k)),

for k arbitrarily large. By Lemma 1.2, r(x) = 0 or deg r(x) ≥ deg g(x). Therefore r(x) = 0.

Then g(x)|as
nf(x), but g(x) is primitive and deg g(x) ≥ 1, so by Gauss’ Lemma g(x)|f(x).

�

Corollary 1.6. Z satisfies SEPP .

Proof. Let g(x) ∈ Z[x], irreducible with deg g(x) ≥ 1. Let Ig(x) = Z+. Then by

Proposition 1.5 we obtain the result. �

The following result provides examples of domains satisfying EPP .

Proposition 1.6. Let D be a domain. If D satisfies SEPP , then D satisfies EPP .

Proof. Suppose D satisfies SEPP . Let f(x), g(x) ∈ D[x], with g(x) primitive and

deg g(x) ≥ 1. Suppose that

for all k ∈ D, (g(k) 6= 0 ⇒ g(k)|f(k)). (3)
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Actually, by Proposition 1.3, we can assume that g(x) is irreducible. By hypothesis, there

exists Ig(x) ⊆ D infinite, such that

for each H ⊆ Ig(x) infinite, (4)

if for each k ∈ H, (g(k) 6= 0 ⇒ g(k)|f(k)), then g(x)|f(x). (5)

By (3) we have that for all k ∈ Ig(x), (g(k) 6= 0 ⇒ g(k)|f(k)). In particular, for H = Ig(x)

in (4), we obtain g(x)|f(x). Therefore D satisfies EPP . �

The following Proposition says that in a UFD, IPP implies SEPP . Its proof uses ultra-

products, which is a topic not related to the theory of this document.

Proposition 1.7. Let D be a UFD. If D satisfies IPP then D satisfies SEPP .

Proof. See [3, pg 36]. �

Proposition 1.8. Let D be a UFD with at least one prime and with finitely many units,

then D satisfies EPP .

Proof. See [3, pg 38] �

The converse of Proposition 1.8 is not true in general. The ring Z
[

1
n

]
satisfies EPP by

Proposition 1.1, Proposition 1.7 and Proposition 1.6. But it has an infinite number of units.

The units of Z
[

1
n

]
are the integers pj with p prime and such that p|n. However this ring

also satisfies DPP and SEPP .

3. D-rings

Definition 1.5. Let D be a domain and K = Q(D) its quotient field. D is a D-ring if

given f(x), g(x) ∈ D[x] such that, if for almost all k ∈ D (i.e. but a finite number of k ∈ D),

g(k)|f(k), then f(x)
g(x) ∈ K[x]

A field is never a D-ring. To see this, let K be a field. Take f(x) = x and g(x) = 1, for

almost all k ∈ D we have f(k)|g(k) in K but g(x)
f(x) 6∈ Q(K)[x] = K[x].
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As we will show later, the D-ring property is related with rational functions r(x) over D and

polynomials p(x) over K where K its the quotient field of D, such that r(D), p(D) ⊆ D.

Many interesting results follow from the D-ring property (see [9, pgs 61-66] and [5]). Our

main goal in this section is to show that the D-ring property is equivalent to some of the

divisibility properties studied in the previous section.

Lemma 1.3. Let f(x) and g(x) ∈ Z[x] such that, for almost all k ∈ Z, g(k)|f(k). Then
f(x)
g(x) ∈ Q[x], where Q is the field of rational numbers.

Proof. If g(x) is a constant-nonzero polynomial, we are done. Assume deg g(x) ≥ 1.

Let A = {k1, . . . , kn} such that for all k ∈ Z − A, g(k)|f(k). Let k1, . . . , ks ∈ A such that

g(ki) 6= 0 for i = 1, . . . , s and let β = g(k1) · · · g(ks). If s = 0, let β = 1. Then for all k ∈ Z

such that g(k) 6= 0, g(k)|βf(k). Since Z satisfies EPP we have that g(x)|βf(x) in Z[x].

Hence, there exists p(x) ∈ Z[x] such that βf(x) = p(x)g(x). So f(x)
g(x) = β−1p(x) ∈ Q[x]. �

By Lemma 1.3, we have the following Corollary.

Corollary 1.7. Z is a D-ring.

Note that by Corollary 1.7, given f(x) and g(x) polynomials with coefficients in Z such

that g(k)|f(k) implies the existence of a polynomial h(x) = f(x)
g(x) ∈ Q[x] with h (Z) ⊆ Z.

For example, for any prime p in Z we have that for any k ∈ Z, p|kp − k which implies that

xp−x
p ∈ Q[x].

Example 1.5. Consider the ring Z[W ], where

W := {1/p : p is prime and p ≡ 1 mod 4 or p = 2}.

We have already shown that this ring is not a field. In Chapter 2, we will show that Z[W ]

is not a D-ring either.

Definition 1.6. Let D be a domain. For any polynomial f(x) ∈ D[x] denote by S(f)

the set of all non-zero prime ideals P of D such that the congruence f(x) ≡ 0 mod P is

solvable in D. This is: there exists k ∈ D such that f(k) ∈ P. In particular, if c ∈ D, S(c)

is precisely the set of prime ideals of D that contain c.
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Proposition 1.9. Let D be a domain, K the quotient field of D and D× the set of units

of D . The following properties are equivalent:

(1) D is a D − ring.

(2) Every polynomial over D which satisfies f(k) ∈ D× for almost all k ∈ D must be

a constant.

(3) For any nonconstant polynomial f(x) ∈ D[x], the set S(f) is nonempty.

(4) For any nonconstant polynomial f(x) ∈ D[x] and any nonzero c ∈ D, the set

S(f)− S(c) is infinite.

Proof. (1) ⇒ (2) If f(k) ∈ D× for almost all k ∈ D, then for almost all k ∈ D, f(k)|1,

thus by (1) f(x)|1 in K[x] and so f(x) must be a constant.

(2) ⇒ (3) Let f be a non-constant polynomial in D[x]. If S(f) is empty, then for every

k ∈ D one has that f(k) 6∈ P for all prime ideal P of D. Then for every k ∈ D, f(k) is a

unit, otherwise by Lemma 0.1, f(k) is an element of some prime ideal P, contradicting our

hypothesis. So f(D) ⊆ D×, and this is a contradiction.

(3) ⇒ (4) Assume S(f) − S(c) to be finite, this is S(f) − S(c) = {P1, ...,Pn} where

P1, . . . ,Pn are prime ideals of D. Let m be a non-zero element in the ideal P1P2 · · ·Pn.

First consider the f(0) = 0 case. In this case for every k ∈ D one has that f(k) ∈ kD, thus

S(f) consists of all prime ideals of D and S(c) contains all but finitely many such ideals.

Since cm 6= 0 and lies in every prime ideal of D in particular cm lies in every maximal ideal

of D, this is cm ∈ J(D). By Lemma 0.1 the polynomial g(x) = 1 − cmx maps D in D×,

thus S(g) is empty, contradicting (3).

Now let f(0) = d 6= 0. Since all the coefficients of the polynomial f(cdx) are divisible by

d, we can write f(cdx) = dg(x) for a suitable polynomial g ∈ D[x]. Since g(0) = 1 and the

remaining coefficients of g(x) are all divisible by c, then for every k ∈ D we get g(k) ≡ 1

mod P for every prime ideal P ∈ S(c). This shows that S(g) and S(c) are disjoint. In view

of S(g) ⊆ S(f) we get

S(g) ⊆ S(f)− S(c)

and it suffices to show the infiniteness of S(g). If S(g) is finite, let b be a non-zero element

lying in the product of all members of S(g). Then the polynomial h(x) = g(bx) satisfies
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h(0) = 1 whereas all the other coefficients are divisible by b. Thus for all x ∈ D and all

prime ideals P ∈ S(g) we have h(x) ≡ 1 mod P. But S(h) ⊆ S(g), and so S(h) is empty,

contradicting (3).

(4) ⇒ (1). Assume that condition (4) holds and that for almost all k ∈ D, g(k)|f(k).

Without lost of generalization we may assume that the polynomials f and g are relatively

prime in K[x] and thus for suitable polynomials p, q ∈ D[x] and c ∈ D we can write

p(x)f(x) + q(x)g(x) = c.

This shows that for almost all k ∈ D, g(k)|c. Assume that g(x) is non-constant. If P is

a prime ideal belonging to S(g) − S(c), then for some k ∈ D we have g(k) ≡ 0 mod P.

Replacing, if necessary, k by a suitable element congruent to k′ mod P we may assume

that g(k′)|c, but then c, being a multiple of g(k′), would belong to P, it is a contradiction.

Hence g must be constant.

�

Proposition 1.9 gives a very useful tool to prove results about D-rings. The following

Corollary gives a characterization of the D-ring property for domains that are not fields,

its proof is an immediate consequence of Proposition 1.9.

Corollary 1.8. Let D be a ring that is not a field and D× be its set of units. D is not a

D-ring if only if there exists a nonconstant polynomial f(x) ∈ D[x] such that f(D) ⊆ D×.

The following result gives a relation between a D-ring and its Jacobson Radical.

Proposition 1.10. Let D be a ring that is not a field. If J(D) 6= (0) then D is not a

D-ring.

Proof. If J(D) 6= (0), then let c ∈ J(D) with c 6= 0. We have that the polynomial

f(x) = 1− cx satisfies f(D) ⊆ D×. By Corollary 1.8, D is not a D-ring. �

There is a relation between IPP and the D-ring property. The IPP talks about infinitely

many prime elements, while the D-ring property talks about infinitely many prime ideals. As

a result, in a PID it is trivial that IPP and the D-ring property are equivalent properties.
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Now, we show that any UFD satisfying the D-ring property, also satisfies IPP .

Proposition 1.11. Let D be a UFD. If D is a D-ring, then D satisfies IPP .

Proof. Let g(x) ∈ D[x] with deg g(x) ≥ 1. Suppose that there exists a ∈ D with

g(a) = 0. Then, there exists m ∈ D and h(x) ∈ D[x] such that mg(x) = (x− a)h(x). Let p

be a prime of D such that p - m and h(p + a) 6= 0. Note that D has infinitely many primes

satisfying this condition. Therefore mg(p + a) = ph(p + a), so p|mg(p + a). By our choice

of p, we have that p|g(p + a). Therefore the set

{p ∈ P : (∃k ∈ D)(g(k) 6= 0 and p|g(k)},

where P is the set of primes of D is infinite. So, D satisfies IPP .

Suppose that g(a) 6= 0 for all a ∈ D. Assume on the contrary that p1, . . . , pn are the only

primes of D which divide g(k) for any k ∈ D such that g(k) 6= 0. Let m = p1 · · · pn. Since

D is a D-ring the set S(g) − S(m) is not empty. Let P ∈ S(g) − S(m), then there exists

kP ∈ D such that g(kP) ∈ P and m 6∈ P. By our assumption

g(kP) = up1
m1p2

m2 · · · pn
mn ,

where u ∈ D× and mi is a non-negative integer for i = 1, . . . , n. Since g(kP) ∈ P, then

u ∈ P or there exists j ∈ {1, . . . , n} such that pj
mj ∈ P. If u ∈ P then P = D and this

contradicts that P is a prime ideal of D. If pj
mj ∈ P, then pj ∈ P, therefore m ∈ P, and

this is also a contradiction. Therefore D satisfies IPP . �

The converse of the previous result is also true, but we need some further results in order

to prove it. The following Proposition shows that domains that satisfies DPP are D-rings

and viceversa.

Proposition 1.12. Let D be a domain. D is a D-ring if only if D satisfies DPP .

Proof. (⇒) Let g(x), f(x) ∈ D[x] such that for all k ∈ D, (g(k) 6= 0 ⇒ g(k)|f(k)). So,

g(k)|f(k) for almost k ∈ D. Since D is a D-ring, then f(x)
g(x) ∈ K[x], where K is the quotient

field of D. Therefore, there exists p(x) ∈ K[x] such that f(x) = p(x)g(x). Suppose that
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f(x) 6= 0, so deg f(x) = deg(p(x)g(x)) = deg p(x) + deg g(x) ≥ deg g(x), then D satisfies

DPP .

(⇐) Let g(x), f(x) ∈ D[x] such that for almost all k ∈ D, g(k)|f(k). Let A = {k1, . . . , kn}

be a finite subset of D such that g(k)|f(k) for all k ∈ D − A. Let k1, . . . , ks ∈ A such

that g(ki) 6= 0 for i = 1, . . . , s and let β = g(k1) · · · g(ks). If s = 0, let β = 1. Then, for

all k ∈ D such that g(k) 6= 0 we obtain that g(k)|βf(k). Since D satisfies DPP , then

βf(x) = 0 or deg βf(x) ≥ deg g(x). If βf(x) = 0, then f(x) = 0, so f(x)
g(x) ∈ K[x]. Suppose

that deg βf(x) ≥ deg g(x) and assume g(x) = anxn + . . .+a0 with an 6= 0. By The Division

Algorithm, there exist q(x), r(x) ∈ K[x] and s ∈ D such that

as
nβf(x) = g(x)q(x) + r(x),

with r(x) = 0 or deg r(x) < deg g(x) and let α = as
nβ. Suppose that deg r(x) < deg g(x).

Then for all k ∈ D such that g(k) 6= 0 implies that g(k)|αf(k) and g(k)|g(k)q(k). So

g(k)|r(k). Hence, using again that D satisfies DPP then r(x) = 0 or deg r ≥ deg g. Hence

r(x) = 0 and we obtain that αf(x) = g(x)q(x). Therefore f(x)
g(x) = α−1q(x) ∈ K[x]. In other

words, D is a D-ring. �

The following Proposition shows that UFD′s satisfying EPP are D-rings and viceversa.

Proposition 1.13. Let D be a UFD. D is a D-ring if only if D satisfies EPP .

Proof. (⇒) Let f(x), g(x) ∈ D[x] with g primitive and deg(g) ≥ 1 such that for all

k ∈ D, g(k) 6= 0 ⇒ g(k)|f(k). It is obvious that for almost all k ∈ D, g(k)|f(k). Since D is

a D − ring we have that
f(x)
g(x)

= p(x) ∈ K[x],

where K = Q(D) is the quotient field of D. Let

p(x) =
rn

sn
xn +

rn−1

sn−1
xn−1 + . . . +

r1

s1
x +

r0

s0
,
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where ri, si ∈ D, with si 6= 0 for all i = 0, . . . , n. Let m = l.c.m.(sn, . . . , s0), therefore

mp(x) ∈ D[x]. Take h(x) = mp(x). Now, we have that

mf(x) = mp(x)g(x) = h(x)g(x),

with g(x) primitive. By Gauss’ Lemma, there exists q(x) ∈ D[x] such that h(x) = mq(x),

and so

mf(x) = mq(x)g(x).

Therefore we obtain that f(x) = q(x)g(x), with q(x) ∈ D[x]; this is g(x)|f(x) in D[x]. In

other words, D satisfies EPP .

(⇐) Let f(x), g(x) ∈ D[x] such that for almost all k ∈ D we have that g(k)|f(k). Let

A = {k1, . . . , kn} be a finite subset of D such that g(k)|f(k) for all k ∈ D − A. Let

k1, . . . , ks ∈ A such that g(ki) 6= 0 for i = 1, . . . , s and let β = g(k1) · · · g(ks). If s = 0, let

β = 1. Then for all k ∈ D such that g(k) 6= 0 we have g(k)|βf(k).

Let K = Q(D) be the quotient field of D. We can write g(x) = αh(x) where h(x) is

primitive in D[x] with deg h = deg g ≥ 1 and α is the content of g(x). Let k ∈ D such

that h(k) 6= 0. Therefore g(k) 6= 0 and g(k)|βf(k); but h(k)|g(k), so h(k)|βf(k). Since D

satisfies EPP we have that h(x)|βf(x) in D[x]. Hence, there exists p(x) ∈ D[x] such that

βf(x) = p(x)h(x) and so

αβf(x) = p(x)(αh(x)) = p(x)g(x),

therefore f(x) = (αβ)−1p(x)g(x) where (αβ)−1p(x) ∈ K[x]. This is g(x)|f(x) in K[x]. In

others words, D is a D -ring. �

Corollary 1.9. Let D be a UFD. Then, the ring D[x] is a D-ring.

Proof. Immediate from Proposition 1.13 and Corollary 1.5. �

Using the previous Corollary we have that the rings Z[x1, . . . , xn] and K[x1, ..., xn], where

K is a field, are D-rings. Note that by Corollary 1.9 and Proposition 1.10, we obtain that

for any domain D, J(D[x]) = {0}. Hence, for example, J(Z[x1, . . . , xn]) = {0}.
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The ring Z satisfies all of our divisibility properties as well as the ring D[x1, . . . , xn] for

any unique factorization domain D. The following Theorem says that in any UFD, IPP ,

DPP , EPP , SEPP and D-ring property are equivalent properties.

Theorem 1.1. Let D be a UFD. The following properties are equivalent:

(1) D is a D-ring.

(2) D satisfies IPP .

(3) D satisfies SEPP .

(4) D satisfies EPP .

(5) D satisfies DPP .

Proof. (1) ⇒ (2) from Proposition 1.11, (2) ⇒ (3) from Proposition 1.7, (3) ⇒ (4)

from Proposition 1.6, (4) ⇒ (5) from Proposition 1.4 and (5) ⇒ (1) from Proposition

1.12. �

We have closed the diagram given in the introduction. Therefore, we have the following

diagram where we resume the principal result of this work.

IPP DPP

D − ring

SEPP EPP
��

UFD

OO

��

UFD

ddJJJJJJJJ
UFD

zz

::tttttttt

dd

$$JJJJJJJJ
UFD

//

The following Corollary gives infinitely many PIDs that are D-rings. Its proof follows from

Proposition 1.1 and Theorem 1.1

Corollary 1.10. For all n ∈ N, Z[ 1
n ] is a D−ring.

By Theorem 1.1 and Corollary 1.9 we have that D[x] with D a domain, satisfies all of

IPP , DPP , EPP and SEPP . Furthermore, D[x] is also a D-ring. Therefore, we have

important examples of rings satisfying our divisibility properties, for example: Z[x1, . . . , xn],

Zp[x1, . . . , xn] where p is an integer prime and the ring R[x1, . . . , xn].
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Corollary 1.11. Let D be a UFD and K = Q(D) be the quotient field of D. Suppose

D ⊆ S ⊆ K, where S is a domain, and suppose dS ⊆ D for some nonzero element d ∈ D.

Then D is a D-ring (satisfies DPP , EPP or SEPP ) if only if S is a D-ring (satisfies

DPP , EPP or SEPP ).

Proof. Follows directly from Proposition 1.1 and Theorem 1.1. �

We will assume the following results. Proof of these two Propositions may be found in [5,

pg 299].

Proposition 1.14. Suppose D is a domain such that Z ⊆ D ⊆ Q. If D is a non-D-ring,

then so is every ring between D and Q. If D is a D-ring, then so is every ring between Z

and D.

Proposition 1.15. Among the subdomains of Q that are infinitely generated over Z, there

are infinitely many D-rings and infinitely many non-D-rings.

In the following example it is necessary to know some results from Algebraic Number Theory,

a topic far away from the theory in this document. However, the reader could find more

details in [5, pg 293].

Example 1.6. Let V be a set of rational primes p such that
∑

p∈V 1/p converges. Let U

be the set of all p−1 (p ∈ V ). Then S = Z[U ] is a D-ring.

Note that Z[U ] is a infinitely generated ring over Z contained in Q.

4. Infinitely many primes

Proposition 1.16. Let D be a UFD with at least one prime and finitely many units, then

D has infinitely many primes.

Proof. By Proposition 1.8, D satisfies EPP ; therefore D satisfies IPP . Then D has

infinitely many primes. �

We give now a direct proof of the previous Proposition. First we prove some Lemmas.
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Lemma 1.4. Let D be an infinite domain with a finite number of units, then D has an

infinite number of maximal ideals.

Proof. Suppose that D has a finite number of maximal ideals M1, ...,Mn. Then the

Jacobson Radical of D is J(D) =
⋂n

k=1 Mk. Because Mk 6= (0) for all k = 1, ..., n, then

there exists mk ∈ Mk with mk 6= 0 for each k = 1, ..., n. Therefore m = m1 · · ·mn ∈

M1 · · ·Mn ⊆ J(D) with m 6= 0, hence J(D) 6= (0). Let r ∈ J(D) with r 6= 0, then 1 − r is

a unit. Let U = {u1, ..., us} be the set of units of D, then r = 1 − ui for some i = 1, ..., s;

therefore J(D) is finite.

Let x ∈ J(D), since J(D) is finite then for all n ≥ 1, there exists k ≤ n such that xn = xk,

so xn−k = 1, therefore 1 ∈ J(D). Then we have that J(D) = D, so D is finite. This is a

contradiction, because D is infinite. �

Lemma 1.5. Let P1,P2, . . . ,Pn be prime ideals of a domain D and let A be an ideal of D

contained in
⋃n

i=1 Pi. Then A ⊆ Pi for some i with i = 1, . . . , n.

Proof. See [1, pg 8].

�

Now we will prove a stronger result than Proposition 1.16. Actually, we could say that the

following result is a generalization of Euclid’s Theorem about the infinitude of primes.

Proposition 1.17. Let D be an infinite UFD with a finite number of units, then D has

an infinite number of primes.

Proof. Suppose p1, p2, . . . , pn is the whole list of primes in D. Let D× be the mul-

tiplicative group of D; Γ = {〈p1〉 , . . . , 〈pn〉} and S be the set of all maximal ideals of D.

Since D is a UFD we have that

D = 〈p1〉 ∪ 〈p2〉 ∪ · · · ∪ 〈pn〉 ∪D×.

We claim that S ⊆ Γ. Let M ∈ S, then M ⊆ D. Hence M ⊆ 〈p1〉 ∪ 〈p2〉 ∪ · · · ∪ 〈pn〉, where

〈pi〉 is a prime ideal of D for i = 1, . . . , n. Then by Lemma 1.5, we have that M ⊆ 〈pi〉

for some i with i = 1, . . . , n. But M is a maximal ideal of D, so M = 〈pi〉 for some i with
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i = 1, . . . , n. Then M ∈ Γ. This proves that S ⊆ Γ. But Γ is a finite set and by Lemma

1.4, S should be infinite. This is a contradiction. Therefore D has an infinite number of

prime elements. �

It is clear that Proposition 1.16 is a direct consequence of Proposition 1.17.

Example 1.7. If M is a maximal ideal in a commutative ring D with identity and n is a

positive integer, then the ring D/Mn has a unique prime ideal and therefore is local. To

show this, take the ideal M/Mn in D/Mn. Let’s show that M/Mn is prime ideal. Let

(a + Mn)(b + Mn) ∈ M/Mn, then ab + Mn ∈ M/Mn. So ab ∈ M; since M is maximal,

therefore is prime. Then either a ∈ M or b ∈ M, so a + Mn ∈ M/Mn or b + Mn ∈ M/Mn.

This shows that M/Mn is a prime ideal of D/Mn. Suppose that A/Mn is another prime

ideal of D/Mn, then A is a prime ideal in D such that Mn ⊆ A. Therefore M ⊆ A, but

M is maximal, so M = A. This proves the uniqueness. By our discussion above, the ring

D = Z[x]/〈x, 2〉2 has a unique prime ideal 〈x, 2〉 /〈x, 2〉2. Therefore D has finitely many

prime elements. This shows that there exists infinite UFDs having finitely many prime

elements.

By Proposition 1.4 if a domain D is an infinite PID with a finite number of units, then D

has an infinite number of prime elements.

5. Two variables

The following result shows that one can generalize the divisibility properties to polynomials

in many variables. It is sufficient to show the two variables case. The case for any n ∈ N

results as consequence of the following Proposition.

Proposition 1.18. Let D be a domain. D satisfies DPP if only if given f, g ∈ D[x, y]

such that for all a, b ∈ D, (g(a, b) 6= 0 ⇒ g(a, b)|f(a, b)) then f(x, y) = 0 or degy g(x, y) ≤

degy f(x, y).

Note that we can replace degy by degx.

Proof. (⇐) Since D[x] ⊆ D[x, y] the result it is clear.

(⇒) Suppose that f(x, y) 6= 0 and degy g(x, y) > degy f(x, y). Let g(x, y) = cn(x)yn + · · ·+
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c1(x)y+c0(x) and f(x, y) = bm(x)ym+ · · ·+b1(x)y+b0(x) with cn(x), bm(x) 6= 0. Note that

we would have degy g(x, y) ≥ 1, because f(x, y) it is a non-zero constant or a non-constant

polynomial. Let a ∈ D such that cn(a), bm(a) 6= 0. Define h(y) = g(a, y) and l(y) = f(a, y).

Note that degy h(y) = degy g(x, y) and degy l(y) = degy f(x, y). Let b ∈ D such that

h(b) = g(a, b) 6= 0. By hypothesis, h(b) = g(a, b)|f(a, b) = l(b). Since D satisfies DPP

we have that l(y) = 0 or degy h(y) ≤ degy l(y). If l(y) = 0 then f(a, y) = 0, contradicting

that f(a, y) 6= 0. In the other case, if degy h(y) ≤ degy l(y) then degy g(x, y) ≤ degy f(x, y).

This is a contradiction. �

We have the following Corollary from Proposition 1.18.

Corollary 1.12. Let D be a domain. D satisfies DPP if only if given f, g ∈ D[x1, . . . , xn]

such that for all a1, . . . , an ∈ D,

g(a1, . . . , an) 6= 0 ⇒ g(a1, . . . , an)|f(a1, . . . , an).

Then f(x1, . . . , xn) = 0 or degxi
g(x1, . . . , xn) ≤ degxi

f(x1, . . . , xn) for all i = 1, . . . , n.

Corollary 1.13. Let D be a UFD. D satisfies EPP if only if given f, g ∈ D[x, y],

g(x, y) = g(x)(y) primitive with degy g(x, y) ≥ 1 such that for all a, b ∈ D, (g(a, b) 6= 0 ⇒

g(a, b)|f(a, b)) then g(x, y)|f(x, y).

Proof. (⇐) Since D[x] ⊆ D[x, y] the result it is clear.

(⇒) Suppose that D satisfies EPP . By Theorem 1.1, D satisfies DPP , then by Proposition

1.18 we have that f(x, y) = 0 or degy g(x, y) ≤ degy f(x, y). Let g(x, y) = cn(x)yn + · · · +

c1(x)y + c0(x). By the usual Division Algorithm, we can find s ∈ N and q(x, y), r(x, y) ∈

D[x, y] such that

cs
n(x)f(x, y) = g(x, y)q(x, y) + r(x, y), (6)

with degy r(x, y) < degy g(x, y). Since for all a, b ∈ D (g(a, b) 6= 0 ⇒ g(a, b)|f(a, b)), then

for all a, b ∈ D (g(a, b) 6= 0 ⇒ g(a, b)|r(a, b)). But D satisfies DPP ; using the Proposition

1.18 again, we have that r(x, y) = 0 or degy g(x, y) ≤ degy g(x, y). So r(x, y) = 0. By (6),

g(x, y)|cs
n(x)f(x, y). Since g(x, y) is primitive and degy g(x, y) ≥ 1, by Gauss’ Lemma we

obtain g(x, y)|f(x, y). �
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6. Int(D)

Definition 1.7. Let D be a domain and K be its quotient field. The set Int(D) to be the

ring of all polynomials p(x) in K[x], such that p(D) ⊆ D.

We have that D[x] ⊆ Int(D) ⊆ K[x].

For example: for any prime p, the polynomial f(x) = xp

p −
x
p ∈ Int(Z) because f(x) ∈ Q[x]

and f(Z) ⊆ Z.

Definition 1.8. Let D be a domain. The set S(D) is the ring the all rational functions of

D(x) such that, given r(x) ∈ S(D), for all k ∈ D with k ∈ dom(r(x)) implies that r(k) ∈ D.

For example, for n > 1, r(x) = 1−xn

1−x ∈ S(Z). In the next Chapter we will give nontrivial

examples of polynomials f(x) and g(x) with coefficients in Z such that for almost all k ∈ Z,

g(k)|f(k) implies g(x)|f(x).

We always have that Int(D) ⊆ S(D). But if K is a field S(K) 6⊆ Int(K), because

r(x) = 1
x ∈ S(K), but r(x) 6∈ Int(K).

We give an alternative characterization of the divisibility property EPP .

Proposition 1.19. Let D be a UFD. D satisfies EPP if and only if given f(x), g(x) ∈ D[x]

with deg g ≥ 1 such that f(x)
g(x) ∈ S(D) then g(x)|f(x) in D[x].

The following Proposition provides a characterization of D-rings.

Proposition 1.20. Let D be a domain. D is a D-ring if only if S(D) = Int(D).

Proof. See [9]. �

Note that by Proposition 1.20 and the fact that Z is a D-ring we have that for any polynomial

h(x) ∈ Q[x] with h(Z) ⊆ Z, there exist polynomials f(x), g(x) ∈ Z[x] such that h(x) = f(x)
g(x) .

Example 1.8. There are no localizations Z〈p〉 of Z with respect to a prime p being D-rings.

In fact, define r(x) = 1
1+px . Let α ∈ Z〈p〉, then α = a

b with a, b ∈ Z and b 6∈ 〈p〉. Then

r(α) = b
b+ap . It is clear that b + ap 6∈ 〈p〉, so r(α) ∈ Z〈p〉. Therefore r(x) ∈ S(Z〈p〉), but

r(x) 6∈ Int(Z〈p〉). Hence Z〈p〉 is not a D-ring.



CHAPTER 2

Examples

1. Introduction

In the first part of this chapter we will give nontrivial examples of polynomials with coeffi-

cients in Z such that for almost all k ∈ Z, g(k)|f(k) implies that g(x)|f(x) in Z[x]. In the

second part we will show a nontrivial ring generated over Z contained in Q that does not

satisfy the D-ring property. Finally, we will show that the ring Z[
√

d] satisfies DPP , for

every d ∈ Z.

2. The Pell’s equation

Consider the following equation:

x2 − dy2 = 1, (7)

where d is an integer that is not a square. This equation is called Pell’s equation. Lagrange

proved that Pell’s equation has an infinite number of integer solutions. Furthermore, it is

sufficient to find one solution in order to have all of its integer solutions (see [2, pg 320]).

We are interested in studying a particular case of Pell’s equation:

37
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x2 − (a2 − 1)y2 = 1, (8)

where a ∈ Z− {0,−1}.

In [8] and [10, pg 23] the reader may find a proof of the following explicit formula for

describing all solutions of (8). These are also known as Lucas’ sequences:

if |a| ≥ 2:

X0(a) = 1, X1(a) = a, Xn+1(a) = 2aXn(a)−Xn−1(a), (9)

Y0(a) = 0, Y1(a) = 1, Yn+1(a) = 2aYn(a)− Yn−1(a), (10)

if a = 1, define for all n ≥ 0:

Xn(1) = 1, (11)

Yn(1) = n. (12)

So, if |a| ≥ 2 we have:

n Xn(a) Yn(a)

0 1 0

1 a 1

2 2a2 − 1 2a

3 4a3 − 3a 4a2 − 1

4 8a4 − 8a2 + 1 8a3 − 4a

5 16a5 − 20a3 + 5a 16a4 − 12a2 + 1

6 32a6 − 48a4 + 18a2 − 1 32a5 − 32a3 + 6a

7 64a7 − 112a5 + 56a3 − 7a 64a6 − 80a4 + 24a2 − 1

8 128a8 − 256a6 + 160a4 − 32a2 + 1 128a7 − 192a5 + 80a3 − 8a

Note that Xn(a) and Yn(a) are polynomials in a of degree n and n− 1 respectively.
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Formula (9) provides an indispensable tool in order to prove the unsolubility of Hilbert’s

Tenth Problem. The following result is known as Julia Robinson’s special congruence.

Lemma 2.1.

Yn(a) ≡ n mod (a− 1), (13)

where a and Ya(n) are as above.

Proof. See [10, pg 26] or [8]. �

Example 2.1. By (13) we have that for almost all a ∈ Z, (a − 1)|(Yn(a) − n). Since Z

is a D-ring, then x − 1|Yn(x) − n. To have a particular example, take n = 5, so Y5(a) =

16a4−12a2 +1, by (13) we have that a−1|16a4−12a2−4, note that x−1|16x4−12x2−4.

The following result, proved by Julia Robinson, is useful to show that exponential relations

are Diophantine. See [8] or [10, pg 26].

Lemma 2.2 (J.Robinson). For all k ∈ N we have:

Xn(a)− (a− k)Yn(a) ≡ kn mod (2ak − k2 − 1). (14)

Example 2.2. Let k be a non-negative integer. By (14) we have that for almost all a ∈ Z,

2ak−k2−1|Xn(a)− (a−k)Yn(a)−kn, therefore 2xk−k2−1|Xn(x)− (x−k)Yn(x)−kn. In

particular, if n = 7 then X7(a) = 64a7−112a5+56a3−7a and Y7(a) = 64a6−80a4+24a2−1.

By (14) we have that

2ak − k2 − 1|64a7 − 112a5 + 56a3 − 7a− (a− k)64a6 − 80a4 + 24a2 − 1− k7

= −32a5 + 32a3 − 6a + 64a6k − 80a4k + 24a2k − k − k7

= (−1 + 2ak − k2)(6a− 32a3 + 32a5 + k − 12a2k

+ 16a4k − 4ak2 + 8a3k2 − k3 + 4a2k3 + 2ak4 + k5).

and note that

2xk − k2 − 1| − 32x5 + 32x3 − 6x + 64x6k − 80x4k + 24x2k − k − k7.
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The following Lemma (see [8] or [10, pg 30]) provides a relation between the polynomials

Xn(x) and Yn(x).

Lemma 2.3.

Y2n(a) ≡ 0 mod Xn(a). (15)

Example 2.3. By (15), for almost all a ∈ Z we have that Xn(a)|Y2n(a); and then

Xn(x)|Y2n(x).

If n = 2, note that for almost all a ∈ Z we have that 2a2− 1|8a3− 4a, and 2x2− 1|8x3− 4x.

The following Lemma provides more relations between Xn(x) and Yn(x).

Lemma 2.4. For i ≥ 1 we have that:

Y4ni±m(a) ≡ ±Ym(a) mod Xn(a), (16)

Y4ni+2n±m(a) ≡ ∓Ym(a) mod Xn(a). (17)

Proof. See [10, pg 30] or [8]. �

Example 2.4. Let i ≥ 1, by Lemma 2.4 for almost all a ∈ Z we have that Xn(a)|Y4ni±m(a)∓

Ym(a), therefore Xn(x)|Y4ni±m(x)∓ Ym(x).

3. The ring Z[W ]

We assume the following result from Elementary Number Theory.

Lemma 2.5. Let p be a prime integer and suppose that for some integer c relatively prime

to p we can find integers x and y such that x2 + y2 = cp. Then p can be written as the sum

of squares of two integers, that is, there exists integers a and b such that p = a2 + b2.

Proof. See [4, pg 152]. �

Theorem 2.1 (Fermat). An odd prime p can be written as x2 + y2 if only if p ≡ 1 mod 4.
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Proof. See [2, pg 253]. �

Example 2.5. Consider the following set

W = {1/p : p is prime and p ≡ 1 mod 4 or p = 2}.

We take the ring S = Z[W ] and the polynomial f(x) = x2 + 1, and we will show that

f(S) ⊆ S×. Let α = a
b ∈ S. where a, b ∈ Z and g.c.d.(a, b) = 1. Note that primes

that divide b are primes in W . Besides the units in S are elements c
d with c ≡ 0 mod p

and p ≡ 1 mod 4. We have that f(α) = a2+b2

b2
. Let p0 be a prime such that p0|a2 + b2,

then there exists c such that a2 + b2 = cp0. By Lemma 2.5, there exist d and e such that

p0 = d2 + e2. By Theorem 2.1, p0 ≡ 1 mod 4. Therefore f(α) ∈ S×, this is f(S) ⊆ S×.

Then, by Proposition 1.8, S is not a D-ring. Consequently, S does not satisfy IPP , DPP ,

EPP or SEPP .

Note that Z[W ] ⊆ Q is a infinitely generated ring over Z.

4. The ring Z[
√

d]

Let d be an integer and let Z[
√

d] be the subset of complex numbers such that, for every

z ∈ Z[
√

d], z = x +
√

dy with x, y ∈ Z. Let z, w ∈ Z[
√

d] and assume z = x +
√

dy and

w = u +
√

dv, we can define arithmetic operations over Z[
√

d] as follows:

z + w = (x + u) +
√

d(y + v),

zw = (xu + dyv) +
√

d(xv + uy).

It is easy to see that Z[
√

d] with these operations is a domain.

Example 2.6. If d = −1, the domain Z[
√

d] is the ring of Gaussian Integers Z[i]. If d = 2,

we obtain the domain Z[
√

2]. Note that Z[i] is an Euclidian Domain, therefore it is a UFD

with a finite number of units, it is also an infinite domain. By Proposition 1.17, it has an

infinite number a prime elements. The ring Z[
√

2] is not a UFD, because there exist prime

elements which are not irreducible elements. Moreover, this ring has an infinite number of

units. To see this, note that the equation x2 − 2y2 = 1 has an infinite number of solutions
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(x, y) because it is a Pell equation. Therefore, the units of Z[
√

d] are the element x +
√

dy

such that x2 − dy2 = 1. Note that x2 − dy2 = (x +
√

dy)(x−
√

dy).

This example motivates the following definition.

Definition 2.1. For all z = x +
√

dy ∈ Z[
√

d] we define the conjugate of z as the complex

number z = x−
√

dy.

Note that z = x +
√

dy ∈ Z[
√

d] is a unit if and only if zz = 1. This is: z is a unit in Z[
√

d]

if and only if (x, y) is solution of the Pell equation: x2 − dy2 = 1. Therefore, if d ≥ 2, the

domain Z[
√

d] has an infinite number of units. But it is not known in general whether or

not Z[
√

d] is a UFD.

The following Lemma shows some elementary properties about the conjugate number.

Lemma 2.6. Let z, w ∈ Z[
√

d]. Then:

(1) zz ∈ Z,

(2) z ∈ Z if only if z = z,

(3) zw = z · w and z + w = z + w,

(4) zw + zw ∈ Z.

Definition 2.2. Let f(x) = anxn+. . .+a1x+a0 with a0, a1, . . . , an ∈ Z[
√

d]. The conjugate

polynomial C(f) of f(x) is the polynomial C(f(x)) = anxn + . . . + a1x + a0.

Example 2.7. Let f(x) = (1− i)x2 + 3ix + 1 in Z[i][x], then C(f(x)) = (1 + i)x2− 3ix + 1.

Example 2.8. Let f(x) = (1 −
√

2)x2 − 5x + (4 − 3
√

2) in Z[
√

2][x], then C(f(x)) =

(1 +
√

2)x2 − 5x + (4 + 3
√

2).

In general, note that every polynomial f(x) ∈ Z[
√

d][x] can be written as f(x) = f1(x) +
√

df2(x), where f1(x), f2(x) ∈ Z[x]. Then C(f(x)) = f1(x) −
√

df2(x). We also have that

if z ∈ Z[
√

d], C(z) = z; and for every polynomial f(x) with integer coefficients, C(f(x)) =

f(x). Conversely, if C(f(x)) = f(x) then f(x) is a polynomial with integer coefficients.

The following Proposition shows some elementary properties about the conjugate polyno-

mial.
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Proposition 2.1. Let f(x), g(x) ∈ Z[
√

d][x] and b ∈ Z. Then:

(1) C(f(x) + g(x)) = C(f(x)) + C(g(x)),

(2) C(f(x)g(x)) = C(f(x))C(g(x)),

(3) C(f(b)) = f(b),

(4) f(x)C(f(x)) ∈ Z[x],

(5) f(x)C(g(x)) + g(x)C(f(x)) ∈ Z[x].

Definition 2.3. Let f(x) ∈ Z[
√

d][x], we define the polynomial norm of f(x) as the poly-

nomial N(f(x)) = f(x)C(f(x)). Note that degN(f(x)) = 2 deg(f(x)).

Example 2.9. Let f(x) = (1− i)x2 + 3ix + 1 in Z[i][x], then N(f(x)) = [(1− i)x2 + 3ix +

1][(1 + i)x2 − 3ix + 1] = 2x4 − 6x3 + 11x2 + 1. Let g(x) = (1−
√

2)x2 − 5x + (4− 3
√

2) in

Z[
√

2][x], then N(g(x)) = [(1 −
√

2)x2 − 5x + (4 − 3
√

2)][(1 +
√

2)x2 − 5x + (4 + 3
√

2)] =

−x4 − 10x3 + 21x2 − 40x− 2.

Note that in this last example, the polynomials N(f(x)) and N(g(x)) have integer coeffi-

cients. This motivates the following result.

Lemma 2.7. Let f(x) ∈ Z[
√

d][x]. Then:

(1) N(f(x)) = 0 if and only if f(x) = 0,

(2) N(f(x)) ∈ Z[x],

(3) N(f(x)g(x)) = N(f(x))N(g(x)),

(4) for every a ∈ Z, N(f(a)) = f(a)f(a).

Proof. Immediate from Lemma 2.1. �

It is already proved in [9] and [5] that the domain Z[
√

d] is a D-ring for every d ∈ Z. But

those proofs are a little complicated and hard to understand. Here, we use the results we

have obtained and the above discussion to give a more elementary proof that Z[
√

d] satisfies

DPP , hence Z[
√

d] is a D-ring for every d ∈ Z.

Proposition 2.2. For every d ∈ Z, the ring Z[
√

d] satisfies DPP . Therefore, Z[
√

d] is a

D-ring.
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Proof. Let f(x), g(x) ∈ Z[
√

d][x] be such that for all k ∈ Z[
√

d] (g(k) 6= 0 ⇒

g(k)|f(k)). Consider the polynomials with integer coefficients F (x) = N(f(x)) and G(x) =

N(g(x)). Choose b ∈ Z such that G(b) 6= 0; then g(b) 6= 0. By our choice of g(x) we have

that g(b)|f(b), and g(b)|f(b). By elementary divisibility properties, g(b)g(b)|f(b)f(b). This

implies that G(b)|F (b). We had proven that for every b ∈ Z, (G(b) 6= 0 ⇒ G(b)|F (b)). Since

Z satisfies DPP , deg G(x) ≤ deg F (x) or F (x) = 0. Hence deg g(x) ≤ deg f(x) or f(x) = 0.

In other words, Z[
√

d] satisfies DPP . �

Corollary 2.1. For every d ∈ Z, the ring Z
[

1+
√

d
2

]
satisfies DPP . Therefore Z

[
1+

√
d

2

]
is a D-ring.

Proof. Immediate from Proposition 2.2 and Corollary 1.11. �

Note that the argument used to prove that Z[
√

d] satisfies DPP is also useful to prove that

Z[
√

d1, . . . ,
√

dn] satisfies DPP . Therefore, we have the following Corollary.

Corollary 2.2. For every d1, . . . , dn ∈ Z, the ring Z[
√

d1, . . . ,
√

dn] satisfies DPP . There-

fore Z[
√

d1, . . . ,
√

dn] is a D-ring.
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Conclusions

• The divisibility properties, IPP , DPP , EPP , SEPP and being a D-ring are all

equivalent properties in any UFD.

• For every UFD D, the ring of polynomials D[x] satisfies IPP , DPP , EPP and

SEPP , therefore D[x] is a D-ring as well.

• Every infinite UFD with finitely many units has an infinite number of prime

elements.

• For every d ∈ Z, the domain Z[
√

d] satisfies DPP . Therefore, Z[
√

d] is a D-ring.
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CHAPTER 4

Future Work

The domain of Gaussian Integers Z[i] is related with the set of primes p, such that p is a

sum of squares. Actually, it is proven that this set of primes is infinite. However, there

exists a correspondence between these primes and the prime ideals of Z[i]. Since Z[i] is a

D-ring, it has infinitely number of prime ideals. But this domain is a UFD with finitely

many units. Therefore, it has an infinite number of prime elements and the infinitude of

the set of primes that are sums of squares can be easily proven.

Like above, there are many questions about the infinitude of set of primes and the ring of

integers over an algebraic field. We had given some results about the domains Z[
√

d] and

Z
[

1+
√

d
2

]
where d ∈ Z. We already know that these domains have an infinite number of

prime ideals. The question is: Does there exist a set of primes related with each of these

domains? In case of an affirmative answer, can we prove the infinitude of such sets of primes

using that correspondence?

With more advanced theory like Algebraic Number Theory we could be able to answer that

question. In fact, some results, presented without proof in this work, are related with that

topic. Therefore, this work could continue as part of a dissertation.
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[3] L.F. Cáceres. Ultraproducts of sets and ideal theories of commutative rings. PhD thesis, University of

Iowa - Iowa City, 1998.

[4] I.N. Herstein. Topics in Algebra-second edition. John Wiley and Sons, 1975.

[5] G. Hiroshi and D.L. McQuillan. On rings with a certain divisibility property. Michigan Math. J., 22:289–

299, 1975.

[6] T.W. Hungerford. Algebra. Springer-Verlag, 1974.

[7] I. Kaplanski. Commutative Rings. Polygonal Publishing House, 1970-1974.

[8] Y.V. Matiyasevich and J.P. Jones. Proof of recursive unsolvability of Hilbert’s Tenth Problem. The

American Mathematical Monthly, 8:689–709, 1991.

[9] W. Narkiewicz. Polynomial Mappings. Springer, 1995.
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