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Free vehicles are buoyant platforms designed to freely descend through the wa-

ter column when ballasted. A free vehicle gathers samples from the water column

or the ocean bed. Once done sampling, the vehicle releases its ballast, surfaces, and

signals for recovery. Free vehicles are flexible, low cost, tools for marine research and

are designed with an interchangeable payload and full ocean depth deployment capa-

bility. This thesis presents the development of a post-processing navigation system

based on geomagnetic navigation algorithms, suitable for free vehicles. A navigation

solution for free vehicles can facilitate research efforts, by enabling the correlation

of the samples gathered, to its location. Traditional underwater navigation solutions

based on sonar technology can hinder a free vehicle’s payload capabilities or introduce

prohibitive costs. Geomagnetic navigation is a technique that uses magnetic maps

and a strap down compass to determine a vehicle’s position. The technique works

by correlating the vehicle’s path and corresponding magnetic readings to a magnetic

map. The developed system was tested and its navigation performance estimated

by a simulation framework developed for this purpose. The simulation framework

consists of sensor model, a trajectory generator and performance measurements. The
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developed navigation system demonstrated good potential as a navigation solution

and its recommended configuration and sensor performance is presented.
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UN SISTEMA DE NAVEGACIÓN PARA VEHÍCULOS DE CAÍDA Y
ACENSO LIBRE

Por

Jesús R. Torrado Dı́az

mayo 2017

Consejero: Dr. Manuel Jiménez
Departamento: Ingenieŕıa Eléctrica y Computadoras

Los veh́ıculos de descenso y acenso libre son plataformas flotantes diseñadas

para descender libremente través de la columna de agua cuando son lastrados. Un

veh́ıculo de descenso y acenso libre recoge muestras de la columna de agua o del

suelo oceánico. Una vez hecho el muestreo, el veh́ıculo libera su lastre, sube a la

superficie y env́ıa señales para su recuperación. Estos veh́ıculos son herramientas

flexibles, de bajo costo, para la investigación marina y están diseñados con una carga

de sensores intercambiable y la capacidad de llegar a los océanos más profundos. Esta

tesis presenta el desarrollo de un sistema de navegación de post-procesamiento basado

en algoritmos de navegación geomagnética, apto para veh́ıculos de descenso y acenso

libre. Una solución de navegación para estos veh́ıculos puede facilitar los esfuerzos

de investigación, permitiendo la capacidad de asociar una muestra con la localización

donde fue tomada. Las soluciones tradicionales de navegación submarinas basadas

en la tecnoloǵıa sonar pueden limitar las capacidades de llevar carga útil de un de

un veh́ıculo de descenso y cáıda libre o introducir costos prohibitivos. La navegación

geomagnética es una técnica que usa mapas de contornos magnéticos, y una compas

para determinar la posición de un veh́ıculo. La técnica funciona correlacionando la

trayectoria del veh́ıculo y lecturas magnéticas correspondientes a un mapa magnético.
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El sistema desarrollado fue probado y su desempeño de navegación estimado por un

marco de simulación desarrollado para este propósito. El marco de simulación consiste

de modelos de sensores, un generador de trayectoria y medidas de rendimiento. El

sistema de navegación desarrollado demostró un buen potencial como solución de

navegación y su configuración recomendada y su rendimiento esperado se presenta.
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Chapter 1

Introduction

Untethered free-descent/ascent vehicles (free vehicles) are buoyant platforms de-

signed to freely descend through the water column when sufficiently ballasted. Inter-

nal instruments and external scientific payload sample at regular intervals and the

ballast is released by internal logic triggering of burn-wires, or by external galvanic

releases. Upon surfacing, they signal a vessel or ground station for retrieval and are

recovered by surface ships. Designed with an interchangeable payload and full ocean

depth deployment capability, free vehicles are flexible tools for marine research.

A navigation system suitable for free vehicles can facilitate research efforts by

enabling the correlation of the samples gathered, to the location where they were

taken. Traditional solutions like GPS signals cannot penetrate the ocean’s surface

and navigation solutions based on sonar technology hinder the free vehicle’s payload

capabilities, require periodic positioned reference and introduce prohibitive costs.

Inertial Navigation Systems (INS) are self-contained navigation solutions that use

strap down accelerometer and gyroscopes with dead reckoning techniques to provide

estimates of position, parting from a given initial position and initial velocity. Ideal

INS systems provide error free trajectory estimates, however, inherent sensor noise

and other non-ideal characteristics cause estimation errors that grow unbounded with

time. INSs require an external navigation reference to limit their error propagation.

Geomagnetic navigation is a technique that uses magnetic maps, strap down compass

and INS outputs to determine a vehicle’s position. The technique works by correlating
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the vehicle’s path information and corresponding magnetic readings to the magnetic

map. The result of the correlation process will yield the vehicle’s position estimate.

In this thesis we present the theoretical foundation and considerations neces-

sary for INS and geomagnetic navigation. The development and testing of a post-

processing geomagnetic navigation frame work is given. The final navigation solution

is based on a particle filter framework that fuses state information form an INS, mag-

netometer, pressure sensor, and geomagnetic map to produce an estimate location of

a free vehicle. To test and evaluate the expected performance of the navigation sys-

tem a platform for simulated test was developed. The simulation platform consists of

different sensor models, free vehicle trajectory simulators and means of estimating the

positioning performance of a navigation solution. The trajectory generator will sim-

ulate free vehicle trajectories. The sensor models simulate the output of real sensor

models by incorporating the characteristic errors of each sensor. The simulation test

platform is capable of varying the sensor error model performance parameters, sensor

sampling rates, vehicle trajectories, map resolution, deployment time and deployment

area in an effort with the objective of testing the navigation system’s feasibility and

provide insight of expected navigation. The tests, results and analysis of the simu-

lation test performed on the direct configurations of the navigation system are also

given. Finally the recommended navigation system configuration, for free vehicle po-

sition estimation, is presented with its the expected navigation performance evaluate

and some additional considerations for its implementation implementation.

The rest of this thesis is organized as follows. Chapter 2 provides the required

theoretical background necessary for inertial system navigation and geomagnetic navi-

gation. Chapter 2 presents the recent work done by others in the fields of underwater

navigation. The problem statement and objectives of this work are presented in

Chapters 4 and 5. The methodology followed in this research is discussed in Chapter

6. The test and results performed on the developed navigation system are given in
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Chapter 7. Finally, chapters and presents the contribution and conclusion made in

this research.



Chapter 2

Theoretical Background

This Chapter discusses the fundamental concepts of Inertial and Geomagnetic

Navigation, discussing strengths, limitations, and applications in autonomous under

water vehicles (AUVs).

2.1 Strap-Down Inertial Navigation

Strap-down Inertial Navigation is a process that uses information from gyro-

scopes and accelerometers to determine the velocity and position of the vehicle they

are mounted on [1]. The navigation process relies on Newton’s Law of Motion, given

a measure of the acceleration in a body, it is possible to calculate its velocity and

position by successive integration. The navigation process relies on Newton’s Law of

Motion, which states that given a measure of the acceleration in a body, it is possible

to calculate it’s velocity and position by successive integration. Accelerometers can

determine the accelerations exerted on them or a body they are attached to. If a

vehicle is allowed to rotate freely within a navigation frame it becomes necessary to

keep track of the vehicles attitude (or orientation) with respect to said navigation

frame. In order to enable the projection of the body accelerations, measured by the

accelerometer, to the navigation frame. After which they are integrated successively

to estimate the system’s velocity and portion with respect to the navigation frame.

Vehicle attitude can be estimated using strap-down gyroscopes. These devices are

capable of measuring the rotation of a body with respect to an inertial frame. Inertial

4
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navigation systems are self contained navigation solutions, in that they do not rely

on an external signal, outside the system, for navigation [1].

2.1.1 Coordinate Frames

A fundamental aspect of inertial navigation is the definition of coordinate ref-

erence frames. Such frames are used estimate and describe the navigation system’s

position. It is necessary that these coordinate frames have a physical significance to

make terrestrial navigation feasible [1]. Below are some of the most commonly used

reference frames for terrestrial navigation.

� The body frame (b-frame) is an axis set rigidly attached to a vehicle’s body, defined

by the vehicle’s geometry and application [1].

� The inertial frame (i-frame) its origin is at the center of the Earth and its axes are

fixed to the stars (non-rotating). Its axes are defined by Oxi , Oyi , Ozi , where Ozi

coincides with the Earth’s polar axis.

� The Earth frame (e-frame) its origin is at the center of Earth and its axes rotate

with the Earth (axes are fixed to the Earth) and are defined as Oxe , Oye , Oze , where

Oze coincides with the Earth’s polar axis, Oxe lies along the Earth’s equatorial

plane where it intersects the Prime meridian and Oye completes the right handed

coordinate system [1].

� Local Geodetic Frame (n-frame) is a geodetic spacial reference frame, whose origin

is located at the position of the navigation system. Its axes are aligned with the

directions of north, east and vertical down [1].

The n-frame is chosen as the navigation frame to describe the free vehicle’s

velocity and position.

2.1.2 Subscripts and Superscripts

Throughout this document the use of superscripts and subscripts on variables

will be used to denote certain variable attributes. Superscripts will mostly be used
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to describe the coordinate system in which a variable is expressed in. The subscript’s

meaning on a variable will depend on what the variable is describing, see below:

� Velocity vij represents a velocity measurement in respect the jth frame and expressed

in the ith frame.

� Angular Rates ωiji represents the angular rate of the ith frame of reference in respect

to the jth frame of reference, expressed in the ith coordinate frame.

� Rotation Matrix Ci
j represents the relative orientation of the jth frame with respect

to the ith frame, in rotation matrix form.

� Quaternion Attitude Representation qij represents the relative orientation of the jth

frame with respect to the ith, in quaternion form.

2.1.3 Inertial Measurement Unit (IMU)

Inertial Measurement Units, or IMUs, consists of a three-axis accelerometer and

a three-axis gyroscope. Together an IMU and a computer, that uses the sensor data

to produce a navigation estimate yield an Inertial Navigation System (INS).

Accelerometers

Accelerometers measure the specific force (f) exerted on themselves or on a body

they are attached to. Specific force is the difference between true body accelerations

in the i-frame and accelerations due to gravity [1]. It is important to note that

accelerometer readings are relative to inertial (non-accelerating) space. When used

in non-inertial space, the readings have to be compensated for apparent forces or

fictitious forces that arise due to the accelerations of the non-inertial reference frame.

f = a− g (2.1)

where a represents the body accelerations and g is the gravity vector.
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Gyroscopes

Gyroscopes are sensors used to measure the orientation (or attitude) of sensors

themselves, or, a body attached to them, with in respect to inertial frame. The sensor

output can be in the form of angular displacement (from its starting point) or an

angular rate. In case of the latter, the sensor attitude can be calculated by integrating

the sensor’s signal from a known initial attitude of the sensor. The equations necessary

for the attitude tracking using the rotation rates from a gyroscope are presented

below.

2.1.4 Attitude Equations

In order track the position of an object that able to freely rotate in the navigation

frame, it is necessary to track the object’s relative orientation with respect to the

navigation frame. The motion equations then use this information to estimate the

vehicle’s velocity and position in respect to the navigation frame.

The attitude of a vehicle with respect to a navigation frame is tracked using

the turn rate measurements provided by the vehicle’s on-board gyroscopes. For this

discussion, positive axis rotations are said to follow the right hand rule, looking from

the axis toward the origin, counter-clockwise rotations are positive and clockwise

rotations are negative. It is important to keep in mind that the attitude of an INS

is not only a function of the angles at which each axis rotates, but also the order

in which these rotations take place, meaning that individual axis rotations are non-

commutative.

The attitude of an INS with respect to another coordinate frame can be repre-

sented as a set of numbers for which various mathematical representations could be

used, such as Euler angles, quaternions or direction cosines matrices (DCM). For this

application the quaternion attitude representation will be used.

The quaternion Attitude representation is based on Eulers Rotational Theorem,

which states that any two coordinate systems with the same origin are related by a
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single rotation about a fixed axis [2]. A quaternions q is a four parameter attitude

representation as shown in equation 2.2

q = [q1 q2 q3 q4]T =

[
cos θ

2
vx sin θ

2
vy sin θ

2
vz sin θ

2

]T
(2.2)

where v = [vx vy vz ]T is a unit vector that represents the axis of rotation, θ is the

angle of rotation and the superscript T denotes the transpose operator.

Quaternions are not just a mathematical abstraction for attitude representation,

but a whole number system complete, with a wide and complex mathematical theory

[2]. This discussion will be limited to the mathematical operations necessary for

quaternion attitude representation. The reader is referred to the work of Yoon, et

al., Valenti, et al., or Chi for a more detailed discussion of the subject [2] [3] [4],

Quaternion Operators

Quaternion Norm: is denoted as |q| and is calculated as:

q =
√
q2

1 + q2
2 + q2

3 + q2
4 (2.3)

Quaternion Normalization: q is normalized by dividing each of its elements by

its norm:

||q|| = q

|q|
(2.4)

where ||q|| has a unit length and thus provides a definition for a unit quaternion.

Quaternion Conjugate: denoted as q∗, and is calculated by inverting the sign of

a quaternion’s vector elements:

q∗ = [q1 − q2 − q3 − q4]T (2.5)

Quaternion Inverse: denoted as q−1, and calculated by dividing a conjugate of

a quaternion by its norm:
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q−1 =
q∗

|q|
(2.6)

Note the the inverse of a unit quaternion qu is its conjugate q∗u because of its unit

norm.

Quaternion Multiplication: The multiplication of quaternions p and q denoted

as q ⊗ p, calculated as:

q ⊗ p =



q1p1 − q2p2 − q3p3 − q4p4

q1p2 + q2p1 + q3p4 − q4p3

q1p3 − q2p4 + q3p1 + q4p2

q1p4 + q2p3 − q3p2 + q4p1


(2.7)

It is evident from equation 2.7 that quaternion multiplication is non-commutative.

But quaternion multiplication is associative [4].

Rotation Matrix from Quaternion: it is possible to derive an equivalent DCM

expression from a quaternion using the following equation:

C = R(q) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q22 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.8)

Quaternion Attitude Representation

The quaternion representation of the body-frame attitude of the with respect to

the navigation-frame is parameterized in the quaternion qnb . It is possible to track qnb

as the vehicle rotates using equation 2.9 [1].

q̇nb =
1

2
qnb ⊗ qbnb (2.9)
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where qbnb = [0ωbnb]
T and ωbnb represents the body frame rate with respect to the

navigation frame. ωbnb can be estimated from the rotation rate provided by on-board

gyroscopes ωbib using the following equation:

ωbnb = ωbib − (ωbie + ωben) (2.10)

where ωbie represents the e-frame rate with respect to the i-frame and ωben is derived

from the INS’s velocity estimate and represent the n-frame turn rates with respect

to the e-frame.

A full derivation of equations 2.9 and 2.10 can be found in [1] and [4].

Use of Quaternion for Vector Coordinate Frame Transformation

A vector quantity defined in the b-frame, like a measure of specific force f b =

[f bx f
b
y f

b
z ]
T , can be transformed into the n-frame using quaternions. First, a vector

quaternion is created from the original body frame vector qfb = [0f b]T , then we use

equation 2.11 to transform the vector into the n-frame:

qfn = qnb ⊗ qn
∗

b , (2.11)

or alternatively equation 2.8 can be used as follows

fn = R(qnb )f b (2.12)

For a full derivation and explanation as how quaternion multiplication performs

vector transformation, please, refer to [4].

2.1.5 Motion Equations

For our navigation application we have chosen to use the Local Geodedic Frame

(n-frame) to describe the vehicle’s velocity (vn3 ) and position (r). In the n-frame

position and velocity are described in latitude L, longitude l, height h, northern
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velocity VN , southern velocity VS and downward (local vertical) velocity VD.

rn = [L l h]T (2.13)

vne = [VN VS VD]T (2.14)

The motion of the vehicle over the Earth in the n-frame is described by kinematic

equations 2.15 and 2.16 [1]. These are also referred to as navigation equations.

v̇ne = Cn
b f

b − (2ωnie + ωnen)× vne + gnl (2.15)

ṙn =


1

R+h
0 0

0 1
(R+h) cos(L)

0

0 0 −1



VN

VE

VD

 (2.16)

where f b is the three-axis specific force measurement provided by onboard strap-

down accelerometers; Cn
b is the direction cosine matrix attitude representation from

equation 2.8; ωnie is the Earth’s rotation rate with respect to the inertial frame, ex-

pressed in n-frame coordinates; ωnen is the rotation rate of the n-frame with respect

to the Earth, also referred to as the transport rate; and gnl is the local gravity vector

expressed in navigation frame coordinates. The navigation equations expressed here

are derived and explained in further detail in the literature [1].

2.1.6 INS Limitations

This section explores the inherent errors of INS systems and their effect on nav-

igation performance. Figure 2.1 show a simplified diagram of an INS system. This

diagram will be used in the analysis and discussion of INS system errors. A simplified

diagram facilitates the analysis and interpretation of results.
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Figure 2.1 : Simplified three-axis INS system diagram.

MEMS Accelerometer and Gyroscope Error Characteristics

This section presents the error characteristics inherent to MEMS gyroscopes and

MEMS accelerometer. MEMS sensors are built using silicon micro-machining and as

a result they can be inexpensive to manufacture, small in size, low weight, require

low power, reliable, low maintenance and have a wide temperature operating range.

The disadvantage of MEMS sensor is their accuracy. The purpose of this discussion

is to shed some light on how typical MEM IMU sensor errors manifest themselves in

INS error. A more detailed discussion of the effect of IMU errors on INS estimates

can be found in [1] and [5].

Constant Bias. The constant bias of an IMU sensor is the average idle sensor

readout, when it is not rotation or accelerating [5]. A constant bias in gyroscopic

outputs results in an orientation error that, as a result of the integration process,

grows linearly with time. A constant bias in the accelerometer outputs results in

velocity errors that grow linearly with time and position errors with the square of

time, as a result of the single and double integration process necessary to solve the

navigation equations. This type of error is trivial to compensate, by subtracting the
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known bias from the output of the sensor. This bias can be estimated by averaging

of the sensor outputs while it sits idle.

White Noise. Thermo-mechanical noise with frequency spectrum greater than

the sampling rate of the sensor gives rise to a white noise manifestation, which per-

turbs the sensor output. White noise sequence is a zero-mean uncorrelated random

phenomena with finite variance.

When white noise is integrated once, it results in a first-order random walk

sequence with zero mean and its variance grows linearly with time. When white

noise is integrated a second time, it creates a second order random walk sequence

with zero mean and a variance that grows with time to the third power [5], meaning

that attitude and velocity estimates will be perturbed by a first-order random walk

error sequence and position estimates will be perturbed by a second-order random

walk error sequence.

Bias Instability The bias in MEMS sensor varies over time due to flicker noise

arising from its electronic components. The frequency spectrum of flicker noise is

1/f , thus its effects are most noticeable at low frequencies. This error is usually

modeled as a band limited random walk, which describes how the bias of a sensor

may change over time. If we assume the error can be modeled as a random walk

process, then bias instability error causes a second order random walk error sequence

in INS estimates of attitude and velocity and a third order random walk error sequence

in the INS estimates of position.

Temperature Effects. Environmental temperature fluctuations cause drift

on the sensors output biases. As discussed before any remaining sensor bias would

cause estimate errors that grow linearly or with the square of time, depending on the

number integrations performed. The problem with temperature effects is that the

relationship between the sensor bias and temperature is highly non-linear, making

characterization necessary for every sensor in order to compensate for such effects [5].
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Scale Factor. Scale factor errors is the ratio relationship between input stimuli

and output readout. If a sensor is stimulated at 50% of its input range the expected

sensor readout is 50%. But in reality the output is a function of the input but scaled

linearly. For example if the input stimuli to a gyroscope is 5o/s and there is a 2%

scale factor then the output measurement is 5.1o/s

Orthogonality Errors. Error resulting from the three sensitive sensor axes

not being completely orthogonal to one other. Usually compensated through the

calibration process.

Axis Asymmetry. Refers to the difference in sensor readout when a stimuli

is applied to the positive direction of a sensor axis and when the same stimuli is

applied to the negative direction of the same axis. Usually compensated through the

calibration process.

Alignment Errors

Inertial navigation estimates depend greatly on correct initial estimates of ori-

entation, velocity, and position. These estimates are obtained through an alignment

process. Alignment varies with he navigation application. Incorrect attitude align-

ment results in a constant attitude error output and incorrect projections of measured

acceleration, which causes errors when they are integrated twice to solve navigation

equations.

Open Loop Operation

The limiting factors of an INS are not just the errors associated with the sen-

sor measurements, but also because they estimate the system velocity and position

without a direct measurement of these system states (open-loop operation). By ac-

cumulating small errors, from the sensors, over each iteration the INS estimates of

vehicle state can quickly diverge substantially from the real state, even with sensor

error compensation [6]. If left uncorrected, there would be no limit on how large
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the divergence can become. A possible solution for this problem would be acquiring

more accurate sensors. This alternative would not only raises costs, but also sen-

sors cannot be made arbitrarily accurate [1]. To tackle this problem, engineers have

adopted a technique known as aiding, which essentially provides feedback information

to the INS, via external measurements of the vehicle position and/or velocity. With

feedback information, errors from the INS can be corrected or constrained [7] [8].

2.1.7 INS Aiding

An INS has six degrees of motion freedom: surge, sway, heave, roll, pitch and

yaw, as depicted in Figure 2.2 . Modern INSs can obtain accurate external attitude

estimates (roll, pitch and yaw) by utilizing a magnetic compass as an aiding sensor to

correct the INS estimates of orientation [7] [9]. Through the employment of a pressure

sensor or barometer, and using the physical properties of the traveling medium (air

or water), the heave axis estimates of position and velocity can be easily corrected [8].

The surge and sway are the only degrees of freedom left un-aided, a potential aiding

scheme is the Global Positioning System, which provides estimates of position on

the Earth and Earth relative velocities. But GPS cannot be used in underwater

navigation applications, thus aiding the surge and sway of an INS for underwater

applications has become the challenge of modern underwater navigation. Chapter 3

discusses some of the aiding schemes used today for AUV navigation.

2.2 AUV Depth Estimate

As mentioned previously an AUV’s depth can be estimated directly from a mea-

surement of a pressure. This section presents a brief background theory and some of

the consideration needed to obtain a depth estimate from a pressure measurement.
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Figure 2.2 : A standard vehicle degrees of motion freedom

2.2.1 Total Pressure Field

The total pressure field sensed in a underwater environment is the sum of the hy-

drostatic pressure of the water column, atmospheric column and the dynamic surface-

wave-induced pressure field. In the hydrostatic pressure of the water column can be

calculated using the hydrostatic pressure model, Equation 2.17.

p = ρseawatergd (2.17)

where p is pressure, d is depth and ρseawater is the density of sea water.

The challenge in using Equation 2.17 is that ρseawater is not constant. Variations

in ρseawater are mostly driven by depth, due to the compressibility of sea water at high

pressure, and other factors are the properties of temperature and salinity of the sea

water [10]. The United Nations Educational, Scientific and Cultural Organization

(UNSESCO) has provided an emperical standard formula for of conversion from hy-

drostatic pressure to depth. The equation considers the compressibility of sea water

with depth, shown in Equation 2.18 [11].
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d =
c1p+ c2p

2 + c3p
3 + c4p

4

g(Lat) + 1
2
Υp

+
∆D

9.8
(2.18)

where g(Lat) is the gravity at the ocean surface in m/s2 and expressed as:

g(Lat) = 9.780318(1.0 + 5.2788e−3 sin2(Lat) + 2.36e−5 sin4(Lat)) (2.19)

d is depth in meters, p is in decibars, c1,c2,c3, and c4 are constant equal to 9.72659,

−2.25121e−5, 2.279e−10, and −1.82e−15, respectively. Υ is the mean vertical gra-

dient of gravity, equal to 2.184E − 6 in m/s2/decibar.

The first term in Equation 2.18 is the depth estimate from a hydrostatic pressure

measurement of a standard ocean water column. A standard ocean is defined to have

35 practical units of salinity (psu) and a temperature of 35◦C. The second term is

a correction calculated from the difference between the water column actual density

and the density of the standard ocean. The correction term is captured in ∆D,

called geopotential anomaly and is expressed in J/kg. ∆D/9.8 is usually less than

2 meters [11]. Equation 2.18 found is accurate to 0.1m over the pressure range of

0− 1000 decibars.

The effect of the dynamic surface-wave-induced pressure field is proportional to

the surface elevation from the mean sea level directly above the pressure sensor. The

amplitude of the pressure field is dampened with depth, depending on the wavelength

of the incoming wave, longer waves are less damped than shorter waves [12]. The

effects of atmospheric pressure can be considered constant for a period of a few hours,

depending on the weather, and are usually measured at the surface and added as a

correcting factor to the depth estimate.

2.2.2 Pressure Sensor Model

A pressure sensor may be modeled as: [13]
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pmea = αp+ b+ ωpress (2.20)

where p is the real pressure, pmea is the measured pressure provided by the sensor, α

is a gain factor, b is a constant offset and ωpress Gaussian measurement noise.

Calibrated underwater pressure sensor have a reported accuracies of 0.1% to

0.01% of their full sensing scale [8]. Attaining these accuracy levels require the cali-

bration procedure to estimate for the thermal dependencies of α and b of the sensor

model.

2.2.3 Pressure Measurement Model

Now that the measurement environment, pressure to depth equation, and pres-

sure sensor models have been presented it is possible to establish a measurement

model, relating vehicle depth to the pressure measured:

p = P (d, 0, 35) +
∆D

9.8
+ ωpress (2.21)

where P (d, 0, 35) is the expected pressure of a standard ocean water column at depth

d. ∆D
9.8

is the pressure difference between in densities of the water column above the

sensor and the density of a standard-ocean water column. ωpress is the measurement

noise from the sensors output.

The effects of the dynamic surface-wave-induce pressure field was not considered

in the measurement model since its effects are mostly noticeable in shallow waters

and negligible at the typical depth of FV operation. The pressure resulting from

the local atmospheric condition were also not considered as these are assumed to be

nearly constant.

2.3 Geomagnetic Navigation

The Earth’s magnetic field (EMF) is a vector field with discernable properties

that can be considered as a source of positional navigation information [14]. EMF
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maps and models can be used for reliable navigation on 98% of the Earth’s surface.

These maps are periodically updated because of their military and commercial ap-

plications [15]. Using the EMF as a navigation source has the benefits of: being an

entirely passive self-contained navigation solution, requiring no external signal and

offering guaranteed bounded position error [16]. Geomagnetic Navigation process,

consist of correlating a geomagnetic profile, sampled by the an on-board magnetome-

ter and correlating it to a location on a pre-stored geomagnetic map.

A geomagnetic navigation system is composed of: 1) an INS; 2) a magnetometer;

3) a pre-stored magnetic map; 4) a geomagnetic algorithm; and 5) an optimal esti-

mator [17]. Figure 2.3 depicts the architecture of a generic geomagnetic navigation

system.

Magnetometer

INS

Pre-Stored
Magnetic 

Map

Magnetic 
Navigation 
Algorithm

Optimal 
Estimator

Position
Velocity

INS Correction

Position Position
Velocity

Figure 2.3 : Components of Geomagnetic Field

The magnetometer is periodically sampled during vehicle operation and is used

to build the magnetic profile of the vehicle’s track. The INS provides independent es-

timates of vehicle attitude, velocity, and position; this information is used to estimate

where magnetic samples are taken from, as part of the magnetic profile. Potential
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vehicle track data are then extracted from the pre-stored magnetic map and using

geomagnetic navigation algorithms they are correlated to the measured magnetic pro-

file, in an effort to obtain an estimate of vehicle position. Both position estimates,

from the INS and geomagnetic navigation solution, are then fused to produce an op-

timal position solution. Common estimators like a Kalman Filter can provide online

corrections to the INS, to amend for accumulated errors.

The following sections elaborate more on the aspects of geomagnetic navigation

and are Section 2.3.1 discusses the constituents of the Earth’s magnetic field (EMF)

and its different components. Section 2.3.2 discusses the properties of a magnetometer

sensor, its measurement model and special considerations when deployed in the field.

The different algorithms used for magnetic navigation are then discussed in section

2.3.3.

2.3.1 Earth’s Magnetic Field

The EMF is complex and the result of a sum multiple contributors like the

Earth’s main magnetic field (caused by its conducting fluid inner core), magnetized

crustal rocks and currents flowing in the ionosphere and magnetosphere [17]. The

EMF can be modeled by the following equation: [18]

H(r, t) = Hm(r, t) +Ha(r) +Hc(r, t) (2.22)

where r represents a position on the Earth and t represents time. The dominating

constituent of the EMF is the Earth’s main magnetic field (Hm(r, t)). Its behavior

varies slowly in time and is predictable by models, like the the World Magnetic

Model. Magnetic fields arising from currents in the ionosphere and magnetosphere

(Hc(r, t)) contribute around 1% of the total field intensity. Its behavior varies on

a daily basis and is also dependent on the Earth relative position, but its is also

predictable by models. Ha(r) arises from magnetized crustal rocks and behavior
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can be considered constant in time but variable in space [19]. The term anomaly

field is used to refer to Ha(t) in literature and this document. The anomaly field

is the most common magnetic field used for navigation because of its non-changing,

distinguishable features [19].

Being a vector field, the EMF posses different features like total field intensity

|H|, north componentHn, east componentHe, vertical component Hv, declination D

and inclination I, as shown in Figure 2.4 .

Bn

Bv

Be

B
D

I |B|

Figure 2.4 : Components of a generic geomagnetic navigation system

Even though the EMF has different components most maps used for navigation

only map total field intensity.

2.3.2 Magnetometer

A three-axis Magnetometer is an instrument that can measure the magnitude and

direction of magnetic fields in its environment. This includes the EMF and fields that

may arise from surrounding ferromagnetic objects, cabling, electric currents, motors,

or batteries. Since most vehicle structures include ferromagnetic materials and/or

electrical components, obtaining accurate samples of the EMF with an on-board

magnetometer can be a challenging task. These unwanted magnetic fields distort any

samples of the EMF unless they are calibrated for. These distortions can be classified
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into hard-iron and soft-iron effects [15]. Hard-iron effects manifest in magnetometer

readings as constant biases and are caused by materials like permanent magnets and

constant electrical currents. Soft-iron effects manifests themselves as changing biases,

depending on the relative orientation of the vehicles with respect to the local EMF.

Soft-iron effects are caused by martials that generate their own magnetic fields in

response to underlying magnetic fields [20]. Magnetometers also suffer from scale-

factor, bias, and cross coupling errors but these are indistinguishable from hard/soft

iron effects.

Taking into account the different noise manifestations a magnetometer can ex-

hibit, a measurement model can be established, like equation 2.23 [20].

Hmeasured = Smb + h+ ε, (2.23)

where mb is the local magnetic vector in the sensor frame. S is the soft-iron effects,

h is the hard iron effects, and ε is gaussian noise with N(0, σ2) distribution. In a ho-

mogenous magnetic field, magnetometer measurements can be visualized as a sphere

centered at the origin of the sensor frame [21]. Hard-iron effects offset the measure-

ment sphere from the origin. Soft-iron effects stretch and distort the measurement

sphere into an ellipsoid.

Magnetometer calibration is the process by which S and h are estimated. Prac-

tical magnetometer calibration schemes take advantage of the constant magnitude

of magnetometer measurements when in a homogenous magnetic field. The process

consists of fitting the magnetometer ellipsoidal response into a sphere centered at

the origin of the sensor frame [20] [21]. Because magnetometers are so sensitive to

the magnetic environment, careful calibration might be necessary before each deploy-

ment [21].
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2.3.3 Geomagnetic Navigation Algorithms

There are two types of algorithms that can be implemented to for geomagnetic

navigation: geomagnetic matching and geomagnetic filtering.

In geomagnetic matching, as the vehicle operates on a reference area it peri-

odically samples the geomagnetic field and estimates the position of the measure-

ment using data from the on-board INS [19]. Let xk = (x0, x1, ...xn) represent

the sequence of position estimate produced by an INS, where each magnetic sample

Mk = (M0,M1, ...Mn) was taken. The Mk samples are then correlated to magnetic

data sets M(i, j)k derived from the on-board geomagnetic map. The method by which

potential vehicle magnetic tracks are chosen is called the searching strategy. Conven-

tional searching strategies locate the center of the search field at x0 and the size of it

as 3σx0 , where σx0 is the standard deviation of the initial position error of x0. Each

point inside the searching area is considered a candidate point for x0 real location.

The relative path of the INS is overlaid on each candidate point, creating multiple

paths with the same trajectory as xk but different origins. Then the magnetic data

from the map is sampled for each potential path at the corresponding location where

Mk was sampled, creating a set of potential vehicle magnetic tracks M(i, j)k. Here i

and j represent the horizontal and vertical offsets from x0 and are inside the search

field. Then, every potential magnetic track in M(i, j)k is then compared to Mk using

correlation analysis algorithms like Mean Average Difference (MAD), as shown in

equation 2.24 [19].

MAD(i, j) =
1

n

n∑
k=0

[M(i, j)k −Mk] (2.24)

where n is the number of magnetic samples taken in a given path, also know as

correlation length. The potential magnetic track with the minimum MAD result in

equation 2.24 is the position result of the algorithm. The longer the correlation length,

the better the chance of building a unique magnetic profile, increasing the chances
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of obtaining a good match in the navigation algorithm. However the resulting INS

trajectory would have accumulated more error, causing distortions in the estimated

INS position. The correlation length is usually selected based on the relative contours

of the operating area of the vehicle and expected INS performance [19].

Some limitations of the magnetic matching algorithm are its precision, limited

by the accuracy of the onboard EMF samples, and the accuracy of the map grid [17].

The anomaly field intensity can be thought of as being a function of the sampling

location (position). Geomagnetic filtering consists of the creation of a field intensity

model for the local anomaly field around the deployment area. Common filtering

methods are then used to obtain a position, velocity, and attitude estimates based on

INS information, magnetic model, and actual measurements from the magnetometer.

Geomagnetic models can be created using fitting algorithms like spline methods

and can be applied to real magnetometer data samples or maps [14]. The process

starts by obtaining a predicted state of the system from INS information. This infor-

mation is fed into the local geomagnetic model to obtain a predicted magnetometer

measurement which is later compared to the actual magnetometer sample, when it

becomes available. The difference between the two is then used to estimate the true

state of the system using optimal estimator [14]. The Extended Kalman Filter (EKF)

is a common filtering method used for geomagnetic filtering since models of local ge-

omagnetic intensity tend to be non-linear functions of system position. The EKF

works by linearizing the system equation and magnetic model around the current

operating point of the system, thus minimizing the effect of linearization errors.

Since geomagnetic filtering is not a batch process, like geomagnetic matching,

it offers comparable navigation accuracy at less computational burden. But it still

requires accurate samples of the EMF aboard a vehicle and an accurate model of the

local geomagnetic field.
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Previous Work: AUV INS Aiding

A standard AUV has six degrees of motion freedom surge, sway, heave, roll,

pitch and yaw, as depicted in Figure 2.2 . AUVs can obtain accurate external

attitude estimates (roll, pitch and yaw) by utilizing magnetometer and accelerometer

as aiding sensors to correct for the gyroscopic attitude estimates from the INS [9].

With a pressure-meter and the physical properties of water, the heave axis position

estimates can be corrected [8]. The surge and sway are the only degrees of freedom

left un-aided, becoming the challenge in modern underwater navigation systems [7].

The rest parts of this Chapter presents different aiding schemes developed for, or

applicable to, AUV navigation. The fundamental concepts of operation, performance,

and if applicable, implementations are discussed for each aiding scheme. Section ??

presents the observed FV dynamics during a deployment at the Puerto Rico Trench

and Section 3.1 is a summary of all the navigation schemes presented.

3.0.1 Acoustic Time-of-Flight Navigation

Acoustic time-of-flight navigation is a technique pioneered in the 1960’s and

1970’s, that is still used today for precise underwater tracking and navigation. The

technique relies on a measure of distance and direction from the AUV to the known

beacon location [8].

Long Base Line (LBL) is an acoustic navigation technique in which an AUV’s

position is triangulated using acoustic distances from the AUV to a framework of ma-

rooned transponder beacons [7]. The marooned transponders have to be deployed and

25
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their locations recorded before being used for navigation. As part of the navigation

scheme, the AUV possesses a transceiver device that broadcasts a ping. Listening

beacons then reply with identifying information. By estimating the travel time of

the replying messages and the sound velocity of the surrounding water, it is possi-

ble to estimate the vehicle distance from each of the replying beacons, subsequently

triangulating the vehicle position within the beacon framework [7].

The operating range, precision, and update rate of LBL systems depend on the

carrier frequency used by the beacon framework and the number of beacons in the

AUV operating area. The higher the carrier frequency of the beacon framework,

the more accurate the position estimate of the navigation scheme, but the carrier

frequency is limited by the rapid attenuation of high-frequency sound in water [8]. In

a work presented by Allen et al., the REMUS AUV achieved autonomous underwater

navigation with accuracies of 20 m or less using only two transponder beacons and

onboard INS [22]. The authors note that the precision of the reported navigation

accuracy could be enhanced by increasing the number of beacons and by using a

more accurate methods of calibrating beacon location.

The main source of error in acoustic navigation is in estimating the local wa-

ter sound speed. Since sound speed is dependant on the physical characteristics of

the surrounding water, which can change over time, and might not be homogenous.

Presently LBL is the best method for obtaining sub-meter position accuracy [23].

Even though LBL offers the best navigation accuracy it is quickly being replaced by

other navigation schemes like Ultra Short Base Line (USBL) due to the higher cost

and preparation overhead of the beacon framework.

USBL is similar in operating principles to LBL, but instead of using a framework

of multiple moored transponder beacons, a cluster of beacons is attached to the hull

of a ship. The ship then acts as a moving beacon for the AUV by tracking the ships
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position via Global Positioning System (GPS) [8]. The cluster of transponders is then

used to estimate the AUVs distance and direction from the ship.

Jalving et al. developed a USBL navigation solution for the HUGIN 4500 series

AUV [24]. The navigation system was capable of obtaining horizontal navigation

accuracies in the order of 2m and 4m at depths of 1300 m and 2100 m respectively.

The average operating range of USBL system is 4 km, limited by the attenuation of

high frequency sound in water. The operating rang of USBL enables it to be a prime

candidate for many underwater navigation applications but inadequate for depths

that exceed 4 km.

3.0.2 Doppler Navigation

The development of high frequency multi-beam sonar technology has enabled

accurate measurements water velocity, 0.3% or less of the total measured velocity [8].

These accurate estimates of underwater velocities have been used by researchers as a

source of navigation information to aid INS for underwater navigation. This strategy

is named Doppler navigation and is adopted, researched, and implemented by many

underwater navigation system designers, granting the technique great navigation ac-

curacies.

A Doppler Velocity Log (DVL) is an oceanographic instrument capable of mea-

suring its velocity relative to the ocean floor, though it requires near floor operation

for accurate measurements. Modern DLVs also employ a three-axis compass to track

the sensor’s orientation in time, in order to accurately interpret the direction of ve-

locity estimates. The Earth relative velocity estimates provided by the DVL sensor

are then used as a feedback mechanism to correct INS estimates of surge and sway

velocities.

Grenson, et al., described and analyzed the performance achieved by the Mor-

pheos AUV which incorporated a mid-range INS, magnetometer, GPS and DVL data
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asynchronously [25]. The asynchronous fusion of INS, DVL and GPS navigation in-

formation was achieved using an Extended Kalman Filter. The navigation system

was capable of around 1% (70 m) positioning accuracy of the total distance traveled

of 7500m. Jalvin, et al., reported navigation accuracies of 6 m utilizing a DVL-aided

INS and periodic surface GPS fixes for the HUGIN 4500 AUV [24].

A limiting factor in doppler-aided navigation systems is that the navigation so-

lution will gradually drift in due to remaining DVL biasses, requiring additional peri-

odic aiding sources, like GPS fixes. Other sources of error include accurate knowledge

of local water sound velocity and estimates of the instruments orientation over the

course of deployment. The requirement of needing a DVL can considerably reduce

the payload capacity for small AUVs. In addition, if sensor environment is not opti-

mal for accurate measurements, or is too far from the ocean floor, the sensor may not

be capable of producing a measurement [6] [25], considerably affecting its navigation

accuracy.

3.0.3 Geophysical Navigation

Geophysical or terrain navigation uses unique near Earth observable features

and maps of these features to obtain an estimate of an AUV position. The goal of

this navigation technique while underwater is to provide performance similar to GPS

without relying on the presence of the GPS electromagnetic signal. The success of

any geophysical navigation system is highly dependent on the presence of identifiable

features, the ability to accurately measure them, and availability of feature maps [7]

[26] [15]. The un-jammable nature and lack of an external reference signals make

any navigation solution based on geophysical fields reliable and robust. Figure 3.1

depicts a generic geophysical navigation system. It consists of an INS, a geofield map,

and a set of geofield sensors. The navigation computer uses an approximate position

from the INS, as input, to determine its approximate position on the geofield map

based on the data provided by the geofield sensor. There are three geophysical fields
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used for navigation today: the Earth’s magnetic field, the Earth’s gravity field and

terrain topography.
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Figure 3.1 : Block diagram of a generic geophysical navigation system

Geomagnetic Navigation

An introduction to the concept of geomagnetic navigation, considerations and

error sources was discussed in Section 2.3. Thus this discussion will be limited to

reporting on the work done by others in the field.

Feng, et al., developed a magnetic navigation system based on magnetic matching

using Iterative Closest Contour Point (ICCP) as the matching algorithm [27]. ICCP

is derived from Iterated Closest Point (ICP), an algorithm used to minimize the

difference between two data sets. The process is based on the assumption that the

vehicle actual location is consistent, or close to, the corresponding magnetic contours

of the magnetic profile measured during vehicle operation. The path with the shortest

distance between the INS estimate position and the corresponding magnetic contours

are chosen as the output of the algorithm. The potential paths are obtained by

rigid transformation of the INS track. The proposed navigation platform was verified

via simulation using the models for a medium grade INS, a compass model with a

measurement variance of 2 nT and Beijing’s geomagnetic anomaly field map. The

results showed that position accuracies of 200 m could be achieved in a flight path
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of 25 km in both magnetically rough and smooth paths. Ren, et al., reported on a

simulation study of navigation performance and formulation of an ICCP algorithm

[28]. The study found that an ICCP formulation based on Menq’s algorithm had

improved position estimation accuracies of 20 m of when compared to traditional

ICCP formulation.

Zhao, et al., tested and proved a marine geomagnetic matching navigation sys-

tem based on ICCP and MSD by field experimentation [17]. They utilized a survey

vessel with marine magnetometer and GPS to create a 10 km by 20 km local geo-

magnetic anomaly map. The same vessel was used as the testing platform for the

field experiments. The vessel did not have an on-board INS but was simulated by

adding expected INS error into the known vessel known. The INS model parameterw

used corresponded to a medium grade INS and the marine magnetometer with a a

measurement accuracy of 2.73 nT. The results showed that both matching algorithms

based on ICCP or MSD were suitable for position accuracies of less than 100 m, with

high stability. The authors noted that an ICCP algorithm was more suitable for

real-time applications because of its lighter computational burden.

In the simulation work by Caifa, et al., the use of real geomagnetic field data for

the navigation requirements of an autonomous aerial vehicle were presented and eval-

uated [14]. The objective was to evaluate and compare the performance of geomag-

netic matching against geomagnetic filtering. The simulation components consisted

of an INS, geomagnetic maps and simulated magnetometer readings. The perfor-

mance of both algorithms was evaluated over paths with magnetically rough and

smooth topography. Their results show that both algorithms could fulfil the task of

flight navigation with positional accuracies of around 100 m. Geomagnetic matching

was the most efficient and accurate when dealing with larger initial position errors,

if the navigation path contained rough magnetic topography. Geomagnetic filtering

demonstrated better performance in flight paths with less magnetic information as
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long as the initial condition errors were within 1.5 km and magnetic noise was below

100 nT.

The simulation work by Liu, et al., presented the performance of a geomagnetic

aiding navigation system that used both matching and filtering techniques for AUV

applications [19]. The magnetic matching algorithm used by the authors was pre-

sented by Ren [28]. Matching algorithms were used for the first 100 s of deployment,

geomagnetic filtering was then used for the remainder of the vehicle deployment. The

filtering scheme used was that of a linear nearest point-based Kalman filter (NPKF),

in which the highest probability was assigned to the nearest point on the map to

the INS position estimate that would match the magnetic signature measured. The

simulation parameters consisted of using a medium grade INS, a compass with 10 nT

of measurement accuracy and geomagnetic maps with grids of 100 m x 100 m and

50 m x 50 m through paths of both rough and smooth magnetic topography. The

simulation results demonstrated that the NPKF did not accumulate error over time

and were able to achieve position accuracies within one map grid in both rough and

smooth contour paths.

Quintas et al. proposed a geophysical navigation method that used bathymetric-

based terrain-aided navigation with geomagnetic-based geophysical navigation for

small affordable AUVs [29]. The authors used a particle filter framework to fuse the

navigation estimates from both systems. The proposed system was tested aboard the

Autonomous Surface Vehicle (ASV) Medusa on a shallow water lake. The ASV was

equipped with a medium grade INS, a magnetometer with 0.2 nT measurement accu-

racy, a bathymetric navigation system, and GPS. GPS measurements from the ASV

were only used to evaluate the navigation system performance. First, a geomagnetic

anomaly map of the area was constructed by scouting the area using magnetometer

and GPS information. Later, a field test was performed and the navigation system

demonstrated position error within 5 m, even in areas with smooth terrain features.
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Liu et al. modeled INS error as affine transformations (translation, rotation

and zooming) of the real path of an UAV, assuming attitude errors remain constant

between update intervals [30]. Based on these assumptions, the authors proposed a

multi-level geomagnetic matching algorithm to estimate an UAV position. The first-

level obtained potential starting points for path candidates using a contour constraint

strategy [31]. The paths with the best fit, from the first-level, pass on to the second-

level where the paths are subjected to rotation and zooming transformations at a

coarse level. The paths with the best fit, then move on the third-level, where they are

subjected to a round of fine rotation and zooming transformations. After the third-

level of transformations the path with the best geomagnetic fit between the measured

geomagnetic profile and the magnetic profile sampled from the geomagnetic map, was

chosen as the output of the algorithm. The algorithm was verified via simulation using

geomagnetic anomaly maps from the United States Geological Survey, a model of a

medium grade INS, and simulated compass measurements with 50 nT measurement

variance. The results showed position estimates within 500 m of error. Later the

algorithm was tested using data from a aerial geological survey. The aircraft was

equipped with a navigation-grade INS, a high performance magnetometer, and a

GPS. The GPS data was used to measure the error performance of the algorithms.

The results showed a horizontal position error within 50 m.

Kauffman and Raquet (2014) developed a geomagnetic matching navigation sys-

tem using a particle filter [32]. Their navigation platform was tested and validated

with field tests. The tests consisted of driving a van equipped with a medium grade

INS, GPS, and magnetometer around a target road. Some of the trips were used to

create a local geomagnetic map using the magnetometer and GPS data. One of the

trips was used as a navigation test, using only INS and magnetometer data. The

system was able to provide position accuracies within 30 m of the true position using

50,000 particles in the filter.
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Liu et al. tackled the problem of geomagnetic navigation without a prior mag-

netic map given the geomagnetic signature of the target area where the AUV was

expected to navigate to [33]. The problem was approached by proposing a genetic

search algorithm where an AUV would select a random heading and travel a prede-

termined distance. At the new location, the AUV samples the geomagnetic signature

of the local area, then compares it to the target signature previously determined. If

the local signature was closer to the target signature, the current heading is given

extra weight compared to other potential headings for the algorithm’s next iteration.

If the local signature was further from the target signature, then the current heading

is given a relatively low weight for the next iteration. The process was repeated until

the local magnetic signature matched the target magnetic signature whin a specified

margin. The algorithm was verified to reach its target location via simulation experi-

ments using the World Magnetic Model, but the simulation did not include the effects

of water currents or other environmental parameter that might affect the navigation

system performance.

Teixeira and Pascoal (2013) also tackled the problem of geomagnetic naviga-

tion without a map. Their approach was based on potential field inversion, where

the AUV was capable of estimating its distance from surrounding magnetic dipoles,

providing a relative position estimate [34]. The navigation solution consisted of a

high accuracy magnetometer with a measurement accuracy in the order of 1 nT or

less, and a magnetic gradiometer capable of taking differential measurements of the

local magnetic field. The navigation system was verified via simulation where a real

magnetic map was used as the testing environment. The algorithm demonstrated a

relative horizontal position accuracy of less than 50 m. This system could be com-

bined with other navigation sources like INS to provide a global positional estimate

since its error characteristics were bounded in time.
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Djapic et al. explored the applications of a geomagnetic navigation on a fleet

AUV of gliders equipped with medium grade IMU sensors and magnetometers of

1×10−11 T measurement accuracy [35]. The distributed navigation solution presented

was cooperative in the sense that an AUV position estimate was based on its own

estimate and the estimates of its neighbors. The algorithm was based on a distributed

Kalman filter framework that took in consideration the communication delay between

the AUV. Although the algorithm was presented with great detail the authors did

not report performing experiments to evaluate performance.

The previously mentioned geomagnetic navigation strategies relied on a mag-

netometer, or geomagnetic field model, with measurement noise below 50 nT. This

level of was necessary to adequately sample the local geomagnetic anomaly field.

Researchers like Kok et al. explored the application of low-cost MEMS magnetome-

ter and IMU sensors for geomagnetic navigation [36]. Their experiment consisted

in navigating in the vicinity of a magnetic field generated by a coil using only low-

cost MEMS IMU and magnetometer. Since the field generated by a magnetic coil

can be analytically modeled with high accuracy, their magnetic navigation solution

was capable of obtaining sub-centimeter navigation accuracy when operating in the

vicinity of the coil. Li et al. developed and tested a geomagnetic navigation solution

for pedestrian indoor navigation using low cost MEMS-based IMUs and magnetome-

ters commonly found in consumer cell phones [37]. The strategy was to exploit the

abundant magnetic disturbances found in indoor structures and using pedestrian

dead reckoning techniques. Their results demonstrated indoor position accuracies

of around 10 m. The key to the algorithm accuracy was its ability to mitigate the

impact of magnetic matching errors using distance threshold strategies and Adaptive

Kalman Filter structures.

Solin et al. performed a similar study on the use of cell phone IMU and magne-

tometer sensors for indoor pedestrian navigation applications in [38]. Theis approach
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was based on a particle filter framework that fused pedestrian dead reckoning es-

timates and traditional terrain magnetic matching position estimates (see Section

2.3.3). The proposed system was tested at the Alto University Campus in Espoo

after the magnetic field of the area was mapped. The system demonstrated position

accuracies of 40 m. The work presented in [36], [37] and [38] demonstrates the usage

of low grade MEMS-based sensors for geomagnetic navigation. Their approach relies

on the presence of magnetic fields discernable by the low-cost magnetometer sensors.

This strategy is feasible for indoor environments where magnetic anomalies are abun-

dant but it is inadequate for navigation using Earth’s magnetic anomaly field, where

measurement accuracies within 50 nT are required. The strategy also works because

pedestrian dead-reckoning strategies, like step counting, are meant to mitigate the

errors from low-cost IMU position estimates. These dead reckoning strategies are not

adequate for AUV navigation.

Geomagnetic navigation is a self-contained passive navigation solution with no

impact on FV weight or power consumption, and little to no impact on the FV phys-

ical layout and has an error characteristic bounded in time. The tradeoffs of this

navigation strategy are: its dependance on the existence of magnetic maps, map res-

olution, obtaining accurate EMF samples, and the cost of a high grade magnetometer

and IMU.

Gravity Gradient Navigation

A gravity aiding navigation scheme is similar in operation to geomagnetic navi-

gation aiding. The process consists on correlating a vehicle’s readings of local gravity

to a known gravity anomaly map to find the best fit between the sensor readings and

a potential position on the map [39]. These position updates are then used to cor-

rect INS position errors. This navigation scheme requires a gravimeter and a gravity

anomaly map.
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The main driver behind gravimeters technology has been natural resource explo-

ration [39]. As a consequence, gravimeters have achieved great sensitivity, 1 part per

billions. But due to their sensitivity, gravimeters are susceptible to noise from the

environment, including vehicle movement, temperature, magnetic noise, and humid-

ity [40]. To isolate sensor readings from ambient noise gravimeters are mounted on

specialized stabilizing platforms located inside controlled environment chambers.

In the simulation work by Zhang, et al., presented and evaluated the performance

of a gravity gradient navigation scheme for an AUV [26]. The navigation scheme con-

sisted on using a matching algorithm where the vehicle was deployed and scouted

the area for a gravity signature match. Once a good match was located, N-parallel

Kalman filters would use a linear model of the local gravity field to sample around

the INS location and compare the result to the gravity measurements. The best fit

from the filters was then used as the estimate of the vehicle location. The simula-

tion components consisted of INS, gravity gradient maps, and simulated gravimeter

outputs. Their simulated navigation system achieved navigation accuracies of 50 m

during the course of 40 simulated deployments.

Li, et al. performed a simulated study on AUV gravity filter-aided navigation

[41], the method is similar to geomagnetic filtering. Their simulation utilized existing

gravity anomaly maps measured by satellite with a resolution of 2 mi2. To compensate

for the low resolution of available gravity anomaly maps, the researchers used fractal

interpolation to increase the map resolution and provide a more adequate map for

the simulation. The simulation results demonstrated a 400 m navigation accuracy,

surpassing the resolution from available gravity anomaly maps.

Shinohara, et al. developed an underwater gravimeter enclosure, suitable for

mineral deposit exploration, for AUV aplications [40]. The implementation utilized a

Micro-g LaCoste S-174 gravity sensor. The sensor was mounted on a gimbal mecha-

nism kept stable by fiber optic gyroscopes. Temperature and humidity control systems
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were employed to maintain a controlled environment. The final system then was en-

closed in a titanium sphere, rated for 4200m of depth. The system was then mounted

to the URASHIMA AUV where it scouted the ocean floor. Their work showed the

extensive accommodations necessary to prepare a gravimeter for underwater use.

Gravity-aided navigation has the advantages of providing a navigation solution

with bounded error without depending on external signals. But the extensive accom-

modations necessary to employ a gravimeter on a AUV make this an impracticable

approach for a low cost navigation solutions.

Terrain Navigation

Traditional terrain navigation is a scheme based on perceptual sensing of dis-

tinguishable features in the environment, like landmarks or topography, to estimate

AUV position using a map [42]. The main task of terrain navigation systems is the

recognition of distinguishable features and estimation of the distance from the recog-

nized feature. Both of these task are non-trivial, on the ocean floor where underwater

features do not have predictable patterns nor are they always distinguishable. Similar

to other geophysical navigation schemes, terrain navigation depends on the existence

a map and resolution. Simultaneous Localization and Mapping (SLAM) is a terrain

navigation algorithm that dose not depend on the existence of a maps and reduces the

burden of underwater recognition of structures. SLAM focuses on near floor under-

water navigation that applies view-based scan matching techniques. By configuring

the AUV path to be partially overlapped, the AUV can estimate its relative position

by recognizing overlapping feature on its path.

Eustice, et al. used a calibrated camera to augment an existing INS and DVL

navigation system for a SeaBED AUV [43]. Their methodology complimented the

existing navigation scheme with a SLAM navigation system. The result was a nav-

igation system with errors that did not accumulate in time on overlapping paths.

By bounding time dependent errors of the INS-DVL navigation system, researchers
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increased the operational time of the AUV. They also achieved a navigation accuracy

of about 4m in horizontal positioning. The authors noted the importance of lighting

for acceptable algorithm performance and the effects it has on the AUV power supply.

Roman (2005) utilized a Doppler bathymetry sensor to develop a SLAM navi-

gation system [42]. The implementation consisted of having the AUV initially scout

the deployment area while simultaneously creating a bathymetry map. Once the map

was formed, the AUV could successfully navigate the scouted area with errors less

than 10 m on the horizontal.

The advantages of terrain navigation include position accuracies below 10 m

and error characteristics that do not grow with time. The tradeoffs include: the

requirement of an AUV to control its movements via actuators or propellers, and

Doppler sensors. If a visual approach is used instead, specialized cameras that must

to be calibrated and mounted on the vehicle hull. In addition, the vehicle must also

carry power for the required cameras and potential lighting sources. For these reasons,

terrain navigation is best suited for large scale AUV which posses appropriate payload

and/or power capabilities.

3.0.4 Model-Aided Inertial Navigation

In situations where external navigation references cannot be obtained or are not

available, researchers have suggested the use of vehicle dynamic models and real-time

measurements of environmental factors to aid navigation systems [6] [9]. Dynamic

models use external inputs from the environment (currents), or actuator control sig-

nals to predict the AUV response. Models are derived from the navigation medium

(water) dynamics, the AUV profile, and relevant environmental factors. Model coef-

ficients are extracted from simulation or controlled experiments on the vehicle body

or profile. Modeling of vehicle dynamics is not a trivial task, even when considering

a rigid body, due to the underlying infinite-dimensional dynamics of the surrounding
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fluid [44]. Practical model derivations are made using finite-dimensional approxima-

tions and partial differential equations. The basic concept of using a dynamic vehicle

model in a navigation system is to treat model outputs as external sensor estimates

of velocity, as depicted in Figure 2.1 .

Vehicle Model

INS +INS
Estimate

Model
Estimate

Kalman Filter

INS
Corrections

Estimate
Differences

Vehicle
Filtered
State

DVL

Figure 3.2 : Generic Model Aided INS

Hegreanaes, et Al., reported the methodology used in deriving a dynamic model

for the HUGIN 4500 AUV [44]. The derived model was validated using uncorrelated

data gathered from a controlled experimental deployment. The test procedure was as

follows the AUV was deployed for 60 minutes using USBL for navigation, after which

USBL updates were disabled. At this time the AUV operated for 30 minutes utilizing

the derived dynamic model as a navigation source. The results showed a maximum

of 6 m in position error over 30 min. Further research on the HUGIN AUV dynamic

model by Hengrenaes and Hallingstad reported sub-centimeter precision navigation

by fusing model-aiding with USBL and DLV data [45]. The team also reported on the

log term performance of their vehicle dynamic model and obtained a position error

of 20 m in a 119 min deployment.

Montgomery and Polzin developed a dynamic model for a profiling FV in order

to obtain accurate estimates of surrounding water current during descent and ascent

[9]. The model was developed in an effort to improve current meter estimates since
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these are designed as Eulerian instruments. Researchers derived a model empirically

based on the AUV cylindrical profile and mass distribution. The AUV was then

fitted with a three axis accelerometer to estimate the accelerations exerted on it

during deployments. With the model and accelerations, the researchers were able to

obtain improved accuracy on current estimates by factoring out the profiling vehicle’s

dynamics.

Schmidt and Siegel (2011) reported on an FV descent dynamics during a 8350

m descent on the Puerto Rico Trench [46]. The FV payload was an Aquadopp DW

acoustic-Doppler current meter (ADCM), with onboard compass and pressure meter.

The ADCM’s heading data showed a continuous counter clock wise rotation during

the whole descent, with an average rotation rate of 0.029 s−1. The pressure data

showed a decreasing trend of FV descent velocity, from about 0.94 m/s at the surface

to about 0.87 m/s at the trench floor. The horizontal current measurements, which

include ambient current plus the FV horizontal displacement and rotation dynamics,

were used to analyze the FV horizontal displacement. A peak in the horizontal

current data of 8 cm/s was observed during the FV descent and a peak ambient

current of 5 cm/s was measured at the trench floor. By integrating the horizontal

current data with respect to time the authors estimated the horizontal displacement

of the FV with respect to the deployment location (a from of doppler navigation).

The landing location was estimated to be within 30 m of the deployment location

and the descent trajectory exhibited a spiral-like nature. The authors noted that the

nature of the descent was mostly due to the FV geometry and fluid dynamics rather

than ambient current or Coriolis deflection. A challenge of of using ADCM at abyssal

or hadal depths is the reduction in the availability of scatter material. Lower levels

of scatter material decreases the instruments current measurement accuracy and can

even introduce biases. The ADCM was demonstrated to operate with low bias and

measurement accuracies of 4 cm/s standard deviation (STD) in ambient where the
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signal to noise ratio (SNR) is 6 [47]. SNRs of 6 or greater were observed for depth of

7000m or less (most of the descent), only measurement at greater depth might have

suffered from low SNR problems. Unfortunately only data of the vehicle’s descent

was available for analysis. Although this research did not derive any dynamic models

for the FV, it remains one of the only studies made on FV dynamics and data from

it was used in this research effort.

In the implementations previously mentioned, the vehicle profiles are relatively

smooth and simple (cylindrical), greatly simplifying the modeling of vehicle dynamics.

This limits the development of dynamic models for vehicles with rough or variable

profiles as they present a greater challenge in determining model parameters. Vehicle

dynamics are highly dependent on environmental factors such as currents, so for

prolonged operation these factors have to be either measured or estimated accurately.

This can be achieved with little impact on vehicle weight and profile by measuring

ocean currents indirectly using electromagnetic techniques [48] [49]. But the creation

of a vehicle dynamic model remains the most challenging aspect of model-aided INS.

3.1 Inertial Navigation Aiding Scheme Summary

Table 3.1 summarizes the AUV navigation schemes reviewed and their relevant

impact on AUV characteristics. Most of the navigation schemes discussed in the pro-

ceeding section were designed to be used on large underwater vehicles. These usually

have less stringent constraints on final weight, cost and physical layout. Furthermore

none of the strategies have been implemented or designed in a FV.

Most of the navigation schemes discussed in the proceeding sections were also

designed to work in real-time on the AUV embedded processor. Algorithms required

to execute in real-time on embedded systems have certain constraints: execution

power, run time, program memory, and random access memory memory. These

constraints on algorithm implementation sometime result in the implementation of

the algorithm with degraded performance. Based on the recent developments in the
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field of underwater navigation presented in this Chapter, there is still a need for a low-

cost navigation solution that meets the payload, power, cost and physical constraints

of a FV.

The constrained and tightly coupled environment of embedded systems generally

results in inflexible, suboptimal, algorithm implementations. Thus with the objective

of developing a single tool for a variety of navigation tasks Gade et al., developed a

post-processing navigation solution, called NavLab [50]. The tool was developed to

produce optimal estimates of position, increasing its accuracy and integrity. Improved

estimates of position are obtained by using a optimal smoothing of the navigation

system outputs. Optimal smoothing produces statistically optimal estimations by

considering both past and future measurements. The flexibility of the NavLab plat-

form results from its two components: a simulator and a estimator. The simulator

outputs a set of simulated sensor measurement based on a given trajectory and a list

of desired sensors. The estimator is a flexible navigation system that produces filtered

and smoothed optimal estimates of position, velocity and orientation; based on avail-

able measurements. NavLab has been used to post-process navigation data for the

HUGIN AUV [24]. NavLab post-processed estimates of position reduced navigation

errors by 50% when compared the real-time estimates produced by the AUV.
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Chapter 4

Problem Statement & Hypothesis

Conventional aiding schemes used for underwater navigation are comprised of an

inertial navigation systems (INS), magnetic compass, pressure sensors and some form

of negative feedback on the vehicle navigation state. [7]. Popular aiding methods

used today include Doppler velocity logs, current meters, and acoustic beacons. But

cost constraints, weight limitations, and payload capabilities in a low-cost FV render

most of these solutions unfeasible. Thus, the problem being addressed in this thesis

is that of how to develop a position tracking system able to satisfy the cost, weight,

and payload capability constraints within the FV physical limitations.

Our research question is: Can we develop a low cost, self-contained navigation

solution with satisfactory accuracy that does not hinder the payload capabilities of a

free vehicle?

Our hypothesis is: A post processing navigation framework based on geomag-

netic aiding can provide a low-cost trajectory estimate solution with acceptable ac-

curacy without having a significant impact on the vehicle’s payload capabilities while

minimizing costs.
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Chapter 5

Objectives

5.1 General Objectives

The main objective perused in this project is developing a post processing iner-

tial navigation framework based on geomagnetic data capable of simulating vehicle

deployments, estimate navigation performance, and process low-cost FV sensor in-

formation to estimate trajectory and bottom location after deployment.

5.2 Specific Objectives

� To develop a descent and ascent trajectory simulator for FV.

� To simulate non-ideal sensor outputs for accelerometer, gyroscope, magnetometer

and pressure gauge devices.

� To develop a post processing INS computer with geomagnetic-aiding and an al-

gorithm capable of combining both position estimates from INS and geomagnetic

data.

� To assess sensor parameters for the accelerometer, gyroscope, and magnetometer

that have a significant effect on navigation performance.

� To recommend accelerometer, gyroscope, pressure, and magnetometer sensors able

to satisfy that navigation parameters determined and integrate them into the FV.

� Analysis of the effect that FV dynamics have on the navigation strategies presented.
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Chapter 6

Methodology

This chapter starts by presenting a system diagram of the implemented post-

processing navigation systems, in Section 6.1. The following sections then proceed to

present the implementation details of every composing block in the system diagram.

Finally, the chapter concludes by presenting the test cases used to verify and validate

the post-processing navigation system.

6.1 System Overview

Figure 6.2 shows a block diagram of the proposed post-processing geomagnetic

navigation system. The system can be separated into three layers based on the

roles of the composing blocks: the sensor layer, the data processing layer and the

data fusion layer. The sensor layer, composed of a three-axis accelerometer, three-

axis gyroscope, three-axis magnetometer, pressure sensor, and geomagnetic anomaly

maps. The benefit of establishing this layer is that data provided by each sensor

can be either obtained from a sensor log or simulated sensor outputs based on sensor

models. Having the flexibility of using real or simulated sensor data enables the

possibility of evaluating system performance under different circumstances or different

sensor performance models,in addition to providing a navigation solution for actual

FV deployments. The data processing layer is composed by an inertial navigation

computer (INC) and a geomagnetic computer (GC). The INC uses the outputs from

the accelerometer and gyroscope to solve Equations 2.9, 2.15, and 2.16 to produce an

estimate of system state. The GC processes magnetometer readings and correlates
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them to a location on the geomagnetic map, as discussed in Section 2.3, to produce an

estimate of the vehicle position. The estimation layer is solely composed of estimators,

responsible of combining the INS and GC output to produce an estimate of the system

state. The state output from the estimator is returned to the INC to correct for

accumulated errors.

3D
Accelerometer

3D
Gyroscope

3D
Magnetometer

Geomagnetic
Anomaly

Map

Inertial Navigation Computer Geomagnetic Computer

Optimal Estimator

Data 
Processing 
Layer

Sensor Layer

Data Fusion 
Layer

Attitude
Correction

Velocity
Correction

Position
Correction

Pressure
Sensor

Position Velocity AttitudePosition Magnetic
Heading

Pressure

Position Velocity Attitude

Figure 6.1 : System diagram of the post-processing navigation system

6.2 Trajectory Generator

The objective of the FV trajectory generator is to simulate the vehicle trajectory

when deployed. The trajectory is described by a sequence of periodic vehicle positions,

velocities, and accelerations with respect to the n-frame. The FV attitude during the

trajectory is described by a sequence of periodic quaternions, attitude is described

with respect to the n-frame. The trajectory generator is based on observed FV

dynamics during multiple deployments. The expected FV dynamics are: a constant

terminal descent and ascent velocities of about 1 m/s, a vertical rotation rate of

about 4.17−3 revolutions/min and a random horizontal displacement of around 10m

north or east, for every 1000s of descent or ascent [51]. The FV dynamics are then



48

divided and modeled in three areas: vertical displacement, horizontal displacement,

and vehicle attitude.

The FV vertical displacement was simulated based on a constant vertical velocity

model in Equation 6.1. This exponential behavior of the model is meant to simulate

the rate at which the terminal velocities are reached.

vd(t) =


VDES(1− e−

t
τDES ), if 0 ≤ t < tLND

VDESe
− t
τLND , if tLND ≤ t < tREL

−VASC(1− e
t

τASC ), if tREL ≤ t < tEND,

(6.1)

where tLND, tREL, and tEND refer to the time instances when the vehicle landed,

released its ballast, and surfaced, respectively. VDES and VASC are the user specified

terminal velocities for the descent and ascent of the FV. τDES, τLND, and τDES are

user specified quantities. τDES controls the rate at which the FV accelerates up to

VDES when deployed. τLND controls the rate at which the FV decelerates to a stop

when it lands on the ocean floor. τASC controls the rate at which the FV accelerates

to VASC when it releases its ballast.

Modeling vehicle accelerations with exponential models is not ideal, but since

the dynamics of these events are short lived, replacing them with a more accurate

acceleration model would not have much effect on the final FV vertical displacement.

Finally, the FV vertical velocity estimate, Vd(t), is numerically integrated and derived

to simulate the FV depth and vertical acceleration.

Since the north and east displacements of the FV are random, we chose to model

them as a random walks in both directions. The model is presented below:

rN,k = rN,k−1 + stpN where stpN is N(0, σ2
N) (6.2)

rE,k = rE,k−1 + stpE where stpE is N(0, σ2
E) (6.3)
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rN,k and rE,k are the north and east displacements for the time instance tk, in meters.

rN,k−1 and rE,k−1 are the north and east displacement from the previous time step,

stpN and stpE are the independent steps taken each time step in the north and east

directions respectively, and σ2
N and σ2

E are user specified variances of the Gaussian

distributions from which the steps are sampled.

The random walk sequences rN,k and rE,k are then numerically differentiated

twice, once for estimating the vehicle horizontal velocities (m/s) and the second time

to estimate the vehicle accelerations (m/s2). Both horizontal velocities and acceler-

ations are given with respect to the n-frame. Finally, rN,k and rE,k are converted to

displacements in latitude and longitude and added to the FV initial position, specified

by the user, using the following equations:

Latk =

(
rN,k
R− dk

)(
180

π

)
+ Lat0 (6.4)

Lonk =

(
rE,k

(R− dk) cos(Latk)

)(
180

π

)
+ Lon0 (6.5)

where Latk and Lonk are the estimated latitude and longitude for times step k; Lat0

and Lon0 are the FV initial n-frame position coordinates; R = 6378137.0m and

represents the radius of the Earth; dk is the simulated depth of the vehicle for time

step k.

The FV attitude with respect to the n-frame is simulated based on the vehicle

observed vertical rotation rate. The output quaternions are created using the inertial

attitude computer, with the body rates set to:

ωbnb(t) =


[0 0 ωz,DES]T , if 0 ≤ t < tLND

[0 0 0]T , if tLND ≤ t < tREL

[0 0 ωz,ASC ]T , otherwise;

(6.6)
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where ωz,DES and ωz,ASC are user specified constant vertical rotation rate for the FV

descent and ascent. The FV is assumed to be aligned with the n-frame at the start

of the trajectory simulation.

The FV trajectory simulator was implemented as a Matlab function with the fol-

lowing signature [SysPathDescript q] = FVTrajectorySim(PathParams). PathParams

is a compound structure of the control parameters used for each of the FV dynamic

models, that together simulate the FV trajectory. The PathParams structure has the

following members:

� InitialCond : is structure containing the initial latitude, longitude and depth where

the FV was deployed. Initial velocities and accelerations are assumed to be zero.

The members of the structure are:

– Lat : initial FV latitude in degrees.

– Lon: initial FV longitude in degrees.

– d : initial FV depth in meters.

� TimingParams : is a structure containing the timing parameter used to create the

output time series trajectory description SysPathDescript. The structure also con-

tains the timing parameters used for trajectory models. The members of the struc-

ture are:

– samp p: represents the sampling period used to describe the FV trajectory, in

seconds.

– start t : represents the start time for the simulation, in Matlab datenum format.

– lnd t : represents the relative time instant, in seconds, after start t when the

vehicle lands.

– res t : represents the relative time instant, in seconds, after lnd t when the

vehicle releases its ballast.

Note that no end time for the simulation is provided, tEND this is estimated based

on distance traveled in the descent and terminal ascend velocity.
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� VerticalParams : is a structure that contains the control parameters of the vertical

displacement model, Equation 6.1. The structure contains members:

– des v : specified m/s, it represents the terminal descent velocity VDES.

– asc v: specified m/s, it represents the terminal ascent velocity VASC .

– tau des : specified s, represents τDES.

– tau lnd : specified s, represents τLND.

– tau res : specified s, represents τASC .

� HorizontalRW : is a structure that contains the control parameters for the horizontal

displacement model, Equation 6.2. The structure has the following members:

– var n: represents σ2
N in the model.

– var e: represents σ2
E in the model.

� Att : is a structure that contains the control parameters for the attitude model in

Equation 6.6. Att structure has the following members:

– w des : specified in 1/s, represents ωz,DES.

– w asc: specified in 1/s, represents ωz,ASC .

SysPathDescript is a time series collection that describes the simulated FV trajectory,

with the following members:

� FVPos : is a time series object that describes the FV position in the n-frame, with

the form [Latitude Longitude Depth]T .

� FVVel : is a time series object that describes the FV velocity with respect to the

n-frame with the form [VN VE Vd]
T in m/s

� FVAcc: is a time series object that describes the FV acceleration with respect to

the n-frame, with the form [aN aE aD]T .

� FVAcc b: is a time series object that describes the FV accelerations with respect

to the body frame [aX aY aZ ]T . This time series is estimated by projecting the

acceleration on the n-frame to the b-frame using the FV simulated attitude. It

represents the ideal accelerations exerted on the onboard accelerometer.
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q is a time series object of the quaternion that describes the vehicles attitude with

respect to the n-frame in time.

6.3 Sensor Models

As mentioned in Section 2.1.6, inertial sensors measurements are corrupted by

multiple sources. Common sensor models use to simulate sensor output include a

constant bias error component, a moving bias error component and a source of ran-

dom noise [1], [5], [32], [52]. These error sources are added to ideal sensor readings

to simulate gyroscope and accelerometer sensor outputs. The constant bias error is

simulated by adding a constat offset to the ideal senor readings. A moving bias is

simulated by a first order gauss Markov process (FOGMP) [52]. Finally the ran-

dom noise is simulated by white Gaussian noise. Thus the sensor model used to for

accelerometer readings was:

f = fideal + ba + ωa + ca (6.7)

Where f = [fx fy fz]
T is the resulting simulated specific force output from a three

axis accelerometer. fideal = [fx,ideal fy,ideal fz,ideal]
T is the ideal specific forced sampled

by on a three axis accelerometer. ωa = [ωx,a ωy,a ωz,a]
T is a vector of white Gaussian

noise. ca = [cx,a cy,a cz,a]
T is constat value vector that simulates a constant bias on

the senor readings

The sensor model for the gyroscope is identical to accelerometer model and is

given by:

g = gideal + bg + ωg + cg (6.8)

The sensor models were implemented as a Matlab function with the following

signature: [s sim] = IMUSenseMdl(s,SensParams).Here s is a 3 × m matrix where

each column is an ideal sample from a three axis sensor. Each column is assumed

to have the from [sx sy sz]
T , where sx, sy and sz represent ideal sensor samples form
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the x, y, and z axis of the sensors. SensParams is a structure that contains the

parameters for the sensor model and has the following members:

� samp p: a scaler value that represents the sampling period of the data in s, in

seconds.

� fogm tau: is a 3× 1 vector, representing time constant for the FOGMP, in seconds.

� fogm std : is a 3× 1 vector, representing the standard deviation the Gaussian noise

that drives the FOGMP of each axis.

� fogm init : is a 3× 1 vector, representing the initial values for the FOGMP.

� omega std : is a 3 × 1 vector, representing the standard deviation for the white

Gaussian noise source ωa or ωg.

s sim is a 3xm matrix representing the simulated sensor output, where each column

represents a three axis sensor sample.

6.4 Inertial Navigation Computer

This section presents the implementation of the INS attitude and position com-

puter. Both implementations are based on the INS theoretical background presented

in Chapter 2. The following section presents the implementation of the intertidal atti-

tude computer and Section 6.4.2 presents the implementation of the inertial position

computer.

6.4.1 Inertial Attitude Computer

The inertial attitude computer, which estimates the attitude of the b-frame with

respect to the n-frame, was implemented as a Matlab function. The functions ap-

proximates the solution to Equation 2.9 using Euler’s Method, as in Equation 6.9.

qnb,ω,tk = qnb,tk−1
+ ∆t q̇nb,ω,tk (6.9)

where:

� qnb,ω,tk is the inertial attitude estimate for the time instant tk
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� qnb,tk−1
is the attitude estimate from the previous time step tk−1

� ˙qnb,ω,tk is a vector quaternion created using the body rate angular velocity vector

provided by the onboard gyroscope for the current time instant ωbnb,k−1

� ∆t = tk − tk−1 is the period between estimation cycles

The Inertial Attitude Computer is implemented as a Matlab function, with the

following signature [q pred] = Qpred(q prev,w,dt), where q prev represents the qnb,tk−1
,

the parameter w represents ωbnb,k, and dt is ∆t in Equation 6.9.

6.4.2 Inertial Position Computer

The inertial position computer, estimates the vehicles velocity and position with

respect to the n-frame, was implemented as a Matlab function. The functions approx-

imates the solution to Equations 2.15 and 2.16 using Euler’s Method as in Equations

XX and YY respectively.

vne,tk = vne,tk−1
+ ∆t v̇ne,tk−1

(6.10)

rntk = rntk−1
+ ∆t ṙntk−1

(6.11)

where

� vne,tk is the inertial velocity estimate for time instant tk

� vne,tk−1
is the velocity estimate from the previous time step tk−1

� v̇ne,tk is the evaluation of Equation 2.15 using data from the accelerometer, initial

velocity estimates from tk−1

� ∆t = tk − tk−1 is the period between estimation cycles

� rntk is the inertial position estimate for tk

� rntk−1
is the position estimate from tk−1

� ṙntk−1
is the evaluation of Equation 2.16 using the vne,tk−1

.

The initial position computer function has the following signature,[ins st] = IN-

SNavEq(prev ins st, f, gl, dt) where:
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6.5 Magnetic Computer

The geomagnetic navigation algorithm used for the FV post-processing navi-

gation system was based on a modified magnetic matching algorithm presented in

Section 2.3.3. Because the FV horizontal displacements are not expected to be very

large [46], instead of using a track of magnetic samples, the algorithm uses a single

magnetic sample when the magnetic measurement period expires.The implementation

of the magnetic matching algorithm is specified in the measurement update section of

the position optimal estimator, Section 6.6.2, because of the way in which the optimal

estimator produces its results.

6.6 State Estimators

6.6.1 Attitude Estimator

A complementary filter was chosen as the estimation technique to fuse the at-

titude measurements from the attitude computer, accelerometer, and magnetometer

into the system attitude estimate. A complementary filter was chosen because of its

simpler structure and compelling results when compared to other attitude estimation

alternatives, like the kalman filter and the extended kalman filter [3].

The Complementary Filter and Its Applications in Attitude Estima-
tion

The complementary filter is a simple estimation technique used to combine mea-

surements of a state of interest [53]. Figure 6.2 shows the basic structure of a

complementary filter, where X and Y are noisy measurements of a state Z, and Ẑ

is the filter estimate of Z. Assuming that the noise in X is mostly low frequency,

the noise in Y is mostly high frequency, and the cut-off frequency for both filters in

Figure 6.2 is the same then, Ẑ would, in theory, be a noise free, all pass, estimate of

Z. Note that no statistical description of the noise corrupting the measurements X or

Y , is considered in the complementary filter, only a simple analysis in the frequency



56

domain [53]. Figure 6.2 (B) depicts an alternate mechanization of the complemen-

tary filter. In this from, the complementary filter operates on the difference between

the measurements Y −X and the filter is chosen based on the frequency spectrum of

X − Y .

+

+

X

Y

High Pass Filter

Low Pass Filter

(A)

+

X

Y

Filter

(B)

Y-X

+

-

+

Ẑ Ẑ

Figure 6.2 : (A) The basic structure of a complementary filter. (B) Alternate
mechanization of the complementary filter.

In estimating attitude from an IMU and a magnetometer, the complementary

filter is implemented to be a high-pass filter on the attitude estimates from the atti-

tude computer and a low-pass filter on the attitude derived from accelerometer and

magnetometer readings. A high-pass filter is applied to gyroscopic estimates of atti-

tude because of the slow bias variations in its measurements which, once integrated,

become the main cause of gyroscopic attitude estimate drift [5]. Because accelerom-

eter and magnetometer measurements are not integrated with respect to time, the

primary source of error in their measurements is the high-frequency electromechanical

noise from the sensors. For this reason, attitude estimates derived from accelerometer

and magnetometer measurements are low-pass filtered. Care must be taken when se-

lecting the cut-off frequency for the complementary filter, as it is the scale by which

the filter assigns weight on its input measurements. An initial selection is usually

based on sensor performance parameters and expected system dynamics but final

values are most commonly found by experimentation [3]. A final note on estimat-

ing attitude from, IMU sensors, is the effect of external accelerations and perturbing
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magnetic fields, as these sway our estimates of local vertical and north headings. If

these dynamics are short-lived their effects are mitigated by the low-pass filtering but

they must be considered if their presence is persistent.

Complementary Filter Mechanization

The implementation of the attitude complementary filter is based on the work

presented by Valenti, et al., in [3]. Figure 6.3 shows a system diagram of the

implemented complementary filter. The process starts by obtaining an estimate of

the systems attitude from the inertial attitude computer qnb,ω (tk omitted for clarity).

ab is the accelerometer output, assumed to be a measurement of the n-frame vertical

axis in the body frame. ab is normalized and projected onto the n-frame using qnb,ω

via Equation 2.8. The result is an estimate of the direction of n-frame z-axis or

local vertical, g′n. g′n is then compared to the expected direction of the local vertical

gn = [0 0 1]T and the difference between the two is used to calculate ∆qvert. ∆qvert is

the correction in pitch and roll angles of qnb,ω. Note that ∆qvert provides no correction

in yaw. This is expected because the direction of local vertical provides an estimate

of the horizontal North-East plane of the n-frame but no information of its yaw

orientation [3]. ∆qvert suffers from high frequency noise emerging from ab, thus a

low-pass filter is applied to the estimate, producing ∆q′vert. Section 6.6.1 specifies the

details related to the formulation and filtering of ∆qvert. ∆q′vert is then applied to

qnb,ω, via quaternion product q′nb = ∆q′vert ⊗ qnb,ω. Resulting in a estimate of system

attitude, corrected for divergence in global horizontal plane q′nb .

q′nb is then used to project the measurements from the magnetometer, mb, onto

the n-frame to obtain a predicted magnetic heading h′n. h′n is then compared to

the n-frame’s half North-Down-plane, where the North axis is positive, to obtain a

heading quaternion correction, ∆qyaw with respect to the local magnetic north. ∆qyaw

is then filtered with a low-pass filter to produce ∆q′yaw. The process of calculating

and filtering of ∆qyaw is presented in Section 6.6.1. ∆q′yaw is then applied to q′nb , via
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Figure 6.3 : System diagram of the attitude complementary filter

quaternion product, to obtain the final estimate of vehicle orientation qnb corrected

for drifts in the roll, pitch, and yaw. The final step involves feeding back qnb to the

attitude computer as the estimate of vehicle orientation of the previous time step.

Estimation and Filtering of ∆qvert:. In this section we present the formula-

tion of qvert, the formulation is derived from the work by Valenti, et al., in [3]. First

an estimate of the local vertical g′n is obtained using qnb,w and ab via Equation 6.12

R(qnb,w)ab = g′n (6.12)

Since g′n will diverge from the local vertical gn by a small amount, ∆qvert is

the attitude correction that will rotate g′n into gn. ∆qvert is calculated by solving

Equation 6.13

RT (∆qvert)g
n = g′n, (6.13)

where

g′n = [gx gy gz]
T , gn = [0 0 1]T
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The solution to Equation 6.13 is presented below, [3]

qvert =

[√
gz+1

2

gy√
2(gz+1)

− gx√
2(gz+1)

0

]T
(6.14)

As mentioned before qvert is affected by the high frequency noise in ab, thus it

is scaled down (or low-pass filtered) before being applied to qnb,w. The scaling of qvert

is done by spherical linear interpolation (SLERP) [54] between qvert and the identity

quaternion qI = [1 0 0 0]T , via the following Equation: [3]

∆qvert =
sin([1− α]θ)

sin(θ)
qI +

sin(αθ)

sin(θ)
∆qvert (6.15)

where θ is the angle between qI and qvert, estimated by calculating the dot product

of both quaternions. α ∈ [0, 1] is the gain that characterized the cut-off frequency of

the filter.

Finally the qnb,w is multiplied by ∆qvert resulting in q′nb , an attitude estimate

corrected for drifts in the roll and pitch components:

q′nb = ∆q′vert ⊗ qnb (6.16)

Estimation and Filtering of qyaw. qyaw is derived from the magnetic heading

provided by the on-board magnetometer and provides q′nb with drift corrections in the

yaw component. The formulation and filtering of qyaw is similar to ∆qvert and is also

based on the work of Valenti, et al., [3]. The process begins by first normalizing the

measurement form the magnetometer mb then transforming its representation from

the b-frame mb to the n-frame, with q′nb , as follows:

R(q′nb )mb = h′n (6.17)

h′n estimates the direction of the local magnetic north. Next, qyaw is calculated

as the rotation needed to place h′n in the half-plane formed by the n-frame magnetic

north and local vertical, where the resulting vector is pointing in the positive north
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direction. The formulation of qyaw is presented in Equation 6.18 [3].

R(∆qyaw)


hx

hy

hz

 =


√
h2
x + h2

y

0

lz

 (6.18)

Note that Equation 6.18 represents a rotation about the global z-axis and aligns

the horizontal components of h′b to the positive magnetic north direction. The benefit

of this formulation is that the components of pitch are not affected by any perturba-

tions that might be present in mb, limiting their influence to the yaw angle only [3].

Based on the above discussion ∆qyaw will have the following form:

∆qyaw =

[
q0yaw 0 0 q3yaw

]T
(6.19)

which represents a rotation about the z-axis.

The solution to Equation 6.19 is given below [3]:

∆qyaw =

[√
T+hx

√
T√

2T
0 0 − hy

√
2
√
T+hx

√
T

]
(6.20)

where

T = h2
x + h2

y (6.21)

As with ∆qvert, ∆qyaw is affected by the high frequency noise of the magnetometer

measurements mb. Thus a similar filtering procedure as with ∆qvert was adopted

for ∆qyaw. Since each ∆qvert and ∆qyaw are independent and each is related to a

particular sensor (accelerometer or magnetometer) they may be affected by noise

with different frequency spectrums. The complementary filter mechanization used

allows for different gains to be assigned to the filters of ∆qvert and ∆qyaw such that

they are tuned to the noise frequency spectrum their correponding sensor. Thus the

filtering of ∆qvert was the same as for the SLERP in Equations 6.15 but the gain α is

replaced by a second gain β. Finally the output of the filter was obtained by applying
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the ∆qyaw correction to q′nb via equation 6.22

qnb = ∆q′yaw ⊗ q′nb ; (6.22)

Attitude Quaternion Initialization

As mentioned in Chapter 2.1 attitude inertial estimates depend on known initial

conditions. This subsection explains how the attitude quaternions qnb were initialized.

The process was proposed by Valenti, et al., [3] and uses the orientation estimates from

the accelerometer and magnetometer to estimate the initial attitude of the system

qnb,0. First qnb,0 is decomposed into two auxiliary quaternions qvert,0 and qyaw,0:

qnb,0 = qyaw,0 ⊗ qvert,0 (6.23)

where qvert,0 is calculated via Equation 6.24

qvert,0 =


[√

az+1
2

ay√
2(az+1)

− ax√
2(az+1)

0

]T
, ax ≥ 0[

− ay√
(2(1−az))

√
1−az

2
0 − ax√

2(1−az)

]T
, ax < 0.

(6.24)

qyaw,0 is estimated by first projecting the normalized magnetometer estimates of north

heading onto the horizontal n-frame (with arbitrary yaw) via Equation 2.12, resulting

in l. l is then used in Equation 6.25 to estimate qyaw,0 as:

qyaw,0 =


[√

T+lx
√
T

2T
0 0 − ly

√
2
√
T+lx

√
T

]T
, lx ≥ 0[

ly
√

2
√
T+lx

√
T

0 0 −
√
T+lx

√
T

2T

]T
, lx < 0.

(6.25)

Note the Equations 6.24 and 6.25 are similar to Equations 6.14 and 6.20 presented

earlier. Equation 6.24 is an augmented version of Equation 6.14 that avoids the

singularity event when ax = −1. In a similar fashion Equation 6.25 is an augmented

version of Equation 6.20 that avoids the singularity event when lx is negative and
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ly = 0. Now that qvert,0 and qyaw,0 are calculated, qnb,0 can be estimated using Equation

6.23.

Complementary Filter: Matlab Implementation

The attitude complementary filter was implemented in Matlab as a set of func-

tions. The function signatures along with a description for each function is provided

below:

� [q pred] = Qpred(q prev,w,dt): computes the attitude estimate from the inertial

attitude computer, see Section 6.4.1.

� [q corr] = QaccCorrect(q pred,a): estimates ∆qvert via Equation 6.14, where q pred

is qnb,ω and a is the accelerometer read out.

� [q] = QyawCorrect(q corr,m): estimates ∆qyaw via Equation 6.20, where q corr is

q′nb and m is mb of Equation 6.17.

� [q] = ScaleQuat(q,gain): scales the quaternion q via Equation 6.15, where gain

represents α.

� [q] = Qinit(a,m): estimates the vehicles initial attitude qnb,0 via Equations 6.23, 6.24,

and 6.25. Where a is a in Equation 6.24, m is magnetometer’s estimate of magnetic

north, and the output q is qnb,0

6.6.2 Position Estimator

The particle filter was chosen as the estimator for the vehicle position because it

does not impose a linearity restriction on the systems models and no restriction on the

error characteristics in either the system or measurement updates, providing a flexible

framework for this research and any future enhancements. As mentioned in Section

6.1, the FV depth estimate is based on measurement updates from a pressure sensor.

The horizontal position estimate was derived from the magnetic matching algorithms.

For this reason the position estimator for the vehicle was divided into two filters, a

depth particle filter (DPF) and a horizontal position particle filter (HPPF).
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The remaining subsections provide a brief introduction to the particle filter (Sec-

tion 6.6.2), the implementation of the DPF (Section 6.6.2), and the implementation

of the HPPF (Section 6.6.2).

Particle Filter Introduction

The goal of a particle filter is to estimate the state of a system as it evolves

over time. A particle filter describes the system state as a changing probability

distribution (pdf) function based on available information [55]. In leu of an analytical

expression, the particle filter describes the state-pdf with a set of samples taken from

the distribution. Each sample of the pdf is composed of a system state estimate x,

called a particle, and a corresponding weight w, that describes a particle’s relevance.

Let X represent the collection of particles and W the collection of corresponding

particle weights as:

X = [x1 x2 ... xP ]T P is the number of particles (6.26)

W = [w1 w2 ... wP ]T (6.27)

where
P∑
i=1

wi = 1

Now the state estimate and state pdf can be described in terms of Xtk and WtK for

the time instant tk. Let ztk represent a state measurement from the sensory systems

and let Ztk represent the measurement history up until the time instant tk

A particle filter, like the Kalman Filter, operates in two phases: a prediction

phase and an update phase. In the prediction phase the state of each particle is

propagated forward in time from the previous cycle to the moment just before a

measurement update, via a system model. In the update phase the weight of each

particle is re-evaluated based the most recent measurement ztk [56]. More formally,

at some time instant tk the particle filter will have the state-pdf from the previous
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time cycle (tk−1) and a measurement update ztk for tk. The goal of the filter is to

estimate the state-pdf for tk, called the posteriorPDF, based on Xtk−1
, Wtk−1

and ztk .

The Filter process starts by propagating the state estimate from Xtk−1
to the

current time instant tk (prediction phase) via a system model f(x, ε). f(x, ε) is based

on dynamic models of the system, like Equation 2.15, these models describe how

the system state changes based on a set of controlled inputs. In addition, f(x, ε) is

augmented by adding some noise to the state propagation that models the effect of

the expected input noise ε on the control inputs and/or system. X̂tk=[x̂1,tk x̂2,tk ... x̂P,tk ]T

is used to represent the set of filter predicted states.

The next step is to estimate how likely are the predicted particle states X̂tk based

on the latest measurement update ztk . This is accomplished by using a measurement

model h(xtk) and a likelihood function L(·). h(xtk) expresses the relationship between

a sensor measurement and system state. It is used to obtain a set of predicted mea-

surements Ẑtk = [ẑ1,tk ẑ2,tk ... ẑP,tk ]
T from X̂tk . L(·) is used to estimate how well each

predicted measurement ẑi,tk correlates to ztk , based on an estimate of measurement

variance σ2
z . Equation 6.28 is a generalized Gaussian likelihood function for a single

measurement update [56]

L(x̂tk |ztk , σ2
z) =

1

2πσ2
z

exp (−(z(tk)− ẑ(tk))
2

2σ2
z

) (6.28)

Note that the likelihood equation does not have to be Gaussian, it is chosen based

on the error characteristics of the measurement model, here a Gaussian likelihood is

used as an example.

Now that the likelihood of each independent propagated state has been deter-

mined, the posteriorPDF can be estimated. The process starts by re-evaluating the

particle weights Wtk based on Wtk−1
and the likelihood of each propagated state. This

is done by combining the information of both the likelihood estimates and Wtk−1
, via
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Equation 6.29 [56].

Wtk = [w1 w2 ... wP ]T

wi,tk =
L(x̂i,tk |ztk , σ2

z)wi,tk−1∑P
i=1 L(x̂i,tk |ztk , σ2

z)wi,ti−1

P∑
i=1

wi,tk = 1

(6.29)

Note that the denominator in Equation 6.29 serves as a normalizing factor, that

forces the sum of Wtk to equal one. Now the posteriorPDF is represented by the set of

independently propagated states Xtk = [x1x2 ...xP ]T and their corresponding updated

weights Wtk . Now the state estimate X̄tk of the filter and weighted covariance Ptk

can be calculated via the Equations 6.30 and 6.31.

X̄tk = E[Xtk ] =
P∑
i=1

wixi (6.30)

Ptk = E[(xi − X̄)(xi − X̄)T ] =
P∑
i=1

wi[xi − X̄][xi − X̄]T (6.31)

As a final note, it is possible in the particle filter for a few particles to account

for most of the weight in W and the majority of the other particle to have near zero

weights. This condition is known as particle starvation [55]. This problem, if left

unattended, could drastically reduce the filter estimation performance. Particle re-

sampling is a strategy used to tackle this problem. The basic approach is to eliminate

particles with low weights and replace them with particles with the highest weights,

without changing the underlying pdf. First, a method for estimating the amount of

particles that contain most of the weight is necessary. Liu et al., proposed methods

of estimating the number of particles that carry most of the weight via the coefficient

of variance cvtk , Equation 6.32, and the effective sample size (ESS), as illustrated in

Equation 6.33 [57].

cvtk =
var(Wtk)

E2(Wtk)
(6.32)
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ESStk =
P

1 + cvtk
(6.33)

When ESS drops below a certain fraction of the P , then the re-sampling strategy is

applied. The fraction of P is initially estimated by the user based on the application

and later tuned based on experimentation

The simplest method of particle re-sapling is by creating a new set of particles

and selecting with replacement from X, where the probability of selecting a particle

is equal to its corresponding weight. The strategy is based on the premise that

particles with the highest weights, and that contribute most to the statePDF, are

selected multiple times and the particles with near zero weights are rarely selected.

As a last step to the re-sampling strategy, all of the particle weights are reset to 1/P .

Horizontal Particle Filter Mechanization

System Models. As mentioned in Section 6.6.2, the particle filter uses system

models to estimate the system state at a future time. The system model must add

independent noise to each estimate. The added noise is selected to approximate the

noise characteristics in the underlying system. Two systems models were developed

for the (HPPF), one is based on INS performance, and the second one is a First Order

Gauss-Markov Acceleration Model (FOGMA).

The INS model is based on the navigation equations presented in Section 2.1.5

and a modified model of INS estimation errors presented by Tittering in [1]. When

using the INS system model, the state x of each particle consists of five [3×1] vectors,

for a total 15 elements:

x =



δp

δv

δΨ

ba

bg


, (6.34)



67

where δp is the INS position error vector, δv is the INS velocity error vector, δΨ

is the INS attitude error vector, and ba and bg are the bias state vectors, for the

accelerometer and gyroscope bias stability model. The INS error model for a six

degree of freedom INS is given by:

ẋ(t) = Fx(t) + w(t) (6.35)

where

F =



0 I3 0 0 0

0 0 (fn×) Cn
b 0

0 0 0 0 −Cn
b

0 0 0 − 1
τa

0

0 0 0 0 − 1
τa


, (6.36)

w(t) =

[
0 Cn

b ωa −Cn
b ωg ωabias ωgbias

]T
, (6.37)

where

� I3 is a 3× 3 identity matrix.

� (·)× is the cross product operator that creates a skew symmetric matrix of its input

vector, fn in case of Equations 6.36.

� Cn
b is a DCM that transforms a vector from the b-frame to the n-frame.

� τa and τg are the time constants of the FOGMP modeling the bias stability of the

accelerometer and gyroscopes respectively.

� fn is the specific force measurement from the accelerometer.

� ωa and ωg are white Gaussian noise modeling thermo-mechanical noise in the ac-

celerometer and gyroscope sensors respectively.

� ωabias and ωgbias are the white Gaussian noise that drive the FOGMP.

Parameters τa, τg, ωa, ωg, ωabias , and ωgbias are selected based on the performance

characteristics of the inertial sensors. All noise sources are assumed independent.
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The filter particles are first initialized with the expected error from the system

initial conditions. Then particles are propagated forward in time via Equation 6.35,

as the INS produces its estimates until a measurement update becomes available.

At this time, the error estimates of each particle are added to the INS estimates of

vehicle state to obtain a particle spread around the INS estimate that is a function

of the inertial sensor performance characteristics.

With the FOGMA system model accelerometer measurements are replaced by

accelerations modeled by FOGMPs. The basis of this substitution is when an FV

is deployed it spends most of the deployment in a static (non-accelerating) state.

With exceptions being short lived events (less than 5s), when leaving the surface,

reaching the final depth, releasing ballast, and reaching surface. When operating in a

static state, accelerometer and gyroscope measurements will be mainly noise from the

sensors. That, depending on sensor performance, can cause tens of meters of position

error in 10 min to thousands of meters in position error, in the same 10 min. When

these error performances are compared to the expected horizontal displacement of

the FV [46], expected position errors would overshadow the FV horizontal position

displacements. For this reason when using the FOGMA the accelerometer readings

are replaced by FOGMA output that more closely resembles expected FV horizontal

displacement. FOMGA have been used to model car and robot displacement for the

purpose of navigation [56].

When using FOGMA, system model the state of each particle becomes:

x =

[
p v a

]T
(6.38)

where p is [2 × 1] horizontal postilion vector with the form [Lat Lon]T , v is a [2 ×

1] horizontal velocity vector of form [Vnorth Veast]
T , and a is a [2 × 1] horizontal

acceleration vector with the form [anorth aeast]
T .
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The FOGMA then takes the form:

ẋ(t) = FFOGMPAx(t) + wFOGMPA(t), (6.39)

where

FFOGMPA =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 − 1
τnorth

0

0 0 0 0 0 − 1
τeast


, (6.40)

wFOGMPA(t) =

[
0 0 0 0 ωnorth ωeast

]T
, (6.41)

τnorth and τeast are the time constants for the FOGMA in the north and east directions

respectively, and ωnorth and ωeast are the white Gaussian noise that drives the FOGMA

process.

Measurement Model. The following paragraphs specify the measurement

model used for the HPPF and assumptions made in its development. For our appli-

cation, the measurement model hHPPF (x) relates the vehicle position to an expected

magnetic measurement. In Section 2.3 we presented the components of the magnetic

field, the magnetic fields that might be present when a magnetometer is sampled,

and the steps necessary to extract a magnetic anomaly measurement from a magne-

tometer sample. Now we present the assumptions made in the development of the

measurement model for the HPPF.

First, the height dependence of the anomaly magnetic field. Normally, magnetic

anomaly maps over oceans are sampled from the water surface, meaning that the

anomaly fields in those maps are not suitable for underwater magnetic navigation,

since the contours of the anomaly field would change with depth [58]. From here,
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there are two options: constructing a magnetic anomaly map at the operating depth

or extrapolating the magnetic data from the surface to greater depths, via downward

continuation techniques (DCT) [59]. Continuation techniques are used to predict

magnetic intensities at different heights. Upward continuation has demonstrated

promising results, but DCT is still a topic of research [58]. In an effort to continue

forward with the navigation solution, the magnetic anomaly map of the oceans surface

will be used regardless of the FV depth and assumed accurate enough for the purposes

of navigation.

The magnetometer will be assumed to be calibrated, meaning that the only

remaining source of error would be the sensor measurement noise. Other sources

of error include mapping error, diurnal variations, remaining error from the WMM,

and errors induced by magnetic storms. These sources of error will be modeled as

Gaussian noise. This assumption, although not ideal, not uncommon for magnetic

storm and sensor measurement noise, but somewhat inadequate for residual WMM

errors [32].

With the given assumptions, the horizontal position measurement model can be

expressed as:

ẑ(tk) = map(xk(1), xk(2)) + ωresidual, (6.42)

where hhorz is the estimated magnetic anomaly measurement at location [x(1), x(2)]

described by the system state x; map(·) is a function that samples the magnetic

anomaly map at the location specified; and ωresidual represents the residual sampling

noise modeled as Gaussian noise.

Likelihood Equations. Given the measurement magnetic measurement model

assumptions, regarding residual measurement errors, a Gaussian Likelihood equation

was adopted as the filter likelihood equation.

L(x̂tk |ztk , σ2
residual) =

1

2πσ2
residual

exp

(
− (z(tk)− ẑ(tk))

2

2σ2
residual

)
(6.43)
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where σ2
residual is the variance of ωresidual and z(tk) is the latest magnetic anomaly

field measurement.

Magnetic Anomaly Map. The earth’s magnetic anomaly Map (EMAG2) is

a 2-arc minute resolution map of the Earth magnetic anomaly field [60]. The map

was constructed based on magnetic samples from magnetic survey trips (on land

and sea and air) and magnetic data provided by satellite. The map is provided at

two altitudes; sea level for sea covered areas, and at 4 km altitude for land and sea

covered areas. The resolution of the map is too coarse for our application and thus

it is interpolated at the desired location using 2D spline methods.

Matlab HPPF Implementation. The HPPF was implemented in four Mat-

lab scripts. The user chooses which to use depending on whether the script is going

to process real or simulated data and which system model and measurement model

is going to be used. The scripts can be divided into six main sections: parameter

specification, load sensor data, sensor data processing, filter initialization, filters loop,

and a results section. The roles and actions performed in each section are specified

bellow:

Parameter Specification In the parameter specification phase the user provides

the duration of the deployment (in seconds), the system model sampling period, the

measurement update period, control parameters for the system model, system initial

state estimate, initial state error (sa standard deviations for each state) and the

control parameters for the HPPF.

The parameters for the system model, naturally, depend on the chosen system

model for the particle filer. If the INS system model is used then the user must specify

the performance parameters τa, τg, ωabias , ωgbias , ωa, and ωg for the accelerometer and

gyroscope (see Equations 6.35-6.37). If the FOGMA were used instead, the user must

specify the control parameters τnorth, τeast, ωnorth and ωeast of the FOGMA model, in

Equations 6.39-6.41.



72

The specified initial state estimate and expected error estimate, also depend on

the system model chosen. If the INS model were used the user must provide ini-

tial conditions for rn, vne , and qnb,0 of Equations 2.13, 2.14 and 2.9. With the initial

conditions, the user must also specify corresponding expected error (as a standard

deviation) for each state. These initial estimate errors would later be used to ini-

tialize the particle’s of the filter. If the FOGMA model were used instead, then

the user would specify initial conditions for p, v, and a of state Equation 6.38, and

corresponding expected errors, as a standard deviation for each state.

The control parameters for the HPPF are: the number of particles P and the

threshold value re-sampling the filter’s particles. The threshold value must be between

0 and 1 and represents the minimum fraction of P before particle re-sampling is

performed.

Load Sensor Data When processing real data gathered from a FV deployment,

if the magnetic measurement model is used then magnetometer samples are loaded

from a sensor file, obtained from the FV. If the IMU system model were used then,

IMU sample data would also be loaded from the sensor file. Else if, the FOGMP

model were used, no additional data would be loaded.

When processing simulated data: first, an FV trajectory is simulated using the

trajectory simulator in Section 6.2. At this point, if the INS system model is used,

then the FV accelerations in the n-frame, from the trajectory generator, are corrupted

by noise using the sensor models presented in Section 6.3. Else if, the FOGMA system

model is used, no further simulations of data are necessary.

Sensor Data Processing When processing real deployment data and using the

magnetic measurement model, magnetic anomaly measurements are extracted from

the magnetometer samples via the process mentioned in Section 2.3. Then if, the

INS system model were used: the vehicle’s attitude would be estimated using the

complementary filter, in Section 6.6.1, to create a quaternion description of the vehicle
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attitude in time. Then the attitude estimates are used to project the specific force

measurements, from the accelerometer, in the b-frame to the n-frame. These n-frame

acceleration are then the ones used for the INS. If the FOGMP were used then no

IMU sensor information needs to be loaded into the system.

When simulated data is used instead, the horizontal position form the simulated

trajectory are used to simulate magnetic anomaly measurements via the measurement

model in Equation 6.42, if the magnetic measurement model is selected. Then if, the

INS system model were used: the n-frame vehicles accelerations, provided by the

trajectory generator are used for the INS system model. Else if, the FOGMA model

were used instead: no further data simulation would be needed.

Particle Initialization At this point of the script the filter’s particles are initialized

based on the initial conditions provided earlier and their expected error.

Filter’s Loop In the Filter loop phase the deployment duration is divided into c =

floor(deploymentduration/measurementperiod) time window. At the start of each

time windows, the effective sample size of the particles is estimated, via Equations 6.32

and 6.33. If the effective sample size falls below the user specified threshold, particle

re-sampling is then performed. Then the HPPF would go through its prediction stage,

in which it would use the system model to predict the FV horizontal position at the

moment just before a measurement update. If the magnetic measurement model was

used the predicted vehicle positions are used to produce a set of predicted magnetic

anomaly samples using the measurement model in Equation 6.42. The predicted

magnetic anomaly samples are then compared to the anomaly sample extracted form

the magnetometer using the Likelihood Equation 6.43. At this point the particles

weights Wtk−1
are re-evaluated using Equation 6.29. As a final step, estimates of the

vehicle state and confidence intervals are obtained, via Equations 6.30 and 6.31, and

saved.
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Results In the final section of the script the results of the particle filter’s state

estimate are plotted for analysis.

Depth Particle Filter Mechanization

This Section presents the mechanization of the depth particle filter. Starting

withe filter’s system models in the following paragraph. The discussion continues by

presenting likelihood and measurement equations and concludes by presenting the

filter’s implementation.

Depth Particle Filter System Models. Two system models were developed

for the depth particle filter, one based on INS performance and a second based on the

FOGMA model. The system model based on INS performance is exactly the same

model presented in Section 6.6.2, only that this time only the components related to

the vertical axis are the only outputs used. Using the INS model the state of the filter

is then represented by Equation 6.34. Now the same process described in Section 6.34

takes place: the particles are initialized with the expected amount of initial condition

error. The INS uses IMU data to produce an estimate of the vehicle location and

the error state of the particles are propagated via Equation 6.35 until a measurement

update becomes available. At this time INS estimates are added to each particle error

state to produce an estimated end depth per particle that considers potential INS

error.

The second system model used for the depth particle filter is based on a FOGMA

model that describes the expected FV descent and ascent dynamics. When using the

FOGMA model the state of the depth particles become:

xdpth =

[
d Vd ad,

]T
(6.44)

where d is the estimated depth for the particle, Vd is the estimated downward velocity

and ad is the acceleration state of the particle’s FOGMA model. The FOGMA system
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model is given as:

ẋdpth(t) = Fdpthxdpth(t) + wdpth(t), (6.45)

where:

Fdpth =


0 1 0

0 0 1

0 0 − 1
τdpth

 , (6.46)

wdpth =

[
0 0 ωdpth,

]
(6.47)

where τdpth is the time constant selected for the FOGMA and ωdpth is the white

Gaussian noise driving the FOGMA. Both τdpth = 100s and ωdpth = 0.05 are selected

to model the FV expected vertical dynamics including: constant descent and ascent

velocities around 1m/s2 and rapid acceleration and deceleration.

Measurement Update And Likelihood Equation. This section specifies

how the measurement update is done in the depth particle filter. Since Equation 2.18

relates a pressure measurement to sea water depth, with a one-to-one relationship, the

measurement update will be applied directly in depth. Meaning that the estimated

depth of each particle is compared to the depth estimate provided by the depth sensor

measurement. According to the pressure measurement model presented in Section

2.2, the errors in depth estimates from a calibrated pressure measurement we are

considering are the pressure sensor’s thermo-mechnical noise and the geopotential

anomaly from Equation 2.18. If the remaining errors are modeled Gaussian noise,

this enables us to use a Gaussian likelihood equation for the depth particle filter. The

depth filter’s likelihood equation can then be expressed as:

Ldpth(xi,dpth(1)|xsens) =
1

2πσdpth
exp

(
(xi,dpth(1)− xsense)2

2σdpth

)
(6.48)
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where xi,dpth(1) is the depth estimate form the ith particle, xsense is the depth update

from the pressure sensor, and σdpth is the standard deviation of the error in the

measurement model.

DPF Matlab Implementation. The depth particle filter was implemented

as four Matlab scripts, similar to the implementation of the position filter. Which

script to run depends on whether the user want to analyze real or simulated data

and whether the INS or FOGMA model is used. The script’s actions can be divided

into five sections: parameter specification, sensor data load phase, filter initialization,

filter loop and a results sections. The roles of each section are the same as for the

position filter, see Section 6.6.2

6.7 Experimental Setup

This section presents the experimental setup used to test the different subcom-

ponents of the navigation system. The experiments use both simulated and real data

sensor data. First Section 6.7.1 presents the experimental setup for the test performed

on the attitude complimentary filter. Section 6.7.2 presents the experimental setup

for the experiments performed on the position particle filter. The experimental setup

for the experiments performed on the depth particle filter are presented in Section

6.7.3.

6.7.1 Attitude Complementary Filter Test Setup

Simulated Attitude Complementary Filter Test. A series of simulated

tests were performed on the complementary attitude filter with the objectives of

verifying its functionality and evaluating its performance when using different sensor

performance grades. The basis of each test was the same, consisting of simulating

three consecutive constant velocity rotations of 1m/s on the b-frame’s x, y ,and

z axes, With a sensor sampling frequency of 10Hz. First, the best case attitude

estimate was computed using the ideal constant velocity rotation stimuli and the
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attitude computer. This attitude estimate was treated as the true attitude of the

systems and later used as a metric to estimate the complementary filter’s performance.

Gyroscope measurements were simulated by corrupting the constant velocity rotation

with the error from the sensor model presented in Section 6.3. Accelerometer and

Magnetometer data were simulated by rotating the global frame vectors (gravity and

magnetic field) into the local frame using the attitude reference produced by the

processing of the constant velocity rotations. The accelerometer and magnetometer

simulated measurement were later corrupted with the sensor models to represent more

realistic sensor readings.

Now that the basis of each simulated test was presented, we can present the

different test cases considered:

� Test Case 1 : The gyroscope measurements were corrupted by error in the sensor

models to quantify the effect of gyroscopic error in the filter attitude estimate.

The measurements of the accelerometer and magnetometer will be kept ideal. We

expected the filter to be able to produce a drift free, attitude estimate due to the

accelerometer and magnetometer measurements.

� Test Case 2 : The accelerometer measurements were corrupted by the sensor models

to quantify the effect of accelerometer measurement error in the filter’s performance.

The gyroscope and magnetometer readings were kept ideal and the performance

parameters of a consumer grade accelerometer was used in the sensor model. We

expected the filters pitch and roll attitude estimates to be noisy, due to the noise in

the accelerometer measurement but free of any attitude drift.

� Test Case 3 : The magnetometer measurements were corrupted by the errors in the

sensor model to quantify the effect of magnetometer error in the filters performance.

The gyroscope and accelerometer readings were kept ideal and the performance

parameters of a consumer grade magnetometer were used in the sensor model. We

expected the filters yaw attitude estimates to be noisy due to the error in the
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magnetometer’s measurements but the pitch and roll components would remain

unaffected.

� Test Case 4 : All of the sensor measurements were corrupted by the sensor models

with performance parameters pertaining to consumer grade sensors. We expected

the filter to be able to produce a drift free attitude estimate, with some noise.

� Test Case 5 : All of the sensor measurements were corrupted by the sensor models

with performance parameters pertaining to tactical grade sensors. We expected the

filter to be able to produce a drift free attitude estimate, with some noise less than

the one exhibited in Test Case 4.

The performance parameters used for the sensor models pertaining to consumer,

tactical and navigation grade are tabulated in Table 6.1 :

Performance Parameter Consumer Grade Tactical Grade Navigation Grade

ca (m/s2) 0 0 0
ωa (m/s2) 1.96e−1 9.8e−3 2.45e−4

τa (s) 3600 3600 3600
ωabias (m/s3/2) 4.3e−3 9.5e−3 2.3e−4

cg (rad/s) 0 0 0
ωg (rad/s) 8.7e−3 4.8e−6 7.2e9

τg (s) 3600 3600 3600
ωgbias (rad/s(1/2)) 6.5e−4 8.7e−5 5.8e−7

cm (nT ) 0 0 0
ωm (nT ) 300nT 50nT 10nT
τm (s) ∞ ∞ ∞
ωmbias (nT 1/2) 0 0 0

Table 6.1 : Sensor Performance Parameters

The IMU sensor performance parameter used were presented by Kauffman et

al. in [61]. The performance parameters for the magnetometer were derived from

the datasheet of the MPU 9150 sensor, [56], and [59] for the consumer, tactical and

navigation grade magnetometer sensor perforce parameters.
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6.7.2 Horizontal Position Particle Filter Test Setup

A series of simulated tests were performed on the position particle filter with

the objective of verifying its functionality and to gain insight into expected naviga-

tion performance based on the system model, measurement model and sensor grades

used. For the magnetic measurement model three main simulation tests cases were

performed, one in which the magnetic navigation error was 1nT (standard deviation),

another where the error was 10nT and the last one, where the error was 50nT. Both,

the INS and FOGMP system models will be used in each of the three main test

cases. The INS system model was tested using the three accelerometer and gyro-

scope sensor grades, presented in Table 6.1 . Each test will attempt to estimate the

landing position of a simulated FV deployment. A system sampling period of 1/10s

and measurement update period of 45s at 68.5 deg Latitude, 19.5 deg Longitude and

an a depth of 1m was used as the system’s intimal conditions. Initial velocity and

accelerations were assumed to be zero. With a position accuracy of 5m in the North

and East, a 0.3m depth accuracy, a 0.1m/s velocity accuracy and 0.001m/s2 acceler-

ation accuracy. In an attempt to process real deployment data with the HPPF using

the magnetic measurement model two deployment data sets form March 8, 2016 were

analyzed.

For the PFHD measurement model three simulated deployments were made,

using the performance parameters of a commercial, tactical and navigation grade

INS, from Table 6.1 . A system sampling period of 1/10s and measurement update

period of 1s was used The simulated deployment location was at 68.5 deg Latitude,

19.5 deg Longitude and the initial depth of the system was set to 1m. The simulated

FV deployment was set to 4000m of depth. In addition a total of five real deployment

data set were analysed using the PFHD measurement model. The results of these

tests are presented and analyzed in Chapter 7.
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6.7.3 Depth Particle Filter Tests Setup

The depth particle filter (DPF) was tested using both real and simulated data

sets. The objective of the simulated data tests was to gain insight on the depth

estimate performance of the DPF. All simulated tests were performed assuming the

pressure measurement came from a calibrated pressure sensor rated to 10,000 decibars

and a measurement accuracy of 0.1% of the pressure range [8]. The different simulated

test cases test the DPF performance with navigation, tactical, and consumer-grade

IMUs and the FOGMPA model. The simulated test cases are presented below:

� Test Case 1 : This represented the best case scenario using the INS model and the

performance parameter a navigation grade IMU.

� Test Case 2 : The INS model used the performance parameters of a tactical-grade

INS.

� Test Case 3 : The INS used the performance parameters of a consumer-grade INS.

� Test Case 4 : The FOGMPA model was used with the performance control pa-

rameters set to τdpth and ωdpth, which were found to describe the expected vehicle

vertical dynamics (including acceleration and deceleration). This test case evalu-

ated the DPF estimation performance based on a model FV vertical dynamics alone,

with no INS data.

All simulated test were performed on a 1 hour FV simulated trajectory. The

depth measurement updates were simulated by adding independent white Gaussian

noise, with a standard deviation of 10m, to the simulated FV depth trajectory. IMU

measurements were simulated by corrupting the n-frame FV accelerations provided

by the trajectory generator via the presented IMU sensor models and the IMU per-

formance parameters specified in each case. With an IMU sampling period of 1/10s

and measurement update period of 1s, 1000 particle, an initial depth of 3m with an

expected error of 0.3m, initial vertical velocity of 0 with 0.05 expected error and an

acceleration of 0m/s2 with an error of 0.005m/s2



Chapter 7

Results and Analysis

In this chapter, we present and analyze the results of the different tests performed

on the estimators of the post-processing navigation system. The tests results and

analysis for the attitude complementary filter are presented in Section 7.1. The

results of the tests performed on the horizontal position particle filter (HPPF) are

presented and analyzed in Section 7.2. Section 7.3 presents the results and analysis

of the tests conducted on the depth particle filter (DPF). The final Section of the

chapter concludes with a brief summary of the test results for each filter and recaps

on highlights of the result’s analysis.

7.1 Attitude Complementary Filter Test

7.1.1 Attitude Complementary Filter Tests With Simulated Data Sets

Test Case 1

This simulated experiment was meant to the estimate the attitude complemen-

tary filter’s performance with simulated gyroscope data and error free accelerometer

and magnetometer data. The plots on the left column in Figure 7.1 show the ideal

body rates, of 1 revolution per minute in the b-frame’s x, y and z axes. The middle

column, depicts plots of the simulated gyroscope errors using the sensor models from

Section 6.3, and the performance parameters of a commercial gyroscope (see Table

6.1 ). The plots on the right column illustrate the simulated gyroscope output created

by adding the simulated sensor noise to the ideal body rates.
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Figure 7.1 : Plot of the gyroscope simulated measurements.

The results from the simulation are shown in Figures 7.2 and 7.3 . The first plot

in Figure 7.2 is the attitude estimated from the simulated input rates qin, the second

plot provides the filter’s attitude estimate qfltr, and the third plot corresponds to the

attitude estimates derived from solely using gyroscopic data qw. Note that within a

few seconds of the simulation qw drifts significantly from qin. Also, the estimate of

the complementary filter attitude qfltr, closely follows the that of qin, because of the

corrections provided by the ideal accelerometer and magnetometer measurements.

The angle between two quaternions can be used to estimate the difference, or

error, between their attitude representations. The angle θq between two quaternions

q1 and q2 can be obtained using the following Equations 7.1 and 7.2.

q1,2 = q1⊗ q2 (7.1)

θ1,2 = arccos(q1,2(1)) (7.2)
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where q1,2(1) is the first element of q1,2

The estimated drift, or error, between qin and qw is graphed in the second plot of Fig-

ure 7.3 . From this plot we can observe that gyroscopic estimates of system attitude,

drift in a mater of seconds. This is an expected outcome since the angle drift of com-

mercial grade gyroscopes is measured in degrees per second. The first plot in Figure

7.3 ,shows the attitude errors between qin and qfltr. The filter attitude estimate was

found accurate within 0.2◦. This is largely due to the ideal references to the local

vertical and local magnetic north provided by the ideal simulated accelerometer and

magnetometer.
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Figure 7.2 : Attitude plots: simulated input qin, estimated from the complementary
filter qflrt and derived from gyroscopic data qw, for test case 1

Test Case 2

This experiment was meant to estimate the attitude complementary filter’s per-

formance with simulated accelerometer data with ideal gyroscope rates and magne-

tometer measurements. The plots on the leftmost column in Figure 7.4 are the
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Figure 7.3 : Plot the attitude error of the complementary filter’s estimate.

normalized ideal accelerometer measurements of the local gravity vector as the sen-

sor is rotated sequentially in the x, y, and z, axes at 1 revolution per minute. The

middle column plots are of the simulated sensor errors in the accelerometer’s mea-

surements. These error were simulated using the sensor models from Section 6.3,

and the parameters for a commercial-grade accelerometer listed in Table 6.1 . Note

that the data in the sensor error plots are not normalized to better recognize the

magnitude of the corrupting sensor errors. The plots in the rightmost column of

Figure 7.4 show the normalized simulated accelerometer outputs. The simulated

accelerometer output seems very similar to the normalized ideal accelerometer, this

is because the local gravity vector will have an average magnitude of 9.8m/s2 while

the simulated bias stability errors have a magnitude less than 0.5m/s2 when both are

added and normalized the bias errors are overshadowed. But the effect of the bias

error is observable in the resulting filter estimates qfltr, see the discussion bellow.

Test results are shown in Figures 7.5 and 7.6 . The plot in Figure 7.5

shows qin, the simulated system’s input attitude and the second plot is the filter’s
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Figure 7.4 : Plot of the accelerometer simulated measurements.

attitude estimate qfltr. The attitude error between qin and qfltr is estimated and

plotted in Figure 7.6 . Note that as the accelerometer data was not integrated

in the system’s attitude estimation process, remaining, sensor biases did not cause

increasing attitude errors. Instead the attitude error oscillates with the bias errors

from the accelerometer. The filter’s performance error performance exhibit a mean

value of 2◦ and oscillates as the local gravity vector is sensed by different sensor axes.

Test Case 3

This simulated experiment was meant to estimate the attitude complementary

filter performance with simulated magnetometer data, with ideal gyroscope and ac-

celerometer measurements. Similar to Test Case 2, Figure 7.7 contains the plots of

the simulated magnetometer measurements used for the test. The left column plots,

show the normalized ideal magnetometer measurements. The middle column plots,
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Figure 7.5 : Attitude plots: of simulated input qin and estimated from the comple-
mentary filter qfltr for test case 2.
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Figure 7.6 : Plot of the attitude error from attitude filter’s test Case 2.

correspond to the un-normalized simulated magnetometer errors, and the plots on

the right column, are of the normalized simulated magnetometer measurements.
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Figure 7.7 : Plot of the magnetometer simulated output

The results of the test are shown in Figures 7.8 and 7.9 . A plot of qin, for this

test, is located on the top of Figure 7.8 and a plot of qfltr at the bottom. The attitude

error between qin and qfltr is plotted in Figure 7.9 . Note, that similar to Test Case 2,

since the magnetometer measurements are not integrated, the sensor’s measurement

errors result in a noisy attitude estimate. It is important to mention that in the

presence of un-calibrated hard-iron or soft-iron effects, the attitude errors exhibit

a constat offset or change in magnitude as a function of the system’s orientation.

The nature of the resulting attitude errors depends on the nature of the corrupting

magnetic field affecting the magnetometer’s measurements.

Test Case 4

In this test, the performance of the attitude filter’s is evaluated using simulated

sensor data from a commercial grade gyroscope, accelerometer, and magnetometer.

The plots of the sensor data used for the test are in Figure 7.10 .
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Figure 7.8 : Plots of the simulations true attitude qin and attitude estimated from
the complementary filter qfltr for the Attitude Filter’s Test Case 3.
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Figure 7.9 : Plot of the attitude error from attitude filter’s test Case 3.

The input attitude of the simulated system, qin, is plotted atop Figure 7.11 ,

qfltr, and qw is in the middle and bottom plots respectively. Figure 7.12 is a plot of

the attitude error between qin and qfltr.
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Figure 7.10 : Plot of simulated commercial grade gyroscope, accelerometer, and
magnetometer measurements
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Figure 7.11 : Attitude plots: simulated input qin, estimated from the complementary
filter qflrt and derived from gyroscopic data qw, for test case 4.
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Figure 7.12 : Plot of the attitude errors from the complementary filter’s estimates
for test case 4.

We observe from Figure 7.12 that the filter’s attitude estimate was bounded

within 8◦ of error with some oscillations. The increase in error magnitude and noise

levels in qfltr were due to combinations of the bias errors in the sensors plus their

combined measurement noise. Overall the filter performance shows improvement over

the attitude estimate derived using only commercial grade gyroscopic measurements.

Test Case 5

In this test case the performance of the attitude filter was estimated when using

simulated sensor data from a tactical grade gyroscope, accelerometer, and magne-

tometer. In Figure 7.13 show the plots of the simulated sensor measurements used

for this test. Note the difference in bias error between a tactical grade IMU, Figure

7.13 , and a commercial grade IMU, in Figure 7.10 .

The resulting attitude estimate from the filter, qfltr, was plotted in Figure

7.14 along with the simulated system’s input attitude qin and the attitude estimate

derived using only gyroscopic data qw. It is worth noting that qw exhibited a better
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Figure 7.13 : Plot of simulated tactical grade gyroscope, accelerometer, and mag-
netometer measurements

performance than qfltr, in this short test period. This improvement in qw’s estimates

was largely due to the improved bias performance in the gyroscope measurements. qw

would eventually drift, without bound, without any external feedback given a longer

timescale. A plot of the error in the filter’s attitude estimate, for this test, was plotted

in Figure 7.15 . Judging from the error performance plot, the attitude errors were

bounded within 2◦s, and exhibit some oscillations. The attitude estimate oscillations

were a result of the small bias errors present in the accelerometer’s measurements.

Analysis of Attitude Filter’s Simulated Tests

From the simulated test we could observe that the Attitude complementary filter

was capable of tracking the system attitude, by fusing data from calibrated gyroscope,
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Figure 7.14 : Attitude plots: simulated input qin, estimated from the complementary
filter qflrt and derived from gyroscopic data qw, for test case 5.
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Figure 7.15 : Plot of the filter’s attitude estimate error

accelerometer, and magnetometer sensors. Although filter’s attitude estimates exhib-

ited error, these were bounded in time and were directly related to the senor’s per-

formance grade. It was possible to obtain better performance from the filter, by fine
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tuning the filter’s gains to the FV dynamics and actual sensor performance. This will

require the execution of controlled test on the vehicle with an external independent

attitude reference that is more accurate than the filters’s performance. The difference

between the filter attitude between the filter and the external reference would then

be used to tune the filter’s gains to maximize its performance.

In its current form the attitude complementary filter was susceptible to errors

resulting from vehicle acceleration, as these would inevitably change the accelerome-

ter’s estimate of the local vertical. If these acceleration events were short lived, then

the error would be mitigated by the filter and completely removed when the accelera-

tions end. But prolonged vehicle accelerations have a detrimental effect on the filter’s

attitude estimate performance. Corrupting magnetic fields would have similar effect

on the attitude estimates derived from the magnetometer’s measurements. this type

of error can be mitigated by implementing an adaptive gain scheme, similar to that

presented in [3]. However such an implementation is out of the scope of this thesis

and left as a potential future work.

7.2 Horizontal Position Particle Filter (HPPF) Tests

7.2.1 HPPF Tests With Simulated Data Sets

This section presents the results from a series of tests performed on different

configuration of the HPPF, using simulated data sets. These Test were performed

with the objective of estimating the filter’s horizontal positioning performance under

different filter configurations. All of the tests were performed on the same 17min and

33s simulated FV deployment, at Latitude 19.88 and Longitude 64.38. The location

is marked in an contour plot of the anomaly fields in a ocean section just north

of Puerto Rico in Figure 7.16 . The location was chosen because of its relatively

abundant magnetic features. The trajectory of the simulated deployment is plotted

in Figure 7.17 . As explained in Chapter 2, geomagnetic navigation is concerned with

estimating the vehicle’s Latitude and Longitude coordinates on the n-frame. For this
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Figure 7.16 : HPPF Simulated Test Location

reason only data from the north-east plane of the FV trajectory were considered in

these tests.

The magnetic samples gathered by the FV were simulated by sampling the

EMAG map at the FV simulated location and adding to it, Gaussian noise with

a zero mean and a 1nT standard deviation. For each test, 1000 particles were in-

stantiated within 10m of the starting location of the FV, with zero initial velocities

and attitude errors less than 1◦. Particle Re-sampling was performed when the ESS

estimate was below 400 particles.

Test Case 1: 1nT Magnetic Measurement

The tests presented in this section wer made with the assumption that the re-

maining error in the magnetic measurement model, have a zero mean and 1nT stan-

dard deviation. Such a test case is representative of an optimal condition for magnetic
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navigation: the availability of an accurate magnetic anomaly map and the capability

to accurately sample the magnetic anomaly field.

The first test was performed using the INS system model introduced in Section

6.6.2, with the performance parameters of a navigation grade IMU (see Table 6.1 ).

A plot of the HPPF estimated vehicle position of the vehicle is shown in Figure 7.18

, together with the input position of the simulated FV deployment. All position plots

were made over the contour plot of the EMAG magnetic anomaly map. Judging from

the plot of the HPPF position estimate, its solution drifted southward from the FV

true location. A plot of the east and north positioning errors for this test is shown

in Figure 7.19 . From the error plot it is observed that the position errors in the

east axis (max 43m) were relatively smaller that the errors in the north axis (max

of 504m). This difference in positioning performance can be explained by noting

that the magnetic contour lines at the deployment location run almost parallel to the

north axis, as seen in Figure 7.18 .
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Figure 7.19 : HPPF position estimate errors in the east and north axes while using
a navigation grade IMU and the INS system model.

In the prediction phase of the HPPF, the particle’s were spread in an uniform

fashion from their starting location, via the INS system model. An example of a 10min
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particle spread, is shown in the plots (A) and (B) of Figure 7.20 . In the update

phase, a magnetic anomaly sample was taken for each particle based on its predicted

position on the EMAG map. Each particle’s magnetic signature was then compared

to magnetic samples taken from the FV via the likelihood equation. Because the

contour for the FV magnetic signature runs from south to north at the test location,

particles near the contour line were assigned the highest weights even if they had

drifted from the FV actual position. An example plot of this event is shown in plot

(C) of Figure 7.20 . Another explanation for the HPPF position estimate drift is

that the particle spread caused by the INS system model, with navigation grade IMU

parameters ( 1k position error per hour), was greater than the expected FV horizontal

displacement ( 40m per hour). This overestimation of the FV horizontal displacement

made more likely the movement of particles move over the contour lines of a given

magnetic signature.
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Figure 7.20 : Plot(A): state of HPPF particles at the start of the prediction phase.
Plot(B): particle spread caused by the INS system model with navigation grade IMU
parameters for a period of 10 minutes. Plot(C): a plot of the most likely particles
(top 30%) based on the FV magnetic sample and likelihood equation.
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A plot of the FV simulated magnetic samples and the weighted average magnetic

signature from the particles of the HPPF are shown in Figure 7.21 . It is observed

from the plot that the HPPF were from of particles with a magnetic signature that

resembles the FV sampled anomaly magnetic field.
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Figure 7.21 : Plot of the simulated FV magnetic samples and the weighted average
of the particle’s magnetic sample from HPPF.

A second test was performed using the same INS system model but with the

performance parameters of a tactical grade IMU. The HPPF estimate position for

this test were plotted in Figure 7.22 . The positioning errors in the east and north

axes were plotted in Figure 7.23 .From the error plot it is observed that the position

error in the filter’s estimate increased. This was due to the increase in particle spread

caused by downgrading the IMU’s performance parameters. In Figure 7.22 we can

also observe the HPPF tendency to ”follow” the magnetic contour lines on the map.
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Figure 7.22 : HPPF estimate location of FV using INS system model and tactical
grade IMU parameters
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Figure 7.23 : HPPF position estimate errors in the east and north axis, using the
INS system model and the performance parameters of a tactical grade IMU.

The magnetic track of the simulated FV samples and the weighted average of

the particle’s magnetic signature are plotted in Figure 7.24 . From the plot it is
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observed that the HPPF attempted to track the magnetic signature sampled by the

FV but because of the larger particle spread, its position estimate drifted away from

the FV location, following the corresponding contour line.
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Figure 7.24 : Plot of the simulated FV magnetic sample and the weighted average
of the particle’s magnetic sample from HPPF.

The third test performed, with a magnetic measurement error of 1nT, was per-

formed using the first order Gauss-Markov acceleration (FOGMPA) system model,

(Section 6.6.2). The model used parameters τ = 100 and ω = 2.2361e − 05 for the

both north and east axes of the model. These parameters are representative of the

FV expected horizontal displacements. Figure 7.25 plots 1000 Monte Carlo sim-

ulations, with a duration of 1000s, esach of the north axis of the FOGMPA model

with the given model parameters. Note that the predicted spread from the model has

zero mean but a standard deviation of 10m, closely approximating the FV expected

horizontal displacement.

The HPPF position estimate is plotted in Figure 7.26 and the plots of the

HPPF error is shown in Figure 7.27 . Note that because the FOGMPA model
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Figure 7.25 : 1000 Monte Carlo simulation of the FOGMPA system model of the
HPPF
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approximates the expected horizontal displacements of the FV, the HPPF particles

were not allowed to spread as far, as when using the INS model. This limited spread

of the filter’s particles improved the HPPF ability to estimate the position of the FV.
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Figure 7.26 : Plot of HPPF estimate location of FV using FOGMA system model

A second simulation test was performed using the a magnetic measurement model

of 1nT and the FOGMPA model. This time the simulation duration was increased

from 17min to 1 hour. The results for the simulation are presented in Figures 7.28

and 7.29 . Because of the limited particle spread of the FOGMPA model, the HPPF

estimates did no exhibit a tendency to follow the contour lines of the anomaly map,

hence improving the HPPF position estimate performance.

Test Case 2: 10nT Magnetic Measurement

The tests presented in this section were made with the assumption that the

remaining error in the magnetic measurement model had zero mean and a standard

deviation of 10nT . In a fashion similar to the HPPF Test Case 1, most of the

tests were also performed in the 17min and 33s simulated FV deployment presented
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Figure 7.27 : HPPF position estimate errors in the east and north axis using the
FOGMA system model.

earlier. The magnetic samples from the FV were simulated in the same fashion as

well, sampling the EMAG map at the FV simulated location and adding a white

Gaussian error of zero mean and 10nT.

The first test was performed using the INS system model with the performance

parameters of a navigation grade IMU. The HPPF estimates of the FV position is

presented in Figure 7.30 . From the plot, we can observe that the HPPP’s perfor-

mance was similar to that in Test Case 1, for the same system model configuration.

The error plots, shown in Figure 7.31 , denote a bounded error in the east position

estimates as the axis runs perpendicular to the local magnetic contours. While the

north position error is larger because the axis runs almost parallel to the local contour

curves. Notice that the HPPF estimate still exhibit a tendency to ”follow” the local

magnetic contour lines in its effort to estimate the FV location.
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Figure 7.28 : Plot of HPPF estimate location of FV using FOGMA system model
for a simulated deployment of 1 hour.
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Figure 7.29 : HPPF position estimate errors in the east and north axes using the
FOGMOPA system model on a 1hour simulated deployment
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Figure 7.30 : HPPF estimate location of FV using a 10nT measurement model and
INS system model with navigation grade IMU parameters
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Figure 7.31 : HPPF position estimate errors in the east and north axes, with a
10nT measurement model and a navigation grade IMU system model.

The HPPF tendency to follow local magnetic contour lines when using INS sys-

tem model is more noticeable when the IMU parameter are degraded, like the fol-

lowing test. The second test, under the assumption of a 10nT accuracy, in magnetic
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measurements, was performed using tactical grade IMU parameters in the INS system

model. The HPPF position estimate is plotted in Figure 7.32 . Similar performance

to its corresponding test, in Test Case 1, is observed. The position error for the test

shown plotted in Figure 7.33 . As the tactical grade INS system model predicts a

greater particle spread, the HPPF estimates are further away from the FV location

but on the same contour line.
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Figure 7.32 : HPPF estimate location of FV using a 10nT measurement model and
INS system model with tactical grade IMU parameters

The third performed test used the FOGMPA model parameters that approxi-

mated the FV horizontal displacements. The HPPF position estimate and errors are

plotted in Figures 7.34 and 7.35 . Again the FOGMPA system model exhibits

better positioning performance than its INS counterpart.

A simulated test of 1 hour using the FOGMPA model was also performed for

this test case. Test results are plotted in Figure 7.36 and the corresponding error

are in Figure 7.37 . A performance similar that in Test Case 1 was observed. A total

positioning error within 100m with a larger estimation error in the north axis.
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Figure 7.33 : HPPF position estimate errors in the east and north axis, with a 10nT
measurement model and a tactical grade IMU system model.
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Figure 7.34 : HPPF estimate location of FV using a 10nT measurement model and
the FOGMPA system model.

Test Case 3: 1nT Magnetic Measurement

The tests presented in this section were performed with the assumption that the

remaining error in the magnetic measurement model had a zero mean and a standard
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Figure 7.35 : HPPF position estimate errors in the east and north axis, with a 10nT
measurement model and the FOGMPA system model.
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Figure 7.36 : HPPF estimate location of FV using a 10nT measurement model and
the FOGMPA system model for a simulation time of 1hour.

deviation of 50nT . Because of the poor position performance of the INS system in

the HPPF, see Test Cases 1 and 2, the INS system models were not used. Instead,
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Figure 7.37 : HPPF position estimate errors in the east and north axes, with a
10nT measurement model and the FOGMPA system model for a simulation time of
1hour.

only the FOGMPA system model was tested to gain insight on the expected HPPF

estimation performance. The results form the tests are plotted in Figures 7.38 and

7.39 .

Although not evident in the result plots, the magnetic navigation algorithm was

not able to provide any positional feedback to the HPPF. This stems from the fact that

at the end of the 1-hour simulation, the positional spread from the FOGMPA model

is at most 60m from any two of the filter particles. Because of the small horizontal

gradients from the EMAG map, no particle group had a sufficiently different magnetic

signature to be uniquely identify by the Likelihood equation, during the whole test

duration. A histogram of the final particle weights for the test is plotted in Figure

7.40 . Note that no one group of particle have distinct weight assigned to them.
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Figure 7.38 : HPPF estimate location of FV using a 10nT measurement model and
the FOGMPA system model for a simulation time of 1hour.
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Figure 7.39 : HPPF position estimate errors in the east and north axis, with a 50nT
measurement model and the FOGMPA system model, for a test time of 1hour.
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Figure 7.40 : Histogram of HPPF particle weights at the end of the test, for a
measurement model of 50nT

Analysis and Conclusion for the HPPF Tests Using Simulated Data
Sets

From the results of the tests performed of the DPF with simulated data sets, we

can conclude that the INS system models are inadequate for the current mechaniza-

tion of the HPPF. The inadequacy of the INS system model stems from the fact that

the expected positioning error form a navigation grade IMU ( 1km per hour) dwarf

the expected horizontal displacements of the FV ( 40m per hour), resulting horizon-

tal displacements that are unfeasible for an FV. The FOGMPA model resulted more

adequate in describing the FV displacements and produced the most accurate results.

Because of the subtle changes in the magnetic anomaly field intensity in the

EMAG, in order for the HPP’s to provide position estimation feedback on the FV lo-

cation it is necessary that the resulting magnetic measurement model have a residual

error of 10nT or less. Implying that residual error from the calibrated magnetome-

ter, mapping error, error from the WMM model, and error for the compensation of

the ionospheric magnetic interference, all sum to an error with approximately zero



112

Time (s)
0 500 1000 1500 2000 2500 3000 3500

D
ep

th
 (

m
)

0

500

1000

1500

2000

2500

3000

3500

Simulated FV Descent

Figure 7.41 : FV Simulated Descent

mean and a standard deviation of 10nT or less. This is no small feat, as the level of

magnetometer calibration alone requires highly specialized tooling and a controlled

magnetic environment. This level of magnetic measurement accuracy usually achiev-

able by geomagnetic survey entities [59]

7.3 Depth Particle Filter Tests

7.3.1 DPF Test With Simulated Data

This section presents the results of the tests performed on the DPF. For these

tests it was assumed that the residual error from the depth measurement model,

Equation 2.21, had a white Gaussian error with zero mean and a standard deviation

of 10m. All tests performed on the DPF used the vertical descent data from the same

simulated FV deployment. A plot of the FV descent used for these tests is shown

in Figure 7.41 . The descent duration was 1hour during which the FV reached a

maximum simulated depth of 3599m.
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Depth measurement were simulated by adding white Gaussian noise, with zero

mean and 3m standard deviation, to the FV simulated depth. This measurement

model is representative of a scenario where the FV is equipped with a calibrated

depth pressure sensor with an accuracy of 0.03% of its depth range. Periodic depth

measurements were provided to the DPF every 10s. The DPF used 1000 particles,

each instantiated with an initial depth equal to that of the FV with an error of 0.5m,

initial velocities set to 0m/s, and aligned with initial attitude error of less than 1◦. A

particle resampling was performed when the estimated effective sample size was less

than 400 particles.

Test Case 1: INS System Model with Navigation Grade Performance
Parameters

In this case the DPF was tested using the INS system model with performance

parameters of a navigation grade IMU. The estimated depth from the DPF is plotted

in Figure 7.42 . Figure 7.43 is a plot of the measured error form the pressure meter

and the depth estimate errors from the DPF.

From the results plots, it was observed that the DPF is capable is estimating the

FV depth fusing the data provided by a navigation grade IMU and depth measure-

ments. In the short term the error characteristics of the DPF’s estimates are better

than the error characteristics of the depth meter. This is due to the relatively accu-

rate initial condition of the particles and the slow state drift caused the navigation

grade IMU. In the long term the DPF error estimate performance is similar to that

of the depth measurements, this is expected as these are the only measurements used

by the filter that do not accumulate error over time.
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Figure 7.42 : DPF Estimation performance using the INS system model and the
model parameters of a Navigation grade IMU.
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Figure 7.43 : DPF error performance using the INS system model and the model
parameters of a Navigation grade IMU.
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Figure 7.44 : DPF Estimation performance using the INS system model and the
model parameters of a Tactical grade IMU.

Test Case 2: INS System Model with Tactical Grade Performance
Parameters

This test case was meant to test the performance of the DPF using the INS

system model with the performance parameters of a tactical grade IMU. The result

from the test are plotted in Figures 7.44 and 7.45 .

From the results plots it is observed that the DPF was capable of estimating

the FV depth by data fusion from a tactical grade IMU and a depth meter. Because

of the degraded sensor performance of the IMU model, the DPF suffers from some

degraded estimation performance, peak error of 20m.

Test Case 3: INS System Model with Commercial Grade Performance
Parameters

This tests case was meant to test the performance of the DPF using the INS

system model with the performance parameter of a commercial grade IMU. Unfortu-

nately the error form the commercial grade IMU caused a large particle spread in the

predicted depth. This error grew at a quick pace and spread the filter particles outside
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Figure 7.45 : DPF error performance using the INS system model and the model
parameters of a Tactical grade IMU.

the error range of the depth measurements and consequently outside the Likelihood

equation range. This caused the filter to assign every particle the same weigh, even

if their state estimates contradict each other and were far form the true depth of the

FV. A plot of the DPF estimate is shown in Figure 7.46 . The estimation duration

was cut short because later, the DPF suffered from stability error. This was some-

what an expected result as commercial grade IMU’s are known for their poor dead

reckoning performance. A plot of the simulated vertical acceleration measurement is

shown in Figure 7.47 together with the ideal vertical acceleration of the FV.

Test Case 4: FOGMPA system Model

In this test, the depth FOGMPA model was used as the DPF’s system model,

with τdpth = 1/100 and ωdpth = 0.45. A plot of 1000 Monte Carlo simulation of the

FOGMPA model, with the specified parameters, is shown in Figure 7.48 .

From the plot we can observe that, for every 10s, the FOGMPA model offered a

broad spectrum of vehicle states. This broad spectrum of predicted depths allows the
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Figure 7.46 : DPF Estimation performance using the INS system model and the
model parameters of a commercial grade IMU. The simulation duration was cut short
form the expected 1hour duration because the filter’s estimate became unstable after
90s of the simulation.
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Figure 7.47 : A pot of the simulated downward acceleration using a commercial
grade IMU and the ideal vertical acceleration of an FV descent.
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Figure 7.48 : 1000 Monte Carlo simulations of the Depth FOGMPA model
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system model to encompass every potential future depth state of the vehicle. This

includes if the FV landed, released its ballast in the water column or if its descending

or ascending at a constant rate. Each of these states is then evaluate during the

update phase and the state’s closest to the measurement are chosen.

The results form the simulated experiment are plotted on the top of Figure 7.49

and their corresponding prediction errors are plotted below.
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Figure 7.49 : Results of the DPF using FOGMPA model

From the error plot of the test results we could observe that the errors from

the filters state did no exhibit lagging oscillatory behavior but instead more closely

resembled the measurement errors form the pressure meter. This was an expected

result, since the spread of the FOGMPA model has a wide spread of predicted FV

depths.

Analysis and Conclusion for the DPF’s Tests Using Simulated Data
Sets

From the results of the test performed of the DPF, with simulated data sets, we

can conclude that DPF is capable of estimating the FV depth using an INS system
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model, as long as the IMU grade is tactical or greater. The poor dead reckoning

performance of the commercial grade IMUs causesed filter estimate instability. The

DPF was also capable of estimating the FV depth when utilizing the FOGMPA model

but offers little to no improvement form using the depth pressure sensor on its own.

A more accurate model of the FV dynamics can improve the DPF’s performance, this

this is left for future improvements for the DPF.

7.4 Creation of a Physically Constraint Model

As discussed in Section 7.2, the HPPF with an unconstrained geomagnetic-aided

INS can produce positioning results that are physically unfeasible for an FV. More-

over, when using a commercial grade magnetometer, the navigation scheme cannot

provide all the information needed to correct for accumulated INS errors. A physical

constraint model (PCM) was developed to tackle these issues. The objective of such

a model was to complement the HPPF by keeping its particles within the horizontal

displacements that are physically feasible according to observed FV hydrodynam-

ics. The FV hydrodynamics reported by Schmidt and Siegel (2011) [46] were the

foundations for the development of the PCM. Bellow we describe how the PCM was

developed. Subsection 7.4.1 presents the development of the PCM and Subsections

7.4.2 and 7.4.3 presents the results and analysis of the HPPF with the PCM on both

simulated and field data.

7.4.1 PCM Development

When deployed, an FV quickly reaches and almost stationary state, with almost

constant descent velocity, little horizontal displacements and rotates at about 1 rev-

olution per 220s [46]. With an estimate of maximum horizontal velocity it is possible

to determine a boundary of maximum horizontal displacement, from a known start-

ing point. Let the origin of the coordinate frame, for the PMC analysis, be at the
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location of FV deployments. Its x, y, and z axes point to local north, east, and down

direction. let tD represent time of the deployment, where:

� tD = 0 when the FV is deployed

� tD = tlnd when the FV reaches the ocean floor

� tD = tres when it the FV releases its ballast

� tD = tsurf when the FV surfaces

� 0 < tlnd ≤ tres < tsurf

� tlnd = tres when the FV releases the ballast while descending in the water column.

Figure 7.50 is an example FV trajectory as seen form the horizontal north-east

plane with the PCM coordinate frame, tD, and Recovery location (dnorth, deast)

Deployment
(0,0)

Surfacing
(dnorth,deast)

0Dt
dD tt ln

resD tt 

Landing

surfD tt 

North

East

Down

Figure 7.50 : Example FV deployment trajectory as seen in the horizontal north-east
plane.

In the work by Schmidt and Siegel (2011), the authors reported a maximum

ambient horizontal current of 5 cm/s at the ocean floor and a maximum horizontal

current of 8 cm/s during the FV descent, in a FV deployment at the Puerto Rico

trench [46]. It is important to note that horizontal currents measured during the FV

descent included ambient horizontal currents, FV rotation, and horizontal displace-

ment. Joyce et al., reported an average ambient current of 5.14 cm/s at 6,000 m

of depth in the Puero Rico Trench. Using this information, a maximum horizontal
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velocity during FV descent vh,dsc can be estimated, as in Equation 7.3.

vh,dsc = vamb + vhydro, (7.3)

where vamb accounts for the maximum horizontal ambient current and is assigned a

value of 5 cm/s. Term vhydro accounts for the maximum horizontal FV hydrodynamic

instability and is assigned a value of 5 cm/s. Resulting in vh,dsc = 10cm/s.

During the ascent, FVs are no longer weighted down by a ballast. Instead it rises

through the water column pulled by the net buoyancy force. In this configuration

exhibits a higher horizontal dynamic instability, than the descent trajectory, a con-

sequence the reduced vehicle weight. This observation is supported by analyzing the

standard deviation (STD) of the FV horizontal accelerometer data for the descent

and ascent periods. Table 7.1 lists the STD analysis of horizontal accelerometer

data for the descent and ascent periods for ten FV deployments.

Table 7.1 : Standard deviation of FV horizontal accelerometer data.

Deployment Date Ascent std Descent std
1 03-19-2015 0.13 0.15
2 03-21-2015 0.16 0.24
3 03-24-2015 0.16 0.21
4 03-30-2015 0.04 0.14
5 04-01-2015 0.04 0.14
6 03-08-2016 0.44 1.08
7 03-08-2016 0.37 1.19
8 04-09-2016 0.36 0.69
9 04-09-2016 0.29 1.10
10 04-09-2016 0.54 0.94

For this reason the vhydro, in Equation 7.3, was doubled to estimate a maximum

horizontal velocity during FV ascent vh,asc, see Equation 7.4

vh,asc = vamb + 2 vhydro (7.4)
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Thus, vh,asc accounts for the maximum horizontal ambient currents and doubles the

FV hydrodynamic instability, for a total of 15 cm/s.

With knowledge about the FV deployment and recovery locations as well as esti-

mates of its maximum horizontal velocities, it is possible to determine the maximum

FV horizontal displacement in time, relative to the deployment and recovery loca-

tions. Equation 7.5 represents the maximum horizontal displacement, in m, for the

descent trajectory of the FV, as a function of tD.

ddsc(tD) =
vh,dsc
100

tD + ddsc,0, (7.5)

where 0 ≤ tD ≤ tlnd, and ddsc,0 accounts for the uncertainty of the deployment location

introduced by the GPS accuracy.

Using a similar analysis, Equation 7.6 represents the the maximum horizontal

displacement dasc, in m, of the FV from the surfacing location during the FV ascent.

dasc(tD) =
vh,asc
100

(tsurf − tD) + dasc,0, (7.6)

This distance information can be used in the HPPF framework to disregard particles

that have exceeded these maximum displacements. First the particles are weighted

based on their geomagnetic signature, as in Section 6.6.2. Then the particles are

reweighed based on their horizontal distance from the deployment and surfacing lo-

cations. The distance di,dep of the ith particle xi from the deployment location can

be calculated using Equation 7.7.

di,dep(tD) =
√
xi,1(tD)2 + xi,2(tD)2 for 0 ≤ tD ≤ tlnd, (7.7)

where xi,1(tD) is the north coordinate of the ith particle, in the PCM coordinate

frame, and xi,2(tD) is its east coordinate.
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Since all particles that satisfy di,dep ≤ dasc are equally likely, the particle weights

are updated using a uniform likelihood, Equation 7.8.

L(xi(tD)) =


1

count(n)
, if di ∈ n

0, otherwise

, (7.8)

where n = {di,dep(tD)|di,dep(tD) ≤ dasc(tD)}, count(n) is the number of elements in n

and 0 ≤ tD ≤ tlnd.

During the ascent analysis, maximum horizontal displacements are calculated

relative to the surfacing location. The distance di,surf of the ith particle xi with

respect to the surfacing location can be estimated using Equation 7.9

di,surf =
√

(xi,1(tD)− dnorht)2 + (xi,2(tD)− deast)2, (7.9)

where dnorht is the north coordinate of the surfacing location, deast is the east coordi-

nate,and tres ≤ tD ≤ tsurf .

A similar analysis was applied to the ascend trajectory, where the weights of the

particles are updated first based on geomagnetic data and secondly based on their

relative distance from the recovery location using Equations 7.10.

L(x1(tD)) =


1

count(m)
, if di(tD) ∈ m

0, otherwise.

, (7.10)

where m = {di,surf (tD)|di,surf (tD) ≤ dasc}, count(m) is the number of elements in m

and tres ≤ tD ≤ tsurf

If the maximum horizontal FV velocities are adequate and the deployment and

surface locations are accurately recorded, then the maximum displacement constraint

for both the descent and ascent analyses will form two intercepting circles at the

ocean floor, as shown in Figure 7.51 . The intersection lens represents the most

likely landing area of the FV.
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Figure 7.51 : Example interception lens of the PCM model, where d is total distance
between the deployment and surfacing location.

The trajectory estimate of the HPPF was calculated by Selecting the particles

form the ascent and descent analysis that landed in the intersection lens and aver-

aging their trajectories. Figure 7.52 shows a plot of this solution for a simulated

deployment of 1,000 m of depth using a navigation grade IMU and a magnetometer

with a 1 nT measurement accuracy. Figure 7.53 is a plot of the ascent trajectory

particles, in dark-lime, and the ascent trajectory particle, in purple, that landed inside

the intersection lens. From Figure 7.53 it is possible to observe how the geomag-

netic navigation algorithm and the PCM complement each other. Without the PCM,

the estimates of the HPPF would drift, following the local isomagnetic lines (like in

Section 7.2) but because of the PCM constraints the HPPF estimate are bounded.

Also, if accurate geomagnetic data were available, the geomagnetic navigation would

improve on the HPPF estimate, by keeping the particles close to the local isomagnetic

line. Figure 7.54 plots of the difference between simulated FV trajectory and the

HPPF estimate trajectory. Overall the navigation errors are kept within 50 m for the

whole simulated deployment.
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Figure 7.52 : Plot of the HPPF trajectory estimates using the PCM for a simulated
FV deployment at 1,000 of depth. The ascend trajectory estimate is in dark-lime and
the descent trajectory estimate is in purple.

Figure 7.53 : Plot of the intersection lens and particle from trajectory analysis that
landed inside the lens. Particles from the descent analysis are plotted in dark-lime
and the particles form the ascent in purple.
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Figure 7.54 : Plot of HPPF estimate error for the 1000 m depth simulated deploy-
ment.

Figure 7.55 shows an updated system diagram of the postprocessing navigation

system with the addition of the PCM. It is important to note that this solution does

not provide a continuous position solution for the FV, since both landing locations,

from the descent and ascent analysis, most likely would not match. Instead this

strategy provides a set of potential FV trajectories based on geomagnetic information

and physical horizontal dynamics of the FV. Also, due to the re-sampling nature of the

particles filter that not all, if any, of the particle that landed in the intersection area

might have followed a physically feasible trajectory. The behavior of each particle’s

trajectory will depend on the INS sensor grade used for the deployment, the lower

the grade of the IMU the higher the re-sampling rate.

7.4.2 HPPF Test with Simulated Data

This section presents the results from a series of tests performed on different

configurations of the HPPF, using the PCM and simulated data sets. The objective

of these tests was to provide estimates of the HPPF horizontal position estimation

performance under different filter configurations. All of the tests were performed on
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Figure 7.55 : Updated system diagram of the post-processing navigation system

the same simulated FV deployment at 4,000 m of depth, in Latitude 19.88N and

Longitude 64.38W, with 5,000 filter particles. Figure 7.56 is a 3D plot of the

simulated FV deployment. Figure 7.57 is a horizontal plot of the simulated FV

trajectory with the boundaries of the PMC for the ascent trajectory, in black dashed

line, and the ascent trajectory, in black dashed line with asterisks.

Figure 7.56 : Plot of the simulated FV deployment at 4000 m of depth, the origin
of the coordinate frame is located at the deployment location.
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Figure 7.57 : A horizontal plot of the simulated FV deployment, with the boundaries
of the PMC for the ascend trajectory,in black dashed line, and the ascend trajectory,
in black dashed line with asterisk

The first simulated HPPF test used the parameters for a navigation-grade IMU

and a magnetometer with 1 nT measurement accuracy. Figure 7.58 plots of the

HPPF estimate trajectory, along with a plot of simulated FV trajectory. Figure 7.59

plots the particles from the ascent and descent analysis that landed inside the PMC

intersection lens. Figure 7.60 are plots of the HPPF estimate error this test case.

The error during the ascent analysis seems to peak at 430 m but this is most likely

caused by the segmentation of the particles into two groups in the intersection lens.

The segmentation of particle originated during a re-sampling phase of the HPPF,

where two separate particles at the edge of the PCM boundaries were consistently

inside the PCM boundaries and had favoring geomagnetic signatures. Overall the

estimation errors were within 200m for the 8,070s of deployment. This is a significant

navigation improvement from the previous HPPF implementation, which only relied

on geomagnetic data. Note that particles around the local magnetic contour are

favored more than those that are simply inside the physical limitation boundaries.
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This is an example of the complimenting behavior of the PCM and geomagnetic

data.

Figure 7.58 : A 3D plot of the HPPF estimated trajectory with the physically
feasible measurement update, a navigation grade INS, and a magnetometer with 1
nT measurement accuracy. The descent trajectory is in dark lime and the descent is
in purple.

The second simulated HPPF test used parameters for a tactical-grade IMU and

a magnetometer with 10 nT measurement accuracy. Figure 7.61 plots the HPPF

estimate trajectory, along with a plot of simulated FV trajectory. Figure 7.62

plots the particle from the ascent and descent analysis that landed inside the PMC

intersection lens. Figure 7.63 are plots of the difference between the simulated FV

trajectory and HPPF. From the Figures 7.61 and 7.62 it can be observed that with

a geomagnetic measurement accuracy of 10 nT still offer navigational information

which can complement the PCM. Errors from this simulation experiment are within
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Figure 7.59 : A plot of the PCM boundaries and the particles from the ascent and
descent analysis that landed inside.

300m. The apparent improvement over first test case is a result of a more uniform

distribution of particles inside the intersection lens.

The third and final simulated HPPF test used commercial-grade IMU parameters

and a magnetometer with 300 nT measurement accuracy, this is similar to the current

configuration of the FV. In order to accommodate the degraded performance from a

commercial-grade IMU an additional velocity constraint was applied to every HPPF

estimate. If the HPPF estimate of horizontal velocity was larger than vh,dsc or vh,asc,

for the descent or ascent analysis, respectfully, then the estimate would be scaled

to vh,dsc or vh,asc and the particle estimate of horizontal velocity, gyroscope bias and

accelerometer bias would be reset. Figure 7.64 shows a 3D plot of the HPPF estimate

trajectory. Figure 7.65 plots of the particle from the ascent and descent trajectory

analysis that landed inside the PMC intersection lens. Figure 7.66 plots of the HPPF

estimate error for the simulated deployment. From Figure 7.65 it is observable that
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Figure 7.60 : Error plots form the HPPF estimate using the PCM, a navigation
grade INS and a magnetometer with 1 nT measurement accuracy.

without accurate geomagnetic data, the HHP particles are allowed to spread freely

within the boundaries of the PCM. The trajectory estimate and error plots show

the effect of a commercial gradeIMU on the HPPF. Because of the degraded IMU

performance estimates from the HPPF have more noise. The increase in particle

scatter due to the commercial grade IMU can also cause curving artifacts on the

HPPF output trajectory. These artifacts are not unexplained since a commercial

grade IMU model would cause increasing particle spread and as a result, increases

the re-sampling rate of the HPPF which causes the curving artifacts. Even so, this

is a significant improvement over the previous HPPF configuration which would only

use the estimates from the commercial grade IMU to produce its estimate.

These simulation experiments of the HPPF provide insight to the expected nav-

igation performance of the HPPF under different configurations. It also highlighted
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Figure 7.61 : A 3D plot of the HPPF estimated trajectory with the physically
feasible measurement update, a navigation grade INS, and a magnetometer with 1
nT measurement accuracy. The descent trajectory is in dark lime and the descent is
in purple.

Figure 7.62 : A plot of the PCM boundaries and the particles from the ascent and
descent analysis that landed inside.
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Figure 7.63 : Error plots form the HPPF estimate using the PCM, a tactical grade
INS and a magnetometer with 10 nT measurement accuracy.

Figure 7.64 : A 3D plot of the HPPF estimated trajectory with the physically
feasible measurement update, a comertial grade INS, and a magnetometer with 300
nT measurement accuracy. The descent trajectory is in dark lime and the descent is
in purple.
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Figure 7.65 : A plot of the PCM boundaries and the particles from the ascent and
descent analysis that landed inside.

the potential complimentary behavior between geomagnetic navigation information

and the PCM.

7.4.3 HPPF Results and Analysis of Field Data

This subsection presents the HPPF estimates of five field deployment data sets.

The Figure 7.67 plots the HPPF estimate trajectory and on bottom PCM boundaries

for the 100 m depth FV deployment made on March 8, 2016. Figure 7.68 plots the

HPPF estimate landing location for the descent and ascent analysis, in dark lime, and

purple, respectively. Because the deployment and recovery locations were relatively

close (within 15m),the trajectory estimates from the HPPF are almost vertical. The

landing location estimate from the descent trajectory is 1 m west and 1 m north of

the deployment location, with a standard deviation of 20 m. The landing estimate

from the ascent trajectory is 0 m east and 1 m south of the deployment location,

with at standard deviation of 21 m. It is worth noting that the descent and ascent
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Figure 7.66 : Error plots form the HPPF estimate using the PCM, a commercial
grade INS and a magnetometer with 300 nT measurement accuracy.

periods for this deployment were around 4 min, resulting in larger PCM boundaries

and estimate standard deviations for both trajectories.

The larger descent and ascent periods could be the caused by the safety line used

to recover the FV in in shallow deployments, like this one.

Figure 7.69 shows the HPPF estimate trajectory and on bottom PCM bound-

aries for the 1,000 m depth FV deployment made on March 8, 2016. Figure 7.70

plots the HPPF estimate landing location for the descent and ascent analysis, in dark

lime, and purple respectively. Similar to the results from the 100 m deployment, the

HPPF estimate trajectories are almost vertical, due to the relative proximity between

deployment and recovery locations. The FV did not have a safety line for this deploy-

ment and exhibited descent and ascent periods around 1,000 s. The estimate landing

location from the descent analysis was 2 m west and 0 m north from the deployment
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Figure 7.67 : Plot of the HPPF trajectory estimated for the 100 m FV deployment
on March 8, 2016. The dark lime plot is trajectory estimate for the descent analysis
and the purple plot is for the ascent analysis

Figure 7.68 : Plot of the HPPF estimated landing location for the March 8, 2016
100 m deployment. The dark lime plots are for the descent trajectory, where the
hollow circles are the particles inside the intersection lens and the diamond is their
weighted average result. The same applies for the ascent analysis except the particles
and their average is in purple.
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Figure 7.69 : Plot of the HPPF trajectory estimate for the 1,000 m FV deployment
on March 8, 2016. The dark lime plot is trajectory estimate for the descent analysis
and the purple plot is for the ascent analysis

location, with a standard deviation of 63 m. The estimate landing location from the

ascent trajectory was 4 m west and 5 m south from the deployment location, with a

standard deviation of 66 m.

Figure 7.71 plots of the HPPF estimate trajectories and on bottom PCM

boundaries for 2,100 m depth FV deployment made on March 21, 2015. Figure 7.72

plots of the HPPF estimate landing location for the descent and ascent analysis, in

dark lime, and purple respectively.

As expected, the trajectory estimates from the HPPF converge to the known

deployment and recovery locations, and the uncertainty in its trajectory estimates

increases with depth. The estimated landing location for the decent trajectory is 134

m east and 12 m south of the deployment location, with a standard deviation of 80

m.

The estimated landing location from the ascent trajectory is within 5 m of the

descent landing estimate and has a standard deviation of 88 m.
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Figure 7.70 : Plot of the HPPF landing estimate for the 1000 m depth FV deploy-
ment on March 8, 2016. The dark lime particle are for the descent trajectory, where
the hollow circles are the particles inside the intersection lens and the diamond is
their weighted average result. The same applied for the ascent analysis except the
particles and their average is in violet.



140

Figure 7.71 : Plot of the HPPF trajectory estimated for the 2100 m depth FV
deployment on March 21, 2015. The descent trajectory estimate is in dark-lime and
the ascent trajectory is in purple.

Since the particles from the ascent and descent trajectory estimates are spread

uniformly inside the intersection lens, both landing estimates converge to the center

of the lens and have similar standard deviation.

Figure 7.73 shows the HPPF trajectory estimate for the 8,300 m depth FV

deployment made on March 30, 2015, along with on bottom PCM boundaries. Figure

7.74 plots the HPPF estimate landing location for the descent and ascent analysis, in

dark lime, and purple respectively. For this deployment, the FV configuration used

one glass sphere instead of two, the same configuration used in the deployment of

April 1, 2015. In this configuration the FV is expected to exhibit more hydrodynamic

instability during the ascent. For this reason, the hydrodynamic instability estimate,

in 7.4, was doubled from 10 cm/s to 20 cm/s, for total maximum horizontal ascent

horizontal velocity of 25 cm/s.

As mentioned in Subsection 7.4.2, due to the quick spread of HPPF particles

caused by the commercial grade IMU parameters, might exhibit curving artifacts in

the HPPF trajectory estimate. The FV was recovered 2,784 m from the deployment
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Figure 7.72 : Plot of the HPPF landing estimates for the deployment on March
21, 2015. The dark lime particle are for the descent trajectory, where the hollow
circles are the particles inside the intersection lens and the diamond is their weighted
average result. The same applies for the ascent analysis except the particles and their
average are plotted in purple.

Figure 7.73 : Plot of the HPPF trajectory estimate for the 8,300 m depth deployment
on March 30, 2015. The dark lime plot is trajectory estimate for the descent path
and the purple plot is for the ascent trajectory
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Figure 7.74 : Plot of the HPPF landing estimate for the deployment on March 30,
2015. The dark lime particle are for the descent trajectory, where the hollow circles
are the particles inside the intersection lens and the diamond is their weighted average
result. The same applied for the ascent analysis except the particles and their average
is in violet.
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location, 2,664 m west and 810 m south. The estimate landing location from the

descent analysis is 468 m west and 132 m south of the deployment location, with a

standard deviation of 274 m. The landing estimate from the ascent analysis is 474 m

west and 146 m south of the deployment location with a standard deviation of 327

m.

Figure 7.75 plots the HPPF estimate for the FV field deployment of April 1,

2015, at 8,373 m of depth. Figure 7.76 plots the HPPF estimate landing locations

for the ascent and descent trajectories along with the intersection lens formed PCM

boundaries. The FV was recovered 1,280 m from the deployment location, 1,220 m

west and 400 m south. The analysis of the FV descent estimates the landing location

33 m west and 43 m south of the deployment location, with a 487 m std. The ascent

trajectory analysis estimates the landing location at 143 m west and 54m south of

the deployment location, with a 461 m std. The descent trajectory resulted mostly

vertical because the constraints for the analysis ended inside the constraints of the

ascent. The ascent trajectory estimate exhibit some curving artifacts, these are the

product of the relatively large constricting PCM boundaries and the high scatter

of the particles from the commercial grade IMU model. Note that the simulated

deployment with commercial grade sensors models, in Subsection 7.4.2, exhibit some

similar behavior in estimation performance for this deployment and the deployment

of March 2015.

7.4.4 PCM Summary

In summary, the development of a physical constraint model for the HPPS was

presented. The model was created to complement the current HPPF geomagnetic con-

figuration by binding the filters estimate to what is physically feasible for an FV, from

a hydrodynamic point of view. It was possible to observe how PCM and geomagnetic

navigation algorithms complement each other, from the results from the simulated
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Figure 7.75 : Plot of the HPPF trajectory estimate for the 8,373 m depth deployment
on April 1, 2015. The dark lime plot is trajectory estimate for the descent path and
the purple plot is for the ascent trajectory

Figure 7.76 : Plot of the HPPF landing estimate for the deployment on April 1,
2015.

deployments. The PCM prevented drifts in HPPF estimates that caused by geomag-

netic navigation algorithms following local isomagnetic. With accurate geomagnetic

data, the geomagnetic algorithm favored regions inside the physical constraints which

added more navigation information.
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The trajectory and landing locations for five field deployments were analyzed.

Although some trajectory estimates exhibited curving artifacts, these were the result

of a high rate of HPPF particle re-sampling caused by the low accuracy of commercial-

grade IMU model. The results of the field data also resembled the results from

simulated deployment in Subsection 7.4.2. In short, the PCM provided a significant

improvement on HPPF estimation performance regardless of the sensor performance

grade.

7.5 Results and Analysis Summary

The results and analysis of the tests performed on an attitude complementary

filter, a horizontal position particle filter HPPF, and a depth particle filter DPF

were presented. The attitude complementary filter was found capable of estimating

a system’s attitude with respect to time, using a commercial, or better grade IMU.

The attitude estimates demonstrated long-term stability with some oscillating errors

due to the remaining biases in the IMU sensors.

The first HPPF configuration, with only geomagnetic-aided INS, was found to

be inaccurate for the application of FV navigation, regardless of the sensor grade.

This behaviour was attributed to the HPPF drifting estimates as the filter attempted

to follow local isomagnetic lines. This analysis also concluded that the geomagnetic

anomalies had to be sampled with at least 10 nT accuracy to be useful in geomag-

netic navigation algorithms. A physically constraint model (PCM) was developed

to complement the geomagnetic-aided INS scheme of the HPPF by limiting the par-

ticles within the physical limitations of the FV hydrodynamics. From the results

of the simulated HPPF deployments, using the PCM, it was observed how the ge-

omagnetic information could complement the PCM, provided accurate geomagnetic

samples were obtained. The HPPF simulation also brought insight on the potential

navigation performance of the HPPF under different sensor performance configura-

tions. The HPPF was used to estimate the landing location and trajectory for five FV
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field deployments. The result from these analyses behaved similarly to the simulated

HPPF deployment using commercial grade sensors.

The DPF exhibited accurate estimates with either the FOGMPA or INS system

models. The DPF was also found to be stable using the INS system model with

navigation or tactical grade IMUs. The expected error from the dead reckoning

estimates of a commercial IMU was too poor and caused instability in the DPF

output. The FOGMPA model was found to offer little improvement over the depth

estimates provided by the simulated pressure sensor. This was caused to by the broad

range of estimated FV depth. An improved system model, that more accurately

resembles the FV vertical dynamics, could be developed and tested at a next stage

of the project.

In light of the results from all performed tests, the final sensor configuration of the

FV post-processing navigation system was found to depends on the desired navigation

performance and budget requirements. Potentially, the best navigation performance

is achievable via a navigation-grade INS and a magnetometer with 10 nT measurement

accuracy (or less). However a navigation-grade IMU can cost around $100,000 [16] and

accurate magnetometer can cost around $20,000, which are considerably high when

considering a low-cost FV. A low-cost solution could be archived using a calibrated

commercial grade IMU however due to its low accuracy in geomagnetic operation it

becomes necessary for it to be compliment by PCM in HPPF.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This research studied the foundation of inertial and geomagnetic navigation sys-

tems to develop a physically constraint geomagnetic navigation system. The sys-

tem was composed of attitude, depth, and position estimators integrated in a pos-

processing framework that enables a low-cost implementation. The attitude estima-

tor was based on a complementary filter framework. It was tested with simulated

data sets and found capable of calculating the system’s attitude with bounded error

performance. The position estimator implemented a physically constrained geomag-

netic matching navigation strategy, based on a particle filter framework. INS and

FOGMPA system models were developed, as part of the particle filter’s framework,

to predict the system state. The position estimator was tested using both system

models, in a simulated environment, and was used to analyze field data. The depth

estimator of the system as developed, based on measurements from a pressure sen-

sor, a particle filter framework and two system models (INS and FOGMPA). The

depth estimator performed with satisfactory results when using both system models,

although it proved to be unstable when using a commercial-grade IMU model.

In summary our fidings indicate that is possible to develop a tarhecory estimate

using a comertia grade IMU however due to inherit resultion it needs to be compli-

mente with a physically consrant model. If imporved navigation performace were

disiraed we recomed using a higher grade IMU sensor and magnetomer.
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8.2 Future Work

This research analyzed and explored several aspects of underwater geomagnetic

navigation. While our approach produced feasible results, this research could be

enhanced by making the following considerations:

� Magnetometer Calibration: calibrating the magnetometer before each deployment

has the potential of improving it ability of detecting magnetic anomy samples lead-

ing to improved geomantic navigation performance. There for the procedure of

performing axis rotations and calibration strategies adequate for FV applications in

a sea vessel shall be research and developed.

� Magnetic Anomaly Maps: research on the usability of the EMAG map for nav-

igation purposes shall be made. If no positional or correlation were possible via

available EMAG or other available geomagnetic maps, then efforts should shift into

the development of geomagnetic mapping schemes. This shall improve the geomag-

netic algorithm ability of correlating magnetic anomaly samples to positions on the

map.

� Magnetic Anomaly Field Downward Continuation: as mentioned before in Chapter

2, the measured intensity of the geomagnetic anomaly field depends on the height

above the local ground surface. Thus research efforts shall be made on downward

continuation techniques which could be beneficial when using geomagnetic anomaly

maps, made at ocean the surface.

� Research on FV hydrodynamics: could lead to a more accurate and robust version

of the physically constrained model. Such an improved model could enhance the

estimation performance of the HPPF.

� Adaptive Gain Complementary Attitude Filter: research on adaptive gain strategies

for the attitude complimentary filter could improve the filter performance when the

FV undergoes accelerations or is around perturbing magnetic sources. The HPPF

could also improve its estimation performance from this enhancement.



Chapter 9

Contributions

The contribution of this research include:

1. A self-contained post-processing, physically constrained navigation system frame-

work based on IMU data and pressure sensor, vehicle dynamics model and geomag-

netic navigation strategies suitable for FV applications.

2. A simulation test framework composed of sensor models, deployment simulators

and different system models suitable for testing and evaluating the performance

characteristics of a navigation systems for FV applications.

3. Better insight on the potential navigation performance achievable by the developed

navigation system under different system configurations.

4. A flexible navigation solution, it is possible to accommodate the current navigation

solution to use other sources of navigation information with few changes to the

overall framework. The developed navigation system can also be adapted for other

underwater positioning application, with few additional development.

5. Knowledge on how the almost stationary state of FVs and their expected motion

dynamics effect navigation strategies, like INS.
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