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Power consumption is an important constraint in the design of battery-operated

embedded systems. Minimizing power dissipation may be handled in terms of hard-

ware or software optimizations. Source code-level optimization techniques have been

used as an alternative to achieve low power consumption when programming em-

bedded systems, however these techniques should be analyzed with statistical sound

methods in order to reach strong conclusions about their actual impact on the power

consumption. In this work, source code optimizations are applied on a set of repre-

sentative benchmarks for embedded processors (MiBench), to analyze whether the

techniques have or not an effect on the power dissipation of a set of microprocessor-

based platforms. Design of experiments techniques (DOE) and analysis of variance

(ANOVA) are used to achieve statistical sound conclusions. Results showed that not

all optimizations have an effect on power consumption, moreover some techniques

depend on the target platform where they are run.
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OPTIMIZACIÓN DE CÓDIGO PARA BAJO CONSUMO DE
POTENCIA DE SISTEMAS BASADOS EN MICROPROCESADORES

Por

David Andrés Ortiz López
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El consumo de potencia es un factor de gran importancia en sistemas electrónicos

basados en microprocesadores. Este problema puede ser resuelto con optimizaciones

en términos de hardware y software. Diversas técnicas de optimización de software

han sido utilizadas como alternativa para lograr obtener bajo consumo de potencia

al diseñar este tipo de sistemas electrónicos, sin embargo estas técnicas deben ser

analizadas con métodos estad́ısticos para obtener conclusiones sólidas sobre su efecto

real. En este trabajo, tres técnicas de optimización aplicadas en lenguage de alto

nivel son implementadas en un conjunto de benchmarks (MiBench) que represen-

tan aplicaciones t́ıpicas de sistemas basados en microprocesadores, con el objetivo

de analizar si las técnicas de optimizatión tienen o no efecto en el consumo de po-

tencia de distintas plataformas. Para realizar este análisis, métodos de diseño de

experimentos (DOE) y análisis de varianza (ANOVA) fueron usados para obtener

conclusiones basadas en hechos estad́ısticos. Los resultados mostraron que no todas

las optimizaciones tienen efecto en el consumo de potencia, además algunas técnicas

dependen de la plataforma en la cual son ejecutadas.
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CHAPTER 1

INTRODUCTION

Power consumption is one of the main design constraints for devices in embed-

ded systems, such as wireless sensors, computer systems, and biomedical devices.

The main reasons for analyzing power consumption in these systems is due to limited

battery life time, heat dissipation, size constraints, and costs [4, 5]. The power dis-

sipated in embedded systems can be reduced with multiple hardware optimization

techniques, such as transistor resizing, low-voltage design techniques and frequency

control methods [6]. There is a considerable amount of work done in hardware power

optimization, however these techniques are only applied in early design steps [7, 8],

such as VLSI design and synthesis.

Embedded software transformations are another way to reduce power consump-

tion, since software is responsible for driving the circuits and components of the

system. In terms of software optimization techniques, power dissipation can be re-

duced with compiler, instruction-level, and source code-level optimization methods.

Most of the work done to reduce power consumption has been oriented to compilers

optimization [9, 10], where several techniques have been created and incorporated

into compilers [11, 12].

Source code and instruction-level optimizations appear as an alternative in low

power consumption analysis [13–15]. Although instruction-level optimizations give

excellent results with respect to low power consumption, source code optimizations

have advantages in terms of portability, readability, and maintenance [16, 17]. Some
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studies done in embedded software optimization have shown that source code opti-

mization techniques tend to diminish power consumption [18, 19].

In this research, we investigated the impact of source code-level optimizations

on the power consumption of different embedded platforms. We have selected a set

of benchmarks to perform our study, and design of experiments (DOE) methods

were used to track causes and effects of the power consumption of the system. We

have shown that some source code-level optimizations have effect on the power con-

sumption of embedded systems, however it is important to base the evaluation of

the effects on statistical methods in order to attain robust conclusions. This doc-

ument is organized as follows. In section 2, related work of software optimization

techniques for embedded processors is discussed. Section 3 illustrates the methodol-

ogy implemented. Section 4 shows the results obtained and the analysis performed.

Finally, conclusions are presented.



CHAPTER 2

PREVIOUS WORK

The power consumed by a digital CMOS technology-based system can be con-

sidered as static or dynamic. Static power consumption is caused by leakage currents

that appear when transistors are in cut-off or triode mode. Although the voltage

at the gate of the transistor is lower than the threshold voltage, there is still cur-

rent flow through the transistor from drain to source (subthreshold). Equation 2.1

describes static power consumption [9].

Pstatic = Vsupply · Ileak (2.1)

where Pstatic is the static power dissipated by the system, Vsupply is the supply

voltage, and Ileak is the leakage current.

Dynamic power is caused by changing states when transistors switch operational

modes. In that transition state, there is a period of time where the gate voltage VG

is greater or equal to the threshold voltage Vth, producing dynamic transient current

through the circuit. Equation 2.2 describes dynamic power [9].

Pdynamic = αCV 2f (2.2)

where Pdynamic is the dynamic power, α is an activity factor related to the

number of switching transitions that occur in an integrated circuit, C is the transistor

capacitance, V is the supply voltage, and f is the switching frequency.

3
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There are various ways to reduce static and dynamic power, such as lowering

supply voltage, transistors resizing, cooling methods, and reduction of threshold

voltage levels [7, 9], among others. Most power optimization techniques for embed-

ded systems may be classified into hardware and software methods.

From a designer’s perspective, an embedded system is composed of the code

and associate hardware. Figure 2–1 shows the system components and the places

where power optimization techniques can be applied. We are particularly interested

in techniques applied at the highest level of abstraction.

Figure 2–1: Embedded System Components
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2.1 Hardware Optimization

Venkatachalam and Franz [9] described optimization techniques to lower power

consumption at different hierarchies. At the circuit and logic level, transistor sizes,

gates arrangements, clocks, and supply voltages were analyzed. At the interconnec-

tion level, some techniques as bus encoding, crosstalk, low swing buses, bus segmen-

tation, and adiabatic buses were considered. In this survey, memory level was stated

as one of the main sources of power consumption. Some ways to reduce memory

effects on the power system are memory splitting and cache hierarchy structures,

among others. At the architecture level, operation modes have been developed as

a way to control power consumption when certain parts of the embedded processor

are not active.

Other hardware-oriented techniques named dynamic voltage scaling (DVS) and

dynamic power management (DPM) were discussed by [6, 8, 20]. In DVS, compu-

tation tasks run at different voltages and frequencies, while in DPM, system parts

which are not in use are shut off in order to save energy. Jha [8] investigated a

set of DVS and DPM scheduling techniques, and concluded that these techniques

gave better results when used together. Hong et al. [6] studied dynamically variable

voltage hardware techniques, where scheduling methods handle the voltage of the

system as a variable. Zuquim et al. [20] investigated dynamic power management

(DPM) techniques in applications with real-time constraints.

2.2 Software Optimization

The consumption of power due to the software running on the microprocessor,

can be modified by compiler, instruction, or source code-level optimizations. All

of these have advantages and disadvantages depending on the target processor and

architecture.
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2.2.1 Compiler Optimizations

Compilers optimization were investigated in [10–12, 16, 21] for affecting both

performance and power consumption. In terms of performance, Leupers [16] inves-

tigated the necessity of generating efficient assembly code, since many compilers are

inefficient in terms of code quality, size, and performance. Also, architectural issues

of embedded processors are not considered in many cases. The authors generated a

survey of methods and techniques for code generation of embedded processors.

For power optimizations, Esakkimuthu et al. [21] made a comparison between

hardware and software optimizations analyzing cache optimization mechanisms and

compiler optimization techniques to lower power consumption. The results they ob-

tained showed that compilers gave better results than cache optimizations in terms

of energy savings. The authors concluded that compilers aid to lower power con-

sumption, achieving good results compared with hardware optimizations.

Zambreno et al. [10] studied power consumption on portable devices. In this

work an analysis of the effect of compiler optimizations on the memory energy was

done. By their experiments they concluded that the best optimization approach

may not give the best results in terms of power. Also, they observed that func-

tion inlining increased the power consumption of the system when applied, unlike

loop unrolling, which showed decrease in energy. Ravindran et al. [11] proposed an

approach for compiler-directed dynamic placement of instructions into a low-power

code cache. Ravindran showed that when applying dynamic placement techniques,

energy savings may be achieved on the WIMS microcontroller platform.

2.2.2 Instruction-Level Optimizations

Instruction-level optimizations can alter power consumption in embedded sys-

tems. These techniques have been studied in [5, 14, 22–25].
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The first works in the area of power consumption at instruction-level were the

studies done by Tiwari et al. [22–24] and Lee [25]. In their work, an instruction-level

power model was developed in order to measure the power consumption of a micro-

processor. Tiwari et al. [22, 24] performed a measurement-based instruction-level

power analysis. Some energy optimizations presented were reduction of memory

accesses, energy cost driven code generation, and instruction reordering. In [23],

the authors made a power consumption analysis of a 32-bit microcontroller. The

measurement-based instruction-level power analysis technique proposed by the au-

thors in other studies is used in this work to evaluate the software power behavior

of a RISC embedded processor. As conclusions of this work, the authors argued

that the power model developed may be applied to any type of processor, providing

important information of the power consumption of the system. Also, some sugges-

tions on how to design efficient software in terms of low power were proposed. Lee et

al. [25] developed a power analysis technique for a digital signal processor. The tech-

nique proposed was an instruction-level power model. The results obtained in their

experiments showed important energy reductions using the proposed methodology.

Another significant study in this area is the work of Russell and Jacome [5].

Their work is focused on a statistical analysis to know if a parameter can model

power consumption. In their work, they performed an instruction-level energy es-

timation model for embedded processors. They demonstrated the accuracy of such

model, the linear dependency of power consumption and frequency in embedded

systems, and the need for designers to minimize software execution for low power

consumption benefits.

A final study that is important to mention is the work done by Oliver et al. [14].

Here, the authors analyzed some factors at the instruction-level that have effect on

power consumption, such as cycles, branches, and instruction reordering, among

others. With their experiments, they demonstrated that software optimization at
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instruction-level is a good approach to minimize energy dissipation in embedded

processors.

2.2.3 Source Code-Level Optimizations

Source code-level optimizations for execution time have been studied extensively

by [15, 26–32]. Moreover programming style may have an effect on the power

consumption of embedded systems. These optimizations were analyzed by [4, 13, 17–

19, 32–40].

There are important works in terms of source code-level optimization for per-

formance. Leupers [27], Sharma [17] and Aho et al. [28] classified optimizations as

machine-independent and machine-dependent. Machine-independent optimizations

are implemented at the source code and compiler-level, and they do not take into

consideration the target platform. On the other hand, machine-dependent optimiza-

tions are implemented at the compiler-level, and are based on a specific processor

architecture. Leupers subdivided machine-independent optimizations in four groups

known as standard, address code, loops, and function inlining optimizations. Stan-

dard optimizations, and address code transformations are applied at the compiler-

level, while loop transformations and function inlining, may be applied at the source

code-level.

Kraeling [32] proposed different ways to optimize C source code. The topics

that the author highlighted in this work were the importance of selecting an appro-

priate compiler for a target application, the analysis of fixed-point vs. floating-point

operations on embedded processors, and different ways to conserve stack and mem-

ory resources. Since most of microprocessors do not have floating-point support,

C compilers implement floating point operations by predefined support libraries,

allowing faster execution.
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Gupta et al. [29] proposed the evaluation of two address code transformation

techniques named scope operation cost minimization complemented and non-linear

operator strength reduction. Applying these optimizations they could achieve im-

provements in terms of performance. Bacon at al. [30] made a survey of important

loop transformation techniques for C and Fortran. The authors described the goals

achieved with each optimization, how to implement them, and some illustrative

examples. Leupers and Marwedel [26] presented a methodology to implement op-

timum function inlining in embedded processors under code size constraints. They

showed performance improvements with a low increment of the code size and also

suggested that source code optimizations as function inlining should be considered

when designing software for embedded processors.

In terms source code optimization for power reduction, Simunic et al. [18, 19]

classified code optimization techniques in algorithmic, data, and instruction-flow op-

timizations. Algorithmic optimizations are in the highest stage of the optimization

methodology proposed by the authors. In this type of optimizations, a profile of the

source code is done in order to know what are the critical procedures, where most

time and power is spent. After that, some algorithms are replaced by others with

the same functionality, but with more efficient features in terms of time execution,

and computation load. Data optimization is at a lower level layer in the optimiza-

tion process. In this case, the data processed by the algorithms is related directly

with some features of the target platform. Instruction-flow optimizations are in

the lowest level of the optimization stages described by the authors. In this phase,

the goal is to take advantage of specific instructions that exploit the features of

the target processor. In this representation, algorithmic optimizations are machine-

independent, while data and instruction-flow optimizations are machine-dependent.

Also, the authors studied software optimizations and made simulations in order to

analyze the power consumption of the SmartBadge ARM-based embedded system.
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The tests done by the authors showed that source code optimizations reached better

results than compiler optimizations in terms of energy savings. In [19], the authors

presented a source code optimization methodology and a profiling tool as a way to

optimize for performance and energy. As conclusions of these studies, the authors

demonstrated that compiler optimizations are not sufficient for achieving low power

consumption.

Weidong et al. [34] proposed a technique to optimize embedded software for

performance and power through input space adaptive software synthesis and claimed

60% of power reduction in their experiments. Marculescu [37] studied the importance

of tools to quantify the effect of performance and power optimizations for embedded

software and proposed a technique that selects an optimal number of instructions to

be fetched and executed in parallel by the processor to reduce energy consumption.

Dalal et al. [13] studied source code-level optimizations in terms of power con-

sumption, analyzing optimum ways to program target applications. The software

power components cited by the authors were arithmetic and logic circuits, address

and data busses, and memories. One interesting conclusion is that source code op-

timization techniques should not be used simultaneously, because the improvements

on the power consumption may not be significant. Sharma and Ravikumar [17]

presented an efficient implementation of the ADPCM codec. In order to obtain

more efficient code, optimization techniques were applied at the source code-level

and compilation process. The authors made a classification of embedded software

optimizations in two groups, structural transformations and machine-dependent op-

timizations. Chatzigeorgiou et al. [4] studied the impact of different software ap-

proaches on the power consumption of embedded processors. Since most of the

microprocessors manufactured are used in embedded applications, power consump-

tion becomes a problem to solve, because of battery life-time, weight, and heat
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dissipation. Some examples of software decisions that may be applied are the uti-

lization of fewer instructions, loop transformations, and functions calling methods.

As conclusions, the authors proved that software design decisions may have effect

on the power consumption.

Zotos et al. [33] explained the main sources of power consumption on processor-

based systems, and the impact that source code optimization techniques have on

processor and memory power. Dongkun et al. [35] proposed an energy monitoring

tool with accurate and fast analysis. The tool studied was the SES (Seoul National

University Energy Scanner). This takes power consumption data and then assigns

it to certain high and low-level language code. With the utilization of this tool, the

authors verified the development and simplification of low power embedded soft-

ware. Peymandoust et al. [36] studied the quality of compiled code for embedded

systems. They proposed a methodology based on symbolic manipulation of polyno-

mials and energy profiling, thus reducing manual intervention on the optimization

process. The methodology proposed automates the process of identifying code sec-

tions which may be benefited by algebraic optimizations, and then optimization is

done using symbolic techniques. Chung et al. [39] presented a model for source code

transformations in order to reduce energy cost in embedded software applications.

The authors analyzed some low power techniques proposed in literature. As results

of this work, the energy consumption of the embedded system was reduced applying

the methodology proposed. Choi and Lee [40] studied power consumption on the im-

plementation of G.723.1A/G.729AB on a RISC processor for personal IP telephony

devices. The software optimization process had two phases, general techniques and

specific approaches. In this implementation, the authors used different source code

optimizations and fast algorithms to achieve low power consumption.
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2.3 Benchmarking

Lilja [41] defined a benchmark as a program used as reference to make compar-

isons about the performance of a system. Benchmarks represent real applications

which are run on computing systems. Although the concept of benchmarking is

widely used in the area of computing systems performance, it can also be used

when measuring other metrics such as power consumption. A benchmark has three

important features:

1. Benchmark programs are easy to use.

2. Small size.

3. May run on different platforms.

Benchmarking of embedded processors is described in [42]. In this work, Guthaus

et al. made a study of different benchmarks proposed in literature, such as Dhry-

stone, Linpack, Whetstone, CPU2, Mediabench, and SPEC2000, among others to

evaluate performance of embedded systems. Since most processors are employed in

embedded applications, and current embedded systems benchmarks are not reach-

able to academics, the authors proposed a set of benchmarks designed to measure

performance in embedded systems named MiBench. These benchmarks were divided

in six groups that represent embedded systems market:

• Automotive

• Consumers

• Office

• Networking

• Security

• Telecommunications
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These benchmarks were written in high-level language, making them portable

to any platform. MiBench showed different features with respect to SPEC2000, how-

ever they are suitable for evaluating performance in embedded systems platforms.



CHAPTER 3

OBJECTIVES AND METHODOLOGY

Our methodology is based in our belief that given a computing system consisting

of the software driving a hardware-based embedded system, a transformation can

be applied to the software such that power consumption of the embedded system

may be affected. We claim that unless statistically sound methods to study cause

and effect of these transformations are used, conclusions about whether they are

effective on power consumption might not be reached.

This chapter explains the objectives, methodology, and tools employed in this

research. Also, theoretical concepts of design of experiments (DOE) techniques, and

source code optimization methods are presented.

3.1 Research Objectives

The main objective of this thesis is the analysis of the impact of machine-

independent source code optimization techniques on the power consumption of an

embedded system, when executing a target benchmark. In order to accomplish this

goal, some specific objectives have to be achieved.

• Develop an analysis methodology of embedded software power consumption.

• Measure, and record current values (I) on the microprocessor-based system

due to the code running on the embedded platform.

• Examine different source code-level optimization techniques and evaluate their

impact in terms of the power consumption of the embedded system.

14
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Three types of machine-independent optimizations are described and a statis-

tical analysis is presented.

3.2 Methodology

Power consumption in embedded systems is an important topic of research,

because most electronic devices present restrictions in terms of short battery life-

time. Since a lot of such devices are composed of embedded processors as core of

their systems, power is diminished on the processor with hardware and software

optimization techniques [9].

The methodology followed in this thesis was divided as follows. First, a selec-

tion of three target platforms for studying the impact of source code optimizations

on different architectures was done. The platforms chosen for this study were an

Intel 8051, a Motorola HC12, and an ARM7TDMI. Then, a set of benchmarks for

embedded processors named MiBench [42] was chosen. These benchmarks represent

six groups of the market and applications of embedded systems. The groups repre-

sented are automotive, telecommunications, office, networking, and security. After

that, a profiling of the benchmarks selected was done, in order to know the critical

code structures where the highest percentage of time was spent. This allowed us to

identify which transformations can be applied to the existing code. Next, several

code transformation techniques were selected for simple screening experimentation

where a general sense of which techniques had an effect on the power consumption

was developed. In our case, a set of loop-oriented optimization techniques designed

for improving performance were analyzed in terms of the power dissipation of an In-

tel 8051 microprocessor-based platform [43]. Three groups of machine-independent

source code optimization were chosen [17–19, 26], in order to analyze their impact

on the power consumption of the embedded system. Since the analog peripherals of

these platforms were not affected by this study, their contribution in terms of power
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dissipation did not altere the analysis performed. Finally, instrumentation of the

target platforms was done, and design of experiment techniques (DOE) [44] were

used in order to perform a statistical analysis.

3.2.1 Target Platforms

To perform the analysis of power consumption on microprocessor-based sys-

tems, three representative embedded processors were chosen. Some features of the

selected platforms are described in this chapter.

Intel R© 8051

The Intel 8051 is an 8-bit CISC core developed for embedded devices. A special

feature of the Intel 8051 is a boolean module that allows to perform logic opera-

tions. In terms of memory, the microcontroller has 128K of ROM, and 8K RAM

memory. In terms of peripherals, the Intel 8051 is equipped with two UARTs, one

SPI, a 12-bit and an 8-bit ADC with 8 channels each, two 12-bit DACs, two analog

comparators, and five 16-bit timers, among additional features. Figure 3–1 shows

the block diagram of the Intel 8051 platform.
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Figure 3–1: Intel 8051 Block Diagram. (Figure courtesy of Silicon Laboratories [1])
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MotorolaTM HC12

The Motorola HC12 is a 16-bit CISC core for high performance embedded

applications. This processor presents features of low power consumption, cost, and

code-size effectiveness. The platform has 512K of ROM and 20K of RAM memory.

The HC12 microcontroller has three SPIs, a 10-bit ADC with eight channels, and

four independent timers, among other characteristics. Figure 3–2 presents the block

diagram of the Motorola HC12 platform.



19

Figure 3–2: Motorola HC12 Block Diagram. (Figure courtesy of Freescale Semicon-
ductor [2])



20

ARM R© ARM7TDMI

The ARM7TDMI is a 32-bit RISC core for high performance purposes. This

unit includes characteristics of high speed operation, high throughput, code effi-

ciency, and low costs. This processor has 1M of ROM and 64K of RAM memory. In

terms of peripherals, the ARM7TDMI has two SPIs, a 10-bit ADC with 12 channels,

a timer with 12 programmable channels, three SCI for serial communication, among

others. Figure 3–3 illustrates the block diagram of the ARM7TDMI.
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Figure 3–3: ARM7TDMI Block Diagram. (Figure courtesy of Texas Instruments [3])
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3.2.2 Benchmarks

In order to analyze the power consumption of the three platforms selected,

a set of representative benchmarks for embedded processors applications were se-

lected. Guthaus et al. [42] developed a group of benchmarks named MiBench, with

the purpose of measuring performance on embedded processors. Since most of tradi-

tional benchmarks are designed to make performance analysis on desktop computers,

MiBench appears as an alternative to measure performance and other metrics on

microprocessor-based systems. Another reason to chose MiBench to perform our

power consumption analysis was their availability to academics, allowing the re-

search community to apply them in different studies of embedded software.

Mibench is composed of 35 applications, divided in six groups that represent

commercial applications of embedded systems, such as automotive, consumer, office,

network, security, and telecommunications. Since these benchmarks were written in

C language, they have features of portability and readability, making them adapt-

able to any embedded platform. A brief description of each one of the six groups of

MiBench follows.

Automotive

The automotive benchmarks have the purpose of showing the different uses of

embedded systems in industrial and control applications. This group is composed

of four programs named basicmath, bitcount, qsort, and susan. Following is a brief

description of each program.

• Basicmath makes mathematical computations that are common in automation,

such as the cubic function, integer square root, and angle conversions, among

others.

• Bitcount counts an array of bits, allowing to test the bit handling features of

the embedded processor.
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• Qsort arranges an array of strings using the quick sort algorithm.

• Susan is an image recognition software used for shapes recognition in brain

images.

Consumer

The consumer benchmarks characterize a variety of applications based on em-

bedded systems, such as cameras and PDAs, among others. In this group there are

programs commonly used in consumer devices, such as JPEG, lame, mad, tiff2bw,

tiff2rgba, tiffdither, and tiffmedian algorithms. Following is a description of each one

of the programs mentioned before.

• JPEG is an image compression algorithm used to manage pictures in docu-

ments.

• Lame is an MP3 encoder, used in media applications.

• Mad is an MPEG audio decoder.

• Tiff2bw is a color to black and white TIFF image converter.

• Tiff2rgba is a color to RGB TIFF image format converter.

• Tiffdither reduces the size and resolution of a black and white TIFF image.

• Tiffmedian transforms an image to a condensed color setting.

Office

The office benchmarks have been designed to represent algorithms used in office

devices, such as printers and fax machines, among other applications. This group is

formed by a set of algorithms, such as ghostscript, stringsearch, ispell, rsynth, and

sphinx. Here is a explanation of the algorithms.

• Ghostscript is a postcript language interpreter.

• Stringsearch looks for words within a document.

• Ispell is a spelling checker.
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• Rsynth is a text to speech processing program.

• Sphinx is a speech decoder.

Network

The network benchmarks were developed to exemplify applications of embedded

processors in networking devices, such as routers, switches, and modems, among

others. The programs that form this group are Dijkstra, and patricia. This is a

description of network benchmarks.

• Dijkstra is an algorithm that calculates the shortest path between a pair of

nodes in a network.

• Patricia is a flexible algorithm for storing, indexing, and retrieving information,

used for networking purposes.

Security

The security benchmarks are different algorithms intended for data encryption

and decryption. The benchmarks of this group are blowfish, pgp, rijndael, and sha.

This is an explanation of each one.

• Blowfish is a security code based on a 32 to 448 bits key, developed by Bruce

Schneider.

• Pgp is an encryption algorithm, designed by Phil Zimmerman.

• Rijndael is a security code with different key bits (128, 192, 256 bits).

• Sha is a hash algorithm for production of digital signatures.

Telecommunications

The telecommunication benchmarks characterize applications where portable

systems incorporate internet services and wireless communication. Some programs
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of this group include encoding and decoding algorithms, such as CRC32, FFT, IFFT,

ADPCM, and GSM. Descriptions of each benchmark are given here.

• CRC32 is an algorithm that performs cyclic redundancy check on a file.

• FFT/IFFT Fast fourier and inverse fast fourier transform in an array of data.

• ADPCM is a type of modulation where an analog signal is represented into a

digital code.

• GSM is an algorithm that describes the standard for voice encoding in mobile

communications.

Selected Benchmarks

For the purposes of this thesis, a subgroup of the benchmarks explained before

was chosen. The subset of benchmarks selected consisted of those programs that

could fit in the memory of the platforms evaluated. The benchmarks used in this

study are shown in table 3–1.

Table 3–1: Benchmarks selected from MiBench for the study of Power Consumption

Benchmark Group

Basicmath Automotive
Bitcount Automotive
Qsort Automotive
Stringsearch Office
Dijkstra Network
ADPCM Coder Telecommunications
ADPCM Decoder Telecommunications
FFT Telecommunications

3.2.3 Profiling

To apply source code-level optimization techniques on the benchmarks selected,

it was important to obtain a profile of each program in order to identify critical code
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structures of the benchmarks. This characterization was done with a profiler pro-

vided by the gcc compiler. Some statistics achieved with the profiler are shown in

table 3–2.

Table 3–2: Profiling of the Benchmarks

Benchmark Function % Time

Basicmath usqrt 98.01
Bitcount bit shifter 31.10

bit count 26.83
ntbl bitcnt 12.50

bitcnt 11.59
Qsort main 88.52
Stringsearch main 41.67

init search 27.78
str search 25.00

Dijkstra dijkstra 62.50
enqueue 25.00

print path 12.50
ADPCM Coder adpcm coder 98.60

main 1.40
ADPCM Decoder adpcm decoder 88.12

main 10.54
FFT fft 97.53

From these results, optimizations were applied to those parts where the pro-

gram spent most of the time.

3.2.4 Machine-Independent Optimizations

Source code-level optimization techniques are divided in two main groups named

machine-dependent and independent optimizations [17], [27]. Machine-dependent

optimizations are based on the features of each architecture, moreover machine-

independent optimizations can be compiled to different target platforms. Based

on the previous work done by Simunic, Leupers, and Sharma et al., machine-

independent optimizations can be classified in algorithmic optimizations [17], [18],
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loop transformations [16], and function inlining methods [27].

Algorithmic Optimizations

In algorithmic optimizations, the target program is profiled in order to identify

critical code structures where most power and time could be spent and after profiling

the code, substitute algorithms that perform the same process are used to replace the

original one. This may affect the outcome since the initial algorithm may consume

more power or spend more time making certain work. Simunic [19] argues that

algorithmic optimizations present good potential to obtain high performance and

low power consumption on general and embedded processors. Some algorithmic

optimizations are cited next [45], [46].

• Division and remainder

• Conditional execution

• Boolean expressions

• Switch statement

• Variable types

From this group we selected variable declaration to be applied to the bench-

marks which is appropriate in this case. Variables declaration are used to replace

variable types by others which tend to lower power consumption.

Loop Transformations

Bacon et al. made a survey of general purpose-program transformations [30].

The authors emphasized loops because most of execution time is spent on them.

Loop transformations are applied to a program in order to exploit the high per-

formance features of the target processor. Some advantages of using loop transfor-

mations on embedded software are cache performance improvement, and efficient
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utilization of parallel processing features of the platform, among others. Following

are cited some common loop transformations.

• Loop interchange

• Loop peeling

• Loop fusion

• Loop fission

• Loop unrolling

• Loop unswitching

• Loop inversion

• Loop invariant code motion

• Loop reversal

• Loop skewing

Loop unrolling is an optimization technique where the body of a loop is copied

several times. Since loop unrolling has shown good results in terms of low power

consumption for the Intel 8051 platform [43], this was the loop transformation tech-

nique chosen to optimize the proposed benchmarks. Table 3–3 shows the results

obtained applying a group of eleven loop transformation techniques on different

code structures.
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Table 3–3: Loop Transformations and Power Consumption

Loop Transformation Optimization Phase
P (mW )Non-Opt. P (mW )Opt.

Statement Reordering 89.37 91.71

Unswitching 90.81 91.26

Loop Peeling 90.63 90.73

Scalar Expansion 93.96 94.23

Loop Fusion 94.05 94.32

Loop Alignment 91.98 90.72

Loop Fission 91.80 94.86

Nested Loops 90.90 90.99

Loop Reversal 93.87 94.95

Loop Interchanging 90.72 90.81

Loop Unrolling 89.28 87.39

Function Inlining

Leupers [16], [26] and Simunic [45] studied function inlining as a machine-

independent optimization technique for embedded processors. In function inlining,

a function call is replaced by the body of the function in order to increase the per-

formance of the system and reduce the calling overhead (parameter passing, and

call and return instructions). However, function inlining tend to increase code size,

becoming a limitation for embedded processors with restrictions in terms of memory

capabilities.

Table 3–4 shows which source code-level optimization technique can be applied

to each benchmark selected.
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3.2.5 Instrumentation

The power consumption of an embedded system can be calculated evaluating the

supply voltage and the average current drawn by the platform [24]. This calculation

is given by equation 3.1.

Psystem = VccI (3.1)

where Psystem is the power consumption of the embedded system, I is the average

current and Vcc is the supply voltage. In order to determine the power consumption,

we measured the current through the embedded system. This measurement was

performed connecting an ammeter between the power supply and the microproces-

sor board, while running non-optimized and optimized versions of the benchmarks

within an infinite loop. This was done in order to perform the statistical analysis

of the impact of the source code optimization techniques selected on the power con-

sumption.

3.2.6 Design of the experiment and Statistical Analysis

Montgomery [44] defines an experiment as a test where a set of variations are

performed on a system in order to observe its response under certain conditions. In

design of experiments (DOE), an analysis of a test is done to choose an appropriate

design, depending on the factors and response variable that are going to be studied

in a process. After identifying an appropriate experiment, statistical analysis of the

data is done to reach strong and unbiased conclusions about the data.

Before performing the experiment it is important to plan a completely random-

ized experimental design. In this type of experiment, the measurements of the test

are taken randomly, thus avoiding biased effects due to factors not considered or
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nuisance factors. Another aspect to have in mind is a design technique called block-

ing, where variability from undesirable factors is eliminated from the experiment,

evading wrong conclusions. A third characteristic to think about in DOE is repli-

cation, where the experiment is repeated in order to obtain an experimental error,

which will conclude if the factors of the test have a statistically significant impact

on the experiment under study.

A statistical analysis gives information about whether the results of an exper-

iment arose by coincidence, notifying if there is significance effect of the factors on

the outcomes of the process. In this study, analysis of variance (ANOVA) was the

statistical approach used. When applying ANOVA on an experiment, it is important

to assume that the data follows a normal distribution.

A statistical hypothesis is a statement that reveals some inference about certain

condition or situation. In statistical analysis, there are two hypothesis, the null

hypothesis and the alternative hypothesis, where null hypothesis is assumed to be

true. To test an hypothesis the significance level or p-value is analyzed. The p-

value is a measure of how much evidence exists to evaluate a hypothesis. Based on

literature [47], p-values of 0.01 and 0.05 are commonly employed in statistics, thus

depending on the p-value chosen the null hypothesis will be accepted or rejected.

To reject the null hypothesis for the alternative hypothesis, enough evidence should

be present. When the p-value obtained is more than the p-value selected for the

study, the null hypothesis is accepted, otherwise it is rejected. Besides analyzing

the p-value, it is a good approach to confirm normal distribution assumption of the

residuals through a normal probability plot. This is a graphical method useful to

determine the normal distribution of the residuals, based on their allocation along

a straight line. If the points in the graph are close to the line it can be concluded

that the normal distribution is an appropriate model for describing the data.
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In order to perform the tests of this research, a guideline for designing ex-

periments proposed by Montgomery [44] was followed. The target problem of this

study was the investigation of the actual effect of the optimizations selected on the

power consumption of different embedded systems without biased interpretations

about results. After this, we selected the factors to be considered in this experi-

ment. In this case, the factors were the optimization phase of each technique and

the benchmarks. Then, power consumption of embedded platforms was identified

as the response variable of the analysis. To establish the effect of optimization tech-

niques on power consumption, a p-value of 0.05 was chosen to accept or reject the

null hypothesis. In this study, the null hypothesis was that the optimization phases

and the selected benchmarks do not impact the power consumption of the selected

platforms. The factors of the experiment are explained next. For our study the opti-

mization phases were non-optimized and optimized, where a benchmark is optimized

when at least one optimization technique has been applied on it. The benchmarks

were the eight programs selected from MiBench to perform the analysis. Once the

factors and the response variable of the experiment were identified, two design of

experiments were selected in order to perform a screening analysis of the data. The

designs chosen were a balanced incomplete block design (BIBD), and a two-factor

factorial design. Following is a description of each design.

A balanced incomplete block design (BIBD) is a special case of a randomized

incomplete block design where it is not possible to collect all the combinations of

data in each trial. A BIBD is an incomplete block design where any group of two

levels of a factor arises the same number of times than any other pair of treatments.

This design was selected as a screening of the analysis to be performed.

Factorial designs are those that include two or more variables whose treatments

are including related. A two-factor factorial design consists of two factors, each one
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with different levels and n replicates. Moreover a two-factor factorial design with

one observation per cell is where the design has one single replicate.

After selecting the design of the experiment, the test was performed, the sta-

tistical analysis of the data was done, and conclusions and recommendations were

obtained.



CHAPTER 4

EXPERIMENTAL RESULTS

This chapter shows the results and the analysis performed on the data obtained.

The design of the experiment is illustrated and the ANOVA is analyzed for each case.

4.1 Power Measurements

After performing the experiments, power consumption measures for each plat-

form were obtained. Tables 4–1, 4–2, and 4–3 show the data taken when the bench-

marks selected are run, and the optimizations techniques are applied on each plat-

form.

Table 4–1: Benchmarks, Optimization and Power Measurements for the Intel 8051
Platform

Benchmark Optimization Optimization
Technique Phase

P (mW )Non-Opt. P (mW )Opt.

Basicmath Function Inlining 91.17 89.94
Bitcount Variable Types 94.05 90.76
Qsort Loop Unrolling 93.42 92.23
Dijkstra Loop Unrolling 91.44 80.66

Function Inlining 88.11
Stringsearch Loop Unrolling 95.4 92.18

Variable Types 94.66
ADPCM Coder Function Inlining 93.87 93.58

Variable Types 93.87
ADPCM Decoder Function Inlining 103.59 89.433

Variable Types 87.06
FFT Function Inlining 94.59 93.55

35
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Table 4–2: Benchmarks, Optimization and Power Measurements for the Motorola
HC12 Platform

Benchmark Optimization Optimization
Technique Phase

P (mW )Non-Opt. P (mW )Opt.

Basicmath Function Inlining 670.23 668.61
Bitcount Variable Types 668.25 666.99
Qsort Loop Unrolling 668.97 667.71
Dijkstra Loop Unrolling 667.89 666.81

Function Inlining 666.72
Stringsearch Loop Unrolling 668.88 667.53

Variable Types 668.07
ADPCM Coder Function Inlining 669.24 668.07

Variable Types 668.25
ADPCM Decoder Function Inlining 670.41 668.97

Variable Types 668.61
FFT Function Inlining 669.15 703.08

Table 4–3: Benchmarks, Optimization and Power Measurements for the
ARM7TDMI Platform

Benchmark Optimization Optimization
Technique Phase

P (mW )Non-Opt. P (mW )Opt.

Basicmath Function Inlining 1361.88 1350.99
Bitcount Variable Types 982.71 968.85
Qsort Loop Unrolling 1300.05 1268.01

Variable Types 1281.06
Dijkstra Loop Unrolling 973.17 956.88

Function Inlining 949.77
Stringsearch Loop Unrolling 1292.94 1268.19
ADPCM Coder Function Inlining 1292.49 1266.57

Variable Types 1268.19
ADPCM Decoder Function Inlining 1293.84 1245.24

Variable Types 1302.93
FFT Function Inlining 1283.49 1287.18
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Figures 4–1, 4–2, and 4–3 illustrate the data obtained showing a comparison

between non-optimized and optimized versions of the benchmarks, when measuring

power consumption on each platform. Also a contrast between the optimization

techniques applied is done.

Figure 4–1: Power Consumption Chart for the Intel 8051 Platform

Figure 4–2: Power Consumption Chart for the Motorola HC12 Platform
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Figure 4–3: Power Consumption Chart for the ARM7TDMI Platform

4.2 Balanced Incomplete Block Design

An initial approach for analyzing the experiments performed was through a

balanced incomplete block design (BIBD). This type of experiment is used when the

treatment combinations are not run in each block. The factor studied in this case

was each optimization technique implemented, and the block was the benchmarks

run on the platforms. Tables 4–4, 4–5, and 4–6 show the BIBD for each platform.

Table 4–4: Balanced Incomplete Block Design for Optimization Techniques on the
Intel 8051 Platform

Optimization Technique Benchmarks
Dijkstra Stringsearch ADPCM Coder

Loop Unrolling 80.66 92.18

Function Inlining 88.11 93.58

Variable Types 90.63 90.73
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Table 4–5: Balanced Incomplete Block Design for Optimization Techniques on the
Motorola HC12 Platform

Optimization Technique Benchmarks
Dijkstra Stringsearch ADPCM Coder

Loop Unrolling 666.81 667.53

Function Inlining 666.72 668.07

Variable Types 668.07 668.25

Table 4–6: Balanced Incomplete Block Design for Optimization Techniques on the
Intel ARM7TDMI Platform

Optimization Technique Benchmarks
Qsort Dijkstra ADPCM Coder

Loop Unrolling 1268.01 956.88

Function Inlining 949.77 1266.57

Variable Types 1281.06 1268.10

The analysis of variance of each BIBD experiment was performed. From the

ANOVA of each experiment, we could observe that the p-value of each test was more

than 0.05, therefore the initial hypothesis was not rejected, which means that the

application of different optimization techniques on the selected benchmarks do not

impact the power consumption of the platforms studied. For this reason, we decided

to consider other design of experiment to analyze the impact of each technique when

the benchmarks are non-optimized and optimized. Figures 4–4, 4–5, and 4–6 show

the ANOVA of the BIBD for each platform.
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Figure 4–4: ANOVA for Intel 8051 Platform

Figure 4–5: ANOVA for Motorola HC12 Platform

Figure 4–6: ANOVA for ARM7TDMI Platform
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4.3 Two-Factor Factorial Design with One Observation per Cell

In this type of design, two factors are studied on the experiment. For the tests,

the factors are the optimization phase and the benchmarks selected. Due to the

experiment’s nature, one observation per level on each factor was taken. Hence,

a two-factor factorial design with one observation per cell was the design chosen

to make the analysis. The results were obtained when analyzing loop unrolling,

function inlining, and variable types declaration techniques on the three platforms

considered.

4.3.1 Intel 8051 Platform

Tables 4–7, 4–8, and 4–9 show the design of each experiment, and figures 4–8,

4–10, and 4–12 show the normal probability plot for each test performed on the Intel

8051 platform.

Loop Unrolling

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for loop unrolling on the Intel 8051 platform are presented below.

Table 4–7: Factorial Design for Loop Unrolling Technique on the Intel 8051 Platform

Optimization Phase Benchmarks
Qsort Dijkstra Stringsearch

Non-Optimized 93.42 91.44 95.4

Optimized 92.23 80.66 92.18
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Figure 4–7: ANOVA for Loop Unrolling on the Intel 8051 Platform

Figure 4–8: Normal Probability Plot for Loop Unrolling on the Intel 8051 Platform

For loop unrolling, the normal probability plot shows that the initial hypothesis

assumption is validated. However the p-value for this technique on the Intel 8051

platform was > 0.05, therefore the hypothesis is not rejected.
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Function Inlining

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for function inlining on the Intel 8051 platform are presented here.

Table 4–8: Factorial Design for Function Inlining Technique on the Intel 8051 Plat-
form

Optimization Phase Benchmarks
Basicmath Dijkstra ADPCM ADPCM FFT

Coder Decoder

Non-Optimized 91.17 91.44 93.87 103.59 94.59

Optimized 89.94 88.11 93.58 89.43 93.55

Figure 4–9: ANOVA for Function Inlining on the Intel 8051 Platform
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Figure 4–10: Normal Probability Plot for Function Inlining on the Intel 8051 Plat-
form

Here, the normal probability plot shows that the initial hypothesis assumption

is validated, but the p-value for this technique was > 0.05, hence the hypothesis is

not rejected.

Variable Types Declaration

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for variable types declaration on the Intel 8051 platform are presented

next.

Table 4–9: Factorial Design for Variable Types Technique on the Intel 8051 Platform

Optimization Phase Benchmarks
Bitcount Stringsearch ADPCM ADPCM

Coder Decoder

Non-Optimized 94.05 95.4 93.87 103.59

Optimized 90.76 94.66 93.87 87.06
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Figure 4–11: ANOVA for Variable Types on the Intel 8051 Platform

Figure 4–12: Normal Probability Plot for Variable Types on the Intel 8051 Platform

Although the normal probability plot shows that the initial hypothesis assump-

tion is validated for this case, the p-value for this technique was > 0.05, and the

hypothesis is not rejected.
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4.3.2 Motorola HC12 Platform

Tables 4–10, 4–11, and 4–12 show the design of each experiment, and figures

4–14, 4–16, and 4–18 show the normal probability plot for each test performed on

the Motorola HC12 platform.

Loop Unrolling

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for loop unrolling on the Motorola HC12 platform are presented below.

Table 4–10: Factorial Design for Loop Unrolling Technique on the Motorola HC12
Platform

Optimization Phase Benchmarks
Qsort Dijkstra Stringsearch

Non-Optimized 668.97 667.89 668.88

Optimized 667.71 666.81 667.53

Figure 4–13: ANOVA for Loop Unrolling on the Motorola HC12 Platform
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Figure 4–14: Normal Probability Plot for Loop Unrolling on the Motorola HC12
Platform

In this case, the normal probability plot shows that the initial hypothesis as-

sumption is validated. Moreover the p-value for this technique evaluated on the

Motorola HC12 platform was < 0.05, therefore the hypothesis is rejected.

Function Inlining

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for function inlining the HC12 platform are presented here.

Table 4–11: Factorial Design for Function Inlining Technique on the Motorola HC12
Platform

Optimization Phase Benchmarks
Basicmath Dijkstra ADPCM ADPCM FFT

Coder Decoder

Non-Optimized 670.23 667.89 669.24 670.41 669.15

Optimized 668.61 666.72 668.07 668.97 703.08
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Figure 4–15: ANOVA for Function Inlining on the Motorola HC12 Platform

Figure 4–16: Normal Probability Plot for Function Inlining on the Motorola HC12
Platform
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Here, the normal probability plot does not show the initial hypothesis assump-

tion, furthermore the p-value > 0.05 suggests that the hypothesis is not rejected.

Variable Types Declaration

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for variable types declaration on the HC12 platform are presented next.

Table 4–12: Factorial Design for Variable Types Technique on the Motorola HC12
Platform

Optimization Phase Benchmarks
Bitcount Stringsearch ADPCM ADPCM

Coder Decoder

Non-Optimized 668.25 668.88 669.24 670.41

Optimized 666.99 668.07 668.25 668.61

Figure 4–17: ANOVA for Variable Types on the Motorola HC12 Platform
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Figure 4–18: Normal Probability Plot for Variable Types on the Motorola HC12
Platform

For variable types declaration on the Motorola HC12 platform, the hypothesis

is rejected due to the p-value < 0.05, and the normal probability plot validates the

assumption.

4.3.3 ARM7TDMI Platform

Tables 4–13, 4–14, and 4–15 show the design of each experiment, and figures

4–20, 4–22, and 4–24 show the normal probability plot for each test performed on

the ARM7TDMI platform.

Loop Unrolling

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for loop unrolling on the ARM7TDMI platform are presented below.
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Table 4–13: Factorial Design for Loop Unrolling Technique on the ARM7TDMI
Platform

Optimization Phase Benchmarks
Qsort Dijkstra Stringsearch

Non-Optimized 1300.05 973.17 1292.94

Optimized 1268.01 956.88 1268.19

Figure 4–19: ANOVA for Loop Unrolling on the ARM7TDMI Platform
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Figure 4–20: Normal Probability Plot for Loop Unrolling on the ARM7TDMI Plat-
form

For loop unrolling on the ARM7TDMI platform, the hypothesis is rejected since

the p-value is < 0.05.

Function Inlining

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for function inlining on the ARM7TDMI platform are presented here.

Table 4–14: Factorial Design for Function Inlining Technique on the ARM7TDMI
Platform

Optimization Phase Benchmarks
Basicmath Dijkstra ADPCM ADPCM FFT

Coder Decoder

Non-Optimized 1361.88 973.17 1292.49 1293.84 1283.49

Optimized 1350.99 949.77 1266.57 1245.24 1287.18
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Figure 4–21: ANOVA for Function Inlining on the ARM7TDMI Platform

Figure 4–22: Normal Probability Plot for Function Inlining on the ARM7TDMI
Platform

In this case, for function inlining technique applied on the ARM7TDMI, the

initial hypothesis is not rejected, since the p-value is > 0.05. Hence this technique

does not have impact on power consumption for the ARM platform.
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Variable Types Declaration

The design of the experiment, the normal probability plot of the residuals, and

the ANOVA for variable types declaration on the ARM7TDMI platform are pre-

sented next.

Table 4–15: Factorial Design for Variable Types Technique on the ARM7TDMI
Platform

Optimization Phase Benchmarks
Bitcount Qsort ADPCM ADPCM

Coder Decoder

Non-Optimized 982.71 1300.05 1292.49 1293.84

Optimized 968.85 1281.06 1268.19 1302.93

Figure 4–23: ANOVA for Variable Types on the ARM7TDMI Platform
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Figure 4–24: Normal Probability Plot for Variable Types on the ARM7TDMI Plat-
form

Finally, for variable types declaration, the normal probability plot validates the

initial hypothesis assumption. Moreover the hypothesis is rejected because the p-

value is less than 0.05.
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4.4 Analysis of the Results

From the obtained data from the ANOVA of each one of the experiments men-

tioned above, we may observe that some techniques have impact on power consump-

tion on certain platforms. Table 4–16 shows a summary of the obtained results.

From the obtained results when performing the statistical analysis, we may

conclude that some techniques have impact on power consumption, however it is

important to consider the target platform when performing this analysis.

Tables 4–1, 4–2, and 4–3 illustrate power reductions on the platforms when

applying the optimization techniques on the benchmarks selected, however it was

important to design an experiment and use ANOVA, in order to establish if the

impact of the factors considered in the experiment have significant influence on

the outcomes. The first impression when analyzing the data obtained was that

all optimization techniques have effect on power consumption, nevertheless it was

necessary to avoid random results.

From the two-factor factorial design, we could observe that loop unrolling and

function inlining had a real impact on the power consumption of the Motorola HC12

platform. Moreover, only loop unrolling presented a significant effect on power

consumption for the ARM7TDMI platform, as illustrated in table 4–16.

Table 4–16: Impact of Optimization Techniques on each Platforms: p-value

Optimization Platforms
Technique

Intel 8051 Motorola HC12 ARM7TDMI

Loop Unrolling No impact Impact Impact

Function Inlining No impact No impact No impact

Variable Types No impact Impact No impact
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The statistical analysis done showed that depending on the target platforms,

an optimization technique may or may not have an impact on power consumption.

Based on the results obtained, the Intel 8051 did not show any change in power

dissipation, while the Motorola HC12 and the ARM7TDMI showed power reductions

when applying the techniques mentioned before.

We may notice that power consumption due to machine-independent optimiza-

tions may be related to the hardware features of each platform. The Intel 8051,

which did not show improvements in terms of low power consumption, is an 8-bit

microprocessor designed for automotive and control applications. Moreover, the Mo-

torola HC12, and the ARM7TDMI platforms are 16 and 32-bit cores respectively,

designed for data processing purposes, hence this may have consequences on the

optimization techniques evaluated on this work.



CHAPTER 5

CONCLUSIONS

In this work three machine-independent source code optimizations were evalu-

ated on three microprocessor-based platforms, in order to know if power consump-

tion can be diminished when optimizing at the highest level of abstraction. For this,

design of experiments (DOE) techniques and statistical analysis (ANOVA) were

used to reach statistically significant conclusions about the actual impact of such

optimizations on the power consumption of the embedded systems analyzed.

The results obtained showed that power savings due to machine-independent op-

timizations depend on the target platforms where the optimizations are performed.

Moreover, although there were reductions in power consumption in all platforms

when applying the three optimizations selected, the analysis performed showed that

these results were statistically significant only when applying loop unrolling on the

Motorola HC12 and the ARM7TDMI, and variable types declaration on the Mo-

torola HC12 platform.

The main contributions of this work were:

• Evaluation of the power consumption of three commercial platforms when ap-

plying source code-level optimization techniques.

• Measurement of power consumption directly from the platform, allowing get-

ting real data from the systems studied, thus avoiding erroneous results.

• Analysis of the data obtained through a statistical method (ANOVA), which

led us to reach strong conclusions about the actual impact of the optimization

techniques studied on power consumption of the selected platforms.
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• A methodology to study power consumption on embedded systems without

biased conclusions.



CHAPTER 6

FUTURE WORK

As future work, a study of different ways of analyzing code for embedded sys-

tems from the software architecture point of view may be done. Depending on the

architecture implemented, different results in terms of power consumption can be

reached. Also, a comparison of the obtained results with those given by a power

simulator can be done in order to identify which methodology may present better

results in terms of the data accuracy.

Other platforms, such as DSPs or microcontrollers with different features in

terms of hardware resources can be used to understand the relationship between the

architecture and the software running on the processor. Additional benchmarks may

be implemented depending on the characteristics of the new platforms considered.
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