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Abstract

In the study of finite dynamical systems it is important to develop efficient al-

gorithms that provide information about the dynamics of the systems. Criteria for

determining when a system described by monomials, over the two element field, is a

fixed point, have already been determined. We make use of such criteria to study the

concept of stability for finite dynamical systems. In order to do this, we use the fact

that a monomial dynamical system’s cycle structure can be described by the structure

of the monomials. This monomial structure can be represented by a digraph. The

algorithms presented in this paper, one for stability, the other for fixed points, combine

such criteria with the efficiency of depth-first search rendering both algorithms with

complexity O(n2log(n)).
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Resumen

En el estudio de sistemas dinámicos finitos es importante crear algoritmos que

provean información sobre la dinaḿica de los sistemas de manera eficiente. Los cri-

terios para determinar cuando un sistema representado por monomios, sobre el cuerpo

de dos elementos, es de punto fijo, ya han sido establecidos. Utilizaremos éstos para

estudiar un concepto de estabilidad para sistemas dinámicos finitos. Tomaremos en

consideración que la estructura ciclica está completamente definida por su estructura

monomial. Esta estructura se representa con un digrafo. Los algoritmos en este escrito,

uno para estabilidad y otro para puntos fijos, combinan estos criterios con la eficiencia

de búsqueda en profundidad para crear algoritmos con orden O(n2log(n)).
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Chapter 1

Introduction

A finite dynamical system is a function that maps a finite set to itself. In [3], Colón et

al., talk about the importance of these systems in genetic modeling and their ability to

model the dynamic of gene expressions and relations among genes. This approach en-

ables geneticists to “determine the long term impact of a gene on the other genes,” see

[6]. Dynamical systems over the field with two elements can be used to model Boolean

networks which have applications in both cellular automata and computational biol-

ogy, see [6]. B. Elspas also mentions in [8] applications of linear dynamical systems

in computer control circuits and communications systems. Some of these applications

reach a point in time where they do not experience a change in the state they are in.

Dynamical systems that model such phenomena are said to reach a steady state. It

is of great importance to provide methods for efficiently computing when a dynamical

system reaches a steady state without having to observe, enumerate or, for all practi-

cal purposes, wait until the phenomenon being modeled evolves by itself. A discrete

dynamical system that reaches a steady state is called a fixed point system (“FPS”).

Imagine now we have a set of genes being modeled by a finite dynamical system.

Can we control the dynamic of the system to transform it to a fixed point dynamic? In

other words, is it possible to manipulate the dynamic of a system to achieve a desired
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outcome? In the words of Sontag [13], ‘to control an object means to influence its

behavior so as to achieve a desired goal.’ Therefore, our goal is to determine whether a

dynamical system can be controlled in such a way for it to be composed only of steady

states. When this can be achieved we say that the dynamical system is stabilizable.

Mathematically this means that the finite control dynamical system will be endowed

with control variables. The quantity of control variables and what they influence will

depend on the system. These control variables will influence the behaviour of the

dynamical system through a feedback controller. The main interest of this work is

to determine if there exists a feedback controller, such that the dynamical system

influenced by it reaches a stable state.

In this work we focus on analyzing boolean dynamical systems, since in gene regu-

latory networks a gene can be viewed as being either active or inactive. The dynamical

systems can then be represented as functions map from the n-tuple cartesian product of

the two-element field to itself, i.e f : F n
2 → F n

2 . This function can be expressed as a n-

tuple of functions and each one of these can be expressed as a polynomial in n variables

over F2, [11]. We focus our study on those f that can be represented by monomials.

If we were to consider other types of polynomials the problem of determining wheteher

the dynamical system is FPS would become NP-hard [10]. Also, the case where f is a

linear dynamical system has already been completely studied and solved, see [12].

In Chapter 2 we establish criteria for determining when a dynamical system is a

fixed point system. Using the function f we construct a dependency graph, that is, a

digraph, Xf . With this construction we enter the field of computational algebra and

use previous results in [1],[2] and [6] to compute an invariant of Xf , called the loop

number, on its strongly connected components. It has been proven in [5] that if the

strongly connected components of Xf all have loop number equal to 1 then f is an FPS.

At the end of the chapter we provide a new algorithm of order O(n2log(n)), where n is

the dimension of the system, that determines when a finite dynamical system is a fixed
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point system.

We extend these ideas to boolean dynamical control systems in Chapter 3. We de-

fine a labeled digraph that will ‘label’ the vertices in Xf as either critical or not. A

vertex is critical if it can be influenced by a feedback controller. We use results in [1],

[7], [9] and [13] to construct an algorithm of order O(n2log(n)), that determines when a

boolean control dynamical system is stabilizable. In other words, the algorithm deter-

mines when we can find a feedback controller such that the dynamical control system

can be made to have only steady states.

Remark- The State Spaces in this work were created with the DVD software de-

veloped by the Applied Discrete Mathematics Group at the Virginia Bioinformatic

Institute (http://dvd.vbi.vt.edu). The Dependency Graphs where created using the

Graphviz program developed by AT&T (http://graphviz.org).
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Chapter 2

The Fixed Point System Problem

When studying dynamical systems it is only natural to represent the states of the system

by a graph in order to see how they interconnect. These connections can be complicated

and in examples of dynamical systems in high dimensions, steady state analysis can be

messy if not imposible to determine. Is there a better way to represent the dynamic

of a system, one that does not involve enumerating all possible transitions? The focus

of this chapter is to review the basics of graph theory and relate these ideas to those

of a finite dynamical system. At the end of the chapter we propose an algorithm that

provides an efficient way to verify if a given finite dynamical system is a fixed point

system with complexity O(n2log(n)).

2.1 Finite Boolean Dynamical Systems and its Graphs

Most of the results presented in this chapter can be found in Colón et. al. [4], [5].

In genetic expression modeling, genes can be viewed as being either active or not.

This activity can be measured in a discrete timeline. A particular configuration of the

genes in an instant of time can be easily represented by a boolean array. Such an array

will have length equal to the number of genes being modeled. For example, if we had
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five genes and only the first and third gene were active, we could represent this state of

the genes by the array (10100). Any other state can also be represented as a boolean

array and all off these arrays are elements of the 5-fold cartesian product of the two-

element field with itself. By analogy it can be shown that the state of n genes can then

be represented by a boolean array in the n-fold cartesian product of the two element

field.

Definition 2.1.1. A finite boolean dynamical System is a function f from X to itself,

f : X → X, where X is the n-fold cartesian product on the two element field with itself,

X = F n
2 .

Since there are a finite quantity of possible states in a finite cartesian product of

a finite field with itself, using Lagrange’s interpolation, it is easy to see that f can be

represented as an n-tuple of polynomials in n variables over F2. The representation

will be denoted by f = (f1, f2, . . . , fn) with every fi ∈ F2[x1, x2, . . . , xn]. Each fi is a

square-free monomial [11]. In other words, for every i, fi = αix
ε1,i

1 x
ε2,i

2 · · ·x
εn,i
n where

εj,i ∈ {0, 1} and αi ∈ {0, 1}. Two trivial cases should come to mind. If αi = 0 for

every i then f = 0. Also, if αi = 1 and εj,i = 0 for every i, j then f = 1. Both cases

are examples of steady finite boolean monomial dynamical systems and are therefore

not be considered in this work. Cases where at least one αi = 0 or αi = 1 with all

εj,i = 0 are also not considered for computational symplicity. For the rest of this chapter

when talking about systems we will mean a finite boolean monomial dynamical system

(BMDS).

Returning to the example above, if the configuration of the genes were to change,

say the first would turn off and the fifth would activate, then the array changes from

(10100) to (00101). Assuming these changes obey a pre-determined set of rules then

the state (00101) always comes after state (10100). Therefore, the next state of the

system depends on the current state and so forth. Dependence between states can be
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illustrated by a directed graph.

Definition 2.1.2. The composition of f with itself r times, f r = f ◦ f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r−times

,

is denoted as the dynamic of f and is represented by a directed graph, called the state

graph (Sf). The graph is constructed such that there is an edge from state a to state b,

a→ b, if f(a) = b.

Note that by definition f r = (f r1 , f
r
2 , . . . , f

r
n) and f ri = αi(x

r
1)
ε1,i · · · (xrn)εn,i . A cycle

is formed when for r, s ∈ N , N the set of natural numbers, s < r, f r(x) = f s(x) for

x ∈ F n
2 . If r = s + 1 for some state x then x is a fixed point of f . Recall that this

means that the state of the genes stay the same. Since the next state depends on the

previous one, it follows that this configuration of the genes stays the same regardless

of the passing of time. In other words, gene expressions have steadied. We assume,

of course, that the system receives no outside influence. The maximum number m of

compositions of f required to enter a cycle is called the transition of f with respect to

that cycle. This transition number need not be the same for every cycle of f , especially

for the non-linear case.

2.1.3 Example: Consider f(x1, x2, x3) = (x2, x1, x2) : Z3
2 → Z3

2 . Its dynamic is repre-

sented by Figure 2.1. Note the 2-cycle between (0,1,0) and (1,0,1).

Figure 2.1: A Non Fixed Point System
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Since the composition of functions could be performed an infinite amount of times,

we now define formally what it means for a system to reach a steady state.

Definition 2.1.4. A Finite Boolean Dynamical System, (F n
2 , f), is a Fixed Point Sys-

tem if every cycle in its state space is of length 1. Equivalently, if fk = f for large

enough k.

2.1.5 Example: Consider f(x1, x2, x3) = (x2, x1x3, x2x3) : Z3
2 → Z3

2 . Its dynamic is

represented by Figure 2.2.

Figure 2.2: A Fixed Point System

In the examples above, f : Z3
2 → Z3

2 , which means that Sf has 23 nodes and edges.

In general, a system Sf has 2n nodes and edges. It can be appreciated how difficult

it becomes to analyze the graph when n becomes large. We could miss detecting non-

trivial cycles which could lead to the erronous conclusion that a system is an FPS.

In fact, it has been stated in [10] that the problem of finding non-trivial cycles for a

boolean dynamical system is NP-hard, even if the length of the cycle is 2. This is so

basically because this analysis can only be performed after we evaluate the function,

f , 2n times in order to draw the graph. If we wish our mathematics to be useful, in a
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computational sense, we need a better way of determining when a function f is an FPS

without computing the state space. Colón et al. [2] construct a different graph for the

dynamic of f , one that shows the interdependence of the variables instead of the states

of the system.

When the function f is composed with itself using the vector x = (x1, x2, · · · , xn) it

can be observed how the variables “move” from different fi. Then, if a cycle forms in

this general composition it means that a variable configuration on the fi repeats itself.

It has been proven in [5] that the length of the cycles of the state space of f divides the

length of the cycle formed in this general composition of f by itself. The dependency

graph of a function f was then created as a means of studying the interdependence of

the variables to find the length of the general cycle of the composition of f .

Definition 2.1.6. Let (F n
2 , f) be a boolean monomial dynamical system. We define the

dependency graph of f , Xf , as a digraph composed of a set of vertices V = {v1, v2, . . . , vn}

and constructed in such a way that there is an edge vi → vj if xj divides fi, that is

εj,i = 1.

2.1.7 Example: Consider f(x1, x2, x3, x4, x5, x6) = (x2x3, x3, x4, x1, x2x6, x6)

Figure 2.3: Dependency Graph
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Figure 2.4: State Space

Note that the previous definition permits an edge from a vertex to itself, ai → ai,

meaning xi is a factor of fi. Edges of this sort are called self-loops, and they will play

an important part in the analysis of the dynamics of the system.

2.2 Strongly Connected Components and the Loop Number

A brief comparison between the state graph and the dependency graph of the example

above shows, among other things, that the dependency graph has considerably fewer

vertices than the state graph. In fact, Xf has only n vertices while the Sf has 2n. This

is a reduction, computationally speaking, of the problem of determining whether if a

given function is a FPS.

The definition of a dependency graph implies that if there exists an edge from one

vertex a to another b, then b influences a. Therefore, the edges of the digraph hold

information about the interdependency of vertices. Let us then define what it means

to move along the digraph.
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Definition 2.2.1. A ‘path’ p of length r in a graph is a sequence of vertices (v1, v2, . . . , vi)

where every (vj, vj+1) is connected by an edge. We denote the walk p by p : vj → vi and

the length of p by r = |p|. If a path begins and ends on the same vertex then it is called

a closed path.

When ‘walking’ along a path in a digraph it is noticeable that in some digraphs it is

impossible to reach some vertices from others. This is an important observation since

it defines a relation on the vertices of a graph. Two vertices are connected if there

exists a path from one to the other. A set of vertices Y with the property that for

every two vertices v, w ∈ Y there exists a path p : v → w is called a strongly connected

component, SCC, of a graph.

Lemma 2.2.2. Strongly connected components define an equivalence relation on the

set of vertices of a digraph.

Proof: We must prove reflexivity, symmetry and transitivity. Let v, w and z be ver-

tices in a strongly connected component.

• Reflexivity: v ≡ v by the empty path of length zero.

• Symmetry: Let v ≡ w. By definition of a SCC there exists a path p : w → v, then

w ≡ v.

• Transitivity: Let v ≡ w and w ≡ z then there exists paths p : v → w and

q : w → z respectively. Then qp : v → z, thus v ≡ z. QED.

2.2.3 Example: Let f(x1, x2, x3, x4, x5, x6, x7, x8) = (x2, x3, x4x5, x2x8, x6, x7, x8, x5).

The strongly connected components of Xf are: {V1},{V2, V3, V4} and {V5, V6, V7, V8}
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Figure 2.5: Xf divided in SCC

By Lemma 2.2.2, closed paths can exist only inside strongly connected components.

We can then analyze the dependency graph one strongly connected component at a

time. Earlier, we stated that the length of cycles in the state graph divides the length

of the cycle of f evaluated in the vector x. This general cycle is closely related to the

length of cycles in a SCC. Also, if after m compositions of the function f with itself we

find in a particular fi an xj, then there exists a path p : vi → vj of length m, see [4]. As

a result, f ri is the product of all functions f r−sj for all walks p : vi → vj of length r ≤ s.

We now define a number for each vertex of the SCC that can be used to establish a

closer link between the cycles in a SCC and the state space of the dynamical system it

represents.

Definition 2.2.4. Let Xf be the dependency graph of a finite boolean monomial dy-

namical system. The loop number, L(a), of a vertex a ∈ Xf is the minimum of all

numbers t > 0 such that t = |p| − |q| where p, q : a → a are closed paths. If no closed

path exists from a→ a then the loop number is equal to 0.
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Observe that whenever there exists a closed path p : a → a of length 1, the loop

number of a will also be 1. Take, for example, p′ = pp, then |p′| − |p| = 1. This can be

done since the definition of a path does not imply that the vertices in a path cannot be

walked repeatedly.

When we calculate the loop number of vertices v2, v3 and v4 in Example 2.2.5 all of

them will have the same loop number as v1. In Example 2.2.6, v5 and v6 have the same

loop number but are unequal to that of v1. Note that they belong to different strongly

connected components. As shown in Lemma 2.2.7, this is no coincidence.

2.2.5 Example: Consider f(x1, x2, x3, x4) = (x2x3, x3, x4, x1). Then Xf is:

Figure 2.6: Strongly Connected Xf

Let p : v1 → v2 → v3 → v4 → v1 and q : v1 → v3 → v4 → v1. Then L(v1) =

|p| − |q| = 4− 3 = 1.

2.2.6 Example: Consider f(x1, x2, x3, x4, x5, x6) = (x2x3, x3, x4, x1x5, x6, x5). Then

Xf is:

Figure 2.7: Xf with two SCC

L(v1) = 1, L(v2) = 1, L(v3) = 1, L(v4) = 1, L(v5) = 2, L(v6) = 2

12



For the upcoming results let a strongly connected component be denoted by Y and

let a, b ∈ Y .

Lemma 2.2.7. The Loop Number is invariant on any strongly connected component,

Y . Thus, the loop number is a well defined number.

Proof: Let p : a → a, q : a → a, p′ : a → b and q′ : b → a be paths such that

|p| − |q| = t. Then p′pq′, p′qq′ : b → b are closed paths with |p′pq′| − |p′qq′| = t, so the

loop number of b is less than or equal to the loop number of a. By symmetry the loop

number is constant on Y . QED.

The next results are the basis of the algorithms to be presented on the next chapter.

Lemma 2.2.8. Let t be the loop number of Y . Let p′ : a → b and q′ : a → b be paths.

Then |p′| − |q′| ∈ (t) ⊆ Z, where (t) is the ideal generated by t in Z, the ring of whole

numbers.

Proof: Assume |p′| > |q′| and let |p′| − |q′| = rt + s with 0 ≤ s < t. We want to

show that s = 0. Let p, q : a → a be such that |q| − |p| = t. We have r ≥ 0. Then,

|p′p| − |q′q| = |p′| + |p| − |p| − |q| = rt + s − t = (r − 1)t + s. Hence there are paths

p′′, q′′ : a→ b with |p′′|−|q′′| = s. Let p∗ : b→ a be a path. Then |p∗p′′|−|p∗q′′| = s = 0

because of the minimality of the loop number t. So |p′| − |q′| ∈ (t).

Corollary 2.2.9. Let the loop number of Y be t. Let p : a→ a be a closed path. Then,

|p| ∈ (t).

Proof: In the previous lemma take p′ = p and q′ = pp.

Careful consideration of Corollary 2.2.9 in conjunction with the definition of a loop

number implies that the loop number of Y , L(Y ), can be expressed as the greatest com-

mon divisor of all closed paths of a given vertex in a strongly connected component. We
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can now define an equivalence between the vertices of an SCC, called loop equivalence,

such that two vertices v, w ∈ Y , are related if and only if there exists p : v → w with

|p| ∈ (t) ⊂ Z.

Lemma 2.2.10. Let v, w vertices of Xf . Define v ≈ w if there exists p : v → w with

|p| ∈ (t) ⊂ Z. Then ≈ is an equivalence relation.

Proof: We must prove reflexivity, symmetry and transitivity of the relation ≈.

1. Reflexivity: ai ≈ ai since the empty path has length zero.

2. Symmetry: Let ai ≈ aj then ∃p : ai → aj with |p| ∈ (t). Let q : aj → ai be any

path. Then qp : ai → ai is a path such that |qp| = |p| + |p| ∈ (t) by Corollary

2.2.8.

3. Transitivity: Let ai ≈ aj and aj ≈ ak. Then there ∃p : ai → aj and q : aj → ak

with |p| , |q| ∈ (t). Then qp : ai → ak and |qp| = |p|+ |q| ∈ (t). QED.

The number of loop equivalence classes in an SCC Y is equal to the loop number

of Y . We now present a collection of results found in [5] that establish the relation

between the state space of f and its dependency graph. The idea is to associate the

SCC of a dependency graph with the state space of a directed t-gon. The state space

of this t-gon is isomorphic to an action on a hypercube in F t
2. Results that yield as

consequence what we present here as Theorem 2.2.13, which is the basis of the algorithm

discussed in the next section.

Proposition 2.2.11. The state space of a directed t-gon is isomorphic to the set of

orbits of the action of the cyclic group of order t acting on F t
2, the t-dimensional

hypercube, by cyclically exchanging the canonical basis vectors.

Proposition 2.2.12. Let X be strongly connected with loop number t ≥ 1 and n

vertices. Then the subgraph of cycles in the state space of f is isomorphic to the state
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space of a directed t-gon and hence to the set of orbits in the hypercube F t
2 under the

action of the cyclic group.

Theorem 2.2.13. Let (F n
2 , f) be a FBMDS. Then f is a fixed point system if and only

if the Loop Number of every strongly connected component of Xf is 1.

The next examples illustrate the results of the theorem. It can be seen in Example

2.2.14 that the dependency graph of f has two strongly connected components, Y1 =

{v1, v2, v3} and Y2 = {v4, v5}. The loop number of each is 1 and therefore the state

graph of f has only trivial cycles. In Example 2.2.15 we will remove x5 from f5 thus

eliminating the edge from v5 to itself. This will force the loop number of Y2 to be 2.

One can see how 2-cycles form on the new state graph.

2.2.14 Example: Let f(x1, x2, x3, x4, x5) = (x2, x1x3, x1x4, x5, x4x5)

Figure 2.8: Dependency Graph with Loop Number 1 on every SCC

Figure 2.9: State Space of Fixed Point System
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2.2.15 Example: Let f(x1, x2, x3, x4, x5) = (x2, x1x3, x1x4, x5, x4)

Figure 2.10: Dependency Graph with Loop Number diferent than 1 on a SCC

Figure 2.11: State Graph of a Non-FPS

2.3 Algorithm to determine Fixed Point Systems

In Corollary 2.2.9 it was proven that the loop number of a strongly connected component

divides the length of every closed path in it. Since the length of all closed paths in an

SCC form an ideal in Z, the set of integers, the loop number is the greatest common

divisor of all closed paths. Using the fact that the dependency graph can be described

by an adjacency matrix of vertices, Coloń et al [5], developed an algorithm to compute

the loop number of an SCC. It consists of taking powers of the adjacency matrix and

checking for 1’s on the main diagonal. Computing a power on the adjacency matrix

is equivalent to composing the function f with itself. Therefore, a 1 on the diagonal

represents a closed path in the strongly connected component and the power of the

matrix the length of the path. The loop number is the greatest common divisor of all

the powers of the adjacency matrix, up to the power n, where n the dimension of the

dynamical system. Dependency graphs are generally not strongly connected and the

algorithm has to be performed once for every SCC yielding complexity O(n5log(n)).
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While effective, the previous algorithm is not efficient in a computational sense, not

to mention that one has to decompose the dependency graph manually in strongly

connected components before applying the algorithm. So, in order to create a more

efficient algorithm two problems have to be overcome, the automatic decomposition of

the dependency graph into SCC’s and the computation of the loop number for each of

them.

Tarjan’s depth-first search algorithm is an efficient way to decompose a digraph to

strongly connected components. The complexity of depth-first search is O(n+e), where

n is the number of vertices and e the number of edges. For a dependency graph the

number of edges never exceeds n2. Therefore, the complexity can be expressed as O(n2),

with n the dimension of the dynamical system. Depth-first search also transforms a

digraph into a directed spanning forest, a fact that is useful in computing the loop

number.

The calculation of the loop number proved to be a more challenging task. In 1977,

E.V. Denardo published [7] where he stated his findings when working with the repre-

sentation of Markov chains as spanning trees. A spanning tree is a digraph with four

types of edges, tree edges, back edges, foward edges and cross edges. Tree edges form

the spanning tree’s general form while back edges, foward edges and cross edges close

loops on the digraph (see Example 2.3.1).

Denardo developed an algorithm for computing what he called the period of a span-

ning tree using foward edges, back edges and cross edges. His idea was to separate the

spanning tree in levels, as seen in Example 2.3.1, and calculate a number for every edge

different from a tree edge. The number of an edge is equal to the length of the loop

it closes if the edge is a backward edge, but it is equal to a linear combination of the

lenghts of the loops it closes if it is either a cross edge or a foward edge. The number

is computed as level(v)− level(w) + 1 whenever one encounters a non-tree edge from a

node v to a node w. Finally, the period of the graph is be equal to the greatest common
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divisor of all those numbers. Clearly, Denardo’s period for spanning trees is equivalent

to Coloń’s et. al. loop number for strongly connected components since walking a

digraph using depth-first search produces a spanning forest where every spanning tree

is a strongly connected component. The next theorem is proven in [7].

2.3.1 Example: Let f : F 5
2 → F 5

2 , f(x1, x2, x3, x4, x5) = (x2x3x5, x4, x5, x1, x4)

Figure 2.12: Xf as a spanning tree

v1 → v5 is a foward edge, v4 → v1 is a back edge and v5 → v4 is a cross edge.

Theorem 2.3.2. Let G = (V,E) be a strongly connected graph and T be a spanning

tree of G whose nodes are ordered according to a dfs leveling. Then the period of G is

gcd {level[v]− level[w] + 1|(v, w) ∈ E − T}.

The algorithm below is one of the two algorithms presented in this work. It is a

modified Tarjan’s algorithm that incorporates the insights of Denardo.
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input : A directed graph G = (V,E), where E is given by a set of adjacency
lists L[v], v ∈ V

output: A list of strongly connected components and their periods

COUNT ← 1
forall v ∈ V do

Mark v new
LEVEL[v] ← 0
P[v] ← 0
Period ← 0

end
STACK ← �
while There exists a vertex v marked new do

SEARCH(v)
end

Algorithm 1: SCC and periods

Proposition 2.3.3. Algorithm 1 calculates the loop number of the scc of a digraph in

O(n2log(n)).

Proof: It is clear that removing every line of code that is involved with calculating

the period, the levels or P (v) will transform back the algorithm above into Tarjan’s

depth-first search algorithm. Our main concern will be to prove that Denardo’s theorem

hypotesis are met to guarantee that the algorithm calculates the period correctly since

the decomposition is done in O(n2) by depth-first search. First of all, the algorithm

must ‘level’ each node correctly. The leveling is done in Line 8 and it is executed only

when a node is visited for the first time, eliminating the possibility of a node having

more than one level number assigned. Also, the level number of a node depends on the

level number of its parent. This ensures that even if we go all the way to the deepest

SCC on a graph, and this is precisely how depth-first search works, each root of a SCC

will have the highest level which will not affect the general computation of the P (v),

the local period of a node. Since the period of a SCC is an invariant and the gcd

is associative, the period of a graph is still the gcd of the local periods of the nodes.

Remember that the loop number, which is equivalent to the period, was first defined
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Procedure:SEARCHC(v)1

Mark v old1

DFNUMBER[v] ← COUNT2

COUNT ← COUNT+13

LOWLINK[v] ← DFNUMBER[v]4

Push v on STACK5

foreach vertex w ∈ L[v] do6

if w is marked new then7

LEVEL[w] ← LEVEL[v] + 18

SEARCHC(w)9

LOWLINK[v] ← MIN(LOWLINK[v],LOWLINK[w])10

end11

else12

if w is on STACK then13

P[v] ← GCD(P[v],LEVEL[v] + 1 - LEVEL[w])14

if DFNUMBER[w] < DFNUMBER[v] then15

LOWLINK[v] ← MIN(DFNUMBER[w],LOWLINK[v])16

end17

end18

end19

end20

if LOWLINK[v] = DFNUMBER[v] then21

Period ← P[v]22

repeat23

Pop x from top of STACK24

Period ← GCD(Period,P[x])25

Print x26

until x = v27

Print ‘End of SCC’28

if Period = 0 then /* SCC composed of one vertex */29

Period ← 130

end31

Print Period32

end33

Procedure "Modified Tarjan’s Search for finding periods”
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locally. The gcd of the P (v)’s in Line 25 is still necesarry to calculate the correct period

since the P (v) calculation on Line 14 assigns the value of level[v]− level[w] + 1 to the

node on the ‘tail’ of an edge and non-tree edges not always originate on the same node.

But spanning forests have also another type of edge called tree-to-tree edges which

are, as there name implies, the ones that connect spanning trees with one another.

The algorithm should not compute P (v) for those edges. The conditional on Line 13

garantees that this would not occur since depth-first search uses these edges to go as

deep as it can and then ‘pops’ from the stack any node on a SCC deeper that the one we

are in. Also, if a SCC of a graph were unreachable from the others, the leveling would

reset itself by going outside of the SEARCH procedure, and thus the root would still

have the highest level. We have added only conditions and linear commands to Tarjan’s

depth-first search algorithm and proven that the conditions on Denardo’s theorem are

met. Therefore the algorithm breaks the graph into SCC and calculates their periods.

Calculating the period still requires computing the gcd of two numbers, gcd(a, b). Using

Euclid’s algorithm requires O(max(a, b)) computations and in the case of dependency

graphs the longest simple cycle is of lenght n thus the more complex gcd would be

between 1 and n. Therefore, Algorithm 1 has complexity O(n2log(n)). QED.
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Chapter 3

Finite Dynamical Control Systems

Sontag said that ‘to control an object means to influence its behaviour so as to achieve

a desired outcome’ [?]. We now know when a finite dynamical system is a fixed point

system. We ask ourselves, can any dynamical system be manipulated to become a fixed

point system? The answer is no, and in this chapter we develop criteria to determine

when such manipulation is possible. Moreover, we will construct an algorithm that, in

O(n2log(n)), will determine if a given finite dynamical system can be stabilized.

3.1 Boolean Dynamical Control Systems

When modeling genetic expression of a disease two important questions come to mind:

Does the disease stabilize in time? If not, can we stabilize it? The stabilization of a

disease Sdepends on how much control we have over the genes that activate over the

course of the disease. With this idea in mind we formally define a boolean control

dynamical system.

Definition 3.1.1. A boolean dynamical control system is a function f : F n
2 ×Fm

2 → F n
2 .

Note that f = (f1, . . . , fn), fi ∈ F2[x1, . . . , xn, u1, . . . , um]. We call {x1, ..., xn} the set

of state variables and {u1, ..., um} the set of control variables.
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Observe that since the gene in the i-th position is associated with fi, then a control

variable in fi means we can somehow “control” the behaviour of the gene. To control

a gene means we can influence the interaction that gene has with others. Of course, a

gene i influences gene j if xj divides fi. Therefore, control variables can be replaced by

monomials in F2[x1, . . . , xn]. We define, then, a function g : F n
2 → F n

2 × Fm
2 , called a

feedback controller such that g = (u1, u2, . . . , um) and every ui = x
ε1,i

1 x
ε2,i

2 , · · · , xεn,i
n with

εj,i ∈ {0, 1}.

3.1.2 Example: Let f : Z3
2 × Z2

2 → Z3
2 , f(x1, x2, x3, u1, u2) = (x2, x1x3u1, x2u1u2).

Let g : Z2 → Z3
2 × Z2

2 , g(u1, u2) = (x2, x1)

Then, h : Z2 → Z2, h(x1, x2, x3) = (x2, x1x2x3, x1x2)

Figure 3.1: Xf of h = f ◦ g

If we were to graph the state space of the function f without the control variables,

that is, seen as a function f : Z3
2 → Z3

2 , we would soon realize that it is not a fixed point

system. Our choice of g for the control variables given by the control system allows us

to influence the behaviour of the system in order to stabilize it.

Definition 3.1.3. Let f = (f1, ..., fn) : F n
2 × Fm

2 → F n
2 be a control system. We say

that f is stabilizable if there exists a function g : F n
2 → F n

2 ×Fm
2 , called the feedback

controller, such that h := f ◦ g : F n
2 → F n

2 is a fixed point system. In other words,

the next diagram commutes:

23



F n
q × Fm

q F n
q

F n
q

-f

6
g

�
��

�
��

��*

h=f◦g

Since h : F n
2 → F n

2 is a boolean dynamical system we can use the results of the

previous chapter to determine if it is a fixed point system. But the stability of f is not

guaranteed since g does not always exists. In order to develope criteria for determining

when such a g exists we must look to the dependency graphs of both h and f , that is,

f seen as f(x1, x2, . . . , xn, 1, 1, . . . , 1) : F n
2 → F n

2 .

Definition 3.1.4. Given two directed graphs X and Y , we say that X is homotopic to

Y if there exists a one-to-one correspondence between the vertex set of X and the vertex

set of Y and there is an inclusion map from the edge set of X to the edge set of Y .

Clearly, the dependency graph of f is homotopic to the dependency graph of h. The

function h contains all nodes and edges of the dependency graph of f plus all those

edges induced by g in the composition. Thus, f is stable if we can add edges to its

dependency graph in such a way that every SCC of Xf has loop number 1. We cannot

add edges anywhere though. Edges are added only on vertices that correspond to a fi

that is divided by a control variable.

Definition 3.1.5. Given f : F n
2 × Fm

2 → F n
2 a boolean control system, consider

f̂ := f(x1, . . . , xn, 1, . . . , 1). We define the labeled dependency graph of f as the

dependency graph of f̂ , where every vertex vi corresponding to the function f̂i is labeled

critical if fi contains a control variable.

It remains to determine under what arrangement of critical vertices does a labeled

dependency graph represent a stabilizable function. Let f and f̂ be as in Definition
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3.1.5. Assume the dependency graph of f̂ to be as in Figure 3.2.

Figure 3.2: Unlabeled Xf

Xf̂ does not represent the dependency graph of a fixed point system since SCC #2

has loop number equal to two. If Xf̂ were the dependency graph of a fixed point system,

then f would be trivially stabilizable. We cannot decide which vertices are critical but

let us assume various configurations of critical vertices. If either V6 or V7 were critical

vertices, as in Figure 3.3, any edge going from either of them would not change the loop

number of SCC #3. This is because the paths used to calculate the minimum number

t as in Definition 2.2.3 can still be “walked”. Also, any edge to another SCC would be

just a tree-to-tree edge and is not taken into account when calculating loop numbers.

Therefore, the SCC #2 would still have loop number 2 and we would have to conclude

no feedback controller exists such that f is stabilizable.

If some vertex on SCC #2 were critical, say V4 (see Figure 3.4), then we could

construct g such that every control variable would be equal to 1 except one, which

would be equal to x4 thus creating a self-loop in V4 changing the loop number of SCC

#2 to 1. This is not necessarily the only g but we need only one to guarantee stability.

Finally, if a vertex in SCC #1 is critical, say V1 (see Figure 3.5), then any edge

from V1 to SCC #1 would not change SCC #1 loop number. All edges from V1 to
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Figure 3.3: Critical vertex on isolated SCC

Figure 3.4: Critical vertex on a SCC with L(SCC) 6= 1

SCC #3 would be considered tree-to-tree edges and would not be considered for loop

number calculation, thus SCC #3 loop number would be the same. On the other hand,

an edge from V1 to SCC #2 would join SCC #1 and SCC #2 into a same SCC. As a

consequence, the loop number of V4 and V5 would change to 1, stabilizing the dynamical

control system.

The next theorem states that the conditions discussed above are not only sufficient

but also necessary for a labeled dependency graph to represent a stabilizable boolean
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Figure 3.5: Critical vertex on connected SCC

control system.

Theorem 3.1.6. Let f : F n
2 × Fm

2 → F n
2 be a boolean monomial control system such

that f(x1, . . . , xn, 1, . . . , 1) : F n
2 → F n

2 is not a fixed point system. Then f is stabilizable

if and only if for every strongly connected component C, of the labeled dependency graph

of f with loop number greater than one, either:

• C has a critical vertex or

• C is connected by a path to a strongly connected component D, which contains a

critical vertex.

Proof: In order to prove that f is stabilizable we have to prove that we can find a

feedback controller g : F n
2 → F n

2 × Fm
2 , such that h := f ◦ g is a fixed point system.

The construction of a suitable g is straighforward if we look at the labeled dependency

graph of f . If C is a strongly connected component of the labeled dependency graph

of f with loop number greater than 1, then by hypothesis, it either contains a critical

vertex or it is connected by a path to a strongly connected component which contains a

critical vertex. In the former case, let vi be the critical vertex and xi its corresponding

variable. The definition of critical vertex tells us that the function fi actually depends
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on ~u, i.e. there is a j ∈ {1, . . . ,m} such that fi depends on uj. Now we can add the

edge vi → vi to the labeled dependency graph of f . This modification corresponds to

setting the function gj(~x) := xi. Now we will consider the case where C is connected by

a path to a strongly connected component, say D, which contains a critical vertex. Let

vk be the critical vertex contained in D and xk its corresponding variable. Following

the same argument as above, we know there is an l ∈ {1, . . . ,m} such that fk depends

on ul. Now we can add two edges to the labeled dependency graph of f ; namely, the

edge vk → vk and an edge that starts at vk and points to a vertex contained in the

component C, say the vertex vs (which corresponds to the variable xs). The second

edge is not strictly necessary if the component D has loop number equal to 1. Again,

this modification corresponds to setting the function gl(~x) := xkxs. We continue this

procedure with every strongly connected component of the labeled dependency graph of

f that has loop number greater than one. At the end of this process, for some nonempty

subset J ⊆ {1, . . . ,m} the functions gt; t ∈ J will be defined. For the remaining indices

in the set I := {1, . . . ,m} \ J we simply set gt ≡ 1, for all t ∈ I.

Using the feedback controller g obtained, we construct the function h. Clearly, the

dependency graph of h differs from the labeled dependency graph of f only in the edges

that were added to critical vertices. It is clear that the edges added serve the following

purposes: Either they merge two or more strongly connected components into a bigger

one or they force the loop number of a strongly connected component to be equal to

1. Therefore, every strongly connected component of h has loop number one and thus

h is a fixed point system. This shows that the conditions stated in the theorem are

sufficient for the control system F to be stabilized.

To show that the conditions are also necessary, assume that they do not hold. As

a consequence, there is a strongly connected component U of the labeled dependency

graph of f such that:
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(1) U has loop number greater than 1.

(2) U does not contain a critical vertex.

(3) U is not connected by a path to a strongly connected component that contains a

critical vertex. Let vi1 , . . . , vit be the set of the vertices contained in U and consider the

corresponding variables xi1 , . . . , xit and their update functions fi1 , . . . , fit . Since U does

not contain any critical vertex, the functions fi1 , . . . , fit cannot depend on any of the

control variables u1, . . . , um. Therefore, for any feedback controller g : F n
2 → F n

2 × Fm
2

the function h has the property hiq = fiq ,∀q ∈ {1, . . . , t}. In addition, since all arrows

starting at the vertices vi1 , . . . , vit must point to vertices in the set {vi1 , . . . , vit}, none of

the functions fi1 , . . . , fit can depend on any of the variables {x1, . . . , xn}\{xi1 , . . . , xit}.

Thus, the system h contains the subsystem

h̄ : F t
2 → F t

2

~ξ 7→ h̄(~ξ) := (fi1(
~ξ), . . . , fit(~ξ))

As h is iterated, the subsystem h̄ is iterated independently from the values of the

remaining variables {x1, . . . , xn} \ {xi1 , . . . , xit}. The dependency graph of the subsys-

tem consists of a single strongly connected component with loop number greater than

1; and therefore h̄ is not a fixed point system. The oscillation of the subsystem h̄ is of

course observable in the dynamics of h. Summarizing, the system h cannot be a fixed

point system. QED

3.2 Algorithm for determining Stability

In the previous section we described the structure of labeled dependency graphs of

stabilizable functions. The algorithm discussed in this section determines if a boolean

control dynamical system is stabilizable by decomposing its labeled dependency graph.

We will again use a modified Tarjan’s depth-first search for finding strongly connected
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components. The period will still be calculated, using Denardo’s results for spanning

trees, since Theorem 3.1.6 states that only SCC with loop numbers larger than one

must be checked.

input : Labeled connectivity graph G = (V,E) of a Boolean Control
Dynamical System where edges are given by adjacency lists

output: A message indicating whether or not the system is stabilizable

STABILIZABLE ← TRUE1

COUNT ← 12

forall v ∈ V do3

Mark v new4

LEVEL[v] ← 05

P[v] ← 06

Period ← 07

end8

STACK ← �9

while There exists a vertex v marked new do10

SEARCH(v)11

end12

if STABILIZABLE then13

Print ‘BCDS is STABILIZABLE’14

end15

Algorithm 3: Stability for BCDS
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Procedure:SEARCHC(v)1

Mark v old1

DFNUMBER[v] ← COUNT2

COUNT ← COUNT+13

LOWLINK[v] ← DFNUMBER[v]4

Push v on STACK5

foreach vertex w ∈ L[v] do6

if w marked as critical then7

Mark v as critical8

end9

if w is marked new then10

LEVEL[w] ← LEVEL[v] + 111

SEARCHC(w)12

LOWLINK[v] ← MIN(LOWLINK[v],LOWLINK[w])13

if w marked as critical then14

Mark v as critical15

end16

end17

else18

if w is on STACK then19

P[v] ← GCD(P[v],LEVEL[v] + 1 - LEVEL[w])20

if DFNUMBER[w] < DFNUMBER[v] then21

LOWLINK[v] ← MIN(DFNUMBER[w],LOWLINK[v])22

end23

end24

end25

end26

if LOWLINK[v] = DFNUMBER[v] then27

Period ← P[v]28

repeat29

Pop x from top of STACK30

Period ← GCD(Period,P[x])31

Print x32

until x = v33

Print ‘End of SCC’34

if Period = 0 then /* SCC composed of one vertex */35

Period ← 136

end37

if Period > 1 and v is not marked as critical then38

STABILIZABLE ← FALSE39

Print ‘BCDS not Stabilizable’40

EXIT41

end42

end43

Procedure "Modified Tarjan’s Search for determining
stability”
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Proposition 3.2.1. Algorithm 3 determines the stability of a labeled digraph inO(n2log(n))

operations.

Proof: Erasing every line of code that mentions either stability or critical values would

transform this algorithm into Algorithm 1. Therefore, this algorithm decomposes the

digraph in SCC and calculates their respective periods in O(n2log(n)) operations, where

n the number of vertices. We must prove that the algorithm marks critical vertices and

paths to critical vertices correctly. Since the input is a labeled connectivity graph,

critical vertices are already marked. The conditionals on Line [7] and Line [14] mark

other vertices as critical. These vertices are not critical in the same sense as in Theorem

3.1.6, instead they are marked because they have a path that connects them to a critical

vertex. Line [7] verifies if the vertex being visited is critical, in the sense of the algorithm,

and marks the vertex on the “tail” of the edge, in this case v, as critical. But it may

happen that we are arriving at the vertex w for the first time. If that is so, then v

would not be marked critical unless w were critical in the sense of Theorem 3.1.6. In

this step we have not analyzed the edges of w. If w were connected to a critical vertex,

it would be marked, on an iteration of the SEARCH procedure for w, as critical. That

is why we need to verify again on Line [14] for the critical status of w. That way we

make sure we verify for critical vertices before and after we have investigated every

edge on a vertex. Observe that any vertex of an SCC that has a critical vertex will be

marked as critical since it is connected to a critical vertex. In other words, if a root

of an SCC is marked as critical then it is critical or is connected to a critical. That is

why on Line [38] we can verify in the conditional for the critical status of the root of

the SCC that has period bigger than 1 instead of checking every vertex of the SCC. All

the markings and verifications of stability are done by conditionals which are of linear

order. Therefore, Algoritm 3 determines the stability of a boolean control dynamical

system in O(n2log(n)) operations. QED.
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Chapter 4

Discussion of Results

4.1 Conclusions

In this work we have developed criteria to determine when a boolean dynamical control

system is stabilizable. We have used previous results on boolean dynamical systems to

find necessary and sufficient conditions to determine the stability of these systems. As

a result of this, we can now make a complete judgement on the stability of a boolean

control dynamical system without having to enumerate all possible state transitions.

Theorem 3.1.6 also provides a method for finding an appropiate feedback controller that

forces trivial cycles of the state graph of h, in case the control system is stabilizable.

4.1.1 Example: Let f : Z8
2 × Z3

2 → Z8
2 such that

f(x1, x2, x3, x4, x5, x6, x7, x8, u1, u2, u3) = (x2, x3x4, x1x5, x5, x6u1u3, x5x7, x4, x3x8u2)

Its labeled dependency graph is shown in Figure 4.1.

Theorem 3.1.6 states that u2 ≡ 1 since it can not be used to alter the loop number

of any other SCC. Control variables u1 and u3 can be made equivalent to x3 and x5

respectively. This configuration, while not unique, guarantees the integration of SCC

#1 and SCC #2 while at the same time forcing the loop number of the new SCC to be
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Figure 4.1: Labeled Xf with two critical vertices

1.

Using the results found in [4] and [5] we have developed an algorithm for computing

efficiently the loop number of every SCC in a digraph. Algorithm 1 provides a more

efficient way of determining when a boolean monomial dynamical system is a fixed

point system. The algorithm that was previously known had order O(n5log(n)) while

the algorithm presented here has order O(n2log(n)). Therefore, Algorithm 1 reduces the

computational time by a factor of n3, a significant improvement. It has been proven

in [6] that a finite monomial dynamical system over a finite field with characteristic

bigger that 2 requires a booleanization of the system as a method of determining if it

is a fixed point system. Algorithm 1 then provides a partial solution for the problem

of determining when such systems are fixed point systems.

We have also characterized labeled dependency graphs of stabilizable boolean dy-

namical control systems. Algorithm 3 determines if such a system is stabilizable. Since

the notion of stability is linked to that of fixed point systems Algorithm 3 also provides
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a partial solution to the problem of determining when a finite dynamical control system

over an arbitrary finite field is stabilizable.

4.2 Future Work

We still need to develop criteria to determine when a finite dynamical control system

over an arbitrary finite field is a fixed point system and stabilizable. Work in this area

that is being considered is as follows:

• Develop criteria for stability in monomial dynamical systems over finite fields with

special characteristics, i.e, f : F n
q × Fm

q → F n
q , where q is a Carmichel prime.

• Develop criteria for stability in monomial dynamical systems over finite fields in

general.

• Create algorithm that provides a feedback controller, if it exists, for a boolean

control dynamical system.

• Establish necessary and sufficient conditions for determining stability in finite

control dynamical system.
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