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ABSTRACT 

This thesis describes three compressive learning algorithms for multilayer 

morphological perceptrons. The three algorithms are based on evolutionary algorithms: 

direct encoding method, indirect encoding method, and catesian genetic programming 

method. The direct encoding method uses adaptive mutation as the genetic algorithm 

approaches convergence to fine tune network parameters to reach optimal values. In 

addition, the algorithms use a special fitness function which penalize those networks with 

redundant neurons. The training of the neural network using the indirect encoding 

method is done by finding the solution without considering the exact connectivity of the 

network. Looking for the set of connection weights and network architecture in a reduced 

search space, this simple, but powerful, training algorithm is able to evolve to a feasible 

solution using up to three layers suficient to perform most pattern classification. The last 

method uses Cartesian genetic programming to evolve network architecture and 

connection weights simultaneously. The resulting program consists of the multilayer 

morphological perceptron, which is able to classify patterns received as the inputs. The 

algorithm introduces the use of the morphological neuron computational model as the 

function used by the generated programs. Prototypes were implemented using Matlab, 

and tested using data sets used previously by other researchers. 
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RESUMEN 

Esta tesis describe en detalle tres algoritmos de aprendizaje para perceptrones 

morfológicos de múltiples capas.  Los tres algoritmos son basados en algoritmos 

evolutivos: el método de codificación de forma directa, el método de codificación de 

forma indirecta y el método de programación genética cartesiana.  El método de 

codificación de forma directa utiliza mutación adaptiva según el algoritmo genético se 

acerca a la convergencia para refinar los parámetros de la red neural para poder conseguir 

valores óptimos.  En adición, el algoritmo utiliza una función de evaluación especial en la 

que se penalizan aquellas redes neurales con neuronas redundantes de acuerdo a como 

estas estén colocadas. En el método de codificación de forma indirecta el entrenamiento 

de la red neural es hecho mediante la búsqueda de soluciones sin considerar la 

conectividad exacta de la red.  Al reducir el espacio de busqueda pesos de las conexiones 

y la arquitectura de la red, este simple, pero poderoso algoritmo de entrenamiento es 

capaz de evolucionar soluciones viables usando hasta tres capas las cuales son requeridas 

para realizar la mayoría de las clasificaciones de patrones. El tercer método, utiliza 

programación genética cartesiana para evolucionar la arquitectura de la red y los pesos de 

las conexiones simultáneamente. El programa resultante produce la red neural capaz de 

clasificar los patrones recibidos como entradas. El metodo introduce el uso del modelo 

computacional usado por la neurona morfológica como las operaciones utilizadas por los 

programas generados.  Prototipos fueron implementados usando Matlab y probados 

usando conjuntos de datos presentados por otros investigadores. 
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CHAPTER 1 

1 INTRODUCTION 

Artificial Neural Network (ANN) is a component of artificial intelligence that 

emulates real brain’s neurons. Artificial neural networks are a collection of mathematical 

models that simulate the connectionism behavior of human’s brain. The system performs 

the computation through the passing of signals within a structured arrangement of 

connected processing units in response to a given input signal. Although these systems 

may be applied for prediction, interpretation, diagnosis, planning, and other applications, 

the most successful uses for artificial neural network are pattern recognition and pattern 

classification. 

Morphological Neural Networks (MNN) (Ritter and Sussner 1996) are a novel 

class of artificial neural networks based on lattice algebra, in which the operations of 

multiplication and addition are replaced by addition and maximum or minimum operator, 

respectively. The algebraic system used by traditional neural network is denoted 

as ( ), ,ℜ + × , the set of real numbers ℜ  with the operations of addition and multiplication, 

and all the laws governing these operators. The computations occurring in the 

morphological neural network are based on the algebraic lattice structure (Ritter and 

Sussner 1996) ( ), ,−∞ℜ ∨ +  and ( ), , '∞ℜ ∧ + , where −∞ℜ  and ∞ℜ  represent the extended 

real number systems { }−∞ℜ = ℜ ∪ −∞  and { }∞ℜ = ℜ ∪ ∞ . The symbol + denotes the 

usual addition with the additional stipulation that ( ) ( ) ;  a a a −∞+ −∞ = −∞ + = −∞ ∀ ∈ℜ , 
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and '+  is defined as 'a b a b+ ≡ +  for ,a b ∞∈ℜ , and ;  a a a ∞+ ∞ = ∞ + = ∞ ∀ ∈ℜ . The 

symbols ∨  and ∧  denote the maximum and minimum operators respectively, with the 

additional stipulation that ( ) ( ) ;  a a a a −∞∨ −∞ = −∞ ∨ = ∀ ∈ℜ  and 

 a a a a ∞∧ ∞ = ∞ ∧ = ∀ ∈ℜ . The application of maximum or minimum operations 

perform a nonlinear operation before the application of the transfer function, resulting in 

properties completely different from those properties of traditional neural networks. 

Multilayer Morphological Perceptrons (MLMP) are feed forward morphological neural 

networks used for pattern classification. 

Artificial Neural Networks are able to acquire knowledge from previous 

experiences and apply the knowledge to similar situations. This process is known as 

memorization and generalization. A neural network “learns” how to associate a response 

pattern to a given input pattern by adjusting the neuron’s connection weights and the 

network architecture. The network architecture includes neurons, layers, neuron’s inter-

connections, and transfer function. 

This thesis explores the use of evolutionary algorithms as an alternative training 

tool for multilayer morphological neural networks. Evolutionary algorithms (EA) (Fogel 

1994) are search and optimization methods inspired on natural selection. Three different 

encoding schemes were used direct encoding, indirect encoding and Cartesian Genetic 

Programming (CGP) (Miller 2001). Genetic algorithms are used to train the neural 

networks using the first two encoding schemes. Cartesian genetic programming encoding 

scheme was adapted to allow the evolution of the morphological neural network. 

Prototypes of the algorithms were implemented as a toolbox for Matlab 6. 
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Multidimensional data sets presented by Ritter and Sussner (Sussner 1998) were used for 

the tests. 

1.1 JUSTIFICATION 

Many of different algorithms have been proposed to train artificial neural 

network, most of them work for a specific kind of artificial neural network, including a 

specific type of transfer function, and neuron’s connections. For example, back 

propagation is used to update connection weights for a given neural network architecture. 

Using gradient descent of a continuous error function, connection weights are adjusted in 

order to minimize this error function. Back propagation can not be used if the error 

function is not continuous or differentiable. Back propagation may not be able to find the 

global minimum, because it may be possible for the algorithm to get stuck in a local 

minimum. In addition, gradient descent adjusts exclusively connection weights for 

particular network architectures, but the algorithm does not adjust the network 

architecture to define the optimum neural network for a particular problem. 

Recently, evolutionary algorithms are able to evolve connection weights as well 

as network topology simultaneously. Evolutionary algorithms search for the global 

maximum in infinite, very complex, multimodal and non-differentiable search space, 

looking for the best artificial neural network without focusing in a specific problem.  

The mathematical model used by the morphological neuron is completely 

different from the model used by traditional neural network. The maximum and 

minimum operation results in a non-continue, non-differentiable function, therefore the 

resulting neural network properties are completely different from those properties of 
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traditional neural networks. This thesis explores the use of evolutionary algorithms as a 

learning algorithm for morphological neural networks. 

1.2 OBJECTIVE 

The objective of this thesis is to explore the use evolutionary algorithms to train 

multilayer morphological perceptrons. Two different evolutionary approaches are used: 

Genetic Algorithm and Cartesian Genetic Programming. Different learning approaches 

are explored including supervised learning and reinforcement learning of the neural 

network. 

1.3 CONTRIBUTIONS 

The main contribution of this thesis consists of the introduction of three 

comprehensive evolutionary learning algorithms for multilayer morphological 

perceptrons: 

a. Direct Encoding Method. 

i. The use of genetic algorithms as a learning tool for a (fixed 

architecture) two layers Morphological Perceptrons. 

ii. The introduction of adaptive mutation for the evolution of MLMP as a 

technique to speed up the convergence of the evolutionary process. 

iii. Introduction of a penalty function to reduce the number of unnecessary 

neurons from the neural network.  

b. Indirect Encoding Method 
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i. Learning algorithm able to produce a Multilayer Morphological 

Perceptron which is able to solve most pattern classification problems, 

without considering patterns distribution. 

ii. Evolutionary learning algorithm for a maximum of 3-layers 

Morphological Perceptron, which is good enough to solve most pattern 

classification problems. 

iii. Indirect evolution of morphological neural network’s architecture, 

including number of neurons and connection weights simultaneously. 

c. Cartesian Genetic Programming learning algorithm 

i. Learning algorithm able to produce a Multilayer Morphological 

Perceptron which is able to solve pattern classification problems 

without considering patterns distribution. 

ii. The introduction to the use of Cartesian Genetic Programming as an 

evolutionary learning tool for Multilayer Morphological Perceptrons.  

iii. The introduction to the use of the morphological neuron computational 

model as the node function using Cartesian Genetic Programming. 

iv. Simultaneous evolution of morphological neural network’s 

architecture, including number of neurons, neuron interconnection, and 

connection weights. 

v. Make use of a penalty function to reduce the number of unnecessary 

neurons. 
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1.4 OVERVIEW 

This thesis is organized as follow: 

Chapter 2 introduces the concepts of Artificial Neural Networks. Chapter 3 

describes the new paradigm of Morphological Neural Networks. Chapter 4 introduces the 

concepts of Evolutionary Algorithms, Genetic Algorithms and Cartesian Genetic 

Programming. Chapter 5 presents a survey of related works organized in two subtopics: i) 

Evolutionary Artificial Neural Networks; and ii) Morphological Learning Algorithms. 

Chapter 6 presents the evolutionary learning algorithms for multilayer morphological 

perceptrons: i) Direct Encoding Method; ii) Indirect Encoding Method; and Cartesian 

Genetic Programming. Chapter 7 describes the toolbox designed for Matlab to train 

multilayer morphological neural networks. Chapter 8 presents the performance analysis 

and results, finally Chapter 9 presents conclusions. Appendix A provides the source code 

for all the methods used by the Evolutionary Morphological Learning Algorithm 

Toolbox. 
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CHAPTER 2 

2 ARTIFICIAL NEURAL NETWORKS 

2.1 INTRODUCTION 

This chapter describes the paradigm of Artificial Neural Networks.  A large 

assortment of different neural networks had been developed, each of them with the ability 

to solve a particular problem, and allow its application to various field in science and 

engineering.  This chapter presents an introduction to artificial neural networks and how 

they can be effectively used in pattern recognition problems, pattern classification, 

speech recognition, and others. 

Human’s brain is built of thousand of a specific cell, which provides us with our 

abilities to remember, think and apply previous experiences.  Each of these cells, known 

as neurons, can be connected with other thousands of neurons.  Figure 2.1 shows the 

components of a neuron, which are the cell body, the branching extensions called 

dendrites for receiving the inputs, and an axon that carries the neuron’s output to the 

dendrites of other neurons. 
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dentrite

axon

synapse

 
Figure 2.1 Biological neuron 

Artificial Neural Networks (ANNs) are a component of artificial intelligence that 

simulates real brain’s neurons.  Also known as parallel distributed processing, or 

connectionist models, artificial neural networks are information processors inspired by 

the way the highly interconnected structures of the brain process information. Artificial 

neural networks are mathematical models that emulate some properties observed from the 

biological neural network: the knowledge is acquired by the network through a learning 

process and the synaptic weight is used to store the knowledge.  Computations are 

performed through the passing of signals within a structured arrangement of highly 

interconnected processing units in response to a given input signal.  

The artificial neural network model was introduced by McCulloch and Pitts, after 

the definition of the computational model for the traditional perceptron in 1943. This is 

an artificial neuron with a hard-limiting activation function. Since that artificial neural 

networks have been implemented to solve a variety of problems involving pattern 

classification and pattern recognition.  
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2.2 ARTIFICIAL NEURAL NETWORKS COMPONENTS 

2.2.1 Artificial Neuron 
The basic element of an artificial neural network is the artificial neuron. The 

artificial neuron simulates some of the operations the natural neuron can perform. The 

neuron receives as inputs the outputs from other neurons, if the combined strength of the 

signal reaches a specific threshold; the neuron sends a signal to all the neurons waiting 

for the output. Figure 2.2 shows an example of an artificial neuron. 

W
0

W1

Wn

X0

X1

Xn

.

.

.

.

.

.
f

Output
pathInputs Xn Weights Wn

Processing 
Element  

Figure 2.2 The artificial neuron model 

The symbols x0,…, xn,  represent the strength of the input signals, w0,…wn, 

represent the connection strengths of the given input signal, and the output is represented 

by the symbol y. The computational model for the traditional neuron is given by Equation 

2.1.  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡ ⋅= ∑
=

θ
n

i
ii xwfy

1
,  (2.1) 

where θ is a threshold value and f is the neuron’s activation function. 

The most commonly used activation function (also known as transfer function) is 

the hard-limiting function shown in Equation 2.2. However, this one can vary from 

neuron to neuron. 
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Some of the most common transfer used activation functions shown in Figure 2.3 
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Figure 2.3 Most commonly used transfer functions 

2.2.2 Architectural Elements of an Artificial Neural Network 
The basic components of neural network architecture are neurons, the layers, and 

neuron connection. A neural network consists of a set of neurons highly interconnected, 

grouped into three types of layers: the input layer, output layer and the hidden layers. The 

behavior of the neural network depends on the interaction between the neurons. 

Interaction between network components depends on the type of connection that is used 

to pass messages between neurons. There are four types of synaptic connections: feed 

forward, feedback, lateral and time-delayed connections. It is important to highlight that 

synaptic connections may be fully interconnected or partially interconnected. 

Feed forward connections are used to propagate the output from the neurons of a 

lower layer to neurons of an upper layer, as shown in Figure 2.4. 
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Inputs Hidden 
layer

Output 
layer

feedforward

 
Figure 2.4 Feed forward connections. 

Feedback connections are used to send the output from neurons of an upper layer 

back to neurons of a lower layer, as shown in Figure 2.5. 

inputs Hidden 
layer

Hidden 
layer

feedforward

feedback

Output 
layer

 
Figure 2.5 Feedback connections. 

Lateral Connections are usually used in the output layer, when the output with the 

higher value predominated over all the other output nodes, as shown in Figure 2.6.  

Inputs Hidden 
layer

feedforward

lateral

lateral

Output 
layer

 
Figure 2.6 Lateral connections. 

Time delayed connections add elements to the network to yield temporal 

dynamics models. These connections are used in recurrent neural networks which are 

networks that, also, use feedback connections.  
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2.3 LEARNING PROCESS FOR AN ARTIFICIAL NEURAL NETWORK 

The brain learns from knowledge collected from previous experiences, while 

artificial neural networks the learning process is achieved by changing the connection 

weights between neurons. The connection strength of two neurons is represented by the 

specific connection weight for that connection. 

Learning algorithm in an artificial neural network are classified into supervised, 

unsupervised, and reinforcement learning. Supervised learning is based on direct 

comparison between the actual output of a system and the desired correct output. 

Unsupervised learning is based on the correlations among input data. No information 

about the “correct output” is available for learning. In reinforcement learning, the system 

receives inputs and evaluation actions and the system has to learn how to map the inputs 

to actions resulting in the best performance. 

2.3.1 Back-Propagation 
Back propagation is a learning algorithm for feed-forward neural network which 

minimizes a continuous error function.  The error function is the difference between the 

actual output αd and the desired output td, presented in Equation 2.3. 

 ( )2

1

1
2

N

d d
d

E w oα
=

⎡ ⎤ = −⎣ ⎦ ∑
ur

 (2.3) 
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Figure 2.7 Back propagation learning algorithm described by Hagan (Hagan and Demuth and Beale 1996) 

Back propagation uses gradient information to updates connection weights for 

fixed network architecture in order to reduce the error in classification. The network 

architecture uses sigmoid as the transfer function for the hidden layers. Figure 2.7 

describes the algorithm used for back propagation.  

Each pattern is defined as ,a t
r

where a
r

 is the vector of the inputs values and t is the 

target output value. α  is the learning rate, p represent the initial conditions 
(randomly initialized), m represents the layer and M represents the total amount of 
layers. Wm are the connection weights from layer m, bm are the biases for the neurons 
from layer m, .fm is the transfer function for the neurons from layer m, and 
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• Propagate the input forward through the network 
 0a p=  
 ( )1 1 1 1fm m m m ma W a b+ + + += +  for m=M-1,…,2,1 

 Ma a=  
• Propagate the sensitivities backward through the network 

o ( )( )2M M Ms F n t a= − −  

o ( )( )1 1Tm M m m ms F n W s+ +=  

• Update weight and biases using the gradient descent:  
o ( ) ( ) ( )11

Tm m m mW k W k s aα −+ = −  

o ( ) ( )1m m mb k b k sα+ = −  
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2.4 TRAINING OF AN ARTIFICIAL NEURAL NETWORK 

The training of an artificial neural network can be seen as the search for the best 

architecture and connection weights in an architectural space where each point represents 

a neural network architecture. Some neural networks architecture properties, like the 

number of neurons, number of layers, and total number of misclassified patterns are used 

to define a surface in the search space. According to Miller (Miller and Todd and Hegde 

1989), this surface is infinitely large since the possible number of nodes and connections 

is not fixed. The surface is not differentiable since the changes in number of neurons, 

layers and connection is discrete. This is not a continuous function as in traditional 

optimization problems. In addition, similar architectures may have different performance, 

but different architectures may have similar performance. 
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CHAPTER 3 

3 MORPHOLOGICAL NEURAL NETWORKS 

3.1 INTRODUCTION 

The new paradigm of Morphological Neural Networks (MNNs) was introduced 

by Ritter, Sussner and Wilson (Ritter and Sussner 1996, Sussner 1998). These neural 

networks replace the classical operations of multiplication and addition by addition and 

maximum or minimum operations, respectively. The computations occurring in the 

morphological neural network are based on the algebraic lattice structure ( ), ,−∞ℜ ∨ +  

and ( ), , '∞ℜ ∧ + , where −∞ℜ  and ∞ℜ  represent the extended real number systems 

{ }−∞ℜ = ℜ ∪ −∞  and { }∞ℜ = ℜ ∪ ∞ . The symbol + denotes the usual addition with the 

additional stipulation that ( ) ( ) ;  a a a −∞+ −∞ = −∞ + = −∞ ∀ ∈ℜ  and '+  is defined by 

'a b a b+ ≡ +  for ,a b ∞∈ℜ , and ;  a a a ∞+ ∞ = ∞ + = ∞ ∀ ∈ℜ . The symbols ∨  and ∧  

denote the maximum and minimum operators, respectively, with the additional 

stipulation that ( ) ( ) ;  a a a a −∞∨ −∞ = −∞ ∨ = ∀ ∈ℜ  and ;  a a a a ∞∧ ∞ = ∞ ∧ = ∀ ∈ℜ . The 

maximum and minimum operations allow performing a nonlinear operation before the 

application of the activation function, resulting in properties completely different from 

those properties of traditional neural networks. 
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3.2 MORPHOLOGICAL NEURAL NETWORKS 

Morphological neural networks are a new type of neural network introduced by 

Ritter, Beavers and Sussner. Differing from traditional neural networks, these neural 

networks replace the operator of multiplication by the operator of addition, and the 

operator of addition is replaced by the maximum operator or by the minimum operator. 

The morphological neuron follows the mathematical model described in Equation 3.1: 

 ( )
1

n

j ij i iji
f p r x w

=

⎛ ⎞⋅ ∨ +⎜ ⎟
⎝ ⎠  (3.1) 

where ∨  is the maximum operator (or minimum operator ∧ ), n is the number of 

dimensions of the pattern to be classified, xi is the value of the i-th input of the neuron, wij 

denotes the synaptic weight associated between the i-th neuron and the j-th neuron, rij 

represents the inhibitory or excitatory pre-synaptic values and pj represents the inhibitory 

or excitatory post-synaptic value, where rij and pj can be set to values of {+1, -1}. Figure 

3.1 presents a graphical representation of the morphological model and the decision 

boundary defined by a morphological neuron in a 2ℜ space. 
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 a.  b. 

Figure 3.1 (a) Computational Model for Morphological Neural Network (b) Morphological Perceptron 
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Morphological Neural Networks have been used for scene recognition, and self-

localization, as part of a vision based navigation framework for mobile robots. 

Additionally, it has been used in image restoration by reconstruction of patterns from 

noisy inputs. 

3.3 SINGLE LAYER MORPHOLOGICAL PERCEPTRON 

Single layer morphological perceptron is a binary pattern classifier like the 

traditional perceptron. In other words, the patterns forwarded as inputs for the neural 

network are classified as belonging to either class C0 or class C1. The morphological 

perceptron uses a hard-limit transfer function, as shown in Equation 3.2:  

 

: 0,1
1 if  x > 0

      
0 else       

f

x

→

⎧
→ ⎨

⎩

\

 (3.2) 

Let W = [w1, w2,…,wn] nℜ∈  represent a set of weights, and θ the threshold. The 

traditional perceptron assigns a pattern x nℜ∈ , to class C0 if  

 0
1

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
⋅∑

=

θ
n

j
jj wxf   (3.3) 

otherwise the pattern is assigned in class C1. The morphological perceptron assigns a 

pattern x nℜ∈ to the class C0 if  

 ( ) 0
1

=⎟
⎠

⎞
⎜
⎝

⎛ −⎥⎦
⎤

⎢⎣
⎡ +∨

=
θjj

n

j
wxf   (3.4) 

otherwise the pattern is assigned to the class C1. According to the dual nature of the 

morphological neuron a pattern x nℜ∈ can be assigned to the class C0 if  
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 ( ) 0'
1

=⎟
⎠

⎞
⎜
⎝

⎛ −⎥⎦
⎤

⎢⎣
⎡ +∧

=
θjj

n

j
wxf   (3.5) 

otherwise the pattern is assigned in class C1. Since wj and θ are constants values, the 

Equation 3.4 and Equation 3.5 can be rewritten as shown in Equation 3.6 and Equation 

3.7, respectively.  

 ( ) 0
1

=⎟
⎠
⎞

⎜
⎝
⎛ +∨

= jj

n

j
wxf  (3.6) 

 ( ) 0'
1

=⎟
⎠
⎞

⎜
⎝
⎛ +∧

= jj

n

j
wxf  (3.7) 

The decision boundaries defined by Equation 3.4 in a 2ℜ space is shown in Figure 

3.2a, and the corresponding space for Equation 3.5 is shown in Figure 3.2b. 

class 
C1

class 
C0

-w2

-w1

X1

X2

a

class 
C1

class 
C0

-w2

-w1X2

X1

b 
Figure 3.2 Decision boundaries defined by the morphological perceptron. (a) Decision boundary defined a 
neuron using the mathematical model in Equation 3.6 and (b) decision boundary defined by a neuron using 

the mathematical model in Equation 3.7 in a 2ℜ  dimensional space. 

Sussner (Sussner 1998) described the effects produced applying different pre-

synaptic values to the morphological model shown in Equation 3.1. The value of r 

represents the pre-synaptic response at i-th synapse. A value of ri = -1 represents an 

inhibitory response and a value of ri = +1 means an excitatory response. Figure 3.3 shows 

the different resulting effects produced in the decision boundaries defined in a 2ℜ  space  
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Figure 3.3 Resulting decision boundaries produced by changing pre-synaptic values of a morphological 

neuron using a maximum operator in a 2ℜ space.  

Since the morphological neuron can use two different operators, the maximum 

operator from Equation 3.1 can be replaced by a minimum operator. The resulting 

decision boundaries assigning different pre-synaptic values are shown in Figure 3.4. 
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Figure 3.4 Resulting decision boundaries produced by changing pre-synaptic values in a morphological 

neuron using a minimum operator in a 2ℜ space.  

3.4 EXAMPLE 

Lets define classes C0= {(0,0) }, C1= {(1,0), (0,1), (1,1)}, as shown in Figure 3.5. 

In order to classify these patterns the morphological operator used by the neuron must be 

a maximum operator ( ∨ ), the corresponding connection weights may be 
2
1

1 −=w  

and
2
1

2 −=w , and the pre-synaptic values must be r1 = +1 and r2 = +1. 

-w2
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1

1
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Class C1

X2

X1

 
Figure 3.5 Decision boundary of the morphological perceptron  
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The morphological perceptron can be tested using patterns p1 = (0, 0) and p2 = 

(0,1). Pattern p1 is classified in class C0, as shown in Equation 3.7. Pattern p2 is classified 

in class C1, as shown in Equation 3.8. 

 
1 1 1 1 11 0 1 0 0
2 2 2 2 2

f f f⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞+ − ∨ + − = − ∨ − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
i i   (3.7) 

 
1 1 1 1 11 1 1 0 1
2 2 2 2 2

f f f⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞+ − ∨ + − = ∨ − = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
i i  (3.8) 

3.5 MULTILAYER MORPHOLOGICAL PERCEPTRON 

The limitations of Single Layer Morphological Perceptron become evident when 

the patterns are grouped in multiple clusters, and those subsets can no be separated by a 

single morphological neuron. A traditional example is the XOR logic function. The XOR 

is a binary operator on {0,1}2 such that for all  

 
2( , ) {0,1}a b ∈ ,

0 if 
 XOR 

1 else     
a b

a b
=⎧

= ⎨
⎩  (3.4) 

Two different classes C0= {(0,0), (1,1)}, and C1= {(1,0), (0,1)} are defined as shown in 

Figure 3.6. The multilayer morphological perceptron is able to overcome this problem by 

adding additional hidden layers which process the output of the first layer resulting in a 

nonlinear decision boundary.  
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Figure 3.6 Decision boundaries for the XOR classification problem using morphological neurons. 

It is not possible to separate patterns from class C0 and class C1 with a single 

morphological neuron, to classify these patterns correctly the output of two neurons in the 

first layer must be combined, and connected to a neuron in a second layer as shown in 

Figure 3.7. 
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Figure 3.7 Morphological neural network used to solve the XOR classification problem. 
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CHAPTER 4  

4 EVOLUTIONARY ALGORITHMS 

4.1 INTRODUCTION 

Evolutionary Algorithms (EA) are based on the idea that basic concepts of 

biological reproduction and evolution can be used as a model to solve problems using 

computers to emulate the same process. Evolutionary Algorithms are a robust heuristic 

search and optimization mechanism which can be applied to problems where normal 

solutions are not available or generally lead to unsatisfactory results. The most important 

areas of research in simulated evolution are: evolutionary strategies, evolutionary 

programming, and genetic algorithms. The three main operators in Evolutionary 

Algorithms are selection, recombination, and mutation. A population of possible 

solutions is maintained and encoded into data structures called chromosomes of an 

organism. Elements of the population are able to mate, mutate, and evolve, directed by 

the fitness funtion that evaluates the quality of the population with respect to a preset 

goal.  

4.2 SEARCH ALGORITHMS 

The goal of optimization problem is to find the best solution where several 

feasible solutions are available. An evaluation function or fitness function is used for 

determining how good each particular solution is and the goal is to find the best solution. 

Given a set of possible solutions, also know as search space, there may be several local 
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maximum or sub-optimal values, but the over all highest value of the set is considered the 

optimal value. If the search space is small, all the possible solutions can be examined, but 

as the search space grows in size, this exhaustive search becomes impractical.  

In a particular problem, the search space and the evaluation function for the 

elements in the search space in terms of performance define a landscape. The landscape 

consists of hills, valleys, and other geographical features. Figure 4.1 shows some features 

that may exist in the resulting landscape. Points a, d, f, and h are the top of the hills 

surrounded by points with lower values. Points c, e and g are the bottom of the valleys, 

surrounded by other points with higher values. Point b in the graph is the middle of a 

plateau. The performance of the points next to the plateu are exactly the same.  

0 100
0%

100%

a

b
c

d
e

f

g

h

 
Figure 4.1 Search space’s landscape 

Traditional search algorithms, such as the gradient descent, examine a point in the 

search space at the time, and the next point to be examined is obtained based on the 

current position. Usually, the next point to be examined has better performance than the 

previous point. The process continues until the top of a hill is reached. This point may be 

a local maximum, however since the new position is based on the previous one, it may 
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not be possible to make a drastic move to get onto the slope of a higher hill, this is known 

as the hill climbing effect. Another deficiency of this algorithm is that it is possible to get 

stuck on a plateau. This may happen if the algorithm is unable to move far away from the 

flat region. Another problem with this algorithm comes from the fact that the final result 

depends on the starting search point, it may be possible that different starting points 

produce different results. However this can be considered as an advantage because 

different results may provide the best solution among all local maximum points. 

4.3 EVOLUTIONARY COMPUTATION 

Evolutionary Algorithms is based on the basic concepts of biological reproduction 

and evolution that is used as a model to solve problems using computers to emulate the 

same process. All possible solutions for a problem are represented with a particular 

genetic representation scheme. A set of solutions or individuals is generated to form the 

initial population of organisms, as shown in Figure 4.2. Each organism is evaluated using 

a fitness function specific to the problem. The fitness function measures the performance 

of the organism according to specific characteristics. Using a particular selection 

algorithm based on the fitness value, some organisms are chosen to be the parents for the 

next generation. New organisms, also known as offspring are produced after the 

information contained in the parents is combined using reproduction operators such as 

crossover and mutation. Finally, some organisms are selected from the old population and 

from the new offspring to form the population for the next generation. These steps are 

repeated until a solution that satisfies the selected criteria is found.  
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Evolutionary algorithms overcome some of the deficiencies presented by the hill 

climbing effect by exploring a set of possible solutions at the same time. Since 

evolutionary algorithms are population based, even if some of the solutions in the initial 

population are a plateau or a local maximum, the genetic operations may be able to 

produce a totally different set of possible solutions in the next generation, moving the set 

of solutions toward the global maximum. In addition, several initial population sets may 

lead to similar final set if the desired feature is present in the initial population. 
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initial population of size k

Create a phenotype
from each genotype

Evaluate each individual
phenotype and assign a

fitness value to it

Select I (i<k) genotypes,
each chosen with a

probability proportional to its
phenotype fitness

Selection

Create h (h<=i) offspring
out of the i chosen parent

genotypes

Replace the h genotypes
of lowest fitness by the
new created offspring

true

START:

Cycle
of

EvolutionaryAlgorithms

(Recombination)
Mutation

Stop Condition 
meet?

fa
lse

STOP

 
Figure 4.2 Cycle of Evolutionary Algorithms 

4.4 GENETIC ALGORITHMS 

Genetic Algorithms are robust search and optimization algorithms introduced by 

Holland in 1970s. GA is one of the most popular areas of research in evolutionary 

algorithms, particulary useful for multidimensional optimization problems in which the 

chromosome can encode the values for different variables to be optimized. The most 

important factors to consider in genetic algorithms as a search mechanism are: 

representation scheme, fitness function, reproduction operators, and selection methods.  
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The genotype consists of a set of genes inherited from parents that code a trait. 

The most common representation scheme uses a fixed length gene string. The gene may 

be of any size, but usually it is binary. The gene may consist of a discrete set of values 

represented by integers or by a continuous set of values represented by floating point 

numbers, or a combination of them. Figure 4.3 shows how a single neuron may be 

encoded into the genotype using integer numbers to represent the neuron operation and 

pre-synaptic response, as well as floating point numbers to represent connection weights.  

1   0  0.1   0.3 Genotype
X1 X2 X3 X4

in
t

in
t

flo
at

flo
at

 
Figure 4.3 Genotype representation using different types of representation for the genes. 

The upper and lower bounds describe the valid range for each gene in the 

chromosome. Each gene may be used individually or combined with other genes during 

the decoding of the genotype into the phenotype. The phenotype manifests physical 

properties of the individual. Each gene is associated to a special mapping function or 

decoding function which translate the content of the gene into a physical property. Table 

4.1 describes the mapping function associated to each gene in a chromosome. 

operator post-
synaptic 

connection weights 

x1 {min,max} x2 {-1,1} x3 double (-10.0, 10.0) x4 double (0.0, 10.0) 
0 min 0 -1  (20.0)* x3-10.0  (10.0)* x4+0.0 
1 max 1 1     

Table 4.1 Mapping function for each gene from the genotype shown in Figure 4.3. 

The fitness function must be able to evaluate every component in the gene string. 

The fitness function is always specific to the problem and measures the performance of 

the organism in terms of how good is the solution for the problem.  
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The most common reproduction operators are crossover and mutation. The 

crossover combines the genetic information from parents and produces offsprings that are 

consistent with the representation scheme. The resulting offspring may be completely 

different to either parents, slightly different or even the same as the parents. Two 

crossover mechanism used in this thesis are the arithmetic crossover and order base 

crossover. Arithmetic crossover selects a random weight [ ]0,1w∈  and creates children 

from weighted averages of the parents, as shown in Equation 4.1. Figure 4.4 shows an 

example of crossover of two parents, and the resulting offspring.  

 1 1 2

2 2 1

offspring  = parent +(1- ) parent
offspring  = parent +(1- ) parent

w w
w w

⋅ ⋅
⋅ ⋅

 (4.1) 

0  1   0.20   0.80 1  1   0.50   0.60 

0.0  0.2   0.04   0.16 0.8  0.8   0.40   0.48 

(0.2)  + (1-0.2)=

+ 0.8  1.0   0.44   0.64 

parent2parent1

offpring1

=

(weight)

 
Figure 4.4 Arithmetic crossover of two parents producing one offspring. 

It is important to remember that each gene in the resulting offspring needs to 

enforce the range constrains defined for it, for this reason the first two genes in the 

resulting offspring are rounded because only integer values are allowed in those genes, as 

shown in Figure 4.5 

Genes Constrain 
Reinforcement    1    1    0.44   0.64 0.8  1.0   0.44   0.64 

 
Figure 4.5 Gene contrain reinforcement after crossover. 

The mutation introduces additional information that the crossover is not able to 

introduce, since the crossover only recombines the information from the parents. The 

most commonly used mutation is the single point mutations. Single point mutation selects 
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a gene randomly and changes its content enforcing the range constrains defined for the 

gene, as shown in Figure 4.6.  

1   1   0.44   0.64 1   0   0.44   0.64 
original offspring mutated offspring

 
Figure 4.6 Single point mutation 

The selection method chooses the organism to be parents based on the fitness 

value. According to the fitness value the probability of being selected as parent is 

assigned to the organism. That organism that has non-zero fitness may become a parent. 

One common selection method is the wheel roulette selection. The wheel roulette method 

assigns the probability to each organism and the fitness value for that organism is divided 

by the total sum of the fitness values for the population. 

4.5 GENETIC PROGRAMMING 

Genetic Programming (GP) (Koza 1992) is an extension of the genetic model for 

learning into the space of feasible solutions. The objects in genetic programming are 

programs that represent organisms that when executed are candidate solutions to the 

problem. These programs are expressed as parse trees, rather than as lines of code. 

Differing from genetic algorithms these objects are not fixed-length character strings.  

4.5.1 Cartesian Genetic Programming 
The Cartesian Genetic Programming (CGP) (Miller and Thomson 2000, Miller 

2001) method is represented as an indexed directed graph of nodes. Distributed in a 

rectangular array. The nodes represent operations on the data received by the inputs. 

Integer values are assigned to inputs, nodes, operations, and outputs. Node operations 

may be simple operations such addition, subtraction, multiplication or division. 
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The genotype is represented as a fixed length array of integers, as shown in Figure 

4.7. The genotype maintains a list of the inputs and the function associated to a particular 

node as shown in Figure 4.8. A unique integer value is assigned to all the inputs, nodes 

and output. The information maintained by the nodes is encoded in the chromosome. The 

first three integers in the chromosome encode the information from the upper left node 

shown in Figure 4.8. The first two values represent the inputs received by the nodes, and 

the third value represents the node operation or function. The last elements from the 

chromosome indicate the output nodes. Variable length phenotypes are produced by 

unexpressed genes carried in the genotype, as shown in Figure 4.9. Unexpressed genes 

are those nodes that are not in the path of nodes that directly connect from the input layer 

to the output layer.  

Genotype
1 2 7 3 3 4 1 4 4 3 2 1 8 5 3 4 7 4 7 4 2 7 5 3 5 9 8 9 11 4 8 6 3 7 12 1 9 15 

 
Figure 4.7 Representation the genotype in CGP 
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Figure 4.8 Graph of nodes used to represent the phenotype in CGP. 
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Figure 4.9 Resulting organism with unexpressed nodes 
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CHAPTER 5 

5 LITERATURE REVIEW AND PREVIOUS WORK 

5.1 INTRODUCTION 

This chapter describes the use of Evolutionary Learning algorithms as a learning 

tool for traditional neural networks in addition to different evolution trends in 

evolutionary artificial neural networks including evolution of connection weights, and 

evolution of architecture. Finally, this chapter describes the learning algorithms currently 

used for multilayer morphological perceptrons. 

5.2 EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS 

The algorithm most widely used to train neural networks is the back propagation 

algorithm which is a local gradient search method. Convergence is not always obtained 

and the algorithm may get stuck in a local maxima. On the other hand, evolutionary 

algorithms (Fogel 1994, Fogel and Fogel 1996, Saravanan and Fogel 1995) usually avoid 

local maxima by searching in several regions simultaneously. And the only information 

they need is some performance value that determines how good a given set of weights is 

and no gradient information is required. Several studies have been conducted in the 

Evolutionary Artificial Neural Network (EANN) field as an alternative to the gradient 

information. EANN refers to an Artificial Neural Network that uses Evolutionary 

Algorithms to evolve connection weights and architecture (Yao 1999). EANN can be 
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seen as a system that adapts the architecture and rules dynamically without human 

intervention.  

Evolution in artificial neural networks can be found at three different levels: 

connection weights, architectures, and learning rules (Branke 1995), (Espacia-Alcaza and 

Sharman 1996), (Fukuda and Kohno and Shibata 1993), (Gruau 1992), (Harp and Samad 

and Guha 1989), (Hintz and Spofford 1990), (Howard 1995), (Jacob and Rahder 1993), 

(Miller and Todd and Hegde 1989). Most of the studies focus on three different 

approaches. The first approach is fixed architecture and the evolutionary algorithm is 

used to search for a set of weights that best performs on the network. In the second 

approach, evolutionary algorithms are used to develop, simultaneously, connection 

weights and network architecture. In the last approach, the evolution of learning rules can 

be regarded as a process of “learning to learn”. 

Using fixed architecture method, the architecture of an Artificial Neural Networks 

is known before the learning process, and it does not changed during the evolution of the 

connections weights. Evolutionary Algorithms can be used in the evolution to find a sub-

optimal set of connection weights globally without computing gradient information. 

Many research and application has been conducted in evolutionary algorithms (Miller 

and Todd and Hegde 1989), (Koza 1992), (Kitano 1990), (Gruau 1992), (Yao 1999) 

because they can deal with very large, complex, not differentiable and multimodal 

spaces. 

Recently, a lot of research has been done to design architecture and weights of the 

Artificial Neural Network simultaneously (Branke 1995), (Esparcia-Alcaza and Sharman 

1996), (Gruau 1992), (Karunanithi and Das and Whithley 1992), (Kitano90), (Koza and 
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Rice 1991), (Koza 1992), (Jacob and Rehder 1993), (Vonk et al 1995). The architecture 

of the Artificial Neural Networks includes the topological structure, i.e., connectivity and 

transfer function of each node. One of the key issues in encoding the Artificial Neural 

Network is to decide how much information should be encoded into the chromosome. 

One of the methods is direct encoding of the neural network, where details of the neural 

network are described in the chromosome in such a way that the gene may be used 

directly as a working neural network (Whitley and Starkweather and Bogart 1990). Using 

indirect encoding, only weight and biases details of the neural network are encoded in the 

chromosome and no details of the connections are used (Kitano 1990), (Koza 1992), 

(Gruau 1992), (Luke and Spector 1996). 

Two different approaches can be taken in the direct encoding: the first separates 

the evolution of the architecture from that of the connection weights (Howard 1995). The 

second approach evolves the architecture and the connection weights simultaneously 

(Koza 1992), (Gruau 1992), (Gruau and Whitley and Pyeatt 1995). 

Indirect encoding has been used to reduce the length of the genotype 

representation of the network architecture (Gruau 1992), (Hussain and Browse 1998), 

(Kitano90), (Luke and Spector 1996). Different indirect encoding schemes include 

structural encoding, parametric encoding, and grammar encoding.  

Structural encoding defines the structure of the network is embedded in the 

chromosome. Koza (Koza and Rice 1991), (Koza 1992), applied genetic programming to 

discover both the architecture and the weights of a neural network. In this work, the 

neural network was represented as a point-labeled tree. Parametric encoding uses certain 

important aspects of neural network architecture (such as the number of hidden layers, 
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the number of hidden nodes in each layer, etc.) and is represented by fixed parameters 

(Harp and Samad and Guha 1989), (Harp and Samad and Guha 1990). 

Another technique is grammatical encoding, where the neural network is 

represented as a sentence of a special language described by a grammar. Two basic 

approaches to grammar encoding include developmental grammar encoding, and 

derivation grammar encoding. Developmental grammar encoding describes the 

chromosome by grammar rules that will be used to develop a specific neural network 

structure (Kitano 1990). Derivation grammar encoding design a single fixed grammar and 

the chromosome contains the derivation sequence which define the network architecture 

(Jacob and Rehder 1993), (Gruau 1992). 

Gruau (Gruau 1992), Gruau and Whitley (Gruau and Whitley 1993), Gruau and 

Whitley and Pyeatt (Gruau and Whitley and Pyeatt 1995) and Esparcia-Alcazar and 

Sharman (Esparcia-Alcazar and Sharman 1996) have used genetic programming to create 

the topology for recurrent neural networks. Luke and Spector (Luke and Spector 1996) 

showed that graphs and networks can be evolved using an edge encoding scheme. 

Hussain and Browse (Hussain and Browse 1998) proposed the use attribute grammars in 

creating a useful and compact genetic encoding of neural networks. 

5.3 MORPHOLOGICAL LEARNING ALGORITHMS 

There are very few learning algorithms proposed for Morphological Neural 

Networks. Ritter and Sussner (Ritter and Sussner 1996), proposed an algorithm to train 

single layer morphological perceptrons on nℜ  space. Sussner (Sussner 1998), proposed a 

two layers morphological perceptron training algorithm. Differing from the classical 
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perceptron learning rule, these algorithms converge in a finite number of steps. Lima 

(Lima et al. 2001) proposed a hybrid algorithm which combines evolutionary algorithms 

with a nonlinear optimization method based on gradient information to accelerate the 

convergence. No comprehensive evolutionary algorithms had been presented at this time 

to train morphological perceptrons 

 



 

37 

CHAPTER 6 

6 EVOLUTIONARY LEARNING METHODS FOR 
MULTILAYER MORPHOLOGICAL 

PERCEPTRONS 

6.1 INTRODUCTION 

Evolutionary learning algorithms had proven to be successful training traditional 

neural networks. The chapter describes how to separate patterns into multiple classes 

using a multilayer morphological perceptron. In addition, three comprehensive learning 

algorithms based on evolutionary algorithms are presented. Two learning algorithms are 

based on genetic algorithms and a third one is based on Cartesian genetic programming. 

6.2 CLASSIFICATION OF PATTERNS INTO MULTIPLE CLASSES 

In general, a morphological perceptron can separate only two classes. In order to 

classify multiple classes, a vector that contains a binary pattern is assigned to each class, 

for example:  

0

1
0

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ , 

1

0
1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  and 

2

1
1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

A neural network may be trained for each entry in the classification vector. A 

neural network used to classify all test patterns for the first entry in the vector correctly, 

requires to assign test patterns from classes that have the value of 0 to a temporary class 

Ct0, otherwise to class Ct1. Those temporary classes will be used during the training 

process of the neural network.  Figure 6.1a shows the set of test patterns, and their 
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corresponding binary vector. Figure 6.1b shows how all test patterns have been regrouped 

into temporary classes. A multilayer morphological perceptron is built in such a way that 

it will be able to separate the patterns in the new classes Ct0 and Ct1. The output of that 

network is assigned to the first entry in the binary vector. Figure 6.1c shows that the test 

patterns must be regrouped in order to build the neural network for the second entry in 

the binary vector. 
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Figure 6.1 Distribution of patterns into temporary groups used during the training process. 

6.3 DIRECT ENCODING LEARNING ALGORITHM FOR MULTILAYER 
MORPHOLOGICAL PERCEPTRONS 

The proposed algorithm identifies a set of connection weights, and neuron 

properties of a two layers feed forward morphological perceptron with only one output. 

Genetic algorithms are used to search for the connections weights, pre-synaptic 

and post-synaptic response values, and neuron operations given a neural network 

architecture defined before the learning process. The neural network architecture consists 

of one neuron or two layers feed-forward neural network with only one output node. All 

the morphological neurons in the neural network use the hard limit transfer function 

previously defined in Equation 3.2. In addition, the number of neurons and neuron 

distribution must be known before the training process take place. All the neurons are 

fully connected, which means that all the neurons in the first layer receive as inputs all 
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the connections from the inputs layer, and all the neurons in the first layer connect to the 

neuron in the second layer. 

6.3.1 Organism Representation 
 

The phenotype is directly encoded into the genotype, which means that all the 

genetic information related to the network architecture, connection weights, and neuron 

information is represented in the genotype. The multilayer morphological perceptron is 

encoded into the genotype using a tree data structure, where each node in the tree 

represents a neuron, and each branch represents a connection between two neurons. The 

terminal nodes of the tree structure represent the input layer of the network. The tree 

structure representation was selected because it perfectly matches the topology of the 

multilayer morphological perceptron. Figure 6.2 shows an example of how a multilayer 

morphological perceptron may be encoded into a tree data structure. 

x1 x2Inputs

Output

a 
x1 x2 b 

Figure 6.2 Tree based encoding. (a) Morphological neural network, (b) the corresponding representation in 
a tree structure. 

 
Each node contains special registers that maintains a list of the inputs for the 

node, in addition to connection weights, synaptic values for each connection, and neuron 
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operation (maximum or minimum). Since the same transfer function is used for all the 

neurons in the neural network, it is not necessary to encode it into the genotype. 

6.3.1.1 Selection 

Rank selection is used to select the group of individual that will become parents 

for the next generation. A rank selection rank each individual and a fitness value is 

assigned according to the rank R it receives. The worst individual receives the value of 1, 

the second worst receives the value of 2 up to the best individual that receives the value 

of N (the number of individuals in the population). The probability of an individual i to 

be selected is shown in Equation 6.1. 

 ( )( )
1

2

RP i
N N

=
+

 (6.1) 

6.3.1.2 Recombination 

Offspring are produced when the genetic information from two parents is 

combined by genetic operators such as crossover. The crossover selects two parents 

randomly, as shown in Figure 6.3, then a node on each parent is randomly selected and 

all the information about the node is exchanged between the parents. The crossover point 

may be the root node (the output neuron), or a terminal node of the tree, but only nodes 

from the same level in both parents can be exchanged. 

Arithmetic crossover is used to combine all the information between two nodes. 

Arithmetic crossover selects a weight at random and creates children from paternts 

weighted averages. It can be used to combine the floating point values of the connection 
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weights, as well as the integer values used to represent the pre-synaptic and post-synaptic 

response and the neuron operation.  

This network representation using a tree structure format allows the algorithm to 

perform operations such as crossover replacing or switching whole neurons between 

parent networks. 

O1

O2 O3 O4

x1 x2

P1

P2 P3 P4

x1 x2

Parent 1 Parent 2

a 

O1

O2 O3 P’4

x1 x2

P1

P2 P3 O’4

x1 x2

Offspring 1 Offspring 2

b 
Figure 6.3 Crossover. (a) Initial parents. (b) New individuals formed using syntactically constrained 

crossover 

6.3.1.3 Mutation 

Due to the nonlinear nature of the fitness function, adaptive mutation is used in 

this implementation. The mutation is applied in two different ways. In the first case, a 

node is selected randomly, and then some of the information in the registers for that node 

is changed according to specific probabilities. The weights are adjusted by adding or 

subtracting random values in a predefined range. 

On the other hand, as the fitness of the best organism reaches a threshold, the 

mutation probabilities of most of the MLMP parameters are reduced to minimal values 

(close to 0%), with the exception of the connection weights mutation probability, which 
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remains unchanged. In addition, the range in which the connection weights can change is 

reduced. This approach reduces the chance of an organism to mutate as the problem starts 

to converge. This approach is very important in this kind problem due the nonlinearity 

and discontinuity of the fitness function and the neural computational model.  

6.3.1.4 Evaluation Function 

The fitness function for this application has different components, such as the 

Mean Square Error of the classified patterns and other parameters related to the network 

architecture. The ideal scenario would be to get the same number of decision boundaries 

and number of neurons to be the same. This means optimum performances is obtained 

avoiding possible decision boundaries overlapping. 

The fitness function for an organism that decodes into a single layer 

morphological perceptron is evaluated according to the performance in classification of 

the data set used during training, based on the Mean Square Error (MSE) shown in 

Equation 6.2.  

 

2

1

1 ( )
N

i i
i

MSE y d
N =

⎡ ⎤= ⋅ −⎢ ⎥
⎣ ⎦
∑

  (6.2) 

where N is the total number of patterns used during the training, yi is the class where 

pattern xi belongs and di is the class assigned by the neural network. 

For a two layers morphological perceptron, the organism is evaluated according to 

its classification performance in addition to a penalty assigned to the number of 

redundant perceptrons in the network. A perceptron p1, shown in Figure 6.4a, is 

considered to be redundant in relation to perceptron p2, shown in Figure 6.4b, if the 
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region defined by the perceptron p1 in the nℜ space is equal to the region produced by a 

perceptron in the second layer which receives the outputs from perceptrons p1 and p2 as 

inputs, as shown in Figure 6.4c. The resulting fitness function used to evaluate the 

individuals is shown in Equation 6.3. 

 1 2 2( ) (1 ) / tf o k MSE k p C= ⋅ − + ⋅  (6.3) 

where weighting factors
1

1
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layer, p is the number of non redundant perceptrons in the first layer, and  
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that represents total possible neuron-boundary combinations. 
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Figure 6.4 Redundant perceptrons. Region produced by two perceptrons (a) and (b), are combined into a 
perceptron in the second layer (c). The resulting region does not differ from region defined by perceptron 

(b). 

6.4 INDIRECT ENCODING EVOLUTIONARY LEARNING ALGORITHM FOR 
THE MULTILAYER MORPHOLOGICAL PERCEPTRON 

The proposed algorithm identifies the number of necessary neurons needed to 

perform the classification, connection weights, and defines architecture for multilayer 

morphological perceptrons used for pattern classification. 
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Figure 6.5 shows a 2ℜ  space where patterns are grouped into clusters. The 

boundaries for these clusters can be approximated by succession of rectangular regions, 

where the corners of each of these regions can be seen as the decision boundaries of a 

morphological perceptron. The same concept can be extended to a higher domain space.  

Class 0

Class 1

 
Figure 6.5 The region of the class C0 is approximated by a succession of rectangles. 

The problem is restated in such a way that the solution for the new problem 

results in a simpler representation. Instead of searching for the optimal architecture, set of 

connection weights, connection distribution, and neuron properties, the algorithm 

searches for those hypercubes that enclose all the patterns in class Ct0, without including 

patterns in class Ct1. Once a solution is found, the corners of the regions are used as 

decision boundaries, and a MLMP is built using the indirectly encoded information. 

The genotype maintains the necessary information to rebuild a MLMP based on a 

set of rules. No information about the neuron inter-connections, connection weights, 

neuron parameters, and neuron distribution in layers is directly represented in the 

chromosome. All genotypes map to valid phenotypes. The genotype consists of an array 

of integer values. Each element represents a pattern from the class C0. In addition, the 

genotype maintains information that identifies how the patterns are grouped.  
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It is important to describe the neural network architecture defined by the 

algorithm. Figure 6.6 shows an example of how the neural network architecture may 

look. The following rules are used to build MLMP that defines hypercubes enclosing 

patterns:  

1. Resulting MLMP consists of three layers. Two layers MLMP are built when one 

hypercube enclose all the patterns. 

2. All the neurons in the first layer use the maximum operator. 

3. Two neurons in the first layer who that forward their output to a neuron in a second 

layer define a hypercube. The value of +1 is assigned to the all the pre-synaptic value 

for the neuron that defines the upper-right boundary and -1 is assigned to all the pre-

synaptic values for the neuron that defines the lower-left boundary. Both neurons in 

the first layer use the maximum operator. 

4. All the neurons in the second layer use the maximum operator, assign 0 to all the 

connection weights, and +1 to all the pre-synaptic values. 

5. The last layer consists of one morphological neuron, which uses the minimum 

operator. The neuron receives variable number of inputs depending on the number of 

hypercubes defined by the genotype. All the connection weights are assigned to 0, 

and the pre-synaptic values are assigned to +1. 

6. All the post-synaptic values for all the neurons in the MLMP are set to +1.  

6.4.1 Encoding of the Genotype 
The way the problem is encoded into the chromosome affects the performance of 

the algorithm. Differing from other approaches, in this algorithm nothing regarding to the 

connection weights or the relationship between the neurons, or the neural network 
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architecture is encoded into the chromosome. The chromosome keeps only enough 

information to identify each of the patterns from the class Ct0. Inside of the chromosome 

or genotype, there are groups or set of patterns, each of them represents clusters of 

patterns. Each set must contain at least one pattern, and no empty groups are allowed. 
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Figure 6.6 Shows how the morphological neural network architecture may look. 

Example in Figure 6.7 shows class Ct0 which contains 10 patterns in a 2ℜ  space, 

identified as P# enclosed by a square, where # is an integer value used to identify each 

pattern. The patterns that do not belong to the class Ct0 are represented by circles. It is 

important to mention that only those patterns that belong to class Ct0 are encoded into the 

chromosome, using an integer value that corresponds to each pattern. When the initial 

population is generated, the patterns are randomly distributed into the chromosome in no 

particular order and the groups are randomly generated. Figure 6.8 shows how patterns 
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may be encoded in the chromosome, in addition to the graphical representation of the 

hypercubes that enclose the pattern groups represented in the chromosome 

The elements from each group are used to define the limits of the hypercube 

which are used as the decision boundaries for the MLMP. A hypercube that includes all 

the elements for that particular group is defined for each group in the chromosome. The 

boundaries are used as the set of connections weights for neurons in the first layer. 

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Class Ct0

Class Ct1

a 

P10 P3 P1 P8 P9 P4 P2 P6 P7P5
 b 

Figure 6.7 An example of how the patterns may be encoded into the chromosome of a randomly generated 
organism 

6.4.1.1 Recombination 

The crossover used in the implementation of the algorithm selects a set of n 

elements randomly distributed from different groups defined in the chromosome of the 

first parent. The selected elements are identified and their positions are exchanged in the 

first chromosome, according to order they appear in the second parent. The process is 

repeated again, but this time the exchange of elements is done in the second parent based 

on the order they appear in the first parent.  

Figure 6.8a shows the chromosome of parent 1, with 10 patterns coded on it. 

Also, Figure 6.8b shows the hypercube for each group defined in the chromosome. Figure 
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6.9a shows the chromosome of the second parent as it will be used for the crossover 

process.  
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Figure 6.8 (a) Chromosome of first parent and (b) the corresponding set of hypercubes. 
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Figure 6.9 (a) Second parent used for the crossover and (b) the corresponding set of hypercubes. 
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P10 P3 P1 P8 P5 P4 P2 P6 P7P9
a 

P10 P3 P1 P8 P9 P4 P2 P6 P7P5
b 

Figure 6.10 (a) First parent before the crossover and (b) the resulting offspring. 

Assume P9 and P5 are the selected elements from the first parent, as shown in 

Figure 6.10a. Now these elements are identified in the second parent and the order is 

exchanged according the way they appear in the second parent. The final result after the 

elements are exchanged is shown in Figure 6.10b and the resulting set of hypercubes is 

shown in Figure 6.11. To obtain the second offspring the process is repeated, but this 

time the selection and exchange of the elements is done in the second parent according to 

the order they appear in the first parent. 
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Figure 6.11 Hypercubes for the resulting offspring. 

6.4.1.2 Mutation 

Mutation operation in the proposed algorithm consists of two possible operations: 

fusion of two groups or division of a group into two new groups. In fusion of two groups, 

two groups are randomly selected, and then all the elements of these two groups are 

combined to create a new group. The other groups in the chromosome remain untouched. 
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Figure 6.12a shows an example of how the groups are defined before mutation and 

Figure 6.12b shows the resulting chromosome after mutation. In this type of mutation 

elements from different hypercubes are regrouped into one hypercube. This mutation 

operation promotes the combination of elements that may be grouped together into a 

single hypercube. Figure 6.13 shows the graphical effect of the mutation. 

P4 P2 P5 P7 P10P8P1P9 P3 P6
a 

P4 P2 P5 P7 P10P8P1P9 P3 P6
b 

Figure 6.12 (a) Chromosome before mutation and (b) after mutation using group division. 

Another possible mutation operation may be the redistribution of the elements in a 

group into two different groups. In this case, one group must be selected and all the 

elements of the group are distributed randomly between the two new groups. Figure 

6.14a shows an example of a chromosome before mutation and Figure 6.14b shows the 

resulting chromosome after mutation, where elements of a group have been distributed 

into two different groups. This mutation operation promotes the separation of elements 

that should not be in the same group. Figure 6.15 shows mutation effect changes the 

definition of the hypercubes. 

6.4.1.3 Decoding the Genotype 

The groups encoded in the chromosome define hypercubes, whose boundaries are 

used as the connection weights for the neurons in the first layer of the MLMP. Each 

group in the chromosome defines a hypercube large enough to enclose all the patterns 

assigned to that particular group. Figure 6.16a shows an example of a chromosome and 
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Figure 6.16b shows the corresponding maximum and minimum values for the hypercube 

that enclose all the patterns defined in the first group in the chromosome. 
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Figure 6.13 (a) The effect in the regions defined by the groups in the chromosome before mutation and (b) 

after mutation. 
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Figure 6.14 (a) Chromosome before mutation and (b) after mutation by combining two groups. 
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Figure 6.15 (a) Graphical effect of mutation in the regions defined by the groups in the chromosome 

before mutation and (b) after mutation. 

The maximum and minimum values for each dimension of the hypercube are used 

as the connection weights for neurons in the first layer. The maximum values are 

assigned to the neuron with all the pre-synaptic values as +1, as shown in Figure 6.17a, 

and the minimum values are assigned to the neuron with all the pre-synaptic values as -1, 

as shown in Figure 6.17b. These two neurons are connected to another neuron in the 

second layer, as shown in Figure 6.18. As can be seen in Figure 6.18, three neurons are 

needed to define a single hypercube.  
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Figure 6.16 (a) An organism encoded into a chromosome and (b) the corresponding hypercube for the first 

group defined in the chromosome. 
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Figure 6.17 (a) Upper-right corner of the hypercube and (b) lower-left corner of the hypercube. 
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Figure 6.18 Neural network for a single hypercube. 
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The boundaries of the second hypercube are used to build another branch that will 

be added to the final neural network. Figure 6.19 shows the region defined by the second 

hypercube and Figure 6.20 shows the neural network that defines that particular 

hypercube. As can be seen in Figure 6.21, these two branches are combined as the inputs 

to a neuron in the third layer.  
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Figure 6.19 Region defined by the second group in the chromosome. 
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Figure 6.20 Resulting neural network for the second hypercube. 
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Figure 6.21 Resulting neural network for the chromosome defined in Figure 6.16a. 

6.4.1.4 Evaluation Function 

Each organism must be evaluated according to the features it has and only those 

organisms that have the desired features will survive and mate other organisms in order to 

transmit their own characteristics to the future generations. 

One of the most important factors to take in consideration must be the number of 

misclassified patterns. Another important objective is the reduction of network 

complexity by using the minimum number of neurons needed to classify all the patterns 

correctly. This can be achieved by determining the minimum number of hypercubes 

necessary to enclose all test patterns. When a hypercube is added or removed from the 

chromosome, the architecture of the neural network changes. Changes are limited to the 

architectural constrains previously established. New neurons are added or removed from 
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the first and second layer of the network as a hypercube is added or removed, 

respectively. 

The individual is evaluated according to the fitness function defined in Equation 

6.4: 

 ( )( )2( ) 1/ 1f o k l= + ⋅  (6.4) 

where k is the number of patterns incorrectly classified. The value of l represents the 

number of neuron groups defined in the chromosome. Each neuron group consists of 

three neurons as shown in Figure 6.20. The fitness function minimizes the number of 

misclassified patterns as well as the number of hypercubes or neurons used to solve the 

problem. 

6.4.1.5 Selection 

A selection process is used to allow organisms who have higher fitness to transmit 

their features with higher probability than those who have a lower fitness. In order to 

consider that an organism is able to transmit their characteristics to future generations, the 

best 50% of the population that meets the requirements is selected. This accelerates the 

convergence reducing those members of the population that are not desirable. Wheel 

roulette is used to select the group of organism that will become parents for the next 

generation. The probability of an organism to be selected is equal to the fitness of the 

organism divided by the total fitness of all the organisms. 
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6.5 TRAINING OF THE MULTILAYER MORPHOLOGICAL PERCEPTRON 
USING CARTESIAN GENETIC PROGRAMMING 

6.5.1 Encoding of the Genotype 
The encoding used for this algorithm is based on Cartesian Genetic Programming. 

Some adjustments have been done to adapt CGP to train morphological networks. The 

most remarkable difference resides on the function used by the nodes. The proposed 

algorithm uses the computational model of the morphological neuron described in 

Equation 2.1 as the basic function for the nodes, contrary to the simple functions used on 

traditional CPG. The computational model operates over the inputs of the node as if they 

were the inputs of the neuron, which includes a set of connection weights, pre-synaptic 

response, and neuron operation.  

The number of nodes may vary from layer to layer, as shown in Figure 6.22. 

Nodes are restricted to pass their outputs exclusively to nodes in the next layer; therefore 

a layer can not be skipped. The third layer contains only one neuron and it is used as the 

output node. All the nodes in the first layer are connected to all the inputs nodes, to 

preserve all the signals from the patterns. These connections are fixed in the 

chromosome, which means these values should not be changed by the reproduction 

operators. In traditional CGP, all the nodes has the same number of inputs, but in this 

approach this number may vary from layer to layer. Each node must have at least two 

inputs, except the last node. The last node is a special node that can accept variable 

number of inputs. It maintains a record of connected nodes and disconnected nodes in 

addition to the node operation. The inputs received by this node may vary from 0 to the 

total amount of nodes in the preceding layer.  
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Node operator in traditional Cartesian Genetic Programming can be used by all 

the nodes in the grid. Differing from traditional Cartesian Genetic Programming, each 

layer maintains a list of operators available for that particular layer. This means that 

nodes from the first layer are not allowed to use node operations defined for the first 

layer. As shown in Figure 6.22, fn,m denotes the function n defined for the layer m.  
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Figure 6.22 Graph of nodes used in the algorithm 
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Figure 6.23 Representation of the organism as an integer array. 

Each layer of nodes uses a particular set of operators (or functions) defined for 

each particular layer. The operations used by the algorithm maintain all the information 

needed to reconstruct the neuron, including neuron operation, pre-synaptic response, and 

connection weights. The set of operations defined for the first layer consist of all possible 

combinations of neuron operations (maximum and minimum), pre-synaptic response for 

each connection (+1, -1), and each test pattern in the class C0, used for the training. The 

negative value of each dimension in the pattern is used as the weight for the neuron’s 
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connections. In the second layer, only two operations are used. In both operations all the 

pre-synaptic values are set to be +1 and all the connection weights are set to be 0. The 

difference in each neuron consist in the operation, one of the operations uses the 

maximum operator while the other one uses the minimum operator. In the last layer, there 

is only one operation available for the node. The operation consists of minimum operator, 

all the pre-synaptic values are set to be +1, and connection weights are set to be 0. 

The chromosome consists of an array of integer, which describes the information 

contained in a node, as shown in Figure 6.23. The node consists of a set of inputs and an 

operation. All the inputs and the operations are represented by integer values. The last 

node consists of an input binary array of integers and the node function. Each binary 

entry identifies which node from the second layer connects to the last node.  

In order to reconstruct the morphological perceptron, the chromosome is analyzed 

starting from the node in the right section of the chromosome. The last node maintains a 

binary array that identifies which nodes from the previous layer forward their outputs as 

inputs to the last neuron. The other neurons are added to the network in the same way as 

in traditional CGP. 
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Figure 6.24 Resulting Morphological Neural Network after decoding of the chromosome with unexpressed 

neurons. 

6.5.2 Genetic Operators 
The recombination of the genetic information is done using multipoint crossover. 

The crossover consists of the selection of several nodes from one parent, each node 

contains the inputs and function associated to that specific node. The first offspring, is 

obtained exchanging the information contained on each node in the first parent with the 

information from a node at the same position from the second parent.  

Multipoint mutation is used to mutate the chromosome but a specialized mutation 

rate is used in different regions of the chromosome to promote more changes on 

particular areas. Multipoint mutation consists of selection and modification of several 

points in the chromosome. Each point is modified according to the functional constrains 

or constrains imposed by the levels. The chromosome is divided into three regions: node 

functions, inputs for the nodes in the second layer, and inputs for the node in the third 

layer. Three different mutation rates are assigned to each region, to produce independent 

changes on each region. The mutation rate used for the node function is larger than the 

mutation rate used on the other regions of the chromosome, promoting faster changes on 
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connection weights, pre-synaptic response, and neuron operation over network 

architecture. All these parameters are part of the function encoded for these nodes. 

6.5.3 Evaluation Function 
Only those individuals that have the desired features will survive and mate other 

individuals in order to transmit their own characteristics to future generations. An 

individual is evaluated according to amount of the patterns classified correctly during the 

training process. In addition to the classification accuracy of the neural network, the 

inputs received by the last neuron is analyzed. It may be possible that these neurons 

assigns all the patterns in the search space to one particular class, either class C0 or class 

C1. If this occurs, the organism is penalized by the number of neuron in the second layer 

that produces these results. The final fitness function is shown in Equation 6.5. 

 ( ) c m nf o
C M N

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (6.5) 

where c is the number of correctly classified patterns, C is the total number of patterns 

used in the training process, m is the number of neurons without penalty, M is the total 

number of available nodes in the second layer, n is the number of disconnected nodes in 

the last layer, and N is the maximum number of nodes that can be connected to neuron in 

the last layer. 

It may be possible that the node in the last layer does not receive any input from 

the previous layer, if this is the case the individual is discarded by assigning a fitness 

value of 0. If only one node connects to the last neuron, then this node is used as the 

output node instead of the node in the last layer, resulting in a two layer morphological 

perceptron. 
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6.6 EXAMPLE 

Lets consider the XOR problem (Sussner 1998) to illustrate an example of how to 

use the training algorithm. The XOR is a binary operator on {0,1}2 such that for all 

2( , ) {0,1}a b ∈ :  

 
0 if 

 XOR 
1 else     

a b
a b

=⎧
= ⎨
⎩

 (6.9) 

Two different classes are defined as C0= {(0,0), (1,1)}, and C1= {(1,0), (0,1)} as 

shown in Figure 6.25. 

1

1 Class 0
Class 1

 
Figure 6.25 Distribution of patterns for the XOR problem. 

 
The function for the nodes in the first layer are constructed from all possible 

combinations of the patterns defined in class C0, and all the possible combinations of the 

values for the parameters in Equation 6.6:  

 ( )
1

n

i i ii
f O r x w

=

⎛ ⎞+⎜ ⎟
⎝ ⎠

  (6.6) 

where O denotes the neuron operator maximum (or minimum), and the other values are 

the traditional neuron parameters. 

Only two functions are defined for the hidden layers, one of these functions uses 

the maximum operator and the other one uses the minimum operator. The pre-synaptic 

values are set to +1 and all the connection weights are set to 0. Usually the function in the 

last layer consists of the minimum operator, because the patterns enclosed by the decision 
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boundary belong to the class C0. In the same way, the pre-synaptic values for this neuron 

are set to 0 and the connection weights are set to 0. Since this node has variable number 

of inputs, it is important to remember that these values are assigned to all the active 

connections.  

An initial population is randomly generated to start the algorithm. The 

chromosome consists of the nodes defined in Figure 6.26, appended one after the other in 

a sequence. Each node maintains a list of values for inputs and function. Inputs and 

functions for each node are defined as shown in Table 6.1.  
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Figure 6.26 Graph of nodes used to represent the organism. 

Table 6.1a shows the set of functions available for the nodes in the first layer. 

Table 6.1b contains the set of functions available for the nodes in the second layer. These 

values vary in a specific range, determined by the position of the node in the graph, and 

chromosome representation constrains defined in section 6.5.1 Representation. Table 6.2 

shows how the graph in Figure 6.26 may be encoded in the chromosome, in addition to 

the lower and upper bounds for each entry in the chromosome. A possible neural network 

produced by the learning algorithm is shown in Figure 6.27, and its corresponding 

decision boundary is shown in Figure 6.28. 
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 O r1 r2 w1 w2   O r1 r2 w1 w2 
f1,1 ∧   +1 +1 0 0  f1,2 ∧   +1 +1 0 0 
f2,1 ∨  +1 -1 0 0  f2,2 ∨  +1 +1 0 0 
f3,1 ∧   -1 +1 0 0       b 
f4,1 ∨  -1 -1 0 0        
f5,1 ∧   +1 +1 0 0        
f6,1 ∨  +1 -1 0 0        
f7,1 ∧   -1 +1 0 0        
f8,1 ∨  -1 -1 0 0        
f9,1 ∧   +1 +1 1 1        
f10,1 ∨  +1 -1 1 1        
f11,1 ∧   -1 +1 1 1        
f12,1 ∨  -1 -1 1 1        
f13,1 ∧   +1 +1 1 1        
f14,1 ∨  +1 -1 1 1        
f15,1 ∧   -1 +1 1 1        
f16,1 ∨  -1 -1 1 1 a       

Table 6.1 (a) Set of functions available for nodes in the first layer, and (b) functions available for nodes in 
the second layer  

genotype 1 2 1 1 2 9 3 3 2 4 3 1 1 1 1
lower  bound 1 2 1 1 2 1 3 3 1 3 3 1 0 0 1
upper  bound 1 2 16 1 2 16 4 4 2 4 4 2 1 1 1

Table 6.2 Example of how the organism is encoded, and the lower and upper bounds for each entry in the 
chromosome. 
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Figure 6.27 Resulting neural network defined for the XOR problem using Cartesian Genetic Programming 

method. 
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Figure 6.28 Corresponding decision boundary defined by the neural network shown in Figure 6.27 
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CHAPTER 7 

7 MATLAB TOOLBOX FOR MORPHOLOGICAL 
PERCEPTRON 

7.1 INTRODUCTION 

This chapter describes a set of methods implemented on Matlab as a toolbox to 

create, process, and train multilayer morphological perceptrons. The training methods 

were implemented using Matlab 6.The chapter describes the configuration parameters 

used by each training algorithm in addition to a sample code in Matlab. 

7.2 TOOLBOX 

7.2.1 Common Configuration Parameters 
Each training method requires a set of specific configuration parameters. The 

configuration parameters control the evolutionary process, including initial population 

size, termination conditions, genetic operators, and evaluation function. These parameters 

have been added to provide a flexible control over the evolutionary process. Different 

genetic operators, as well as evaluation functions may be used, producing different 

results. The source code for all the toolbox can be found on Appendix A does not has to 

be changed. Table 7.1 presents the common configuration parameters used by all the 

training methods.  



 

 

66

 

Parameter Type Description Example 
param.evalFn m-file Specifies the name of 

the evaluation function 
used. 

['CGPEval3'] 

param.evalParams vector of 
double 

Specifies any 
parameter passed to 
the evaluation function 

[] 

param.mutationFn m-file Specifies the name of 
the mutation function. 

['CGPMultiPointMutation2'] 

param.mutationParams vector of 
double 

Specifies any 
arguments need by the 
mutation function. 

[0.08 0.08] 

param.popSize integer Size of the population 
used during the 
evolution 

20 

param.selectFn m-file Specifies the name of 
the selection function, 
used to select the 
survivals from a 
generation to the next 
one. 

['roulette2'] 

param.selectParams vector of 
double 

Specifies any 
parameter passed to 
the selection function. 

[0.33] 

param.termParams integer Specifies the 
termination criteria: 
[max. number of 
generations, final 
fitness] 

[8000,1.0] 

param.xOverFn m-file Specifies the name of 
the crossover function. 

['CGPMultipointXover']; 

param.xOverParams vector of 
double 

Specifies any 
necessary parameter 
passed to the crossover 
function. 

[0.95 0.80] 

Table 7.1 Configuration parameters used by all the training methods 

7.2.2 Direct Encoding Toolbox 

7.2.2.1 Configuration Parameters 

In addition to the parameters presented on Table 7.1, the Direct Encoding method 

requires configuration parameters described on Table 7.2. Direct Encoding method 

requires the number of neurons to be specified prior to the training of the neural network, 
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each position in the vector specified by param.layer represents the number of neuron for 

each layer. 

Parameter Type Description Example 
param.layers vector of integers Specifies the number of neurons for each layer. [2 1] 
param.opts vector of double  [1e-6 1 1] 

Table 7.2 Configuration parameters used by Direct Encoding Method 

7.2.2.2 Training Method 

[net, traceInfo] = DirectTrainMNN(patterns, classes, bounds, targets, config); 

Description: Trains a multilayer morphological perceptron using the Direct Encoding 

method. The method receives as arguments the patterns used during the training process. 

Patterns are passed to the method as an MxN matrix, which contains N patterns of M 

dimensions. All the patterns from all the classes are appended one after another in the 

argument patterns, starting by patterns from class C0, then patterns from class C1 are 

appended, and finally patterns from class CT, where T is the total number of classes to be 

trained. The parameter classes define a column vector containing the number of patterns 

defined for each class in the patterns matrix. Bounds is a 2xM matrix in which each row 

vector represents the lower and upper bounds for each dimension. The variable targets 

contains a PxQ matrix of binary elements, where each row represents the binary vector 

associated to a particular class. The parameter config is a data structure that contains the 

configuration parameters shown in Table 7.1 and Table 7.2. The method returns an object 

net that represents a MNN. 
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Parameter Type Description Example 

patterns matrix of 
integers 

Specifies the all the patterns 
used during the training 
process. 

class0 = [0 0; 1 1]; 
class1 = [0 1; 1 0]; 
patterns = [class0; 
class1]; 

classes vector of 
integers 

Specifies the amount of 
patterns defined on each class 

[2; 2] 
 

targets matrix of 
integers 

Each row represents the binary 
vector associated to a 
particular class 

[0 ; 1] 
 

params struct Configuration parameters for 
the algorithm. 

as shown in Table 7.1 and 
Table 7.2 

net MNN MNN trained for the patterns  
traceInfo Matrix of 

double 
Performance of the 
evolution. Four column 
matrix representing: 
generation number, fitness of 
the best individual, average 
fitness of the generation, and 
standard deviation 

 

Table 7.3 Parameters passed to the Direct Encoding training method. 

7.2.2.3 Sample Code 

The code shown in Figure 7.1  defines patterns for two classes C0={(0,0) ,(1,1)}, 

and C1={(0,1), (1,0)}, in a two-dimensional search space for the training algorithm and 

returns a morphological perceptron which is able to classify these patterns.  

% param is previously defined
class0 = [0 0; 1 1];
class1 = [0 1; 1 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

% Compute the bounds for each dimension
minVals = min(patterns);
bound = [(max(patterns)-minVals); minVals];

% Expand the boundaries by %25 
bound = bound +[ boundaries (1,:)*.125; - bound (1,:)*0.125]
[net,traceInfo] = DirectTrainMNN(patterns, classes, bound, targets, config);  
Figure 7.1 Example code of how Direct Encoding Method can be used to train MNN 
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7.2.3 Indirect Encoding Toolbox 

7.2.3.1 Configuration Parameters 

Configuration parameters used by the Indirect Encoding method are the 

configurations parameters shown in Table 7.1. No additional configuration parameters 

are needed. 

7.2.3.2 Training Function 

[net, traceInfo] = IndirectTrainMNN(patterns, classes, targets, params) 

Description: Trains a multilayer morphological perceptron using the Indirect Encoding 

method. The function receives as arguments the patterns used during the training process. 

Patterns are passed to the function as an MxN matrix, which contains N patterns of M 

dimensions. All patterns from all the classes are appended one after another in the 

argument patterns, starting by patterns from class C0, then patterns from class C1 are 

appended, finally patterns from class CT, where T is the total number of classes to be 

trained. The parameter classes define a column vector containing the number of patterns 

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix 

of binary elements, where each row represents the binary vector associated to a particular 

class. The parameter config is a data structure that contains the configuration parameters 

used for the training algorithm. The method returns an object net that represents a MNN. 
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Parameter Type Description Example 
patterns Matrix of 

integers 
Specifies the all the patterns 
used during the training 
process. 

class0 = [0 1; 1 1]; 
class1 = [1 0; 0 0]; 
patterns = [class0; 
class1]; 

class_distribution Vector of 
integers 

Specifies the amount of patterns 
defined on each class 

[2; 2] 
 

targets Matrix of 
integers 

Each row represents the binary 
vector associated to a particular 
class 

[0 ; 1] 
 

params  Configuration parameters for 
the algorithm. 

As shown in Table 7.1 

net MNN MNN trained for the patterns  
traceInfo Matrix of 

double 
Performance of the 
evolution. Four column 
matrix representing: 
generation number, fitness of 
the best individual, average 
fitness of the generation, and 
standard deviation 

 

Table 7.4 Parameters passed to the CGP training method 

7.2.3.3 Sample Code 

The code shown in Figure 7.2  defines patterns for two classes C0={(0,0) ,(1,1)}, 

and C1={(0,1), (1,0)}, is a 2-dimensinal search space for the training algorithm and 

returns a morphological perceptron which is able to classify these patterns.  

% params  is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo]=IndirectTrainMNN(patterns,classes, targets, params);
 

Figure 7.2 Example code of how Indirect Encoding Method can be used to train MNN 
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7.2.4 Cartesian Genetic Programming Toolbox 

7.2.4.1 Configuration Parameters 

Configuration parameters used by the training algorithms include the 

configuration parameters shown in Table 7.1 in addition to the configuration parameters 

shown in Table 7.5. Configuration parameters from Table 7.5 define some network 

properties such as the distribution of nodes, and number of inputs received by the neurons 

for each layer. 

Configuration 
parameter 

Type Description Example 

param.connections vector of 
integers 

Specifies the number of connections 
used by the nodes on each layer.  

[20 20 1] 

param.layers vector of 
integers 

Specifies the maximum number of nodes 
defined for each layer. 

[4 2 20] 

Table 7.5 Additional configuration parameters used by Cartesian Genetic Programming. 

7.2.4.2 Training Function 

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params) 

Description: Trains a multilayer morphological perceptron based on Cartesian genetic 

programming. The function receives as arguments the patterns used during the training 

process. Patterns are passed to the function as an MxN matrix, which contains N patterns 

of M dimensions. All the patterns from all the classes are appended one after the other in 

the argument patterns, starting by patterns from class C0, then patterns from class C1 are 

appended, finally patterns from class CT, where T is the total number of classes to be 

trained. The parameter classes define a column vector containing the number of patterns 

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix 

of binary elements, where each row represents the binary vector associated to a particular 
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class. The parameter config is a data structure that contains the configuration parameters 

used for the training algorithm. The method returns an object net that represents a MNN, 

and a matrix traceInfo which consists of three columns. The first column identify the 

generation number, the second column corresponds to the fitness value assigned to the 

best organism for the corresponding generation, the third column corresponds to the 

average value for the fitness of the population, the value forth column corresponds to the 

standard deviation. 

Parameter Type Description Example 
patterns Matrix of 

integers 
Specifies the all the patterns 
used during the training 
process. 

class0 = [0 1; 1 1]; 
class1 = [1 0; 0 0]; 
patterns = [class0;class1]; 

classes Vector of 
integers 

Specifies the amount of 
patterns defined on each 
class 

[2; 2] 
 

targets Matrix of 
integers 

Each row represents the 
binary vector associated to a 
particular class 

[0 ; 1] 
 

params  Configuration parameters for 
the algorithm. 

As shown in Table 7.1 
and Table 7.5 

net MNN MNN trained for the patterns  
traceInfo Matrix of 

double 
Performance of the 
evolution. Four column 
matrix representing: 
generation number, fitness of 
the best individual, average 
fitness of the generation, and 
standard deviation 

 

Table 7.6 Parameters passed to the CGP training method 

7.2.4.3 Sample Code 

The code shown in Figure 7.3  defines patterns for two classes C0={(0,0) ,(1,1)},  

and C1={(0,1), (1,0)}, the search space for the training algorithm, and returns a 

morphological perceptron which is able to classify the patterns.  
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% params  is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params);
 

Figure 7.3 Example code of how Indirect Encoding Method may be used to train MNN 

7.3 COMMON TOOLS 

This section describes a set of common tools used by all the training methods to 

manipulate and control morphological neural networks.  

7.3.1 Pattern Classification 
[class] = evalMorphologicalNet(net, patterns) 

Description: Classify the patterns defined by the argument patterns given a vector of 

MLMP denoted by the argument net. Each entry in the vector net represents a Multilayer 

Morphological Perceptron used to construct the classification vector. Multiple patterns 

may be classified simultaneously using a single function call as shown in Figure 7.4. In 

Figure 7.4, three 4 dimensional patterns are assigned to class
0
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. Each row from the 

class matrix denote the corresponding classification for each pattern defined by each row 

from the patterns argument. 
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class1 =

    5.1000    3.5000    1.4000    0.2000
    4.9000    3.0000    1.4000    0.2000
    4.7000    3.2000    1.3000    0.2000

>> evalMorphologicalNet(net,class1)

ans =

     0     1     1
     0     1     1
     0     1     1  

Figure 7.4 How to use Multilayer Morphological Perceptrons to classify multiple patterns. 

7.3.2 Plotting the Network 
plotNetwork2(net) 

Description: Display a graphical representation of the perceptrons denoted by the 

argument net in a 2-dimensinal space, as shown in Figure 7.5. 

.
-6 -4 -2 0 2 4 6-8
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plotNetwork2(net)

 
Figure 7.5 Graphical representation of Multilayer Morphological Perceptrons.Tthe morphological 

perceptrons are represented by two intersecting perperdicular dotted lines. 
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7.4 ANALYZING PROGRESS OF THE LEARNING PROCESS 

After the training of the neural network has been completed, information about 

the progress of the evolution is returned, in addition to an object which represents a 

multilayer morphological perceptron. The traceInfo is a matrix that contains 4 columns: 

generation, fitness of the best individual, mean fitness of the population for each 

generation, and standard deviation of the fitness for each generation. The traceInfo 

provides useful information about the evolutionary progress of the population.The 

information can be used to evaluate genetic operators, such as crossover, mutation, 

selection, and in order to select the best parameters for each genetic operator for a data 

set. Figure 7.6 shows the progress of the fitness as the number of generations increase. 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Generations

Mean minus one standard deviation

Mean plus one standard deviation

Mean of Population

Best Individual

 
Figure 7.6 Evolutionary progress of the population for Carterian Genetic Programming using the Sussner 

Data set  
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The graph shown in Figure 7.6 was produced by the Cartesian Genetic 

Programming method using Sussner Data set. It is important to point out that the fitness 

function used in the evolution tries to maximize the performance of the individuals, this 

means that an individual with higher fitness value is considered the best candidate 

solution for the problem. Since the fitness function maximizes the performance, the 

resulting graph of the mean fitness value of the population should increase or remain 

horizontal. The graph that describes the optimum behaviour of the evolution should look 

like a logarithmic curve, with an asymptote at 1.0. The graph of the mean fitness may 

oscilate, due to the diversity introduced by new mutated members, but in general the 

graph should increase all the time, otherwise there may be something wrong with the 

evolutionary operators. Possible explanations to this behavior may be high mutation 

rates, or inapropiate fitness function. High mutation rates may introduce too much 

diversity in the population, incrementing the oscilation range for the mean fitness value 

and prolonging the time required to convege into the optimum value. Another 

explanation to this behaviour may be that the fitness function is not able to differenciate 

correctly the performance of two individuals.  

Inspecting the standard deviation of the population fitness value is another way to 

determine if the mutation rates are too high. As the mutation rate increases the standard 

deviation of the fitness increases. The mean fitness value plus one standard deviation and 

the mean fitness values minus one standard deviation are shown in Figure 7.6. The effects 

produces by different mutation rates and crossover rates on the progress of the fitness 

value in terms of generations are shown in Figure 7.7. For example, Figure 7.7g shows 

how the fitness of the population varies over generations when the genetic operators are 
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using a mutation rate of 12% and a crossover rate of 80%. Figure 7.7 shows some of the 

most relevant graphs obtained by changing the crossover and mutation rates. 

It is important to observe that when the mutation rate is low, high crossover rate 

affects the number of generations needed to reach a fitness value of 0.8. When a mutation 

rate is fixed to 5%, using a crossover rate of 95%, the fitness reach to a value of 0.8 

before 50 generations. Using a crossover rate of 80%, it takes more than 100 generations 

to reach a value of 0.8. Using a crossover rate of 20%, it takes almost 200 generations to 

reach the value of 0.8. This effect is almost unnoticeable when the mutation rate is high, 

as for example 24%. 

Increasing the mutation rate also affects the time needed to reach a particular 

fitness value. As the mutation rate increases, the number of generations needed to reach a 

fitness value of 0.8 decrese. On the opposite side, a high mutation rate increases the time 

needed to reach the optimum fitness value of 1.0, therefore an optimum evolutionary 

curve may be produced by high crossover rates and low mutation rates as shown in 

Figure 7.7b. 

Another feature that can be observed from Figure 7.7, is that it may be possible to 

reach the optimum fitness value using the mutation operator exclusively.  
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Figure 7.7 Effects produced on the fitness of a population and the number of generations by different 

crossover and mutation rates. 
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CHAPTER 8 

8 PERFORMANCE ANALYSIS 

8.1 INTRODUCTION 

This chapter measures the performance of the evolutionary learning algorithms 

used for the Multilayer Morphological Perceptrons in terms of memorization and 

generalization of the trained neural network for different data sets presented by Sussner 

and Ritter, and other commonly used data sets such as the Iris Fisher Data and a Spiral 

data set.  

8.2 DATA SETS 

8.2.1 Sussner Data Set 
The Sussner Data set, shown in Figure 8.1, consists of 20 patterns equally divided 

among two classes, used as a benchmark for comparison of performance between the 

evolutionary learning algorithms presented in this thesis and the learning algorithms 

proposed by Sussner. 

1

2

3

4

5

6

7

Class C0

Class C1

3 4 5 6 7 8 9 10 11 12 13  

Figure 8.1 Data set used by Sussner (Sussner 1998) 
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8.2.2 Spiral Data Set 
The spiral data set is a two-class set of patterns, each set representing a spiral. The 

parametric equations for the spiral are: 

 
( ) ( )
( ) ( )

0

0

*cos *2 /

*sin *2 /

x theta theta theta pi

y theta theta theta pi

=

=
 (8.1) 

and 

 1 0

1 0

x x
y y

= −
= −

 (8.2) 

where theta=0*pi/16+pi/2, 1*pi/16+pi/2, 2*pi/16+pi/2…39*pi/16+pi/2. Half of the 

patterns were used to train the neural network and the other half were used to test the 

performance of the resulting neural network as shown in Figure 8.2 
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C0 Training
C1 Training

C0 Test
C1 Test

 
Figure 8.2 Spiral data set used during the training and performance of the resulting neural network. 
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8.2.3 Iris Fisher Data 
The Iris Fisher Data (IFD) is often used as a benchmark in the field of pattern 

recognition. It consists of 150 patterns equally divided among 3 classes. Each group 

corresponds to one species of Iris Flower: Iris Sectosa (class C0), Iris Versicolor (class 

C1), and Iris Verginica (class C2). Each class has 4 attributes, representing petal width, 

petal length, and sepal width and sepal length expressed in inches. Since the IFD contains 

more than two outputs classes, multiple MLMP had to be trained, one MLMP for each 

entry in the binary vector associated to each class,  C0=
0
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, C1=
1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, and C2=
0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

8.3 PERFORMANCE ANALYSIS 

Several tests were conducted using multidimensional data sets such as Iris Fisher 

Data, Spiral Data set, and the Sussner Data Set. All the learning algorithms were used to 

train a multilayer morphological perceptrons, then neural network memorization and 

generalization was measured in addition to the number of generations needed to reach 

convergence. Since Direct Encoding method can define the connection weights for a 

neural network with fixed architecture, and no more than two layer morphological 

perceptron can be trained using this method, the decision boundaries defined by the 

resulting neural network are very simple. Usually, the resulting neural network is able to 

separate patterns from two different classes if all the patterns from one of the classes are 

grouped into a single cluster. The Spiral Data set requires a complex decision boundary 

that the Direct Encoding method is not able to define, for these reason additional data sets 

were defined to measure the performance of the evolutionary traning algorithm. 
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8.3.1 Direct Encoding Method 
The network configuration consists of a two-layer morphological perceptron, with 

a variable number of neurons in the first layer, depending on the distributions of the 

patterns in the data set. Figure 8.3, Figure 8.4, and Figure 8.5 show how the patterns were 

distributed. 

Figure 8.3 shows an example of a 2ℜ  space and its corresponding decision 

boundaries defined by the algorithms. The corresponding neural network architecture is 

shown in Figure 8.3b. Another 2ℜ  example is shown in Figure 8.4, and Figure 8.5 shows 

pattern distribution for a 3ℜ  space and the corresponding morphological perceptrons. 

A population of 20 individuals was used for all the tests. Arithmetic crossover and 

single point mutation were the genetic operators used for the tests. The crossover 

probability was assigned to be 80%, and the mutation probability varied from 33% to 5%. 

The evolutionary time was limited to 400 generations for the patterns in Figure 8.3a, 

Figure 8.5, and the Iris Fisher Data. A total of 500 generations were used for the patterns 

in Figure 8.4. Experimental results show that in most of the performed tests at least 90% 

of the patterns were classified correctly.  

In addition, the algorithm was tested using the Iris Fisher Data. Half of the 

patterns were used to training the MLMP, and the other half of patterns ware used to test 

the performance of the neural network. Table 8.1 summarizes the results obtained from 

training process for the Iris Fisher Data in addition to the other data sets.  
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Figure 8.3 (a) 2-Dimension problem and the corresponding architecture Data (b) Two perceptrons are used 

in the first layer to define its boundaries. 
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Figure 8.4 Patterns from the class C0 are distributed among the four corners. 
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Class C0 Class C1 (correctly classified) Class C1 (incorrectly classified)
 

Figure 8.5 A 3-dimensions search space and the corresponding classification boundaries.  
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Figure 8.6 Neural network architecture used to produce one of the outputs of the binary vector associated 

to the class. 

 Figure 8.3a Figure 8.4 Figure 8.5 Iris Fisher Data 
Number of Runs 30 30 30 30 
Population Size 20 20 20 20 
Min. Classification Memorization 85.33% 82.00% 92.71% 93.33% 
Avg. Classification Memorization 89.63% 94.57% 98.72% 96.36% 
Max. Classification Memorization 100.00% 100.00% 100.00% 100.00% 
Min. Classification Generalization 82.00% 79.00% 81.91% 88.80% 
Avg. Classification Generalization 88.15% 89.37% 94.57% 92.04% 
Max. Classification Generalization 100.00% 100.00% 97.34% 97.33% 
Min. Number of Generations 382 91 48 1000 121 
Avg. Number of Generations 919 697 196 1000 894 
Max. Number of Generations 1000 1000 400 1000 1000 

Table 8.1 Summary of results of the tests for the direct encoding training algorithm. 
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8.3.2 Indirect Encoding Method  
Order base crossover and group mutation described in Chapter 6 were used as the 

genetic operators by the Indirect Encoding Method. The crossover probability was 

assigned to be 80% and the mutation probability was 3%. The crossover probability was 

relatively high, but it was not 100%, therefore the resulting offspring produced by the 

crossover may be identical to the parents.  

Using a population of 20 individuals, convergence was typically reached in 100 

iterations. Experimental results show that in most of the performed tests at least 96% of 

the patterns were memorized correctly. Typically all the patterns are memorized in early 

generations; however network topology improves with more iteration reducing the 

number of redundant neurons.  

Figure 8.7 shows an example of the decision boundaries defined by the algorithm 

for the Sussner data set. Figure 8.9 shows another example of the decision boundaries 

defined for Spiral data set.  

The algorithm was tested using the Iris Fisher Data. Half of the test patterns were 

used to train the system. The maximum number of generations used for the test was 200 

generations. In most of the tests, the resulting neural network was able to memorize 

100% of the patterns. The other half of the patterns were used to test the generalization 

performance of the resulting network, obtaining up to 77% of the patterns classified 

correctly. Table 8.2 summarizes the results of the tests for Sussner, Spiral and Iris Fisher 

data sets. 
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Figure 8.7 Decision boundaries found by indirect encoding method for Sussner Data set. 

X1

X2

+
00.00

-1
.16

+
+

-
-

2.07

0.8
6

+
0

,+

,+

,+

+

,+

+
0

+
+

-
-

+
0

,+

,+

,+

+
0+

+

-
-

+
0

,+

,+

,+

+
0

+
+

-
-

+
0

,+

,+

,+

+
0

+
+

-
-

+
0

,+

,+

,+

+
+
+

+

0

0

0

0

0

-2.47

1.77

-4.00

-3.46

-3.18

3.89
5.33

5.29

1.7
7

3.00

1.63

-1.44

-5.00

-3.18

-2.22

-2.18
 

Figure 8.8 Neural network architecture produced by indirect encoding method for Spiral Data set. 



 

 

87

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-6

Class C0

Class C1

 
Figure 8.9 Decision boundaries defined by the network architecture shown in Figure 8.8 

 Sussner Spiral Iris Fisher Data 
Number of Runs 30 30 30 
Population Size 20 20 20 
Min. Classification Memorization 100.00% 100.00% 100.00% 
Avg. Classification Memorization 100.00% 100.00% 100.0%0 
Max. Classification Memorization 100.00% 100.00% 100.00% 
Min. Classification Generalization n/a 52.50% 50.00% 
Avg. Classification Generalization n/a 62.25% 66.36% 
Max. Classification Generalization n/a 72.50% 77.33% 
Min. Number of Generations 2 2 2 9 
Avg. Number of Generations 3 10 2 27 
Max. Number of Generations 3 30 2 52 

Table 8.2 Summary of results for indirect encoding training algorithm. 

8.3.3 Cartesian Genetic Programming 
Several tests were conducted with the available data sets. An initial population of 

20 individuals was used in the entire test. The multipoint mutation and multipoint 

crossover described in the previous section were used as the genetic operations. A 

probability of 80% was used for the crossover operator and a maximum probability of 8% 

was used for the mutation of the neuron operator, and 3% was used for the mutation of 

the network topology. 
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The algorithm was tested with the data set used by Sussner. A matrix of nodes 

was used with three columns. The first column had 20 nodes, the second columnd had 10 

nodes, and the third and last column had 1 node. The nodes in the second layer were 

configured to receive two inputs from the first layer. Convergence was usually archived 

in 500 generations. Figure 8.10 shows the corresponding neural network architecture for 

a multilayer morphological perceptron defined by the learning algorithm, and Figure 8.11 

shows the corresponding decision boundary with opened regions. 
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Figure 8.10 Multilayer morphological perceptron defined by the Cartesian Genetic Programming method 
for Sussner Data Set. Corresponding decision boundary is shown in Figure 8.11 
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Figure 8.11 Decision boundaries defined by CGP with opened decision boundaries. 

In the second example, the previous data set was modified in such a way that only 

closed decision boundaries were able to classify patterns correctly. Three layers were 

used with 20 nodes in the first layer, 10 nodes in the second layer and 1 node in the third 

layer. To force the algorithm to produce compact regions, the nodes in the second layer 

were configured to receive three inputs. Convergence was usually achieved in 1200 

generations. Figure 8.12 shows an example of the decision boundary created by the 

learning algorithm with closed regions.  
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Figure 8.12 Decision boundaries defined by CGP method with closed regions. 

In the third example, 40 patterns of 2 dimensions were distributed to form two 

different spirals, as shown in Figure 8.13. The nodes were distributed among three layers: 

30 nodes in the first layer, 20 nodes in the second layer and 1 node in the third layer. The 

nodes in the second layer were configured to receive two inputs. Convergence was 

usually achieved by 1200 generations. Figure 8.13 shows an example of the decision 

boundary defined by the learning algorithm, including opened as well as closed regions. 
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Figure 8.13 Decision boundaries defined for the spiral data set. 

In addition, the algorithm was tested with the Iris Fisher Data. During the training 

process 50% of the patterns were used, and the other 50% was used to measure the 

generalization of the resulting neural network. The nodes were distributed among three 

layers: 4 nodes in the first layer, 2 nodes in the second layer and 1 node in the third layer. 

This simple layer configuration was used to the nature of the distribution of Iris Fisher 

Data Set. Convergence of the algorithm was typically achieved by 800 generations and 

100% of the patterns used during the training process were memorized by the neural 

network.  
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 Sussner 

(Figure 8.11)
Sussner 

(Figure 8.12) Spiral Iris Fisher Data 

Number of Runs 30 30 30 30 
Population Size 20 20 20 20 
Min. Classification Memorization 95.00% 96.97% 90.00% 97.33% 
Avg. Classification Memorization 95.50% 99.60% 96.50% 99.64% 
Max. Classification Memorization 100.00% 100.00% 100.00% 100.00% 
Min. Classification Generalization n/a n/a 72.50% 77.33% 
Avg. Classification Generalization n/a n/a 79.17% 87.78% 
Max. Classification Generalization n/a n/a 85.00% 94.67% 
Min. Number of Generations 156 101 1497 99 198 
Avg. Number of Generations 486 1970 3846 949 3316 
Max. Number of Generations 500 5000 4000 2630 8000 

Table 8.3 Summary of results for the Cartesian Genetic Programming method. 
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CHAPTER 9 

9 CONCLUSION 

9.1 INTRODUCTION 

This thesis explores the use of evolutionary algorithms a training tool for 

Multilayer Morphological Perceptrons. The learning algorithms described on this thesis 

are based on evolutionary techniques such as: Genetic Algorithms, and Cartesian Genetic 

Programming. These learning algorithms may be used to train single output feed forward 

Multilayer Morphological Perceptron for multidimensional/multi-classes pattern 

classification problems. 

9.2 DISCUSSION OF RESULTS 

The Iris Fisher Data set and the Spiral data set were used as benchmark to 

measure the performance of the learning algorithms in terms memorization, that is, the 

ability to classify correctly the training data set; generalization, that is, predictions for 

new inputs patterns, and number of generations needed to reach convergence, as shown 

in Table 9.1. 

The performance results of the morphological neural network defined by all the 

evolutionary learning algorithms were similar to the results presented by Ritter’s 

algorithm (Ritter and Beavers 1999). Indirect encoding method was the only training 

algorithm able to overcome Ritter’s algorithm in terms of time needed to reach 

convergence, but this happened at expenses of a high number of redundant neurons. 

Direct Encoding method completed most of the tests in lest than 4 seconds running on a 
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Pentium M 1.6 Ghz, using Matlab 6 and Windows XP. The time needed to reach 

convergece by Direct Encoding method and Cartesian Genetic Programming method, 

vary depending on how complex should be the decision boundaries needed in order to 

classify the training set correctly. The CGP method is able to define complex decision 

boundaries at expences of additional evolutionary time. The time needed to traing half of 

the patterns of the Iris Fisher Data set using the Cartesian Genetic Programing method 

extends over 1 hour. Similar results were obtained training the Spiral Data set. 

 CARTESIAN GENETIC 
PROGRAMMING 

METHOD 

INDIRECT ENCODING 
METHOD 

DIRECT 
ENCODING 
METHOD 

 Spiral Iris Fisher 
Data Spiral Iris Fisher 

Data 
Iris Fisher 

Data 
Num. of Runs 30 30 30 30 30 
Pop. Size 20 20 20 20 20 
Min. Memorization. 90.00 97.33 100.00 100.00 93.33% 
Avg. Memorization. 96.50 99.64 100.00 100.0% 96.36% 
Max. Memorization 100.00 100.00 100.00 100.00 100.00% 
Min. Generalization 72.50 77.33 52.50 50.00 88.80% 
Avg. Generalization 79.17 87.78 62.25 66.36 92.04% 
Max. Generalization 85.00 94.67 72.50 77.33 97.33% 
Min. Generations 1497 99 2 2 1000 121 9 198 
Avg. Generations 3846 949 3 2 1000 894 27 3316 
Max. Generations 4000 2630 3 2 1000 1000 52 8000 

Table 9.1 Summary of results for the Cartesian Genetic Programming method. 

Contrary to the training method presented by Sussner (Sussner 1998), which is 

limited to train up-to two layers morphological perceptron, the Indirect Encoding method 

and the CGP method are able to define three layers morphological neural networks, 

which is able to solve most pattern classification problems. The CGP method virtually 

can trains multilayer morphological perceptron of any number of layers. Similary to the 

algorithm presented by Sussner, the evolutionary learning algorithms are able to 

determine the number of nodes needed in the hidden layers. Usually neural network 
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architectural flexibility is achieved with an additional cost in the time needed to reach 

converge.  

For the particular case of the spiral data set, all the patterns were correctly 

memorized after 10 generations during the training stage, but the resulting neural network 

was not able to predict correctly 100% of the patterns that were not used during the 

training. This happened due to the fact that a single pattern can be assigned to one group 

exclusively, which means that a pattern may be enclosed by a single hypercube, therefore 

there may be hypercubes which do not overlap, this may result in an incorrect prediction 

for the classification of those patterns that falls between two non-overlapping hypercubes 

as shown in Figure 9.1. 

Real Decision 
Boundary

Actual Decision
Boundary

(defined by the learning algorithm)

Incorrect Prediction
of Pattern Classification

 
Figure 9.1 Incorrect generalization of the neural network. 

Differences in number of generations are due to the increased complexity in the 

search space for different data sets. Different node configurations are used for different 

data sets. When the number of nodes is incremented, complex decision boundaries can be 

defined to perform correct pattern classification at the expenses of additional 
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evolutionary time. Due to the nature of the morphological neuron, a single neuron can 

classify most of the Iris Fisher data. For this reason a small number of nodes are used to 

search for the correct network architecture. Other data sets such as the spiral data set 

shown in Figure 8.13 or the Sussner data set shown in Figure 8.12 require a higher 

number of neurons to define complex decision boundaries. 

9.3 COMPARISON OF THE LEARNING ALGORITHMS 

9.3.1 Direct Encoding Method 
The Direct Encoding method lacks of scalability for very large problems, due to 

the fact that the entire space of solutions can not be mapped in detail by the genetic code. 

The architecture is fixed during the training of the neural network, and a maximum of 

two layer morphological perceptron can be trained which can be used to solve simple 

pattern classification problems. The algorithm needs information about architecture of the 

neural network to be trained, such as number of layers, and number of neurons in the first 

layer. This information is provided prior the training, after inspection of the data set 

distribution. 

The number of neurons must be specified before the training, and that number is 

fixed during the evolution. To achieve better utilization of the neurons, the algorithm 

introduces the use of a penalty function in the evaluation function. A penalty is assigned 

to those individuals with redundant neurons. Redundant neurons are those neurons that if 

were removed from the neural network, the decision boundary of the resulting neural 

network remains unchanged. This is the way the evolutionary algorithm promotes those 

neural networks that represent a better solution placing neuron on the right location. 
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The learning algorithm is able to define opened decision boundaries as well as 

close decision boundaries. The resulting neural network is limited to define very simple 

decision boundaries which may be able to separate patterns grouped into a single cluster 

of from other patterns, therefore may not be used to train classify patterns dispersed into 

several clusters. 

In terms of the evolutionary time, the learning method performs an exhaustive 

computational search over a continuous space of values, looking for the optimum set of 

connection weights, resulting in a very time consuming task. The evolutionary learning 

method introduces the use adaptive mutation for the evolution of morphological neural 

networks to speed up convergence and reduce the evolutionary time.  

9.3.2 Indirect Encoding Method 
The evolutionary method is able to evolve some architectural elements. This trade 

off was made to improve convergence speed. The convergence speed of the Indirect 

Encoding method is faster compared to the other two evolutionary learning algorithms, 

due to fact that the search for the best architecture is done in a reduced and simplified 

search space. Connection weights are searched in a discrete space and the network 

architecture is limited to some architectural constrains, such as fixed neuron inter-

connection, connection weights for the second and third layer are predefined and fixed 

during the training, reducing the number of unknown connection weights. Architectural 

constrains limit the neural network to a maximum of 3 layers, which are needed most 

pattern classification problems where the patterns can be grouped into clusters. 

Usually the algorithm is able to classify most of the patterns at early generations, 

but network architecture improves with more iteration, reducing the number of redundant 
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neurons. The evaluation function is used to guide the evolutionary process to create as 

many hypercubes as needed to correctly classify all the patterns in early generations, and 

improve the individuals by removing redundant neurons. 

Differing from the Direct Encoding method and the Cartesian Genetic 

Programming method, the algorithm needs no information about pattern distribution. The 

evolutionary learning method determines the number of neurons needed in the first layer 

and the correct number of layers by itself. The resulting neural network is able to define 

exclusively close decision boundaries. Close decision boundaries results in a better 

prediction of clustered data set of patterns, but in an inaccurate prediction of non-

clustered data sets, which is the major drawback of the learning algorithm. Patterns may 

be distributed in many different clusters, defining complex decision boundaries.  

9.3.3 Cartesian Genetic Programming Method 
The Cartesian Genetic Programming method introduces the use of Cartesian 

Genetic Programming as a training tool for Morphological Neural Networks. The method 

may be able to train multi-layer morphological perceptrons of any number of layers. The 

learning algorithm provides flexible evolution of neural network architecture, resulting in 

flexible neural networks solutions. The method needs information about the neural 

network architecture such as the number of layer, the maximum number of neurons for 

each layer; and the number of inputs received by the intermediate layers. This 

information is provided to the algorithm after inspection of the data sets distribution.  

This algorithm introduces the use of the morphological neuron computational 

model as the basic node operation for Cartesian Genetic Programming, allowing the 

evolutionary training of Morphological Neural Networks. The resulting neural networks 
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may be able to produce complex decision boundaries, including opened decision 

boundaries, as well as closed decision boundaries. 

In terms of the evolutionary time, the algorithm tends to take longer to define the 

corresponding decision boundaries, due to the fact that the algorithm search for the 

network architecture in an open space of architectures, limited only by the maximum 

number of nodes for each layer and the total number of layers. The search space gets 

even more complex as additional patterns are used during the training process, due to the 

addition of patterns the connection weights the search space increases in an exponential 

order. To speed up convergence, the evolutionary method makes use of two different 

mutations rates which affect different regions in the chromosome: network architecture 

and neurons operation. 

Similar to Indirect Encoding method, the learning method make use of a special 

penalty function. This penalty function promotes the reduction of redundant or 

unnecessary neurons from the neural network.  
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9.3.4 Summary of Differences 
A list of advantages and disadvantages presented by the evolutionary algorithms 

is shown in Table 9.2. 

Training 
Method Advantages Disadvantages 

Direct Encoding 
Method 

1. Define open and closed decision 
boundaries 

2. Reduce number of redundant 
neurons 

1. Rigid topology 
2. Open search space for 

connection weights 
3. Long time needed to reach 

convergence 
Indirect Encoding 
Method 

1. Some degree of topological 
flexibility 

2. Discrete search space for connection 
weights 

3. Reduced search space results in fast 
convergence 

4. Neural architecture evolves by itself 
definining nodes for hidden layers 

1. High number of redundant 
neurons 

2. Define exclusively closed 
decision boundaries 

Cartesian Genetic 
Programming 
Method 

1. High degree of topological 
flexibility 

2. Discrete search space for connection 
weights 

3. Define open and closed decision 
boundaries 

4. Neural architecture evolves by itself 
definining nodes for hidden layers 

1. Exponential grow in the 
search space 

2. Long time needed to reach 
convergence 

Table 9.2 Summary of advantages and disadvantages of the evolutionary learning algorithms. 

9.4 PROTOTYPES LIMITATIONS 

The implementation of the prototype for the Indirect Encoding Method is 

restricted to train a maximum of 50 patterns. This limitation is due to the encoding 

representation scheme for the groups of patterns defined for the chromosome in Matlab. 

The actual representation uses the bits of an integer to define group boundaries. The 

limitation may be overcome using a different representation scheme for the groups of 

patterns, maybe using a complex data structure or a different programming language. All 

the other prototypes may be able to train a neural network using as many patterns as 

needed. 
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9.5 FUTURE WORK 

After the completion of this thesis, new interesting research topics had appeared. 

Possible research areas may focus on the development of a learning algorithm which may 

be able to produce opened decision boundaries as well as closed decision boundaries 

without considering the actual pattern distribution. In addition, the learning algorithms 

may be able to evolve a morphological neural network which produces multiple outputs 

simultaneously. Different indirect encoding schemes, such as attribute grammar, or the 

cellular encoding maybe used to improve performance while reducing complexity of the 

problem. Additionally, it may be interesting to explore how to train morphological neural 

networks that use different transfer functions, such as log sigmoid, and the exploration of 

possible uses for those neural networks. 

9.6 CONCLUSION 

Multilayer Morphological Perceptrons provide simple and scalable solutions for 

new generations of patterns classifiers. At the same time, evolutionary algorithms provide 

robust search mechanism to explore in an extensive number of possible solutions. At this 

point, it is concluded that evolutionary learning algorithms may be used as an alternative 

training method for Multilayer Morphological Perceptrons. Additional research needs to 

be conducted to explore different evolutionary learning algorithms that may be capable to 

define decision boundaries that improves neural network generalization abilities without 

considering exact pattern distribution, while, at the same time, reduce the search space of 

the neural  network architecture, connection weights, and increases convergence speed.  
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APPENDIX A 

A EVOLUTINARY LEARNING ALGORITHMS 
TOOLBOX FOR MATLAB 

A.1 INTRODUCTION 

This appendix comprends of the used guide for the Evolutionary Learning 

Algorithms Toolbox defined for Matlab 6 and  source code  

A.2 USER GUIDE FOR MULTILAYER MORPHOLOGICAL PERCELTRON 

A.2.1 Common Configuration Parameters 
Each training method requires a set of specific configuration parameters. The 

configuration parameters control the evolutionary process, including initial population 

size, termination conditions, genetic operators, and evaluation function. These parameters 

have been added to provide a flexible control over the evolutionary process. Different 

genetic operators, as well as evaluation functions may be used, producing different 

results. Table A.1 presents the common configuration parameters used by all the training 

methods.  
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Parameter Type Description Example 
param.evalFn m-file Specifies the name of 

the evaluation function 
used. 

['CGPEval3'] 

param.evalParams vector of 
double 

Specifies any 
parameter passed to 
the evaluation function 

[] 

param.mutationFn m-file Specifies the name of 
the mutation function. 

['CGPMultiPointMutation2'] 

param.mutationParams vector of 
double 

Specifies any 
arguments need by the 
mutation function. 

[0.08 0.08] 

param.popSize integer Size of the population 
used during the 
evolution 

20 

param.selectFn m-file Specifies the name of 
the selection function, 
used to select the 
survivals from a 
generation to the next 
one. 

['roulette2'] 

param.selectParams vector of 
double 

Specifies any 
parameter passed to 
the selection function. 

[0.33] 

param.termParams integer Specifies the 
termination criteria: 
[max. number of 
generations, final 
fitness] 

[8000,1.0] 

param.xOverFn m-file Specifies the name of 
the crossover function. 

['CGPMultipointXover']; 

param.xOverParams vector of 
double 

Specifies any 
necessary parameter 
passed to the crossover 
function. 

[0.95 0.80] 

Table A.1 Configuration parameters used by all the training methods 

A.2.2 Direct Encoding Toolbox 

A.2.2.1 Configuration Parameters 

In addition to the parameters presented on Table A.1, the Direct Encoding method 

requires configuration parameters described on Table A.2. Direct Encoding method 

requires the number of neurons to be specified prior to the training of the neural network, 
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each position in the vector specified by param.layer represents the number of neuron for 

each layer. 

Parameter Type Description Example 
param.layers vector of integers Specifies the number of neurons for each layer. [2 1] 
param.opts vector of double  [1e-6 1 1] 

Table A.2 Configuration parameters used by Direct Encoding Method 

A.2.2.2 Training Method 

[net, traceInfo] = DirectTrainMNN(patterns, classes, bounds, targets, config); 

Description: Trains a multilayer morphological perceptron using the Direct Encoding 

method. The method receives as arguments the patterns used during the training process. 

Patterns are passed to the method as an MxN matrix, which contains N patterns of M 

dimensions. All the patterns from all the classes are appended one after another in the 

argument patterns, starting by patterns from class C0, then patterns from class C1 are 

appended, and finally patterns from class CT, where T is the total number of classes to be 

trained. The parameter classes define a column vector containing the number of patterns 

defined for each class in the patterns matrix. Bounds is a 2xM matrix in which each row 

vector represents the lower and upper bounds for each dimension. The variable targets 

contains a PxQ matrix of binary elements, where each row represents the binary vector 

associated to a particular class. The parameter config is a data structure that contains the 

configuration parameters shown in Table A.1and Table A.2. The method returns an 

object net that represents a MNN. 
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Parameter Type Description Example 

patterns matrix of 
integers 

Specifies the all the patterns 
used during the training 
process. 

class0 = [0 0; 1 1]; 
class1 = [0 1; 1 0]; 
patterns = [class0; 
class1]; 

classes vector of 
integers 

Specifies the amount of 
patterns defined on each class 

[2; 2] 
 

targets matrix of 
integers 

Each row represents the binary 
vector associated to a 
particular class 

[0 ; 1] 
 

params struct Configuration parameters for 
the algorithm. 

as shown in Table 7.1 and 
Table 7.2 

net MNN MNN trained for the patterns  
traceInfo Matrix of 

double 
Performance of the 
evolution. Four column 
matrix representing: 
generation number, fitness of 
the best individual, average 
fitness of the generation, and 
standard deviation 

 

Table A.3 Parameters passed to the Direct Encoding training method. 

A.2.2.3 Sample Code 

The code shown in Figure A.1  defines patterns for two classes C0={(0,0) ,(1,1)}, 

and C1={(0,1), (1,0)}, in a two-dimensional search space for the training algorithm and 

returns a morphological perceptron which is able to classify these patterns.  

% param is previously defined
class0 = [0 0; 1 1];
class1 = [0 1; 1 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

% Compute the bounds for each dimension
minVals = min(patterns);
bound = [(max(patterns)-minVals); minVals];

% Expand the boundaries by %25 
bound = bound +[ boundaries (1,:)*.125; - bound (1,:)*0.125]
[net,traceInfo] = DirectTrainMNN(patterns, classes, bound, targets, config);  
Figure A.1 Example code of how Direct Encoding Method can be used to train MNN 
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A.2.3 Indirect Encoding Toolbox 

A.2.3.1 Configuration Parameters 

Configuration parameters used by the Indirect Encoding method are the 

configurations parameters shown in Table A.1. No additional configuration parameters 

are needed. 

A.2.3.2 Training Function 

[net, traceInfo] = IndirectTrainMNN(patterns, classes, targets, params) 

Description: Trains a multilayer morphological perceptron using the Indirect Encoding 

method. The function receives as arguments the patterns used during the training process. 

Patterns are passed to the function as an MxN matrix, which contains N patterns of M 

dimensions. All patterns from all the classes are appended one after another in the 

argument patterns, starting by patterns from class C0, then patterns from class C1 are 

appended, finally patterns from class CT, where T is the total number of classes to be 

trained. The parameter classes define a column vector containing the number of patterns 

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix 

of binary elements, where each row represents the binary vector associated to a particular 

class. The parameter config is a data structure that contains the configuration parameters 

used for the training algorithm. The method returns an object net that represents a MNN. 
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Parameter Type Description Example 
patterns Matrix of 

integers 
Specifies the all the patterns 
used during the training 
process. 

class0 = [0 1; 1 1]; 
class1 = [1 0; 0 0]; 
patterns = [class0; 
class1]; 

class_distribution Vector of 
integers 

Specifies the amount of patterns 
defined on each class 

[2; 2] 
 

targets Matrix of 
integers 

Each row represents the binary 
vector associated to a particular 
class 

[0 ; 1] 
 

params  Configuration parameters for 
the algorithm. 

As shown in Table 7.1 

net MNN MNN trained for the patterns  
traceInfo Matrix of 

double 
Performance of the 
evolution. Four column 
matrix representing: 
generation number, fitness of 
the best individual, average 
fitness of the generation, and 
standard deviation 

 

Table A.4 Parameters passed to the CGP training method 

A.2.3.3 Sample Code 

The code shown in Figure A.2 defines patterns for two classes C0={(0,0) ,(1,1)}, 

and C1={(0,1), (1,0)}, is a 2-dimensinal search space for the training algorithm and 

returns a morphological perceptron which is able to classify these patterns.  

% params  is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo]=IndirectTrainMNN(patterns,classes, targets, params);
 

Figure A.2 Example code of how Indirect Encoding Method can be used to train MNN 

A.2.4 Cartesian Genetic Programming Toolbox 

A.2.4.1 Configuration Parameters 

Configuration parameters used by the training algorithms include the 

configuration parameters shown in Table A.1 in addition to the configuration parameters 
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shown in Table A.5. Configuration parameters from Table A.5 define some network 

properties such as the distribution of nodes, and number of inputs received by the neurons 

for each layer. 

Configuration 
parameter 

Type Description Example 

param.connections vector of 
integers 

Specifies the number of connections 
used by the nodes on each layer.  

[20 20 1] 

param.layers vector of 
integers 

Specifies the maximum number of nodes 
defined for each layer. 

[4 2 20] 

Table A.5 Additional configuration parameters used by Cartesian Genetic Programming. 

A.2.4.2 Training Function 

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params) 

Description: Trains a multilayer morphological perceptron based on Cartesian genetic 

programming. The function receives as arguments the patterns used during the training 

process. Patterns are passed to the function as an MxN matrix, which contains N patterns 

of M dimensions. All the patterns from all the classes are appended one after the other in 

the argument patterns, starting by patterns from class C0, then patterns from class C1 are 

appended, finally patterns from class CT, where T is the total number of classes to be 

trained. The parameter classes define a column vector containing the number of patterns 

defined for each class in the patterns matrix. The variable targets contains a PxQ matrix 

of binary elements, where each row represents the binary vector associated to a particular 

class. The parameter config is a data structure that contains the configuration parameters 

used for the training algorithm. The method returns an object net that represents a MNN, 

and a matrix traceInfo which consists of three columns. The first column identify the 

generation number, the second column corresponds to the fitness value assigned to the 

best organism for the corresponding generation, the third column corresponds to the 
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average value for the fitness of the population, the value forth column corresponds to the 

standard deviation. 

Parameter Type Description Example 
patterns Matrix of 

integers 
Specifies the all the patterns 
used during the training 
process. 

class0 = [0 1; 1 1]; 
class1 = [1 0; 0 0]; 
patterns = [class0;class1]; 

classes Vector of 
integers 

Specifies the amount of 
patterns defined on each 
class 

[2; 2] 
 

targets Matrix of 
integers 

Each row represents the 
binary vector associated to a 
particular class 

[0 ; 1] 
 

params  Configuration parameters for 
the algorithm. 

As shown in Table 7.1 
and Table 7.5 

net MNN MNN trained for the patterns  
traceInfo Matrix of 

double 
Performance of the 
evolution. Four column 
matrix representing: 
generation number, fitness of 
the best individual, average 
fitness of the generation, and 
standard deviation 

 

Table A.6 Parameters passed to the CGP training method 

A.2.4.3 Sample Code 

The code shown in Figure A.3 defines patterns for two classes C0={(0,0) ,(1,1)},  

and C1={(0,1), (1,0)}, the search space for the training algorithm, and returns a 

morphological perceptron which is able to classify the patterns.  

% params  is previously defined
class0 = [0 1; 1 1];
class1 = [1 0; 0 0];
patterns = [class0;class1];
targets = [0 ; 1];
classes = [size(class0,1); size(class1,1)];

[net,traceInfo] = CGPTrainMNN(patterns, classes, targets, params);
 

Figure A.3 Example code of how Indirect Encoding Method may be used to train MNN 
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A.3 COMMON TOOLS 

This section describes a set of common tools used by all the training methods to 

manipulate and control morphological neural networks.  

A.3.1 Pattern Classification 
[class] = evalMorphologicalNet(net, patterns) 

Description: Classify the patterns defined by the argument patterns given a vector of 

MLMP denoted by the argument net. Each entry in the vector net represents a Multilayer 

Morphological Perceptron used to construct the classification vector. Multiple patterns 

may be classified simultaneously using a single function call as shown in Figure A.4. In 

Figure A.4, three 4 dimensional patterns are assigned to class
0
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. Each row from the 

class matrix denote the corresponding classification for each pattern defined by each row 

from the patterns argument. 

class1 =

    5.1000    3.5000    1.4000    0.2000
    4.9000    3.0000    1.4000    0.2000
    4.7000    3.2000    1.3000    0.2000

>> evalMorphologicalNet(net,class1)

ans =

     0     1     1
     0     1     1
     0     1     1  

Figure A.4 How to use Multilayer Morphological Perceptrons to classify multiple patterns. 

A.3.2 Plotting the Network 
plotNetwork2(net) 
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Description: Display a graphical representation of the perceptrons denoted by the 

argument net in a 2-dimensinal space, as shown in Figure A.5. 

.
-6 -4 -2 0 2 4 6-8

-6

-4

-2

0

2

4

6

plotNetwork2(net)

 
Figure A.5 Graphical representation of Multilayer Morphological Perceptrons.Tthe morphological 

perceptrons are represented by two intersecting perperdicular dotted lines. 

A.4 DEPENDENCY STRUCTURE OF METHOD IN THE TOOLBOX 

This section describes the dependency structure followed by the different methods 

implemented in the training algorithms toolbox for Matlab. All functions are enclosed by 

a rectangle and linked to other sub-functions needed to complete the required task, as 

shown in Figure A.6 



 

 

117

function [res] = evalMorphologicalNet(net, testPatterns)

function [val] = evalMorphologicalPerceptron(mnn, inputs)

function [val] = hardlimit(x)

function [] = plotNetwork(net, parentOp, parentR, index, delta)

function [] = plotRegion(net, xmin, xmax, ymin, ymax)

function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds, targets, nconfig)

function [pop] = initializeMNNga(bounds, populationSize, evalFN,evalOps,options, layerInfo)

function [x,endPop,bPop,traceInfo] = MNNga (bounds, evalFN, evalOps, startPop, opts, termFN, 
termOps, selectFN,selectOps, xOverFNs, xOverOps, mutFNs, mutOps)

function [net] = generateNetwork(level, layerInfo, opts, range, minValues, infiniteOpt)

function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps)

function [o1] = defMutation(p1, bounds, opts)

function [o1,o2] = defXover(p1,p2, bounds, Opts)

function [res] = operateAndNet(net1, net2)

function [res] = operateOrNet(net1, net2)

function[newPop] = roulette2(oldPop,options)

function [layers] = getTotalLayers(mnn)

function [params] = getDefaultParams(opts)

Direct Encoding Method

Common Tools
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function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets, nconfig)

function [res, traceInfo] = NNmorphologicalGA(c0, c1, params)

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop, 
opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps

function [pop] = generatePop(popSize, bounds)

function [sol, val] = NNmorphologicalEval(sol,parameters)

function [c] = NNmorphologicalMutation(parent,bounds,Ops)

function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops)

function [params] = getDefaultParams(opts) 

Indirect Encoding Method

function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop)

function [net] = CGPTrainMNN(testPatterns, classes, targets, nconfig)

function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps, startPop,opts,termFN 
,termOps,selectFN,selectOps,xOverFNs,xOverOps, mutFNs,mutOps)

function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps)

function [chrom, val] = CGPEval3(chrom,opts)

function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops)

function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops)

function [param] = CGPDefaultParam(patternSize, numOfNodes, numOfInputs)

function [done] = CGPFitnessFoundTerm(ops, bPop, endPop)

Cartesian Genetic Programming  Method

function [res] = CGPDecodeNet(chrom, F, FTotal, param)

function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs, F, 
FTotal)

function [F, FTotal] = CGPInitialize(patterns, param)

 
Figure A.6 Interdependency of functions for th e Matlab toolbox. 

A.5 MATLAB TOOLBOX FOR MORPHOLOGICAL PERCEPTRON 

This section provides all the commonly used functions defined for all the learning 

methods: 
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function [res] = evalMorphologicalNet(net, testPatterns) 

% Version 1.0 
% 
function [res] = evalMorphologicalNet(net, testPatterns) 
res = []; 
sz= size(net,2); 
for i=1:sz 
    res = [res evalMorphologicalPerceptron(net(i), testPatterns)]; 
end 
 
 

function [val] = evalMorphologicalPerceptron(mnn, inputs) 

% Version 1.1 
% Evaluate the morphological perceptron 
% mnn - takes a morphological neural network 
% inputs - a matrix containing the input patterns 
function [val] = evalMorphologicalPerceptron(mnn, inputs) 
 
numberOfInputs = size(mnn.inputs,2); 
val = 0; 
if (numberOfInputs ~= 0) 
    res = []; 
    for i=1:numberOfInputs              % Evaluate branches of the tree recursively 
        res = [res evalMorphologicalPerceptron(mnn.inputs(1,i),inputs)]; 
    end     
     
    %Evaluate the resulting outputs of the neurons 
    totalTestPatterns = size(inputs,1); 
    weights = []; 
    r = []; 
    for n=1:totalTestPatterns 
        weights = [weights; mnn.weights]; 
        r       = [r;       mnn.r]; 
    end     
    if (mnn.op == 0) 
        val = hardlimit(min((r.*(res-weights))')'); 
    else 
        val = hardlimit(max((r.*(res-weights))')'); 
    end 
else 
    % Evaluate a single neuron 
    totalTestPatterns = size(inputs,1); 
    weights = []; 
    r = []; 
    for n=1:totalTestPatterns 
        weights = [weights; mnn.weights]; 
        r       = [r;       mnn.r]; 
    end 
    if (mnn.op == 0) 
        val = hardlimit(min((r.*(inputs-weights))')'); 
    else 
        val = hardlimit(max((r.*(inputs-weights))')'); 
    end 
end 
 
 

function [val] = hardlimit(x) 

% Version 1.1 
% hardLimit used in Morphological Neural Network 
% x -  
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function [val] = hardlimit(x) 
 
val = x>0; 
 
 

function [] = plotNetwork(net, parentOp, parentR, index, delta) 

% Version 
% Draw a 2D/3D representation of a neural network 
function [] = plotNetwork(net, parentOp, parentR, index, delta) 
 
if (nargin < 5) 
    delta = 1; 
end 
if (nargin < 4) 
    index = 0; 
end 
 
%set up default values 
color =['b', 'g', 'r', 'c', 'm', 'y', 'k']; 
symbol = ['o', 'x', '+','*', 's', 'd', 'v', '^','<','>','p','h', '.']; 
connection = ['-', ':', '-.', '--']; 
%  -  / r=+1, op=0 
%  :  / r=+1, op=1 
% -.  / r=-1, op=0 
% --  / r=-1, op=1 
    hold on; 
    sz = size(net.inputs,2); 
    if (sz == 0) 
 
        deltas = delta*(-net.r); 
        
        con = parentOp+1; 
        if (parentR ~= 1)  
            con = con+2; 
        end 
        if (con == 1) 
            c = '-'; 
        elseif (con ==2) 
            c = ':'; 
        elseif (con == 3) 
            c = '-.'; 
        elseif (con == 4) 
            c = '--'; 
        end 
 
        if (index > 13) 
            index = 1; 
        end 
        if (net.op == 1) 
            color1 = strcat('b', symbol(index), c); 
        else 
            color1 = strcat('r', symbol(index), c);  % or o minimo 
        end 
 
        totalWeights = size(net.weights,2); 
        x = net.weights(1); 
        y = net.weights(2); 
        %Check how many dimension contains the pattern and plot it 
        if (totalWeights == 2) 
            plot([x,x,x+1.2*deltas(1)],[y+1.2*deltas(2),y,y], color1); 
        elseif (totalWeights == 3) 
            z = net.weights(3); 
            plot3([x,x,x+1.2*deltas(1)],[y+1.2*deltas(2),y,y], [z,z,z], color1); 
            plot3([x,x], [y,y], [z,z+1.2*deltas(3)], color1); 
        end 
    else 
        if (index == 0) 
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            for i=1:sz 
                plotNetwork2(net.inputs(i), net.op, net.r(i), i); 
            end 
        else 
            for i=1:sz 
                plotNetwork2(net.inputs(i), net.op, net.r(i), index); 
            end 
        end             
    end 
    
 
 

function [] = plotRegion(net, xmin, xmax, ymin, ymax) 

function [] = plotRegion(net, xmin, xmax, ymin, ymax) 
 
if (nargin < 4) 
    xmin = -2; 
    xmax = 4; 
    ymin = -2; 
    ymax = 4; 
end 
 
class = []; 
for n=1:2000 
    x = rand*(xmax-xmin)+xmin; 
    y = rand*(ymax-ymin)+ymin; 
    class = [class; x y]; 
end 
r = evalMorphologicalNet(net, class); 
c0 = find(r==0); 
c1 = find(r==1); 
hold on; 
plot(class(c0,1),class(c0,2), 'ro'); 
plot(class(c1,1),class(c1,2), 'bs'); 
 
 

A.6 DIRECT ENCODING METHOD 

 
This section provides all the necessary functions used by the Direct Encoding 

Method. 

function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds, 
targets, nconfig) 

% Version 1.1 
% Train a Morphological Neural Network 
% testPatterns - a M by N matrix, it contains M patterns of dimension N 
% classes      - a M by 2 matrix where M is the number of classes. 
%                Each element in the first column is the number of test patterns that belongs to the  
%                  class at the corresponding index 
%                The second row contains the dimension of each test pattern class 
%                NOTE: all the test patterns must contains be of the same dimension 
% targets       an matrix 
% networkConf   see getDefaultConfig() 
 
function [net, traceInfo] = DirectTrainMNN(testPatterns, classes, bounds, targets, nconfig) 
global class0; 
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global class1; 
global config; 
 
config = nconfig; 
% Validate the inputs 
sz = size(testPatterns); 
if (sz(1) < 2) 
    error('\nERROR: Insuficient number of \''testPatterns\''. At least two test patterns are needed\n'); 
end 
if (sz(2) < 2) 
    error('\nERROR: Invalid dimension of the \''testPatterns\''. The minimum dimenison should be 2\n'); 
end 
[numberOfOutputs, totalClassesTargets] = size(targets); 
 
if (numberOfOutputs < 2) 
    error(sprintf('\nERROR: Insuficient number of outputs specified in \''targets\''. At least two outputs are 
required.\n\tCurrent value: %d',numberOfOutputs)); 
end 
 
% Verify the number of classes must be less than or equal to 2*(number of outputs) 
totalClasses = size(classes,1); 
if (totalClasses > numberOfOutputs*2) 
    error(sprintf('\nERROR: The number of outputs defined in the \''targets\'' parameter must be %d',(totalClasses+1)/2)); 
end 
if (2*totalClassesTargets < 2) 
    error(sprintf('\nERROR: Insuficient number of classes in the target definition. \n\tTAt least two classes are 
required.\n\tCurrent value: %d',totalClassesTargets)); 
end 
if (totalClasses < 2) 
    error(sprintf('\nERROR: Insuficient number of classes in the \''classes\'' definition.\n\tAt least two classes are 
required.\n\tCurrent value: %d',totalClasses)); 
end 
 
% Sum all the elements in the class 
pos = [cumsum(classes(:,1))]; 
% Add append a 0 value at the begining of the vector and remove the last one. 
pos = [0; pos(1:end-1,1)]+1; 
 
% Initialize the resulting net to null 
net = []; 
 
% Add the number of inputs to the layer information 
config.layers = [size(testPatterns,2) config.layers]; 
 
% Compute the bounds for each dimension 
maxVals = bounds(2,:); 
minVals = bounds(1,:); 
bounds = [(maxVals-minVals); minVals]; 
 
 
% For each output, define the network 
net = struct('op', cell(1,totalClassesTargets), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]}); 
traceInfo = struct('trace', {[]}); 
for output=1:totalClassesTargets 
     
    % Regroup the test patterns 
    fprintf('  Training output: %d\n',output); 
    groups = find(targets(:,output)==0); 
    totalGroups = size(groups,1); 
    class0 = []; 
     
    % Verify the class with the output value of 0 at the output index(output) exist!. 
    if (totalGroups == 0) 
        error('ERROR: Invalid class definition. The target with 0 on evey index must be defined'); 
    end; 
    for class=1:totalGroups 
        begn = pos(groups(class)); 
        final = begn+classes(groups(class))-1; 
        class0 = [class0; testPatterns(begn:final,:)]; 
    end         
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    groups = find(targets(:,output)==1); 
    totalGroups = size(groups,1); 
     
    class1 = []; 
    for class=1:totalGroups 
        begn = pos(groups(class)); 
        final = begn+classes(groups(class))-1; 
        class1 = [class1; testPatterns(begn:final,:)]; 
    end   
    % Generate the initial population 
    pop = initializeMNNga(bounds, config.popSize, config.evalFn, config.evalParams, ... 
        [config.variableArchitecture config.allowInfinite], config.layers); 
    gaFN =  ['[x, endPop, bPop, traceInf] = ' config.defaultGA '(bounds, config.evalFn, config.evalParams, pop, config.opts,' 
... 
        'config.termFn, config.termParams, config.selectFn, config.selectParams,' ... 
        'config.xOverFn, config.xOverParams,config.mutFn, config.mutParams);']; 
 
    eval(gaFN);     
    
    traceInfo(output).trace = traceInf; 
    net(output) = x.chromosome; 
end 
 

 

function [net] = generateNetwork(level, layerInfo, opts, range, minValues, 
infiniteOpt) 
% Generate a random neuron based in the configuration 
% level  - indicates the layer+1 of the network 
% layerInfo = [num_of_inputs  num_of_neurons_1rst_layer  num_of_neurons_2nd_layer(optional)  
num_of_neurons_3thrd_layer(optional)] 
% opts      = [variableArchitecture] 
% infiniteOpt = [allowInfinite inifiniteOps] 
 
function [net] = generateNetwork(level, layerInfo, opts, range, minValues, infiniteOpt) 
 
if nargin < 3 
    error('ERRORO: Invalid number of arguments in generateNetwork\n'); 
end 
allowInfinite = 0; 
if (nargin >= 4) 
    if (size(infiniteOpt,2) >= 2) 
        [allowInfinite infiniteProb] = infiniteOpt; 
    end 
end 
 
totalOpts = size(opts,2); 
if (totalOpts > 1) 
    variableArchitecture = 0; 
else 
    variableArchitecture = opts(1);                     % Is the architecture fixed or variable? 
end 
 
if (variableArchitecture) 
     
else 
    if (level == 4)                                   % level 2? 
        neuron.op = 0; 
        neuron.r = ones(1,layerInfo(level-1)); 
        neuron.weights = zeros(1,layerInfo(level-1)); 
        neuron.inputs = []; 
        for i = 1:layerInfo(level-1) 
            [mnn] = generateNetwork(level-1,layerInfo,opts, range, minValues, infiniteOpt);             
            neuron.inputs = [neuron.inputs mnn]; 
        end; 
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    elseif (level == 3)                                   % level 2? 
        neuron.op = round(rand); 
%        neuron.p = [1]; 
        neuron.r = ones(1,layerInfo(level-1));            % what happend if r = -1? 
        neuron.weights = zeros(1,layerInfo(level-1)); 
        neuron.inputs = []; 
        for i = 1:layerInfo(level-1) 
            [mnn] = generateNetwork(level-1,layerInfo,opts, range, minValues, infiniteOpt);             
            neuron.inputs = [neuron.inputs mnn]; 
        end; 
    elseif (level == 2)                                   % level 2? 
        neuron.op = round(rand);                          % Generate random [max min] operator 
%        neuron.p = round(rand); 
        neuron.r = 2*round(rand(1,layerInfo(level-1)))-1; % Generate a vector of [-1 1] values 
 
        if (allowInfinite) 
            if (rand < infiniteProb) 
            end 
        else 
            neuron.weights = ((rand(1,layerInfo(level-1))).*range)+minValues;        % Generate weights  
        end 
        neuron.inputs = []; 
    end 
end 
net = neuron; 
 
 

function [pop] = initializeMNNga(bounds, populationSize, 
evalFN,evalOps,options, layerInfo) 
% Version 1.0 
function [pop] = initializeMNNga(bounds, populationSize, evalFN,evalOps,options, layerInfo) 
global class0; 
global class1; 
 
% options(1) 0 - fixed architecture 
%            1 - variable architecture 
% options(2) 0 dont allow -Inf and +Inf 
%            1 - allow -Inf and +Inf 
% options(3) inf probability 
 
 
%Validate parameters 
pop = []; 
 
if nargin<6 
    error('ERROR: Missing layer configuration options in parameters.'); 
    layerInfo = [2 1]; 
else 
    % validate layerInfo 
    totalLayers = size(layerInfo,2)-1; 
    totalInputs = layerInfo(1); 
    if (totalLayers > 3) 
        error('Invalid number of layers\n'); 
    end 
    if (size(find(layerInfo<=0),2) > 0) 
        error('Invalid layer configuration. None of the parameters can be 0'); 
    end 
    if (totalLayers == 3) 
        if (layerInfo(4) > 1 ) 
            error('Invalid number of neurons in layer 3'); 
        end 
        if (layerInfo(3) < 2) 
            error('Invalid number of neurons in layer 2'); 
        end 
        if (layerInfo(2) < 2) 
            error('Invalid number of neurons in layer 1'); 
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        end 
    end 
    if (totalLayers == 2) 
        if (layerInfo(3) > 1) 
            error('Invalid number of neurons in layer 2'); 
        end 
        if (layerInfo(2) < 2) 
            error('Invalid number of neurons in layer 2'); 
        end 
    end 
    if (totalLayers == 1) 
        if (layerInfo(2) > 1) 
            error('Invalid number of neurons in layer 2'); 
        end 
    end 
     
end 
if nargin<5 
%  options=[1e-6 1]; 
   options=[1 0 0]; 
end 
if nargin<4 
  evalOps=[]; 
end 
 
if any(evalFN<48) %Not a .m file 
  estr=['x=pop(i).chromosome; pop(i).fitness=', evalFN ';'];   
else %A .m file 
  estr=['[ pop(i).chromosome pop(i).fitness]=' evalFN '(pop(i).chromosome,[0 evalOps]);'];  
end 
 
 
% Generate random population 
 
pop = struct('fitness', cell(1,populationSize), 'chromosome', {[]}); 
 
for i=1:populationSize 
    neuron.fitness = 0; 
    neuron.chromosome = generateNetwork(size(layerInfo,2), layerInfo, options(1), bounds(1,:), bounds(2,:), 
[options(2:end)]); 
%    if (isEmptyArea(neuron.chromosome)) 
%        neuron.chromosome.op = 0; 
%    end 
     
    pop(i) = neuron; 
    eval(estr); 
end 
 
return; 
 
 

function [x,endPop,bPop,traceInfo] = MNNga (bounds, evalFN, evalOps, 
startPop, opts, termFN, termOps, selectFN,selectOps, xOverFNs, xOverOps, 
mutFNs, mutOps) 

% Version 1.0 
% MNNga 
function [x,endPop,bPop,traceInfo] = MNNga(bounds,evalFN,evalOps,startPop,opts,... 
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 
global class0; 
global class1; 
global config; 
%global range; 
%global minValues; 
% GA run a genetic algorithm 
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts, 
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%                                       termFN,termOps,selectFN,selectOps, 
%                                       xOverFNs,xOverOps,mutFNs,mutOps) 
%                                 
% Output Arguments: 
%   x            - the best solution found during the course of the run 
%   endPop       - the final population  
%   bPop         - a trace of the best population 
%   traceInfo    - a matrix of best and means of the ga for each generation 
% 
% Input Arguments: 
%   bounds       - a matrix of upper and lower bounds on the variables 
%   evalFN       - the name of the evaluation .m function 
%   evalOps      - options to pass to the evaluation function ([NULL]) 
%   startPop     - a matrix of solutions that can be initialized 
%                  from initialize.m 
%   opts         - [epsilon prob_ops display] change required to consider two  
%                  solutions different, prob_ops 0 if you want to apply the 
%                  genetic operators probabilisticly to each solution, 1 if 
%                  you are supplying a deterministic number of operator 
%                  applications and display is 1 to output progress 0 for 
%                  quiet. ([1e-6 1 0]) 
%   termFN       - name of the .m termination function (['maxGenTerm']) 
%   termOps      - options string to be passed to the termination function 
%                  ([100]). 
%   selectFN     - name of the .m selection function (['normGeomSelect']) 
%   selectOpts   - options string to be passed to select after 
%                  select(pop,#,opts) ([0.08]) 
%   xOverFNS     - a string containing blank seperated names of Xover.m 
%                  files (['arithXover heuristicXover simpleXover'])  
%   xOverOps     - A matrix of options to pass to Xover.m files with the 
%                  first column being the number of that xOver to perform 
%                  similiarly for mutation ([2 0;2 3;2 0]) 
%   mutFNs       - a string containing blank seperated names of mutation.m  
%                  files (['boundaryMutation multiNonUnifMutation ... 
%                           nonUnifMutation unifMutation']) 
%   mutOps       - A matrix of options to pass to Xover.m files with the 
%                  first column being the number of that xOver to perform 
%                  similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0]) 
 
 
if (0)          % For debuging pourpose, change it to 1 to validate parameters 
    n=nargin; 
    if n<13 
      disp('Insufficient arguements')  
    end 
    if n<3 %Default evalation opts. 
      evalOps=[]; 
    end 
    if n<5 
      opts = [1e-6 1 0]; 
    end 
    if isempty(opts) 
      opts = [1e-6 1 0]; 
    end 
     
    if n<12 %Default muatation information 
         mutFNs=['defMutation']; 
         mutOps=[size(startPop,2) 1 1 1 1]; 
    end 
    if n<10 %Default crossover information 
        xOverFNs=['defXover']; 
        xOverOps=[size(startPop,2) 0.6]; 
 
    end 
    if n<9 %Default select opts only i.e. roullete wheel. 
      selectOps=[]; 
    end 
    if n<8 %Default select info 
      selectFN=['normGeomSelect']; 
      selectOps=[0.08]; 
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    end 
    if n<6 %Default termination information 
      termOps=[100]; 
      termFN='maxGenTerm'; 
    end 
    if n<4 %No starting population passed given 
      startPop=[]; 
    end 
    if isempty(startPop) %Generate a population at random 
      %startPop=zeros(80,size(bounds,1)+1); 
    %  startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2)); 
       fprintf('ERROR: Empty initial population\n'); 
       return; 
    end 
end 
 
if any(evalFN<48) %Not using a .m file 
    e1str=['x=c1; c1.fitness=', evalFN ';'];   
    e2str=['x=c2; c2.fitness=', evalFN ';'];   
else %Are using a .m file 
    e1str=['[c1.chromosome c1.fitness]=' evalFN '(c1.chromosome, [gen evalOps]);'];   
    e2str=['[c2.chromosome c2.fitness]=' evalFN '(c2.chromosome, [gen evalOps]);'];   
end 
 
%minValues = bounds(:,1)'; 
%range = (bounds(:,2)-bounds(:,1))'; 
if (config.dbg.plotEvolution)  
    if (config.dbg.fixedAxis) 
        close all; 
        figure(1); 
        cla; 
        if (size(bounds,2) == 2) 
            a = [bounds(2,1), bounds(1,1)+bounds(2,1), bounds(2,2), bounds(1,2)+bounds(2,2)]; 
        elseif (size(bounds,2) == 3) 
            a = [bounds(2,1), bounds(1,1)+bounds(2,1), bounds(2,2), bounds(1,2)+bounds(2,2) , bounds(2,3), 
bounds(1,3)+bounds(2,3)]; 
        end 
        axis(a); 
        axis square; 
        axis manual; 
%        box; 
%        grid; 
     
        if (config.dbg.showTheBest) 
            figure(2); 
            cla; 
            axis(a); 
            axis square; 
            axis manual; 
%            box; 
%            grid; 
        end 
    else 
        close all; 
    end 
end 
 
 
popSize      = size(startPop,2);  %Number of individuals in the pop 
%endPop       = zeros(popSize,xZomeLength); %A secondary population matrix 
endPop        = struct('fitness', cell(1,popSize), 'chromosome', {[]}); 
 
c1.fitness   = 0; 
c1.chromosome= []; 
c2.fitness   = 0; 
c2.chromosome= []; 
epsilon      = opts(1);                 %Threshold for two fittness to differ 
oval         = max([startPop.fitness]); %Best value in start pop 
bFoundIn     = 1;                %Number of times best has changed 
done         = 0;                       %Done with simulated evolution 
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gen          = 1;                %Current Generation Number 
collectTrace = (nargout>3);         %Should we collect info every gen 
floatGA      = opts(2)==1;              %Probabilistic application of ops 
display      = opts(3);                 %Display progress  
 
subPopSize = 2*fix(selectOps(1)*popSize/2); 
 
while(~done) 
  %Elitist Model 
  [bval,bindx] = max([startPop.fitness]); %Best of current pop 
  best =  startPop(bindx); 
 
  if collectTrace 
    traceInfo(gen,1) = gen;                         %current generation 
    traceInfo(gen,2) = startPop(bindx).fitness;           %Best fittness 
    traceInfo(gen,3) = mean([startPop.fitness]);          %Avg fittness 
    traceInfo(gen,4) = std([startPop.fitness]);  
  end 
   
  if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol 
    if display 
      fprintf(1,'\n%d %f\n',gen,bval);          %Update the display 
    end 
    stat.generation = gen; 
    stat.organism = startPop(bindx); 
    bPop(bFoundIn)=[stat]; %Update bPop Matrix 
 
    bFoundIn=bFoundIn+1;                      %Update number of changes 
    oval=bval;                                %Update the best val 
  else 
    if display 
      fprintf(1,'%d ',gen);               %Otherwise just update num gen 
    end 
  end 
   
  endPop = feval(selectFN,startPop,[gen selectOps]); %Select 
  totalOrg = subPopSize+1; 
  totalFitness = sum([endPop.fitness]); 
  fit = [endPop.fitness]/totalFitness; 
  fit = cumsum(fit); 
   
   
    mutationParams = ((1.0-(0.4).*(startPop(bindx).fitness))).* mutOps(1,:); 
 
    mutationParams = [gen, startPop(bindx).fitness, mutationParams]; 
 
    while totalOrg < popSize 
         
        val1 = find(fit-rand>=0); 
        val2 = find(fit-rand>=0); 
     [c1.chromosome c2.chromosome] = 
feval(xOverFNs,endPop(val1(1)).chromosome,endPop(val2(1)).chromosome,bounds,[gen xOverOps(1,:)]); 
  
     c1.chromosome = feval(mutFNs,c1.chromosome,bounds,mutationParams); 
     c2.chromosome = feval(mutFNs,c2.chromosome,bounds,mutationParams); 
 
        eval(e1str); 
        eval(e2str); 
 
         
     endPop(totalOrg)=c1; 
     endPop(totalOrg+1)=c2; 
        totalOrg = totalOrg+2; 
    end 
     
    % maxGen = termOps(1); 
     
   
    %((maxGen-gen)/maxGen) 
    %mutationParams = (3*(1.1-startPop(bindx).fitness)).* mutOps(i,:); 
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%    mutationParams = [gen, startPop(bindx).fitness, mutOps(i,:)]; 
       
  gen=gen+1; 
  done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done 
  startPop=endPop;    %Swap the populations 
   
  [bval,bindx] = min([startPop.fitness]); %Keep the best solution 
  startPop(bindx) = best;   %replace it with the worst 
  
  if (config.dbg.plotEvolution)                 % Plot the evolution of the population 
      if (config.dbg.showTheBest)               % Plot the best organism 
          figure(2); 
          cla; 
          hold on; 
          if (size(class0,2) == 2) 
              plot(class0(:,1),class0(:,2),'ks'); 
              plot(class1(:,1),class1(:,2),'go'); 
          elseif (size(class0,2) == 3) 
              plot3(class0(:,1),class0(:,2),class0(:,3),'ks'); 
              plot3(class1(:,1),class1(:,2),class1(:,3),'go'); 
          end 
          plotNetwork(best.chromosome); 
      end 
      figure(1); 
      cla; 
      hold on; 
 
      if (size(class0,2) == 2) 
          plot(class0(:,1),class0(:,2),'ks'); 
          plot(class1(:,1),class1(:,2),'go'); 
      elseif (size(class0,2) == 3) 
          plot3(class0(:,1),class0(:,2),class0(:,3),'ks'); 
          plot3(class1(:,1),class1(:,2),class1(:,3),'go'); 
      end 
       
      sz = size(startPop,2); 
      for n=1:sz 
          plotNetwork(startPop(n).chromosome);          % plot a single network 
      end 
 
      if (config.dbg.delay > 0) 
          pause(config.dbg.delay);                          % Delay the output 
      end 
  end 
end 
 
[bval,bindx] = max([startPop.fitness]); 
if display  
  fprintf(1,'\n%d %f\n',gen,bval);    
end 
 
x=startPop(bindx); 
stat.generation = gen; 
stat.organism = startPop(bindx); 
bPop(bFoundIn)=stat; 
 
 
if collectTrace 
  traceInfo(gen,1)=gen;   %current generation 
  traceInfo(gen,2)=startPop(bindx).fitness; %Best fittness 
  traceInfo(gen,3)=mean([startPop.fitness]); %Avg fittness 
  traceInfo(gen,4)=std([startPop.fitness]);  
end 
 
 
 



 

 

130

function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps) 

% Version 1.0 
% Fitness Function 
% Inputs-  
%   chromosomeIn - chromosome to be evaluated 
%   evalOps - 
% Outputs: 
%   chromosomeOut - (must be the same as the input) 
%   fitness  = how good is the organism 
%   fitness = (1/N)(total patterns classified correctly)/total Test Patterns 
 
function [chromosomeOut, fitness] = defEvalFN(chromosomeIn, evalOps) 
global class0; 
global class1; 
 
 
chromosomeOut = chromosomeIn; 
% Evaluate patterns of class0 
evalClass0 = evalMorphologicalPerceptron(chromosomeIn, class0); 
totalCorrectClass0 = size(find(evalClass0==0),1)/size(evalClass0,1); 
 
% Evaluate patterns of class1 
evalClass1 = evalMorphologicalPerceptron(chromosomeIn, class1); 
totalCorrectClass1 = size(find(evalClass1==1),1)/size(evalClass1,1); 
 
%totalTestPatterns = size(class0,1)+size(class1,1); 
fitness = (totalCorrectClass0+totalCorrectClass1)/2; 
 
if (getTotalLayers(chromosomeIn)> 1) 
 
    totalNeurons = size(chromosomeIn.inputs,2); 
    cumSum = 0; 
    if (chromosomeIn.op == 0) 
        total = 0; 
        for n=1:totalNeurons 
            for m=1:totalNeurons 
                if (n ~= m) 
                    total = total+operateOrNet(chromosomeIn.inputs(n),chromosomeIn.inputs(m)); 
                    cumSum = cumSum +1; 
                end 
            end 
        end 
    else 
        total = 0; 
        for n=1:totalNeurons 
            for m=1:totalNeurons 
                if (n ~= m) 
                    total = total+operateAndNet(chromosomeIn.inputs(n),chromosomeIn.inputs(m)); 
                    cumSum = cumSum +1; 
                end 
            end 
        end 
    end 
    fitness = (fitness+2*(cumSum-total)/cumSum)/3; 
end 
 
 
 

function [o1] = defMutation(p1, bounds, opts) 
% Version 1.0 
% opts = [gen, bestFitness, totalMut, mutProb, mutOpProb, mutWeightProb,mutRProbm mutRange] 
function [o1] = defMutation(p1, bounds, opts) 
global class0; 
global class1; 
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o1 = p1; 
if (size(opts) ~= 8) 
    error('Invalid number of parameters'); 
end 
bestFitness = opts(2); 
mutProb  = opts(4); 
mutOpProb = opts(5); 
mutWeightProb = opts(6); 
mutRProb = opts(7); 
mutRange = opts(8); 
 
%Adjust mutation parameters according to the fitness 
if (bestFitness >= 0.96) 
    mutProb = mutProb*.05; 
    mutOpProb = mutOpProb*.05; 
    mutRProb = mutRProb*0.05; 
    mutRange = mutRange*0.10; 
end 
 
%if (rand > mutProb)  
%    return;c 
%end 
 
 
totalLayers = getTotalLayers(p1); 
if     (totalLayers == 1)  
    if (rand < mutOpProb) 
        o1.op = abs(p1.op-1); 
    end 
     
     
    if (rand < mutWeightProb)  
        rangeMin = bounds(1,:)*mutRange; 
        rangeMax = rangeMin; 
         
        sz = size(o1.weights,2); 
%        o1.weights = o1.weights+(bounds(1,:).*(0.5*(rand(1,sz)-0.25))); 
        rangeMax = min(p1.weights+rangeMax , (bounds(1,:)+bounds(2,:)))-p1.weights; 
        rangeMin = max(p1.weights-rangeMin,bounds(2,:))-p1.weights; 
        mutation = (rangeMax-rangeMin).*rand(1,sz)+rangeMin; 
         
        o1.weights = p1.weights+mutation;    
    end 
     
%    if (rand < mutRProb) 
        sz = size(o1.r,2); 
%        o1.r = 2*round(rand(1,sz))-1; 
        o1.r = o1.r .*(2*(rand(1,sz)<mutRProb)-1); 
%    end 
     
elseif (totalLayers == 2) 
    % To be implemented 
    level = round(rand*0.80+0.20)+1; 
    if (level == 1) 
%        pos11 = round(rand*(size(o1.inputs,2)-1))+1; 
%        if (rand < mutOpProb) 
            o1.op = abs(p1.op-1); 
%            o1.op = rand*.6; 
%        end 
    elseif (level == 2) 
        sz = size(o1.inputs,2); 
        totalMutBranches = round(rand*(sz-1))+1; 
         
        totalInputs1 = size(o1.inputs,2); 
        for n=1:totalMutBranches 
            pos11 = round(rand*(totalInputs1-1))+1; 
 
            if (rand < mutOpProb) 
                o1.inputs(pos11).op = abs(p1.inputs(pos11).op-1); 
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            end 
     
            if (rand < mutWeightProb)  
                rangeMin = bounds(1,:)*mutRange; 
                rangeMax = rangeMin; 
                 
                sz = size(p1.inputs(pos11).weights,2); 
             
                rangeMax = min(p1.inputs(pos11).weights+rangeMax, (bounds(1,:)+bounds(2,:)))-p1.inputs(pos11).weights; 
                rangeMin = max(p1.inputs(pos11).weights-rangeMin,  bounds(2,:))-p1.inputs(pos11).weights; 
                mutation = (rangeMax-rangeMin).*rand(1,sz)+rangeMin;                     % this should be optimized 
                 
                 
                o1.inputs(pos11).weights = p1.inputs(pos11).weights+mutation; 
            end 
     
            if (rand < mutRProb) 
                sz = size(o1.inputs(pos11).r,2); 
                o1.inputs(pos11).r = 2*round(rand(1,sz))-1; 
            end 
        end 
    end 
elseif (totalLayers == 3) 
    level = round(rand)+2; 
 
    if (level == 3) 
        pos11 = round(rand*(size(o1.inputs,2)-1))+1; 
        pos12 = round(rand*(size(o1.inputs(pos11).inputs,2)-1))+1; 
 
        if (rand < mutOpProb) 
            o1.inputs(pos11).inputs(pos12).op = round(rand); 
        end 
     
        if (rand < mutWeightProb)  
            sz = size(o1.inputs(pos11).inputs(pos12).weights,2); 
            o1.inputs(pos11).inputs(pos12).weights = o1.inputs(pos11).inputs(pos12).weights+(bounds(1,:).*(0.5*(rand(1,sz)-
0.25))); 
        end 
     
        sz = size(o1.inputs(pos11).inputs(pos12).r,2); 
        for i=1:sz 
            if (rand < mutRProb) 
                o1.inputs(pos11).inputs(pos12).r(i) = 2*round(rand)-1; % Generate a vector of [-1 1] values 
            end 
        end     
    else 
        pos11 = round(rand*(size(o1.inputs,2)-1))+1; 
        if (rand < mutOpProb) 
            o1.inputs(pos11).op = round(rand); 
        end 
         
    end 
%    if (isEmptyArea(o1)) 
%        o1.op = 0; 
%    end 
end; 
 
 
 
 

function [o1,o2] = defXover(p1,p2, bounds, Opts) 

% Version 2.0 
% Crossover function 
%  
function [o1,o2] = defXover(p1,p2, bounds, Opts) 
global class0; 
global class1; 
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global config; 
if (config.dbg.showCrossover) 
    figure(10); 
    cla; 
    plot(class0(:,1),class0(:,2),'g*'); 
    plot(class1(:,1),class1(:,2),'kx'); 
    plotNetwork(p1); 
 
    figure(11); 
    cla; 
    plot(class0(:,1),class0(:,2),'g*'); 
    plot(class1(:,1),class1(:,2),'kx'); 
    plotNetwork(p2); 
end 
o1 = p1; 
o2 = p2; 
totalLayers = min(getTotalLayers(p1), getTotalLayers(p2)); 
 
 
if (totalLayers == 1) 
        % arithmetic crossover from matlab toolbox 
         
    a = rand; 
         
    o1.op        = round (p1.op*a+p2.op*(1-a)); 
    o1.r         = 2*((p1.r*(a)+(p2.r*(1-a)))>=0)-1; 
    o1.weights   = p1.weights*a+p2.weights*(1-a); 
    o1.inputs    = p1.inputs; 
         
    o2.op        = round (p2.op*a+p1.op*(1-a)); 
    o2.r         = 2*((p2.r*(a)+(p1.r*(1-a)))>=0)-1; 
    o2.weights   = p2.weights*a+p1.weights*(1-a); 
    o2.inputs    = p2.inputs; 
elseif (totalLayers == 2) 
    cutPoint = round(rand+1); 
 
    if (cutPoint == 1) 
%        fprintf('\tcutPoint: 1 \t'); 
%        if (rand < 0.25) 
            rnd = round(rand*2); 
            rnd = bitor(rnd, 2^round(rand)); 
             
%            fprintf('cross: ['); 
            if (bitand(rnd, 1))                                 %cross the operation 
%                fprintf('op'); 
                a = rand; 
                o1.op        = round (p1.op*a+p2.op*(1-a));     
                o2.op        = round (p2.op*a+p1.op*(1-a)); 
            end 
 
            if (bitand(rnd, 2))                                 % cross a branch 
                %totalBranches = round(rand*(size(p1.inputs,2)-1))+1; 
                totalBranches = size(p1.inputs,2); 
                cnt = 1; 
                branchInfo = round(rand*(2^totalBranches-1)); 
                for n=1:totalBranches 
                    if (bitand(branchInfo, cnt)) 
%                        fprintf(' swap-branch'); 
                        % Find a neuron in the first parent 
                        pos11 = n; 
                        pos21 = n; 
                        %sz = size(p1.inputs,2); 
                        %pos11 = round(rand*(sz-1))+1; 
 
                        % Find the neuron in the second parent 
                        %sz = size(p2.inputs,2); 
                        %pos21 = round(rand*(sz-1))+1; 
 
                        neuron = p1.inputs(pos11); 
                        o1.inputs(pos11) = p2.inputs(pos21); 
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                        o2.inputs(pos21) = neuron; 
                    end                     
                    cnt = cnt*2; 
                end 
            end 
%            fprintf('] ');             
             
    elseif (cutPoint == 2) 
        totalNeurons = size(p1.inputs,2); 
 
%        fprintf('\tcutPoint: 2 \t totalNeurons: %d', totalNeurons); 
 
         
        branchInfo = round(rand*(2^totalNeurons-1)); 
        cnt = 1; 
        for n=1:totalNeurons 
 
            if (bitand(branchInfo, cnt)) 
            % Find the neuron in the first parent 
            pos11 = n; 
            pos21 = n; 
            %sz = size(p1.inputs,2); 
            %pos11 = round(rand*(sz-1))+1; 
            % neuron1 = mnn1.inputs(pos11); 
 
            % Find the neuron in the second parent 
            %sz = size(p2.inputs,2); 
            %pos21 = round(rand*(sz-1))+1; 
            %   neuron2 = mnn2.inputs(pos21); 
 
            rnd = round(rand*3); 
            rnd = bitor(rnd, 2^(round(rand*2))); 
 
            a = rand; 
         
%            fprintf('\t\tcross:%d [',n); 
             
            if (bitand(rnd, 1)) 
 %               fprintf('op'); 
                o1.inputs(pos11).op        = round (p1.inputs(pos11).op*a+p2.inputs(pos21).op*(1-a)); 
                o2.inputs(pos21).op        = round (p2.inputs(pos21).op*a+p1.inputs(pos11).op*(1-a)); 
            end 
         
            if (bitand(rnd, 2)) 
%                fprintf(' weights'); 
                o1.inputs(pos11).weights   = p1.inputs(pos11).weights*a+p2.inputs(pos21).weights*(1-a); 
                o2.inputs(pos21).weights   = p2.inputs(pos21).weights*a+p1.inputs(pos11).weights*(1-a); 
            end 
            if (bitand(rnd, 4)) 
%                fprintf(' r'); 
                sz = size(p1.inputs(pos11).r,2); 
                aa = rand(1,sz); 
                o1.inputs(pos11).r         = 2*(((p1.inputs(pos11).r).*aa+((p2.inputs(pos21).r).*(1-aa)))>=0)-1; 
                o2.inputs(pos21).r         = 2*(((p2.inputs(pos21).r).*aa+((p1.inputs(pos11).r).*(1-aa)))>=0)-1; 
%                o1.inputs(pos11).r         = 2*((p1.inputs(pos11).r*(a)+(p2.inputs(pos21).r*(1-a)))>=0)-1; 
%                o2.inputs(pos21).r         = 2*((p2.inputs(pos21).r*(a)+(p1.inputs(pos11).r*(1-a)))>=0)-1; 
            end 
%            fprintf('] '); 
            end 
            cnt = cnt*2; 
 
        end % for 
          
        if (isEmptyArea(o1)) 
%            fprintf('[fixed o1] '); 
            o1.op = 0; 
        end 
        if (isEmptyArea(o2)) 
%            fprintf('[fixed o2] '); 
            o2.op = 0; 
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        end 
%        fprintf('\n'); 
    end  % elseif (cutPoint == 2) 
 
elseif (totalLayers == 3) 
    % Find the neuron in the first parent 
    mnn1 = p1; 
    sz = size(mnn1.inputs,2); 
    pos11 = round(rand*(sz-1))+1; 
    mnn1 = mnn1.inputs(pos11); 
 
    sz = size(mnn1.inputs,2); 
    pos12 = round(rand*(sz-1))+1; 
    neuron1 = mnn1.inputs(pos12); 
 
    % Find the neuron in the second parent 
    mnn2 = p2; 
    sz = size(mnn2.inputs,2); 
    pos21 = round(rand*(sz-1))+1; 
    mnn2 = mnn2.inputs(pos21); 
 
    sz = size(mnn2.inputs,2); 
    pos22 = round(rand*(sz-1))+1; 
    neuron2 = mnn2.inputs(pos22); 
 
    % Swap the neuron content 
    o1.inputs(pos11).inputs(pos12).op = neuron2.op; 
    o1.inputs(pos11).inputs(pos12).r = neuron2.r; 
    o1.inputs(pos11).inputs(pos12).weights = neuron2.weights; 
    o1.inputs(pos11).inputs(pos12).inputs = neuron2.inputs; 
     
    o2.inputs(pos21).inputs(pos22).op = neuron1.op; 
    o2.inputs(pos21).inputs(pos22).r = neuron1.r; 
    o2.inputs(pos21).inputs(pos22).weights = neuron1.weights; 
    o2.inputs(pos21).inputs(pos22).inputs = neuron1.inputs; 
end 
 
if (config.dbg.showCrossover) 
    figure(20); 
    cla; 
    plot(class0(:,1),class0(:,2),'g*'); 
    plot(class1(:,1),class1(:,2),'kx'); 
    plotNetwork(o1); 
     
    figure(21); 
    cla; 
    plot(class0(:,1),class0(:,2),'g*'); 
    plot(class1(:,1),class1(:,2),'kx'); 
    plotNetwork(o2); 
    pause; 
end 
 
 

function [res] = operateAndNet(net1, net2) 

% Version 1.0 
% Determine of the hyperspace of a network is empty 
function [res] = operateAndNet(net1, net2) 
 
res = 0; 
totalInputs = size(net1.inputs,2); 
equal = 1; 
    Sxi = net1.op*2-1; 
    Syi = net2.op*2-1; 
    inside = 1; 
    for i=1:totalInputs 
        if (net1.weights(i) > net2.weights(i)) 
            if ((Sxi*net1.r(i) < 0) & (Syi*net2.r(i) > 0)) 
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                res = 1; 
                return; 
            end 
        end 
        if (net1.weights(i) < net2.weights(i)) 
            if ((Sxi*net1.r(i) > 0) & (Syi*net2.r(i) < 0)) 
                res = 1; 
                return; 
            end 
        end 
         
        if (net1.r(i) ~= net2.r(i)) 
            equal = 0; 
        end 
        if (equal)  
            if (Sxi*net1.r(i) > 0 & net2.weights(i) < net1.weights(i)) 
                inside = 0; 
            elseif (Sxi*net1.r(i) < 0 & net2.weights(i) > net1.weights(i)) 
                inside = 0; 
            end 
        end 
             
    end 
     
    if (~equal & net1.op == net2.op) 
        res = 1; 
    end 
    if (inside) 
        res = 1; 
    end 
 
 

function [res] = operateOrNet(net1, net2) 
function [res] = operateOrNet(net1, net2) 
 
%Defermine if the hyper space of two vectors is different 
totalInputs = size(net1.r,2); 
%net1.r = net1.r*(net1.op*2-1); 
%net2.r = net2.r*(net2.op*2-1); 
if (net1.op == 0)       % or 
    if (net2.op ==0) 
        inside = 1; 
        allSameDirection = 1; 
        intersection = 0; 
        for n=1:totalInputs 
            if (net1.r(n) == net2.r(n)) 
                if (net1.r(n) < 0) 
                    if (net2.weights(n) < net1.weights(n)) 
                        inside = 0; 
                    end 
                else 
                    if (net2.weights(n) > net1.weights(n)) 
                        inside = 0; 
                    end 
                end 
            else 
                allSameDirection = 0; 
                if (net1.r(n) < 0) 
                    if (net2.weights(n) < net1.weights(n)) 
                        intersection = 1; 
                    end 
                else 
                    if (net2.weights(n) > net1.weights(n)) 
                        intersection = 1; 
                    end 
                end 
            end; 
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        end 
        if (allSameDirection & inside) 
            res = 1; 
            return; 
        end 
        if (allSameDirection & ~inside) 
            res = 0; 
            return; 
        end 
        if (intersection) 
            res = 0; 
            return; 
        end 
        res = 1; 
        return; 
    else 
        allInside = 1; 
        allOutside = 1; 
        allSameDirection = 1; 
        intersection = 0; 
         
        for n=1:totalInputs 
            if (net1.r(n) == net2.r(n)) 
                allSameDirection = 0; 
            end 
            if (net1.r(n) > 0) 
                if (net2.weights(n) > net1.weights(n)) 
                    allOutside = 0; 
                else 
                    allInside = 0; 
                end 
                if (net2.weights(n) < net1.weights(n) & net2.r(n) < 0) 
                    intersection = 1; 
                end 
            else 
                if (net2.weights(n) < net1.weights(n)) 
                    allOutside = 0; 
                else 
                    allInside = 0; 
                end 
                if (net2.weights(n) > net1.weights(n) & net2.r(n) > 0) 
                    intersection = 1; 
                end 
            end 
        end 
        if (allInside) 
            res = 0; 
            return; 
        end 
        if (allSameDirection & allOutside) 
            res = 1; 
            return; 
        end        
        if (~allInside & ~allOutside & intersection) 
            res = 0; 
            return; 
        end 
        res = 1; 
    end     
elseif(net1.op == 1)        % and 
    if (net2.op == 1)       % and 
        inside = 1; 
        allSameDirection = 1; 
        for n=1:totalInputs 
            if (net1.r(n) ~= net2.r(n)) 
                allSameDirection = 0; 
            end 
            if (net1.r(n) < 0) 
                if (net2.weights(n) <= net1.weights(n)) 
                    inside = 0; 
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                end                 
            else 
                if (net2.weights(n) >= net1.weights(n)) 
                    inside = 0; 
                end                 
            end 
        end 
        if (inside & allSameDirection) 
            res = 1; 
            return 
        end 
        res = 0; 
        return; 
    else 
        inside = 1; 
        for n=1:totalInputs 
            if (net1.r(n) ~= net2.r(n)) 
                inside = 0; 
            end 
            if ((net1.r(n)>0) & (net1.weights(n) < net2.weights(n))) 
                inside = 0; 
                break; 
            elseif((net1.r(n)<0) & (net1.weights(n) > net2.weights(n))) 
                inside = 0; 
                break; 
            end 
        end 
        res = inside; 
        return; 
    end 
end 
 
 

function[newPop] = roulette2(oldPop,options) 

function[newPop] = roulette2(oldPop,options) 
%roulette is the traditional selection function with the probability of 
%surviving equal to the fittness of i / sum of the fittness of all individuals 
% 
%function[newPop] = roulette(oldPop,options) 
%newPop  - the new population selected from the oldPop 
%oldPop  - the current population 
%options - [gen] options  
 
if (size(options) < 2) 
    error('Incorrect options'); 
end 
%Get the parameters of the population 
totalIn = 2*fix(options(2)*size(oldPop,2)/2); 
 
numSols = size(oldPop,2); 
totalFit = sum([oldPop.fitness]); 
fit = [oldPop.fitness]'; 
%fit = [oldPop.fitness]' / totalFit;  
 
x = zeros(numSols,2); 
x(:,1) =[numSols:-1:1]'; 
[y x(:,2)] = sort(fit); 
 
totalIn = numSols-totalIn; 
newIn = 1; 
for n=numSols:-1:totalIn 
    newPop(newIn) = oldPop(x(n,2)); 
    newIn = newIn+1; 
end 
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function [layers] = getTotalLayers(mnn) 

% Version 1.0 
% Returns the total number of layers of a morphological neural network 
 
function [layers] = getTotalLayers(mnn) 
 
numberOfInputs = size(mnn.inputs,2); 
layers = 1; 
if (numberOfInputs ~= 0) 
    subLayers = 0; 
    for i=1:numberOfInputs 
        subLayers = max(getTotalLayers(mnn.inputs(i)), subLayers); 
    end; 
    layers = layers+subLayers; 
end 
 
 

function [params] = getDefaultParams(opts) 
% Version 2.0 
% Default parameter configuration for the training algorithm 
function [params] = getDefaultParams(opts)  
 
% Genetic Algorithm Parameters 
params.defaultGA = 'MNNga'; 
params.popSize = 10;                                          % Default population size 
params.xOverFn = 'defXover';                                    % Default crossover function 
params.xOverParams = [params.popSize];                     % Total number of crossover applied to 
                                                                    %   the population 
params.mutFn = 'defMutation';                                   % Default mutation option 
params.mutParams = [params.popSize 1.0 1.0 1.0 1.0];       % Mutation options 
                                      % [numOfMutations, mutProb, mutOpProb, mutWeightProb,mutRProb, mutRange] 
                                      %  numOfMutations - total number of mutation operations applied 
                                      %         over the population 
                                      %  mutProb - global probability of changing an organism 
                                      %  mutWeightProb - prob. of changing the weights 
                                      %  mutRProb - prob. of changing the R values 
                                      %  mutRange - a percentage of the range in which the weights can change 
params.evalFn = 'defEvalFN';                                  % Default evaluation function 
params.evalParams = [];                                          % Evaluation function's parameters 
params.termFn = 'maxGenTerm';                                 % Default temination function 
params.termParams = [100 1.0];                                   % Termination fucntion parameters 
                                                % [numOfGenerations minProbRequired] 
                                                % numOfGenerations - max. number of generations 
                                                % minProbRequired - min. prob. requiered to complete the evolution 
params.selectFn = 'normGeomSelect';               % Default selection function 
params.selectParams = [0.33];                        % selecti 
                                                        % [normProb] - normal distribution parameter 
params.opts = [1e-6 1 0];                         %  
 
% Mophological Neural Network Parameters 
params.variableArchitecture = 0;         % Variable or fixed architecture? (not used) 
params.allowInfinite = 0;                % Allow infinite weights? 
params.infiniteOps = 0;                  % [infProb] - probability that a weight could be inf. 
params.layers = [1];                     % Layer configuration 
                                            %    Each entry represents a layer level 
                                            %    The value of the entries represent the number of neurons  
                                            %       connected to parent in the next level 
                                            %       Ex.  [ 3, 3, 1]                                            
 
% Debuging Options 
params.dbg.plotEvolution = 0;            % Plot all organism of the population 
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params.dbg.showTheBest = 0;              % Show the best organism  
params.dbg.delay = 0.5;                  % Delay between snapshots 
params.dbg.fixedAxis = 1;                % Draw the test patterns using fixed axes 
params.dbg.showCrossover = 0;            % Draw the evolution of the organism during the crossover 
 

A.7 INDIRECT ENCODING METHOD 

 
This section provides all the necessary functions used by the Indirect Encoding 

Method. 

 

function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets, 
nconfig) 
% Version 1.1 
% Train a MLMP using Indirect Encoding 
% testPatterns - a M by N matrix, it contains M patterns of dimension N 
% classes      - a M by 2 matrix where M is the number of classes. 
%                Each element in the first column is the number of test patterns that belongs to the  
%                  class at the corresponding index 
%                The second row contains the dimension of each test pattern class 
%                NOTE: all the test patterns must contains be of the same dimension 
% targets       an matrix 
% networkConf   see getDefaultConfig() 
 
function [net, traceInfo] = IndirectTrainMNN(testPatterns, classes, targets, nconfig) 
global class0; 
global class1; 
global config; 
 
config = nconfig; 
% Validate the inputs 
sz = size(testPatterns); 
if (sz(1) < 2) 
    error('\nERROR: Insuficient number of \''testPatterns\''. At least two test patterns are needed\n'); 
end 
if (sz(2) < 2) 
    error('\nERROR: Invalid dimension of the \''testPatterns\''. The minimum dimenison should be 2\n'); 
end 
[numberOfOutputs, totalClassesTargets] = size(targets); 
 
if (numberOfOutputs < 2) 
    error(sprintf('\nERROR: Insuficient number of outputs specified in \''targets\''.At least two outputs are 
required.\n\tCurrent value: %d',numberOfOutputs)); 
end 
 
% Verify the number of classes must be less than or equal to 2*(number of outputs) 
totalClasses = size(classes,1); 
if (totalClasses > numberOfOutputs*2) 
    error(sprintf('\nERROR: The number of outputs defined in the \''targets\''parameter must be %d',(totalClasses+1)/2)); 
end 
if (2*totalClassesTargets < 2) 
    error(sprintf('\nERROR: Insuficient number of classes in the target definition. \n\tAt least two classes are 
required.\n\tCurrent value: %d',totalClassesTargets)); 
end 
if (totalClasses < 2) 
    error(sprintf('\nERROR: Insuficient number of classes in the \''classes\'' definition.\n\tAt least two classes are 
required.\n\tCurrent value: %d',totalClasses)); 
end 
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% Sum all the elements in the class 
pos = [cumsum(classes(:,1))]; 
% Add append a 0 value at the begining of the vector and remove the last one. 
pos = [0; pos(1:end-1,1)]+1; 
 
% Initialize the resulting net to null 
net = []; 
 
% For each output, define the network 
net = struct('op', cell(1,totalClassesTargets), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]}); 
 
traceInfo = struct('trace', {[]}); 
for output=1:totalClassesTargets 
     
    % Regroup the test patterns 
    fprintf('  Training output: %d\n',output); 
    groups = find(targets(:,output)==0); 
    totalGroups = size(groups,1); 
    class0 = []; 
     
    % Verify the class with the output value of 0 at the output index(output) exist!. 
    if (totalGroups == 0) 
        error('ERROR: Invalid class definition. The target with 0 on evey index must be defined'); 
    end; 
    for class=1:totalGroups 
        begn = pos(groups(class)); 
        final = begn+classes(groups(class))-1; 
        class0 = [class0; testPatterns(begn:final,:)]; 
    end         
    groups = find(targets(:,output)==1); 
    totalGroups = size(groups,1); 
     
    class1 = []; 
    for class=1:totalGroups 
        begn = pos(groups(class)); 
        final = begn+classes(groups(class))-1; 
        class1 = [class1; testPatterns(begn:final,:)]; 
    end  
     
    [res, trace] = NNmorphologicalGA(class0, class1, nconfig); 
    traceInfo(output).trace = trace; 
    net(output) = res; 
end 
 
return 
 
 

function [res, traceInfo] = NNmorphologicalGA(c0, c1, params) 

function [res, traceInfo] = NNmorphologicalGA(c0, c1, params) 
% Declaracion de variable globales 
res = 0; 
global asciiString; 
global Range; 
global numOfBits; 
global binString;       %  
global maxValue; 
global numOfChars; 
global varBounds; 
global numOfPoints; 
global minDist; 
global gPoints; 
global bPoints; 
 
global worstEval; 
populationSize =params.popSize; 
 
gPoints = c0; 
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bPoints = c1; 
 
if (size(gPoints,1) > 50)  
    gPoints = gPoints(1:50,:); 
end 
 
numOfPoints = size(gPoints,1); 
 
hold off; 
plot(gPoints(:,1),gPoints(:,2),'r.');%'r.' 
hold on; 
plot(bPoints(:,1),bPoints(:,2),'k.'); 
%hold on; 
 
 
tPoints = [gPoints; bPoints]; 
 
gPointsSz = size(gPoints,1); 
bPointsSz = size(bPoints,1); 
 
minDist = []; 
for z =1:size(tPoints,2) 
    dist = 1e10; 
    for m= 1:size(tPoints,1)-1 
        for n =m+1:size(tPoints,1); 
            cDist = abs(tPoints(m,z) - tPoints(n,z)); 
            if ((cDist > 0) && (cDist < dist) ) 
                dist = cDist; 
            end 
        end; 
    end 
    minDist(1,z) = dist; 
end 
minDist = minDist/2; 
 
 
varBounds = []; 
for n = 1:numOfPoints 
    varBounds(n,1) = 0; 
    varBounds(n,2) = 2^(ceil(log2(numOfPoints)))-1; 
end 
varBounds(numOfPoints+1,1) = 0; 
varBounds(numOfPoints+1,2) = 2^(numOfPoints-1)-1; 
 
pop = generatePop(populationSize, varBounds); 
 
 
[sol, pop,bPop,traceInfo] = ga(varBounds, params.evalFn, params.evalParams, pop, params.opts, params.termFn,... 
    params.termParams, params.selectFn, params.selectParams, params.xOverFn, params.xOverParams,params.mutFn, 
params.mutParams); 
 
solSize = size(sol,2)-1; 
sol(1:solSize) = sol(1:solSize)+1; 
groups = sol(end); 
groups = double(dec2bin(groups,numOfPoints-1)-48); 
 
limits = find(groups>0); 
 
if (size(limits,2) == 0) 
    limits = [limits (solSize)]; 
else 
    if (limits(size(limits,2)) ~= solSize) 
        limits = [limits (solSize)]; 
    end 
end; 
totalGroups = size(limits,2); 
 
 
subGroup = []; 
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totalPointsInside = 0; 
prev = 1; 
 
root.op = 0;        %or 
root.r = []; 
root.weights = []; 
root.inputs = []; 
 
for i = 1:totalGroups 
    subGroup = sol(prev:limits(i)); 
    fprintf('%i ',subGroup);     
    fprintf('-'); 
     
     
    testpts = subGroup; 
     
    minDim = gPoints(testpts(1),:); 
    maxDim = minDim; 
     
    vecDimension = size(gPoints,2); 
         
    for n=1:size(testpts,2) 
        for vs=1:vecDimension 
            if (gPoints(testpts(n),vs) < minDim(1,vs)) 
                minDim(1,vs) = gPoints(testpts(n),vs); 
            end; 
            if (gPoints(testpts(n),vs) > maxDim(1,vs)) 
                maxDim(1,vs) = gPoints(testpts(n),vs); 
            end; 
        end; 
    end; 
    eq = find(minDim == maxDim); 
    maxDim(eq) = maxDim(eq)+minDist(eq); 
    minDim(eq) = minDim(eq)-minDist(eq); 
     
    mnn1.op = 1;        %and 
    mnn1.r = -ones(1,vecDimension); 
    mnn1.weights = minDim; 
    mnn1.inputs = []; 
 
    mnn2.op = 1;        %and 
    mnn2.r = ones(1,vecDimension); 
    mnn2.weights = maxDim; 
    mnn2.inputs = []; 
     
    mnn3.op = 1;        %and 
    mnn3.r = [1 1]; 
    mnn3.weights = [0 0]; 
    mnn3.inputs = [mnn1 mnn2]; 
    
    root.r = [root.r 1]; 
    root.weights = [root.weights 0]; 
    root.inputs = [root.inputs mnn3]; 
%    if ((size(subGroup,2) > 1) && (maxDim(1,2)-minDim(1,2)>0) && (maxDim(1,1)-minDim(1,1)>0)) 
%        square = [minDim(1,1) minDim(1,2); maxDim(1,1) minDim(1,2); maxDim(1,1) maxDim(1,2); minDim(1,1) 
maxDim(1,2); minDim(1,1) minDim(1,2)]; 
%    else 
%        square = [minDim(1,1)-minDist(1) minDim(1,2)-minDist(2); maxDim(1,1)+minDist(1) minDim(1,2)-minDist(2); 
maxDim(1,1)+minDist(1) maxDim(1,2)+minDist(2); minDim(1,1)-minDist(1) maxDim(1,2)+minDist(2); minDim(1,1)-
minDist(1) minDim(1,2)-minDist(2)]; 
%    end 
 
 
%    plot(square(:,1), square(:,2),'-'); 
%    hold on;     
     
    prev = limits(i)+1; 
end 
 
if (size(root.inputs,2) <2)  
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    root = root.inputs(1); 
end 
res = root; 
 
 

function [pop] = generatePop(popSize, bounds) 

function [pop] = generatePop(popSize, bounds) 
global numOfPoints; 
 
%numOfPoints = 4; 
bits = calcbits(bounds,1); 
 
pts = []; 
for n=1:numOfPoints 
    pts = [pts (n-1)]; 
end; 
 
pop = []; 
popp = []; 
 
for n=1:popSize 
    totalPts = numOfPoints; 
    res = []; 
    for m=1:numOfPoints 
        pos = round(rand*(totalPts-1))+1; 
        val = pts(pos); 
        pts(:,pos) = []; 
        pts = [pts val]; 
 
        res = [res val]; 
        totalPts = totalPts-1; 
    end; 
     
    res = [res round(bounds(end,2)*rand)]; 
    [r, val] = NNmorphologicalEval(res,[]); 
%    res = res-1; 
    res = [res val]; 
    popp = [popp; res]; 
     
    resBits = []; 
    for m=1:size(bits,2) 
        resBits = [resBits double(dec2bin(res(m),bits(m))-48)]; 
    end 
    resBits = [resBits res(end)]; 
    pop = [pop; resBits]; 
end 
%popp 
 
 

function [c] = NNmorphologicalMutation(parent,bounds,Ops) 
function [c] = NNmorphologicalMutation(parent,bounds,Ops) 
bits = calcbits(bounds,1); 
%fprintf('mutation\n'); 
%for n=1:size(parent,2) 
%    fprintf('%i ',parent(n)); 
%end 
 
n = 0; 
for i=1:size(bits,2)-1 
    n = n+bits(i); 
end 
value = parent(n+1:n+bits(end)); 
for i=1:size(value,2) 
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    if (rand<0.08) 
        if (value(i) == 1) value(i) =0; 
        else 
            value(i) = 1; 
        end 
    end 
end 
parent(n+1:n+bits(end)) = value(1:end); 
 
bits = calcbits(bounds,1); 
 
p1 = []; 
sz = size(bits,2); 
pos = 1; 
for b=1:sz-1 
    num1 = 0; 
    for n=1:bits(b) 
        num1 = num1*2+parent(pos); 
        pos = pos+1; 
    end 
    p1 = [p1 num1]; 
end 
 
i1 = fix(size(p1,2)*rand)+1; 
i2 = fix(size(p1,2)*rand)+1; 
e = p1(i1); 
p1(i1) = p1(i2); 
p1(i2) = e; 
 
rc1 = []; 
for b=1:size(bits,2)-1 
    rc1 = [rc1 int8(dec2bin(p1(b),bits(b))-48)]; 
end 
parent(1:size(rc1,2)) = rc1(1:end); 
 
parent = removeOverlap(parent,bits); 
c = parent; 
 
 

function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops) 
function [c1,c2] = NNmorphologicalXover(m1,m2,bounds, Ops) 
% con 
% m1 - array of bits 
%  
%c1=m1; 
%c2=m2; 
%c1 
%c2 
%return; 
 
%fprintf('morphologicalXover\n'); 
bits = calcbits(bounds,1); 
 
p1 = []; 
p2 = []; 
sz = size(bits,2); 
pos = 1; 
for b=1:sz-1 
    num1 = 0; 
    num2 = 0; 
    for n=1:bits(b) 
        num1 = num1*2+m1(pos); 
        num2 = num2*2+m2(pos); 
        pos = pos+1; 
    end 
    p1 = [p1 num1]; 
    p2 = [p2 num2]; 
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end 
 
%p1 = p1+1; 
%p2 = p2+1; 
 
c1 = p1; 
c2 = p2; 
 
%return; 
sz=size(p1,2); 
n=floor(sz/2); 
%cut1 = round(rand*(n/2-1))+1;         %Generate random cut point U(1,n/2); 
%cut2 = round(rand*(sz-cut1-1))+cut1;  %Generate random cut point U(cut1+1,n-1); 
cut1 = round(rand*(n-1)+0.5); %Generate random cut point U(1,n/2); 
cut2 = round(rand*(sz-cut1-1)+1+cut1); %Generate random cut point U(cut1+1,n-1); 
pm1=p1(1:end); 
pm2=p2(1:end); 
c1=p1; 
c2=p2; 
for i=[1:cut1 (cut2+1):sz] 
  pm1=replace(pm1,p2(i),-1); 
  pm2=replace(pm2,p1(i),-1); 
end 
 
c1((cut1+1):cut2)=p2(find(pm2>=0)); 
c2((cut1+1):cut2)=p1(find(pm1>=0)); 
 
%c1 = c1-1; 
%c2 = c2-1; 
%fprintf('out c1 and c2'); 
 
rc1 = []; 
rc2 = []; 
for b=1:size(bits,2)-1 
    rc1 = [rc1 double(dec2bin(c1(b),bits(b))-48)]; 
    rc2 = [rc2 double(dec2bin(c2(b),bits(b))-48)]; 
end 
c1 = m1; 
c2 = m2; 
 
sz = size(rc1,2); 
c1(1:sz) = rc1(1:end); 
c2(1:sz) = rc2(1:end); 
 
 

function [sol, val] = NNmorphologicalEval(sol,parameters) 
function [sol, val] = NNmorphologicalEval(sol,parameters) 
 
global numOfPoints; 
global worstEval; 
%sol = sol; 
%val = 10; 
%return; 
%numOfPoints = 8; 
 
solSize = size(sol,2)-1; 
sol(1:solSize) = sol(1:solSize)+1; 
groups = sol(end); 
groups = double(dec2bin(groups,numOfPoints-1)-48); 
 
limits = find(groups>0); 
 
if (size(limits,2) == 0) 
    limits = [limits (solSize)]; 
else 
    if (limits(size(limits,2)) ~= solSize) 
        limits = [limits (solSize)]; 
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    end 
end; 
totalGroups = size(limits,2); 
 
 
subGroup = []; 
 
totalPointsInside = 0; 
prev = 1; 
for i = 1:totalGroups 
    subGroup = sol(prev:limits(i)); 
%    fprintf('%i ',subGroup);     
%    fprintf('-'); 
     
    totalPointsInside = totalPointsInside + testPoints(subGroup); 
     
    prev = limits(i)+1; 
end 
 
%sol = sol; 
val = 1.0/(((totalPointsInside+1)^2)*(totalGroups)); 
%if (totalPointsInside >= 0)  
%    fprintf(' %i\n',val); 
%end 
sol(1:end-1) = sol(1:end-1)-1; 
 
 
 
 

function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop) 

function [done] = NNmorphologicalFitnessFoundTerm(ops,bPop,endPop) 
global numOfChars; 
global maxValue; 
%bPop 
[x,y] = size(bPop); 
%fprintf('El mejor string: %s\n',char(bPop(x, 2:numOfChars+1))); 
currentGen = ops(1); 
maxGen = ops(2); 
%done = currentGen >= maxGen  | maxValue <= bPop(x,y); 
done = currentGen >= maxGen; 
%bPop 
%endPop 
 
 

function [params] = getDefaultParams(opts)  
% Version 2.0 
% Default parameter configuration for the training algorithm 
function [params] = getDefaultParams(opts)  
 
% Genetic Algorithm Parameters 
params.popSize = 10;                                          % Default population size 
params.xOverFn = 'NNmorphologicalXover';                                    % Default crossover function 
params.xOverParams = [0.8 3];                     % Total number of crossover applied to 
                                                                    %   the population 
params.mutFn = 'NNmorphologicalMutation';                                   % Default mutation option 
params.mutParams = [0.07 7];       % Mutation options 
                                      % [numOfMutations, mutProb, mutOpProb, mutWeightProb,mutRProb, mutRange] 
                                      %  numOfMutations - total number of mutation operations applied 
                                      %         over the population 
                                      %  mutProb - global probability of changing an organism 
                                      %  mutWeightProb - prob. of changing the weights 
                                      %  mutRProb - prob. of changing the R values 
                                      %  mutRange - a percentage of the range in which the weights can change 
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params.evalFn = 'NNmorphologicalEval';                                  % Default evaluation function 
params.evalParams = [];                                          % Evaluation function's parameters 
params.termFn = 'NNmorphologicalFitnessFoundTerm';                                 % Default temination function 
params.termParams = [100 1.0];                                   % Termination fucntion parameters 
                                                % [numOfGenerations minProbRequired] 
                                                % numOfGenerations - max. number of generations 
                                                % minProbRequired - min. prob. requiered to complete the evolution 
params.selectFn = 'roulette';               % Default selection function 
params.selectParams = [0.08];                        % selecti 
                                                        % [normProb] - normal distribution parameter 
params.opts = [1 0 1];                         %  
 
% Mophological Neural Network Parameters 
params.variableArchitecture = 0;         % Variable or fixed architecture? 
params.allowInfinite = 0;                % Allow infinit weights? 
params.infiniteOps = 0;                  % [infProb] - probability that a weight could be inf. 
params.layers = [1];                     % Layer configuration 
                                            %    Each entry represents a layer level 
                                            %    The value of the entries represent the number of neurons  
                                            %       connected to parent in the next level 
                                            %       Ex.  [ 3, 3, 1]                                            
 
% Debuging Options 
params.dbg.plotEvolution = 0;            % Plot all organism of the population 
params.dbg.showTheBest = 0;              % Show the best organism  
params.dbg.delay = 0.5;                  % Delay between snapshots 
params.dbg.fixedAxis = 1;                % Draw the test patterns using fixed axes 
params.dbg.showCrossover = 0;            % Draw the evolution of the organism during the crossover 
 

 

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop, 
opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)
function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... 
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 
global minDist; 
% GA run a genetic algorithm 
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts, 
%                                       termFN,termOps,selectFN,selectOps, 
%                                       xOverFNs,xOverOps,mutFNs,mutOps) 
%                                 
% Output Arguments: 
%   x            - the best solution found during the course of the run 
%   endPop       - the final population  
%   bPop         - a trace of the best population 
%   traceInfo    - a matrix of best and means of the ga for each generation 
% 
% Input Arguments: 
%   bounds       - a matrix of upper and lower bounds on the variables 
%   evalFN       - the name of the evaluation .m function 
%   evalOps      - options to pass to the evaluation function ([NULL]) 
%   startPop     - a matrix of solutions that can be initialized 
%                  from initialize.m 
%   opts         - [epsilon prob_ops display] change required to consider two  
%                  solutions different, prob_ops 0 if you want to apply the 
%                  genetic operators probabilisticly to each solution, 1 if 
%                  you are supplying a deterministic number of operator 
%                  applications and display is 1 to output progress 0 for 
%                  quiet. ([1e-6 1 0]) 
%   termFN       - name of the .m termination function (['maxGenTerm']) 
%   termOps      - options string to be passed to the termination function 
%                  ([100]). 
%   selectFN     - name of the .m selection function (['normGeomSelect']) 
%   selectOpts   - options string to be passed to select after 
%                  select(pop,#,opts) ([0.08]) 
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%   xOverFNS     - a string containing blank seperated names of Xover.m 
%                  files (['arithXover heuristicXover simpleXover'])  
%   xOverOps     - A matrix of options to pass to Xover.m files with the 
%                  first column being the number of that xOver to perform 
%                  similiarly for mutation ([2 0;2 3;2 0]) 
%   mutFNs       - a string containing blank seperated names of mutation.m  
%                  files (['boundaryMutation multiNonUnifMutation ... 
%                           nonUnifMutation unifMutation']) 
%   mutOps       - A matrix of options to pass to Xover.m files with the 
%                  first column being the number of that xOver to perform 
%                  similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0]) 
 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
 
%%$Log: ga.m,v $ 
%Revision 1.10  1996/02/02  15:03:00  jjoine 
% Fixed the ordering of imput arguments in the comments to match 
% the actual order in the ga function. 
% 
%Revision 1.9  1995/08/28  20:01:07  chouck 
% Updated initialization parameters, updated mutation parameters to reflect 
% b being the third option to the nonuniform mutations 
% 
%Revision 1.8  1995/08/10  12:59:49  jjoine 
%Started Logfile to keep track of revisions 
% 
 
 
n=nargin; 
if n<2 | n==6 | n==10 | n==12 
  disp('Insufficient arguements')  
end 
if n<3 %Default evalation opts. 
  evalOps=[]; 
end 
if n<5 
  opts = [1e-6 1 0]; 
end 
if isempty(opts) 
  opts = [1e-6 1 0]; 
end 
 
if any(evalFN<48) %Not using a .m file 
  if opts(2)==1 %Float ga 
    e1str=['x=c1; c1(xZomeLength)=', evalFN ';'];   
    e2str=['x=c2; c2(xZomeLength)=', evalFN ';'];   
  else %Binary ga 
    e1str=['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=',... 
 evalFN ';']; 
  end 
else %Are using a .m file 
  if opts(2)==1 %Float ga 
    e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];   
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    e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];   
  else %Binary ga 
    e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ... 
 '(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];   
  end 
end 
 
 
if n<6 %Default termination information 
  termOps=[100]; 
  termFN='maxGenTerm'; 
end 
if n<12 %Default muatation information 
  if opts(2)==1 %Float GA 
  mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']; 
    mutOps=[4 0 0;6 termOps(1) 3;4 termOps(1) 3;4 0 0]; 
  else %Binary GA 
    mutFNs=['binaryMutation']; 
    mutOps=[0.05]; 
  end 
end 
if n<10 %Default crossover information 
  if opts(2)==1 %Float GA 
    xOverFNs=['arithXover heuristicXover simpleXover']; 
    xOverOps=[2 0;2 3;2 0]; 
  else %Binary GA 
    xOverFNs=['simpleXover']; 
    xOverOps=[0.6]; 
  end 
end 
if n<9 %Default select opts only i.e. roullete wheel. 
  selectOps=[]; 
end 
if n<8 %Default select info 
  selectFN=['normGeomSelect']; 
  selectOps=[0.08]; 
end 
if n<6 %Default termination information 
  termOps=[100]; 
  termFN='maxGenTerm'; 
end 
if n<4 %No starting population passed given 
  startPop=[]; 
end 
if isempty(startPop) %Generate a population at random 
  %startPop=zeros(80,size(bounds,1)+1); 
  startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2)); 
end 
 
if opts(2)==0 %binary 
  bits=calcbits(bounds,opts(1)); 
end 
 
xOverFNs=parse(xOverFNs); 
mutFNs=parse(mutFNs); 
 
xZomeLength  = size(startPop,2);  %Length of the xzome=numVars+fittness 
numVar       = xZomeLength-1;   %Number of variables 
popSize      = size(startPop,1);  %Number of individuals in the pop 
endPop       = zeros(popSize,xZomeLength); %A secondary population matrix 
c1           = zeros(1,xZomeLength);  %An individual 
c2           = zeros(1,xZomeLength);  %An individual 
numXOvers    = size(xOverFNs,1);  %Number of Crossover operators 
numMuts      = size(mutFNs,1);   %Number of Mutation operators 
epsilon      = opts(1);                 %Threshold for two fittness to differ 
epsilon      = 1e-6; 
oval         = max(startPop(:,xZomeLength)); %Best value in start pop 
bFoundIn     = 1;    %Number of times best has changed 
done         = 0;                       %Done with simulated evolution 
gen          = 1;    %Current Generation Number 



 

 

151

collectTrace = (nargout>3);   %Should we collect info every gen 
floatGA      = opts(2)==1;              %Probabilistic application of ops 
display      = opts(3);                 %Display progress  
 
while(~done) 
  %Elitist Model 
  [bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop 
  best =  startPop(bindx,:); 
 
  if collectTrace 
    traceInfo(gen,1)=gen;             %current generation 
    traceInfo(gen,2)=startPop(bindx,xZomeLength);       %Best fittness 
    traceInfo(gen,3)=mean(startPop(:,xZomeLength));     %Avg fittness 
    traceInfo(gen,4)=std(startPop(:,xZomeLength));  
  end 
   
  if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol 
    if display 
      fprintf(1,'\n%d %f\n',gen,bval);          %Update the display 
    end 
    if floatGA 
      bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix 
    else 
      bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)... 
   startPop(bindx,xZomeLength)]; 
    end 
    bFoundIn=bFoundIn+1;                      %Update number of changes 
    oval=bval;                                %Update the best val 
  else 
    if display 
      fprintf(1,'%d ',gen);               %Otherwise just update num gen 
    end 
  end 
   
  endPop = feval(selectFN,startPop,[gen selectOps]); %Select 
   
  if floatGA %Running with the model where the parameters are numbers of ops 
    for i=1:numXOvers, 
      for j=1:xOverOps(i,1), 
 a = round(rand*(popSize-1)+1);  %Pick a parent 
 b = round(rand*(popSize-1)+1);  %Pick another parent 
 xN=deblank(xOverFNs(i,:));  %Get the name of crossover function 
 [c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(i,:)]); 
  
 if c1(1:numVar)==endPop(a,(1:numVar)) %Make sure we created a new  
   c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating 
 elseif c1(1:numVar)==endPop(b,(1:numVar)) 
   c1(xZomeLength)=endPop(b,xZomeLength); 
 else  
   %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
   eval(e1str); 
 end 
 if c2(1:numVar)==endPop(a,(1:numVar)) 
   c2(xZomeLength)=endPop(a,xZomeLength); 
 elseif c2(1:numVar)==endPop(b,(1:numVar)) 
   c2(xZomeLength)=endPop(b,xZomeLength); 
 else  
   %[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]); 
   eval(e2str); 
 end       
  
 endPop(a,:)=c1; 
 endPop(b,:)=c2; 
      end 
    end 
   
    for i=1:numMuts, 
      for j=1:mutOps(i,1), 
 a = round(rand*(popSize-1)+1); 
 c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),bounds,[gen mutOps(i,:)]); 
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 if c1(1:numVar)==endPop(a,(1:numVar))  
   c1(xZomeLength)=endPop(a,xZomeLength); 
 else 
   %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
   eval(e1str); 
 end 
 endPop(a,:)=c1; 
      end 
    end 
     
  else %We are running a probabilistic model of genetic operators 
    for i=1:numXOvers, 
      xN=deblank(xOverFNs(i,:));  %Get the name of crossover function 
      cp=find(rand(popSize,1)<xOverOps(i,1)==1); 
%      cp 
      if rem(size(cp,1),2) cp=cp(1:(size(cp,1)-1)); end 
       
%      cp 
      cp=reshape(cp,size(cp,1)/2,2); 
      for j=1:size(cp,1) 
 a=cp(j,1); b=cp(j,2);  
 [endPop(a,:) endPop(b,:)] = feval(xN,endPop(a,:),endPop(b,:),... 
   bounds,[gen xOverOps(i,:)]); 
      end 
    end 
    for i=1:numMuts 
      mN=deblank(mutFNs(i,:)); 
      for j=1:popSize 
 endPop(j,:) = feval(mN,endPop(j,:),bounds,[gen mutOps(i,:)]); 
 eval(e1str); 
      end 
    end 
  end 
   
  gen=gen+1; 
  done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done 
  startPop=endPop;    %Swap the populations 
   
  [bval,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution 
  startPop(bindx,:) = best;   %replace it with the worst 
end 
 
[bval,bindx] = max(startPop(:,xZomeLength)); 
if display  
  fprintf(1,'\n%d %f\n',gen,bval);    
end 
 
x=startPop(bindx,:); 
if opts(2)==0 %binary 
  x=b2f(x,bounds,bits); 
  bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)... 
      startPop(bindx,xZomeLength)]; 
else 
  bPop(bFoundIn,:)=[gen startPop(bindx,:)]; 
end 
 
if collectTrace 
  traceInfo(gen,1)=gen;   %current generation 
  traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness 
  traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness 
end 
 

A.8 CARTESIAN GENETIC PROGRAMMING METHOD 
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This section provides all the necessary functions used by the Cartesian Genetic 

Programming method. 

function [net] = CGPTrainMNN(testPatterns, classes, targets, nconfig) 
% Version 1.1 
% Train a Morphological Neural Network 
% testPatterns - a M by N matrix, it contains M patterns of dimension N 
% classes      - a M by 2 matrix where M is the number of classes. 
%                Each element in the first column is the number of test patterns that belongs to the  
%                  class at the corresponding index 
%                The second row contains the dimension of each test pattern class 
%                NOTE: all the test patterns must contains be of the same dimension 
% targets       an matrix 
% networkConf   see getDefaultConfig() 
 
function [net, traceInfo] = CGPTrainMNN(testPatterns, classes, targets, nconfig) 
 
global class0; 
global class1; 
global F; 
global FTotal; 
global param; 
 
ga = nconfig; 
% Validate the inputs 
sz = size(testPatterns); 
if (sz(1) < 2) 
    error('\nERROR: Insuficient number of \''testPatterns\''. At least two test patterns are needed\n'); 
end 
if (sz(2) < 2) 
    error('\nERROR: Invalid dimension of the \''testPatterns\''. The minimum dimenison should be 2\n'); 
end 
[numberOfOutputs, totalClassesTargets] = size(targets); 
 
if (numberOfOutputs < 2) 
    error(sprintf('\nERROR: Insuficient number of outputs specified in \''targets\''. At least two outputs are 
required.\n\tCurrent value: %d',numberOfOutputs)); 
end 
 
% Verify the number of classes must be less than or equal to 2*(number of outputs) 
totalClasses = size(classes,1); 
if (totalClasses > numberOfOutputs*2) 
    error(sprintf('\nERROR: The number of outputs defined in the \''targets\'' parameter must be %d',(totalClasses+1)/2)); 
end 
if (2*totalClassesTargets < 2) 
    error(sprintf('\nERROR: Insuficient number of classes in the target definition. \n\tTAt least two classes are 
required.\n\tCurrent value: %d',totalClassesTargets)); 
end 
if (totalClasses < 2) 
    error(sprintf('\nERROR: Insuficient number of classes in the \''classes\'' definition.\n\tAt least two classes are 
required.\n\tCurrent value: %d',totalClasses)); 
end 
 
% Sum all the elements in the class 
pos = [cumsum(classes(:,1))]; 
% Add append a 0 value at the begining of the vector and remove the last one. 
pos = [0; pos(1:end-1,1)]+1; 
 
% Initialize the resulting net to null 
net = []; 
 
% For each output, define the network 
net = struct('op', cell(1,totalClassesTargets), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]}); 
traceInfo = struct('trace', {[]}); 
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for output=1:totalClassesTargets 
     
    % Regroup the test patterns 
    fprintf('  Training output: %d\n',output); 
    groups = find(targets(:,output)==0); 
    totalGroups = size(groups,1); 
    class0 = []; 
     
    % Verify the class with the output value of 0 at the output index(output) exist!. 
    if (totalGroups == 0) 
        error('ERROR: Invalid class definition. The target with 0 on evey index must be defined'); 
    end; 
    for class=1:totalGroups 
        begn = pos(groups(class)); 
        final = begn+classes(groups(class))-1; 
        class0 = [class0; testPatterns(begn:final,:)]; 
    end         
    groups = find(targets(:,output)==1); 
    totalGroups = size(groups,1); 
     
    class1 = []; 
    for class=1:totalGroups 
        begn = pos(groups(class)); 
        final = begn+classes(groups(class))-1; 
        class1 = [class1; testPatterns(begn:final,:)]; 
    end  
     
    param = CGPDefaultParam(size(class0,2), ga.layers, ga.connections); 
 
    [F, FTotal] = CGPInitialize(class0, param); 
 
    [initialPopulation, bounds] = CGPGeneratePop2(ga.popSize, ga.evalFn, ga.evalParam); 
 
    [sol, pop,bPop,trace] = CGPga2(bounds, ga.evalFn, ga.evalParam, initialPopulation, [0.000001 1 1], 
['CGPFitnessFoundTerm2'],... 
        [ga.maxGen], ga.selectFn, ga.selectParam, ga.xOverFn, ga.xOverParam, ga.mutationFn, ga.mutationParam); 
    res = CGPDecodeNet(sol(1,1:end-1), F, FTotal, param); 
 
    traceInfo(output).trace = trace; 
   % trace(output) = traceInfo; 
    net(output) = res; 
end 
 
 

 

function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps, 
startPop,opts,termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps 
,mutFNs,mutOps) 
function [x,endPop,bPop,traceInfo] = CGPGA2(bounds,evalFN,evalOps,startPop,opts,... 
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 
% GA run a genetic algorithm 
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts, 
%                                       termFN,termOps,selectFN,selectOps, 
%                                       xOverFNs,xOverOps,mutFNs,mutOps) 
%                                 
% Output Arguments: 
%   x            - the best solution found during the course of the run 
%   endPop       - the final population  
%   bPop         - a trace of the best population 
%   traceInfo    - a matrix of best and means of the ga for each generation 
% 
% Input Arguments: 
%   bounds       -  
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%   evalFN       -  
%   evalOps      -  
%   startPop     -  
%   opts         - [epsilon prob_ops display] change required to consider two  
%                  solutions different, prob_ops 0 if you want to apply the 
%                  genetic operators probabilisticly to each solution, 1 if 
%                  you are supplying a deterministic number of operator 
%                  applications and display is 1 to output progress 0 for 
%                  quiet. ([1e-6 1 0]) 
%   termFN       -  
%   termOps      -  
%   selectFN     -  
%   selectOpts   -  
%   xOverFNS     -  
%   xOverOps     -  
%   mutFNs       -  
%   mutOps       -  
 
global F; 
global FTotal; 
global param; 
global class0; 
global class1; 
 
n=nargin; 
if n<2 | n==6 | n==10 | n==12 
  disp('Insufficient arguements')  
end 
if n<3 %Default evalation opts. 
  evalOps=[]; 
end 
if n<5 
  opts = [1e-6 1 0]; 
end 
if isempty(opts) 
  opts = [1e-6 1 0]; 
end 
 
  if opts(2)==1 %Float ga 
    e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];   
    e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];   
  end 
 
if n<6 %Default termination information 
  termOps=[100]; 
  termFN='maxGenTerm'; 
end 
if n<12 %Default muatation information 
  if opts(2)==1 %Float GA 
    mutFNs=['binaryMutation']; 
    mutOps=[0.05]; 
  end 
end 
if n<10 %Default crossover information 
  if opts(2)==1 %Float GA 
    xOverFNs=['simpleXover']; 
    xOverOps=[0.6]; 
  end 
end 
if n<9 %Default select opts only i.e. roullete wheel. 
  selectOps=[]; 
end 
if n<8 %Default select info 
  selectFN=['normGeomSelect']; 
  selectOps=[0.08]; 
end 
if n<6 %Default termination information 
  termOps=[100]; 
  termFN='maxGenTerm'; 
end 
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if n<4 %No starting population passed given 
  startPop=[]; 
end 
if isempty(startPop) %Generate a population at random 
     
end 
 
 
xOverFNs=parse(xOverFNs); 
mutFNs=parse(mutFNs); 
 
xZomeLength  = size(startPop,2);      %Length of the xzome=numVars+fittness 
numVar       = xZomeLength-1;       %Number of variables 
popSize      = size(startPop,1);      %Number of individuals in the pop 
endPop       = zeros(popSize,xZomeLength); %A secondary population matrix 
c1           = zeros(1,xZomeLength);  %An individual 
c2           = zeros(1,xZomeLength);  %An individual 
numXOvers    = size(xOverFNs,1);      %Number of Crossover operators 
numMuts      = size(mutFNs,1);       %Number of Mutation operators 
epsilon      = opts(1);                 %Threshold for two fittness to differ 
oval         = max(startPop(:,xZomeLength)); %Best value in start pop 
bFoundIn     = 1;                %Number of times best has changed 
done         = 0;                       %Done with simulated evolution 
gen          = 1;                %Current Generation Number 
collectTrace = (nargout>3);       %Should we collect info every gen 
floatGA      = 1;                       %Probabilistic application of ops 
display      = opts(3);                 %Display progress  
 
while(~done) 
  pause(0.05);   
  %Elitist Model 
  [bval,bindx] = max(startPop(:,xZomeLength));          %Best of current pop 
  best =  startPop(bindx,:); 
 
  if collectTrace 
    traceInfo(gen,1)=gen;                           %current generation 
    traceInfo(gen,2)=startPop(bindx,xZomeLength);       %Best fittness 
    traceInfo(gen,3)=mean(startPop(:,xZomeLength));     %Avg fittness 
    traceInfo(gen,4)=std(startPop(:,xZomeLength));  
  end 
   
  if ( (abs(bval - oval)>epsilon) | (gen==1))           %If we have a new best sol 
    if display 
      fprintf(1,'\n%d %f\n',gen,bval);                  %Update the display 
    end 
 
    bPop(bFoundIn,:)=[gen startPop(bindx,:)];           %Update bPop Matrix 
 
    bFoundIn=bFoundIn+1;                                %Update number of changes 
    oval=bval;                                          %Update the best val 
  else 
    if display 
      fprintf(1,'%d ',gen);                             %Otherwise just update num gen 
    end 
  end 
   
  if (0==1) 
      sz = size(startPop,1); 
      for o=1:sz 
          figure(o); 
          hold off; 
          plot(class1(:,1),class1(:,2),'bo'); 
          hold on; 
          plot(class0(:,1),class0(:,2),'gs'); 
           
          plotNetwork2(CGPDecodeNet(startPop(o,1:end-1), F, FTotal, param)); 
%          plotMorphologicalPerceptron(endPop(o,1:end-1)); 
       end 
      % pause;     
   end 



 

 

157

   
  endPop = feval(selectFN,startPop,[gen selectOps]);    %Select 
  totalOrg = size(endPop,1); 
  fit = endPop(:,end); 
  totalFitness = sum(fit); 
  if (totalFitness == 0)  
      totalFitness = 1; 
  end 
  fit = cumsum(fit/totalFitness); 
 
   
  while (totalOrg < popSize)  
      a = find(fit-rand>=0); 
      b = find(fit-rand>=0); 
      a = a(1); 
      b = b(1); 
       
      xN=deblank(xOverFNs(1,:));                      %Get the name of crossover function 
   [c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(1,:)]); 
 
      c1 = feval(mutFNs(1,:),c1,bounds,[gen mutOps(1,:)]); 
   c2 = feval(mutFNs(1,:),c2,bounds,[gen mutOps(1,:)]); 
      eval(e1str); 
      eval(e2str); 
 
         
      endPop(totalOrg+1,:)=c1; 
   endPop(totalOrg+2,:)=c2; 
      totalOrg = totalOrg+2; 
  end 
 
  gen=gen+1; 
  done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done 
  startPop=endPop;    %Swap the populations 
   
  [bval,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution 
  startPop(bindx,:) = best;   %replace it with the worst 
end 
 
[bval,bindx] = max(startPop(:,xZomeLength)); 
if display  
  fprintf(1,'\n%d %f\n',gen,bval);    
end 
 
x=startPop(bindx,:); 
if opts(2)==1 %binary 
  bPop(bFoundIn,:)=[gen startPop(bindx,:)]; 
end 
 
if collectTrace 
  traceInfo(gen,1)=gen;   %current generation 
  traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness 
  traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness 
end 
 
 
 

function [res] = CGPDecodeNet(chrom, F, FTotal, param) 

 
function [res] = CGPDecodeNet(chrom, F, FTotal, param) 
% Decodes a chormosome 
% chrom - an integer array that contains the genes 
% F - matrix that contains all the node functions 
% FTotal - a vector that contains the number of function available for a layer 
% param - default parameters for the GA 
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% Excample of the chromosome 
%chrom = [ 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 4, 1, 2, 5, 1, 2, 6, 1, 2, 7, 1, 2, 8, 1, 2, 9, 1, 2, 10,   4, 5, 1, 3, 4, 2, 5, 6, 3, 7, 8, 4, 
9, 1, 5, 2, 3, 6, 4, 5, 7, 6, 7, 8, 8, 1, 8, 8, 1, 2,   1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1]; 
totalNodes = param.numOfNodes; 
totalLayers = param.numOfLayers; 
numOfInputs = param.numOfInputs; 
 
%lastNode = sum(totalNodes(1:end-1))*(numOfInputs+1); 
lastNode = sum(totalNodes(1:end-1).*(numOfInputs(1:end-1)+1)); 
%%num of Inptus 
%lastNode = totalNodes*(numOfInputs+1)*(totalLayers-1); 
 
connections = chrom(lastNode+1:end-1); 
numOfConnections = size(connections,2); 
 
fnet = F(1,3);  %hard coded 
 
t = 0; 
for n=1:numOfConnections 
    if (connections(n) == 1) 
        net = CGPDecodeNode(chrom, n, totalLayers-1, totalNodes, numOfInputs, F, FTotal); 
         
        fnet.inputs = [fnet.inputs net]; 
        fnet.weights =[fnet.weights 0]; 
        fnet.r = [fnet.r 1]; 
    end 
end     
if (size(fnet.inputs,2) == 0) 
    res = fnet; 
elseif (size(fnet.inputs,2) == 1)  
    res = fnet.inputs(1); 
else 
    res = fnet; 
end 
 
 

function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs, 
F, FTotal) 
function [net] = CGPDecodeNode(chrom, node, level, totalNodes, numOfInputs, F, FTotal) 
 
%pos = 0; 
%for n=1:level-1 
%    pos = pos+totalNodes(n)*(numOfInputs(n)+1); 
%end 
pos = sum(totalNodes(1:level-1).*(numOfInputs(1:level-1)+1))+(node-1)*(numOfInputs(level)+1); 
 
func = chrom(pos+(numOfInputs(level)+1)); 
 
 
net = F(func,level); 
if (level > 1) 
    for n=1:numOfInputs(level) 
        neuron = CGPDecodeNode(chrom, chrom(pos+n),level-1, totalNodes, numOfInputs, F, FTotal); 
        net.inputs = [net.inputs neuron]; 
    end 
end 
 
 

function [param] = CGPDefaultParam(patternSize, numOfNodes, 
numOfInputs) 

function [param] = CGPDefaultParam(patternSize, numOfNodes, numOfInputs) 
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% 
% 
 
if (nargin < 1) 
    patternSize = 2; 
end 
if (nargin < 2) 
    numOfNodes = [20 10 1]; 
end 
if (nargin < 3) 
    numOfInputs = [patternSize, 2, numOfNodes(2)]; 
end; 
param.numOfNodes =  numOfNodes; 
param.numOfLayers = 3; 
param.numOfInputs = numOfInputs; 
 
 
 
 

function [chrom, val] = CGPEval3(chrom,opts) 

% Version 1.0 
% Fitness Function 
% Inputs-  
%   chromosomeIn - chromosome to be evaluated 
%   evalOps - 
% Outputs: 
%   chromosomeOut - (must be the same as the input) 
%   fitness  = how good is the organism 
%   fitness = (1/N)(total patterns classified correctly)/total Test Patterns 
 
function [chrom, val] = CGPEval3(chrom,opts) 
global class0; 
global class1; 
 
global F; 
global FTotal; 
global param; 
 
net = CGPDecodeNet(chrom(1:end-1), F, FTotal, param); 
 
if (size(net.inputs,2) == 0) 
    val = 0.0; 
    return ; 
end 
 
evalClass0 = evalMorphologicalPerceptron(net, class0); 
totalCorrectClass0 = size(find(evalClass0==0),1); 
 
% Evaluate patterns of class1 
evalClass1 = evalMorphologicalPerceptron(net, class1); 
totalCorrectClass1 = size(find(evalClass1==1),1); 
 
 
fitness = (totalCorrectClass0+totalCorrectClass1)/(size(class0,1)+size(class1,1)); 
 
maxBranches = param.numOfNodes(end-1); 
 
totalLayers = getTotalLayers(net); 
%if (totalLayers== 3) 
    totalUsedBranches = 0;  
    totalBranches = size(net.inputs,2); 
    for in=1:totalBranches 
        chromIn = net.inputs(in); 
         
        evalClass0 = evalMorphologicalPerceptron(chromIn, class0); 
        totalCorrectClass0 = size(find(evalClass0==0),1); 
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        if (totalCorrectClass0 ~= 0 && totalCorrectClass0 ~= size(class0,1)) 
            totalUsedBranches = totalUsedBranches +1; 
        end 
    end 
     
    branchPercent = totalUsedBranches/totalBranches; 
 
    fitness = (fitness)*branchPercent *(totalBranches/maxBranches); 
        
%elseif (totalLayers == 2) 
%end 
 
val = fitness; 
 
 

function [done] = CGPFitnessFoundTerm(ops, bPop, endPop) 

function [done] = CGPFitnessFoundTerm(ops, bPop, endPop) 
currentGen = ops(1); 
maxGen = ops(2); 
 
done = (currentGen >= maxGen) || (bPop(end,end) == 1.0); 
 
%bPop(end,end) 
 
 

function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops) 

function [mutated] = CGPMultiPointMutation2(parent,bounds,Ops) 
global param; 
 
mutated = parent; 
 
mutProb = Ops(2); 
mutProb_Branches = 0.24; 
mutProb_Inputs = 0.94; 
mutProb_Weights = 0.90; 
 
%if (rand < mutProb)  
     
    %------------------------------ Mutate Operation/Weights 
     
    if (mutProb_Weights > rand) 
        %totalMut = round(rand*6); 
        sz = size(parent,2)-1; 
        totalNodes = sum(param.numOfNodes(1:end-1)); 
        if (size(Ops,2) < 3)  
            totalMut = fix(totalNodes*0.08); 
        else 
            totalMut = fix(totalNodes*Ops(3)); 
        end 
 
        for n=1:totalMut      
     
            pos = round(rand*(totalNodes-1))+1; 
            %pos = round(rand*(6-1))+1; 
             
            if (pos > param.numOfNodes(1)) 
                t = pos; 
                pos = param.numOfNodes(1)*(param.numOfInputs(1)+1); 
                pos = pos + (t - param.numOfNodes(1))*(param.numOfInputs(2)+1); 
            else 
                 pos = pos*(param.numOfInputs(1)+1); 
            end 
            %pos = pos*(param.numOfInputs+1); 
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            %cs = cumsum(numOfNodes); 
            %p = find(cs < pos) 
            %pos = sum(param.numOfNodes(p).*param.numOfInputs(p))+  (pos - 
cs(size(p,2)+1)*param.numOfInputs(size(p,2)+1)); 
            
             
   
            mutated(pos) = round(rand*(bounds(2,pos) - bounds(1,pos))) + bounds(1,pos); 
        end  
    end 
     
    %--------------------------- Mutate neuron inputs 
    if (mutProb_Inputs > rand) 
        totalNodes = sum(param.numOfNodes(2)); 
        if (size(Ops,2) < 4)  
            totalMut = fix(totalNodes*0.15); 
        else 
            totalMut = fix(totalNodes*Ops(4)); 
        end 
        for n=1:totalMut      
     
            pos = round(rand*(totalNodes-1)); 
            pos = (pos)*(param.numOfInputs(2)+1) + (param.numOfInputs(1)+1)*param.numOfNodes(1); 
            pos = 1+pos + round(rand *(param.numOfInputs(2)-1)); 
       
            mutated(pos) = round(rand*(bounds(2,pos) - bounds(1,pos))) + bounds(1,pos); 
        end  
    end 
    %------------------------------ Mutate branches 
    if (mutProb_Branches > rand) 
        totalNodes = sum(param.numOfNodes(1:end-1)); 
        if (size(Ops,2) < 4)  
            totalMut = fix(totalNodes*0.15); 
        else 
            totalMut = fix(totalNodes*Ops(4)); 
        end 
        sz = param.numOfNodes(end-1); 
        for n=1:totalMut      
     
            pos = round(rand*(sz-1))+1; 
            pos = pos+sum((param.numOfInputs(1:end-1)+1).*param.numOfNodes(1:end-1)); 
   
            mutated(pos) = round(rand*(bounds(2,pos) - bounds(1,pos))) + bounds(1,pos); 
        end  
    end 
%end  
return 
 
 

function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops) 

function [o1, o2] = CGPMultipointXover(p1, p2, bounds, Ops) 
global param; 
 
%o1 = p1; 
%o2 = p2; 
 
xRate = Ops(3); 
numOfBits = 3; 
%numVar = size(p1,2)-1; 
numVar = sum(param.numOfNodes(1:end-1)); 
xRatePerGen = xRate/numVar; 
%fprintf('xRatePerGen prob %d\n',xRatePerGen); 
 
pos = 0; 
o1 = []; 
o2 = []; 
for n = 1: numVar 
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    if (rand < xRatePerGen) 
        s = p1((pos*numOfBits)+1:(pos+1)*numOfBits); 
        o1 = [o1 s]; 
        o2 = [o2 p2((pos*numOfBits)+1:(pos+1)*numOfBits)]; 
    else 
        s = p1((pos*numOfBits)+1:(pos+1)*numOfBits); 
        o2 = [o2 s]; 
        o1 = [o1 p2((pos*numOfBits)+1:(pos+1)*numOfBits)]; 
    end 
    pos = pos +1; 
end 
if (rand < xRatePerGen) 
    s = p1((numVar*numOfBits)+1:end-1); 
    o1 = [o1 s]; 
    o2 = [o2 p2((numVar*numOfBits)+1:end-1)]; 
else 
    s = p1((numVar*numOfBits)+1:end-1); 
    o2 = [o2 s]; 
    o1 = [o1 p2((numVar*numOfBits)+1:end-1)]; 
end 
%c1 = [c1 p1(numVar+1)]; 
%c2 = [c2 p2(numVar+1)]; 
o1 = [o1 0]; 
o2 = [o2 0]; 
 
 

function [F, FTotal] = CGPInitialize(patterns, param) 

function [F, FTotal] = CGPInitialize(patterns, param) 
 
dim = size(patterns,2); 
F1 = CGPGenerateNodesForPatterns(patterns); 
if (0) 
F2 = CGPGenerateNodesForPatterns(zeros(1,dim)); 
else 
net.op = 1;  % max 
net.r = ones(1,param.numOfInputs(2)); 
net.weights = zeros(1,param.numOfInputs(2)); 
net.inputs = []; 
F2 = net; 
net.op = 0;  % min 
net.r = ones(1,param.numOfInputs(2)); 
net.weights = zeros(1,param.numOfInputs(2)); 
net.inputs = []; 
F2 = [F2; net]; 
end 
 
net.op = 0;  % min 
net.r = []; 
net.weights = []; 
net.inputs = []; 
F3 = net; 
 
F = F1; 
FTotal = [size(F1,1), size(F2,1), size(F3,1)]; 
 
F2 = [F2; struct('op', cell(size(F1,1)-FTotal(2),1), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]})]; 
F3 = [F3; struct('op', cell(size(F1,1)-FTotal(3),1), 'r', {[1]}, 'weights', {[1]}, 'inputs', {[]})]; 
F = [F1 F2 F3]; 
 
 

function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps) 

function [initialPop, bounds] = CGPGeneratePop(popSize, evalFN, evalOps) 
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global class0; 
global class1; 
global F; 
global FTotal; 
global param; 
 
%chromosomeSize = (param.numOfLayers-1)*(param.numOfNodes*(param.numOfInputs+1))+param.numOfNodes+1; 
 
initialPop = []; 
bounds = []; 
 
% compute boudaries for each variable in the chromosome 
    pos = 1; 
    layer = 1; 
    for nodes=1:param.numOfNodes(1) 
        i = 1; 
        for inputs=1:param.numOfInputs(1) 
            bounds(1,pos) = inputs; 
            bounds(2,pos) = inputs; 
            pos = pos+1; 
            i = i+1; 
        end 
        bounds(1,pos) = 1; 
        bounds(2,pos) = FTotal(layer); 
        pos = pos+1; 
    end 
    layer = layer+1; 
    i =1; 
    for lyr=layer:param.numOfLayers-1 
        for node=1:param.numOfNodes(lyr) 
            for input=1:param.numOfInputs(lyr) 
                if (0) 
                    bounds(1,pos) = i; 
                    bounds(2,pos) = i; 
                    i = i+1; 
                    if (i > param.numOfNodes(lyr)) 
                        i = 1; 
                    end 
                else 
                    bounds(1,pos) = 1; 
                    bounds(2,pos) = param.numOfNodes(lyr-1); 
                end 
                pos = pos+1; 
            end 
            bounds(1,pos) = 1; 
            bounds(2,pos) = FTotal(lyr); 
            pos = pos+1; 
        end 
        layer = layer +1; 
    end 
     
    for nodes=1:param.numOfNodes(end-1) 
        if (0) 
            if (nodes <=3) 
                bounds(1,pos) = 1; 
                bounds(2,pos) = 1; 
            else 
                bounds(1,pos) = 0; 
                bounds(2,pos) = 0; 
            end 
        else 
            bounds(1,pos) = 0; 
            bounds(2,pos) = 1; 
        end 
        pos = pos +1; 
    end 
    bounds(1,pos) = 1; 
    bounds(2,pos) = FTotal(layer); 
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% generate population 
for n=1:popSize 
    pos = 1; 
    v = size(bounds,2); 
    for n=1:v 
        org(pos) = round((bounds(2,pos)-bounds(1,pos))*rand +bounds(1,pos)); 
        pos = pos+1; 
    end 
    org(pos) = 0;   % temporary fitness value 
    e1str = ['[org, fitness]=' evalFN '(org,[0 evalOps]);'];  
    eval(e1str); 
    org(pos) = fitness; 
     
    initialPop = [initialPop; org]; 
end 
 
return 
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