
EVOLUTIONARY LEARNING METHODS FOR
MULTILAYER MORPHOLOGICAL PERCEPTRON

by

Roberto C. Piñeiro

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Puerto Rico
Mayagüez Campus

2004

Approved by:

______________________________ _________
Néstor Rodríguez, Ph.D. Date
Member, Graduate Committee

______________________________ _________
Domingo Rodríguez, Ph.D. Date
Member, Graduate Committee

______________________________ _________
Jorge L. Ortiz, Ph.D. Date
President, Graduate Committee

______________________________ _________
Edgar Acuña, Ph.D. Date
Representative of Graduate Studies

______________________________ _________
Jorge L. Ortiz, Ph.D. Date
Chairperson of the Department

ii

ABSTRACT

This thesis describes three compressive learning algorithms for multilayer

morphological perceptrons. The three algorithms are based on evolutionary algorithms:

direct encoding method, indirect encoding method, and catesian genetic programming

method. The direct encoding method uses adaptive mutation as the genetic algorithm

approaches convergence to fine tune network parameters to reach optimal values. In

addition, the algorithms use a special fitness function which penalize those networks with

redundant neurons. The training of the neural network using the indirect encoding

method is done by finding the solution without considering the exact connectivity of the

network. Looking for the set of connection weights and network architecture in a reduced

search space, this simple, but powerful, training algorithm is able to evolve to a feasible

solution using up to three layers suficient to perform most pattern classification. The last

method uses Cartesian genetic programming to evolve network architecture and

connection weights simultaneously. The resulting program consists of the multilayer

morphological perceptron, which is able to classify patterns received as the inputs. The

algorithm introduces the use of the morphological neuron computational model as the

function used by the generated programs. Prototypes were implemented using Matlab,

and tested using data sets used previously by other researchers.

iii

RESUMEN

Esta tesis describe en detalle tres algoritmos de aprendizaje para perceptrones

morfológicos de múltiples capas. Los tres algoritmos son basados en algoritmos

evolutivos: el método de codificación de forma directa, el método de codificación de

forma indirecta y el método de programación genética cartesiana. El método de

codificación de forma directa utiliza mutación adaptiva según el algoritmo genético se

acerca a la convergencia para refinar los parámetros de la red neural para poder conseguir

valores óptimos. En adición, el algoritmo utiliza una función de evaluación especial en la

que se penalizan aquellas redes neurales con neuronas redundantes de acuerdo a como

estas estén colocadas. En el método de codificación de forma indirecta el entrenamiento

de la red neural es hecho mediante la búsqueda de soluciones sin considerar la

conectividad exacta de la red. Al reducir el espacio de busqueda pesos de las conexiones

y la arquitectura de la red, este simple, pero poderoso algoritmo de entrenamiento es

capaz de evolucionar soluciones viables usando hasta tres capas las cuales son requeridas

para realizar la mayoría de las clasificaciones de patrones. El tercer método, utiliza

programación genética cartesiana para evolucionar la arquitectura de la red y los pesos de

las conexiones simultáneamente. El programa resultante produce la red neural capaz de

clasificar los patrones recibidos como entradas. El metodo introduce el uso del modelo

computacional usado por la neurona morfológica como las operaciones utilizadas por los

programas generados. Prototipos fueron implementados usando Matlab y probados

usando conjuntos de datos presentados por otros investigadores.

iv

© Copyright by Roberto C. Piñeiro on May 2004

v

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. Jorge L. Ortiz for his valuable

guidance throughout my graduate studies. I would like to thank my mother Felícita

Colón, she always inspired me to achieve my best. I would like to thank my friend Nayda

Santiago for her valuable organizational help. I would like to thank my good friends Ariel

Mirles and Rafael Cordero for their special advice.

vi

DEDICATORIA

Me gustaría agradecer a mi consejero el Dr. Jorge L. Ortiz por sus consejos en el

transcurso de mis estudios graduados. Me gustaría agradecer a mi madre, Felícita Colón,

por inspirarme a dar lo mejor. Quisiera agradecer a mi amiga Nayda Santiago por su

ayuda organizacional invaluable. Quisiera agradecer a mis amigos Ariel Mirles y Rafael

Cordero por sus consejos.

vii

LIST OF CONTENTS

List of Tables ... xi

List of Figures .. xii

List of Figures .. xii

1 Introduction.. 1
1.1 Justification ... 3
1.2 Objective.. 4
1.3 Contributions .. 4
1.4 Overview.. 6

2 Artificial Neural Networks .. 7
2.1 Introduction .. 7
2.2 Artificial Neural Networks Components .. 9

2.2.1 Artificial Neuron ...9
2.2.2 Architectural Elements of an Artificial Neural Network...10

2.3 Learning Process for an Artificial Neural Network .. 12
2.3.1 Back-Propagation ..12

2.4 Training of an artificial neural network... 14

3 Morphological Neural Networks ... 15
3.1 Introduction .. 15
3.2 Morphological Neural Networks... 16
3.3 Single Layer Morphological Perceptron .. 17
3.4 Example ... 20
3.5 Multilayer Morphological Perceptron.. 21

4 Evolutionary Algorithms.. 23
4.1 Introduction .. 23
4.2 Search Algorithms .. 23
4.3 Evolutionary Computation .. 25
4.4 Genetic Algorithms... 26

viii

4.5 Genetic Programming .. 29
4.5.1 Cartesian Genetic Programming..29

5 Literature Review and Previous Work .. 32
5.1 Introduction .. 32
5.2 Evolutionary Artificial Neural Networks ... 32
5.3 Morphological Learning Algorithms .. 35

6 Evolutionary Learning METHODS for Multilayer Morphological PerceptronS. 37
6.1 Introduction .. 37
6.2 Classification of Patterns into Multiple Classes... 37
6.3 Direct Encoding Learning Algorithm for Multilayer Morphological Perceptrons
 38

6.3.1 Organism Representation ..39
6.4 Indirect Encoding Evolutionary Learning Algorithm for the Multilayer
Morphological Perceptron .. 43

6.4.1 Encoding of the Genotype ...45
6.5 Training of the Multilayer Morphological Perceptron Using Cartesian Genetic
Programming ... 57

6.5.1 Encoding of the Genotype ...57
6.5.2 Genetic Operators..60
6.5.3 Evaluation Function...61

6.6 Example ... 62

7 Matlab Toolbox for Morphological Perceptron.. 65
7.1 Introduction .. 65
7.2 Toolbox .. 65

7.2.1 Common Configuration Parameters ..65
7.2.2 Direct Encoding Toolbox ..66
7.2.3 Indirect Encoding Toolbox..69
7.2.4 Cartesian Genetic Programming Toolbox ...71

7.3 Common Tools .. 73
7.3.1 Pattern Classification...73
7.3.2 Plotting the Network..74

7.4 Analyzing Progress of the Learning Process.. 75

8 Performance Analysis .. 79
8.1 Introduction .. 79
8.2 Data Sets .. 79

8.2.1 Sussner Data Set ..79
8.2.2 Spiral Data Set...80

ix

8.2.3 Iris Fisher Data ..81
8.3 Performance Analysis .. 81

8.3.1 Direct Encoding Method ...82
8.3.2 Indirect Encoding Method ...85
8.3.3 Cartesian Genetic Programming..87

9 Conclusion.. 94
9.1 Introduction .. 94
9.2 Discussion of Results .. 94
9.3 Comparison of the Learning Algorithms ... 97

9.3.1 Direct Encoding Method ...97
9.3.2 Indirect Encoding Method ...98
9.3.3 Cartesian Genetic Programming Method ..99
9.3.4 Summary of Differences..101

9.4 Prototypes Limitations... 101
9.5 Future Work ... 102
9.6 Conclusion... 102

10 References .. 103

A Evolutinary learning algorithms toolbox for matlab.. 107
A.1 Introduction .. 107
A.2 User Guide for Multilayer Morphological Perceltron .. 107

A.2.1 Common Configuration Parameters ..107
A.2.2 Direct Encoding Toolbox ..108
A.2.3 Indirect Encoding Toolbox..111
A.2.4 Cartesian Genetic Programming Toolbox ...112

A.3 Common Tools .. 115
A.3.1 Pattern Classification...115
A.3.2 Plotting the Network..115

A.4 Dependency Structure of Method in the Toolbox.. 116
A.5 Matlab Toolbox for Morphological Perceptron... 118

function [res] = evalMorphologicalNet(net, testPatterns)..119
function [val] = evalMorphologicalPerceptron(mnn, inputs) ..119
function [val] = hardlimit(x) ..119
function [] = plotNetwork(net, parentOp, parentR, index, delta)...120
function [] = plotRegion(net, xmin, xmax, ymin, ymax) ...121

A.6 Direct Encoding Method.. 121
function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds, targets, nconfig)121
function [net] = generateNetwork(level, layerInfo, opts, range, minValues, infiniteOpt)123
function [pop] = initializeMNNga(bounds, populationSize, evalFN,evalOps,options, layerInfo)124
function [x,endPop,bPop,traceInfo] = MNNga (bounds, evalFN, evalOps, startPop, opts, termFN,
termOps, selectFN,selectOps, xOverFNs, xOverOps, mutFNs, mutOps) ...125
function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps)130

x

function [o1] = defMutation(p1, bounds, opts)..130
function [o1,o2] = defXover(p1,p2, bounds, Opts)..132
function [res] = operateAndNet(net1, net2)...135
function [res] = operateOrNet(net1, net2)..136
function[newPop] = roulette2(oldPop,options)..138
function [layers] = getTotalLayers(mnn)...139
function [params] = getDefaultParams(opts) ...139

A.7 Indirect Encoding Method... 140
function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets, nconfig)140
function [res, traceInfo] = NNmorphologicalGA(c0, c1, params) ...141
function [pop] = generatePop(popSize, bounds)..144
function [c] = NNmorphologicalMutation(parent,bounds,Ops) ..144
function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops) ..145
function [sol, val] = NNmorphologicalEval(sol,parameters)...146
function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop)147
function [params] = getDefaultParams(opts) ...147
function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,
opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)..........................148

A.8 Cartesian Genetic Programming Method .. 152
function [net] = CGPTrainMNN(testPatterns, classes, targets, nconfig) ...153
function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps,
startPop,opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps ,mutFNs,mutOps)...........154
function [res] = CGPDecodeNet(chrom, F, FTotal, param) ..157
function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs, F, FTotal)..........158
function [param] = CGPDefaultParam(patternSize, numOfNodes, numOfInputs)158
function [chrom, val] = CGPEval3(chrom,opts)..159
function [done] = CGPFitnessFoundTerm(ops, bPop, endPop) ..160
function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops) ...160
function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops) ...161
function [F, FTotal] = CGPInitialize(patterns, param) ..162
function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps).................................162

xi

LIST OF TABLES

Table 4.1 Mapping function for each gene from the genotype shown in Figure 4.3.27
Table 6.1 (a) Set of functions available for nodes in the first layer, and (b) functions available for nodes in
the second layer...64
Table 6.2 Example of how the organism is encoded, and the lower and upper bounds for each entry in the
chromosome. ...64
Table 7.1 Configuration parameters used by all the training methods ...66
Table 7.2 Configuration parameters used by Direct Encoding Method..67
Table 7.3 Parameters passed to the Direct Encoding training method...68
Table 7.4 Parameters passed to the CGP training method ...70
Table 7.5 Additional configuration parameters used by Cartesian Genetic Programming.71
Table 7.6 Parameters passed to the CGP training method ...72
Table 8.1 Summary of results of the tests for the direct encoding training algorithm.84
Table 8.2 Summary of results for indirect encoding training algorithm. ..87
Table 8.3 Summary of results for the Cartesian Genetic Programming method...93
Table 9.1 Summary of results for the Cartesian Genetic Programming method...95
Table 9.2 Summary of advantages and disadvantages of the evolutionary learning algorithms.101
Table A.1 Configuration parameters used by all the training methods...108
Table A.2 Configuration parameters used by Direct Encoding Method ...109
Table A.3 Parameters passed to the Direct Encoding training method. ...110
Table A.4 Parameters passed to the CGP training method...112
Table A.5 Additional configuration parameters used by Cartesian Genetic Programming........................113
Table A.6 Parameters passed to the CGP training method...114

xii

LIST OF FIGURES

Figure 2.1 Biological neuron ..8
Figure 2.2 The artificial neuron model ...9
Figure 2.3 Most commonly used transfer functions ..10
Figure 2.4 Feed forward connections. ..11
Figure 2.5 Feedback connections..11
Figure 2.6 Lateral connections. ..11
Figure 2.7 Back propagation learning algorithm described by Hagan (Hagan and Demuth and Beale 1996)
...13
Figure 3.1 (a) Computational Model for Morphological Neural Network (b) Morphological Perceptron ..16
Figure 3.2 Decision boundaries defined by the morphological perceptron. (a) Decision boundary defined a
neuron using the mathematical model in Equation 3.6 and (b) decision boundary defined by a neuron using
the mathematical model in Equation 3.7 in a 2ℜ dimensional space..18
Figure 3.3 Resulting decision boundaries produced by changing pre-synaptic values of a morphological
neuron using a maximum operator in a 2ℜ space..19
Figure 3.4 Resulting decision boundaries produced by changing pre-synaptic values in a morphological
neuron using a minimum operator in a 2ℜ space. ...20
Figure 3.5 Decision boundary of the morphological perceptron..20
Figure 3.6 Decision boundaries for the XOR classification problem using morphological neurons............22
Figure 3.7 Morphological neural network used to solve the XOR classification problem............................22
Figure 4.1 Search space’s landscape..24
Figure 4.2 Cycle of Evolutionary Algorithms ...26
Figure 4.3 Genotype representation using different types of representation for the genes...........................27
Figure 4.4 Arithmetic crossover of two parents producing one offspring...28
Figure 4.5 Gene contrain reinforcement after crossover. ...28
Figure 4.6 Single point mutation...29
Figure 4.7 Representation the genotype in CGP...30
Figure 4.8 Graph of nodes used to represent the phenotype in CGP..30
Figure 4.9 Resulting organism with unexpressed nodes ...31
Figure 6.1 Distribution of patterns into temporary groups used during the training process.38
Figure 6.2 Tree based encoding. (a) Morphological neural network, (b) the corresponding representation
in a tree structure. ...39
Figure 6.3 Crossover. (a) Initial parents. (b) New individuals formed using syntactically constrained
crossover ...41
Figure 6.4 Redundant perceptrons. Region produced by two perceptrons (a) and (b), are combined into a
perceptron in the second layer (c). The resulting region does not differ from region defined by perceptron
(b). ...43
Figure 6.5 The region of the class C0 is approximated by a succession of rectangles..................................44
Figure 6.6 Shows how the morphological neural network architecture may look.46
Figure 6.7 An example of how the patterns may be encoded into the chromosome of a randomly generated
organism..47
Figure 6.8 (a) Chromosome of first parent and (b) the corresponding set of hypercubes.48
Figure 6.9 (a) Second parent used for the crossover and (b) the corresponding set of hypercubes.48
Figure 6.10 (a) First parent before the crossover and (b) the resulting offspring.49
Figure 6.11 Hypercubes for the resulting offspring. ...49
Figure 6.12 (a) Chromosome before mutation and (b) after mutation using group division.50
Figure 6.13 (a) The effect in the regions defined by the groups in the chromosome before mutation and (b)
after mutation. ...51
Figure 6.14 (a) Chromosome before mutation and (b) after mutation by combining two groups.................51

xiii

Figure 6.15 (a) Graphical effect of mutation in the regions defined by the groups in the chromosome before
mutation and (b) after mutation. ...52
Figure 6.16 (a) An organism encoded into a chromosome and (b) the corresponding hypercube for the first
group defined in the chromosome. ..53
Figure 6.17 (a) Upper-right corner of the hypercube and (b) lower-left corner of the hypercube.53
Figure 6.18 Neural network for a single hypercube..53
Figure 6.19 Region defined by the second group in the chromosome...54
Figure 6.20 Resulting neural network for the second hypercube..54
Figure 6.21 Resulting neural network for the chromosome defined in Figure 6.16a....................................55
Figure 6.22 Graph of nodes used in the algorithm ...58
Figure 6.23 Representation of the organism as an integer array. ..58
Figure 6.24 Resulting Morphological Neural Network after decoding of the chromosome with unexpressed
neurons..60
Figure 6.25 Distribution of patterns for the XOR problem. ..62
Figure 6.26 Graph of nodes used to represent the organism. ...63
Figure 6.27 Resulting neural network defined for the XOR problem using Cartesian Genetic Programming
method. ..64
Figure 6.28 Corresponding decision boundary defined by the neural network shown in Figure 6.2764
Figure 7.1 Example code of how Direct Encoding Method can be used to train MNN68
Figure 7.2 Example code of how Indirect Encoding Method can be used to train MNN..............................70
Figure 7.3 Example code of how Indirect Encoding Method may be used to train MNN.............................73
Figure 7.4 How to use Multilayer Morphological Perceptrons to classify multiple patterns.74
Figure 7.5 Graphical representation of Multilayer Morphological Perceptrons.Tthe morphological
perceptrons are represented by two intersecting perperdicular dotted lines. ...74
Figure 7.6 Evolutionary progress of the population for Carterian Genetic Programming using the Sussner
Data set ...75
Figure 7.7 Effects produced on the fitness of a population and the number of generations by different
crossover and mutation rates. ...78
Figure 8.1 Data set used by Sussner (Sussner 1998) ..79
Figure 8.2 Spiral data set used during the training and performance of the resulting neural network.80
Figure 8.3 (a) 2-Dimension problem and the corresponding architecture Data (b) Two perceptrons are
used in the first layer to define its boundaries...83
Figure 8.4 Patterns from the class C0 are distributed among the four corners. ...83
Figure 8.5 A 3-dimensions search space and the corresponding classification boundaries.........................84
Figure 8.6 Neural network architecture used to produce one of the outputs of the binary vector associated
to the class...84
Figure 8.7 Decision boundaries found by indirect encoding method for Sussner Data set.86
Figure 8.8 Neural network architecture produced by indirect encoding method for Spiral Data set...........86
Figure 8.9 Decision boundaries defined by the network architecture shown in Figure 8.8..........................87
Figure 8.10 Multilayer morphological perceptron defined by the Cartesian Genetic Programming method
for Sussner Data Set. Corresponding decision boundary is shown in Figure 8.11.......................................89
Figure 8.11 Decision boundaries defined by CGP with opened decision boundaries.90
Figure 8.12 Decision boundaries defined by CGP method with closed regions. ..91
Figure 8.13 Decision boundaries defined for the spiral data set. ...92
Figure 9.1 Incorrect generalization of the neural network. ..96
Figure A.1 Example code of how Direct Encoding Method can be used to train MNN..............................110
Figure A.2 Example code of how Indirect Encoding Method can be used to train MNN112
Figure A.3 Example code of how Indirect Encoding Method may be used to train MNN...........................114
Figure A.4 How to use Multilayer Morphological Perceptrons to classify multiple patterns.....................115
Figure A.5 Graphical representation of Multilayer Morphological Perceptrons.Tthe morphological
perceptrons are represented by two intersecting perperdicular dotted lines. ...116
Figure A.6 Interdependency of functions for th e Matlab toolbox...118

1

CHAPTER 1

1 INTRODUCTION

Artificial Neural Network (ANN) is a component of artificial intelligence that

emulates real brain’s neurons. Artificial neural networks are a collection of mathematical

models that simulate the connectionism behavior of human’s brain. The system performs

the computation through the passing of signals within a structured arrangement of

connected processing units in response to a given input signal. Although these systems

may be applied for prediction, interpretation, diagnosis, planning, and other applications,

the most successful uses for artificial neural network are pattern recognition and pattern

classification.

Morphological Neural Networks (MNN) (Ritter and Sussner 1996) are a novel

class of artificial neural networks based on lattice algebra, in which the operations of

multiplication and addition are replaced by addition and maximum or minimum operator,

respectively. The algebraic system used by traditional neural network is denoted

as (), ,ℜ + × , the set of real numbers ℜ with the operations of addition and multiplication,

and all the laws governing these operators. The computations occurring in the

morphological neural network are based on the algebraic lattice structure (Ritter and

Sussner 1996) (), ,−∞ℜ ∨ + and (), , '∞ℜ ∧ + , where −∞ℜ and ∞ℜ represent the extended

real number systems { }−∞ℜ = ℜ ∪ −∞ and { }∞ℜ = ℜ ∪ ∞ . The symbol + denotes the

usual addition with the additional stipulation that () () ; a a a −∞+ −∞ = −∞ + = −∞ ∀ ∈ℜ ,

2

and '+ is defined as 'a b a b+ ≡ + for ,a b ∞∈ℜ , and ; a a a ∞+ ∞ = ∞ + = ∞ ∀ ∈ℜ . The

symbols ∨ and ∧ denote the maximum and minimum operators respectively, with the

additional stipulation that () () ; a a a a −∞∨ −∞ = −∞ ∨ = ∀ ∈ℜ and

 a a a a ∞∧ ∞ = ∞ ∧ = ∀ ∈ℜ . The application of maximum or minimum operations

perform a nonlinear operation before the application of the transfer function, resulting in

properties completely different from those properties of traditional neural networks.

Multilayer Morphological Perceptrons (MLMP) are feed forward morphological neural

networks used for pattern classification.

Artificial Neural Networks are able to acquire knowledge from previous

experiences and apply the knowledge to similar situations. This process is known as

memorization and generalization. A neural network “learns” how to associate a response

pattern to a given input pattern by adjusting the neuron’s connection weights and the

network architecture. The network architecture includes neurons, layers, neuron’s inter-

connections, and transfer function.

This thesis explores the use of evolutionary algorithms as an alternative training

tool for multilayer morphological neural networks. Evolutionary algorithms (EA) (Fogel

1994) are search and optimization methods inspired on natural selection. Three different

encoding schemes were used direct encoding, indirect encoding and Cartesian Genetic

Programming (CGP) (Miller 2001). Genetic algorithms are used to train the neural

networks using the first two encoding schemes. Cartesian genetic programming encoding

scheme was adapted to allow the evolution of the morphological neural network.

Prototypes of the algorithms were implemented as a toolbox for Matlab 6.

3

Multidimensional data sets presented by Ritter and Sussner (Sussner 1998) were used for

the tests.

1.1 JUSTIFICATION

Many of different algorithms have been proposed to train artificial neural

network, most of them work for a specific kind of artificial neural network, including a

specific type of transfer function, and neuron’s connections. For example, back

propagation is used to update connection weights for a given neural network architecture.

Using gradient descent of a continuous error function, connection weights are adjusted in

order to minimize this error function. Back propagation can not be used if the error

function is not continuous or differentiable. Back propagation may not be able to find the

global minimum, because it may be possible for the algorithm to get stuck in a local

minimum. In addition, gradient descent adjusts exclusively connection weights for

particular network architectures, but the algorithm does not adjust the network

architecture to define the optimum neural network for a particular problem.

Recently, evolutionary algorithms are able to evolve connection weights as well

as network topology simultaneously. Evolutionary algorithms search for the global

maximum in infinite, very complex, multimodal and non-differentiable search space,

looking for the best artificial neural network without focusing in a specific problem.

The mathematical model used by the morphological neuron is completely

different from the model used by traditional neural network. The maximum and

minimum operation results in a non-continue, non-differentiable function, therefore the

resulting neural network properties are completely different from those properties of

4

traditional neural networks. This thesis explores the use of evolutionary algorithms as a

learning algorithm for morphological neural networks.

1.2 OBJECTIVE

The objective of this thesis is to explore the use evolutionary algorithms to train

multilayer morphological perceptrons. Two different evolutionary approaches are used:

Genetic Algorithm and Cartesian Genetic Programming. Different learning approaches

are explored including supervised learning and reinforcement learning of the neural

network.

1.3 CONTRIBUTIONS

The main contribution of this thesis consists of the introduction of three

comprehensive evolutionary learning algorithms for multilayer morphological

perceptrons:

a. Direct Encoding Method.

i. The use of genetic algorithms as a learning tool for a (fixed

architecture) two layers Morphological Perceptrons.

ii. The introduction of adaptive mutation for the evolution of MLMP as a

technique to speed up the convergence of the evolutionary process.

iii. Introduction of a penalty function to reduce the number of unnecessary

neurons from the neural network.

b. Indirect Encoding Method

5

i. Learning algorithm able to produce a Multilayer Morphological

Perceptron which is able to solve most pattern classification problems,

without considering patterns distribution.

ii. Evolutionary learning algorithm for a maximum of 3-layers

Morphological Perceptron, which is good enough to solve most pattern

classification problems.

iii. Indirect evolution of morphological neural network’s architecture,

including number of neurons and connection weights simultaneously.

c. Cartesian Genetic Programming learning algorithm

i. Learning algorithm able to produce a Multilayer Morphological

Perceptron which is able to solve pattern classification problems

without considering patterns distribution.

ii. The introduction to the use of Cartesian Genetic Programming as an

evolutionary learning tool for Multilayer Morphological Perceptrons.

iii. The introduction to the use of the morphological neuron computational

model as the node function using Cartesian Genetic Programming.

iv. Simultaneous evolution of morphological neural network’s

architecture, including number of neurons, neuron interconnection, and

connection weights.

v. Make use of a penalty function to reduce the number of unnecessary

neurons.

6

1.4 OVERVIEW

This thesis is organized as follow:

Chapter 2 introduces the concepts of Artificial Neural Networks. Chapter 3

describes the new paradigm of Morphological Neural Networks. Chapter 4 introduces the

concepts of Evolutionary Algorithms, Genetic Algorithms and Cartesian Genetic

Programming. Chapter 5 presents a survey of related works organized in two subtopics: i)

Evolutionary Artificial Neural Networks; and ii) Morphological Learning Algorithms.

Chapter 6 presents the evolutionary learning algorithms for multilayer morphological

perceptrons: i) Direct Encoding Method; ii) Indirect Encoding Method; and Cartesian

Genetic Programming. Chapter 7 describes the toolbox designed for Matlab to train

multilayer morphological neural networks. Chapter 8 presents the performance analysis

and results, finally Chapter 9 presents conclusions. Appendix A provides the source code

for all the methods used by the Evolutionary Morphological Learning Algorithm

Toolbox.

7

CHAPTER 2

2 ARTIFICIAL NEURAL NETWORKS

2.1 INTRODUCTION

This chapter describes the paradigm of Artificial Neural Networks. A large

assortment of different neural networks had been developed, each of them with the ability

to solve a particular problem, and allow its application to various field in science and

engineering. This chapter presents an introduction to artificial neural networks and how

they can be effectively used in pattern recognition problems, pattern classification,

speech recognition, and others.

Human’s brain is built of thousand of a specific cell, which provides us with our

abilities to remember, think and apply previous experiences. Each of these cells, known

as neurons, can be connected with other thousands of neurons. Figure 2.1 shows the

components of a neuron, which are the cell body, the branching extensions called

dendrites for receiving the inputs, and an axon that carries the neuron’s output to the

dendrites of other neurons.

8

dentrite

axon

synapse

Figure 2.1 Biological neuron

Artificial Neural Networks (ANNs) are a component of artificial intelligence that

simulates real brain’s neurons. Also known as parallel distributed processing, or

connectionist models, artificial neural networks are information processors inspired by

the way the highly interconnected structures of the brain process information. Artificial

neural networks are mathematical models that emulate some properties observed from the

biological neural network: the knowledge is acquired by the network through a learning

process and the synaptic weight is used to store the knowledge. Computations are

performed through the passing of signals within a structured arrangement of highly

interconnected processing units in response to a given input signal.

The artificial neural network model was introduced by McCulloch and Pitts, after

the definition of the computational model for the traditional perceptron in 1943. This is

an artificial neuron with a hard-limiting activation function. Since that artificial neural

networks have been implemented to solve a variety of problems involving pattern

classification and pattern recognition.

9

2.2 ARTIFICIAL NEURAL NETWORKS COMPONENTS

2.2.1 Artificial Neuron
The basic element of an artificial neural network is the artificial neuron. The

artificial neuron simulates some of the operations the natural neuron can perform. The

neuron receives as inputs the outputs from other neurons, if the combined strength of the

signal reaches a specific threshold; the neuron sends a signal to all the neurons waiting

for the output. Figure 2.2 shows an example of an artificial neuron.

W
0

W1

Wn

X0

X1

Xn

.

.

.

.

.

.
f

Output
pathInputs Xn Weights Wn

Processing
Element

Figure 2.2 The artificial neuron model

The symbols x0,…, xn, represent the strength of the input signals, w0,…wn,

represent the connection strengths of the given input signal, and the output is represented

by the symbol y. The computational model for the traditional neuron is given by Equation

2.1.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡ ⋅= ∑
=

θ
n

i
ii xwfy

1
, (2.1)

where θ is a threshold value and f is the neuron’s activation function.

The most commonly used activation function (also known as transfer function) is

the hard-limiting function shown in Equation 2.2. However, this one can vary from

neuron to neuron.

10

⎩
⎨
⎧ ≥

→

ℜ→ℜ

 else 0
0 if 1

:
x

x

f
 (2.2)

Some of the most common transfer used activation functions shown in Figure 2.3

1

-1

x

y

X<0, Y=-1
X=0, Y=1

Hard Limit

1

-1

x

y

X<0, Y=0

X=1, Y=1

Ramping Function

0 < X < 1, Y=X

1

1

-1

x

y
Sigmoid Function

1

)1(
1

xe
y −+

=

-1

Figure 2.3 Most commonly used transfer functions

2.2.2 Architectural Elements of an Artificial Neural Network
The basic components of neural network architecture are neurons, the layers, and

neuron connection. A neural network consists of a set of neurons highly interconnected,

grouped into three types of layers: the input layer, output layer and the hidden layers. The

behavior of the neural network depends on the interaction between the neurons.

Interaction between network components depends on the type of connection that is used

to pass messages between neurons. There are four types of synaptic connections: feed

forward, feedback, lateral and time-delayed connections. It is important to highlight that

synaptic connections may be fully interconnected or partially interconnected.

Feed forward connections are used to propagate the output from the neurons of a

lower layer to neurons of an upper layer, as shown in Figure 2.4.

11

Inputs Hidden
layer

Output
layer

feedforward

Figure 2.4 Feed forward connections.

Feedback connections are used to send the output from neurons of an upper layer

back to neurons of a lower layer, as shown in Figure 2.5.

inputs Hidden
layer

Hidden
layer

feedforward

feedback

Output
layer

Figure 2.5 Feedback connections.

Lateral Connections are usually used in the output layer, when the output with the

higher value predominated over all the other output nodes, as shown in Figure 2.6.

Inputs Hidden
layer

feedforward

lateral

lateral

Output
layer

Figure 2.6 Lateral connections.

Time delayed connections add elements to the network to yield temporal

dynamics models. These connections are used in recurrent neural networks which are

networks that, also, use feedback connections.

12

2.3 LEARNING PROCESS FOR AN ARTIFICIAL NEURAL NETWORK

The brain learns from knowledge collected from previous experiences, while

artificial neural networks the learning process is achieved by changing the connection

weights between neurons. The connection strength of two neurons is represented by the

specific connection weight for that connection.

Learning algorithm in an artificial neural network are classified into supervised,

unsupervised, and reinforcement learning. Supervised learning is based on direct

comparison between the actual output of a system and the desired correct output.

Unsupervised learning is based on the correlations among input data. No information

about the “correct output” is available for learning. In reinforcement learning, the system

receives inputs and evaluation actions and the system has to learn how to map the inputs

to actions resulting in the best performance.

2.3.1 Back-Propagation
Back propagation is a learning algorithm for feed-forward neural network which

minimizes a continuous error function. The error function is the difference between the

actual output αd and the desired output td, presented in Equation 2.3.

 ()2

1

1
2

N

d d
d

E w oα
=

⎡ ⎤ = −⎣ ⎦ ∑
ur

 (2.3)

13

Figure 2.7 Back propagation learning algorithm described by Hagan (Hagan and Demuth and Beale 1996)

Back propagation uses gradient information to updates connection weights for

fixed network architecture in order to reduce the error in classification. The network

architecture uses sigmoid as the transfer function for the hidden layers. Figure 2.7

describes the algorithm used for back propagation.

Each pattern is defined as ,a t
r

where a
r

 is the vector of the inputs values and t is the

target output value. α is the learning rate, p represent the initial conditions
(randomly initialized), m represents the layer and M represents the total amount of
layers. Wm are the connection weights from layer m, bm are the biases for the neurons
from layer m, .fm is the transfer function for the neurons from layer m, and

()

()

()

()

1

1

2

2

0 0

0 0
F n

0 0
m

m

m m

m

m m

m m m

m m
s

m
s

f n
n

f n

n

f n
n

⋅

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥

∂⎢ ⎥
⎢ ⎥= ∂⎢ ⎥
⎢ ⎥
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

L

L

M M M

L

, where () ()m m
jm

j m
j

f n
f n

n

⋅ ∂

∂

• Propagate the input forward through the network
 0a p=
 ()1 1 1 1fm m m m ma W a b+ + + += + for m=M-1,…,2,1

 Ma a=
• Propagate the sensitivities backward through the network

o ()()2M M Ms F n t a= − −

o ()()1 1Tm M m m ms F n W s+ +=

• Update weight and biases using the gradient descent:
o () () ()11

Tm m m mW k W k s aα −+ = −

o () ()1m m mb k b k sα+ = −

14

2.4 TRAINING OF AN ARTIFICIAL NEURAL NETWORK

The training of an artificial neural network can be seen as the search for the best

architecture and connection weights in an architectural space where each point represents

a neural network architecture. Some neural networks architecture properties, like the

number of neurons, number of layers, and total number of misclassified patterns are used

to define a surface in the search space. According to Miller (Miller and Todd and Hegde

1989), this surface is infinitely large since the possible number of nodes and connections

is not fixed. The surface is not differentiable since the changes in number of neurons,

layers and connection is discrete. This is not a continuous function as in traditional

optimization problems. In addition, similar architectures may have different performance,

but different architectures may have similar performance.

15

CHAPTER 3

3 MORPHOLOGICAL NEURAL NETWORKS

3.1 INTRODUCTION

The new paradigm of Morphological Neural Networks (MNNs) was introduced

by Ritter, Sussner and Wilson (Ritter and Sussner 1996, Sussner 1998). These neural

networks replace the classical operations of multiplication and addition by addition and

maximum or minimum operations, respectively. The computations occurring in the

morphological neural network are based on the algebraic lattice structure (), ,−∞ℜ ∨ +

and (), , '∞ℜ ∧ + , where −∞ℜ and ∞ℜ represent the extended real number systems

{ }−∞ℜ = ℜ ∪ −∞ and { }∞ℜ = ℜ ∪ ∞ . The symbol + denotes the usual addition with the

additional stipulation that () () ; a a a −∞+ −∞ = −∞ + = −∞ ∀ ∈ℜ and '+ is defined by

'a b a b+ ≡ + for ,a b ∞∈ℜ , and ; a a a ∞+ ∞ = ∞ + = ∞ ∀ ∈ℜ . The symbols ∨ and ∧

denote the maximum and minimum operators, respectively, with the additional

stipulation that () () ; a a a a −∞∨ −∞ = −∞ ∨ = ∀ ∈ℜ and ; a a a a ∞∧ ∞ = ∞ ∧ = ∀ ∈ℜ . The

maximum and minimum operations allow performing a nonlinear operation before the

application of the activation function, resulting in properties completely different from

those properties of traditional neural networks.

16

3.2 MORPHOLOGICAL NEURAL NETWORKS

Morphological neural networks are a new type of neural network introduced by

Ritter, Beavers and Sussner. Differing from traditional neural networks, these neural

networks replace the operator of multiplication by the operator of addition, and the

operator of addition is replaced by the maximum operator or by the minimum operator.

The morphological neuron follows the mathematical model described in Equation 3.1:

 ()
1

n

j ij i iji
f p r x w

=

⎛ ⎞⋅ ∨ +⎜ ⎟
⎝ ⎠ (3.1)

where ∨ is the maximum operator (or minimum operator ∧), n is the number of

dimensions of the pattern to be classified, xi is the value of the i-th input of the neuron, wij

denotes the synaptic weight associated between the i-th neuron and the j-th neuron, rij

represents the inhibitory or excitatory pre-synaptic values and pj represents the inhibitory

or excitatory post-synaptic value, where rij and pj can be set to values of {+1, -1}. Figure

3.1 presents a graphical representation of the morphological model and the decision

boundary defined by a morphological neuron in a 2ℜ space.

rij V,p

Xn

rnj

X1

Xj

r1j

Wij

N1

N1j

Nn

Nj

W1j

W
1n

class 1

class 0

-x1

-x2

 a. b.

Figure 3.1 (a) Computational Model for Morphological Neural Network (b) Morphological Perceptron

17

Morphological Neural Networks have been used for scene recognition, and self-

localization, as part of a vision based navigation framework for mobile robots.

Additionally, it has been used in image restoration by reconstruction of patterns from

noisy inputs.

3.3 SINGLE LAYER MORPHOLOGICAL PERCEPTRON

Single layer morphological perceptron is a binary pattern classifier like the

traditional perceptron. In other words, the patterns forwarded as inputs for the neural

network are classified as belonging to either class C0 or class C1. The morphological

perceptron uses a hard-limit transfer function, as shown in Equation 3.2:

: 0,1
1 if x > 0

0 else

f

x

→

⎧
→ ⎨

⎩

\

 (3.2)

Let W = [w1, w2,…,wn] nℜ∈ represent a set of weights, and θ the threshold. The

traditional perceptron assigns a pattern x nℜ∈ , to class C0 if

 0
1

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
⋅∑

=

θ
n

j
jj wxf (3.3)

otherwise the pattern is assigned in class C1. The morphological perceptron assigns a

pattern x nℜ∈ to the class C0 if

 () 0
1

=⎟
⎠

⎞
⎜
⎝

⎛ −⎥⎦
⎤

⎢⎣
⎡ +∨

=
θjj

n

j
wxf (3.4)

otherwise the pattern is assigned to the class C1. According to the dual nature of the

morphological neuron a pattern x nℜ∈ can be assigned to the class C0 if

18

 () 0'
1

=⎟
⎠

⎞
⎜
⎝

⎛ −⎥⎦
⎤

⎢⎣
⎡ +∧

=
θjj

n

j
wxf (3.5)

otherwise the pattern is assigned in class C1. Since wj and θ are constants values, the

Equation 3.4 and Equation 3.5 can be rewritten as shown in Equation 3.6 and Equation

3.7, respectively.

 () 0
1

=⎟
⎠
⎞

⎜
⎝
⎛ +∨

= jj

n

j
wxf (3.6)

 () 0'
1

=⎟
⎠
⎞

⎜
⎝
⎛ +∧

= jj

n

j
wxf (3.7)

The decision boundaries defined by Equation 3.4 in a 2ℜ space is shown in Figure

3.2a, and the corresponding space for Equation 3.5 is shown in Figure 3.2b.

class
C1

class
C0

-w2

-w1

X1

X2

a

class
C1

class
C0

-w2

-w1X2

X1

b
Figure 3.2 Decision boundaries defined by the morphological perceptron. (a) Decision boundary defined a
neuron using the mathematical model in Equation 3.6 and (b) decision boundary defined by a neuron using

the mathematical model in Equation 3.7 in a 2ℜ dimensional space.

Sussner (Sussner 1998) described the effects produced applying different pre-

synaptic values to the morphological model shown in Equation 3.1. The value of r

represents the pre-synaptic response at i-th synapse. A value of ri = -1 represents an

inhibitory response and a value of ri = +1 means an excitatory response. Figure 3.3 shows

the different resulting effects produced in the decision boundaries defined in a 2ℜ space

19

V,+

+

+X2

X1
w1

w2

 -w1

-w2

X
1

X2

C1

C0

V,+

-

X2

X1

-

w1

w2

-w1

-w2

X1

X2

C0

C1

V,+

+

-X2

X1
w1

w2

-w1

-w2

X1

X2

C1

C0

V,+

-

X2

X1
w1

w2

+ -w1

-w2

X1

X2

C0
C1

Figure 3.3 Resulting decision boundaries produced by changing pre-synaptic values of a morphological

neuron using a maximum operator in a 2ℜ space.

Since the morphological neuron can use two different operators, the maximum

operator from Equation 3.1 can be replaced by a minimum operator. The resulting

decision boundaries assigning different pre-synaptic values are shown in Figure 3.4.

20

 ,+

+

+X2

X1
w1

w2

V

-w1

-w2

X1

X2

C1

C0

 ,+

V

-

X2

X1

-

w1

w2

-w1

-w2

X1

X2

C0

C1

 ,+

V

+

-X2

X1
w1

w2

-w1

-w2

X1

X2

C1
C0

 ,+

V

-

X2

X1
w1

w2

+

-w1

-w2

X1

X2

C0

C1

Figure 3.4 Resulting decision boundaries produced by changing pre-synaptic values in a morphological

neuron using a minimum operator in a 2ℜ space.

3.4 EXAMPLE

Lets define classes C0= {(0,0) }, C1= {(1,0), (0,1), (1,1)}, as shown in Figure 3.5.

In order to classify these patterns the morphological operator used by the neuron must be

a maximum operator (∨), the corresponding connection weights may be
2
1

1 −=w

and
2
1

2 −=w , and the pre-synaptic values must be r1 = +1 and r2 = +1.

-w2

-w1

1

1

Class C0

Class C1

X2

X1

Figure 3.5 Decision boundary of the morphological perceptron

21

The morphological perceptron can be tested using patterns p1 = (0, 0) and p2 =

(0,1). Pattern p1 is classified in class C0, as shown in Equation 3.7. Pattern p2 is classified

in class C1, as shown in Equation 3.8.

1 1 1 1 11 0 1 0 0
2 2 2 2 2

f f f⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞+ − ∨ + − = − ∨ − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
i i (3.7)

1 1 1 1 11 1 1 0 1
2 2 2 2 2

f f f⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞+ − ∨ + − = ∨ − = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
i i (3.8)

3.5 MULTILAYER MORPHOLOGICAL PERCEPTRON

The limitations of Single Layer Morphological Perceptron become evident when

the patterns are grouped in multiple clusters, and those subsets can no be separated by a

single morphological neuron. A traditional example is the XOR logic function. The XOR

is a binary operator on {0,1}2 such that for all

2(,) {0,1}a b ∈ ,

0 if
 XOR

1 else
a b

a b
=⎧

= ⎨
⎩ (3.4)

Two different classes C0= {(0,0), (1,1)}, and C1= {(1,0), (0,1)} are defined as shown in

Figure 3.6. The multilayer morphological perceptron is able to overcome this problem by

adding additional hidden layers which process the output of the first layer resulting in a

nonlinear decision boundary.

22

-w2

-w1

1

1

Class C0

Class C1

½

½

x2

x1

Figure 3.6 Decision boundaries for the XOR classification problem using morphological neurons.

It is not possible to separate patterns from class C0 and class C1 with a single

morphological neuron, to classify these patterns correctly the output of two neurons in the

first layer must be combined, and connected to a neuron in a second layer as shown in

Figure 3.7.

X1

X2

+

-½

-½

+

+

-

-

 -½

 -½
+0

,+

,+

,+

0

Figure 3.7 Morphological neural network used to solve the XOR classification problem.

23

CHAPTER 4

4 EVOLUTIONARY ALGORITHMS

4.1 INTRODUCTION

Evolutionary Algorithms (EA) are based on the idea that basic concepts of

biological reproduction and evolution can be used as a model to solve problems using

computers to emulate the same process. Evolutionary Algorithms are a robust heuristic

search and optimization mechanism which can be applied to problems where normal

solutions are not available or generally lead to unsatisfactory results. The most important

areas of research in simulated evolution are: evolutionary strategies, evolutionary

programming, and genetic algorithms. The three main operators in Evolutionary

Algorithms are selection, recombination, and mutation. A population of possible

solutions is maintained and encoded into data structures called chromosomes of an

organism. Elements of the population are able to mate, mutate, and evolve, directed by

the fitness funtion that evaluates the quality of the population with respect to a preset

goal.

4.2 SEARCH ALGORITHMS

The goal of optimization problem is to find the best solution where several

feasible solutions are available. An evaluation function or fitness function is used for

determining how good each particular solution is and the goal is to find the best solution.

Given a set of possible solutions, also know as search space, there may be several local

24

maximum or sub-optimal values, but the over all highest value of the set is considered the

optimal value. If the search space is small, all the possible solutions can be examined, but

as the search space grows in size, this exhaustive search becomes impractical.

In a particular problem, the search space and the evaluation function for the

elements in the search space in terms of performance define a landscape. The landscape

consists of hills, valleys, and other geographical features. Figure 4.1 shows some features

that may exist in the resulting landscape. Points a, d, f, and h are the top of the hills

surrounded by points with lower values. Points c, e and g are the bottom of the valleys,

surrounded by other points with higher values. Point b in the graph is the middle of a

plateau. The performance of the points next to the plateu are exactly the same.

0 100
0%

100%

a

b
c

d
e

f

g

h

Figure 4.1 Search space’s landscape

Traditional search algorithms, such as the gradient descent, examine a point in the

search space at the time, and the next point to be examined is obtained based on the

current position. Usually, the next point to be examined has better performance than the

previous point. The process continues until the top of a hill is reached. This point may be

a local maximum, however since the new position is based on the previous one, it may

25

not be possible to make a drastic move to get onto the slope of a higher hill, this is known

as the hill climbing effect. Another deficiency of this algorithm is that it is possible to get

stuck on a plateau. This may happen if the algorithm is unable to move far away from the

flat region. Another problem with this algorithm comes from the fact that the final result

depends on the starting search point, it may be possible that different starting points

produce different results. However this can be considered as an advantage because

different results may provide the best solution among all local maximum points.

4.3 EVOLUTIONARY COMPUTATION

Evolutionary Algorithms is based on the basic concepts of biological reproduction

and evolution that is used as a model to solve problems using computers to emulate the

same process. All possible solutions for a problem are represented with a particular

genetic representation scheme. A set of solutions or individuals is generated to form the

initial population of organisms, as shown in Figure 4.2. Each organism is evaluated using

a fitness function specific to the problem. The fitness function measures the performance

of the organism according to specific characteristics. Using a particular selection

algorithm based on the fitness value, some organisms are chosen to be the parents for the

next generation. New organisms, also known as offspring are produced after the

information contained in the parents is combined using reproduction operators such as

crossover and mutation. Finally, some organisms are selected from the old population and

from the new offspring to form the population for the next generation. These steps are

repeated until a solution that satisfies the selected criteria is found.

26

Evolutionary algorithms overcome some of the deficiencies presented by the hill

climbing effect by exploring a set of possible solutions at the same time. Since

evolutionary algorithms are population based, even if some of the solutions in the initial

population are a plateau or a local maximum, the genetic operations may be able to

produce a totally different set of possible solutions in the next generation, moving the set

of solutions toward the global maximum. In addition, several initial population sets may

lead to similar final set if the desired feature is present in the initial population.

Create a randomly chosen
initial population of size k

Create a phenotype
from each genotype

Evaluate each individual
phenotype and assign a

fitness value to it

Select I (i<k) genotypes,
each chosen with a

probability proportional to its
phenotype fitness

Selection

Create h (h<=i) offspring
out of the i chosen parent

genotypes

Replace the h genotypes
of lowest fitness by the
new created offspring

true

START:

Cycle
of

EvolutionaryAlgorithms

(Recombination)
Mutation

Stop Condition
meet?

fa
lse

STOP

Figure 4.2 Cycle of Evolutionary Algorithms

4.4 GENETIC ALGORITHMS

Genetic Algorithms are robust search and optimization algorithms introduced by

Holland in 1970s. GA is one of the most popular areas of research in evolutionary

algorithms, particulary useful for multidimensional optimization problems in which the

chromosome can encode the values for different variables to be optimized. The most

important factors to consider in genetic algorithms as a search mechanism are:

representation scheme, fitness function, reproduction operators, and selection methods.

27

The genotype consists of a set of genes inherited from parents that code a trait.

The most common representation scheme uses a fixed length gene string. The gene may

be of any size, but usually it is binary. The gene may consist of a discrete set of values

represented by integers or by a continuous set of values represented by floating point

numbers, or a combination of them. Figure 4.3 shows how a single neuron may be

encoded into the genotype using integer numbers to represent the neuron operation and

pre-synaptic response, as well as floating point numbers to represent connection weights.

1 0 0.1 0.3 Genotype
X1 X2 X3 X4

in
t

in
t

flo
at

flo
at

Figure 4.3 Genotype representation using different types of representation for the genes.

The upper and lower bounds describe the valid range for each gene in the

chromosome. Each gene may be used individually or combined with other genes during

the decoding of the genotype into the phenotype. The phenotype manifests physical

properties of the individual. Each gene is associated to a special mapping function or

decoding function which translate the content of the gene into a physical property. Table

4.1 describes the mapping function associated to each gene in a chromosome.

operator post-
synaptic

connection weights

x1 {min,max} x2 {-1,1} x3 double (-10.0, 10.0) x4 double (0.0, 10.0)
0 min 0 -1 (20.0)* x3-10.0 (10.0)* x4+0.0
1 max 1 1

Table 4.1 Mapping function for each gene from the genotype shown in Figure 4.3.

The fitness function must be able to evaluate every component in the gene string.

The fitness function is always specific to the problem and measures the performance of

the organism in terms of how good is the solution for the problem.

28

The most common reproduction operators are crossover and mutation. The

crossover combines the genetic information from parents and produces offsprings that are

consistent with the representation scheme. The resulting offspring may be completely

different to either parents, slightly different or even the same as the parents. Two

crossover mechanism used in this thesis are the arithmetic crossover and order base

crossover. Arithmetic crossover selects a random weight []0,1w∈ and creates children

from weighted averages of the parents, as shown in Equation 4.1. Figure 4.4 shows an

example of crossover of two parents, and the resulting offspring.

 1 1 2

2 2 1

offspring = parent +(1-) parent
offspring = parent +(1-) parent

w w
w w

⋅ ⋅
⋅ ⋅

 (4.1)

0 1 0.20 0.80 1 1 0.50 0.60

0.0 0.2 0.04 0.16 0.8 0.8 0.40 0.48

(0.2) + (1-0.2)=

+ 0.8 1.0 0.44 0.64

parent2parent1

offpring1

=

(weight)

Figure 4.4 Arithmetic crossover of two parents producing one offspring.

It is important to remember that each gene in the resulting offspring needs to

enforce the range constrains defined for it, for this reason the first two genes in the

resulting offspring are rounded because only integer values are allowed in those genes, as

shown in Figure 4.5

Genes Constrain
Reinforcement 1 1 0.44 0.64 0.8 1.0 0.44 0.64

Figure 4.5 Gene contrain reinforcement after crossover.

The mutation introduces additional information that the crossover is not able to

introduce, since the crossover only recombines the information from the parents. The

most commonly used mutation is the single point mutations. Single point mutation selects

29

a gene randomly and changes its content enforcing the range constrains defined for the

gene, as shown in Figure 4.6.

1 1 0.44 0.64 1 0 0.44 0.64
original offspring mutated offspring

Figure 4.6 Single point mutation

The selection method chooses the organism to be parents based on the fitness

value. According to the fitness value the probability of being selected as parent is

assigned to the organism. That organism that has non-zero fitness may become a parent.

One common selection method is the wheel roulette selection. The wheel roulette method

assigns the probability to each organism and the fitness value for that organism is divided

by the total sum of the fitness values for the population.

4.5 GENETIC PROGRAMMING

Genetic Programming (GP) (Koza 1992) is an extension of the genetic model for

learning into the space of feasible solutions. The objects in genetic programming are

programs that represent organisms that when executed are candidate solutions to the

problem. These programs are expressed as parse trees, rather than as lines of code.

Differing from genetic algorithms these objects are not fixed-length character strings.

4.5.1 Cartesian Genetic Programming
The Cartesian Genetic Programming (CGP) (Miller and Thomson 2000, Miller

2001) method is represented as an indexed directed graph of nodes. Distributed in a

rectangular array. The nodes represent operations on the data received by the inputs.

Integer values are assigned to inputs, nodes, operations, and outputs. Node operations

may be simple operations such addition, subtraction, multiplication or division.

30

The genotype is represented as a fixed length array of integers, as shown in Figure

4.7. The genotype maintains a list of the inputs and the function associated to a particular

node as shown in Figure 4.8. A unique integer value is assigned to all the inputs, nodes

and output. The information maintained by the nodes is encoded in the chromosome. The

first three integers in the chromosome encode the information from the upper left node

shown in Figure 4.8. The first two values represent the inputs received by the nodes, and

the third value represents the node operation or function. The last elements from the

chromosome indicate the output nodes. Variable length phenotypes are produced by

unexpressed genes carried in the genotype, as shown in Figure 4.9. Unexpressed genes

are those nodes that are not in the path of nodes that directly connect from the input layer

to the output layer.

Genotype
1 2 7 3 3 4 1 4 4 3 2 1 8 5 3 4 7 4 7 4 2 7 5 3 5 9 8 9 11 4 8 6 3 7 12 1 9 15

Figure 4.7 Representation the genotype in CGP

 1 .

 2 .

 3 .

 4 .

 1 .
 2 .

 5 . 2

 3 .
 3 .

 6 . 4

 1 .
 4 .

 7 . 4

 3 .
 2 .

 8 . 1

 8 .
 5 .

 9 . 3

 4 .
 7 .

 10 . 4

 7 .
 4 .

 11 . 2

 7 .
 5 .

 12 . 3

 6 .
 9 .

 13 . 1

 9 .
 11

 14 . 4

 8 .
 6 .

 15 . 3

 7 .
 12

 16 . 1

 9 .

 15 .

OutputsInputs
Phenotype

Figure 4.8 Graph of nodes used to represent the phenotype in CGP.

31

2

4

4

1

3

4

2

3

1

4

3

1

Figure 4.9 Resulting organism with unexpressed nodes

32

CHAPTER 5

5 LITERATURE REVIEW AND PREVIOUS WORK

5.1 INTRODUCTION

This chapter describes the use of Evolutionary Learning algorithms as a learning

tool for traditional neural networks in addition to different evolution trends in

evolutionary artificial neural networks including evolution of connection weights, and

evolution of architecture. Finally, this chapter describes the learning algorithms currently

used for multilayer morphological perceptrons.

5.2 EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS

The algorithm most widely used to train neural networks is the back propagation

algorithm which is a local gradient search method. Convergence is not always obtained

and the algorithm may get stuck in a local maxima. On the other hand, evolutionary

algorithms (Fogel 1994, Fogel and Fogel 1996, Saravanan and Fogel 1995) usually avoid

local maxima by searching in several regions simultaneously. And the only information

they need is some performance value that determines how good a given set of weights is

and no gradient information is required. Several studies have been conducted in the

Evolutionary Artificial Neural Network (EANN) field as an alternative to the gradient

information. EANN refers to an Artificial Neural Network that uses Evolutionary

Algorithms to evolve connection weights and architecture (Yao 1999). EANN can be

33

seen as a system that adapts the architecture and rules dynamically without human

intervention.

Evolution in artificial neural networks can be found at three different levels:

connection weights, architectures, and learning rules (Branke 1995), (Espacia-Alcaza and

Sharman 1996), (Fukuda and Kohno and Shibata 1993), (Gruau 1992), (Harp and Samad

and Guha 1989), (Hintz and Spofford 1990), (Howard 1995), (Jacob and Rahder 1993),

(Miller and Todd and Hegde 1989). Most of the studies focus on three different

approaches. The first approach is fixed architecture and the evolutionary algorithm is

used to search for a set of weights that best performs on the network. In the second

approach, evolutionary algorithms are used to develop, simultaneously, connection

weights and network architecture. In the last approach, the evolution of learning rules can

be regarded as a process of “learning to learn”.

Using fixed architecture method, the architecture of an Artificial Neural Networks

is known before the learning process, and it does not changed during the evolution of the

connections weights. Evolutionary Algorithms can be used in the evolution to find a sub-

optimal set of connection weights globally without computing gradient information.

Many research and application has been conducted in evolutionary algorithms (Miller

and Todd and Hegde 1989), (Koza 1992), (Kitano 1990), (Gruau 1992), (Yao 1999)

because they can deal with very large, complex, not differentiable and multimodal

spaces.

Recently, a lot of research has been done to design architecture and weights of the

Artificial Neural Network simultaneously (Branke 1995), (Esparcia-Alcaza and Sharman

1996), (Gruau 1992), (Karunanithi and Das and Whithley 1992), (Kitano90), (Koza and

34

Rice 1991), (Koza 1992), (Jacob and Rehder 1993), (Vonk et al 1995). The architecture

of the Artificial Neural Networks includes the topological structure, i.e., connectivity and

transfer function of each node. One of the key issues in encoding the Artificial Neural

Network is to decide how much information should be encoded into the chromosome.

One of the methods is direct encoding of the neural network, where details of the neural

network are described in the chromosome in such a way that the gene may be used

directly as a working neural network (Whitley and Starkweather and Bogart 1990). Using

indirect encoding, only weight and biases details of the neural network are encoded in the

chromosome and no details of the connections are used (Kitano 1990), (Koza 1992),

(Gruau 1992), (Luke and Spector 1996).

Two different approaches can be taken in the direct encoding: the first separates

the evolution of the architecture from that of the connection weights (Howard 1995). The

second approach evolves the architecture and the connection weights simultaneously

(Koza 1992), (Gruau 1992), (Gruau and Whitley and Pyeatt 1995).

Indirect encoding has been used to reduce the length of the genotype

representation of the network architecture (Gruau 1992), (Hussain and Browse 1998),

(Kitano90), (Luke and Spector 1996). Different indirect encoding schemes include

structural encoding, parametric encoding, and grammar encoding.

Structural encoding defines the structure of the network is embedded in the

chromosome. Koza (Koza and Rice 1991), (Koza 1992), applied genetic programming to

discover both the architecture and the weights of a neural network. In this work, the

neural network was represented as a point-labeled tree. Parametric encoding uses certain

important aspects of neural network architecture (such as the number of hidden layers,

35

the number of hidden nodes in each layer, etc.) and is represented by fixed parameters

(Harp and Samad and Guha 1989), (Harp and Samad and Guha 1990).

Another technique is grammatical encoding, where the neural network is

represented as a sentence of a special language described by a grammar. Two basic

approaches to grammar encoding include developmental grammar encoding, and

derivation grammar encoding. Developmental grammar encoding describes the

chromosome by grammar rules that will be used to develop a specific neural network

structure (Kitano 1990). Derivation grammar encoding design a single fixed grammar and

the chromosome contains the derivation sequence which define the network architecture

(Jacob and Rehder 1993), (Gruau 1992).

Gruau (Gruau 1992), Gruau and Whitley (Gruau and Whitley 1993), Gruau and

Whitley and Pyeatt (Gruau and Whitley and Pyeatt 1995) and Esparcia-Alcazar and

Sharman (Esparcia-Alcazar and Sharman 1996) have used genetic programming to create

the topology for recurrent neural networks. Luke and Spector (Luke and Spector 1996)

showed that graphs and networks can be evolved using an edge encoding scheme.

Hussain and Browse (Hussain and Browse 1998) proposed the use attribute grammars in

creating a useful and compact genetic encoding of neural networks.

5.3 MORPHOLOGICAL LEARNING ALGORITHMS

There are very few learning algorithms proposed for Morphological Neural

Networks. Ritter and Sussner (Ritter and Sussner 1996), proposed an algorithm to train

single layer morphological perceptrons on nℜ space. Sussner (Sussner 1998), proposed a

two layers morphological perceptron training algorithm. Differing from the classical

36

perceptron learning rule, these algorithms converge in a finite number of steps. Lima

(Lima et al. 2001) proposed a hybrid algorithm which combines evolutionary algorithms

with a nonlinear optimization method based on gradient information to accelerate the

convergence. No comprehensive evolutionary algorithms had been presented at this time

to train morphological perceptrons

37

CHAPTER 6

6 EVOLUTIONARY LEARNING METHODS FOR
MULTILAYER MORPHOLOGICAL

PERCEPTRONS

6.1 INTRODUCTION

Evolutionary learning algorithms had proven to be successful training traditional

neural networks. The chapter describes how to separate patterns into multiple classes

using a multilayer morphological perceptron. In addition, three comprehensive learning

algorithms based on evolutionary algorithms are presented. Two learning algorithms are

based on genetic algorithms and a third one is based on Cartesian genetic programming.

6.2 CLASSIFICATION OF PATTERNS INTO MULTIPLE CLASSES

In general, a morphological perceptron can separate only two classes. In order to

classify multiple classes, a vector that contains a binary pattern is assigned to each class,

for example:

0

1
0

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ ,

1

0
1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ and

2

1
1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A neural network may be trained for each entry in the classification vector. A

neural network used to classify all test patterns for the first entry in the vector correctly,

requires to assign test patterns from classes that have the value of 0 to a temporary class

Ct0, otherwise to class Ct1. Those temporary classes will be used during the training

process of the neural network. Figure 6.1a shows the set of test patterns, and their

38

corresponding binary vector. Figure 6.1b shows how all test patterns have been regrouped

into temporary classes. A multilayer morphological perceptron is built in such a way that

it will be able to separate the patterns in the new classes Ct0 and Ct1. The output of that

network is assigned to the first entry in the binary vector. Figure 6.1c shows that the test

patterns must be regrouped in order to build the neural network for the second entry in

the binary vector.

⎥
⎦

⎤
⎢
⎣

⎡
0
1

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
1
0

C1

C2 C0 Ct1
Ct1

Ct0
⎥
⎦

⎤
⎢
⎣

⎡
1
0

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

Ct0
Ct1

Ct1
⎥
⎦

⎤
⎢
⎣

⎡
1
0

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

Figure 6.1 Distribution of patterns into temporary groups used during the training process.

6.3 DIRECT ENCODING LEARNING ALGORITHM FOR MULTILAYER
MORPHOLOGICAL PERCEPTRONS

The proposed algorithm identifies a set of connection weights, and neuron

properties of a two layers feed forward morphological perceptron with only one output.

Genetic algorithms are used to search for the connections weights, pre-synaptic

and post-synaptic response values, and neuron operations given a neural network

architecture defined before the learning process. The neural network architecture consists

of one neuron or two layers feed-forward neural network with only one output node. All

the morphological neurons in the neural network use the hard limit transfer function

previously defined in Equation 3.2. In addition, the number of neurons and neuron

distribution must be known before the training process take place. All the neurons are

fully connected, which means that all the neurons in the first layer receive as inputs all

39

the connections from the inputs layer, and all the neurons in the first layer connect to the

neuron in the second layer.

6.3.1 Organism Representation

The phenotype is directly encoded into the genotype, which means that all the

genetic information related to the network architecture, connection weights, and neuron

information is represented in the genotype. The multilayer morphological perceptron is

encoded into the genotype using a tree data structure, where each node in the tree

represents a neuron, and each branch represents a connection between two neurons. The

terminal nodes of the tree structure represent the input layer of the network. The tree

structure representation was selected because it perfectly matches the topology of the

multilayer morphological perceptron. Figure 6.2 shows an example of how a multilayer

morphological perceptron may be encoded into a tree data structure.

x1 x2Inputs

Output

a
x1 x2 b

Figure 6.2 Tree based encoding. (a) Morphological neural network, (b) the corresponding representation in
a tree structure.

Each node contains special registers that maintains a list of the inputs for the

node, in addition to connection weights, synaptic values for each connection, and neuron

40

operation (maximum or minimum). Since the same transfer function is used for all the

neurons in the neural network, it is not necessary to encode it into the genotype.

6.3.1.1 Selection

Rank selection is used to select the group of individual that will become parents

for the next generation. A rank selection rank each individual and a fitness value is

assigned according to the rank R it receives. The worst individual receives the value of 1,

the second worst receives the value of 2 up to the best individual that receives the value

of N (the number of individuals in the population). The probability of an individual i to

be selected is shown in Equation 6.1.

 ()()
1

2

RP i
N N

=
+

 (6.1)

6.3.1.2 Recombination

Offspring are produced when the genetic information from two parents is

combined by genetic operators such as crossover. The crossover selects two parents

randomly, as shown in Figure 6.3, then a node on each parent is randomly selected and

all the information about the node is exchanged between the parents. The crossover point

may be the root node (the output neuron), or a terminal node of the tree, but only nodes

from the same level in both parents can be exchanged.

Arithmetic crossover is used to combine all the information between two nodes.

Arithmetic crossover selects a weight at random and creates children from paternts

weighted averages. It can be used to combine the floating point values of the connection

41

weights, as well as the integer values used to represent the pre-synaptic and post-synaptic

response and the neuron operation.

This network representation using a tree structure format allows the algorithm to

perform operations such as crossover replacing or switching whole neurons between

parent networks.

O1

O2 O3 O4

x1 x2

P1

P2 P3 P4

x1 x2

Parent 1 Parent 2

a

O1

O2 O3 P’4

x1 x2

P1

P2 P3 O’4

x1 x2

Offspring 1 Offspring 2

b
Figure 6.3 Crossover. (a) Initial parents. (b) New individuals formed using syntactically constrained

crossover

6.3.1.3 Mutation

Due to the nonlinear nature of the fitness function, adaptive mutation is used in

this implementation. The mutation is applied in two different ways. In the first case, a

node is selected randomly, and then some of the information in the registers for that node

is changed according to specific probabilities. The weights are adjusted by adding or

subtracting random values in a predefined range.

On the other hand, as the fitness of the best organism reaches a threshold, the

mutation probabilities of most of the MLMP parameters are reduced to minimal values

(close to 0%), with the exception of the connection weights mutation probability, which

42

remains unchanged. In addition, the range in which the connection weights can change is

reduced. This approach reduces the chance of an organism to mutate as the problem starts

to converge. This approach is very important in this kind problem due the nonlinearity

and discontinuity of the fitness function and the neural computational model.

6.3.1.4 Evaluation Function

The fitness function for this application has different components, such as the

Mean Square Error of the classified patterns and other parameters related to the network

architecture. The ideal scenario would be to get the same number of decision boundaries

and number of neurons to be the same. This means optimum performances is obtained

avoiding possible decision boundaries overlapping.

The fitness function for an organism that decodes into a single layer

morphological perceptron is evaluated according to the performance in classification of

the data set used during training, based on the Mean Square Error (MSE) shown in

Equation 6.2.

2

1

1 ()
N

i i
i

MSE y d
N =

⎡ ⎤= ⋅ −⎢ ⎥
⎣ ⎦
∑

 (6.2)

where N is the total number of patterns used during the training, yi is the class where

pattern xi belongs and di is the class assigned by the neural network.

For a two layers morphological perceptron, the organism is evaluated according to

its classification performance in addition to a penalty assigned to the number of

redundant perceptrons in the network. A perceptron p1, shown in Figure 6.4a, is

considered to be redundant in relation to perceptron p2, shown in Figure 6.4b, if the

43

region defined by the perceptron p1 in the nℜ space is equal to the region produced by a

perceptron in the second layer which receives the outputs from perceptrons p1 and p2 as

inputs, as shown in Figure 6.4c. The resulting fitness function used to evaluate the

individuals is shown in Equation 6.3.

 1 2 2() (1) / tf o k MSE k p C= ⋅ − + ⋅ (6.3)

where weighting factors
1

1
3

k = ,
2

2
3

k = are used, t is the number of neurons in the first

layer, p is the number of non redundant perceptrons in the first layer, and

()

!
! !

n
m

n nC
m m m n
⎛ ⎞

= =⎜ ⎟ −⎝ ⎠
 (6.4)

that represents total possible neuron-boundary combinations.

X2

X1 X1

X2
X2

X1

X1

2

-3X2 ,+

-2
-2 -2

2 2
2

-
-X1

1

-2X2 ,+-
+ 1

-2
,+-

+

X1

 2

-3

X2

,+-
- 0

0
,++

+

Class C1

Class C0

Class C0

Class C1

Class C0

Class C1

 a. b. c.

Figure 6.4 Redundant perceptrons. Region produced by two perceptrons (a) and (b), are combined into a
perceptron in the second layer (c). The resulting region does not differ from region defined by perceptron

(b).

6.4 INDIRECT ENCODING EVOLUTIONARY LEARNING ALGORITHM FOR
THE MULTILAYER MORPHOLOGICAL PERCEPTRON

The proposed algorithm identifies the number of necessary neurons needed to

perform the classification, connection weights, and defines architecture for multilayer

morphological perceptrons used for pattern classification.

44

Figure 6.5 shows a 2ℜ space where patterns are grouped into clusters. The

boundaries for these clusters can be approximated by succession of rectangular regions,

where the corners of each of these regions can be seen as the decision boundaries of a

morphological perceptron. The same concept can be extended to a higher domain space.

Class 0

Class 1

Figure 6.5 The region of the class C0 is approximated by a succession of rectangles.

The problem is restated in such a way that the solution for the new problem

results in a simpler representation. Instead of searching for the optimal architecture, set of

connection weights, connection distribution, and neuron properties, the algorithm

searches for those hypercubes that enclose all the patterns in class Ct0, without including

patterns in class Ct1. Once a solution is found, the corners of the regions are used as

decision boundaries, and a MLMP is built using the indirectly encoded information.

The genotype maintains the necessary information to rebuild a MLMP based on a

set of rules. No information about the neuron inter-connections, connection weights,

neuron parameters, and neuron distribution in layers is directly represented in the

chromosome. All genotypes map to valid phenotypes. The genotype consists of an array

of integer values. Each element represents a pattern from the class C0. In addition, the

genotype maintains information that identifies how the patterns are grouped.

45

It is important to describe the neural network architecture defined by the

algorithm. Figure 6.6 shows an example of how the neural network architecture may

look. The following rules are used to build MLMP that defines hypercubes enclosing

patterns:

1. Resulting MLMP consists of three layers. Two layers MLMP are built when one

hypercube enclose all the patterns.

2. All the neurons in the first layer use the maximum operator.

3. Two neurons in the first layer who that forward their output to a neuron in a second

layer define a hypercube. The value of +1 is assigned to the all the pre-synaptic value

for the neuron that defines the upper-right boundary and -1 is assigned to all the pre-

synaptic values for the neuron that defines the lower-left boundary. Both neurons in

the first layer use the maximum operator.

4. All the neurons in the second layer use the maximum operator, assign 0 to all the

connection weights, and +1 to all the pre-synaptic values.

5. The last layer consists of one morphological neuron, which uses the minimum

operator. The neuron receives variable number of inputs depending on the number of

hypercubes defined by the genotype. All the connection weights are assigned to 0,

and the pre-synaptic values are assigned to +1.

6. All the post-synaptic values for all the neurons in the MLMP are set to +1.

6.4.1 Encoding of the Genotype
The way the problem is encoded into the chromosome affects the performance of

the algorithm. Differing from other approaches, in this algorithm nothing regarding to the

connection weights or the relationship between the neurons, or the neural network

46

architecture is encoded into the chromosome. The chromosome keeps only enough

information to identify each of the patterns from the class Ct0. Inside of the chromosome

or genotype, there are groups or set of patterns, each of them represents clusters of

patterns. Each set must contain at least one pattern, and no empty groups are allowed.

X1

X2

+
0

 w
1

1,1

w
1 2,1

+

+

+

+

 w 1
1,2

 w 1
2,2

+
0

,+

,+

,+

+

0

+0

Xm

Xn

+
0

 +

+

+

+

+0

,+

,+

,+

+

0

,+

+

.

.

. +

+ ,+
+

+

0

,+

0
+

+ ,+

.

.

.

.

.

.

+

Figure 6.6 Shows how the morphological neural network architecture may look.

Example in Figure 6.7 shows class Ct0 which contains 10 patterns in a 2ℜ space,

identified as P# enclosed by a square, where # is an integer value used to identify each

pattern. The patterns that do not belong to the class Ct0 are represented by circles. It is

important to mention that only those patterns that belong to class Ct0 are encoded into the

chromosome, using an integer value that corresponds to each pattern. When the initial

population is generated, the patterns are randomly distributed into the chromosome in no

particular order and the groups are randomly generated. Figure 6.8 shows how patterns

47

may be encoded in the chromosome, in addition to the graphical representation of the

hypercubes that enclose the pattern groups represented in the chromosome

The elements from each group are used to define the limits of the hypercube

which are used as the decision boundaries for the MLMP. A hypercube that includes all

the elements for that particular group is defined for each group in the chromosome. The

boundaries are used as the set of connections weights for neurons in the first layer.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Class Ct0

Class Ct1

a

P10 P3 P1 P8 P9 P4 P2 P6 P7P5
 b

Figure 6.7 An example of how the patterns may be encoded into the chromosome of a randomly generated
organism

6.4.1.1 Recombination

The crossover used in the implementation of the algorithm selects a set of n

elements randomly distributed from different groups defined in the chromosome of the

first parent. The selected elements are identified and their positions are exchanged in the

first chromosome, according to order they appear in the second parent. The process is

repeated again, but this time the exchange of elements is done in the second parent based

on the order they appear in the first parent.

Figure 6.8a shows the chromosome of parent 1, with 10 patterns coded on it.

Also, Figure 6.8b shows the hypercube for each group defined in the chromosome. Figure

48

6.9a shows the chromosome of the second parent as it will be used for the crossover

process.

P10 P3 P1 P8 P5 P4 P2 P6 P7P9
a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct0

Ct1

b
Figure 6.8 (a) Chromosome of first parent and (b) the corresponding set of hypercubes.

P3P1P5P9 P4 P2 P3P10 P8P7 P6
 a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

b
Figure 6.9 (a) Second parent used for the crossover and (b) the corresponding set of hypercubes.

49

P10 P3 P1 P8 P5 P4 P2 P6 P7P9
a

P10 P3 P1 P8 P9 P4 P2 P6 P7P5
b

Figure 6.10 (a) First parent before the crossover and (b) the resulting offspring.

Assume P9 and P5 are the selected elements from the first parent, as shown in

Figure 6.10a. Now these elements are identified in the second parent and the order is

exchanged according the way they appear in the second parent. The final result after the

elements are exchanged is shown in Figure 6.10b and the resulting set of hypercubes is

shown in Figure 6.11. To obtain the second offspring the process is repeated, but this

time the selection and exchange of the elements is done in the second parent according to

the order they appear in the first parent.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

Figure 6.11 Hypercubes for the resulting offspring.

6.4.1.2 Mutation

Mutation operation in the proposed algorithm consists of two possible operations:

fusion of two groups or division of a group into two new groups. In fusion of two groups,

two groups are randomly selected, and then all the elements of these two groups are

combined to create a new group. The other groups in the chromosome remain untouched.

50

Figure 6.12a shows an example of how the groups are defined before mutation and

Figure 6.12b shows the resulting chromosome after mutation. In this type of mutation

elements from different hypercubes are regrouped into one hypercube. This mutation

operation promotes the combination of elements that may be grouped together into a

single hypercube. Figure 6.13 shows the graphical effect of the mutation.

P4 P2 P5 P7 P10P8P1P9 P3 P6
a

P4 P2 P5 P7 P10P8P1P9 P3 P6
b

Figure 6.12 (a) Chromosome before mutation and (b) after mutation using group division.

Another possible mutation operation may be the redistribution of the elements in a

group into two different groups. In this case, one group must be selected and all the

elements of the group are distributed randomly between the two new groups. Figure

6.14a shows an example of a chromosome before mutation and Figure 6.14b shows the

resulting chromosome after mutation, where elements of a group have been distributed

into two different groups. This mutation operation promotes the separation of elements

that should not be in the same group. Figure 6.15 shows mutation effect changes the

definition of the hypercubes.

6.4.1.3 Decoding the Genotype

The groups encoded in the chromosome define hypercubes, whose boundaries are

used as the connection weights for the neurons in the first layer of the MLMP. Each

group in the chromosome defines a hypercube large enough to enclose all the patterns

assigned to that particular group. Figure 6.16a shows an example of a chromosome and

51

Figure 6.16b shows the corresponding maximum and minimum values for the hypercube

that enclose all the patterns defined in the first group in the chromosome.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct0

Ct1

b
Figure 6.13 (a) The effect in the regions defined by the groups in the chromosome before mutation and (b)

after mutation.

P3P1P5P9 P4 P2 P6P7 P8P10 P3
 a

P3P1P9 P6P7 P8P10 P3P2P4P5
 b

Figure 6.14 (a) Chromosome before mutation and (b) after mutation by combining two groups.

52

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

b
Figure 6.15 (a) Graphical effect of mutation in the regions defined by the groups in the chromosome

before mutation and (b) after mutation.

The maximum and minimum values for each dimension of the hypercube are used

as the connection weights for neurons in the first layer. The maximum values are

assigned to the neuron with all the pre-synaptic values as +1, as shown in Figure 6.17a,

and the minimum values are assigned to the neuron with all the pre-synaptic values as -1,

as shown in Figure 6.17b. These two neurons are connected to another neuron in the

second layer, as shown in Figure 6.18. As can be seen in Figure 6.18, three neurons are

needed to define a single hypercube.

53

P3P1P5P9 P4 P2 P3P10 P8P7 P6
a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

max_X2_h1

min_X2_h1
m

in
_X

1_
h1

m
ax

_X
1_

h1

Class Ct1

Class Ct0

b
Figure 6.16 (a) An organism encoded into a chromosome and (b) the corresponding hypercube for the first

group defined in the chromosome.

X1
-max_X1_h1

-max_X2_h1
+

+
X2

,+

 a

X1
-min_X1_h1

-min_X2_h1

-

-
X2

,+

 b
Figure 6.17 (a) Upper-right corner of the hypercube and (b) lower-left corner of the hypercube.

 -max_X1_h1

 -m
ax

_X2_h1

+

+ ,+X1
 -min_X1_h1

-min_X2_h1

-

-X2 ,+

0

0

+

+ ,+

Figure 6.18 Neural network for a single hypercube.

54

The boundaries of the second hypercube are used to build another branch that will

be added to the final neural network. Figure 6.19 shows the region defined by the second

hypercube and Figure 6.20 shows the neural network that defines that particular

hypercube. As can be seen in Figure 6.21, these two branches are combined as the inputs

to a neuron in the third layer.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

max_X2_h2

min_X2_h2

Class Ct1

Class Ct0

Figure 6.19 Region defined by the second group in the chromosome.

 -max_X1_h2

 -m
ax

_X2_h
2

+

+ ,+X1
 -min_X1_h2

-min_X2_h2

-

-X2 ,+

0

0

+

+ ,+

Figure 6.20 Resulting neural network for the second hypercube.

55

 -max_X1_h2

 -max_X2_h2

+

+ ,+

X1

 -min_X1_h2

-min_X2_h2 -

-

X2

,+

0

0

+

+ ,+

 -m
ax_X1_h1

-m
ax

_X
2_

h1

+

+ ,+

 -min_X1_h1

-m
in_X2_

h1

-

- ,+

0

0

+

+ ,+
0

0

+

+ ,+

Figure 6.21 Resulting neural network for the chromosome defined in Figure 6.16a.

6.4.1.4 Evaluation Function

Each organism must be evaluated according to the features it has and only those

organisms that have the desired features will survive and mate other organisms in order to

transmit their own characteristics to the future generations.

One of the most important factors to take in consideration must be the number of

misclassified patterns. Another important objective is the reduction of network

complexity by using the minimum number of neurons needed to classify all the patterns

correctly. This can be achieved by determining the minimum number of hypercubes

necessary to enclose all test patterns. When a hypercube is added or removed from the

chromosome, the architecture of the neural network changes. Changes are limited to the

architectural constrains previously established. New neurons are added or removed from

56

the first and second layer of the network as a hypercube is added or removed,

respectively.

The individual is evaluated according to the fitness function defined in Equation

6.4:

 ()()2() 1/ 1f o k l= + ⋅ (6.4)

where k is the number of patterns incorrectly classified. The value of l represents the

number of neuron groups defined in the chromosome. Each neuron group consists of

three neurons as shown in Figure 6.20. The fitness function minimizes the number of

misclassified patterns as well as the number of hypercubes or neurons used to solve the

problem.

6.4.1.5 Selection

A selection process is used to allow organisms who have higher fitness to transmit

their features with higher probability than those who have a lower fitness. In order to

consider that an organism is able to transmit their characteristics to future generations, the

best 50% of the population that meets the requirements is selected. This accelerates the

convergence reducing those members of the population that are not desirable. Wheel

roulette is used to select the group of organism that will become parents for the next

generation. The probability of an organism to be selected is equal to the fitness of the

organism divided by the total fitness of all the organisms.

57

6.5 TRAINING OF THE MULTILAYER MORPHOLOGICAL PERCEPTRON
USING CARTESIAN GENETIC PROGRAMMING

6.5.1 Encoding of the Genotype
The encoding used for this algorithm is based on Cartesian Genetic Programming.

Some adjustments have been done to adapt CGP to train morphological networks. The

most remarkable difference resides on the function used by the nodes. The proposed

algorithm uses the computational model of the morphological neuron described in

Equation 2.1 as the basic function for the nodes, contrary to the simple functions used on

traditional CPG. The computational model operates over the inputs of the node as if they

were the inputs of the neuron, which includes a set of connection weights, pre-synaptic

response, and neuron operation.

The number of nodes may vary from layer to layer, as shown in Figure 6.22.

Nodes are restricted to pass their outputs exclusively to nodes in the next layer; therefore

a layer can not be skipped. The third layer contains only one neuron and it is used as the

output node. All the nodes in the first layer are connected to all the inputs nodes, to

preserve all the signals from the patterns. These connections are fixed in the

chromosome, which means these values should not be changed by the reproduction

operators. In traditional CGP, all the nodes has the same number of inputs, but in this

approach this number may vary from layer to layer. Each node must have at least two

inputs, except the last node. The last node is a special node that can accept variable

number of inputs. It maintains a record of connected nodes and disconnected nodes in

addition to the node operation. The inputs received by this node may vary from 0 to the

total amount of nodes in the preceding layer.

58

Node operator in traditional Cartesian Genetic Programming can be used by all

the nodes in the grid. Differing from traditional Cartesian Genetic Programming, each

layer maintains a list of operators available for that particular layer. This means that

nodes from the first layer are not allowed to use node operations defined for the first

layer. As shown in Figure 6.22, fn,m denotes the function n defined for the layer m.

f5,1

f3,1

f3,1

f5,1

f2,2

f1,2 f1,3

f2,1

f8,1

f1,2

1

2

1

2

1

2

1

2

1

2

1

2

 1 .

 2 .

3

4

5

6

7

8

9

10

11

12 12 .

3

3

6

7

8

5

9

11

Inputs Outputs
Phenotype

Figure 6.22 Graph of nodes used in the algorithm

1 2 5 1 2 3 1 2 3 1 2 5 1 2 2 1 2 8 3 3 2 6 7 1 8 5 1 1 0 1 1

First Layer Second Layer Third Layer

node 3 node 12Genotype

Figure 6.23 Representation of the organism as an integer array.

Each layer of nodes uses a particular set of operators (or functions) defined for

each particular layer. The operations used by the algorithm maintain all the information

needed to reconstruct the neuron, including neuron operation, pre-synaptic response, and

connection weights. The set of operations defined for the first layer consist of all possible

combinations of neuron operations (maximum and minimum), pre-synaptic response for

each connection (+1, -1), and each test pattern in the class C0, used for the training. The

negative value of each dimension in the pattern is used as the weight for the neuron’s

59

connections. In the second layer, only two operations are used. In both operations all the

pre-synaptic values are set to be +1 and all the connection weights are set to be 0. The

difference in each neuron consist in the operation, one of the operations uses the

maximum operator while the other one uses the minimum operator. In the last layer, there

is only one operation available for the node. The operation consists of minimum operator,

all the pre-synaptic values are set to be +1, and connection weights are set to be 0.

The chromosome consists of an array of integer, which describes the information

contained in a node, as shown in Figure 6.23. The node consists of a set of inputs and an

operation. All the inputs and the operations are represented by integer values. The last

node consists of an input binary array of integers and the node function. Each binary

entry identifies which node from the second layer connects to the last node.

In order to reconstruct the morphological perceptron, the chromosome is analyzed

starting from the node in the right section of the chromosome. The last node maintains a

binary array that identifies which nodes from the previous layer forward their outputs as

inputs to the last neuron. The other neurons are added to the network in the same way as

in traditional CGP.

60

+

-

x1

x2

-

-

+

+

-

+

+

-

-

-

+

+

+

+

+

+

+
+

+

0

0

0

0

0

0

Figure 6.24 Resulting Morphological Neural Network after decoding of the chromosome with unexpressed

neurons.

6.5.2 Genetic Operators
The recombination of the genetic information is done using multipoint crossover.

The crossover consists of the selection of several nodes from one parent, each node

contains the inputs and function associated to that specific node. The first offspring, is

obtained exchanging the information contained on each node in the first parent with the

information from a node at the same position from the second parent.

Multipoint mutation is used to mutate the chromosome but a specialized mutation

rate is used in different regions of the chromosome to promote more changes on

particular areas. Multipoint mutation consists of selection and modification of several

points in the chromosome. Each point is modified according to the functional constrains

or constrains imposed by the levels. The chromosome is divided into three regions: node

functions, inputs for the nodes in the second layer, and inputs for the node in the third

layer. Three different mutation rates are assigned to each region, to produce independent

changes on each region. The mutation rate used for the node function is larger than the

mutation rate used on the other regions of the chromosome, promoting faster changes on

61

connection weights, pre-synaptic response, and neuron operation over network

architecture. All these parameters are part of the function encoded for these nodes.

6.5.3 Evaluation Function
Only those individuals that have the desired features will survive and mate other

individuals in order to transmit their own characteristics to future generations. An

individual is evaluated according to amount of the patterns classified correctly during the

training process. In addition to the classification accuracy of the neural network, the

inputs received by the last neuron is analyzed. It may be possible that these neurons

assigns all the patterns in the search space to one particular class, either class C0 or class

C1. If this occurs, the organism is penalized by the number of neuron in the second layer

that produces these results. The final fitness function is shown in Equation 6.5.

 () c m nf o
C M N

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (6.5)

where c is the number of correctly classified patterns, C is the total number of patterns

used in the training process, m is the number of neurons without penalty, M is the total

number of available nodes in the second layer, n is the number of disconnected nodes in

the last layer, and N is the maximum number of nodes that can be connected to neuron in

the last layer.

It may be possible that the node in the last layer does not receive any input from

the previous layer, if this is the case the individual is discarded by assigning a fitness

value of 0. If only one node connects to the last neuron, then this node is used as the

output node instead of the node in the last layer, resulting in a two layer morphological

perceptron.

62

6.6 EXAMPLE

Lets consider the XOR problem (Sussner 1998) to illustrate an example of how to

use the training algorithm. The XOR is a binary operator on {0,1}2 such that for all

2(,) {0,1}a b ∈ :

0 if

 XOR
1 else

a b
a b

=⎧
= ⎨
⎩

 (6.9)

Two different classes are defined as C0= {(0,0), (1,1)}, and C1= {(1,0), (0,1)} as

shown in Figure 6.25.

1

1 Class 0
Class 1

Figure 6.25 Distribution of patterns for the XOR problem.

The function for the nodes in the first layer are constructed from all possible

combinations of the patterns defined in class C0, and all the possible combinations of the

values for the parameters in Equation 6.6:

 ()
1

n

i i ii
f O r x w

=

⎛ ⎞+⎜ ⎟
⎝ ⎠

 (6.6)

where O denotes the neuron operator maximum (or minimum), and the other values are

the traditional neuron parameters.

Only two functions are defined for the hidden layers, one of these functions uses

the maximum operator and the other one uses the minimum operator. The pre-synaptic

values are set to +1 and all the connection weights are set to 0. Usually the function in the

last layer consists of the minimum operator, because the patterns enclosed by the decision

63

boundary belong to the class C0. In the same way, the pre-synaptic values for this neuron

are set to 0 and the connection weights are set to 0. Since this node has variable number

of inputs, it is important to remember that these values are assigned to all the active

connections.

An initial population is randomly generated to start the algorithm. The

chromosome consists of the nodes defined in Figure 6.26, appended one after the other in

a sequence. Each node maintains a list of values for inputs and function. Inputs and

functions for each node are defined as shown in Table 6.1.

f1,1

f4,1 f1,2

f1,2

f1,3

1

2

1

2

 1 .

 2 .

3

4 6

5

7 7 .

4

4

3

3
5

6

Figure 6.26 Graph of nodes used to represent the organism.

Table 6.1a shows the set of functions available for the nodes in the first layer.

Table 6.1b contains the set of functions available for the nodes in the second layer. These

values vary in a specific range, determined by the position of the node in the graph, and

chromosome representation constrains defined in section 6.5.1 Representation. Table 6.2

shows how the graph in Figure 6.26 may be encoded in the chromosome, in addition to

the lower and upper bounds for each entry in the chromosome. A possible neural network

produced by the learning algorithm is shown in Figure 6.27, and its corresponding

decision boundary is shown in Figure 6.28.

64

 O r1 r2 w1 w2 O r1 r2 w1 w2
f1,1 ∧ +1 +1 0 0 f1,2 ∧ +1 +1 0 0
f2,1 ∨ +1 -1 0 0 f2,2 ∨ +1 +1 0 0
f3,1 ∧ -1 +1 0 0 b
f4,1 ∨ -1 -1 0 0
f5,1 ∧ +1 +1 0 0
f6,1 ∨ +1 -1 0 0
f7,1 ∧ -1 +1 0 0
f8,1 ∨ -1 -1 0 0
f9,1 ∧ +1 +1 1 1
f10,1 ∨ +1 -1 1 1
f11,1 ∧ -1 +1 1 1
f12,1 ∨ -1 -1 1 1
f13,1 ∧ +1 +1 1 1
f14,1 ∨ +1 -1 1 1
f15,1 ∧ -1 +1 1 1
f16,1 ∨ -1 -1 1 1 a

Table 6.1 (a) Set of functions available for nodes in the first layer, and (b) functions available for nodes in
the second layer

genotype 1 2 1 1 2 9 3 3 2 4 3 1 1 1 1
lower bound 1 2 1 1 2 1 3 3 1 3 3 1 0 0 1
upper bound 1 2 16 1 2 16 4 4 2 4 4 2 1 1 1

Table 6.2 Example of how the organism is encoded, and the lower and upper bounds for each entry in the
chromosome.

+

+

x1

x2
-

-

+

+

+

+

+

+

0

0

0
0

0

0

0

0

-1

-1

Figure 6.27 Resulting neural network defined for the XOR problem using Cartesian Genetic Programming

method.

1

1

Class 0
Class 1

Figure 6.28 Corresponding decision boundary defined by the neural network shown in Figure 6.27

65

CHAPTER 7

7 MATLAB TOOLBOX FOR MORPHOLOGICAL
PERCEPTRON

7.1 INTRODUCTION

This chapter describes a set of methods implemented on Matlab as a toolbox to

create, process, and train multilayer morphological perceptrons. The training methods

were implemented using Matlab 6.The chapter describes the configuration parameters

used by each training algorithm in addition to a sample code in Matlab.

7.2 TOOLBOX

7.2.1 Common Configuration Parameters
Each training method requires a set of specific configuration parameters. The

configuration parameters control the evolutionary process, including initial population

size, termination conditions, genetic operators, and evaluation function. These parameters

have been added to provide a flexible control over the evolutionary process. Different

genetic operators, as well as evaluation functions may be used, producing different

results. The source code for all the toolbox can be found on Appendix A does not has to

be changed. Table 7.1 presents the common configuration parameters used by all the

training methods.

66

Parameter Type Description Example
param.evalFn m-file Specifies the name of

the evaluation function
used.

['CGPEval3']

param.evalParams vector of
double

Specifies any
parameter passed to
the evaluation function

[]

param.mutationFn m-file Specifies the name of
the mutation function.

['CGPMultiPointMutation2']

param.mutationParams vector of
double

Specifies any
arguments need by the
mutation function.

[0.08 0.08]

param.popSize integer Size of the population
used during the
evolution

20

param.selectFn m-file Specifies the name of
the selection function,
used to select the
survivals from a
generation to the next
one.

['roulette2']

param.selectParams vector of
double

Specifies any
parameter passed to
the selection function.

[0.33]

param.termParams integer Specifies the
termination criteria:
[max. number of
generations, final
fitness]

[8000,1.0]

param.xOverFn m-file Specifies the name of
the crossover function.

['CGPMultipointXover'];

param.xOverParams vector of
double

Specifies any
necessary parameter
passed to the crossover
function.

[0.95 0.80]

Table 7.1 Configuration parameters used by all the training methods

7.2.2 Direct Encoding Toolbox

7.2.2.1 Configuration Parameters

In addition to the parameters presented on Table 7.1, the Direct Encoding method

requires configuration parameters described on Table 7.2. Direct Encoding method

requires the number of neurons to be specified prior to the training of the neural network,

67

each position in the vector specified by param.layer represents the number of neuron for

each layer.

Parameter Type Description Example
param.layers vector of integers Specifies the number of neurons for each layer. [2 1]
param.opts vector of double [1e-6 1 1]

Table 7.2 Configuration parameters used by Direct Encoding Method

7.2.2.2 Training Method

[net, traceInfo] = DirectTrainMNN(patterns, classes, bounds, targets, config);

Description: Trains a multilayer morphological perceptron using the Direct Encoding

method. The method receives as arguments the patterns used during the training process.

Patterns are passed to the method as an MxN matrix, which contains N patterns of M

dimensions. All the patterns from all the classes are appended one after another in the

argument patterns, starting by patterns from class C0, then patterns from class C1 are

appended, and finally patterns from class CT, where T is the total number of classes to be

trained. The parameter classes define a column vector containing the number of patterns

defined for each class in the patterns matrix. Bounds is a 2xM matrix in which each row

vector represents the lower and upper bounds for each dimension. The variable targets

contains a PxQ matrix of binary elements, where each row represents the binary vector

associated to a particular class. The parameter config is a data structure that contains the

configuration parameters shown in Table 7.1 and Table 7.2. The method returns an object

net that represents a MNN.

68

Parameter Type Description Example

patterns matrix of
integers

Specifies the all the patterns
used during the training
process.

class0 = [0 0; 1 1];
class1 = [0 1; 1 0];
patterns = [class0;
class1];

classes vector of
integers

Specifies the amount of
patterns defined on each class

[2; 2]

targets matrix of
integers

Each row represents the binary
vector associated to a
particular class

[0 ; 1]

params struct Configuration parameters for
the algorithm.

as shown in Table 7.1 and
Table 7.2

net MNN MNN trained for the patterns
traceInfo Matrix of

double
Performance of the
evolution. Four column
matrix representing:
generation number, fitness of
the best individual, average
fitness of the generation, and
standard deviation

Table 7.3 Parameters passed to the Direct Encoding training method.

7.2.2.3 Sample Code

The code shown in Figure 7.1 defines patterns for two classes C0={(0,0) ,(1,1)},

and C1={(0,1), (1,0)}, in a two-dimensional search space for the training algorithm and

returns a morphological perceptron which is able to classify these patterns.

% param is previously defined
class0 = [0 0; 1 1];
class1 = [0 1; 1 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

% Compute the bounds for each dimension
minVals = min(patterns);
bound = [(max(patterns)-minVals); minVals];

% Expand the boundaries by %25
bound = bound +[boundaries (1,:)*.125; - bound (1,:)*0.125]
[net,traceInfo] = DirectTrainMNN(patterns, classes, bound, targets, config);
Figure 7.1 Example code of how Direct Encoding Method can be used to train MNN

69

7.2.3 Indirect Encoding Toolbox

7.2.3.1 Configuration Parameters

Configuration parameters used by the Indirect Encoding method are the

configurations parameters shown in Table 7.1. No additional configuration parameters

are needed.

7.2.3.2 Training Function

[net, traceInfo] = IndirectTrainMNN(patterns, classes, targets, params)

Description: Trains a multilayer morphological perceptron using the Indirect Encoding

method. The function receives as arguments the patterns used during the training process.

Patterns are passed to the function as an MxN matrix, which contains N patterns of M

dimensions. All patterns from all the classes are appended one after another in the

argument patterns, starting by patterns from class C0, then patterns from class C1 are

appended, finally patterns from class CT, where T is the total number of classes to be

trained. The parameter classes define a column vector containing the number of patterns

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix

of binary elements, where each row represents the binary vector associated to a particular

class. The parameter config is a data structure that contains the configuration parameters

used for the training algorithm. The method returns an object net that represents a MNN.

70

Parameter Type Description Example
patterns Matrix of

integers
Specifies the all the patterns
used during the training
process.

class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;
class1];

class_distribution Vector of
integers

Specifies the amount of patterns
defined on each class

[2; 2]

targets Matrix of
integers

Each row represents the binary
vector associated to a particular
class

[0 ; 1]

params Configuration parameters for
the algorithm.

As shown in Table 7.1

net MNN MNN trained for the patterns
traceInfo Matrix of

double
Performance of the
evolution. Four column
matrix representing:
generation number, fitness of
the best individual, average
fitness of the generation, and
standard deviation

Table 7.4 Parameters passed to the CGP training method

7.2.3.3 Sample Code

The code shown in Figure 7.2 defines patterns for two classes C0={(0,0) ,(1,1)},

and C1={(0,1), (1,0)}, is a 2-dimensinal search space for the training algorithm and

returns a morphological perceptron which is able to classify these patterns.

% params is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo]=IndirectTrainMNN(patterns,classes, targets, params);

Figure 7.2 Example code of how Indirect Encoding Method can be used to train MNN

71

7.2.4 Cartesian Genetic Programming Toolbox

7.2.4.1 Configuration Parameters

Configuration parameters used by the training algorithms include the

configuration parameters shown in Table 7.1 in addition to the configuration parameters

shown in Table 7.5. Configuration parameters from Table 7.5 define some network

properties such as the distribution of nodes, and number of inputs received by the neurons

for each layer.

Configuration
parameter

Type Description Example

param.connections vector of
integers

Specifies the number of connections
used by the nodes on each layer.

[20 20 1]

param.layers vector of
integers

Specifies the maximum number of nodes
defined for each layer.

[4 2 20]

Table 7.5 Additional configuration parameters used by Cartesian Genetic Programming.

7.2.4.2 Training Function

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params)

Description: Trains a multilayer morphological perceptron based on Cartesian genetic

programming. The function receives as arguments the patterns used during the training

process. Patterns are passed to the function as an MxN matrix, which contains N patterns

of M dimensions. All the patterns from all the classes are appended one after the other in

the argument patterns, starting by patterns from class C0, then patterns from class C1 are

appended, finally patterns from class CT, where T is the total number of classes to be

trained. The parameter classes define a column vector containing the number of patterns

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix

of binary elements, where each row represents the binary vector associated to a particular

72

class. The parameter config is a data structure that contains the configuration parameters

used for the training algorithm. The method returns an object net that represents a MNN,

and a matrix traceInfo which consists of three columns. The first column identify the

generation number, the second column corresponds to the fitness value assigned to the

best organism for the corresponding generation, the third column corresponds to the

average value for the fitness of the population, the value forth column corresponds to the

standard deviation.

Parameter Type Description Example
patterns Matrix of

integers
Specifies the all the patterns
used during the training
process.

class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];

classes Vector of
integers

Specifies the amount of
patterns defined on each
class

[2; 2]

targets Matrix of
integers

Each row represents the
binary vector associated to a
particular class

[0 ; 1]

params Configuration parameters for
the algorithm.

As shown in Table 7.1
and Table 7.5

net MNN MNN trained for the patterns
traceInfo Matrix of

double
Performance of the
evolution. Four column
matrix representing:
generation number, fitness of
the best individual, average
fitness of the generation, and
standard deviation

Table 7.6 Parameters passed to the CGP training method

7.2.4.3 Sample Code

The code shown in Figure 7.3 defines patterns for two classes C0={(0,0) ,(1,1)},

and C1={(0,1), (1,0)}, the search space for the training algorithm, and returns a

morphological perceptron which is able to classify the patterns.

73

% params is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params);

Figure 7.3 Example code of how Indirect Encoding Method may be used to train MNN

7.3 COMMON TOOLS

This section describes a set of common tools used by all the training methods to

manipulate and control morphological neural networks.

7.3.1 Pattern Classification
[class] = evalMorphologicalNet(net, patterns)

Description: Classify the patterns defined by the argument patterns given a vector of

MLMP denoted by the argument net. Each entry in the vector net represents a Multilayer

Morphological Perceptron used to construct the classification vector. Multiple patterns

may be classified simultaneously using a single function call as shown in Figure 7.4. In

Figure 7.4, three 4 dimensional patterns are assigned to class
0
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. Each row from the

class matrix denote the corresponding classification for each pattern defined by each row

from the patterns argument.

74

class1 =

 5.1000 3.5000 1.4000 0.2000
 4.9000 3.0000 1.4000 0.2000
 4.7000 3.2000 1.3000 0.2000

>> evalMorphologicalNet(net,class1)

ans =

 0 1 1
 0 1 1
 0 1 1

Figure 7.4 How to use Multilayer Morphological Perceptrons to classify multiple patterns.

7.3.2 Plotting the Network
plotNetwork2(net)

Description: Display a graphical representation of the perceptrons denoted by the

argument net in a 2-dimensinal space, as shown in Figure 7.5.

.
-6 -4 -2 0 2 4 6-8

-6

-4

-2

0

2

4

6

plotNetwork2(net)

Figure 7.5 Graphical representation of Multilayer Morphological Perceptrons.Tthe morphological

perceptrons are represented by two intersecting perperdicular dotted lines.

75

7.4 ANALYZING PROGRESS OF THE LEARNING PROCESS

After the training of the neural network has been completed, information about

the progress of the evolution is returned, in addition to an object which represents a

multilayer morphological perceptron. The traceInfo is a matrix that contains 4 columns:

generation, fitness of the best individual, mean fitness of the population for each

generation, and standard deviation of the fitness for each generation. The traceInfo

provides useful information about the evolutionary progress of the population.The

information can be used to evaluate genetic operators, such as crossover, mutation,

selection, and in order to select the best parameters for each genetic operator for a data

set. Figure 7.6 shows the progress of the fitness as the number of generations increase.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Generations

Mean minus one standard deviation

Mean plus one standard deviation

Mean of Population

Best Individual

Figure 7.6 Evolutionary progress of the population for Carterian Genetic Programming using the Sussner

Data set

76

The graph shown in Figure 7.6 was produced by the Cartesian Genetic

Programming method using Sussner Data set. It is important to point out that the fitness

function used in the evolution tries to maximize the performance of the individuals, this

means that an individual with higher fitness value is considered the best candidate

solution for the problem. Since the fitness function maximizes the performance, the

resulting graph of the mean fitness value of the population should increase or remain

horizontal. The graph that describes the optimum behaviour of the evolution should look

like a logarithmic curve, with an asymptote at 1.0. The graph of the mean fitness may

oscilate, due to the diversity introduced by new mutated members, but in general the

graph should increase all the time, otherwise there may be something wrong with the

evolutionary operators. Possible explanations to this behavior may be high mutation

rates, or inapropiate fitness function. High mutation rates may introduce too much

diversity in the population, incrementing the oscilation range for the mean fitness value

and prolonging the time required to convege into the optimum value. Another

explanation to this behaviour may be that the fitness function is not able to differenciate

correctly the performance of two individuals.

Inspecting the standard deviation of the population fitness value is another way to

determine if the mutation rates are too high. As the mutation rate increases the standard

deviation of the fitness increases. The mean fitness value plus one standard deviation and

the mean fitness values minus one standard deviation are shown in Figure 7.6. The effects

produces by different mutation rates and crossover rates on the progress of the fitness

value in terms of generations are shown in Figure 7.7. For example, Figure 7.7g shows

how the fitness of the population varies over generations when the genetic operators are

77

using a mutation rate of 12% and a crossover rate of 80%. Figure 7.7 shows some of the

most relevant graphs obtained by changing the crossover and mutation rates.

It is important to observe that when the mutation rate is low, high crossover rate

affects the number of generations needed to reach a fitness value of 0.8. When a mutation

rate is fixed to 5%, using a crossover rate of 95%, the fitness reach to a value of 0.8

before 50 generations. Using a crossover rate of 80%, it takes more than 100 generations

to reach a value of 0.8. Using a crossover rate of 20%, it takes almost 200 generations to

reach the value of 0.8. This effect is almost unnoticeable when the mutation rate is high,

as for example 24%.

Increasing the mutation rate also affects the time needed to reach a particular

fitness value. As the mutation rate increases, the number of generations needed to reach a

fitness value of 0.8 decrese. On the opposite side, a high mutation rate increases the time

needed to reach the optimum fitness value of 1.0, therefore an optimum evolutionary

curve may be produced by high crossover rates and low mutation rates as shown in

Figure 7.7b.

Another feature that can be observed from Figure 7.7, is that it may be possible to

reach the optimum fitness value using the mutation operator exclusively.

78

0
50

1
00

15
0

20
0

2
50

3
00

0

0.
2

0.
4

0.
6

0.
81

0
50

1
00

15
0

20
0

2
50

3
00

0

0.
2

0.
4

0.
6

0.
81

0
50

1
00

15
0

20
0

2
50

3
00

0

0.
2

0.
4

0.
6

0.
81

0
50

1
00

15
0

20
0

2
50

3
00

0

0
.2

0
.4

0
.6

0
.81

0
50

1
00

15
0

20
0

2
50

3
00

0

0
.2

0
.4

0
.6

0
.81

0
50

1
00

15
0

20
0

2
50

3
00

0

0
.2

0
.4

0
.6

0
.81

0
50

10
0

1
50

20
0

25
0

30
0

0

0
.2

0
.4

0
.6

0
.81

0
50

10
0

1
50

20
0

25
0

30
0

0

0
.2

0
.4

0
.6

0
.81

0
50

10
0

1
50

20
0

25
0

30
0

0

0
.2

0
.4

0
.6

0
.81

0
5

0
10

0
15

0
2

00
25

0
30

0
0

0.
2

0.
4

0.
6

0.
81

0
5

0
10

0
15

0
2

00
25

0
30

0
0

0.
2

0.
4

0.
6

0.
81

0
5

0
10

0
15

0
2

00
25

0
30

0
0

0.
2

0.
4

0.
6

0.
81

24
%

12
%

5%
2.

5%

M
ut

at
io

n
R

at
e

95% 80% 20%

Crossover Rate
F

itn
es

s/
G

en
er

at
io

ns
 v

s.

M
ut

at
io

n
R

at
e

an
d

C
ro

ss
ov

er
 R

at
e

G
en

er
at

io
ns

G
en

e
ra

tio
ns

G
en

er
at

io
ns

G
en

er
at

io
ns

G
en

er
at

io
ns

G
en

e
ra

tio
ns

G
en

er
at

io
ns

G
en

er
at

io
ns

G
en

er
at

io
ns

G
en

e
ra

tio
ns

G
en

er
at

io
ns

G
en

er
at

io
ns

Fitness FitnessFitness

Fitness FitnessFitness

Fitness FitnessFitness

Fitness FitnessFitness

a e i

b f j

c g k

d h l

Figure 7.7 Effects produced on the fitness of a population and the number of generations by different

crossover and mutation rates.

79

CHAPTER 8

8 PERFORMANCE ANALYSIS

8.1 INTRODUCTION

This chapter measures the performance of the evolutionary learning algorithms

used for the Multilayer Morphological Perceptrons in terms of memorization and

generalization of the trained neural network for different data sets presented by Sussner

and Ritter, and other commonly used data sets such as the Iris Fisher Data and a Spiral

data set.

8.2 DATA SETS

8.2.1 Sussner Data Set
The Sussner Data set, shown in Figure 8.1, consists of 20 patterns equally divided

among two classes, used as a benchmark for comparison of performance between the

evolutionary learning algorithms presented in this thesis and the learning algorithms

proposed by Sussner.

1

2

3

4

5

6

7

Class C0

Class C1

3 4 5 6 7 8 9 10 11 12 13

Figure 8.1 Data set used by Sussner (Sussner 1998)

80

8.2.2 Spiral Data Set
The spiral data set is a two-class set of patterns, each set representing a spiral. The

parametric equations for the spiral are:

() ()
() ()

0

0

*cos *2 /

*sin *2 /

x theta theta theta pi

y theta theta theta pi

=

=
 (8.1)

and

 1 0

1 0

x x
y y

= −
= −

 (8.2)

where theta=0*pi/16+pi/2, 1*pi/16+pi/2, 2*pi/16+pi/2…39*pi/16+pi/2. Half of the

patterns were used to train the neural network and the other half were used to test the

performance of the resulting neural network as shown in Figure 8.2

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
C0 Training
C1 Training

C0 Test
C1 Test

Figure 8.2 Spiral data set used during the training and performance of the resulting neural network.

81

8.2.3 Iris Fisher Data
The Iris Fisher Data (IFD) is often used as a benchmark in the field of pattern

recognition. It consists of 150 patterns equally divided among 3 classes. Each group

corresponds to one species of Iris Flower: Iris Sectosa (class C0), Iris Versicolor (class

C1), and Iris Verginica (class C2). Each class has 4 attributes, representing petal width,

petal length, and sepal width and sepal length expressed in inches. Since the IFD contains

more than two outputs classes, multiple MLMP had to be trained, one MLMP for each

entry in the binary vector associated to each class, C0=
0
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, C1=
1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, and C2=
0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

.

8.3 PERFORMANCE ANALYSIS

Several tests were conducted using multidimensional data sets such as Iris Fisher

Data, Spiral Data set, and the Sussner Data Set. All the learning algorithms were used to

train a multilayer morphological perceptrons, then neural network memorization and

generalization was measured in addition to the number of generations needed to reach

convergence. Since Direct Encoding method can define the connection weights for a

neural network with fixed architecture, and no more than two layer morphological

perceptron can be trained using this method, the decision boundaries defined by the

resulting neural network are very simple. Usually, the resulting neural network is able to

separate patterns from two different classes if all the patterns from one of the classes are

grouped into a single cluster. The Spiral Data set requires a complex decision boundary

that the Direct Encoding method is not able to define, for these reason additional data sets

were defined to measure the performance of the evolutionary traning algorithm.

82

8.3.1 Direct Encoding Method
The network configuration consists of a two-layer morphological perceptron, with

a variable number of neurons in the first layer, depending on the distributions of the

patterns in the data set. Figure 8.3, Figure 8.4, and Figure 8.5 show how the patterns were

distributed.

Figure 8.3 shows an example of a 2ℜ space and its corresponding decision

boundaries defined by the algorithms. The corresponding neural network architecture is

shown in Figure 8.3b. Another 2ℜ example is shown in Figure 8.4, and Figure 8.5 shows

pattern distribution for a 3ℜ space and the corresponding morphological perceptrons.

A population of 20 individuals was used for all the tests. Arithmetic crossover and

single point mutation were the genetic operators used for the tests. The crossover

probability was assigned to be 80%, and the mutation probability varied from 33% to 5%.

The evolutionary time was limited to 400 generations for the patterns in Figure 8.3a,

Figure 8.5, and the Iris Fisher Data. A total of 500 generations were used for the patterns

in Figure 8.4. Experimental results show that in most of the performed tests at least 90%

of the patterns were classified correctly.

In addition, the algorithm was tested using the Iris Fisher Data. Half of the

patterns were used to training the MLMP, and the other half of patterns ware used to test

the performance of the neural network. Table 8.1 summarizes the results obtained from

training process for the Iris Fisher Data in addition to the other data sets.

83

-20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-5

0

5

10

15

20

Class C0 Class C1 (correctly classified) Class C1 (incorrectly classified)
a.

X1

X2

+

 -17.41

15.79

+

-

-

+

 16.90

 -16.01
+0

+

+

+

0

b.
Figure 8.3 (a) 2-Dimension problem and the corresponding architecture Data (b) Two perceptrons are used

in the first layer to define its boundaries.

Class C0 Class C1 (correctly classified) Class C1 (incorrectly classified)

-20 -15 -10 -5 0 5 10 15 20 25

-20

-15

-10

-5

0

5

10

15

20

25

Figure 8.4 Patterns from the class C0 are distributed among the four corners.

84

Class C0 Class C1 (correctly classified) Class C1 (incorrectly classified)

Figure 8.5 A 3-dimensions search space and the corresponding classification boundaries.

X1

X2

+

+
+

+
+

0

+

+

+

0

X3

X4

+

+

+

+
+

Figure 8.6 Neural network architecture used to produce one of the outputs of the binary vector associated

to the class.

 Figure 8.3a Figure 8.4 Figure 8.5 Iris Fisher Data
Number of Runs 30 30 30 30
Population Size 20 20 20 20
Min. Classification Memorization 85.33% 82.00% 92.71% 93.33%
Avg. Classification Memorization 89.63% 94.57% 98.72% 96.36%
Max. Classification Memorization 100.00% 100.00% 100.00% 100.00%
Min. Classification Generalization 82.00% 79.00% 81.91% 88.80%
Avg. Classification Generalization 88.15% 89.37% 94.57% 92.04%
Max. Classification Generalization 100.00% 100.00% 97.34% 97.33%
Min. Number of Generations 382 91 48 1000 121
Avg. Number of Generations 919 697 196 1000 894
Max. Number of Generations 1000 1000 400 1000 1000

Table 8.1 Summary of results of the tests for the direct encoding training algorithm.

85

8.3.2 Indirect Encoding Method
Order base crossover and group mutation described in Chapter 6 were used as the

genetic operators by the Indirect Encoding Method. The crossover probability was

assigned to be 80% and the mutation probability was 3%. The crossover probability was

relatively high, but it was not 100%, therefore the resulting offspring produced by the

crossover may be identical to the parents.

Using a population of 20 individuals, convergence was typically reached in 100

iterations. Experimental results show that in most of the performed tests at least 96% of

the patterns were memorized correctly. Typically all the patterns are memorized in early

generations; however network topology improves with more iteration reducing the

number of redundant neurons.

Figure 8.7 shows an example of the decision boundaries defined by the algorithm

for the Sussner data set. Figure 8.9 shows another example of the decision boundaries

defined for Spiral data set.

The algorithm was tested using the Iris Fisher Data. Half of the test patterns were

used to train the system. The maximum number of generations used for the test was 200

generations. In most of the tests, the resulting neural network was able to memorize

100% of the patterns. The other half of the patterns were used to test the generalization

performance of the resulting network, obtaining up to 77% of the patterns classified

correctly. Table 8.2 summarizes the results of the tests for Sussner, Spiral and Iris Fisher

data sets.

86

1

2

3

4

5

6

7

C1

C0

Class C0

Class C1

3 4 5 6 7 8 9 10 11 12 13
Figure 8.7 Decision boundaries found by indirect encoding method for Sussner Data set.

X1

X2

+
00.00

-1
.16

+
+

-
-

2.07

0.8
6

+
0

,+

,+

,+

+

,+

+
0

+
+

-
-

+
0

,+

,+

,+

+
0+

+

-
-

+
0

,+

,+

,+

+
0

+
+

-
-

+
0

,+

,+

,+

+
0

+
+

-
-

+
0

,+

,+

,+

+
+
+

+

0

0

0

0

0

-2.47

1.77

-4.00

-3.46

-3.18

3.89
5.33

5.29

1.7
7

3.00

1.63

-1.44

-5.00

-3.18

-2.22

-2.18

Figure 8.8 Neural network architecture produced by indirect encoding method for Spiral Data set.

87

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-6

Class C0

Class C1

Figure 8.9 Decision boundaries defined by the network architecture shown in Figure 8.8

 Sussner Spiral Iris Fisher Data
Number of Runs 30 30 30
Population Size 20 20 20
Min. Classification Memorization 100.00% 100.00% 100.00%
Avg. Classification Memorization 100.00% 100.00% 100.0%0
Max. Classification Memorization 100.00% 100.00% 100.00%
Min. Classification Generalization n/a 52.50% 50.00%
Avg. Classification Generalization n/a 62.25% 66.36%
Max. Classification Generalization n/a 72.50% 77.33%
Min. Number of Generations 2 2 2 9
Avg. Number of Generations 3 10 2 27
Max. Number of Generations 3 30 2 52

Table 8.2 Summary of results for indirect encoding training algorithm.

8.3.3 Cartesian Genetic Programming
Several tests were conducted with the available data sets. An initial population of

20 individuals was used in the entire test. The multipoint mutation and multipoint

crossover described in the previous section were used as the genetic operations. A

probability of 80% was used for the crossover operator and a maximum probability of 8%

was used for the mutation of the neuron operator, and 3% was used for the mutation of

the network topology.

88

The algorithm was tested with the data set used by Sussner. A matrix of nodes

was used with three columns. The first column had 20 nodes, the second columnd had 10

nodes, and the third and last column had 1 node. The nodes in the second layer were

configured to receive two inputs from the first layer. Convergence was usually archived

in 500 generations. Figure 8.10 shows the corresponding neural network architecture for

a multilayer morphological perceptron defined by the learning algorithm, and Figure 8.11

shows the corresponding decision boundary with opened regions.

89

X1

X2

+
0-9.

1

-5
.1

+
+

+
+

-9.3

-2
.7

+
0

,+

,+

,+

+

,+

+
0-

+

-
+

+
0

,+

,+

,+

+
0-

+

-
-

+
0

,+

,+

,+

+
0

-
+

-
-

+
0

,+

,+

,+

+
0

+
-

-
-

+
0

,+

,+

,+

+
0

-
-

+
-

+
0

,+

,+

,+

+
0

-
+

-
-

+
0

,+

,+

,+

+
0

-
-

-
+

+
0

,+

,+

,+

+
0-

+

-
-

+
0

,+

,+

,+

+
0-

+

-
+

+
0

,+

,+

,+

+++
+
+

+
+ + +

0

0
0

0
0

0

0

0
0

0

-9.3

-9.1

-9.3

-9.1

-9.1

-4.2

-5.3

-4.2

-4.2

-5.3

-4.2

-9.3

-9.3
-9.3

-9.3
-9.3

-8.2
-8.2

-2
.7

-5
.1

-2.
7

-5.
1

-5.
1

-5.8

-4.0

-5.8

-5.8

-4.0

-5.8

-2.7

-2.7

-2.7

-2.7

-2.7

-3.7

-3.7

Figure 8.10 Multilayer morphological perceptron defined by the Cartesian Genetic Programming method
for Sussner Data Set. Corresponding decision boundary is shown in Figure 8.11

90

3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

Class C0

Class C1

Figure 8.11 Decision boundaries defined by CGP with opened decision boundaries.

In the second example, the previous data set was modified in such a way that only

closed decision boundaries were able to classify patterns correctly. Three layers were

used with 20 nodes in the first layer, 10 nodes in the second layer and 1 node in the third

layer. To force the algorithm to produce compact regions, the nodes in the second layer

were configured to receive three inputs. Convergence was usually achieved in 1200

generations. Figure 8.12 shows an example of the decision boundary created by the

learning algorithm with closed regions.

91

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

Class C0

Class C1

Figure 8.12 Decision boundaries defined by CGP method with closed regions.

In the third example, 40 patterns of 2 dimensions were distributed to form two

different spirals, as shown in Figure 8.13. The nodes were distributed among three layers:

30 nodes in the first layer, 20 nodes in the second layer and 1 node in the third layer. The

nodes in the second layer were configured to receive two inputs. Convergence was

usually achieved by 1200 generations. Figure 8.13 shows an example of the decision

boundary defined by the learning algorithm, including opened as well as closed regions.

92

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-6

Class C0

Class C1

Figure 8.13 Decision boundaries defined for the spiral data set.

In addition, the algorithm was tested with the Iris Fisher Data. During the training

process 50% of the patterns were used, and the other 50% was used to measure the

generalization of the resulting neural network. The nodes were distributed among three

layers: 4 nodes in the first layer, 2 nodes in the second layer and 1 node in the third layer.

This simple layer configuration was used to the nature of the distribution of Iris Fisher

Data Set. Convergence of the algorithm was typically achieved by 800 generations and

100% of the patterns used during the training process were memorized by the neural

network.

93

 Sussner

(Figure 8.11)
Sussner

(Figure 8.12) Spiral Iris Fisher Data

Number of Runs 30 30 30 30
Population Size 20 20 20 20
Min. Classification Memorization 95.00% 96.97% 90.00% 97.33%
Avg. Classification Memorization 95.50% 99.60% 96.50% 99.64%
Max. Classification Memorization 100.00% 100.00% 100.00% 100.00%
Min. Classification Generalization n/a n/a 72.50% 77.33%
Avg. Classification Generalization n/a n/a 79.17% 87.78%
Max. Classification Generalization n/a n/a 85.00% 94.67%
Min. Number of Generations 156 101 1497 99 198
Avg. Number of Generations 486 1970 3846 949 3316
Max. Number of Generations 500 5000 4000 2630 8000

Table 8.3 Summary of results for the Cartesian Genetic Programming method.

94

CHAPTER 9

9 CONCLUSION

9.1 INTRODUCTION

This thesis explores the use of evolutionary algorithms a training tool for

Multilayer Morphological Perceptrons. The learning algorithms described on this thesis

are based on evolutionary techniques such as: Genetic Algorithms, and Cartesian Genetic

Programming. These learning algorithms may be used to train single output feed forward

Multilayer Morphological Perceptron for multidimensional/multi-classes pattern

classification problems.

9.2 DISCUSSION OF RESULTS

The Iris Fisher Data set and the Spiral data set were used as benchmark to

measure the performance of the learning algorithms in terms memorization, that is, the

ability to classify correctly the training data set; generalization, that is, predictions for

new inputs patterns, and number of generations needed to reach convergence, as shown

in Table 9.1.

The performance results of the morphological neural network defined by all the

evolutionary learning algorithms were similar to the results presented by Ritter’s

algorithm (Ritter and Beavers 1999). Indirect encoding method was the only training

algorithm able to overcome Ritter’s algorithm in terms of time needed to reach

convergence, but this happened at expenses of a high number of redundant neurons.

Direct Encoding method completed most of the tests in lest than 4 seconds running on a

95

Pentium M 1.6 Ghz, using Matlab 6 and Windows XP. The time needed to reach

convergece by Direct Encoding method and Cartesian Genetic Programming method,

vary depending on how complex should be the decision boundaries needed in order to

classify the training set correctly. The CGP method is able to define complex decision

boundaries at expences of additional evolutionary time. The time needed to traing half of

the patterns of the Iris Fisher Data set using the Cartesian Genetic Programing method

extends over 1 hour. Similar results were obtained training the Spiral Data set.

 CARTESIAN GENETIC
PROGRAMMING

METHOD

INDIRECT ENCODING
METHOD

DIRECT
ENCODING
METHOD

 Spiral Iris Fisher
Data Spiral Iris Fisher

Data
Iris Fisher

Data
Num. of Runs 30 30 30 30 30
Pop. Size 20 20 20 20 20
Min. Memorization. 90.00 97.33 100.00 100.00 93.33%
Avg. Memorization. 96.50 99.64 100.00 100.0% 96.36%
Max. Memorization 100.00 100.00 100.00 100.00 100.00%
Min. Generalization 72.50 77.33 52.50 50.00 88.80%
Avg. Generalization 79.17 87.78 62.25 66.36 92.04%
Max. Generalization 85.00 94.67 72.50 77.33 97.33%
Min. Generations 1497 99 2 2 1000 121 9 198
Avg. Generations 3846 949 3 2 1000 894 27 3316
Max. Generations 4000 2630 3 2 1000 1000 52 8000

Table 9.1 Summary of results for the Cartesian Genetic Programming method.

Contrary to the training method presented by Sussner (Sussner 1998), which is

limited to train up-to two layers morphological perceptron, the Indirect Encoding method

and the CGP method are able to define three layers morphological neural networks,

which is able to solve most pattern classification problems. The CGP method virtually

can trains multilayer morphological perceptron of any number of layers. Similary to the

algorithm presented by Sussner, the evolutionary learning algorithms are able to

determine the number of nodes needed in the hidden layers. Usually neural network

96

architectural flexibility is achieved with an additional cost in the time needed to reach

converge.

For the particular case of the spiral data set, all the patterns were correctly

memorized after 10 generations during the training stage, but the resulting neural network

was not able to predict correctly 100% of the patterns that were not used during the

training. This happened due to the fact that a single pattern can be assigned to one group

exclusively, which means that a pattern may be enclosed by a single hypercube, therefore

there may be hypercubes which do not overlap, this may result in an incorrect prediction

for the classification of those patterns that falls between two non-overlapping hypercubes

as shown in Figure 9.1.

Real Decision
Boundary

Actual Decision
Boundary

(defined by the learning algorithm)

Incorrect Prediction
of Pattern Classification

Figure 9.1 Incorrect generalization of the neural network.

Differences in number of generations are due to the increased complexity in the

search space for different data sets. Different node configurations are used for different

data sets. When the number of nodes is incremented, complex decision boundaries can be

defined to perform correct pattern classification at the expenses of additional

97

evolutionary time. Due to the nature of the morphological neuron, a single neuron can

classify most of the Iris Fisher data. For this reason a small number of nodes are used to

search for the correct network architecture. Other data sets such as the spiral data set

shown in Figure 8.13 or the Sussner data set shown in Figure 8.12 require a higher

number of neurons to define complex decision boundaries.

9.3 COMPARISON OF THE LEARNING ALGORITHMS

9.3.1 Direct Encoding Method
The Direct Encoding method lacks of scalability for very large problems, due to

the fact that the entire space of solutions can not be mapped in detail by the genetic code.

The architecture is fixed during the training of the neural network, and a maximum of

two layer morphological perceptron can be trained which can be used to solve simple

pattern classification problems. The algorithm needs information about architecture of the

neural network to be trained, such as number of layers, and number of neurons in the first

layer. This information is provided prior the training, after inspection of the data set

distribution.

The number of neurons must be specified before the training, and that number is

fixed during the evolution. To achieve better utilization of the neurons, the algorithm

introduces the use of a penalty function in the evaluation function. A penalty is assigned

to those individuals with redundant neurons. Redundant neurons are those neurons that if

were removed from the neural network, the decision boundary of the resulting neural

network remains unchanged. This is the way the evolutionary algorithm promotes those

neural networks that represent a better solution placing neuron on the right location.

98

The learning algorithm is able to define opened decision boundaries as well as

close decision boundaries. The resulting neural network is limited to define very simple

decision boundaries which may be able to separate patterns grouped into a single cluster

of from other patterns, therefore may not be used to train classify patterns dispersed into

several clusters.

In terms of the evolutionary time, the learning method performs an exhaustive

computational search over a continuous space of values, looking for the optimum set of

connection weights, resulting in a very time consuming task. The evolutionary learning

method introduces the use adaptive mutation for the evolution of morphological neural

networks to speed up convergence and reduce the evolutionary time.

9.3.2 Indirect Encoding Method
The evolutionary method is able to evolve some architectural elements. This trade

off was made to improve convergence speed. The convergence speed of the Indirect

Encoding method is faster compared to the other two evolutionary learning algorithms,

due to fact that the search for the best architecture is done in a reduced and simplified

search space. Connection weights are searched in a discrete space and the network

architecture is limited to some architectural constrains, such as fixed neuron inter-

connection, connection weights for the second and third layer are predefined and fixed

during the training, reducing the number of unknown connection weights. Architectural

constrains limit the neural network to a maximum of 3 layers, which are needed most

pattern classification problems where the patterns can be grouped into clusters.

Usually the algorithm is able to classify most of the patterns at early generations,

but network architecture improves with more iteration, reducing the number of redundant

99

neurons. The evaluation function is used to guide the evolutionary process to create as

many hypercubes as needed to correctly classify all the patterns in early generations, and

improve the individuals by removing redundant neurons.

Differing from the Direct Encoding method and the Cartesian Genetic

Programming method, the algorithm needs no information about pattern distribution. The

evolutionary learning method determines the number of neurons needed in the first layer

and the correct number of layers by itself. The resulting neural network is able to define

exclusively close decision boundaries. Close decision boundaries results in a better

prediction of clustered data set of patterns, but in an inaccurate prediction of non-

clustered data sets, which is the major drawback of the learning algorithm. Patterns may

be distributed in many different clusters, defining complex decision boundaries.

9.3.3 Cartesian Genetic Programming Method
The Cartesian Genetic Programming method introduces the use of Cartesian

Genetic Programming as a training tool for Morphological Neural Networks. The method

may be able to train multi-layer morphological perceptrons of any number of layers. The

learning algorithm provides flexible evolution of neural network architecture, resulting in

flexible neural networks solutions. The method needs information about the neural

network architecture such as the number of layer, the maximum number of neurons for

each layer; and the number of inputs received by the intermediate layers. This

information is provided to the algorithm after inspection of the data sets distribution.

This algorithm introduces the use of the morphological neuron computational

model as the basic node operation for Cartesian Genetic Programming, allowing the

evolutionary training of Morphological Neural Networks. The resulting neural networks

100

may be able to produce complex decision boundaries, including opened decision

boundaries, as well as closed decision boundaries.

In terms of the evolutionary time, the algorithm tends to take longer to define the

corresponding decision boundaries, due to the fact that the algorithm search for the

network architecture in an open space of architectures, limited only by the maximum

number of nodes for each layer and the total number of layers. The search space gets

even more complex as additional patterns are used during the training process, due to the

addition of patterns the connection weights the search space increases in an exponential

order. To speed up convergence, the evolutionary method makes use of two different

mutations rates which affect different regions in the chromosome: network architecture

and neurons operation.

Similar to Indirect Encoding method, the learning method make use of a special

penalty function. This penalty function promotes the reduction of redundant or

unnecessary neurons from the neural network.

101

9.3.4 Summary of Differences
A list of advantages and disadvantages presented by the evolutionary algorithms

is shown in Table 9.2.

Training
Method Advantages Disadvantages

Direct Encoding
Method

1. Define open and closed decision
boundaries

2. Reduce number of redundant
neurons

1. Rigid topology
2. Open search space for

connection weights
3. Long time needed to reach

convergence
Indirect Encoding
Method

1. Some degree of topological
flexibility

2. Discrete search space for connection
weights

3. Reduced search space results in fast
convergence

4. Neural architecture evolves by itself
definining nodes for hidden layers

1. High number of redundant
neurons

2. Define exclusively closed
decision boundaries

Cartesian Genetic
Programming
Method

1. High degree of topological
flexibility

2. Discrete search space for connection
weights

3. Define open and closed decision
boundaries

4. Neural architecture evolves by itself
definining nodes for hidden layers

1. Exponential grow in the
search space

2. Long time needed to reach
convergence

Table 9.2 Summary of advantages and disadvantages of the evolutionary learning algorithms.

9.4 PROTOTYPES LIMITATIONS

The implementation of the prototype for the Indirect Encoding Method is

restricted to train a maximum of 50 patterns. This limitation is due to the encoding

representation scheme for the groups of patterns defined for the chromosome in Matlab.

The actual representation uses the bits of an integer to define group boundaries. The

limitation may be overcome using a different representation scheme for the groups of

patterns, maybe using a complex data structure or a different programming language. All

the other prototypes may be able to train a neural network using as many patterns as

needed.

102

9.5 FUTURE WORK

After the completion of this thesis, new interesting research topics had appeared.

Possible research areas may focus on the development of a learning algorithm which may

be able to produce opened decision boundaries as well as closed decision boundaries

without considering the actual pattern distribution. In addition, the learning algorithms

may be able to evolve a morphological neural network which produces multiple outputs

simultaneously. Different indirect encoding schemes, such as attribute grammar, or the

cellular encoding maybe used to improve performance while reducing complexity of the

problem. Additionally, it may be interesting to explore how to train morphological neural

networks that use different transfer functions, such as log sigmoid, and the exploration of

possible uses for those neural networks.

9.6 CONCLUSION

Multilayer Morphological Perceptrons provide simple and scalable solutions for

new generations of patterns classifiers. At the same time, evolutionary algorithms provide

robust search mechanism to explore in an extensive number of possible solutions. At this

point, it is concluded that evolutionary learning algorithms may be used as an alternative

training method for Multilayer Morphological Perceptrons. Additional research needs to

be conducted to explore different evolutionary learning algorithms that may be capable to

define decision boundaries that improves neural network generalization abilities without

considering exact pattern distribution, while, at the same time, reduce the search space of

the neural network architecture, connection weights, and increases convergence speed.

103

10 REFERENCES

BISHOP, C.M., 1996, “Neural Networks for Pattern Recognition”, Oxford University
Press, Oxford, UK

BRANKE, J., 1995, “Evolutionary Algorithms for Neural Network Design and Training”,
In Proceedings of the 1st Nordic Workshop Genetic Algorithms Applications. T.
Talander.

DUDA, R.O., HART, P.E., STORK, D.G., 2001, “Pattern Classification”, 2nd Ed., John Wiley
& Sons, Canada.

ESPARCIA-ALCAZAR, A.I., SHARMAN, K.C., 1996, “Genetic Programming Techniques that
Evolve Recurrent Neural Network Architectures for Signal Processing”, Neural Networks
for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society
Workshop. pp. 139 -148

FOGEL, D.B, 1994, “An introduction to simulated evolutionary optimization”, IEEE
Trans. On Neural Networks, vol. 5, no. 1, pp. 3-14

FOGEL, D.B., FOGEL, L.J., 1996, “An Introduction to Evolutionary Programming”, LNCS
vol. 1063, pp. 21-33

FUKUDA, T., KOHNO, T., AND SHIBATA, T., 1993, “Learning Scheme for Recurrent Neural
Network by Genetic Algorithm”, Proceedings of the 1993 IEEE/RSJ International
Conference on Intelligent Robots and Systems. vol. 3, pp. 1756-1761.

GRUAU, F., 1992, “Genetic Synthesis of Boolean Neural Networks with a Cell Rewriting
Developmental Process.” In Proceedings of the International Workshop on Combinations
of Genetic Algorithms and Neural Networks (COGANN-92), L. Darrell Whitley and J.
David Schaffer, editors. pp. 55–74. Los Alamitos: IEEE Press.

GRUAU, F., WHITLEY, L.D., 1993, “Adding Learning to the Cellular Development of
Neural Networks: Evolution and the Baldwin Effect.” Evolutionary Computation 1(3):
213-233

GRUAU F., WHITLEY, L.D, PYEATT, L., 1995, “Cellular encoding applied to
neurocontrol.” In Proceedings of the Sixth International Conference on Genetic
Algorithms

HAGAN, M. T, DEMUTH, H. B., BEALE, M., 1996, Neural Network Design. Boston, MA:
PWS.

104

HARP, S.A., SAMAD, T., GUHA, A., 1989, “Towards the genetic synthesis of neural
networks”, Proc. Of the Third Int’l Conf. on Genetic Algorithms and Their Applications,
pp.360-369. Morgan Kaufmann, San Mateo, CA.

HARP, S.A., SAMAD, T., GUHA, A., 1990, “Designing application specific using genetic
algorithms”, in Advances in Neural Information Processing Systems 2, pp. 447-454,
Morgan Kaufmann, San Mateo, CA.

HINTZ, K.J., SPOFFORD, J.J., 1990, "Evolving a neural network", Proceedings of the 5th
IEEE International Symposium on Intelligent Control, pp. 479 -484

HOWARD, L.M. AND D’ANGELO D.J., 1995, “The GA-P: a Genetic Algorithm & Genetic
Programming hybrid”, IEEE Expert, pp. 11-15

HUSSAIN, J.E,. BROWSE, R.A., 1998, “Attribute Grammars for Genetic Representations of
Neural Networks and Syntactic Constrains of Genetic Programming”, In AIVIGI’98,
Workshop on Evolutionary Computation

JACOB,C., REHDER, J., 1993, "Evolution of neural networks architectures by a hierarchical
grammar-based genetic system", ANNGA'93, Proc. of the International Conference on
Artificial Neural Networks and Genetic Algorithms, Innsbruck, pp. 72 - 79.

KARUNANITHI, N., DAS, R., AND WHITHLEY, D., 1992, “Genetic cascade learning for
neural networks.” In Schaffer and Whitley, editors, Proceedings of the International
Workshop on Combinations of Genetic Algorithms and Neural Networks, pages 134-144.

KITANO, H., 1990, “Designing Neural Networks Using Genetic Algorithms with Graph
Generation System”, Complex Systems, vol. 4, no. 4, pp., 461-476.

KOZA, J.R., 1992, “Genetic Programming: On the Programming of Computer by Means
of Natural Selection”, MIT Press, Cambridge

KOZA, J.R., AND RICE, J.P., 1991, “Genetic Generation of both the Weights and
Architecture for a Neural Network”, IEEE International Joint Conference on Neural
Networks.

LIMA, C.A.M., COELHO, A.L.V., SILVA, M.E.S., GUDWIN, R.R, ZUBEN F J.V: 2001
“Hybrid Training of Morphological Neural Networks: A Comparative Study”, Procs. of
National Meeting of Artificial Intelligence (ENIA), Congress of Brazilian Computing
Society (SBC), pp. 1499-1507, Fortaleza, Brazil.

LUKE, S., SPECTOR, L., 1996, “Evolving Graphs and Networks with Edge Encoding
Preliminary Report”, Late Breaking Papers of the Genetic Programming, Stanford

MARSHALL, S.J., HARRISON, R.F., 1991, “Optimization and Training of Feedforward
Neural Networks by Genetic Algorithms”, Second International Conference on Artificial
Neural Networks. pp. 39-43.

105

MILLER, G.F., TODD, P.M., HEGDE, S.U., 1989, “Designing Neural Networks using
Genetic Algorithms”, Proc. Of the Third Int’l Conf. on Genetic Algorithms and Their
Applications, pp. 379-384. Morgan Kaufmann, San Mateo, CA.

MILLER, J., THOMSON, P. 2000. “Cartesian genetic Programming in the Genetic
Programming.” Proceedings of the Third European Conference on Genetic Programming,
vol. 1802 of Lecture Notes in Computer Science, 121-132.

MILLER, J., 2001, “What bloat? Cartesian genetic programming on boolean problems”, in
Proceedings of the 2001 Genetic and Evolutionary Computation Conference, 295–302.

MONTANA, D.J., DAVIS, L., 1989, “Training feedforward neural networks using genetic
algorithms.” In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 762-767.

ORTIZ, J.L., PIÑEIRO, R.C, 2003, “Evolutionary Learning Algorithm for Morphological
Perceptron”, The Third International Association of Science and Technology for
Development (IASTED) International Conference on Artificial Intelligence and
Applications, Benalmádena, Spain.

ORTIZ, J.L., PIÑEIRO, R.C., 2004A, “Indirect Encoding Evolutionary Learning Algorithm
for the Multilayer Morphological Perceptron”, Proceedings of the 17th International
Florida AI Research Society (FLAIRS) Conference, Fl, USA, May 17

ORTIZ, J.L., PIÑEIRO, R.C., 2004B, “Evolutionary Learning Methods for Multilayer
Morphological Perceptron”, Transactions on Neural Networks, IEEE (submitted).

RITTER, G.X., BEAVERS, T.W., 1999, “An Introduction to Morphological Perceptrons”,
Proceedings of the ANNIE ’99 (Artificial Neural Networks in Engineering), St. Louis,
MO.

RITTER, G.X., SUSSNER, P., 1998, “Morphological Associative Memories”, IEEE
Transactions on Neural Networks, Vol. 9, No. 2, pp. 281-293.

RITTER, G. X., SUSSNER, P., 1997, “Morphological Perceptrons" in the proceeding of
International Conference on Intelligent Systems and Semiotics - A Learning Perspective,
Gaithersburg, Maryland.

RITTER, G.X., SUSSNER, P., 1996A, “An Introduction to Morphological Neural Networks”,
Proceedings of the 13th International Conference on Pattern Recognition, Vol. IV, Track
D, pp. 709-717, Austria.

RITTER, G.X. SUSSNER, P., 1996B, Morphological associative memories and perceptrons.
Technical Report TR 96-02, CCVR, University of Florida.

SARAVANAN, N., AND FOGEL, D.B., 1995, “Evolving Neural Control Systems”, IEEE
Expert,Vol. 10, No. 3, pp. 23-27.

106

SUSSNER, P., 1998, “Morphological Perceptron Learning”, Proceedings of the 1998
IEEISIC/CIRA/ISAS Joint Conference, Gaithersburg, MD.

VONK, E., JAIN, L.C., VEELENTURF, L.P.J., JOHNSON, R., 1995, “Automatic Generation of
Neural Network Architecture Using Evolutionary Computation”, IEEE.

WHITLEY,D., STARKWEATHER,T., BOGART,C., 1990, “Genetic algorithms and Neural
Networks: optimizing connections and connectivity”, Parallel Computing, vol. 14, no. 3,
pp. 347-361.

YAO, X., 1999, “Evolving Artificial Neural Networks”, Proceedings of the IEEE,
87(9):1423-1447.

107

APPENDIX A

A EVOLUTINARY LEARNING ALGORITHMS
TOOLBOX FOR MATLAB

A.1 INTRODUCTION

This appendix comprends of the used guide for the Evolutionary Learning

Algorithms Toolbox defined for Matlab 6 and source code

A.2 USER GUIDE FOR MULTILAYER MORPHOLOGICAL PERCELTRON

A.2.1 Common Configuration Parameters
Each training method requires a set of specific configuration parameters. The

configuration parameters control the evolutionary process, including initial population

size, termination conditions, genetic operators, and evaluation function. These parameters

have been added to provide a flexible control over the evolutionary process. Different

genetic operators, as well as evaluation functions may be used, producing different

results. Table A.1 presents the common configuration parameters used by all the training

methods.

108

Parameter Type Description Example
param.evalFn m-file Specifies the name of

the evaluation function
used.

['CGPEval3']

param.evalParams vector of
double

Specifies any
parameter passed to
the evaluation function

[]

param.mutationFn m-file Specifies the name of
the mutation function.

['CGPMultiPointMutation2']

param.mutationParams vector of
double

Specifies any
arguments need by the
mutation function.

[0.08 0.08]

param.popSize integer Size of the population
used during the
evolution

20

param.selectFn m-file Specifies the name of
the selection function,
used to select the
survivals from a
generation to the next
one.

['roulette2']

param.selectParams vector of
double

Specifies any
parameter passed to
the selection function.

[0.33]

param.termParams integer Specifies the
termination criteria:
[max. number of
generations, final
fitness]

[8000,1.0]

param.xOverFn m-file Specifies the name of
the crossover function.

['CGPMultipointXover'];

param.xOverParams vector of
double

Specifies any
necessary parameter
passed to the crossover
function.

[0.95 0.80]

Table A.1 Configuration parameters used by all the training methods

A.2.2 Direct Encoding Toolbox

A.2.2.1 Configuration Parameters

In addition to the parameters presented on Table A.1, the Direct Encoding method

requires configuration parameters described on Table A.2. Direct Encoding method

requires the number of neurons to be specified prior to the training of the neural network,

109

each position in the vector specified by param.layer represents the number of neuron for

each layer.

Parameter Type Description Example
param.layers vector of integers Specifies the number of neurons for each layer. [2 1]
param.opts vector of double [1e-6 1 1]

Table A.2 Configuration parameters used by Direct Encoding Method

A.2.2.2 Training Method

[net, traceInfo] = DirectTrainMNN(patterns, classes, bounds, targets, config);

Description: Trains a multilayer morphological perceptron using the Direct Encoding

method. The method receives as arguments the patterns used during the training process.

Patterns are passed to the method as an MxN matrix, which contains N patterns of M

dimensions. All the patterns from all the classes are appended one after another in the

argument patterns, starting by patterns from class C0, then patterns from class C1 are

appended, and finally patterns from class CT, where T is the total number of classes to be

trained. The parameter classes define a column vector containing the number of patterns

defined for each class in the patterns matrix. Bounds is a 2xM matrix in which each row

vector represents the lower and upper bounds for each dimension. The variable targets

contains a PxQ matrix of binary elements, where each row represents the binary vector

associated to a particular class. The parameter config is a data structure that contains the

configuration parameters shown in Table A.1and Table A.2. The method returns an

object net that represents a MNN.

110

Parameter Type Description Example

patterns matrix of
integers

Specifies the all the patterns
used during the training
process.

class0 = [0 0; 1 1];
class1 = [0 1; 1 0];
patterns = [class0;
class1];

classes vector of
integers

Specifies the amount of
patterns defined on each class

[2; 2]

targets matrix of
integers

Each row represents the binary
vector associated to a
particular class

[0 ; 1]

params struct Configuration parameters for
the algorithm.

as shown in Table 7.1 and
Table 7.2

net MNN MNN trained for the patterns
traceInfo Matrix of

double
Performance of the
evolution. Four column
matrix representing:
generation number, fitness of
the best individual, average
fitness of the generation, and
standard deviation

Table A.3 Parameters passed to the Direct Encoding training method.

A.2.2.3 Sample Code

The code shown in Figure A.1 defines patterns for two classes C0={(0,0) ,(1,1)},

and C1={(0,1), (1,0)}, in a two-dimensional search space for the training algorithm and

returns a morphological perceptron which is able to classify these patterns.

% param is previously defined
class0 = [0 0; 1 1];
class1 = [0 1; 1 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

% Compute the bounds for each dimension
minVals = min(patterns);
bound = [(max(patterns)-minVals); minVals];

% Expand the boundaries by %25
bound = bound +[boundaries (1,:)*.125; - bound (1,:)*0.125]
[net,traceInfo] = DirectTrainMNN(patterns, classes, bound, targets, config);
Figure A.1 Example code of how Direct Encoding Method can be used to train MNN

111

A.2.3 Indirect Encoding Toolbox

A.2.3.1 Configuration Parameters

Configuration parameters used by the Indirect Encoding method are the

configurations parameters shown in Table A.1. No additional configuration parameters

are needed.

A.2.3.2 Training Function

[net, traceInfo] = IndirectTrainMNN(patterns, classes, targets, params)

Description: Trains a multilayer morphological perceptron using the Indirect Encoding

method. The function receives as arguments the patterns used during the training process.

Patterns are passed to the function as an MxN matrix, which contains N patterns of M

dimensions. All patterns from all the classes are appended one after another in the

argument patterns, starting by patterns from class C0, then patterns from class C1 are

appended, finally patterns from class CT, where T is the total number of classes to be

trained. The parameter classes define a column vector containing the number of patterns

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix

of binary elements, where each row represents the binary vector associated to a particular

class. The parameter config is a data structure that contains the configuration parameters

used for the training algorithm. The method returns an object net that represents a MNN.

112

Parameter Type Description Example
patterns Matrix of

integers
Specifies the all the patterns
used during the training
process.

class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;
class1];

class_distribution Vector of
integers

Specifies the amount of patterns
defined on each class

[2; 2]

targets Matrix of
integers

Each row represents the binary
vector associated to a particular
class

[0 ; 1]

params Configuration parameters for
the algorithm.

As shown in Table 7.1

net MNN MNN trained for the patterns
traceInfo Matrix of

double
Performance of the
evolution. Four column
matrix representing:
generation number, fitness of
the best individual, average
fitness of the generation, and
standard deviation

Table A.4 Parameters passed to the CGP training method

A.2.3.3 Sample Code

The code shown in Figure A.2 defines patterns for two classes C0={(0,0) ,(1,1)},

and C1={(0,1), (1,0)}, is a 2-dimensinal search space for the training algorithm and

returns a morphological perceptron which is able to classify these patterns.

% params is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo]=IndirectTrainMNN(patterns,classes, targets, params);

Figure A.2 Example code of how Indirect Encoding Method can be used to train MNN

A.2.4 Cartesian Genetic Programming Toolbox

A.2.4.1 Configuration Parameters

Configuration parameters used by the training algorithms include the

configuration parameters shown in Table A.1 in addition to the configuration parameters

113

shown in Table A.5. Configuration parameters from Table A.5 define some network

properties such as the distribution of nodes, and number of inputs received by the neurons

for each layer.

Configuration
parameter

Type Description Example

param.connections vector of
integers

Specifies the number of connections
used by the nodes on each layer.

[20 20 1]

param.layers vector of
integers

Specifies the maximum number of nodes
defined for each layer.

[4 2 20]

Table A.5 Additional configuration parameters used by Cartesian Genetic Programming.

A.2.4.2 Training Function

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params)

Description: Trains a multilayer morphological perceptron based on Cartesian genetic

programming. The function receives as arguments the patterns used during the training

process. Patterns are passed to the function as an MxN matrix, which contains N patterns

of M dimensions. All the patterns from all the classes are appended one after the other in

the argument patterns, starting by patterns from class C0, then patterns from class C1 are

appended, finally patterns from class CT, where T is the total number of classes to be

trained. The parameter classes define a column vector containing the number of patterns

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix

of binary elements, where each row represents the binary vector associated to a particular

class. The parameter config is a data structure that contains the configuration parameters

used for the training algorithm. The method returns an object net that represents a MNN,

and a matrix traceInfo which consists of three columns. The first column identify the

generation number, the second column corresponds to the fitness value assigned to the

best organism for the corresponding generation, the third column corresponds to the

114

average value for the fitness of the population, the value forth column corresponds to the

standard deviation.

Parameter Type Description Example
patterns Matrix of

integers
Specifies the all the patterns
used during the training
process.

class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];

classes Vector of
integers

Specifies the amount of
patterns defined on each
class

[2; 2]

targets Matrix of
integers

Each row represents the
binary vector associated to a
particular class

[0 ; 1]

params Configuration parameters for
the algorithm.

As shown in Table 7.1
and Table 7.5

net MNN MNN trained for the patterns
traceInfo Matrix of

double
Performance of the
evolution. Four column
matrix representing:
generation number, fitness of
the best individual, average
fitness of the generation, and
standard deviation

Table A.6 Parameters passed to the CGP training method

A.2.4.3 Sample Code

The code shown in Figure A.3 defines patterns for two classes C0={(0,0) ,(1,1)},

and C1={(0,1), (1,0)}, the search space for the training algorithm, and returns a

morphological perceptron which is able to classify the patterns.

% params is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params);

Figure A.3 Example code of how Indirect Encoding Method may be used to train MNN

115

A.3 COMMON TOOLS

This section describes a set of common tools used by all the training methods to

manipulate and control morphological neural networks.

A.3.1 Pattern Classification
[class] = evalMorphologicalNet(net, patterns)

Description: Classify the patterns defined by the argument patterns given a vector of

MLMP denoted by the argument net. Each entry in the vector net represents a Multilayer

Morphological Perceptron used to construct the classification vector. Multiple patterns

may be classified simultaneously using a single function call as shown in Figure A.4. In

Figure A.4, three 4 dimensional patterns are assigned to class
0
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. Each row from the

class matrix denote the corresponding classification for each pattern defined by each row

from the patterns argument.

class1 =

 5.1000 3.5000 1.4000 0.2000
 4.9000 3.0000 1.4000 0.2000
 4.7000 3.2000 1.3000 0.2000

>> evalMorphologicalNet(net,class1)

ans =

 0 1 1
 0 1 1
 0 1 1

Figure A.4 How to use Multilayer Morphological Perceptrons to classify multiple patterns.

A.3.2 Plotting the Network
plotNetwork2(net)

116

Description: Display a graphical representation of the perceptrons denoted by the

argument net in a 2-dimensinal space, as shown in Figure A.5.

.
-6 -4 -2 0 2 4 6-8

-6

-4

-2

0

2

4

6

plotNetwork2(net)

Figure A.5 Graphical representation of Multilayer Morphological Perceptrons.Tthe morphological

perceptrons are represented by two intersecting perperdicular dotted lines.

A.4 DEPENDENCY STRUCTURE OF METHOD IN THE TOOLBOX

This section describes the dependency structure followed by the different methods

implemented in the training algorithms toolbox for Matlab. All functions are enclosed by

a rectangle and linked to other sub-functions needed to complete the required task, as

shown in Figure A.6

117

function [res] = evalMorphologicalNet(net, testPatterns)

function [val] = evalMorphologicalPerceptron(mnn, inputs)

function [val] = hardlimit(x)

function [] = plotNetwork(net, parentOp, parentR, index, delta)

function [] = plotRegion(net, xmin, xmax, ymin, ymax)

function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds, targets, nconfig)

function [pop] = initializeMNNga(bounds, populationSize, evalFN,evalOps,options, layerInfo)

function [x,endPop,bPop,traceInfo] = MNNga (bounds, evalFN, evalOps, startPop, opts, termFN,
termOps, selectFN,selectOps, xOverFNs, xOverOps, mutFNs, mutOps)

function [net] = generateNetwork(level, layerInfo, opts, range, minValues, infiniteOpt)

function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps)

function [o1] = defMutation(p1, bounds, opts)

function [o1,o2] = defXover(p1,p2, bounds, Opts)

function [res] = operateAndNet(net1, net2)

function [res] = operateOrNet(net1, net2)

function[newPop] = roulette2(oldPop,options)

function [layers] = getTotalLayers(mnn)

function [params] = getDefaultParams(opts)

Direct Encoding Method

Common Tools

118

function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets, nconfig)

function [res, traceInfo] = NNmorphologicalGA(c0, c1, params)

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,
opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps

function [pop] = generatePop(popSize, bounds)

function [sol, val] = NNmorphologicalEval(sol,parameters)

function [c] = NNmorphologicalMutation(parent,bounds,Ops)

function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops)

function [params] = getDefaultParams(opts)

Indirect Encoding Method

function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop)

function [net] = CGPTrainMNN(testPatterns, classes, targets, nconfig)

function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps, startPop,opts,termFN
,termOps,selectFN,selectOps,xOverFNs,xOverOps, mutFNs,mutOps)

function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps)

function [chrom, val] = CGPEval3(chrom,opts)

function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops)

function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops)

function [param] = CGPDefaultParam(patternSize, numOfNodes, numOfInputs)

function [done] = CGPFitnessFoundTerm(ops, bPop, endPop)

Cartesian Genetic Programming Method

function [res] = CGPDecodeNet(chrom, F, FTotal, param)

function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs, F,
FTotal)

function [F, FTotal] = CGPInitialize(patterns, param)

Figure A.6 Interdependency of functions for th e Matlab toolbox.

A.5 MATLAB TOOLBOX FOR MORPHOLOGICAL PERCEPTRON

This section provides all the commonly used functions defined for all the learning

methods:

119

function [res] = evalMorphologicalNet(net, testPatterns)

% Version 1.0
%
function [res] = evalMorphologicalNet(net, testPatterns)
res = [];
sz= size(net,2);
for i=1:sz
 res = [res evalMorphologicalPerceptron(net(i), testPatterns)];
end

function [val] = evalMorphologicalPerceptron(mnn, inputs)

% Version 1.1
% Evaluate the morphological perceptron
% mnn - takes a morphological neural network
% inputs - a matrix containing the input patterns
function [val] = evalMorphologicalPerceptron(mnn, inputs)

numberOfInputs = size(mnn.inputs,2);
val = 0;
if (numberOfInputs ~= 0)
 res = [];
 for i=1:numberOfInputs % Evaluate branches of the tree recursively
 res = [res evalMorphologicalPerceptron(mnn.inputs(1,i),inputs)];
 end

 %Evaluate the resulting outputs of the neurons
 totalTestPatterns = size(inputs,1);
 weights = [];
 r = [];
 for n=1:totalTestPatterns
 weights = [weights; mnn.weights];
 r = [r; mnn.r];
 end
 if (mnn.op == 0)
 val = hardlimit(min((r.*(res-weights))')');
 else
 val = hardlimit(max((r.*(res-weights))')');
 end
else
 % Evaluate a single neuron
 totalTestPatterns = size(inputs,1);
 weights = [];
 r = [];
 for n=1:totalTestPatterns
 weights = [weights; mnn.weights];
 r = [r; mnn.r];
 end
 if (mnn.op == 0)
 val = hardlimit(min((r.*(inputs-weights))')');
 else
 val = hardlimit(max((r.*(inputs-weights))')');
 end
end

function [val] = hardlimit(x)

% Version 1.1
% hardLimit used in Morphological Neural Network
% x -

120

function [val] = hardlimit(x)

val = x>0;

function [] = plotNetwork(net, parentOp, parentR, index, delta)

% Version
% Draw a 2D/3D representation of a neural network
function [] = plotNetwork(net, parentOp, parentR, index, delta)

if (nargin < 5)
 delta = 1;
end
if (nargin < 4)
 index = 0;
end

%set up default values
color =['b', 'g', 'r', 'c', 'm', 'y', 'k'];
symbol = ['o', 'x', '+','*', 's', 'd', 'v', '^','<','>','p','h', '.'];
connection = ['-', ':', '-.', '--'];
% - / r=+1, op=0
% : / r=+1, op=1
% -. / r=-1, op=0
% -- / r=-1, op=1
 hold on;
 sz = size(net.inputs,2);
 if (sz == 0)

 deltas = delta*(-net.r);

 con = parentOp+1;
 if (parentR ~= 1)
 con = con+2;
 end
 if (con == 1)
 c = '-';
 elseif (con ==2)
 c = ':';
 elseif (con == 3)
 c = '-.';
 elseif (con == 4)
 c = '--';
 end

 if (index > 13)
 index = 1;
 end
 if (net.op == 1)
 color1 = strcat('b', symbol(index), c);
 else
 color1 = strcat('r', symbol(index), c); % or o minimo
 end

 totalWeights = size(net.weights,2);
 x = net.weights(1);
 y = net.weights(2);
 %Check how many dimension contains the pattern and plot it
 if (totalWeights == 2)
 plot([x,x,x+1.2*deltas(1)],[y+1.2*deltas(2),y,y], color1);
 elseif (totalWeights == 3)
 z = net.weights(3);
 plot3([x,x,x+1.2*deltas(1)],[y+1.2*deltas(2),y,y], [z,z,z], color1);
 plot3([x,x], [y,y], [z,z+1.2*deltas(3)], color1);
 end
 else
 if (index == 0)

121

 for i=1:sz
 plotNetwork2(net.inputs(i), net.op, net.r(i), i);
 end
 else
 for i=1:sz
 plotNetwork2(net.inputs(i), net.op, net.r(i), index);
 end
 end
 end

function [] = plotRegion(net, xmin, xmax, ymin, ymax)

function [] = plotRegion(net, xmin, xmax, ymin, ymax)

if (nargin < 4)
 xmin = -2;
 xmax = 4;
 ymin = -2;
 ymax = 4;
end

class = [];
for n=1:2000
 x = rand*(xmax-xmin)+xmin;
 y = rand*(ymax-ymin)+ymin;
 class = [class; x y];
end
r = evalMorphologicalNet(net, class);
c0 = find(r==0);
c1 = find(r==1);
hold on;
plot(class(c0,1),class(c0,2), 'ro');
plot(class(c1,1),class(c1,2), 'bs');

A.6 DIRECT ENCODING METHOD

This section provides all the necessary functions used by the Direct Encoding

Method.

function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds,
targets, nconfig)

% Version 1.1
% Train a Morphological Neural Network
% testPatterns - a M by N matrix, it contains M patterns of dimension N
% classes - a M by 2 matrix where M is the number of classes.
% Each element in the first column is the number of test patterns that belongs to the
% class at the corresponding index
% The second row contains the dimension of each test pattern class
% NOTE: all the test patterns must contains be of the same dimension
% targets an matrix
% networkConf see getDefaultConfig()

function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds, targets, nconfig)
global class0;

122

global class1;
global config;

config = nconfig;
% Validate the inputs
sz = size(testPatterns);
if (sz(1) < 2)
 error('\nERROR: Insuficient number of \''testPatterns\''. At least two test patterns are needed\n');
end
if (sz(2) < 2)
 error('\nERROR: Invalid dimension of the \''testPatterns\''. The minimum dimenison should be 2\n');
end
[numberOfOutputs, totalClassesTargets] = size(targets);

if (numberOfOutputs < 2)
 error(sprintf('\nERROR: Insuficient number of outputs specified in \''targets\''. At least two outputs are
required.\n\tCurrent value: %d',numberOfOutputs));
end

% Verify the number of classes must be less than or equal to 2*(number of outputs)
totalClasses = size(classes,1);
if (totalClasses > numberOfOutputs*2)
 error(sprintf('\nERROR: The number of outputs defined in the \''targets\'' parameter must be %d',(totalClasses+1)/2));
end
if (2*totalClassesTargets < 2)
 error(sprintf('\nERROR: Insuficient number of classes in the target definition. \n\tTAt least two classes are
required.\n\tCurrent value: %d',totalClassesTargets));
end
if (totalClasses < 2)
 error(sprintf('\nERROR: Insuficient number of classes in the \''classes\'' definition.\n\tAt least two classes are
required.\n\tCurrent value: %d',totalClasses));
end

% Sum all the elements in the class
pos = [cumsum(classes(:,1))];
% Add append a 0 value at the begining of the vector and remove the last one.
pos = [0; pos(1:end-1,1)]+1;

% Initialize the resulting net to null
net = [];

% Add the number of inputs to the layer information
config.layers = [size(testPatterns,2) config.layers];

% Compute the bounds for each dimension
maxVals = bounds(2,:);
minVals = bounds(1,:);
bounds = [(maxVals-minVals); minVals];

% For each output, define the network
net = struct('op', cell(1,totalClassesTargets), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]});
traceInfo = struct('trace', {[]});
for output=1:totalClassesTargets

 % Regroup the test patterns
 fprintf(' Training output: %d\n',output);
 groups = find(targets(:,output)==0);
 totalGroups = size(groups,1);
 class0 = [];

 % Verify the class with the output value of 0 at the output index(output) exist!.
 if (totalGroups == 0)
 error('ERROR: Invalid class definition. The target with 0 on evey index must be defined');
 end;
 for class=1:totalGroups
 begn = pos(groups(class));
 final = begn+classes(groups(class))-1;
 class0 = [class0; testPatterns(begn:final,:)];
 end

123

 groups = find(targets(:,output)==1);
 totalGroups = size(groups,1);

 class1 = [];
 for class=1:totalGroups
 begn = pos(groups(class));
 final = begn+classes(groups(class))-1;
 class1 = [class1; testPatterns(begn:final,:)];
 end
 % Generate the initial population
 pop = initializeMNNga(bounds, config.popSize, config.evalFn, config.evalParams, ...
 [config.variableArchitecture config.allowInfinite], config.layers);
 gaFN = ['[x, endPop, bPop, traceInf] = ' config.defaultGA '(bounds, config.evalFn, config.evalParams, pop, config.opts,'
...
 'config.termFn, config.termParams, config.selectFn, config.selectParams,' ...
 'config.xOverFn, config.xOverParams,config.mutFn, config.mutParams);'];

 eval(gaFN);

 traceInfo(output).trace = traceInf;
 net(output) = x.chromosome;
end

function [net] = generateNetwork(level, layerInfo, opts, range, minValues,
infiniteOpt)
% Generate a random neuron based in the configuration
% level - indicates the layer+1 of the network
% layerInfo = [num_of_inputs num_of_neurons_1rst_layer num_of_neurons_2nd_layer(optional)
num_of_neurons_3thrd_layer(optional)]
% opts = [variableArchitecture]
% infiniteOpt = [allowInfinite inifiniteOps]

function [net] = generateNetwork(level, layerInfo, opts, range, minValues, infiniteOpt)

if nargin < 3
 error('ERRORO: Invalid number of arguments in generateNetwork\n');
end
allowInfinite = 0;
if (nargin >= 4)
 if (size(infiniteOpt,2) >= 2)
 [allowInfinite infiniteProb] = infiniteOpt;
 end
end

totalOpts = size(opts,2);
if (totalOpts > 1)
 variableArchitecture = 0;
else
 variableArchitecture = opts(1); % Is the architecture fixed or variable?
end

if (variableArchitecture)

else
 if (level == 4) % level 2?
 neuron.op = 0;
 neuron.r = ones(1,layerInfo(level-1));
 neuron.weights = zeros(1,layerInfo(level-1));
 neuron.inputs = [];
 for i = 1:layerInfo(level-1)
 [mnn] = generateNetwork(level-1,layerInfo,opts, range, minValues, infiniteOpt);
 neuron.inputs = [neuron.inputs mnn];
 end;

124

 elseif (level == 3) % level 2?
 neuron.op = round(rand);
% neuron.p = [1];
 neuron.r = ones(1,layerInfo(level-1)); % what happend if r = -1?
 neuron.weights = zeros(1,layerInfo(level-1));
 neuron.inputs = [];
 for i = 1:layerInfo(level-1)
 [mnn] = generateNetwork(level-1,layerInfo,opts, range, minValues, infiniteOpt);
 neuron.inputs = [neuron.inputs mnn];
 end;
 elseif (level == 2) % level 2?
 neuron.op = round(rand); % Generate random [max min] operator
% neuron.p = round(rand);
 neuron.r = 2*round(rand(1,layerInfo(level-1)))-1; % Generate a vector of [-1 1] values

 if (allowInfinite)
 if (rand < infiniteProb)
 end
 else
 neuron.weights = ((rand(1,layerInfo(level-1))).*range)+minValues; % Generate weights
 end
 neuron.inputs = [];
 end
end
net = neuron;

function [pop] = initializeMNNga(bounds, populationSize,
evalFN,evalOps,options, layerInfo)
% Version 1.0
function [pop] = initializeMNNga(bounds, populationSize, evalFN,evalOps,options, layerInfo)
global class0;
global class1;

% options(1) 0 - fixed architecture
% 1 - variable architecture
% options(2) 0 dont allow -Inf and +Inf
% 1 - allow -Inf and +Inf
% options(3) inf probability

%Validate parameters
pop = [];

if nargin<6
 error('ERROR: Missing layer configuration options in parameters.');
 layerInfo = [2 1];
else
 % validate layerInfo
 totalLayers = size(layerInfo,2)-1;
 totalInputs = layerInfo(1);
 if (totalLayers > 3)
 error('Invalid number of layers\n');
 end
 if (size(find(layerInfo<=0),2) > 0)
 error('Invalid layer configuration. None of the parameters can be 0');
 end
 if (totalLayers == 3)
 if (layerInfo(4) > 1)
 error('Invalid number of neurons in layer 3');
 end
 if (layerInfo(3) < 2)
 error('Invalid number of neurons in layer 2');
 end
 if (layerInfo(2) < 2)
 error('Invalid number of neurons in layer 1');

125

 end
 end
 if (totalLayers == 2)
 if (layerInfo(3) > 1)
 error('Invalid number of neurons in layer 2');
 end
 if (layerInfo(2) < 2)
 error('Invalid number of neurons in layer 2');
 end
 end
 if (totalLayers == 1)
 if (layerInfo(2) > 1)
 error('Invalid number of neurons in layer 2');
 end
 end

end
if nargin<5
% options=[1e-6 1];
 options=[1 0 0];
end
if nargin<4
 evalOps=[];
end

if any(evalFN<48) %Not a .m file
 estr=['x=pop(i).chromosome; pop(i).fitness=', evalFN ';'];
else %A .m file
 estr=['[pop(i).chromosome pop(i).fitness]=' evalFN '(pop(i).chromosome,[0 evalOps]);'];
end

% Generate random population

pop = struct('fitness', cell(1,populationSize), 'chromosome', {[]});

for i=1:populationSize
 neuron.fitness = 0;
 neuron.chromosome = generateNetwork(size(layerInfo,2), layerInfo, options(1), bounds(1,:), bounds(2,:),
[options(2:end)]);
% if (isEmptyArea(neuron.chromosome))
% neuron.chromosome.op = 0;
% end

 pop(i) = neuron;
 eval(estr);
end

return;

function [x,endPop,bPop,traceInfo] = MNNga (bounds, evalFN, evalOps,
startPop, opts, termFN, termOps, selectFN,selectOps, xOverFNs, xOverOps,
mutFNs, mutOps)

% Version 1.0
% MNNga
function [x,endPop,bPop,traceInfo] = MNNga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)
global class0;
global class1;
global config;
%global range;
%global minValues;
% GA run a genetic algorithm
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,

126

% termFN,termOps,selectFN,selectOps,
% xOverFNs,xOverOps,mutFNs,mutOps)
%
% Output Arguments:
% x - the best solution found during the course of the run
% endPop - the final population
% bPop - a trace of the best population
% traceInfo - a matrix of best and means of the ga for each generation
%
% Input Arguments:
% bounds - a matrix of upper and lower bounds on the variables
% evalFN - the name of the evaluation .m function
% evalOps - options to pass to the evaluation function ([NULL])
% startPop - a matrix of solutions that can be initialized
% from initialize.m
% opts - [epsilon prob_ops display] change required to consider two
% solutions different, prob_ops 0 if you want to apply the
% genetic operators probabilisticly to each solution, 1 if
% you are supplying a deterministic number of operator
% applications and display is 1 to output progress 0 for
% quiet. ([1e-6 1 0])
% termFN - name of the .m termination function (['maxGenTerm'])
% termOps - options string to be passed to the termination function
% ([100]).
% selectFN - name of the .m selection function (['normGeomSelect'])
% selectOpts - options string to be passed to select after
% select(pop,#,opts) ([0.08])
% xOverFNS - a string containing blank seperated names of Xover.m
% files (['arithXover heuristicXover simpleXover'])
% xOverOps - A matrix of options to pass to Xover.m files with the
% first column being the number of that xOver to perform
% similiarly for mutation ([2 0;2 3;2 0])
% mutFNs - a string containing blank seperated names of mutation.m
% files (['boundaryMutation multiNonUnifMutation ...
% nonUnifMutation unifMutation'])
% mutOps - A matrix of options to pass to Xover.m files with the
% first column being the number of that xOver to perform
% similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0])

if (0) % For debuging pourpose, change it to 1 to validate parameters
 n=nargin;
 if n<13
 disp('Insufficient arguements')
 end
 if n<3 %Default evalation opts.
 evalOps=[];
 end
 if n<5
 opts = [1e-6 1 0];
 end
 if isempty(opts)
 opts = [1e-6 1 0];
 end

 if n<12 %Default muatation information
 mutFNs=['defMutation'];
 mutOps=[size(startPop,2) 1 1 1 1];
 end
 if n<10 %Default crossover information
 xOverFNs=['defXover'];
 xOverOps=[size(startPop,2) 0.6];

 end
 if n<9 %Default select opts only i.e. roullete wheel.
 selectOps=[];
 end
 if n<8 %Default select info
 selectFN=['normGeomSelect'];
 selectOps=[0.08];

127

 end
 if n<6 %Default termination information
 termOps=[100];
 termFN='maxGenTerm';
 end
 if n<4 %No starting population passed given
 startPop=[];
 end
 if isempty(startPop) %Generate a population at random
 %startPop=zeros(80,size(bounds,1)+1);
 % startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2));
 fprintf('ERROR: Empty initial population\n');
 return;
 end
end

if any(evalFN<48) %Not using a .m file
 e1str=['x=c1; c1.fitness=', evalFN ';'];
 e2str=['x=c2; c2.fitness=', evalFN ';'];
else %Are using a .m file
 e1str=['[c1.chromosome c1.fitness]=' evalFN '(c1.chromosome, [gen evalOps]);'];
 e2str=['[c2.chromosome c2.fitness]=' evalFN '(c2.chromosome, [gen evalOps]);'];
end

%minValues = bounds(:,1)';
%range = (bounds(:,2)-bounds(:,1))';
if (config.dbg.plotEvolution)
 if (config.dbg.fixedAxis)
 close all;
 figure(1);
 cla;
 if (size(bounds,2) == 2)
 a = [bounds(2,1), bounds(1,1)+bounds(2,1), bounds(2,2), bounds(1,2)+bounds(2,2)];
 elseif (size(bounds,2) == 3)
 a = [bounds(2,1), bounds(1,1)+bounds(2,1), bounds(2,2), bounds(1,2)+bounds(2,2) , bounds(2,3),
bounds(1,3)+bounds(2,3)];
 end
 axis(a);
 axis square;
 axis manual;
% box;
% grid;

 if (config.dbg.showTheBest)
 figure(2);
 cla;
 axis(a);
 axis square;
 axis manual;
% box;
% grid;
 end
 else
 close all;
 end
end

popSize = size(startPop,2); %Number of individuals in the pop
%endPop = zeros(popSize,xZomeLength); %A secondary population matrix
endPop = struct('fitness', cell(1,popSize), 'chromosome', {[]});

c1.fitness = 0;
c1.chromosome= [];
c2.fitness = 0;
c2.chromosome= [];
epsilon = opts(1); %Threshold for two fittness to differ
oval = max([startPop.fitness]); %Best value in start pop
bFoundIn = 1; %Number of times best has changed
done = 0; %Done with simulated evolution

128

gen = 1; %Current Generation Number
collectTrace = (nargout>3); %Should we collect info every gen
floatGA = opts(2)==1; %Probabilistic application of ops
display = opts(3); %Display progress

subPopSize = 2*fix(selectOps(1)*popSize/2);

while(~done)
 %Elitist Model
 [bval,bindx] = max([startPop.fitness]); %Best of current pop
 best = startPop(bindx);

 if collectTrace
 traceInfo(gen,1) = gen; %current generation
 traceInfo(gen,2) = startPop(bindx).fitness; %Best fittness
 traceInfo(gen,3) = mean([startPop.fitness]); %Avg fittness
 traceInfo(gen,4) = std([startPop.fitness]);
 end

 if ((abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol
 if display
 fprintf(1,'\n%d %f\n',gen,bval); %Update the display
 end
 stat.generation = gen;
 stat.organism = startPop(bindx);
 bPop(bFoundIn)=[stat]; %Update bPop Matrix

 bFoundIn=bFoundIn+1; %Update number of changes
 oval=bval; %Update the best val
 else
 if display
 fprintf(1,'%d ',gen); %Otherwise just update num gen
 end
 end

 endPop = feval(selectFN,startPop,[gen selectOps]); %Select
 totalOrg = subPopSize+1;
 totalFitness = sum([endPop.fitness]);
 fit = [endPop.fitness]/totalFitness;
 fit = cumsum(fit);

 mutationParams = ((1.0-(0.4).*(startPop(bindx).fitness))).* mutOps(1,:);

 mutationParams = [gen, startPop(bindx).fitness, mutationParams];

 while totalOrg < popSize

 val1 = find(fit-rand>=0);
 val2 = find(fit-rand>=0);
 [c1.chromosome c2.chromosome] =
feval(xOverFNs,endPop(val1(1)).chromosome,endPop(val2(1)).chromosome,bounds,[gen xOverOps(1,:)]);

 c1.chromosome = feval(mutFNs,c1.chromosome,bounds,mutationParams);
 c2.chromosome = feval(mutFNs,c2.chromosome,bounds,mutationParams);

 eval(e1str);
 eval(e2str);

 endPop(totalOrg)=c1;
 endPop(totalOrg+1)=c2;
 totalOrg = totalOrg+2;
 end

 % maxGen = termOps(1);

 %((maxGen-gen)/maxGen)
 %mutationParams = (3*(1.1-startPop(bindx).fitness)).* mutOps(i,:);

129

% mutationParams = [gen, startPop(bindx).fitness, mutOps(i,:)];

 gen=gen+1;
 done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done
 startPop=endPop; %Swap the populations

 [bval,bindx] = min([startPop.fitness]); %Keep the best solution
 startPop(bindx) = best; %replace it with the worst

 if (config.dbg.plotEvolution) % Plot the evolution of the population
 if (config.dbg.showTheBest) % Plot the best organism
 figure(2);
 cla;
 hold on;
 if (size(class0,2) == 2)
 plot(class0(:,1),class0(:,2),'ks');
 plot(class1(:,1),class1(:,2),'go');
 elseif (size(class0,2) == 3)
 plot3(class0(:,1),class0(:,2),class0(:,3),'ks');
 plot3(class1(:,1),class1(:,2),class1(:,3),'go');
 end
 plotNetwork(best.chromosome);
 end
 figure(1);
 cla;
 hold on;

 if (size(class0,2) == 2)
 plot(class0(:,1),class0(:,2),'ks');
 plot(class1(:,1),class1(:,2),'go');
 elseif (size(class0,2) == 3)
 plot3(class0(:,1),class0(:,2),class0(:,3),'ks');
 plot3(class1(:,1),class1(:,2),class1(:,3),'go');
 end

 sz = size(startPop,2);
 for n=1:sz
 plotNetwork(startPop(n).chromosome); % plot a single network
 end

 if (config.dbg.delay > 0)
 pause(config.dbg.delay); % Delay the output
 end
 end
end

[bval,bindx] = max([startPop.fitness]);
if display
 fprintf(1,'\n%d %f\n',gen,bval);
end

x=startPop(bindx);
stat.generation = gen;
stat.organism = startPop(bindx);
bPop(bFoundIn)=stat;

if collectTrace
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx).fitness; %Best fittness
 traceInfo(gen,3)=mean([startPop.fitness]); %Avg fittness
 traceInfo(gen,4)=std([startPop.fitness]);
end

130

function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps)

% Version 1.0
% Fitness Function
% Inputs-
% chromosomeIn - chromosome to be evaluated
% evalOps -
% Outputs:
% chromosomeOut - (must be the same as the input)
% fitness = how good is the organism
% fitness = (1/N)(total patterns classified correctly)/total Test Patterns

function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps)
global class0;
global class1;

chromosomeOut = chromosomeIn;
% Evaluate patterns of class0
evalClass0 = evalMorphologicalPerceptron(chromosomeIn, class0);
totalCorrectClass0 = size(find(evalClass0==0),1)/size(evalClass0,1);

% Evaluate patterns of class1
evalClass1 = evalMorphologicalPerceptron(chromosomeIn, class1);
totalCorrectClass1 = size(find(evalClass1==1),1)/size(evalClass1,1);

%totalTestPatterns = size(class0,1)+size(class1,1);
fitness = (totalCorrectClass0+totalCorrectClass1)/2;

if (getTotalLayers(chromosomeIn)> 1)

 totalNeurons = size(chromosomeIn.inputs,2);
 cumSum = 0;
 if (chromosomeIn.op == 0)
 total = 0;
 for n=1:totalNeurons
 for m=1:totalNeurons
 if (n ~= m)
 total = total+operateOrNet(chromosomeIn.inputs(n),chromosomeIn.inputs(m));
 cumSum = cumSum +1;
 end
 end
 end
 else
 total = 0;
 for n=1:totalNeurons
 for m=1:totalNeurons
 if (n ~= m)
 total = total+operateAndNet(chromosomeIn.inputs(n),chromosomeIn.inputs(m));
 cumSum = cumSum +1;
 end
 end
 end
 end
 fitness = (fitness+2*(cumSum-total)/cumSum)/3;
end

function [o1] = defMutation(p1, bounds, opts)
% Version 1.0
% opts = [gen, bestFitness, totalMut, mutProb, mutOpProb, mutWeightProb,mutRProbm mutRange]
function [o1] = defMutation(p1, bounds, opts)
global class0;
global class1;

131

o1 = p1;
if (size(opts) ~= 8)
 error('Invalid number of parameters');
end
bestFitness = opts(2);
mutProb = opts(4);
mutOpProb = opts(5);
mutWeightProb = opts(6);
mutRProb = opts(7);
mutRange = opts(8);

%Adjust mutation parameters according to the fitness
if (bestFitness >= 0.96)
 mutProb = mutProb*.05;
 mutOpProb = mutOpProb*.05;
 mutRProb = mutRProb*0.05;
 mutRange = mutRange*0.10;
end

%if (rand > mutProb)
% return;c
%end

totalLayers = getTotalLayers(p1);
if (totalLayers == 1)
 if (rand < mutOpProb)
 o1.op = abs(p1.op-1);
 end

 if (rand < mutWeightProb)
 rangeMin = bounds(1,:)*mutRange;
 rangeMax = rangeMin;

 sz = size(o1.weights,2);
% o1.weights = o1.weights+(bounds(1,:).*(0.5*(rand(1,sz)-0.25)));
 rangeMax = min(p1.weights+rangeMax , (bounds(1,:)+bounds(2,:)))-p1.weights;
 rangeMin = max(p1.weights-rangeMin,bounds(2,:))-p1.weights;
 mutation = (rangeMax-rangeMin).*rand(1,sz)+rangeMin;

 o1.weights = p1.weights+mutation;
 end

% if (rand < mutRProb)
 sz = size(o1.r,2);
% o1.r = 2*round(rand(1,sz))-1;
 o1.r = o1.r .*(2*(rand(1,sz)<mutRProb)-1);
% end

elseif (totalLayers == 2)
 % To be implemented
 level = round(rand*0.80+0.20)+1;
 if (level == 1)
% pos11 = round(rand*(size(o1.inputs,2)-1))+1;
% if (rand < mutOpProb)
 o1.op = abs(p1.op-1);
% o1.op = rand*.6;
% end
 elseif (level == 2)
 sz = size(o1.inputs,2);
 totalMutBranches = round(rand*(sz-1))+1;

 totalInputs1 = size(o1.inputs,2);
 for n=1:totalMutBranches
 pos11 = round(rand*(totalInputs1-1))+1;

 if (rand < mutOpProb)
 o1.inputs(pos11).op = abs(p1.inputs(pos11).op-1);

132

 end

 if (rand < mutWeightProb)
 rangeMin = bounds(1,:)*mutRange;
 rangeMax = rangeMin;

 sz = size(p1.inputs(pos11).weights,2);

 rangeMax = min(p1.inputs(pos11).weights+rangeMax, (bounds(1,:)+bounds(2,:)))-p1.inputs(pos11).weights;
 rangeMin = max(p1.inputs(pos11).weights-rangeMin, bounds(2,:))-p1.inputs(pos11).weights;
 mutation = (rangeMax-rangeMin).*rand(1,sz)+rangeMin; % this should be optimized

 o1.inputs(pos11).weights = p1.inputs(pos11).weights+mutation;
 end

 if (rand < mutRProb)
 sz = size(o1.inputs(pos11).r,2);
 o1.inputs(pos11).r = 2*round(rand(1,sz))-1;
 end
 end
 end
elseif (totalLayers == 3)
 level = round(rand)+2;

 if (level == 3)
 pos11 = round(rand*(size(o1.inputs,2)-1))+1;
 pos12 = round(rand*(size(o1.inputs(pos11).inputs,2)-1))+1;

 if (rand < mutOpProb)
 o1.inputs(pos11).inputs(pos12).op = round(rand);
 end

 if (rand < mutWeightProb)
 sz = size(o1.inputs(pos11).inputs(pos12).weights,2);
 o1.inputs(pos11).inputs(pos12).weights = o1.inputs(pos11).inputs(pos12).weights+(bounds(1,:).*(0.5*(rand(1,sz)-
0.25)));
 end

 sz = size(o1.inputs(pos11).inputs(pos12).r,2);
 for i=1:sz
 if (rand < mutRProb)
 o1.inputs(pos11).inputs(pos12).r(i) = 2*round(rand)-1; % Generate a vector of [-1 1] values
 end
 end
 else
 pos11 = round(rand*(size(o1.inputs,2)-1))+1;
 if (rand < mutOpProb)
 o1.inputs(pos11).op = round(rand);
 end

 end
% if (isEmptyArea(o1))
% o1.op = 0;
% end
end;

function [o1,o2] = defXover(p1,p2, bounds, Opts)

% Version 2.0
% Crossover function
%
function [o1,o2] = defXover(p1,p2, bounds, Opts)
global class0;
global class1;

133

global config;
if (config.dbg.showCrossover)
 figure(10);
 cla;
 plot(class0(:,1),class0(:,2),'g*');
 plot(class1(:,1),class1(:,2),'kx');
 plotNetwork(p1);

 figure(11);
 cla;
 plot(class0(:,1),class0(:,2),'g*');
 plot(class1(:,1),class1(:,2),'kx');
 plotNetwork(p2);
end
o1 = p1;
o2 = p2;
totalLayers = min(getTotalLayers(p1), getTotalLayers(p2));

if (totalLayers == 1)
 % arithmetic crossover from matlab toolbox

 a = rand;

 o1.op = round (p1.op*a+p2.op*(1-a));
 o1.r = 2*((p1.r*(a)+(p2.r*(1-a)))>=0)-1;
 o1.weights = p1.weights*a+p2.weights*(1-a);
 o1.inputs = p1.inputs;

 o2.op = round (p2.op*a+p1.op*(1-a));
 o2.r = 2*((p2.r*(a)+(p1.r*(1-a)))>=0)-1;
 o2.weights = p2.weights*a+p1.weights*(1-a);
 o2.inputs = p2.inputs;
elseif (totalLayers == 2)
 cutPoint = round(rand+1);

 if (cutPoint == 1)
% fprintf('\tcutPoint: 1 \t');
% if (rand < 0.25)
 rnd = round(rand*2);
 rnd = bitor(rnd, 2^round(rand));

% fprintf('cross: [');
 if (bitand(rnd, 1)) %cross the operation
% fprintf('op');
 a = rand;
 o1.op = round (p1.op*a+p2.op*(1-a));
 o2.op = round (p2.op*a+p1.op*(1-a));
 end

 if (bitand(rnd, 2)) % cross a branch
 %totalBranches = round(rand*(size(p1.inputs,2)-1))+1;
 totalBranches = size(p1.inputs,2);
 cnt = 1;
 branchInfo = round(rand*(2^totalBranches-1));
 for n=1:totalBranches
 if (bitand(branchInfo, cnt))
% fprintf(' swap-branch');
 % Find a neuron in the first parent
 pos11 = n;
 pos21 = n;
 %sz = size(p1.inputs,2);
 %pos11 = round(rand*(sz-1))+1;

 % Find the neuron in the second parent
 %sz = size(p2.inputs,2);
 %pos21 = round(rand*(sz-1))+1;

 neuron = p1.inputs(pos11);
 o1.inputs(pos11) = p2.inputs(pos21);

134

 o2.inputs(pos21) = neuron;
 end
 cnt = cnt*2;
 end
 end
% fprintf('] ');

 elseif (cutPoint == 2)
 totalNeurons = size(p1.inputs,2);

% fprintf('\tcutPoint: 2 \t totalNeurons: %d', totalNeurons);

 branchInfo = round(rand*(2^totalNeurons-1));
 cnt = 1;
 for n=1:totalNeurons

 if (bitand(branchInfo, cnt))
 % Find the neuron in the first parent
 pos11 = n;
 pos21 = n;
 %sz = size(p1.inputs,2);
 %pos11 = round(rand*(sz-1))+1;
 % neuron1 = mnn1.inputs(pos11);

 % Find the neuron in the second parent
 %sz = size(p2.inputs,2);
 %pos21 = round(rand*(sz-1))+1;
 % neuron2 = mnn2.inputs(pos21);

 rnd = round(rand*3);
 rnd = bitor(rnd, 2^(round(rand*2)));

 a = rand;

% fprintf('\t\tcross:%d [',n);

 if (bitand(rnd, 1))
 % fprintf('op');
 o1.inputs(pos11).op = round (p1.inputs(pos11).op*a+p2.inputs(pos21).op*(1-a));
 o2.inputs(pos21).op = round (p2.inputs(pos21).op*a+p1.inputs(pos11).op*(1-a));
 end

 if (bitand(rnd, 2))
% fprintf(' weights');
 o1.inputs(pos11).weights = p1.inputs(pos11).weights*a+p2.inputs(pos21).weights*(1-a);
 o2.inputs(pos21).weights = p2.inputs(pos21).weights*a+p1.inputs(pos11).weights*(1-a);
 end
 if (bitand(rnd, 4))
% fprintf(' r');
 sz = size(p1.inputs(pos11).r,2);
 aa = rand(1,sz);
 o1.inputs(pos11).r = 2*(((p1.inputs(pos11).r).*aa+((p2.inputs(pos21).r).*(1-aa)))>=0)-1;
 o2.inputs(pos21).r = 2*(((p2.inputs(pos21).r).*aa+((p1.inputs(pos11).r).*(1-aa)))>=0)-1;
% o1.inputs(pos11).r = 2*((p1.inputs(pos11).r*(a)+(p2.inputs(pos21).r*(1-a)))>=0)-1;
% o2.inputs(pos21).r = 2*((p2.inputs(pos21).r*(a)+(p1.inputs(pos11).r*(1-a)))>=0)-1;
 end
% fprintf('] ');
 end
 cnt = cnt*2;

 end % for

 if (isEmptyArea(o1))
% fprintf('[fixed o1] ');
 o1.op = 0;
 end
 if (isEmptyArea(o2))
% fprintf('[fixed o2] ');
 o2.op = 0;

135

 end
% fprintf('\n');
 end % elseif (cutPoint == 2)

elseif (totalLayers == 3)
 % Find the neuron in the first parent
 mnn1 = p1;
 sz = size(mnn1.inputs,2);
 pos11 = round(rand*(sz-1))+1;
 mnn1 = mnn1.inputs(pos11);

 sz = size(mnn1.inputs,2);
 pos12 = round(rand*(sz-1))+1;
 neuron1 = mnn1.inputs(pos12);

 % Find the neuron in the second parent
 mnn2 = p2;
 sz = size(mnn2.inputs,2);
 pos21 = round(rand*(sz-1))+1;
 mnn2 = mnn2.inputs(pos21);

 sz = size(mnn2.inputs,2);
 pos22 = round(rand*(sz-1))+1;
 neuron2 = mnn2.inputs(pos22);

 % Swap the neuron content
 o1.inputs(pos11).inputs(pos12).op = neuron2.op;
 o1.inputs(pos11).inputs(pos12).r = neuron2.r;
 o1.inputs(pos11).inputs(pos12).weights = neuron2.weights;
 o1.inputs(pos11).inputs(pos12).inputs = neuron2.inputs;

 o2.inputs(pos21).inputs(pos22).op = neuron1.op;
 o2.inputs(pos21).inputs(pos22).r = neuron1.r;
 o2.inputs(pos21).inputs(pos22).weights = neuron1.weights;
 o2.inputs(pos21).inputs(pos22).inputs = neuron1.inputs;
end

if (config.dbg.showCrossover)
 figure(20);
 cla;
 plot(class0(:,1),class0(:,2),'g*');
 plot(class1(:,1),class1(:,2),'kx');
 plotNetwork(o1);

 figure(21);
 cla;
 plot(class0(:,1),class0(:,2),'g*');
 plot(class1(:,1),class1(:,2),'kx');
 plotNetwork(o2);
 pause;
end

function [res] = operateAndNet(net1, net2)

% Version 1.0
% Determine of the hyperspace of a network is empty
function [res] = operateAndNet(net1, net2)

res = 0;
totalInputs = size(net1.inputs,2);
equal = 1;
 Sxi = net1.op*2-1;
 Syi = net2.op*2-1;
 inside = 1;
 for i=1:totalInputs
 if (net1.weights(i) > net2.weights(i))
 if ((Sxi*net1.r(i) < 0) & (Syi*net2.r(i) > 0))

136

 res = 1;
 return;
 end
 end
 if (net1.weights(i) < net2.weights(i))
 if ((Sxi*net1.r(i) > 0) & (Syi*net2.r(i) < 0))
 res = 1;
 return;
 end
 end

 if (net1.r(i) ~= net2.r(i))
 equal = 0;
 end
 if (equal)
 if (Sxi*net1.r(i) > 0 & net2.weights(i) < net1.weights(i))
 inside = 0;
 elseif (Sxi*net1.r(i) < 0 & net2.weights(i) > net1.weights(i))
 inside = 0;
 end
 end

 end

 if (~equal & net1.op == net2.op)
 res = 1;
 end
 if (inside)
 res = 1;
 end

function [res] = operateOrNet(net1, net2)
function [res] = operateOrNet(net1, net2)

%Defermine if the hyper space of two vectors is different
totalInputs = size(net1.r,2);
%net1.r = net1.r*(net1.op*2-1);
%net2.r = net2.r*(net2.op*2-1);
if (net1.op == 0) % or
 if (net2.op ==0)
 inside = 1;
 allSameDirection = 1;
 intersection = 0;
 for n=1:totalInputs
 if (net1.r(n) == net2.r(n))
 if (net1.r(n) < 0)
 if (net2.weights(n) < net1.weights(n))
 inside = 0;
 end
 else
 if (net2.weights(n) > net1.weights(n))
 inside = 0;
 end
 end
 else
 allSameDirection = 0;
 if (net1.r(n) < 0)
 if (net2.weights(n) < net1.weights(n))
 intersection = 1;
 end
 else
 if (net2.weights(n) > net1.weights(n))
 intersection = 1;
 end
 end
 end;

137

 end
 if (allSameDirection & inside)
 res = 1;
 return;
 end
 if (allSameDirection & ~inside)
 res = 0;
 return;
 end
 if (intersection)
 res = 0;
 return;
 end
 res = 1;
 return;
 else
 allInside = 1;
 allOutside = 1;
 allSameDirection = 1;
 intersection = 0;

 for n=1:totalInputs
 if (net1.r(n) == net2.r(n))
 allSameDirection = 0;
 end
 if (net1.r(n) > 0)
 if (net2.weights(n) > net1.weights(n))
 allOutside = 0;
 else
 allInside = 0;
 end
 if (net2.weights(n) < net1.weights(n) & net2.r(n) < 0)
 intersection = 1;
 end
 else
 if (net2.weights(n) < net1.weights(n))
 allOutside = 0;
 else
 allInside = 0;
 end
 if (net2.weights(n) > net1.weights(n) & net2.r(n) > 0)
 intersection = 1;
 end
 end
 end
 if (allInside)
 res = 0;
 return;
 end
 if (allSameDirection & allOutside)
 res = 1;
 return;
 end
 if (~allInside & ~allOutside & intersection)
 res = 0;
 return;
 end
 res = 1;
 end
elseif(net1.op == 1) % and
 if (net2.op == 1) % and
 inside = 1;
 allSameDirection = 1;
 for n=1:totalInputs
 if (net1.r(n) ~= net2.r(n))
 allSameDirection = 0;
 end
 if (net1.r(n) < 0)
 if (net2.weights(n) <= net1.weights(n))
 inside = 0;

138

 end
 else
 if (net2.weights(n) >= net1.weights(n))
 inside = 0;
 end
 end
 end
 if (inside & allSameDirection)
 res = 1;
 return
 end
 res = 0;
 return;
 else
 inside = 1;
 for n=1:totalInputs
 if (net1.r(n) ~= net2.r(n))
 inside = 0;
 end
 if ((net1.r(n)>0) & (net1.weights(n) < net2.weights(n)))
 inside = 0;
 break;
 elseif((net1.r(n)<0) & (net1.weights(n) > net2.weights(n)))
 inside = 0;
 break;
 end
 end
 res = inside;
 return;
 end
end

function[newPop] = roulette2(oldPop,options)

function[newPop] = roulette2(oldPop,options)
%roulette is the traditional selection function with the probability of
%surviving equal to the fittness of i / sum of the fittness of all individuals
%
%function[newPop] = roulette(oldPop,options)
%newPop - the new population selected from the oldPop
%oldPop - the current population
%options - [gen] options

if (size(options) < 2)
 error('Incorrect options');
end
%Get the parameters of the population
totalIn = 2*fix(options(2)*size(oldPop,2)/2);

numSols = size(oldPop,2);
totalFit = sum([oldPop.fitness]);
fit = [oldPop.fitness]';
%fit = [oldPop.fitness]' / totalFit;

x = zeros(numSols,2);
x(:,1) =[numSols:-1:1]';
[y x(:,2)] = sort(fit);

totalIn = numSols-totalIn;
newIn = 1;
for n=numSols:-1:totalIn
 newPop(newIn) = oldPop(x(n,2));
 newIn = newIn+1;
end

139

function [layers] = getTotalLayers(mnn)

% Version 1.0
% Returns the total number of layers of a morphological neural network

function [layers] = getTotalLayers(mnn)

numberOfInputs = size(mnn.inputs,2);
layers = 1;
if (numberOfInputs ~= 0)
 subLayers = 0;
 for i=1:numberOfInputs
 subLayers = max(getTotalLayers(mnn.inputs(i)), subLayers);
 end;
 layers = layers+subLayers;
end

function [params] = getDefaultParams(opts)
% Version 2.0
% Default parameter configuration for the training algorithm
function [params] = getDefaultParams(opts)

% Genetic Algorithm Parameters
params.defaultGA = 'MNNga';
params.popSize = 10; % Default population size
params.xOverFn = 'defXover'; % Default crossover function
params.xOverParams = [params.popSize]; % Total number of crossover applied to
 % the population
params.mutFn = 'defMutation'; % Default mutation option
params.mutParams = [params.popSize 1.0 1.0 1.0 1.0]; % Mutation options
 % [numOfMutations, mutProb, mutOpProb, mutWeightProb,mutRProb, mutRange]
 % numOfMutations - total number of mutation operations applied
 % over the population
 % mutProb - global probability of changing an organism
 % mutWeightProb - prob. of changing the weights
 % mutRProb - prob. of changing the R values
 % mutRange - a percentage of the range in which the weights can change
params.evalFn = 'defEvalFN'; % Default evaluation function
params.evalParams = []; % Evaluation function's parameters
params.termFn = 'maxGenTerm'; % Default temination function
params.termParams = [100 1.0]; % Termination fucntion parameters
 % [numOfGenerations minProbRequired]
 % numOfGenerations - max. number of generations
 % minProbRequired - min. prob. requiered to complete the evolution
params.selectFn = 'normGeomSelect'; % Default selection function
params.selectParams = [0.33]; % selecti
 % [normProb] - normal distribution parameter
params.opts = [1e-6 1 0]; %

% Mophological Neural Network Parameters
params.variableArchitecture = 0; % Variable or fixed architecture? (not used)
params.allowInfinite = 0; % Allow infinite weights?
params.infiniteOps = 0; % [infProb] - probability that a weight could be inf.
params.layers = [1]; % Layer configuration
 % Each entry represents a layer level
 % The value of the entries represent the number of neurons
 % connected to parent in the next level
 % Ex. [3, 3, 1]

% Debuging Options
params.dbg.plotEvolution = 0; % Plot all organism of the population

140

params.dbg.showTheBest = 0; % Show the best organism
params.dbg.delay = 0.5; % Delay between snapshots
params.dbg.fixedAxis = 1; % Draw the test patterns using fixed axes
params.dbg.showCrossover = 0; % Draw the evolution of the organism during the crossover

A.7 INDIRECT ENCODING METHOD

This section provides all the necessary functions used by the Indirect Encoding

Method.

function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets,
nconfig)
% Version 1.1
% Train a MLMP using Indirect Encoding
% testPatterns - a M by N matrix, it contains M patterns of dimension N
% classes - a M by 2 matrix where M is the number of classes.
% Each element in the first column is the number of test patterns that belongs to the
% class at the corresponding index
% The second row contains the dimension of each test pattern class
% NOTE: all the test patterns must contains be of the same dimension
% targets an matrix
% networkConf see getDefaultConfig()

function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets, nconfig)
global class0;
global class1;
global config;

config = nconfig;
% Validate the inputs
sz = size(testPatterns);
if (sz(1) < 2)
 error('\nERROR: Insuficient number of \''testPatterns\''. At least two test patterns are needed\n');
end
if (sz(2) < 2)
 error('\nERROR: Invalid dimension of the \''testPatterns\''. The minimum dimenison should be 2\n');
end
[numberOfOutputs, totalClassesTargets] = size(targets);

if (numberOfOutputs < 2)
 error(sprintf('\nERROR: Insuficient number of outputs specified in \''targets\''.At least two outputs are
required.\n\tCurrent value: %d',numberOfOutputs));
end

% Verify the number of classes must be less than or equal to 2*(number of outputs)
totalClasses = size(classes,1);
if (totalClasses > numberOfOutputs*2)
 error(sprintf('\nERROR: The number of outputs defined in the \''targets\''parameter must be %d',(totalClasses+1)/2));
end
if (2*totalClassesTargets < 2)
 error(sprintf('\nERROR: Insuficient number of classes in the target definition. \n\tAt least two classes are
required.\n\tCurrent value: %d',totalClassesTargets));
end
if (totalClasses < 2)
 error(sprintf('\nERROR: Insuficient number of classes in the \''classes\'' definition.\n\tAt least two classes are
required.\n\tCurrent value: %d',totalClasses));
end

141

% Sum all the elements in the class
pos = [cumsum(classes(:,1))];
% Add append a 0 value at the begining of the vector and remove the last one.
pos = [0; pos(1:end-1,1)]+1;

% Initialize the resulting net to null
net = [];

% For each output, define the network
net = struct('op', cell(1,totalClassesTargets), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]});

traceInfo = struct('trace', {[]});
for output=1:totalClassesTargets

 % Regroup the test patterns
 fprintf(' Training output: %d\n',output);
 groups = find(targets(:,output)==0);
 totalGroups = size(groups,1);
 class0 = [];

 % Verify the class with the output value of 0 at the output index(output) exist!.
 if (totalGroups == 0)
 error('ERROR: Invalid class definition. The target with 0 on evey index must be defined');
 end;
 for class=1:totalGroups
 begn = pos(groups(class));
 final = begn+classes(groups(class))-1;
 class0 = [class0; testPatterns(begn:final,:)];
 end
 groups = find(targets(:,output)==1);
 totalGroups = size(groups,1);

 class1 = [];
 for class=1:totalGroups
 begn = pos(groups(class));
 final = begn+classes(groups(class))-1;
 class1 = [class1; testPatterns(begn:final,:)];
 end

 [res, trace] = NNmorphologicalGA(class0, class1, nconfig);
 traceInfo(output).trace = trace;
 net(output) = res;
end

return

function [res, traceInfo] = NNmorphologicalGA(c0, c1, params)

function [res, traceInfo] = NNmorphologicalGA(c0, c1, params)
% Declaracion de variable globales
res = 0;
global asciiString;
global Range;
global numOfBits;
global binString; %
global maxValue;
global numOfChars;
global varBounds;
global numOfPoints;
global minDist;
global gPoints;
global bPoints;

global worstEval;
populationSize =params.popSize;

gPoints = c0;

142

bPoints = c1;

if (size(gPoints,1) > 50)
 gPoints = gPoints(1:50,:);
end

numOfPoints = size(gPoints,1);

hold off;
plot(gPoints(:,1),gPoints(:,2),'r.');%'r.'
hold on;
plot(bPoints(:,1),bPoints(:,2),'k.');
%hold on;

tPoints = [gPoints; bPoints];

gPointsSz = size(gPoints,1);
bPointsSz = size(bPoints,1);

minDist = [];
for z =1:size(tPoints,2)
 dist = 1e10;
 for m= 1:size(tPoints,1)-1
 for n =m+1:size(tPoints,1);
 cDist = abs(tPoints(m,z) - tPoints(n,z));
 if ((cDist > 0) && (cDist < dist))
 dist = cDist;
 end
 end;
 end
 minDist(1,z) = dist;
end
minDist = minDist/2;

varBounds = [];
for n = 1:numOfPoints
 varBounds(n,1) = 0;
 varBounds(n,2) = 2^(ceil(log2(numOfPoints)))-1;
end
varBounds(numOfPoints+1,1) = 0;
varBounds(numOfPoints+1,2) = 2^(numOfPoints-1)-1;

pop = generatePop(populationSize, varBounds);

[sol, pop,bPop,traceInfo] = ga(varBounds, params.evalFn, params.evalParams, pop, params.opts, params.termFn,...
 params.termParams, params.selectFn, params.selectParams, params.xOverFn, params.xOverParams,params.mutFn,
params.mutParams);

solSize = size(sol,2)-1;
sol(1:solSize) = sol(1:solSize)+1;
groups = sol(end);
groups = double(dec2bin(groups,numOfPoints-1)-48);

limits = find(groups>0);

if (size(limits,2) == 0)
 limits = [limits (solSize)];
else
 if (limits(size(limits,2)) ~= solSize)
 limits = [limits (solSize)];
 end
end;
totalGroups = size(limits,2);

subGroup = [];

143

totalPointsInside = 0;
prev = 1;

root.op = 0; %or
root.r = [];
root.weights = [];
root.inputs = [];

for i = 1:totalGroups
 subGroup = sol(prev:limits(i));
 fprintf('%i ',subGroup);
 fprintf('-');

 testpts = subGroup;

 minDim = gPoints(testpts(1),:);
 maxDim = minDim;

 vecDimension = size(gPoints,2);

 for n=1:size(testpts,2)
 for vs=1:vecDimension
 if (gPoints(testpts(n),vs) < minDim(1,vs))
 minDim(1,vs) = gPoints(testpts(n),vs);
 end;
 if (gPoints(testpts(n),vs) > maxDim(1,vs))
 maxDim(1,vs) = gPoints(testpts(n),vs);
 end;
 end;
 end;
 eq = find(minDim == maxDim);
 maxDim(eq) = maxDim(eq)+minDist(eq);
 minDim(eq) = minDim(eq)-minDist(eq);

 mnn1.op = 1; %and
 mnn1.r = -ones(1,vecDimension);
 mnn1.weights = minDim;
 mnn1.inputs = [];

 mnn2.op = 1; %and
 mnn2.r = ones(1,vecDimension);
 mnn2.weights = maxDim;
 mnn2.inputs = [];

 mnn3.op = 1; %and
 mnn3.r = [1 1];
 mnn3.weights = [0 0];
 mnn3.inputs = [mnn1 mnn2];

 root.r = [root.r 1];
 root.weights = [root.weights 0];
 root.inputs = [root.inputs mnn3];
% if ((size(subGroup,2) > 1) && (maxDim(1,2)-minDim(1,2)>0) && (maxDim(1,1)-minDim(1,1)>0))
% square = [minDim(1,1) minDim(1,2); maxDim(1,1) minDim(1,2); maxDim(1,1) maxDim(1,2); minDim(1,1)
maxDim(1,2); minDim(1,1) minDim(1,2)];
% else
% square = [minDim(1,1)-minDist(1) minDim(1,2)-minDist(2); maxDim(1,1)+minDist(1) minDim(1,2)-minDist(2);
maxDim(1,1)+minDist(1) maxDim(1,2)+minDist(2); minDim(1,1)-minDist(1) maxDim(1,2)+minDist(2); minDim(1,1)-
minDist(1) minDim(1,2)-minDist(2)];
% end

% plot(square(:,1), square(:,2),'-');
% hold on;

 prev = limits(i)+1;
end

if (size(root.inputs,2) <2)

144

 root = root.inputs(1);
end
res = root;

function [pop] = generatePop(popSize, bounds)

function [pop] = generatePop(popSize, bounds)
global numOfPoints;

%numOfPoints = 4;
bits = calcbits(bounds,1);

pts = [];
for n=1:numOfPoints
 pts = [pts (n-1)];
end;

pop = [];
popp = [];

for n=1:popSize
 totalPts = numOfPoints;
 res = [];
 for m=1:numOfPoints
 pos = round(rand*(totalPts-1))+1;
 val = pts(pos);
 pts(:,pos) = [];
 pts = [pts val];

 res = [res val];
 totalPts = totalPts-1;
 end;

 res = [res round(bounds(end,2)*rand)];
 [r, val] = NNmorphologicalEval(res,[]);
% res = res-1;
 res = [res val];
 popp = [popp; res];

 resBits = [];
 for m=1:size(bits,2)
 resBits = [resBits double(dec2bin(res(m),bits(m))-48)];
 end
 resBits = [resBits res(end)];
 pop = [pop; resBits];
end
%popp

function [c] = NNmorphologicalMutation(parent,bounds,Ops)
function [c] = NNmorphologicalMutation(parent,bounds,Ops)
bits = calcbits(bounds,1);
%fprintf('mutation\n');
%for n=1:size(parent,2)
% fprintf('%i ',parent(n));
%end

n = 0;
for i=1:size(bits,2)-1
 n = n+bits(i);
end
value = parent(n+1:n+bits(end));
for i=1:size(value,2)

145

 if (rand<0.08)
 if (value(i) == 1) value(i) =0;
 else
 value(i) = 1;
 end
 end
end
parent(n+1:n+bits(end)) = value(1:end);

bits = calcbits(bounds,1);

p1 = [];
sz = size(bits,2);
pos = 1;
for b=1:sz-1
 num1 = 0;
 for n=1:bits(b)
 num1 = num1*2+parent(pos);
 pos = pos+1;
 end
 p1 = [p1 num1];
end

i1 = fix(size(p1,2)*rand)+1;
i2 = fix(size(p1,2)*rand)+1;
e = p1(i1);
p1(i1) = p1(i2);
p1(i2) = e;

rc1 = [];
for b=1:size(bits,2)-1
 rc1 = [rc1 int8(dec2bin(p1(b),bits(b))-48)];
end
parent(1:size(rc1,2)) = rc1(1:end);

parent = removeOverlap(parent,bits);
c = parent;

function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops)
function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops)
% con
% m1 - array of bits
%
%c1=m1;
%c2=m2;
%c1
%c2
%return;

%fprintf('morphologicalXover\n');
bits = calcbits(bounds,1);

p1 = [];
p2 = [];
sz = size(bits,2);
pos = 1;
for b=1:sz-1
 num1 = 0;
 num2 = 0;
 for n=1:bits(b)
 num1 = num1*2+m1(pos);
 num2 = num2*2+m2(pos);
 pos = pos+1;
 end
 p1 = [p1 num1];
 p2 = [p2 num2];

146

end

%p1 = p1+1;
%p2 = p2+1;

c1 = p1;
c2 = p2;

%return;
sz=size(p1,2);
n=floor(sz/2);
%cut1 = round(rand*(n/2-1))+1; %Generate random cut point U(1,n/2);
%cut2 = round(rand*(sz-cut1-1))+cut1; %Generate random cut point U(cut1+1,n-1);
cut1 = round(rand*(n-1)+0.5); %Generate random cut point U(1,n/2);
cut2 = round(rand*(sz-cut1-1)+1+cut1); %Generate random cut point U(cut1+1,n-1);
pm1=p1(1:end);
pm2=p2(1:end);
c1=p1;
c2=p2;
for i=[1:cut1 (cut2+1):sz]
 pm1=replace(pm1,p2(i),-1);
 pm2=replace(pm2,p1(i),-1);
end

c1((cut1+1):cut2)=p2(find(pm2>=0));
c2((cut1+1):cut2)=p1(find(pm1>=0));

%c1 = c1-1;
%c2 = c2-1;
%fprintf('out c1 and c2');

rc1 = [];
rc2 = [];
for b=1:size(bits,2)-1
 rc1 = [rc1 double(dec2bin(c1(b),bits(b))-48)];
 rc2 = [rc2 double(dec2bin(c2(b),bits(b))-48)];
end
c1 = m1;
c2 = m2;

sz = size(rc1,2);
c1(1:sz) = rc1(1:end);
c2(1:sz) = rc2(1:end);

function [sol, val] = NNmorphologicalEval(sol,parameters)
function [sol, val] = NNmorphologicalEval(sol,parameters)

global numOfPoints;
global worstEval;
%sol = sol;
%val = 10;
%return;
%numOfPoints = 8;

solSize = size(sol,2)-1;
sol(1:solSize) = sol(1:solSize)+1;
groups = sol(end);
groups = double(dec2bin(groups,numOfPoints-1)-48);

limits = find(groups>0);

if (size(limits,2) == 0)
 limits = [limits (solSize)];
else
 if (limits(size(limits,2)) ~= solSize)
 limits = [limits (solSize)];

147

 end
end;
totalGroups = size(limits,2);

subGroup = [];

totalPointsInside = 0;
prev = 1;
for i = 1:totalGroups
 subGroup = sol(prev:limits(i));
% fprintf('%i ',subGroup);
% fprintf('-');

 totalPointsInside = totalPointsInside + testPoints(subGroup);

 prev = limits(i)+1;
end

%sol = sol;
val = 1.0/(((totalPointsInside+1)^2)*(totalGroups));
%if (totalPointsInside >= 0)
% fprintf(' %i\n',val);
%end
sol(1:end-1) = sol(1:end-1)-1;

function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop)

function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop)
global numOfChars;
global maxValue;
%bPop
[x,y] = size(bPop);
%fprintf('El mejor string: %s\n',char(bPop(x, 2:numOfChars+1)));
currentGen = ops(1);
maxGen = ops(2);
%done = currentGen >= maxGen | maxValue <= bPop(x,y);
done = currentGen >= maxGen;
%bPop
%endPop

function [params] = getDefaultParams(opts)
% Version 2.0
% Default parameter configuration for the training algorithm
function [params] = getDefaultParams(opts)

% Genetic Algorithm Parameters
params.popSize = 10; % Default population size
params.xOverFn = 'NNmorphologicalXover'; % Default crossover function
params.xOverParams = [0.8 3]; % Total number of crossover applied to
 % the population
params.mutFn = 'NNmorphologicalMutation'; % Default mutation option
params.mutParams = [0.07 7]; % Mutation options
 % [numOfMutations, mutProb, mutOpProb, mutWeightProb,mutRProb, mutRange]
 % numOfMutations - total number of mutation operations applied
 % over the population
 % mutProb - global probability of changing an organism
 % mutWeightProb - prob. of changing the weights
 % mutRProb - prob. of changing the R values
 % mutRange - a percentage of the range in which the weights can change

148

params.evalFn = 'NNmorphologicalEval'; % Default evaluation function
params.evalParams = []; % Evaluation function's parameters
params.termFn = 'NNmorphologicalFitnessFoundTerm'; % Default temination function
params.termParams = [100 1.0]; % Termination fucntion parameters
 % [numOfGenerations minProbRequired]
 % numOfGenerations - max. number of generations
 % minProbRequired - min. prob. requiered to complete the evolution
params.selectFn = 'roulette'; % Default selection function
params.selectParams = [0.08]; % selecti
 % [normProb] - normal distribution parameter
params.opts = [1 0 1]; %

% Mophological Neural Network Parameters
params.variableArchitecture = 0; % Variable or fixed architecture?
params.allowInfinite = 0; % Allow infinit weights?
params.infiniteOps = 0; % [infProb] - probability that a weight could be inf.
params.layers = [1]; % Layer configuration
 % Each entry represents a layer level
 % The value of the entries represent the number of neurons
 % connected to parent in the next level
 % Ex. [3, 3, 1]

% Debuging Options
params.dbg.plotEvolution = 0; % Plot all organism of the population
params.dbg.showTheBest = 0; % Show the best organism
params.dbg.delay = 0.5; % Delay between snapshots
params.dbg.fixedAxis = 1; % Draw the test patterns using fixed axes
params.dbg.showCrossover = 0; % Draw the evolution of the organism during the crossover

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,
opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)
function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)
global minDist;
% GA run a genetic algorithm
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,
% termFN,termOps,selectFN,selectOps,
% xOverFNs,xOverOps,mutFNs,mutOps)
%
% Output Arguments:
% x - the best solution found during the course of the run
% endPop - the final population
% bPop - a trace of the best population
% traceInfo - a matrix of best and means of the ga for each generation
%
% Input Arguments:
% bounds - a matrix of upper and lower bounds on the variables
% evalFN - the name of the evaluation .m function
% evalOps - options to pass to the evaluation function ([NULL])
% startPop - a matrix of solutions that can be initialized
% from initialize.m
% opts - [epsilon prob_ops display] change required to consider two
% solutions different, prob_ops 0 if you want to apply the
% genetic operators probabilisticly to each solution, 1 if
% you are supplying a deterministic number of operator
% applications and display is 1 to output progress 0 for
% quiet. ([1e-6 1 0])
% termFN - name of the .m termination function (['maxGenTerm'])
% termOps - options string to be passed to the termination function
% ([100]).
% selectFN - name of the .m selection function (['normGeomSelect'])
% selectOpts - options string to be passed to select after
% select(pop,#,opts) ([0.08])

149

% xOverFNS - a string containing blank seperated names of Xover.m
% files (['arithXover heuristicXover simpleXover'])
% xOverOps - A matrix of options to pass to Xover.m files with the
% first column being the number of that xOver to perform
% similiarly for mutation ([2 0;2 3;2 0])
% mutFNs - a string containing blank seperated names of mutation.m
% files (['boundaryMutation multiNonUnifMutation ...
% nonUnifMutation unifMutation'])
% mutOps - A matrix of options to pass to Xover.m files with the
% first column being the number of that xOver to perform
% similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0])

% Binary and Real-Valued Simulation Evolution for Matlab
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay
%
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
% optimization: A Matlab implementation. ACM Transactions on Mathmatical
% Software, Submitted 1996.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 1, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details. A copy of the GNU
% General Public License can be obtained from the
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

%%$Log: ga.m,v $
%Revision 1.10 1996/02/02 15:03:00 jjoine
% Fixed the ordering of imput arguments in the comments to match
% the actual order in the ga function.
%
%Revision 1.9 1995/08/28 20:01:07 chouck
% Updated initialization parameters, updated mutation parameters to reflect
% b being the third option to the nonuniform mutations
%
%Revision 1.8 1995/08/10 12:59:49 jjoine
%Started Logfile to keep track of revisions
%

n=nargin;
if n<2 | n==6 | n==10 | n==12
 disp('Insufficient arguements')
end
if n<3 %Default evalation opts.
 evalOps=[];
end
if n<5
 opts = [1e-6 1 0];
end
if isempty(opts)
 opts = [1e-6 1 0];
end

if any(evalFN<48) %Not using a .m file
 if opts(2)==1 %Float ga
 e1str=['x=c1; c1(xZomeLength)=', evalFN ';'];
 e2str=['x=c2; c2(xZomeLength)=', evalFN ';'];
 else %Binary ga
 e1str=['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=',...
 evalFN ';'];
 end
else %Are using a .m file
 if opts(2)==1 %Float ga
 e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];

150

 e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];
 else %Binary ga
 e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ...
 '(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];
 end
end

if n<6 %Default termination information
 termOps=[100];
 termFN='maxGenTerm';
end
if n<12 %Default muatation information
 if opts(2)==1 %Float GA
 mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'];
 mutOps=[4 0 0;6 termOps(1) 3;4 termOps(1) 3;4 0 0];
 else %Binary GA
 mutFNs=['binaryMutation'];
 mutOps=[0.05];
 end
end
if n<10 %Default crossover information
 if opts(2)==1 %Float GA
 xOverFNs=['arithXover heuristicXover simpleXover'];
 xOverOps=[2 0;2 3;2 0];
 else %Binary GA
 xOverFNs=['simpleXover'];
 xOverOps=[0.6];
 end
end
if n<9 %Default select opts only i.e. roullete wheel.
 selectOps=[];
end
if n<8 %Default select info
 selectFN=['normGeomSelect'];
 selectOps=[0.08];
end
if n<6 %Default termination information
 termOps=[100];
 termFN='maxGenTerm';
end
if n<4 %No starting population passed given
 startPop=[];
end
if isempty(startPop) %Generate a population at random
 %startPop=zeros(80,size(bounds,1)+1);
 startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2));
end

if opts(2)==0 %binary
 bits=calcbits(bounds,opts(1));
end

xOverFNs=parse(xOverFNs);
mutFNs=parse(mutFNs);

xZomeLength = size(startPop,2); %Length of the xzome=numVars+fittness
numVar = xZomeLength-1; %Number of variables
popSize = size(startPop,1); %Number of individuals in the pop
endPop = zeros(popSize,xZomeLength); %A secondary population matrix
c1 = zeros(1,xZomeLength); %An individual
c2 = zeros(1,xZomeLength); %An individual
numXOvers = size(xOverFNs,1); %Number of Crossover operators
numMuts = size(mutFNs,1); %Number of Mutation operators
epsilon = opts(1); %Threshold for two fittness to differ
epsilon = 1e-6;
oval = max(startPop(:,xZomeLength)); %Best value in start pop
bFoundIn = 1; %Number of times best has changed
done = 0; %Done with simulated evolution
gen = 1; %Current Generation Number

151

collectTrace = (nargout>3); %Should we collect info every gen
floatGA = opts(2)==1; %Probabilistic application of ops
display = opts(3); %Display progress

while(~done)
 %Elitist Model
 [bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop
 best = startPop(bindx,:);

 if collectTrace
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness
 traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness
 traceInfo(gen,4)=std(startPop(:,xZomeLength));
 end

 if ((abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol
 if display
 fprintf(1,'\n%d %f\n',gen,bval); %Update the display
 end
 if floatGA
 bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix
 else
 bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)...
 startPop(bindx,xZomeLength)];
 end
 bFoundIn=bFoundIn+1; %Update number of changes
 oval=bval; %Update the best val
 else
 if display
 fprintf(1,'%d ',gen); %Otherwise just update num gen
 end
 end

 endPop = feval(selectFN,startPop,[gen selectOps]); %Select

 if floatGA %Running with the model where the parameters are numbers of ops
 for i=1:numXOvers,
 for j=1:xOverOps(i,1),
 a = round(rand*(popSize-1)+1); %Pick a parent
 b = round(rand*(popSize-1)+1); %Pick another parent
 xN=deblank(xOverFNs(i,:)); %Get the name of crossover function
 [c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(i,:)]);

 if c1(1:numVar)==endPop(a,(1:numVar)) %Make sure we created a new
 c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating
 elseif c1(1:numVar)==endPop(b,(1:numVar))
 c1(xZomeLength)=endPop(b,xZomeLength);
 else
 %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);
 eval(e1str);
 end
 if c2(1:numVar)==endPop(a,(1:numVar))
 c2(xZomeLength)=endPop(a,xZomeLength);
 elseif c2(1:numVar)==endPop(b,(1:numVar))
 c2(xZomeLength)=endPop(b,xZomeLength);
 else
 %[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]);
 eval(e2str);
 end

 endPop(a,:)=c1;
 endPop(b,:)=c2;
 end
 end

 for i=1:numMuts,
 for j=1:mutOps(i,1),
 a = round(rand*(popSize-1)+1);
 c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),bounds,[gen mutOps(i,:)]);

152

 if c1(1:numVar)==endPop(a,(1:numVar))
 c1(xZomeLength)=endPop(a,xZomeLength);
 else
 %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);
 eval(e1str);
 end
 endPop(a,:)=c1;
 end
 end

 else %We are running a probabilistic model of genetic operators
 for i=1:numXOvers,
 xN=deblank(xOverFNs(i,:)); %Get the name of crossover function
 cp=find(rand(popSize,1)<xOverOps(i,1)==1);
% cp
 if rem(size(cp,1),2) cp=cp(1:(size(cp,1)-1)); end

% cp
 cp=reshape(cp,size(cp,1)/2,2);
 for j=1:size(cp,1)
 a=cp(j,1); b=cp(j,2);
 [endPop(a,:) endPop(b,:)] = feval(xN,endPop(a,:),endPop(b,:),...
 bounds,[gen xOverOps(i,:)]);
 end
 end
 for i=1:numMuts
 mN=deblank(mutFNs(i,:));
 for j=1:popSize
 endPop(j,:) = feval(mN,endPop(j,:),bounds,[gen mutOps(i,:)]);
 eval(e1str);
 end
 end
 end

 gen=gen+1;
 done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done
 startPop=endPop; %Swap the populations

 [bval,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution
 startPop(bindx,:) = best; %replace it with the worst
end

[bval,bindx] = max(startPop(:,xZomeLength));
if display
 fprintf(1,'\n%d %f\n',gen,bval);
end

x=startPop(bindx,:);
if opts(2)==0 %binary
 x=b2f(x,bounds,bits);
 bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)...
 startPop(bindx,xZomeLength)];
else
 bPop(bFoundIn,:)=[gen startPop(bindx,:)];
end

if collectTrace
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness
 traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness
end

A.8 CARTESIAN GENETIC PROGRAMMING METHOD

153

This section provides all the necessary functions used by the Cartesian Genetic

Programming method.

function [net] = CGPTrainMNN(testPatterns, classes, targets, nconfig)
% Version 1.1
% Train a Morphological Neural Network
% testPatterns - a M by N matrix, it contains M patterns of dimension N
% classes - a M by 2 matrix where M is the number of classes.
% Each element in the first column is the number of test patterns that belongs to the
% class at the corresponding index
% The second row contains the dimension of each test pattern class
% NOTE: all the test patterns must contains be of the same dimension
% targets an matrix
% networkConf see getDefaultConfig()

function [net, traceInfo] = CGPTrainMNN(testPatterns, classes, targets, nconfig)

global class0;
global class1;
global F;
global FTotal;
global param;

ga = nconfig;
% Validate the inputs
sz = size(testPatterns);
if (sz(1) < 2)
 error('\nERROR: Insuficient number of \''testPatterns\''. At least two test patterns are needed\n');
end
if (sz(2) < 2)
 error('\nERROR: Invalid dimension of the \''testPatterns\''. The minimum dimenison should be 2\n');
end
[numberOfOutputs, totalClassesTargets] = size(targets);

if (numberOfOutputs < 2)
 error(sprintf('\nERROR: Insuficient number of outputs specified in \''targets\''. At least two outputs are
required.\n\tCurrent value: %d',numberOfOutputs));
end

% Verify the number of classes must be less than or equal to 2*(number of outputs)
totalClasses = size(classes,1);
if (totalClasses > numberOfOutputs*2)
 error(sprintf('\nERROR: The number of outputs defined in the \''targets\'' parameter must be %d',(totalClasses+1)/2));
end
if (2*totalClassesTargets < 2)
 error(sprintf('\nERROR: Insuficient number of classes in the target definition. \n\tTAt least two classes are
required.\n\tCurrent value: %d',totalClassesTargets));
end
if (totalClasses < 2)
 error(sprintf('\nERROR: Insuficient number of classes in the \''classes\'' definition.\n\tAt least two classes are
required.\n\tCurrent value: %d',totalClasses));
end

% Sum all the elements in the class
pos = [cumsum(classes(:,1))];
% Add append a 0 value at the begining of the vector and remove the last one.
pos = [0; pos(1:end-1,1)]+1;

% Initialize the resulting net to null
net = [];

% For each output, define the network
net = struct('op', cell(1,totalClassesTargets), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]});
traceInfo = struct('trace', {[]});

154

for output=1:totalClassesTargets

 % Regroup the test patterns
 fprintf(' Training output: %d\n',output);
 groups = find(targets(:,output)==0);
 totalGroups = size(groups,1);
 class0 = [];

 % Verify the class with the output value of 0 at the output index(output) exist!.
 if (totalGroups == 0)
 error('ERROR: Invalid class definition. The target with 0 on evey index must be defined');
 end;
 for class=1:totalGroups
 begn = pos(groups(class));
 final = begn+classes(groups(class))-1;
 class0 = [class0; testPatterns(begn:final,:)];
 end
 groups = find(targets(:,output)==1);
 totalGroups = size(groups,1);

 class1 = [];
 for class=1:totalGroups
 begn = pos(groups(class));
 final = begn+classes(groups(class))-1;
 class1 = [class1; testPatterns(begn:final,:)];
 end

 param = CGPDefaultParam(size(class0,2), ga.layers, ga.connections);

 [F, FTotal] = CGPInitialize(class0, param);

 [initialPopulation, bounds] = CGPGeneratePop2(ga.popSize, ga.evalFn, ga.evalParam);

 [sol, pop,bPop,trace] = CGPga2(bounds, ga.evalFn, ga.evalParam, initialPopulation, [0.000001 1 1],
['CGPFitnessFoundTerm2'],...
 [ga.maxGen], ga.selectFn, ga.selectParam, ga.xOverFn, ga.xOverParam, ga.mutationFn, ga.mutationParam);
 res = CGPDecodeNet(sol(1,1:end-1), F, FTotal, param);

 traceInfo(output).trace = trace;
 % trace(output) = traceInfo;
 net(output) = res;
end

function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps,
startPop,opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps
,mutFNs,mutOps)
function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)
% GA run a genetic algorithm
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,
% termFN,termOps,selectFN,selectOps,
% xOverFNs,xOverOps,mutFNs,mutOps)
%
% Output Arguments:
% x - the best solution found during the course of the run
% endPop - the final population
% bPop - a trace of the best population
% traceInfo - a matrix of best and means of the ga for each generation
%
% Input Arguments:
% bounds -

155

% evalFN -
% evalOps -
% startPop -
% opts - [epsilon prob_ops display] change required to consider two
% solutions different, prob_ops 0 if you want to apply the
% genetic operators probabilisticly to each solution, 1 if
% you are supplying a deterministic number of operator
% applications and display is 1 to output progress 0 for
% quiet. ([1e-6 1 0])
% termFN -
% termOps -
% selectFN -
% selectOpts -
% xOverFNS -
% xOverOps -
% mutFNs -
% mutOps -

global F;
global FTotal;
global param;
global class0;
global class1;

n=nargin;
if n<2 | n==6 | n==10 | n==12
 disp('Insufficient arguements')
end
if n<3 %Default evalation opts.
 evalOps=[];
end
if n<5
 opts = [1e-6 1 0];
end
if isempty(opts)
 opts = [1e-6 1 0];
end

 if opts(2)==1 %Float ga
 e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];
 e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];
 end

if n<6 %Default termination information
 termOps=[100];
 termFN='maxGenTerm';
end
if n<12 %Default muatation information
 if opts(2)==1 %Float GA
 mutFNs=['binaryMutation'];
 mutOps=[0.05];
 end
end
if n<10 %Default crossover information
 if opts(2)==1 %Float GA
 xOverFNs=['simpleXover'];
 xOverOps=[0.6];
 end
end
if n<9 %Default select opts only i.e. roullete wheel.
 selectOps=[];
end
if n<8 %Default select info
 selectFN=['normGeomSelect'];
 selectOps=[0.08];
end
if n<6 %Default termination information
 termOps=[100];
 termFN='maxGenTerm';
end

156

if n<4 %No starting population passed given
 startPop=[];
end
if isempty(startPop) %Generate a population at random

end

xOverFNs=parse(xOverFNs);
mutFNs=parse(mutFNs);

xZomeLength = size(startPop,2); %Length of the xzome=numVars+fittness
numVar = xZomeLength-1; %Number of variables
popSize = size(startPop,1); %Number of individuals in the pop
endPop = zeros(popSize,xZomeLength); %A secondary population matrix
c1 = zeros(1,xZomeLength); %An individual
c2 = zeros(1,xZomeLength); %An individual
numXOvers = size(xOverFNs,1); %Number of Crossover operators
numMuts = size(mutFNs,1); %Number of Mutation operators
epsilon = opts(1); %Threshold for two fittness to differ
oval = max(startPop(:,xZomeLength)); %Best value in start pop
bFoundIn = 1; %Number of times best has changed
done = 0; %Done with simulated evolution
gen = 1; %Current Generation Number
collectTrace = (nargout>3); %Should we collect info every gen
floatGA = 1; %Probabilistic application of ops
display = opts(3); %Display progress

while(~done)
 pause(0.05);
 %Elitist Model
 [bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop
 best = startPop(bindx,:);

 if collectTrace
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness
 traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness
 traceInfo(gen,4)=std(startPop(:,xZomeLength));
 end

 if ((abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol
 if display
 fprintf(1,'\n%d %f\n',gen,bval); %Update the display
 end

 bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix

 bFoundIn=bFoundIn+1; %Update number of changes
 oval=bval; %Update the best val
 else
 if display
 fprintf(1,'%d ',gen); %Otherwise just update num gen
 end
 end

 if (0==1)
 sz = size(startPop,1);
 for o=1:sz
 figure(o);
 hold off;
 plot(class1(:,1),class1(:,2),'bo');
 hold on;
 plot(class0(:,1),class0(:,2),'gs');

 plotNetwork2(CGPDecodeNet(startPop(o,1:end-1), F, FTotal, param));
% plotMorphologicalPerceptron(endPop(o,1:end-1));
 end
 % pause;
 end

157

 endPop = feval(selectFN,startPop,[gen selectOps]); %Select
 totalOrg = size(endPop,1);
 fit = endPop(:,end);
 totalFitness = sum(fit);
 if (totalFitness == 0)
 totalFitness = 1;
 end
 fit = cumsum(fit/totalFitness);

 while (totalOrg < popSize)
 a = find(fit-rand>=0);
 b = find(fit-rand>=0);
 a = a(1);
 b = b(1);

 xN=deblank(xOverFNs(1,:)); %Get the name of crossover function
 [c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(1,:)]);

 c1 = feval(mutFNs(1,:),c1,bounds,[gen mutOps(1,:)]);
 c2 = feval(mutFNs(1,:),c2,bounds,[gen mutOps(1,:)]);
 eval(e1str);
 eval(e2str);

 endPop(totalOrg+1,:)=c1;
 endPop(totalOrg+2,:)=c2;
 totalOrg = totalOrg+2;
 end

 gen=gen+1;
 done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done
 startPop=endPop; %Swap the populations

 [bval,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution
 startPop(bindx,:) = best; %replace it with the worst
end

[bval,bindx] = max(startPop(:,xZomeLength));
if display
 fprintf(1,'\n%d %f\n',gen,bval);
end

x=startPop(bindx,:);
if opts(2)==1 %binary
 bPop(bFoundIn,:)=[gen startPop(bindx,:)];
end

if collectTrace
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness
 traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness
end

function [res] = CGPDecodeNet(chrom, F, FTotal, param)

function [res] = CGPDecodeNet(chrom, F, FTotal, param)
% Decodes a chormosome
% chrom - an integer array that contains the genes
% F - matrix that contains all the node functions
% FTotal - a vector that contains the number of function available for a layer
% param - default parameters for the GA

158

% Excample of the chromosome
%chrom = [1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 4, 1, 2, 5, 1, 2, 6, 1, 2, 7, 1, 2, 8, 1, 2, 9, 1, 2, 10, 4, 5, 1, 3, 4, 2, 5, 6, 3, 7, 8, 4,
9, 1, 5, 2, 3, 6, 4, 5, 7, 6, 7, 8, 8, 1, 8, 8, 1, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1];
totalNodes = param.numOfNodes;
totalLayers = param.numOfLayers;
numOfInputs = param.numOfInputs;

%lastNode = sum(totalNodes(1:end-1))*(numOfInputs+1);
lastNode = sum(totalNodes(1:end-1).*(numOfInputs(1:end-1)+1));
%%num of Inptus
%lastNode = totalNodes*(numOfInputs+1)*(totalLayers-1);

connections = chrom(lastNode+1:end-1);
numOfConnections = size(connections,2);

fnet = F(1,3); %hard coded

t = 0;
for n=1:numOfConnections
 if (connections(n) == 1)
 net = CGPDecodeNode(chrom, n, totalLayers-1, totalNodes, numOfInputs, F, FTotal);

 fnet.inputs = [fnet.inputs net];
 fnet.weights =[fnet.weights 0];
 fnet.r = [fnet.r 1];
 end
end
if (size(fnet.inputs,2) == 0)
 res = fnet;
elseif (size(fnet.inputs,2) == 1)
 res = fnet.inputs(1);
else
 res = fnet;
end

function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs,
F, FTotal)
function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs, F, FTotal)

%pos = 0;
%for n=1:level-1
% pos = pos+totalNodes(n)*(numOfInputs(n)+1);
%end
pos = sum(totalNodes(1:level-1).*(numOfInputs(1:level-1)+1))+(node-1)*(numOfInputs(level)+1);

func = chrom(pos+(numOfInputs(level)+1));

net = F(func,level);
if (level > 1)
 for n=1:numOfInputs(level)
 neuron = CGPDecodeNode(chrom, chrom(pos+n),level-1, totalNodes, numOfInputs, F, FTotal);
 net.inputs = [net.inputs neuron];
 end
end

function [param] = CGPDefaultParam(patternSize, numOfNodes,
numOfInputs)

function [param] = CGPDefaultParam(patternSize, numOfNodes, numOfInputs)

159

%
%

if (nargin < 1)
 patternSize = 2;
end
if (nargin < 2)
 numOfNodes = [20 10 1];
end
if (nargin < 3)
 numOfInputs = [patternSize, 2, numOfNodes(2)];
end;
param.numOfNodes = numOfNodes;
param.numOfLayers = 3;
param.numOfInputs = numOfInputs;

function [chrom, val] = CGPEval3(chrom,opts)

% Version 1.0
% Fitness Function
% Inputs-
% chromosomeIn - chromosome to be evaluated
% evalOps -
% Outputs:
% chromosomeOut - (must be the same as the input)
% fitness = how good is the organism
% fitness = (1/N)(total patterns classified correctly)/total Test Patterns

function [chrom, val] = CGPEval3(chrom,opts)
global class0;
global class1;

global F;
global FTotal;
global param;

net = CGPDecodeNet(chrom(1:end-1), F, FTotal, param);

if (size(net.inputs,2) == 0)
 val = 0.0;
 return ;
end

evalClass0 = evalMorphologicalPerceptron(net, class0);
totalCorrectClass0 = size(find(evalClass0==0),1);

% Evaluate patterns of class1
evalClass1 = evalMorphologicalPerceptron(net, class1);
totalCorrectClass1 = size(find(evalClass1==1),1);

fitness = (totalCorrectClass0+totalCorrectClass1)/(size(class0,1)+size(class1,1));

maxBranches = param.numOfNodes(end-1);

totalLayers = getTotalLayers(net);
%if (totalLayers== 3)
 totalUsedBranches = 0;
 totalBranches = size(net.inputs,2);
 for in=1:totalBranches
 chromIn = net.inputs(in);

 evalClass0 = evalMorphologicalPerceptron(chromIn, class0);
 totalCorrectClass0 = size(find(evalClass0==0),1);

160

 if (totalCorrectClass0 ~= 0 && totalCorrectClass0 ~= size(class0,1))
 totalUsedBranches = totalUsedBranches +1;
 end
 end

 branchPercent = totalUsedBranches/totalBranches;

 fitness = (fitness)*branchPercent *(totalBranches/maxBranches);

%elseif (totalLayers == 2)
%end

val = fitness;

function [done] = CGPFitnessFoundTerm(ops, bPop, endPop)

function [done] = CGPFitnessFoundTerm(ops, bPop, endPop)
currentGen = ops(1);
maxGen = ops(2);

done = (currentGen >= maxGen) || (bPop(end,end) == 1.0);

%bPop(end,end)

function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops)

function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops)
global param;

mutated = parent;

mutProb = Ops(2);
mutProb_Branches = 0.24;
mutProb_Inputs = 0.94;
mutProb_Weights = 0.90;

%if (rand < mutProb)

 %------------------------------ Mutate Operation/Weights

 if (mutProb_Weights > rand)
 %totalMut = round(rand*6);
 sz = size(parent,2)-1;
 totalNodes = sum(param.numOfNodes(1:end-1));
 if (size(Ops,2) < 3)
 totalMut = fix(totalNodes*0.08);
 else
 totalMut = fix(totalNodes*Ops(3));
 end

 for n=1:totalMut

 pos = round(rand*(totalNodes-1))+1;
 %pos = round(rand*(6-1))+1;

 if (pos > param.numOfNodes(1))
 t = pos;
 pos = param.numOfNodes(1)*(param.numOfInputs(1)+1);
 pos = pos + (t - param.numOfNodes(1))*(param.numOfInputs(2)+1);
 else
 pos = pos*(param.numOfInputs(1)+1);
 end
 %pos = pos*(param.numOfInputs+1);

161

 %cs = cumsum(numOfNodes);
 %p = find(cs < pos)
 %pos = sum(param.numOfNodes(p).*param.numOfInputs(p))+ (pos -
cs(size(p,2)+1)*param.numOfInputs(size(p,2)+1));

 mutated(pos) = round(rand*(bounds(2,pos) - bounds(1,pos))) + bounds(1,pos);
 end
 end

 %--------------------------- Mutate neuron inputs
 if (mutProb_Inputs > rand)
 totalNodes = sum(param.numOfNodes(2));
 if (size(Ops,2) < 4)
 totalMut = fix(totalNodes*0.15);
 else
 totalMut = fix(totalNodes*Ops(4));
 end
 for n=1:totalMut

 pos = round(rand*(totalNodes-1));
 pos = (pos)*(param.numOfInputs(2)+1) + (param.numOfInputs(1)+1)*param.numOfNodes(1);
 pos = 1+pos + round(rand *(param.numOfInputs(2)-1));

 mutated(pos) = round(rand*(bounds(2,pos) - bounds(1,pos))) + bounds(1,pos);
 end
 end
 %------------------------------ Mutate branches
 if (mutProb_Branches > rand)
 totalNodes = sum(param.numOfNodes(1:end-1));
 if (size(Ops,2) < 4)
 totalMut = fix(totalNodes*0.15);
 else
 totalMut = fix(totalNodes*Ops(4));
 end
 sz = param.numOfNodes(end-1);
 for n=1:totalMut

 pos = round(rand*(sz-1))+1;
 pos = pos+sum((param.numOfInputs(1:end-1)+1).*param.numOfNodes(1:end-1));

 mutated(pos) = round(rand*(bounds(2,pos) - bounds(1,pos))) + bounds(1,pos);
 end
 end
%end
return

function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops)

function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops)
global param;

%o1 = p1;
%o2 = p2;

xRate = Ops(3);
numOfBits = 3;
%numVar = size(p1,2)-1;
numVar = sum(param.numOfNodes(1:end-1));
xRatePerGen = xRate/numVar;
%fprintf('xRatePerGen prob %d\n',xRatePerGen);

pos = 0;
o1 = [];
o2 = [];
for n = 1: numVar

162

 if (rand < xRatePerGen)
 s = p1((pos*numOfBits)+1:(pos+1)*numOfBits);
 o1 = [o1 s];
 o2 = [o2 p2((pos*numOfBits)+1:(pos+1)*numOfBits)];
 else
 s = p1((pos*numOfBits)+1:(pos+1)*numOfBits);
 o2 = [o2 s];
 o1 = [o1 p2((pos*numOfBits)+1:(pos+1)*numOfBits)];
 end
 pos = pos +1;
end
if (rand < xRatePerGen)
 s = p1((numVar*numOfBits)+1:end-1);
 o1 = [o1 s];
 o2 = [o2 p2((numVar*numOfBits)+1:end-1)];
else
 s = p1((numVar*numOfBits)+1:end-1);
 o2 = [o2 s];
 o1 = [o1 p2((numVar*numOfBits)+1:end-1)];
end
%c1 = [c1 p1(numVar+1)];
%c2 = [c2 p2(numVar+1)];
o1 = [o1 0];
o2 = [o2 0];

function [F, FTotal] = CGPInitialize(patterns, param)

function [F, FTotal] = CGPInitialize(patterns, param)

dim = size(patterns,2);
F1 = CGPGenerateNodesForPatterns(patterns);
if (0)
F2 = CGPGenerateNodesForPatterns(zeros(1,dim));
else
net.op = 1; % max
net.r = ones(1,param.numOfInputs(2));
net.weights = zeros(1,param.numOfInputs(2));
net.inputs = [];
F2 = net;
net.op = 0; % min
net.r = ones(1,param.numOfInputs(2));
net.weights = zeros(1,param.numOfInputs(2));
net.inputs = [];
F2 = [F2; net];
end

net.op = 0; % min
net.r = [];
net.weights = [];
net.inputs = [];
F3 = net;

F = F1;
FTotal = [size(F1,1), size(F2,1), size(F3,1)];

F2 = [F2; struct('op', cell(size(F1,1)-FTotal(2),1), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]})];
F3 = [F3; struct('op', cell(size(F1,1)-FTotal(3),1), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]})];
F = [F1 F2 F3];

function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps)

function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps)

163

global class0;
global class1;
global F;
global FTotal;
global param;

%chromosomeSize = (param.numOfLayers-1)*(param.numOfNodes*(param.numOfInputs+1))+param.numOfNodes+1;

initialPop = [];
bounds = [];

% compute boudaries for each variable in the chromosome
 pos = 1;
 layer = 1;
 for nodes=1:param.numOfNodes(1)
 i = 1;
 for inputs=1:param.numOfInputs(1)
 bounds(1,pos) = inputs;
 bounds(2,pos) = inputs;
 pos = pos+1;
 i = i+1;
 end
 bounds(1,pos) = 1;
 bounds(2,pos) = FTotal(layer);
 pos = pos+1;
 end
 layer = layer+1;
 i =1;
 for lyr=layer:param.numOfLayers-1
 for node=1:param.numOfNodes(lyr)
 for input=1:param.numOfInputs(lyr)
 if (0)
 bounds(1,pos) = i;
 bounds(2,pos) = i;
 i = i+1;
 if (i > param.numOfNodes(lyr))
 i = 1;
 end
 else
 bounds(1,pos) = 1;
 bounds(2,pos) = param.numOfNodes(lyr-1);
 end
 pos = pos+1;
 end
 bounds(1,pos) = 1;
 bounds(2,pos) = FTotal(lyr);
 pos = pos+1;
 end
 layer = layer +1;
 end

 for nodes=1:param.numOfNodes(end-1)
 if (0)
 if (nodes <=3)
 bounds(1,pos) = 1;
 bounds(2,pos) = 1;
 else
 bounds(1,pos) = 0;
 bounds(2,pos) = 0;
 end
 else
 bounds(1,pos) = 0;
 bounds(2,pos) = 1;
 end
 pos = pos +1;
 end
 bounds(1,pos) = 1;
 bounds(2,pos) = FTotal(layer);

164

% generate population
for n=1:popSize
 pos = 1;
 v = size(bounds,2);
 for n=1:v
 org(pos) = round((bounds(2,pos)-bounds(1,pos))*rand +bounds(1,pos));
 pos = pos+1;
 end
 org(pos) = 0; % temporary fitness value
 e1str = ['[org, fitness]=' evalFN '(org,[0 evalOps]);'];
 eval(e1str);
 org(pos) = fitness;

 initialPop = [initialPop; org];
end

return

165

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

