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The explosive growth in the size of data centers, coupled with the wide-

spread use of virtualization technology has brought power and energy consump-

tion as major concerns for data center administrators. Provisioning decisions

must take into consideration not only target application performance but also

the power demands and total energy consumption incurred by the hardware

and software to be deployed at the data center. Failure to do so will result in

damaged equipment, power outages, and inefficient operation. Since database

servers comprise one of the most popular and important server applications de-

ployed in such facilities, it becomes necessary to have accurate cost models that

can predict the power and energy demands that each database workloads will

impose in the system. In this work we present an empirical methodology to esti-

mate the power and energy cost of database operations. Our methodology uses

multiple-linear regression to derive accurate cost models that depend only on

readily available statistics such as selectivity factors, tuple size, numbers columns

and relational cardinality. Moreover, our method does not need measurement of

individual hardware components, but rather total power and energy consump-

tion measured at a server. We have implemented our methodology, and ran ex-

periments with several server configurations. Our experiments indicate that we

can predict power and energy more accurately than alternative methods found in

the literature.
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El crecimiento vertiginoso de los centros de cómputo a gran escala, junto con

el uso generalizado de tecnologı́as de virtualización, han hecho que el consumo

de energı́a y potencia máxima esten entre las principales preocupaciones para

los administradores de estos centros de cómputo a gran escala. Las decisiones de

aprovisionamiento ahora deben tomar en consideración no solo el rendimiento de

las aplicaciones, sino también la demanda de energia incurrida por el hardware y

el software a ser utilizados en los centros de cómputo. Fallar en ello resultará en

daños a los equipos, cortes de energı́a y operaciones ineficientes. Ya que los servi-

dores de base de datos constituyen uno de los más populares e importantes servi-

dores de aplicación en estas facilidades, es necesario tener modelos de costos más

precisos que puedan predecir las demandas de energı́a y la potencia máxima que

cada carga de trabajo impondrá en el sistema. En este trabajo nosotros presen-

tamos una metodologı́a empı́rica para estimar la potencia máxima y el costo de

energı́a de las operaciones de un servidor de base de datos. Nuestra metodologı́a

utiliza regresión lineal multiple para derivar modelos de costos que dependan

solo de estadı́sticas disponibles en la base de datos, tales como la selectividad

del ”query“, el tamaño promedio de los registros, el número de columnas y la

cardinalidad de una relación. Además nuestra metodologı́a no necesita medir

individualmente los componentes hardware de un computador. En vez de ello,
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se mide la potencia máxima y el consumo de energı́a del servidor. Hemos imple-

mentado nuestra metodologı́a y corrido experimentados con diferentes configu-

raciones de servidores. Nuestros experimentos indican que podemos predecir la

potencia máxima y la energı́a con mayor precisión que otros métodos alternativos

encontrados en la literatura.
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CHAPTER 1

INTRODUCTION

Internet-scale computing environments such as those envisioned by the cloud

computing paradigm contain thousands of host machines with different hard-

ware/software characteristics. These pools of machines are often referred to as

clouds, and customers can lease time to run jobs on them. This enables customers

to outsource the entire IT infrastructure they need to run their business from a

highly specialized and trustworthy IT company that runs the cloud. In some

cases, most of these machines will be housed at a single data center [1] and be

physically contained within a small area, such as a shipping container [1, 2]. Some

hosts available for data processing will be real machines, as we know them, while

others will be virtual hosts running on a virtualization platform such as VMware,

Xen, or KVM.

Cloud computing companies need large data centers to accommodate the

needs of their growing user base. Hence, electrical energy consumption in data

centers is rapidly becoming a major cost factor in the operation of these facili-

ties. For this reason, research efforts in new, energy-efficient hardware/software

systems are necessary to curb server energy consumption.
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Database management systems are common server applications deployed at

data centers. For many years, developers of DBMS have focused their optimiza-

tion efforts into minimizing either the response time or the resource usage time

required to run queries. From this perspective, the priority is to maximize the per-

formance of the database applications by minimizing time, and thus increasing

system throughput. But, in cloud environment where the electrical energy con-

sumption has becamo an important concern, the optimization also must build ef-

ficient query plans in terms of the power demands. Failure to do so would result

in high cost of energy, environmental problems, overloading servers and racks to

the point at which circuit breakers and other protection equipment would shut-

down electric energy to protect the equipment.

1.1 Problem Statement

In short, our goal is to develop simple and accurate cost models that can be

used to predict the power and energy costs that queries will have on a physical

server. The DBMS that evaluates these queries can be run directly on the physical

machine, or it can be run on a VM. Having these cost models enable the following

technological features at modern data centers:

• Automated DBMS Provisioning - A software controller can place the DBMS

needed to run a given workload on a real or virtual machine with enough elec-

tric power to sustain the utilization imposed by the query workload. This is par-

ticularly important in multi-tenant environments running single-site database

servers.

• Energy-aware Optimizer - A query optimizer that understands the energy, peak

power, and average power of the query plans can pick not only energy-efficient

plans but also pick the appropriate server machines on which to run each query

operator.
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Formally, consider a workload of n queries Q1, Q2, ..., Qn to be run on a ma-

chine M . For each query Qi we need to find cost functions Ei, Pi, P̄i where:

• Ei is the energy consumed to run the whole query.

• Pi is the peak power reached while running the query.

• P̄i is the average power reached while running the query.

The formulation is similar if we are running on a parallel DBMS, distributed

DBMS or MapReduce environment, where we have a set of k machinesM1,M2, ...,Mk.

In such case, we need to find cost functions Ej
i , P

j
i , and P̄ j

i to get the energy, peak

power, and average power for running operators for query Qi on machine Mj .

In this work, however, we focus on the cost models for deployments in which

there is either: a) one single-site DBMS to run all queries, or b) several single-site

DBMSs cooperating to run queries over horizontally partitioned data.

1.2 Proposed Solution

This research is focused on how to model the energy and power consump-

tion of the database servers. We shall illustrate the software infrastructure needed

to run a workload on a multi database server environment. We shall also describe

the tools to collect the peak power, average power and energy consumption of the

nodes. Our methodology characterizes the electrical consumption behavior of

different queries submitted to the system. Three types of queries are considered

in our methodology: selection, projection and joins. For each of these types of

queries we obtain cost models to estimate the power and energy costs for queries,

by means of regression techniques. We analyze the effect of different hardware

configurations in the power consumption of queries, and how virtualization af-

fects the query execution.
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1.3 Contributions

Our research makes the following original contributions:

• Illustrates the challenges in provisioning database server machines and placing

query operators when power/energy are a major cost factor.

• Introduces a methodology to derive cost models that predict power and energy

cost of queries. This methodology can be incorporated into query optimization

frameworks and tools used to do energy provisioning or power capping on en-

vironments that include strict power budgets to the physical servers.

• Presents a performance study, based on TPC-H, showing that our framework

can accurately predict the power/energy costs of query operators. It also shows

that it is more accurate when compared with other methods based on response

time models, that estimated power as a cumulative metric.

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 gives the reader nec-

essary background information. Chapter 3 presents our methodology for power

and energy estimation. Chapter 4 contains experiments that validate our frame-

work. Finally, conclusions are presented in Chapter 5.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

In this section we present background necessary to understand the thesis,

and then formally state the problem we aim to solve.

2.1 Electric Power and Electric Energy

Electric energy (E) can be computed as the product between average electric

power (P) and equipment use time (T):

E = P × T

Electric energy is measured in Joules (J) and denotes capacity to perform work.

Electric power is defined as the rate at which energy is consumed or produced

[3], and is measured in Watts (W). Thus, electric power can be used to denote

how much energy a computer is consuming at a given point in time t. The mea-

surement units Joules and Watts are related: one Watt is equivalent to one Joule

consumed per second, 1W = 1J/s.

It is important to grasp the relation and magnitude of these metrics. Elec-

tric power plants are rated in terms of their power capacity, which is a measure

of how much power they can generate. For example, an oil-fired thermoelec-

tric plant might have a capacity of 250 megawatts (MW), while a nuclear plant

5
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might have a capacity of 1000 MW. A commercial building can consume a few

megawatts, while a small city requires a few hundred megawatts. In 2004, New

York City officials forecasted that consumption of electricity in the City would

reach about 10,000 megawatts by 2008 [4]. Electric utilities typically charge for

electricity in terms of kilowatt-hours (kWh), which is the amount of energy of a

steady power of 1 kilowatt running for 1 hour. For example, a 250 W computer

running at peak power for 20 hrs would consume 5000 Wh, or 5 kWh.

Notice that understanding the required computer electric power is necessary

for provisioning electricity to the data center, since enough electric power must

be available to feed the machines deployed at the facility. Peak power refers to the

maximal power drawn by a computer at any time t during its operation. In con-

trast, average power refers to the mean power consumption over a time interval

[t0, t1]. Meanwhile, understanding of the electric energy consumed by the ma-

chines is necessary to estimate the energy expenses to be incurred by the facility

during a given time period.

2.2 Power Consumption in Data Centers

Internet service companies are building new, colossal datacenter based on

cheap commodity computers, thanks to falling server prices. However, there are

new technical, environmental and economics challenges that make it difficult to

create and deploy data centers. We review these challenges next.

Since the 90s, computer vendors are building more expensive and powerful

servers. The performance and the performance-per-server price have grown with

each new server generation, however the performance per watt has stayed con-

stant. This scenario suggests that the cost for powering these powerful machines

is increasing quickly and linearly [5]. Nowdays, the power consumption is be-

coming the principal factor in the Total Cost ownership. The EPA reports that
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data centers consumed 1.5% of the USA energy in 2006 [6]. McKinsey reports

that the world’s servers produce 0.2 % of all CO2 emissions in the world [1]. Heat

is another problem that impacts negatively the operation of a data center. Tra-

ditionally, air chiller systems consume 1W for cooling operations for every 1W

used to power servers [6]. Additionally, the space requirement of such systems

limits the power density. To deal with these issues, data centers are turning to

new cooling technologies like water based cooling systems, external cold air, and

smart cooling with sensors, among many others. Building and designing greener

and more energy efficient computers may cut the CO2 emissions generated by

the IT sector [7].

Companies like Google, Amazon, Microsoft with data centers of thousands

and more systems incur on enormous cost of infrastructure and time consuming

task, for example, shipping and packaging computing equipments, powering,

networking, housing in a security location, cooling systems, fixing and replacing

all these systems.

To alleviate these challenges, the work in [2] proposes to use a shipping con-

tainer as building block of new generations of data centers. This kind of modules

have many advantages: they are weatherproof and inexpensive in comparison to

conventional large rack rooms. A container is designed to hold delicate equip-

ments and it can be shipped over land, air or even sea. Rackable System, Verari

and Sun Microsystem sell these units as fully operational macro-modules con-

sisting of thousands of blade servers and integrated with power, networking and

cooling system. For example, the Rackable ICE Cube container has a capacity of

22400 cores and 11.8 Petabytes of storage. Although deploying data centers can

still be expensive, by using shipping containers the process is highly simplified.

These containers are cheap to move to regions with affordable electricity, reliable

networking or some tax benefits. To increase storage and computing power on
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data centers due a growing user demand requires to attach more shipping con-

tainers and feed them power, water and networking. Another advantage is that

data centers no longer need servers room with raised floors, nor Computer Room

Air Conditioner (CRAC consumes aproximately 50% of the total floor space) in-

stead containers employ water-based chillers to remove the heat. As result, such

configuration supports high power density and data centers can be fully popu-

lated.

2.3 Data Center Organization

Traditionally, data centers have been built on special purpose buildings, fea-

turing raised floors and very large air conditioning units to cool down the servers.

The work in [1] reports that data centers consuming 20 MW of power are com-

monplace, and that new data centers consuming 200 MW are expected in the near

future. The work in [1, 8] indicates that for every Watt spent powering a server,

at least another half a Watt is needed to cool it down. This results in a situation in

which the cost of powering and cooling a server over its useful lifetime exceeds

the cost of purchasing it [9].

Recently, however, a new trend has emerged for building data centers in

a modular fashion. Racks full of servers are packed into a shipping container,

and cooling is done with chilled water. The shipping containers are placed in

a warehouse-like facility where electricity, water and Internet connectivity are

supplied to each container. This scheme simplifies data center deployment, and

reduces the costs associated with powering and cooling the servers [2].

Still, provisioning power for a data center becomes a complicated and deli-

cate matter. Figure 2–1 shows the architecture of a data center power distribution

infrastructure, as discussed in [9]. A power source, backed by an emergency gen-

erator, feeds the data center. The electricity is delivered to a pair of redundant
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Uninterruptible Power Supplies (UPS), which in turn feed one or more Power

Distribution Units (PDU). Notice that each PDU has a static transfer switch (STS),

used to get power from any one of the available UPS. The PDU provides elec-

tricity to an electric panel from which electric circuits emerge to feed the racks

containing the physical servers.

UPS UPS

Power Source

STS

PDU

STS

PDU

. . .

Panel

Panel. . .

R
ackServer

Server
. . .

. . .

Figure 2–1: Power distribution architecture.

2.4 Server Power Management

Servers can reach their peak power when their utilization level is high. But,

idle servers also consume power. In fact, an idle server can consume more than

50% of its peak power [7]. The nameplate power is the peak power specified

by the hardware vendor. In practice, however, the actual peak power is much

less than the nameplate specification [9]. Another key observation is that most

servers operate between 10% and 50% their utilization, hence, not all machines
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are operating at peak power at the same time. These observations can be used by

data center architects to accommodate more machines in a panel than what can

be powered if all of them were working at peak power at the same time. This

scheme helps reduce costs by provisioning for the amount of power that will be

likely consumed instead of provisioning for a worst case scenario.

The tradeoff is that power caps now need to be assigned to servers and racks

to ensure that machines do not overload the electric system during an unexpected

surge in utilization [10]. Each server gets assigned a power budget that indicates

how high can its power reach at any time instant t. If some server A needs more

power, some other server needs to relinquish a portion of its power budget. If

no machine is found to donate power and the server exceeds its budget it will be

powered down or downgraded to a lesser performance state, using techniques

such as CPU throttling. Additionally, CPU throttling can be employed when the

machine stays at peak power for too long since it will overheat and malfunc-

tion. Thus, when a virtual machine is provisioned, care must be taken to place it

on a physical server that has both sufficient computational capacity to meet the

performance demands and enough power left in its budget to accommodate the

increase in power due to higher utilization.

2.5 Virtualization and Clouds

Virtualization permits the consolidation of idle servers by allocating multi-

ple virtual servers into one physical server. This scheme simplifies data center

administration since there is less equipment to manage. It also reduces energy

costs as there are less servers consuming energy, and less cooling is required to

keep the proper temperature. Virtual machines are managed by a software mod-

ule known as the hypervisor.
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Virtualization enables a type of cloud infrastructure known as infrastructure

as a service (IaaS). In this scheme, multiple virtual machines are offered to end-

users as replacements to physical machines. This is the model used by Amazon

EC2, Eucalyptus, and Microsoft Azure. Users get charged by the amount of time

they use the virtual machines. Users can customize the virtual machines with

third party applications as needed. Typically, there is a cloud controller node

that manages the cloud. Each physical server that can host virtual machines is

controlled by a node controller module. This node controller takes care of start-

ing, modifying and destroying virtual machines as needed. The cloud controller

takes care of finding the proper physical server on which to provision a virtual

machine. This provisioning decision takes into consideration the characteristics

of the machines requested by the user, including features such number of virtual

CPUs, memory size, disk size, and throughput.

2.6 Related Work

Statistical methods have been used to estimate several DBMS parameters,

particularly selectivity factors [11–13]. But none of these methods considers peak

power or energy, and hence, our work makes a contribution and complements

them. The work in [8] proposed the use of multiple-linear regression to esti-

mate peak power in terms of CPU, memory, disk, and network utilization. How-

ever, this work focused on the overall utilization of the machine, without concern

about the specific workload being run on it. Therefore, it is more suitable for

systems aiming at curbing power by using throttling techniques. In contrast, our

method provides detailed cost estimates for individual queries, and can be used

in query optimizers, or for DBMS provisioning decisions.
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The work in [10] used the regression methods from [8] to develop a multi-

level control system to manage the power levels of blade servers, blade enclo-

sures, racks, and zones in the data center, with the goal of keeping all compo-

nents within their power budgets. Similarly, the work in [9] used the methods

in [8] to analyze power costs at a large data center, and provision power based

on likely consumption instead of worst-case consumption. These examples show

that regression methods, such as ours, are a viable mechanism to model power

and energy costs in servers for data centers.

The need for energy-aware database systems was presented in [14], which

discussed several challenges to develop energy-aware storage, indexing, opti-

mization, and query processing methods. The authors in [6] studied several ap-

proaches to make a DBMS energy-efficient. These include energy-aware optimiz-

ers, resource consolidation, better storage managers, and perhaps trading-off per-

formance in favor of more energy-efficient hardware and software environments.

The work in [15] introduced various techniques to help curb the power consumed

by a DBMS. The first technique, named Processor Voltage/Frequency Control

(PVC) allows a controller in the server running the DBMS to reduce/increase the

CPU voltage or frequency in response to changes in the query workload. Recall

that CPU performance is related with the CPU frequency, which is also related

with electrical power (higher frequency usually means higher power). This tech-

nique can be used to keep the CPU at an energy level that is consistent with the

performance required by the workload at a given point in time. The second tech-

nique, Improved Query Energy-efficiency by Introducing Explicit Delays (QED),

advocates for the grouping of queries with similar access paths. This enables re-

sults to be reused, in an effort to reduce wasted energy and computer resources

incurred in recomputing the same operators in queries submitted simultaneously.

Our method complements all these efforts by providing a way to find accurate
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models for power that can guide the optimizers, storage managers, PVC con-

trollers, and QED controllers.

Our work is most closely related with the research described in [16]. The

authors of this work use a statistical method to derive the cost models for power

in a DBMS, and modify the PostgreSQL optimizer with such models. However,

these models are based on the optimization models used by PostgreSQL, which

are better suited to make relative comparisons between resource usage of plans

rather than capturing accurate cost. Also, their work uses the estimated power

and estimated resource usage time from the optimizer to calculate the energy con-

sumption, and they threat power as a cumulative quantity. Our work differs but

complements this effort because our methods are able to accurately estimate both

power and energy, with relatively small errors. As we saw in the experimental

section, our methods show behavior closer to the real measured values compared

with models borrowed from the time estimates done by a System-R optimizer.

The work in [17] studied energy efficiency in single-site database servers, and

concluded that optimizing for time results in optimization for energy-efficiency.

But, this might be the case if the server is not housed in a power-capped envi-

ronment. If that is the case, then the optimizer must be aware of those caps, or

it will generate plans that will surpass the power budgets of machines, forcing

the controllers that manage the physical machines to reduce their CPU frequency

or perform a shutdown. The same situation applies to parallel and distributed

environments.



CHAPTER 3

ESTIMATING POWER AND ENERGY

We started our efforts to develop a methodology for estimating the power

and energy in a DBMS with three major design goals. First, we wanted our

models to be as accurate as possible, reflecting the actual power/energy costs

rather than providing a relative measure to compare how the physical machine

is stressed by alternative query plans [16]. Second, we wanted simple methods

to collect the statistics necessary to build the models. On a large data center, it is

impractical to open up servers and take measurements on individual hardware

components as done in [18]. Rather, we wanted to use the measurements already

taken by special-purpose sensors that come integrated with commercial server

machines. Alternatively, we would resort to collect power/energy measurements

by attaching a power meter to the server. Finally, we wanted the system to be

adaptive in the sense that the models could be easily adjusted as needed, based

on up-to-date measurements of the system. In this regards, we wanted to avoid

hardwired formulas and constants, and instead, derive the cost models from ac-

tual measurements and statistical methods.

14
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3.1 Monitoring Architecture

Figure 3–1 depicts the architecture of the system we designed to collect mea-

surements from our servers and derive the cost models. The physical server can

be located inside a rack, or housed in a stand-alone tower. Power measurements

can be obtained from two sources. The first alternative is to collect power and en-

ergy measurement from sensors placed in an internal server management card.

This alternative suits better in rack-based server deployments. Examples of these

cards include the Dell iDrac 6 card, and the HP iLo system. The second alter-

native is to have an external power meter (power analyzer) collect power and

energy consumption measurements. This alternative fits better with servers that

are enclosed in a tower. In this case, the power source is connected to the power

meter, and the server is plugged to the meter.

Physical Server

Power Meter/
Management Card

VM

DBMS

CatalogPower Modeler

Power Monitor

Power 
Source

Query
Generator

Figure 3–1: Monitoring architecture.
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3.1.1 Power Monitor

Inside the physical server there is a power monitor application that periodi-

cally collects electrical measurements from either the power meter or internal sen-

sors in the management card. In our case, we focus on collecting Watts (power)

and kilowatt-hours (energy) consumed by the server. These measurements are

taken every second, and then stored in a catalog associated with the DBMS for

which power/energy models must be derived. This DBMS can be run directly on

the physical server, or atop a VM hosted by the physical server.

3.1.2 Query Generator

The query generator is used to stress the system based on a given workload

W . This workload consists of a set of tables and queries to be submitted to the

DBMS at a specific rate. The query generator starts threads of execution to submit

the queries to the participating nodes (via JDBC or ODBC), and receives all the

results

There are three types of queries generated by the query generator: selection,

projection and join. For the selection queries this module submits queries σp(A)

with different SFs. We provided hardwired SFs to the generator in our experi-

ments, however these values could be provided by the catalog in a fully imple-

mented data management system. The projection queries are generated varying

the number of projected columns.

The query generator must be run from a machine different to the server as

it will cause load that might alter the power/energy measurements, decreasing

accuracy.
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3.1.3 Catalog

The catalog stores information retrieved from two sources: the power moni-

tor and the DBMS servers. The catalog holds the following data for each executed

query:

• Electrical measurements: the power, peak power and energy measurement taken

at each server during the evaluation of the queries.

• Metadata and statistics for all tables involved in the queries: the table size, num-

ber of blocks, cardinality, number of columns, tuples size, column size.

• Query workload and statistics: the query type and SQL specification of the

queries sent to the DBMS, along with start and end time for each query, se-

lectivity factors, number of projected columns.

• Servers configuration: The number of DBMS servers that participate in solving

the queries.

The information above serves to characterize the expected working configuration

and conditions for the system, once it is put in production.

3.1.4 Power Modeler

The power modeler component can be run inside the server, or at some other

nearby machine. The power modeler receives input data from the catalog and

use it to derive cost models that predict power and energy consumption of future

queries. These models become metadata store in the catalog.

3.2 Cost Model Derivation Methods

Our cost models are empirical since they are derived from observations taken

from the system. We employ the multiple-linear regression methodology for this

purpose.
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3.2.1 Multiple-Linear Regression

Using multiple-linear regression [19], we postulate that the power/energy

consumed by the server can be computed by adding a linear combination of in-

dependent terms. For example, consider a table R(A,B,C), and a selection query

Q = πA,B(R). We might propose a cost model that relates the peak power P re-

sulting from Q with the relation cardinality, |R|, and the number of columns in R,

< R >. We can express this model as:

P = β0 + β1x1 + β2x2 + ε

with x1 = |R| and x2 =< R >. In this methodology, each variable xi is called

a predictor or regressor, and its value represents some quantity that shall have

influence on the dependent variable, in this case the power P . Similarly, each

constant βi is called a regression coefficient, with β0 accounting for the case in

which all predictors are zero. In the case of power, the constant β0 is the power

of the idle machine during query processing. The value ε is called the error term,

and captures the deviation of the model from the real observed value.

In general, we can have have k predictors for the peak power of a query,

giving the following formula:

P = β0 + β1x1 + β2x2 + ...+ βkxk + ε

The energy (E) consumed while running the query can be estimated in similar

fashion, so we focus our discussion on power to simplify matters.

The predictors in the model become parameters associated with the work-

load to be run with the DBMS. These include the relation cardinality, number of

columns, tuple size, and so on. The predictors that we consider in our methodol-

ogy are summarized in Table 3–1.
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Statistic Meaning
|R| Cardinality of table R
< R > Number of columns in R
L(R) Average tuple length in R
W (A) Average length for column A in R
SFP (R) Selectivity factor of predicate P applied to R
PF (R) Fraction of columns retrieved from R
S Number of servers used

Table 3–1: Parameters used as regressors (or factors) to estimate power or energy
consumption in a query

To make the cost formula concrete and usable, one must find the values of

the regression coefficients. This is done by performing a series of observations

in which the power and predictor values are collected. Thus, each observation

becomes a run of a query on the DBMS. During an observation the power gets

recored by the measurement equipment. Likewise, the predictor values are read

from the catalog. Multiple observations must be taken, each one representing a

combination of predictors and the power that results. This leads to a system of

linear equations of the form:

P1 = β0 + β1x11 + β2x12 + ...+ βkx1k + ε1

P2 = β0 + β1x21 + β2x22 + ...+ βkx2k + ε2

...

Pn = β0 + β1xn1 + β2xn2 + ...+ βkxnk + εn

Each xij represents the value of predictor xj during observation i. This system

can be represented in matrix notation as:

P = Xβ + ε
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The regression coefficients can then be determined by the method of least squares,

minimizing the error term ε. There are statistical packages such as Minitab and R

that can do this computation.

It is important to point out that the formulas in the model need to be checked

for accuracy and statistical significance with ANOVA tests. Specifically, one must

check that the errors in the model follows a normal distribution. Also, the vari-

ance of results in repetitions with specific combinations of predictors should be

constant (or near constant).

3.3 Model Calibration and Maintenance

We now provide a series of steps that can be used to calibrate the energy-

related cost models for a DBMS:

1. Determine the set of tables and queries that better characterize your workload.

2. Set up your server(s), plus a client machine(s) with the query generator, as

shown in Figure 3–1.

3. Run each query, performing repetitions in random order, and using a rate for

query submission similar to the expected rate in the production setting.

4. Once all query repetitions are done, extract all power and energy measurements.

Do the same for the DBMS metadata used for precitors (factors).

5. For each query type (i.e., selection, projection, or join), use the power modeler

to obtain the cost model, and test if the model is correct. The modeler algorithm

is described bellow.

6. During production operations, collect all measured values, and re-calibrate the

models with the latest n observations.
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MODEL-BUILDER (ElectricalMeasurement , Parameters)
1 Predictors0 ← ∅
2 for p ∈ Parameters
3 Predictors0 ← Predictors0 ∪ functionalRelationship(p,ElectricalMeasurement)
4
5 Model ← regression(Predictors0 , ElectricalMeasurement)
6 Model ← revomeNonRelevantPredictors(Model)
7 PredictorsM ← getModelPredictors(Model)
8
9 for i ← 2 to |Predictors0 |

10 for S ⊆ Predictors0 && |S | = i
11 Model ′ ← regression(PredictorsM ∪ S,ElectricalMeasurement)
12 Model ′ ← removeNonRelevantPredictors(Model ′)
13 if Model ′ > Model
14 Model ← Model ′

15 PredictorsM ← getModelPredictors(Model ′)
16
17 return Model

Figure 3–2: Power modeler algorithm.

3.3.1 Power Modeler Algorithm

The algorithm for building the power and energy models iteratively is illus-

trated in Figure 3–2.

In the first block of code from line 1 to 3 the initial set of predictors is ob-

tained. Instead of using prior assumptions about the functional relationship be-

tween the power/energy and the parameters, we use a scatterplot matrix graph

to seek hints of the nature of these relationships. Based on this display (plot)

the procedure functionalRelationship returns one of the functions shown in the

Figure 3–3.

Once the initial set of predictors is found the next step is to build the statisti-

cal model by construction. In the second block of code from line 5 to 7 we derive

an initial model where the non relevant predictors were removed. The procedure

removeNonRelevantPredictors removes the less significant predictors of a model
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and returns a new derivation. It says that a predictor does not have significant

effect in the response variable if its p-value is greater than α = 0.05.

In the last block of code, all possible combinations of predictors are tested

in the hope of increasing the quality of the model. In lines 11 to 12, we build,

for each combination of predictors S, a new model by adding S to PredictorsM

and removing all possible non relevant predictors caused by this adding. Then

Model ′ is chosen instead of the current model (Model) only if:

• The ANOVA assumptions are met (normality, independence, constant variance)

• All of its predictors are relevant.

• Its adjusted determination coefficient, adj -R2 , is greater than the adj -R2 of the cur-

rent model. The adj -R2 is suggested in [19] as a good comparative statistic for

evaluating regression models.

3.3.2 Summary

In this section, we have presented the architecture and methodologies neces-

sary for collecting statistics related to the power/energy consumption of queries.

In the next section, we present a set of experiments we carried out using these

tools. We discuss the cost models that we postulate for various relational opera-

tors, and show how they fared in predicting power/energy.
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Figure 3–3: Functional Relationships.



CHAPTER 4

EXPERIMENTS FOR MODEL DERIVATION

We designed a set of experiments to determine if our methodology can help

derive accurate cost models for energy-related metrics. Before discussing the re-

sults, we present the experimental environment and workloads used in the tests.

Then, we move to a discussing in which, for several type of relational queries, we

postulate and validate the cost model for power and energy. We found the results

for peak and average power to be almost identical, so we will only present peak

power results to the sake of brevity.

4.1 Experimental Environment

We carried out all of our experiments using the facilities of the Advanced

Database Management Lab (ADM Lab) at the University of Puerto Rico, Mayagüez.

We now describe these facilities, as well as the data sets and workloads used in

conjunction with them.

4.1.1 Hardware

We used six server machines for running all our experiments. Two of these

machines were Dell Precision Workstations 380 with one 2.8 GHz Pentium D dual

core processor, 1 GB of 667MHz DDR2 RAM, and one 160GB, 7200 RPM Western

24
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Digital Caviar hard disk. The remaining four machines were custom-built PCs

with one 2.3 GHz AMD Phenom X4 quad core CPU, 8 GB of 800 MHz DDR2

RAM, and two 500 GB, 7200 RPM, SATA-300 Western Digital Caviar Blue hard

disks. In each of these four machines, the disks were configured as a RAID-0

storage device. The nameplate power ratings for each type of server machine are

presented in Tables 4–1 and 4–2.

CPU RAM Disk Total
Power 95W 4 x 9 W = 36 W 7.5 W 138.5 W

Table 4–1: Nameplate power ratings for Dell Precision Workstation 380.

CPU RAM Disk Total
Power 95W 2 x 9W = 18 W 8.77 W 130.54 W

Table 4–2: Nameplate power ratings for our custom-built PC.

Power measurements were taken on each server machine by means of a 120V

Watts Up? Pro power meter. We set up the device to log power and kilowatt-

hours measurements with a granularity of one second.

4.1.2 Software

We implemented a system based on our methodology as a set of programs

and scripts written in Java, C, R, and Minitab. All our machines ran Ubuntu 10.04

LTS Server Edition. We used PostgreSQL 8.3 as the DBMS for experimentation.

The query generator program was written as a Java client application that sub-

mits queries to PostgreSQL via JDBC. The power monitor program was written

as a C daemon, which reads the logs from the power meters as a CSV file. The

power modeler ran as an interactive session with Minitab, although it can be eas-

ily converted to script in R. We expect that both configurations will be used, as



26

database architects will likely use interactive mode to experiment with their ap-

plications, and later move to an R script to automate the process in a production

environment.

4.1.3 Workload

To lead our experiments we used TPC-H, which is a benchmark widely used

by the database research community. This benchmark is aimed to examine Deci-

sion Support Systems with large volumes of data. It has a set of complex queries

that exercise the backend component of the system under test. We modified the

queries in the benchmark to suit our needs. The TPC-H generates data for eight

relations at different scales. We generated a database of 5GB and another database

of 20GB. We ran all queries on both data sets to have observations in both settings,

and collect results from small and larger data sets.

The table 4–3 summarizes the TPC-H schema and its features, as used in our

experiments. The cardinality column shows the number of tuples generated at a

scale = 1GB (i.e., the whole database takes up 1GB of space). The tuple length of

the tables were obtained from the DBMS.

Table Name Number of Cardinality Tuple length Table size
columns (in rows) (in bytes) (in MB)

SUPPLIER 7 10, 000 159 2
PART 9 200, 000 155 30
PARTSUPP 5 800, 000 145 110
CUSTOMER 8 150, 000 160 26
ORDERS 9 1, 500, 000 109 149
LINEITEM 16 6, 001, 215 125 641
NATION 4 25 128 < 1
REGION 3 5 124 < 1

Table 4–3: TPC-H Schema.
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4.2 Comparison System

To validate our ideas we compare our regression based models with the mod-

els presented in [16], which are based on the System-R style cost models found in

PostgreSQL. In these models, power is estimated as the sum of the power drawn

by the CPU, and disk during query processing, treating power as a cumulative

quantity. To ease our discussion, we shall refer to the energy-related cost models

derived from System-R as Method A, and refer to our models as Method B.

4.3 Models for Peak Power of Selection Queries

We started out by working on the models for the peak power of a set of

selection queries based on TPC-H, shown in Table 4–4. Figure 4–1 shows the

peak power that was measured for the various selection queries, running on the

custom-built PCs. For these machines, their idle power is approximately 85W. In

the figure, the x-axis refers to the queries that we were issuing to the system, and

the y-axis shows the average peak power reached while running each query. For

the 2-node and 4-node configuration, the peak power is the average experienced

by each of the machines. Recall that in the multi-server configuration the queries

are sent to each node, as the data are horizontally partitioned. Notice in the figure

Sql Statement TPC-H scale Queries Id
select * from partsupp where ps suppkey < highSelVal1 5 GB A
select * from partsupp where ps suppkey < lowSelVal1 5 GB A’
select * from lineitem where l partkey < highSelVal2 5 GB B
select * from lineitem where l partkey < lowSelVal2 5 GB B’
select * from partsupp where ps suppkey < highSelVal3 20 GB C
select * from partsupp where ps suppkey < lowSelVal3 20 GB C’
select * from lineitem where l partkey < highSelVal4 20 GB D
select * from lineitem where l partkey < lowSelVal4 20 GB D’

Table 4–4: Selection queries used in the study. Constants lowSelValX and high-
SelValX are chosen to force low and high selectivity in the queries.
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the drop in peak power from the 1-node configuration to the 2-node configuration

for queries B’ and D’. By splitting the load, the machines experience less load and

hence the power drawn is less. This change is not so pronounced when we move

to the 4-node configuration, indicating that the benefits of partitioning the data

are less relevant. The trend is that a linear increase in servers does not cause a

linear decrease in power.

Figure 4–1: Measured Peak Power for Selection Queries.

For selection queries, we started with a model formulation in which the peak

power was assumed to be of the form:

Pσ = β0 + β1 < R > +β2SFp(R) + β3S + β4|R|

This model relates the peak power, Pσ, of a given selection query with the num-

ber of columns in the table, the selectivity of the selection predicate, the number

of servers in the configuration, and the cardinality of the table used in each query

(denoted as R). Notice that we do not include constants such as CPU speed, disk

bandwidth, network bandwidth, and so on. The reason for that is that the regres-

sion coefficients will capture those factors, so we focused on using predictors that
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were actual variables. Notice, however, that the calibration process needs to be

run on each type of server machine that might be available for use.

Unfortunately, after closer inspection, we found this initial model not to be

statistically sound because our data showed that the there was no linearity. How-

ever, our statistical analysis at this stage confirmed that the increase in the number

of servers did not result in a linear decrease in peak power, as it was inferred from

Figure 4–1. Also, our statistical analysis with ANOVA and p-values showed that

the cardinality of the tables was not significant. At first, this was puzzling to us

since we expected that large tables would stress the system more. However, one

must realize that peak power is not a cumulative measure, but rather an instan-

taneous measure of system stress. Therefore, the important issue to drive peak

power is not how many tuples are processed but rather how much effort is put

to process each tuple. If we have tables with many columns, and average tuple

size, the disk will be busy reading the tuples, and the CPU will be busy parsing

the columns to locate the attributes on which to evaluate the predicates. This sit-

uation will simultaneously stress CPU and disk, driving peak power up. We also

found that predicates with low selectivity would drive peak power up because

more result tuples are sent to the client, and this factor also increases system stress

as the CPU needs manage the communications with the client.

We tried several combinations of parameters as regressors. Some of these

combinations are not linear, but the important issue in multiple-linear regression

is to have linearity between the dependent variable and the regression coefficients

[19]. Based on this, we postulated a the model:

Pσ = β0 + β1 < R > +β2SFp(R) + β3
1
S2 +

β4 < R > SFp(R) + β5
<R>
S2 + β6

SFp(R)

S2
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In this model, the last three terms capture the interaction between the selectivity

factor, the number of columns, and the number of servers. After, running the

model through Minitab we arrived to the following cost formula:

Pσ = 101 + 0.441 < R > −0.0972SFp(R)− 6.72 1
S2 +

0.00785 < R > SFp(R) + 0.692<R>
S2 + 0.118SFp(R)

S2

This model was shown to be statistically sound. Notice the direct dependence

on selectivity factor and number of columns, with an inverse dependence on the

square of the number of servers.

4.3.1 Model Validation

To validate this model as an accurate predictor of peak power, we generated

a second set of similar selection queries with different selectivities, and ran them

on each server configuration. We recorded their peak power, and we compare

them with the peak power predicted by our models (Method B) and with the

peak power predicted by System-R models (Method A). Figure 4–2 presents this

comparison for each of the server configurations. Notice that as the number of

server increases, the power begins to converge to a constant value. Further re-

search needs to be conducted to determine the behavior when more nodes are

added and these reach a high utilization level. As we see, our method makes a

more consistent approximation of power, particularly when the server utilization

is higher (i.e., 1-node configuration). As we said before, the results are similar for

average power, so we do not present them here.

4.4 Models for Energy of Selection Queries

Turning now our attention to energy consumption, Figure 4–3 shows the

watt-hours consumed by the test queries we used. Here the x-axis identifies the
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(a) One node configuration

(b) Two node configuration

(c) Four node configuration

Figure 4–2: Comparisons of measured peak power with the predictions made by
Methods A and B.
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queries, and the y-axis indicates energy consumed in terms of watt-hours. As in

the case for power, we started out with a model for energy that assumed a linear

combination of factors, and it did not work. We recheck on the use of regression,

and we realized we could still use it since the linearity had to be on the coefficients

and not in the regressors.

Figure 4–3: Measured Energy Consumption for Selection Queries.

The model that we developed is a follows:

Eσ = 0.33− 0.6S + 0.12 < R > +0.0043 |R|SFp(R)

In this case, the relation of energy and the number of servers is proportional to

the number of servers. In contrast, in the case of peak power this relationship was

inversely proportional with the square of the number of servers. Notice also, that

cardinality and the selectivity now become relevant factors. Both behaviors make

sense since the total energy consumption is cumulative, and shall be affected by

the number of tuples of to be processed (total effort) and the number of servers

(machines doing the effort).
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4.4.1 Model Validation

We repeated our validation exercise for the energy models. Figure 4–4 sum-

marizes the results. As we see, our methodology makes a better job of predicting

the energy compared with Method B, which consistently overestimates and un-

derestimates the value.

4.5 Models for Peak Power of Projection Queries

Table 4–5 shows the queries used for experiments with the projection opera-

tor. Figure 4–5 shows the peak power cost for projection queries. We see similar

trends as in the case for selections. Following the same statistical procedures as

done for the case of selections, we arrived at the following model:

Pπ = 95.2 + 2.65 1
S
− 0.380 < R >2 +0.0692<R>

2

S

This model is far simpler than the model for selections. Notice that now the num-

ber of columns has a more prominent role in the cost, with the last two terms

containing the square of the number of columns. In this model, the relation car-

dinality did not have statistical importance.

Sql Statement TPC-H scale Queries Id
select ps partkey from partsupp 5GB A
select * from partsupp 5GB A’
select l orderkey from lineitem 5GB B
select * from lineitem 5GB B’
select ps partkey from partsupp 20GB C
select * from partsupp 20GB C’
select l orderkey from lineitem 20GB D
select * from lineitem 20GB D’

Table 4–5: Projection queries used in the study.
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(a) One node configuration

(b) Two node configuration

(c) Four node configuration

Figure 4–4: Comparisons of measured electric energy consumption with the pre-
dictions made by Methods A and B.
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Figure 4–5: Measured Peak Power for Projection Queries.

4.5.1 Model Validation

Figure 4–6 shows the validation of the peak power for the projection queries.

As we see, our method works quite well for the one node case since the machine

becomes more stressed than in the other configurations.

4.6 Models for Energy of Projection Queries

The measured energy costs for projection queries are presented in Figure 4–7.

The cost model for energy-consumption in projection queries is as follows:

Eπ = 1.80− 0.398S − 0.0617S < R > +0.0183 < R > |R|

As with case of selections, cardinality plays a statistical significant role in the

cost estimation for energy. Notice that the cardinality is present in the only non-

negative term containing regressors, and is multiplied by the number of columns.

As the number of tuples increases, we can expect this term to be the dominant

factor in the energy costs for projections.
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(a) One node configuration

(b) Two node configuration

(c) Four node configuration

Figure 4–6: Comparisons of measured peak power in projections with the predic-
tions made by Methods A and B.
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Figure 4–7: Measured Energy Consumption for Projection Queries.

4.6.1 Model Validation

Figure 4–8 shows the results of our validation tests. Again, our regression

based methodology, Method B, make a much accurate estimation of the energy

cost in comparison with Method A.

4.7 Models for Join Queries

Our join queries are shown in Table 4–6. We started our measurements and

analysis for join queries with the expectation of finding complex formulas to

model the costs of joins. However, the results in Figure 4–9 suggests that the

parameters and the values we chose do not cause significant changes. As we see

from the figure, the peak power of the join operations is practically constant re-

gardless of the configuration we used. In the one-node configuration, we let the

database server run the query. In the remaining two, we implemented a form of

block-oriented nested loops join, moving data from one server to another. But, in

all cases the peak power remains nearly constant of around 130 W.
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(a) One node configuration

(b) Two node configuration

(c) Four node configuration

Figure 4–8: Comparisons of measured electric energy consumption in projections
with the predictions made by Methods A and B.
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Sql Statement TPC-H scale Queries Id
select * from lineitem, orders where 5GB A
l orderkey = o orderkey
select * from lineitem, partsupp where 5GB B
(l partkey = ps partkey) and (l suppkey = ps suppkey)
select * from orders, customer where 5GB C
o custkey = c custkey
select * from lineitem, orders where 20GB D
l orderkey = o orderkey
select * from lineitem, partsupp where 20GB E
(l partkey = ps partkey) and (l suppkey = ps suppkey)
select * from orders, customer where 20GB F
o custkey = c custkey

Table 4–6: Join queries used in the study.

Figure 4–9: Measured Peak Power for Join Queries.
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We started looking for explanations to this behavior, and by inspecting the

system profile it became clear that the execution is by far dominated by the disk

and by the network transfer between the client and the server. Our quad core

AMD Phenom X4 CPU is pretty much idle during the evaluation of the queries.

Since CPU is the major factor in driving the power of a machine, its idle behavior

means that there a few variations in the power drawn. In other words, our join

queries, as executed in this setting, became bound by the I/O and network sys-

tems, with almost no spikes in the CPU use. This behavior let to a nearly constant

peak power for all our queries.

The formula for peak power that our methodology derived is as follows:

Pon = 130 + 0.245 < R > −0.541 < T >

Notice that the only factor that has relevance is the number of columns in

the joined tables R and T . Moreover, the contribution of this term is somewhat

limiting. Unfortunately this formula does not fit well. Although the ANOVA

assumptions are met, the coefficient of determination is low, with a value close

to 35 %. It means that the model only explains 35 % of the variability of the

experiments.

We believe that further research is needed to better understand the behavior

of joins. Particularly, we shall perform tests with joins that have complicated pro-

jections with User-defined functions (UDF), aggregates, and group-by operations

as these will likely cause peaks in CPU utilization.

Figure 4–10 compares the results of estimates for peak power against the

actual measurements, and the predictions of Method A. Notice that we had to

use a logarithmic scale because Method A overestimates the peak power.

The energy behavior for join queries could be understood better, if one takes

into account the two phases of our block nested loop join algorithm:
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(a) One node configuration

(b) Two node configuration

(c) Four node configuration

Figure 4–10: Comparisons of measured peak power in joins with the predictions
made by Methods A and B.
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• Phase 1. Read the first block of the outer tableR. Then, retrieve the remote inner

table T one page at a time, join it with a block of R and store it into disk.

• Phase 2. Read the remaining blocks of R one page at a time, then join each of

these blocks with the inner table T , read locally from disk.

Considering these steps the energy cost can be modeled as:

Eon = ERb
+ ET ′ + (#blocks− 1) ∗ (ERb

+ ET )

Where ERb
is the energy of scanning a block of R. ET ′ is the required energy

to retrieve the remote table T and store it into disk. ET is the energy to read the

entire table T from disk and #blocks is the number of blocks of R. Rewriting ET ′

as f ∗ ET and ERb
+ ET as ERbT we get two equivalences for Eon:

Eon = #blocks ∗ ERbT + (f − 1) ∗ ET

Eon = (#blocks+ f − 1) ∗ ERbT − (f − 1) ∗ ERb

Here the term f gives the number of times that a block is read or written

during a join iteration. From these two equivalences, the energy consumption

can be bound by the terms containing ERbT as follows:

#blocks ∗ ERbT < Eon < (#blocks+ f − 1) ∗ ERbT

We do not have an estimator for f , because we were not able to measure

neither ET ′ nor ET . However f must be at least two because each block is read

and written at least twice during the process. Now if the upper bound is chosen

as approximation of Eon and f = 2, then the energy can be express in terms of

ERbT :

Eon ≈ (#blocks+ 1) ∗ ERbT
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The derived formula for ERbT using our methodology is as follows:

ERbT = 0.122 + 0.0126 < R > + 0.176 |T | − 0.006 |T | < T >

Notice that the most relevant factors are the cardinality of T and the number

of columns of R. Tables with more number of columns stress the CPU more than

tables with few number of columns and therefore consume more energy. The

scanning of the table T is an I/O bound operation, however as the cardinality

increases the time and energy also increases. In this formula the cardinality of R

did not appear, that parameter is captured by the term containing #blocks in the

approximated model for the energy.

The results for the join queries are shown in the Figure 4–11. Here we use the

logarithmic scale because the energy consumption of the C and F join queries are

lower than the others.

4.7.1 Model Validation

For the validation of the energy for the join queries, we executed our queries

with different cardinalities. We could not use the other tables in the TPC-H be-

cause these tables are smaller than 1MB ( e.g. nation, region ). Other tables do

not have attributes in common to do a natural join. The Figure 4–12 shows the

validation for 2 and 4 servers.

4.8 Effects due to execution platform

We wanted to determine how different platforms would affect the energy,

peak power and running times of queries. To do so, we repeated the runs for

all our selection, projection, and join queries on the 2-nodes configuration with

three different platforms: a) the custom-built PC - denoted as AMD64, b) the

Dell Workstation - denoted as PentiumD, and c) a KVM-based virtual machine
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(a) Low data set

(b) High data set

Figure 4–11: Measured Energy for Join Queries.
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(a) Two servers

(b) Four servers

Figure 4–12: Comparison of measured energy consumption in joins with predic-
tions made by Mathods A and B.
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running on the custom-built PC - denoted as virtual. In this case, the two nodes

where run on two virtual machines running on the same custom-built PC.

Figure 4–13 shows the peak power, energy consumption, and running times

for selection queries. The AMD64 platform provides the best peak power, fol-

lowed by the virtual configuration, and then the PentiumD configuration. The

same patterns happens with energy. But, notice that the running times are very

close to each other. The important point to take here is that the virtualized config-

uration features two virtual nodes running on one machine, and doing the same

job that the other configurations do with two separate machines. Although the

peak power increases with the virtual configuration, the energy does not double

and the running time is practically the same. Thus, by using a virtualized con-

figuration we can have one machine do twice the amount of work with a slight

increase in energy. The tradeoff is that the peak power increases considerably,

so its accurate estimation becomes important to prevent violations in the power

budget. This pattern is also present for projection queries, as show in Figure 4–14.

Due to lack of space, we do not include the comparison for joins, but the trend in

similar as that for selections and projections. Virtualization really pays off to help

curb total energy consumption at the data center.
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(a) Peak Power

(b) Energy Consumption

(c) Running Time

Figure 4–13: Comparison of peak power, energy consumption, and running time
for selection queries on various platforms.
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(a) Peak Power

(b) Energy Consumption

(c) Running Time

Figure 4–14: Comparison of peak power, energy consumption, and running time
for projection queries on various platforms.



CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this thesis, we studied the problem of estimating the power and energy

costs of database queries. We introduced a methodology to accurately estimate

the power and energy consumption of queries in a database server. Our method-

ology is based on multiple-linear regression, and a training query workload to

derive a cost model that can predict the power and energy cost of queries that are

similar to those in training workload. One important feature of our methodology

is the fact that there is no need to make measurements on individual hardware

components. Instead, the cost models are derived from: a) power/energy mea-

surements taken from internal sensors, or power meters, and b) readily available

workload statistics such as relation cardinality, tuple size, number of columns,

and number of servers in a multi-server configuration.

We implemented our framework as a set of programs and scripts written in

Java, C, R, and Minitab. We performed tests on our framework with TPC-H data

sets. In these experiments, we first derived energy/power cost models from a

set of data and queries that act as training set. Later, we validated the models

by running a second set of queries, and comparing their power/energy cost ver-

sus those predicted by the model. Our results show that we can predict power

and energy more accurately than alternative methods based on model derived

49
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from those in System-R. We found, however, that join methods are more com-

plex to model since their cost becomes nearly constant when they become I/O

bound. We also found that peak power is not influenced by relation cardinality

but by selectivity, number of columns in tables, and number of servers used in

a multi-server configuration. Finally, we found that energy is more amicable for

modeling with these methods. Although further research is needed, these results

show that our methodology can be used by tools that perform provisioning of

database server machine in a datacenter. Also, our methodology can be incorpo-

rated into energy-aware query optimization frameworks for single-site, parallel

and distributed database systems designed for clouds and virtualized environ-

ments.

5.1 Future Work

We conclude this thesis with a series of tasks that would extend and use the

work here presented.

5.1.1 Virtualization

In this work we found preliminary results about the effect of virtualization,

but further research and experiments are needed the understand its advantages

and limitations. Although Virtualization enables the consolidation of several

idle servers into one physical machine, it also causes that the VMs running the

database servers compete for the same set of resources. A combination of VMs

may exercise the CPUs beyond the power caps used in the datacenter for individ-

ual servers. It can also produce heavy access to disk causing process scheduling

and I/O scheduling problems that could affect the expected system performance.
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5.1.2 Power Consumption in the Presence of Expensive Operators

Modern database servers provided aggregates, sorting functions, and the

ability to incorporate libraries with User-defined functions (UDF). All these func-

tions are usually termed as expensive operators because they consume a consid-

erable amount of CPU or I/O to process each tuple. For that reason, we need to

develop power/energy models for these operators. We shall extend our method-

ology to generalized projections and joins queries that includes aggregates, User-

defined functions (UDF) and sorting operations.

5.1.3 Query Optimization for MapReduce

The MapReduce programming model [20] has emerged as a key component

for building large-scale data processing application in cloud environments. It

has also received a lot of attention from the high-performance and database re-

search communities. The Apache Hadoop Project is an open source implemen-

tation of MapReduce written in Java. Hadoop has a sub-project called Hive that

helps to deal with the lack of schema, query language, cost-based optimization.

We plan on investigating how to derive models for all these operators in a Hive

and MapReduce setting. This case will be challenging since Hive uses a directed

acyclic graph (DAG) of MapReduce tasks to implement a query plan. In contrast,

existing database engines use a general tree of operators to represent the query

plan. Having a DAG introduces higher dependencies between operators, making

the execution and cost models more complex.
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