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Interaction between the fungus-growing ant Cyphomyrmex minutus and
its symbionts at Cambalache forest, Puerto Rico

ABSTRACT

The ants in the tribe Attini cultivate a fungus (Basidiomycota: Agaricales) as food and
protect it from specific mycoparasites, Escovopsis (Ascomycota: Hypocreales), using the
antibiotic production capacity of Actinobacteria (Pseudonocardia) associated with its
exoskeleton. Attini nests are not axenic environments; several other microorganisms
(bacteria and fungi) with undescribed roles interact with the ant and the principal
symbionts. Inaddition, the ants show characteristic hygienic behaviors that include farming
and grooming of the cultivar and creating, rearranging, and transporting piles of organic
refused material in and out of the nest. Currently, 5 different agricultural practices have
been described among the Attini and only the members of the Cyphomyrmex rimosus group
maintain their cultivar in yeast form. All other groups of the Attini cultivate their fungi in
mycelial form. Although the interaction in the attine ant symbiosis has been extensively
studied, the yeast-cultivating ants and their microbial associates have not been described.
In Puerto Rico, Cyphomyrmex minutus is the only attine species that practices yeast
agriculture. We investigated the microbial community associated with C. minutus including
the specific cultivar, the possible mycoparasite and the Actinobacteria. We sampled a total
of 26 nests of C. minutus during the Dry and Rainy seasons at Cambalache Tropical Forest
in Puerto Rico. A combination of culture-dependent and independent techniques was used
to describe the fungi and Actinobacteria isolated from different components of the nest. We
identified the yeast cultivar by sequencing the 28S rDNA gene. We also isolated and
identified the fungi associated with the cultivar using morphology and ribosomal operon
ITS sequencing. Furthermore, we created a clone library of the fungal ITS region from the
organic refuse material in search of pathogens. Actinobacteria genera from the ant
exoskeleton and the cultivar were analyzed using 16S rDNA gene. The microbial
community associated with C. minutus differs significantly from other attine ants. The
specific pathogen, Escovopsis, was not found in association with the cultivar nor the refuse
material. Pseudonocardia was not the prevalent actinobacterium genus in the association,
but instead Streptomyces strains were commonly recovered. Our studies strongly support
the hypothesis that the ant maintains the cultivar in yeast form as an adaptation to escape
pathogen infection.
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Interaccion entre la hormiga cultivadora de hongos Cyphomyrmex
minutus y sus simbiontes en el bosque de Cambalache, Puerto Rico

RESUMEN

Las hormigas en la tribu Attini cultivan un hongo (Basidiomycota: Agaricales) como
fuente de alimento y lo protegen del micoparéasito especifico Escovopsis (Ascomycota:
Hypocreales) utilizando la capacidad de produccion de antibidticos de actinobacterias
asociadas a su exoesqueleto (Pseudonocardia). Los nidos de las Attini no son ambientes
axenicos en adicion a los principales simbiontes varios microorganismos (bacterias y
hongos), han sido reportados interactuando con los diferentes componentes del nido y sus
simbiontes. Los roles de estos microorganismos permanecen sin describir. Las Attini
presentan comportamientos higiénicos caracteristicos que incluyen la inspeccién y el aseo
del cultivar y la creacién, rearreglo y transportacion de pilas de material organico
considerado como desecho fuera del nido. Hasta el momento se han identificado 5 tipos de
agricultura entre las Attini; solamente las especies del grupo Cyphomyrmex rimosus
mantienen su cultivar a manera de levadura, los otros 4 grupos cultivan su hongo como
micelio. A pesar de que la interaccion entre las hormigas Attini y sus simbiontes ha sido
extensamente estudiada, las hormigas que cultivan a manera de levadura y los
microorganismos asociados a éstas permanecen sin describir. En Puerto Rico,
Cyphomyrmex minutus es la Gnica especie de Attini que practica agricultura de levaduras.
En este estudio se describio la comunidad microbiana asociada a C. minutus incluyendo el
cultivar, el micoparasito y las actinobacterias. Un total de 26 nidos de C. minutus fueron
muestreados durante las épocas seca y lluviosa en el bosque de Cambalache en Puerto Rico.
Una combinacion de técnicas independientes y dependientes de cultivo fueron utilizadas
para describir la comunidad de hongos y actinobacterias asociadas a diferentes
componentes del nido. El cultivar fue identificado mediante la secuenciacion del gen 28S
rADN. Ademés se aislaron e identificaron los hongos asociados al cultivar utilizando
caracteres morfoldgicos y secuenciacion de la region ITS del operon ribosomal. Se cred una
biblioteca de clones (region ITS del rDNA) del material de desecho que permitié describir
la comunidad de hongos asociados a dicho sustrato en busqueda de patogenos. Por otro
lado para la identificacién de las actinobacterias asociadas al exoesqueleto y al cultivar de
C. minutus se analizo el gen 16S rADN. La comunidad microbiana asociada a C. minutus
difiere significativamente de las descritas para otras Attini. El micoparasito, Escovopsis, no
fue detectado en asociacion al cultivar o al material de desechos de C. minutus.
Pseudonocardia no fue el género de Actinobacteria prevalente en asociacion con esta
Attini. Por el contrario, cepas de Streptomyces fueron cominmente recuperadas. Nuestros
estudios apoyan la hipotesis de que las Attini mantienen el cultivar a manera de levadura
como una adaptacion para prevenir infeccién de patégenos.
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1. INTRODUCTION: FUNGUS-GROWING ANTS SYMBIOSIS MODEL

1.1. Attini ants and their cultivar

Fungus-growing ants have been described as an example of complex symbiotic interactions
with a long history of coevolution. All fungus-growing ants belong to the tribe Attini
(Hymenoptera: Formicidae: Myrmicinae). The tribe Attini is estimated to have over 230
species divided in 12 different genera that are in an obligate symbiotic relationship with
basidiomycetous fungi (Currie 2001a, Brady and Shultz 2008, Mehdiabadi and Schultz 2010).
This association started about 50 milion years ago in the Neotropical region of America
during the Eocen (Weber 1958, Brady and Shultz 2008). The cultivar (Agaricales:
Lepiotaceae) is the main souce of food for the whole nest. The cultivar is vertically
transmitted by the queen to the new nest in its infrabuccal pockets. This practice creates a
clone cultivar making it more vulnerable to specific pathogens (Currie 2001b). In some of the
basal Attini groups, the cultivar was acquired horizontally in at least two different occasions
after their obligatory interaction began (Gerardo et al. 2004, Gerardo et al. 2006). The cultivar
has been recently isolated as free-living mycelia fungi (Vo et al. 2009) indicating the
interaction is not obligate for this fungi. The phylogenetic relationship between the ant and
the cultivar demonstrates that there is a complex dynamic of coevolution not necessarily one

to one for all the species (Mikheyev et al. 2006, Vo et al. 2009, Mikheyev et al. 2010,).

The Attini ants engage a significant effort to maintain the cultivar healthy. Each ant genus
presents different behavioral traits in relation to the type of agriculture and nest arrangement
they performed. Most nests are in soil, but some species use leaf litter, rocks and wood to

create storage cavities (Weber 1958, Currie 2001a). The ants maintain the queen safe and
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apart from the rest of the colony, the broods, the cultivar and the refuse organic material. Most
of the Attini maintain their garden as filamentous fungi that grow using the organic matter that
the ants collect from the environment or cut from the plant, depending on the genera (Currie
2001a). Ant social activities revolve around the survival of the colony and maintenance of the
cultivar. These activities include collecting organic matter, fertilizing, weeding, rearranging
refuse material piles as well as protecting the cultivar from pathogens using antimicrobial
chemicals and photolytic enzymes (Weber 1958, Martin 1970, Muller et al. 1998, Currie

2001a).

1.2. Agriculture practice in the Attini

Fungus growing ant species are divided into five major groups (Table 1.1). The tribe Attini
was reclassified using a combination of genetic markers and agriculture practice of the ants
(Shultz and Brady 2008). The most primitive are the Lower agriculture ants (Myrmicocrypta,
Mycocepurus and some species of Apterostigma). Typically, the members of this group
cultivate a paraphyletic fungus (Leucocoprineae), which could be found as a free-living
species. The second group is the Coral fungus agriculture ants (Apterostigma species) which
are specialized on maintaining a fungus of the Pterulaceae family (Coral fungus) different

from the other fungus-growing ant’s cultivars.

The next group is the Yeast agriculture ants (Cyphomyrmex rimosus group) that cultivate
small and irregular clusters of yeast (Snelling and Longino 1992). The yeast cultivar in
Cyphomyrmex rimosus group is a monophyletic Leucocoprinea that can grow in a mycelial
phase when free-living (Vo et al. 2009). The more evolved Attini ants are the higher

agriculture ants (Trachymyrmex & Sericomyrmex) and the leaf cutters ants (Atta &



Acromyrmex). These groups have a Leucocoprinea cultivar that cannot live without the ants

and produce specialized structures, gogylidia, which the ants consume (Weber 1958).

The only genera of fungus-growing ants recorded for Puerto Rico are Mycocepurus,

Mycetophylax (Lower Attini), Trachymyrmex (Higher Attini) and Cyphomyrmex (Lower

Attini, yeast agriculture) (Weber 1972 , Osorio-Pérez 2007). Of these, Cyphomyrmex minutus

is the only species reported for Puerto Rico that practices yeast agriculture (Snelling and

Longino 1992, Shultz and Brady 2008).

Table 1.1: Summary of agriculture practices by the fungus-growing ants

Attini  Agriculture Attini representative species Cultivar Pathogen
Lower Mycocepurus smithi, M. tardus, M.curvisoibosus Leucocoprineae Escovopsis sp
Myrmicocrypta infuscata, Myr. buenzlii,
Myr. ulrichi and Myr. ednaella
Cyphomyrmex constatus, C. muelleri and C. longiscapus
Lower Apterostigma auriculatum
Coral Apterostigma dentigerum, A. dorotheae, A. collare, A. manni  Pterulaceae Escovopsis sp
Fungus
Yeast Cyphomyrmex minutus, C. rimosus and Leucocoprineae not found
C. cornutus
Higher Sericomyrmex parvulus Leucocoprineae Escovopsis sp
Trachymyrmex zeteki , T. papulatus,
Higher T. opulentus, T. smithi

Leaf-cutter

Acromyrmex versicolor and Acro. Octospinosus

Atta cephalotes, Atta laevigata, Atta mexicana and Atta texana

Leucocoprineae

Escovopsis sp

*Based on Shultz & Brady 2008; Mehdiabadi and Shultz 2009; Mikheyev et al. 2010

1.3. The cultivar-specific pathogen Escovopsis

Attine nests are far from being sterile environments the clonally spread cultivar is vulnerable

to opportunistic pathogens and parasites. The specific parasite of the cultivar is the

microfungus Escovopsis (Ascomycota: Hypocreales), which is horizontally transmitted from



one generation to the other and cannot be isolated from the environment as a free-living
organism (Currie 2001b, Reynolds and Currie 2004, Gerardo et al. 2004). The transmission of
the cultivar is an evident exploitation of the ant-cultivar mutualism system (Currie 1999b,
Reynolds and Currie 2004). Escovopsis is a necrophitic parasite that secretes specific
compounds to invade the cultivar mycelium (Reynolds and Currie 2004).

An uncontrollable growth of the pathogen can slow the production rate of new workers and
the growth of the cultivar in the ant colony. Without the ant, the pathogen overgrows and
devastates the fungal garden in a few weeks (Currie 2001b). The parasite Escovopsis is
unknown from yeast agriculture (Table 1.1), but Schultz and Brady (2008) suggest that the

morphology of the yeast cluster influences the pathogenicity of the parasite.

1.4. The Actinobacteria symbionts

As another adaptation to protect the cultivar, the ants live in association with Actinobacteria;
during their evolution, the ants developed the capacity to keep antibiotic-producing bacteria in
crypts located in the propleural plates supplemented by products of internal secretion glands
(Weber 1966, Currie 20014, Little et al. 2003, Currie et al. 2006). The Actinobacteria is a big
group of Gram-positive filamentous bacteria with special lipids in their membrane, making
them resistant to environmental conditions. Actinobacteria were described, over the years, as
bacteria with special adaptations: production of secondary metabolites, degradation of
complex polysaccharides and resistance to weather changes (Brenner et al. 2005). In addition,
the group naturally produces antibiotic substances that can kill other bacteria, fungi and some
small protists (Brenner et al. 2005). These characteristics confer important evolutionary
advantages as symbionts (Currie et al. 2006). The specific Actinobacteria strain acquired by

the ants is vertically transmitted to the next generation with occasional free-living acquisition



that results in strain diversification between ant species (Poulsen et al. 2007, Cafaro et al.
2011). The specificity is important because it ensures the health of the cultivar as the bacteria
defend it from the pathogen Escovopsis. Free-living bacterial strain acquisition can be
considered an advantage that preserves the efficacy of the antibiotic product (Poulsen et al.

2005, Cafaro et al. 2011).

The higher Attini (Table 1.1) genera do not present the crypts as a part of their anatomy, but
the Actinobacteria seem to be present in other parts of the exoskeleton. Some species present a
visible powdery white coat of Actinobacteria in the exoskeleton. Recent studies have shown
that the most frequently isolated Actinobacteria are Pseudonocardia species, but other genera,
such as Streptomyces and Amycolatopsis have also been isolated in high frequency (Cafaro
and Currie 2005, Sen et al. 2009, Boosma et al. 2009, Ferndndez-Marin et al. 2009). The
common denominators between those genera are their close phylogenetic relationships, high
frequency in fungus-growing ants and their antibiotic production potential (Gerardo et al.

2006, Cafaro and Currie 2005, Cafaro et al. 2011, Mehdiabadi and Shultz 2010).

1.5. Anoverview of the fungus-growing ant symbiosis basic model



Figure 1.1 shows a graphic representation of the interaction between the fungus-growing ants
and their symbionts. The fungus-growing ants cultivate Basidiomycota fungi in a mutualistic
relationship. In exchange for food the ants provide the cultivar optimal growth conditions,
substrate and constant grooming. Beside multiple defense mechanisms and hygienic behaviors
the cultivar can be parasited by Escovopsis (this has not been shown for yeast agriculture ants)
(Currie 2001b). Other opportunistic microfungi are also present in the nest and can be affected
by these defense mechanisms (Fernandez-Marin et al. 2009). The cultivar is essential for the
colony, and thus, the ants have developed a direct interaction with Actinobacteria that live in
the exoskeleton to protect the cultivar. The Actinobacteria gets protection and nutrients from
the ant (Currie et al. 2006) and the ants benefit from the Actinobacteria naturally produced
antibiotics (Currie 2001a, 2006, Cafaro and Currie 2005, Mueller et al. 2008). As a
consequence, the Actinobacteria have an antagonistic relationship with the cultivar parasite
Escovopsis. Indirectly, the cultivar and the ant are both positively affected by the

unidirectional Actinobacteria-Escovopsis antagonism (Figure 1.1).
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Figure 1.1: Fungus-growing ant basic model base on the information published by Weber 1958, Currie 20014,
Shultz and Brady 2008 and Mehdiabadi and Shultz 2010.

1.6. Yeast agriculture and Cyphomyrmex minutus

Cyphomyrmex species are part of an evolutionarily lower intermediate group of fungus-
growing ants of 39 identified species (Schultz and Brady 2008, AntWeb 2012). Cyphomyrmex
ants are the smaller Attini ants that construct simple nests with only one chamber. The ants
collect caterpillars, dead insect and feces as substrates for the cultivar (Weber 1958). This
genus is divided into three different groups based on their phylogeny: muelleri, stiagatus and
rimosus (Schultz and Brady 2008, Mehdiabadi and Shultz 2010). Members of the muelleri

and stiagatus groups practice lower agriculture, which means that the Leucocoprinae fungi

that they consume grow as mycelium in the nest.

7




All members of the rimosus group have the capacity to maintain the fungus cultivar in a yeast
phase even when it is present as mycelia in the environment (Chapela et al. 1994). They
cultivate a separate clade of leucocoprinaceus fungi different from the clade of other Lower
Attini (Shultz and Brady 2008). Cyphomyrmex species use yeast as their primary source of

food and preserve it that way.

Information about the Attini yeast agricultural practice is limited. Most is an inconclusive
extrapolation of previous studies made with Higher Attini ants (Table 1.1). Contemporary
studies demonstrate that assumptions are not well supported in all cases. Each type of Attini
agriculture practice possesses its own specific adaptations. This does not deny important
similarities, resulting from millions of years of coevolution. All the Attini maintain a cultivar
that is vertically transmitted and protected by weeding, grooming and rearrangement of the

nest.

In addition, the ants protect the cultivar using internal and external mechanisms that vary
between agricultural practices. Attini ants present a visual white cover of an antibiotic
producing Actinobacteria on their exoskeleton. In some cases the ant also has specific fovea
structures to bring protection to the bacterial symbiont. It is currently know that Lower
agriculture Cyphomyrmex species (C. constatus and C. levigatus) present fovea structures at
the propleural plate close by glandular secretion cavities as well as an actinobacteria white

coverage (Currie etal. 2006). This adaptation has not been explored for yeast agriculture ants.

Another unexplored adaptation is the yeast agriculture system. We do not know why or how
the rimosus group maintains the cultivar as yeast. Some authors suggest that the ant obligate
the cultivar to grow as yeast by affecting the environmental conditions (Mehdiabadi and

Shultz 2010).



The other important question about the yeast agriculture is: Where is the pathogen? There is
no evidence of Escovopsis in association with the rimosus group. Two important points are
worth mentioning (1) there are no studies about yeast agriculture pathogens and (2)
Escovopsis (cultivar pathogen) can only be found in association with the cultivar in 39.7%
(average) of the eight sampled genera of other Attini (Currie 2001b). Based on this
information, few scenarios can be possible: i) Escovopsis cannot affect the cultivar in the yeast
phase because of unknown anti-infection mechanisms; ii) Cyphomyrmex ants have very
efficient and undescribed mechanisms to defend the cultivar; iii) there is another pathogen for
this group of Attini rimosus group. The first two possibilities have not been explored. The
latter scenario can be supported by recent studies about other fungi in association with fungus-
growing ants nests (Rodrigues et al. 2005a, Rodrigues et al. 2008, Pagnocca et al. 2008,
Rodrigues et al. 2009). Nevertheless, Escovopsis is the only genus that passed Koch’s

postulates for pathogenicity among all isolated fungi (Currie 1999b, Currie 2001b).

Because yeast agriculture symbiosis interactions and defense mechanisms are unexplored
further studies are needed to understand this agriculture practice and the microorganisms
involved in the system. Also, how does this agriculture practice fit into the fungus-growing

ant symbiosis model?

1.7. Project summary and Objectives

The isolation, identification and organization of all the species that are part of the interaction
between the yeast agriculture Attini, C. minutus and its cultivar represent an important study

about diversity, evolution and symbiosis. The principal objective of this study is to



characterize the relationship between the fungus-growing ant Cyphomyrmex minutus and its
symbionts in Cambalache Tropical Forest, Puerto Rico. The morphological and adaptive
characteristics of C. minutus and its associated microorganisms make an exceptional

interaction and pose many questions about this symbiosis.

We hypothesize that C. minutus, like other fungus-growing ants, have multiple evolutionary

adaptations, including symbiosis, to protect their agricultural practice.

In Chapter 2 this study concentrated in the description and analysis of C. minutus and its yeast
cultivar. We start with a description of the environment and then the microorganisms in the
association. In this chapter we identify the Attini ant by morphology. We also describe the
nest and the ant behavior under natural and laboratory conditions. We identify and describe

the yeast cultivar using a similar approach including SEM and light microscopy.

In Chapter 3, we describe morphological characteristics of C. minutus exoskeleton that permit
the presence of Actinobacteria associates. We present our results about the presence/absence
of Actinobacteria in the exoskeleton, specifically the propleural plates of the ant. This chapter
includes a description of the Actinobacteria diversity in a phylogenetic context of isolates

from 26 different nests during dry and rainy seasons.

In Chapters 4 we present results about our search of the Escovopsis pathogen in association
with C. minutus nest components. As we mentioned earlier, this pathogen has not been
previously isolated from any yeast agriculture ant. Because no one has looked in detail for the
pathogen we decided to use a targeted approach to describe and analyze the fungal community
associated with yeast agriculture. In this chapter we describe the fungal community

associated with the yeast cultivar garden and the refuse material in the nest.

10



In all of the chapters we analyze the results in detail and compare them to the fungus-growing

ant symbiosis model, phylogeny and the actual knowledge about yeast agriculture ants.
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2. CYPHOMYRMEX MINUTUS AND ITS YEAST CULTIVAR IN PUERTO RICO

2.1. INTRODUCTION

Cyphomyrmex is a genus of Lower Attini ants that lives in the Neotropics. These ants also
cultivate fungi of the Leucocoprinae family that are transmitted vertically by the new queen.
Cyphomyrmex nests are more often found in the costal zones of Central and North America,
the Bahamas and Caribbean islands (Wheeler 1908, Weber 1972). Today, 39 described
species are recognized (AntWeb 2012). Cyphomyrmex are the smallest Attini ants measuring
1.7-3 mm (Weber 1958). They have a dull and not very sculpted body, move slowly and the
head frontal lobes are broad in comparison with other Attini ants (Snelling and Longino
1992). The difference between the coloration of the workers is gradually between brown tones
through the whole exoskeleton. The ant workers present a variation in color over time.
Younger workers are lighter than older ones (Weber 1972). Color variation is also present at
different nests and geographical locations, which can be useful to describe species.
Cyphomyrmex ants create their nest with a combination of soil, leaf litter, wood and rock.
Unlike higher Attini, this genus does not create complex chambers (Weber 1958, Currie
2001a). Instead Cyphomyrmex nests are small with only one chamber that is the home of one
reproductive queen and less than 200 monomorphic workers (Weber 1958, Snelling and
Longino 1992, Mueller 2001, Mehdiabadi and Shultz 2010). In general, Cyphomyrmex ants
use caterpillars, insect feces and other organic matter to create the substrate for the cultivar
(Weber 1958). The Leucocoprinae fungi secrete digestive enzymes in to the substrate
provided by the Attini ant to degradate the organic matter. Insect corpses cannot be degraded
by the cultivar and the ants removed them to the refuse material later (Mueller 2001). Free-
living Leucocoprinae close relatives can be found in leaf litter nearby Cyphomyrmex nests
indicating a recent acquisition of the cultivar by the ants. More detailed studies suggest that
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vertical transmission of the cultivar by the new queen have alternated over evolutionary time
at least in two horizontal transmission events (Chapella et al. 1994, Mueller 2002, Gerardo et
al. 2004). On the other hand, the cultivar generation spamis considerably shorter than the
ants. This implies that the cultivar evolved faster than the ants themselves (Chapella 1994,

Mueller 2002).

Cyphomyrmex is divided into three different groups (muelleri, stiagatus and rimosus groups)
based on phylogenetic analysis of the ant, the fungus clade they cultivate and their agricultural
practice (Kempf 1964, Kempf 1966, Snelling and Longino 1992, Gerardo et al. 2004, Shultz
and Brady 2008, Mikheyev et al. 2010). Members of the stiagatus and muelleri groups
practice lower agriculture. These ants cultivate Leucocoprinae fungi ina multicellular
mycelial phase; the main difference between these two groups is their phylogenetic
relationship (Brady and Shultz 2008, Mehdiabadi and Shultz 2010). The most studied species
of the stiagatus group are: C. stiagatus, C. faunulus and C. morschi. The muelleri group
representative species are: C. muelleri, C. costatus and C. longiscapus.

The rimosus group includes all the yeast agriculture Attini. The ant species of this group have
the ability to maintain the cultivar as a unicellular yeast cluster (2002, Shultz and Brady
2008). All the yeast agriculture Attini cultivars are in the monophylogenetic clade G3
(Chapela 1994, Gerardo et al. 2006). The most common species are: C. minutus, C. rimosus,

C. salvini and C. cornutus.

The cultivar is a small yellowish yeast cluster that usually measures approximately 0.5mm in
diameter that the ants maintain as an irregular rod shape (Snelling and Longino 1992). The

pathogen Escovopsis has not been found in association with yeast cultivars. Cyphomyrmex
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minutus was the first species of the genus to be identified by Myrn in 1882 in the Caribbean
island of Cuba. In 1907, Wheeler identified this species in Puerto Rico. Cyphomyrmex has
also been found in a 20 million of years amber fossils from the Dominican Republic over
placing this specie in the Greater Antilles between the late Oligocene period and early

Miocene (Wilson 1985).

In general, little information about yeast agriculture or for C. minutus in particular is
available. At the moment, most of the information about this ant is extrapolated from other
Attini ants. Besides the above-mentioned information we know that C. minutus cultivars from
different geographical locations have significant genotypic differences (Mueller 1998b). The
cultivar from C. minutus (Florida, US) has been isolated and identified in a multicellular phase
as Tyridiomyces formicarum (Wheeler 1907, Wang et al. 1998). This appears to be the same
species of fungi identified from other rimosus species (Snelling and Longino 1992). This
cultivar produces secondary metabolites (dikertopiperazines) that have antifungal effects over
Saccharomyces cervisiae and three different human pathogenic strains of Candida albicans
(Wang et al. 1998). However, the antifungal activity has not been tested in other fungal
organisms like Escovopsis or proven to be a metabolite that the cultivar produces in the yeast
phase. The main purpose of this form of agricultural practice is unknown, but 20-25 million
years of coevolution history between the ant and the yeast cultivar and the possible absence of
the pathogen suggest an important adaptation (Shultz and Brady 2008, Mehdiabadi and Shultz

2010).
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In this study we want to identify and describe in detail Cyphomyrmex minutus and its yeast
cultivar in Puerto Rico. We present here a multiphasic study of the ant and its cultivar that

includes morphology, behavior and genetics.

2.2. MATERIALS AND METHODS

2.2.1. Sample collection
Cyphomyrmex minutus nests were sampled from Cambalache Tropical Forest at Arecibo,
Puerto Rico (+18.397803° N, -66.590087°0) during the rainy season 2010 and dry season
2011. We collected a total of 26 different nests for which we gathered data on nest
temperature and soil pH. All samples were collected and transported under strict aseptic
conditions using flamed-sterilized forceps and sterile containers. In the laboratory, we
transferred the nest material into separate petri dishes with damped cotton creating artificial
nests. Some samples were used immediately for microbial isolation, while others were

allowed to stabilize and used withina 5 days period.

2.2.2. Ant identification and morphological description

To identify and observe the behavior of the ant we used a stereoscope (Olympus SZ2-ILST).
The ant was identified using more recently taxonomic keys published by Snelling and

Longino (1992).

2.2.3. Description of the cultivar under natural and laboratory conditions

For the initial description of the yeast clusters in the nest we prepared slides of the cultivar and
fixed them with lactophenol cotton blue (0.5% w/v) approximately 18 hours after setting the
artificial nest in the laboratory. The artificial laboratory nests were prepared with a sterile petri

dish with humid cotton and maintained at 25°C in total darkness. Then, we selected three
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different yeast cultivar clusters and fixed them with 2.5% gluteraldehyde for 24 hour at 4°C in
a 1.5mL microcentrifuge tube. We washed the samples three times with phosphate buffer [0.1
M]. Samples were dehydrated using serial ethanol washes (10%-100%) for15 minutes each.
Every time we changed liquids we centrifuge the samples for 30 seconds at 300 rpm.
Dehydration was completed by critical point drying for 30 minutes. Dried samples were
covered with gold/palladium to allow electron conductivity. Using the scanning electron
microscope (SEM) we observed the yeast clusters (De Nollin and Borgers 1975, Gabriel

1982).

2.2.4. ldentification of the cultivar by culture independent methods
2.2.4.1. DNA isolation

We selected three cultivar yeast pellets per nest from 17 artificial nests to perform total DNA
extraction with Cetyl-trimethyl ammonium bromide (CTAB) modified protocol (Mueller et al.
1998a, Vo et al. 2009). We macerated the yeast clusters with a pestle in 1.5 mL tubes with
CTAB. To disrupt the cell we changed temperature from 65°C to -80°C for 10 minutes each
time and repeated the process 3 times. Later we treated the samples with chloroform followed
by isopropanol and 100% ethanol washes. Samples were dried and then resuspended with TE

1:10 buffer and stored at -20°C.

2.2.4.2. Characterization of the yeast cultivar by Amplification and
Sequencing of the D1/D2 region of the 28S rDNA gene

Amplification of the D1/D2 region of the 28s rDNA ene was carried out using approximately
40ng of DNA template in 50pL reactions that included: 0.8x PCR buffer, 2.5nM MgCL,,
0.6uM of each primer, 0.16mM dNTPs and 0.15 puL Taq polymerase per reaction. The

selected primers for PCR and sequence were NL-I Forward (5
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GCATATCAATAAGCGGAGGAAAAG-3") and NL-4 Reverse
(5'GGTCCGTGTTTCAAGACGG-3") (O'Donnell 1993). PCR parameters used: 95°C 37,
95°C 457", 51.°C 457, 72°C 1"3"" 72°C during 30 cycles. Sequencing was performed at the
High-Throughput Genomics Unit of the University of Washington, Seattle, WA. We used
10ng/uL DNA amplification product for the reaction. Sequences were analyzed using
Sequencher 3.0 (Gene Codes, Ann Arbor, MI) and Mega 5 (Tamura et al. 2011) programs.

GenBank searches with BLASTn were performed to identify the cultivar.

2.3. RESULTS

2.3.1. Ant identification and morphological description
In the forest, nest soil presented a temperature of 24.7°C during the rainy season and 23°C in
the dry season. Soil pH at the nest was 8.1 at both sampling times. The nests were small and
organized in only one chamber as previously described for the species (Wheeler 1908, Weber
1958 and 1972). We observed delimited zones were the ants organize the different component
of the nest. The queen was kept apart from the rest of the nest. The brood was kept close to
the cultivar and protected by a group of workers. The cultivars were composed of round, white
to yellow masses of yeast clusters that measure at least 0.5mm in diameter. We also observed
that the ants maintain the cultivar over plant, insect corpses and feces and other unidentified
organic materials. All the cultivar pellets look healthy, without any sign of infection under
both natural and laboratory conditions. Workers did not present a white cover on their
exoskeleton (Figure 2.1 A). The ants weed out, rearrange and manage the pellets using their

antennae and frontal legs.

When disrupted, the ants move brood and the cultivar to a deeper location in the nest, while

the rest of the workers just used a narcoleptic behavior to camouflage with the soil and the leaf
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litter. Under laboratory conditions, we observed fast rearrangements of the artificial nest into
zones. Light triggered an immediate emergency protection behavior. The ants move the
cultivar and the brood to one side of the nest and the refuse organic material to the other. The
refuse materials are black masses of organic material that the ants create and reorganize

constantly.

Cyphomyrmex minutus was identified using Snelling and Longino (1992) taxonomic keys for

Hymenoptera: Formicidae: Attini ants as follows:

The head width is less than 0.56mm (Figure 2.1 B). This ant presents a preocular curved
mesally carina in front of the eye. The posterior-lateral limits of the scrobe are marked by
another carina that is arising from the occipital corner and to the eyes. Lateral pronotal
tubercles are present (Figure 2.1 C). The mesonotal tubercles are elevated and conical. The
texture of the mesosoma is granulose. All body hairs are fine in comparison with other
species; many of them are dentiform. The median basal groove of the first gastral tergum is

short almost indistinctive (Figure 2.1 C).
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Figure 2.1: Cyphomyrmex minutus collected in Cambalache Tropical Forest. (A) C. minutus ants with the yeast
pellets cultivar in artificial nest. (B) Frontal view of the ant. (C) Lateral view of the ant.

2.3.2. Description of the cultivar under natural and laboratory conditions

The cultivar is a Leucocoprinae fungus that is maintains as an irregular rounded yeast cluster
by Cyphomyrmex minutus (Figure 2.2A). Under laboratory conditions, the cultivar in the
artificial nest starts presenting hyphal growth. After 18 hours, the cluster has a combination of
yeast cells and pseudo-hyphae growing in the external areas of the pellet as observed under
SEM (Figure 2.2).
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Figure 2.2: Yeast cultivar of Cyphomyrmex minutus from Cambalache Forest fixed (18 after collection). (A-D).
Partially disrupted yeast cluster created by the ants at (A) 350x and (B) 500x. (C) Aclose up (1000x) shows
zones with hyphal growth and (D) ellipsoidal yeast cells.

In order to understand the progression of the cultivar over time under laboratory conditions,
we observed the cultivar for a period of 5 days (Figure 2.3). At the beginning, we observed
yeast round cells consistent with previous description of yeast agriculture in Cyphomyrmex
species (Figure 2.3 A-C). However, after 24 hours we observed cell elongation and
pseudohyphal development (Figure 4D). This development persists after 72 hours (Figure
2.3E) and continues progressively for the next few days. After day 5, the cluster maintains the
same appearance to the naked eye, but under the microscope we observed a mixture of yeast
and pseudohyphal growth (Figure 2.3F), the latter being the predominant growth form.
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Figure 2.3: Yeast cultivar stained with lactophenol cotton blue under laboratory conditions at 24 hours (A-C).
(A) Disrupted yeast pellet (4x), (B) yeast cells (20x), (C) budding yeast (40x). (D) Yeast cultivar growth after 24
hours (20x), (D) after 72 hours (20x) and (F) after five days (20x).

2.3.3. ldentification of the cultivar by culture-independent methods

The cultivar was identified as Leucocoprinaseus fungi similar to other C. minutus cultivars.
We compared C. minutus symbiont from Puerto Rico to other fungus-growing ant cultivars
fromall agriculture practices (Figure 2.4). Our cultivar showed a close relationship with C.

minutus symbiont 950106-03 from Trinidad with 98% similarity.
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Figure 24: Maximum Likelihood (ML) phylogeny of fungus-growing ants cultivars based on partial 28S rDNA
gene. We compared the consensus sequence of Cyphomyrmex minutus cultivar isolated from Cambalache
Tropical Forest in Puerto Rico (red full circle) with other fungus-growing ant cultivars. The Lower Attini
cultivars are represented with circles and Higher Attini with squares. The colors represent the type of agriculture
that the source ant practices: lower agriculture in blue, yeast agriculture in red, domesticated higher agriculture in
purple and leaf-cutter agriculture in green. The sequences for comparison were retrieved from GenBank database
using BLASTn. The scale bar corresponds to 0.01 substitutions per site and bootstrap support after 5,000
replicates.

2.4. DISCUSSION AND CONCLUSIONS

Characteristics of Cyphomyrmex minutus ants from Puerto Rico are consistent with other C.
minutus even when this ant presents a lighter coloration of the exoskeleton in comparison with
other populations (AntWeb 2012). Yeast agriculture is the main activity of the colony
including substrate acquisition, protection, rearrangement, weeding and grooming. When we
try to replicate the appropriate conditions (temperature, humidity and darkness) for the nestin
the laboratory, the cultivar cluster started developing pseudohyphae in less than 24 hours.
Cyphomyrmex minutus cultivar presented a pleomorphisim, which indicates that this fungus
can grow as yeast and as mycelium depending on environmental conditions (Mueller 2001).
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After the fifth day, 90% of the artificial nests were dead. Based on our results, we understand
that the yeast phase of the cultivar represents a signal of a healthy nest. Inaddition, the absent
of any visual sign of infection and the observed ant behavior support the idea that the yeast
phase of the cultivar serves as a defense mechanism for the nest against fungal pathogens.
Using microscopy and 28S DNA sequencing we were able to identify the cultivar as a
Leucocoprinae fungus closely related to a C. minutus cultivar from Trinidad and Tobago
located it in the G3 clade with other yeast agriculture cultivars (Mueller 2001). The next close
relative is a C. minutus cultivar from Florida (US) also in the same clade. Taking in
consideration previous reports, we observed marked differences between our C. minutus
cultivar sequences and other yeast cultivars from the rimosus group. The data is consistent
with multiple events of horizontal acquisition, hence showing some geographical separation
between continental and Caribbean strains. Unfortunately we did not have access to
previously described mycelia (Tyridiomyces formicarum) associated with C. minutus in

Florida or its sequence for comparison.

The identification of the ant and the cultivar from Puerto Rico provides new information about
fungus-growing ants in the Caribbean. In addition, the identification of the ant and the
cultivar, their behavior and documentation provide modern information about the yeast
agriculture practice, which is the most understudied system in the Attini. This study sets the
bases to identify, describe and understand other microorganisms involved in this fungus-

growing ant symbiosis and their interactions.
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3. ACTINOBACTERIA ASSOCIATED WITH C. MINUTUS EXOSKELETON AND ITS

CULTIVAR
3.1. INTRODUCTION
Attini ants have 50 million years of coevolution history with Leucocoprinae fungi that serve
as their main source of food (Currie 2001a). Attini ants provide the cultivar with protection,
growth conditions and substrate. The same interaction has been reported in 5 different
agriculture practices: lower agriculture, coral fungi agriculture, yeast agriculture, higher
domesticated agriculture and leaf cutter agriculture grouping over 230 different ant species
(Shultz and Brady 2008, Mehdiabadi and Shultz 2010). The ant transmits the cultivar
vertically from one nest to the new one by the queen during the nuptial flight. In the nest
cultivar propagation appears to be asexual, which can significantly decrease genetic variability
in comparison to free-living sexually reproducing counterparts (Currie 2001a). On other
hand, the Attini nests are in the soil, leaf litter, wood or rocks (Wheeler 1907, Currie 2001a),
which are far from being axenic environments for the cultivar. Clonally propagation and
asexual reproduction in addition to ant nest environmental conditions make the cultivar
vulnerable to mycopathogens. Nests infected with the specific pathogen Escovopsis have a
significant reduction in fitness and greater potential death (Currie et al. 2006).
To understand how the ants protect their main source of foods multiple defense strategies such
as weeding, farming, nest material rearrangement, nest chamber organization, refuse material
collection, glandular and cultivar antifungal secretions and, association with antibiotic
producing actinobacteria have been explored (Currie 20014, Currie et al. 2006, Shultz and
Brady 2008, Mehdiabadi and Shultz 2010). Some of these strategies are not constant across all
agricultural practices or have not been studied in detail (Shultz and Brady 2008, Mehdiabadi

and Shultz 2010).
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Actinobacteria associates have been described as an important defense mechanism for Attini
agricultural practices (Currie et al. 2003, Currie et al. 2006). The phylum Actinobacteria is a
group of Gram positive bacteria with high G+C content (>55 mol% in genomic DNA)
(Champness 2000, Gao and Gupta 2012). They are cosmopolitan organisms that can live in
water, deep-sea and extreme environments, but most of the studied species are isolated from
soils. Over 300 different genera are members of this phylum with an enormous diversity of
morphology, physiology and metabolic capabilities. Low divergence of 16S rDNA gene
sequences between members of the same genus, e.g. Frankia species are often between
97.8%-98.9% similar, indicates a very close relationship between species (Gao and Gupta,
2012). Additional gene information is needed to resolve a phylogeny of closely related genera
of Actinobacteria to species. Currently, 16S rDNA is still in use as the preferred method to
study Actinobacteria phylogeny, but several markers have been proposed as alternatives to
further resolve species relationships. The most promising ones are the Conserved Signature
Proteins (CSP) and Conserved Signature Indels (CSI). These proteins can be used as markers
because they are part of the ribosomal protein complex, RNA and DNA polymerases and key
metabolic enzymes. In addition, they are unique to particular groups of Actinobacteria (Gao

and Gupta, 2012).

The phylum Actinobacteria was recently divided into 6 different classes: Actinobacteria,
Acidimicrobiia, Rubrobacteria, Coriobacteriia, Nitriliruptoria and Thermoleophilia (Gao and
Gupta 2012). Actinobacteria is the biggest class and contains the most common and well-
studied genera such as: Actinomyces, Mycobacterium, Rhodococcus, Nocardia,

Pseudonocardia and Streptomyces (Garrity et al. 2004). The latter is the most common,
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frequently isolated and well-studied genus (Brenner et al. 2005). The Actinobacteria were
classified in the past as fungi (Actinomycetes, name still in use as a synonym) because of their
macroscopic and microscopic morphology in combination with an atypical reproduction cycle
(Angert 2005, Brenner et al. 2005, Del Sol 2007).

Actinobacteria morphology can be described as a filamentous bacillus with special lipids in
the cell membrane (Brenner et al. 2005). Many Actinobacteria genera are important
secondary metabolite producers such as antibacterial, antifungal, antitumor, antiviral,
herbicidal, insecticidal and immunosuppressive compounds. Also some species have the
capacity of complex polysaccharide degradation (Angert 2000, Brenner et al. 2005). In 2000,
over 12,000 different antibiotics were identified from natural sources, 70% derived from

Actinobacteria and 55% from the genus Streptomyces (Angert 2000).

The mutualism between the Actinobacteria and Attini ants has a long history of coevolution
(Currie et al. 1999a). The funder new queen carries the Actinobacteria symbiont on its
exoskeleton to the new nest (Currie et al. 1999a). Attini from the lower agriculture genera
Mycocepurus and Cyphomyrmex as well as the higher agriculture Trachymyrmex and
Acromyrmex have visible Actinobacteria on their propleural plates (Currie et al. 2006). Some
species present Actinobacteria covering other areas of the exoskeleton like: head, thorax,
abdomen and legs (Currie et al. 2006). Atta (leaf cutter agriculture) species do not show any
visible Actinobacteria growth on their exoskeleton; meanwhile yeast agriculture

Cyphomyrmex species have not been observed in detail.

On the propleural plates the Attini have elaborated cuticular crypts associated with exocrine

glands. Located in the crypts are foveae that host the Actinobacteria symbionts. The glands at
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the inner surface of the propleural plates are connected by duct and glandular cells to the
cuticle and opened to the fovea putatively providing nutrients to the symbionts (Currie et al.
2006). In addition, the ants also have metaplural cuticular exocrine glands, which secret
substances considered as broad-spectrum antimicrobials (Bot et al. 2002, Fernandez-Marin et

al. 2006).

Original observations of Attini ants described a distinctive white cover over the exoskeleton
that further studies identified as Actinobacteria growing on the exoskeleton (Weber 1972,
Currie 2001a). Based on the cell wall chemical composition and morphology of the isolated
bacteria from the exoskeleton it was identified as Streptomyces (Currie et al. 1999b, Currie
2001b). Further studies that included sequence analysis of the Actinobacteria isolated from
Acromyrmex, Trachymyrmex and Apterostigma indicated that the most prevalent
Actinobacteria was Pseudonocardia (Cafaro and Currie 2005). Later a culture independent
analysis of the Actinobacteria showed a high prevalence of other two genera of
Actinobacteria: Streptomyces and Amycolatopsis from laboratory nests of Trachymyrmex,
Serichomyrmex and Cyphomyrmex (non-yeast agriculture species) (Sen et al. 2009). This
study demonstrated coexistence of different genera in association with Attini ants.
Streptomyces and Amycolatopsis isolates from the same samples affect potential nest
pathogens (including Escovopsis) growth in at least 56.3 -72.7% of the cases (Sen et al. 2009).
Some discrepancies in the identification of the Actinobacteria indicate that more studies are
needed to clear this matter; in the meantime we use all the information available to understand
the Attini symbiosis system. Pseudonocardia and Amycolatopsis are two genera from the
same family (Pseudonocardineae), while Streptomyces belongs to a different suborder

(Streptomycetaceae) (Garrity 2004, Brenner 2005). These 3 different genera (Streptomyces,
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Pseudonocardia and Amycolapsis) have been isolated from different fungus-growing ants
using different methods and have antibiotic production potential (Currie et al. 1999a, Currie et

al. 2006, Cafaro and Currie 2005, Sen et al. 2009).

In this mutualism the ants get protection for the cultivar against pathogens, as a reward the
ants serve as a vector for the bacteria and also provide protection and nutrients (Currie et al.
2006, Poulsen et al. 2010). These interactions support the idea of a complex mechanism of
cultivar defense that includes the propagation and use of antibiotic producing microorganisms
to control pathogens. The specialized structures present in the ant exoskeleton indicate a long
and strong interaction of these four symbionts: the ants, the cultivar, the cultivar pathogen and

the Actinobacteria (Currie etal. 1999a, Currie et al. 1999D).

In the specific case of the members of the Cyphomyrmex rimosus group there is no evidence
about this type of protective mechanism (including the Actinobacteria symbiont). Over the
years many assumptions and generalizations have been made in order to understand the
fungus-growing ant agricultural practices in general (Sen et al. 2009, Mehdiabadi and Shultz
2010). The only certain thing we know about the rimosus group symbiosis and their defense
mechanism is that the ant cultivates Leucocoprinae fungi as yeast (Weber 1958). There is no
study about the apparent absence of the specific pathogen Escovopsis and any defenses that
can contribute to the health of the cultivar. Because there are many unanswered questions
about yeast agriculture we want to describe the Actinobacteria community associated with
Cyphomyrmex minutus exoskeleton and its cultivar in detail. We also studied the propleural
plate structure and explore its potential as Actinobacteria hosting structure as described for

other Attini species.
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3.2. MATERIALS AND METHODS

3.2.1. SAMPLESELECTION
Samples from stabilized artificial C. minutus nests were processed in the laboratory to isolate
Actinobacteria the same day of sampling. We selected 3 cultivar pellets and 3 ants form each
nest. We collected samples in two periods, 2010 rainy season and 2011 dry season at

Cambalache Tropical Forest.

3.2.2. ACTINOBACTERIA IN THE EXOSKELETON AND THE PROPLEURAL PLATES

We treated samples differently if we wanted to observe the propleural plates and exoskeleton
structures or if we wanted to observe associated microorganisms. For the first treatment we
fixed C. minutus ants in 2.5% gluteraldehyde during 24 hour at 4°C ina 1.5mL
microcentrifuge tubes for SEM analysis. We repeated 3 washes with phosphate buffer [0.1 M]
for samples. We did not fix the second group. Then we dehydrated using serial 10% increase
ethanol washes for the structure samples and serial 5% increase ethanol washes for the
microorganisms. All samples were decanted at room temperature for 15-30 minutes. Later we
use a critical point dryer for 30 minutes. All dried samples were covered with a
gold/palladium to allow electron conductivity. Using the Scanning Electron Microscope
(SEM) (JEOL JSM-5410LV) from the Microscopy Center of the Biology Department we

observed both samples (De Nollin and Borgers 1975, Gabriel 1982).
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3.2.3. ACTINOBACTERIA PURE CULTURE ISOLATION

Separately, the ants and the cultivar pellets were washed, macerated and mixed with vortex in
1.5mL microcentrifuge tubes with 900puL of 0.7% NaCl. In triplicates, we inoculated 300 pL
of each wash in Chitin media plates (Chitin 3g, K,HPO, 0.575g, MgSO, x 7H,0, 0.375g,
KH,PO, 0.275g, FeSO, x 7H,0 0.0075g, MnCl, x 4H,0 0.00075g, ZnSO,4 x 7H,0 0.00075g
and agar 15g in a final volume of 750mL of ddH,0). To avoid fungal growth we
supplemented the media with Nystatin (0.02g/ml of DSMO) and Cyclohexamide (0.05¢/L).
We spread the solution and incubated for 3-4 weeks at 25°C until growth was evident. Colony
selection and further purification was performed every week during the incubation period.
Colony transfers were made into Yeast and Malt Extract Agar (YMEA) (Yeast Extract 49,
Malt Extract 10g, Dextrose 49, and Agar 20g per 1L of dH,0) with antimicotics (Nystatin and
Cyclohexamide). Samples in Y MEA were incubated at 25°C until we observed growth.
Multiple transfers were needed to obtain pure colonies. The time of incubation depended on
the samples (3 days - 4 weeks). All samples were preliminarily classified using morphology

and Gram staining (Brenner et al. 2005).

3.2.4. DNA extraction and 16S rDNA gene amplification

We extracted total DNA from all isolates in pure culture with the Cetyl-trimethyl ammonium
bromide (CTAB) modified protocol (Mueller et al. 1998, Vo et al. 2009). We macerated the
cells with a pestle in 1.5 mL tubes with CTAB. To disrupt the cell wall, we subjected the

samples to three cycles of freeze (-80°C) - thawing (65°C). Later the samples were treated
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with chloroform followed by isopropanol and 100% ethanol washes. Samples were dried and

then resuspended with TE 1:10 buffer and preserved at -20°C.

Amplification of the 16s rDNA gene was done using approximately 40ng of DNA template
was used for amplification in 50pL reactions which included: 0.8x PCR buffer, 2.5nm MgCL,,
0.3u M of each primer 0.16mM dNTps and 5U Taq polymerase per reaction. We used the
following thermal parameters: 95°C 3", 95°C 45”7, 52°C 45", 72°C 1°3""and 72°C for 30
cycles. We used universal bacterial primers 27F (5’AGA GTT TGA TCM TGG CTC AG) and
1492R (5" TACGGH TACCTT GTT ACG ACT T) (Lane 1991) to amplify the 16S rDNA
gene. The fragment of approximately 1470bp was sequenced at the High-Throughput
Genomics Unit of the University of Washington, Seattle, WA. We used 10ng/pL DNA

amplification product for the reaction.

3.2.5. Data Analysis
3.25.1. Frequency and Diversity index

We calculated the frequency of the isolates in terms of percentage. Also we analyzed the two
communities in terms of species diversity and dominance using Simpson (S) and Shannon (H)
indices (Shannon and Weaver 1949, Simpson 1949). We used an Excel (Windows office
2007) to calculate both indices using the following formulas:
e The Simpson Index
o Diversity (S): S=1-D

' . _wr  Xi(xi-1)
o Dominance (D). D = Xi_, to(to—1)

where: r = total number of species or taxonomical units observed
xi= refers to the number of each sample
to= total abundance = Y} x;
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e The Shannon Index
o Diversity(H): H=-)/_,p;Inp;
where: r = total number of species or taxonomical units observed

xi= refers to the number of each sample
to= total abundance = )} x;

14

1 X
pi= relative frequency = - =
0
o Eveness (E): E=H/In(r)

3.2.5.2. Sequence analysis

Sequences of the 16s rDNA gene were edited and analyzed using Sequencer 3.0 (Gene
Codes, Ann Arbor, MI) and Mega 5 (Tamura et al. 2011) programs. Ribosomal Data Base
(ref) and GenBank searches with BLASTn were performed to identify the closest available
sequences. In Mega 5 we used Muscle application to align sequences with the following
parameters: Refining alignment, -400 penalty for gap open and -0.01 penalties for gap
extension. The phylogenetic tree was created using Mega 5 Neighbor joining analysis with

5,000 pseudoreplicates for bootstrap support and a p-distance model.

3.3. RESULTS
3.3.1. CYPHOMYRMEX MINUTUS PROPLEURAL PLATE AND

MICROORGANISMS ASSOCIATED WITH THE EXOSKELETON SURFACE
Our initial observations using light microscopy indicate that C. minutus possesses propleural
plates similar to other non-yeast agriculture members of the genus. In addition, no worker
from 26 different nests presented any visible white cover on the exoskeleton. Using scanning
electron microscopy (SEM) we studied specific cuticular structures on C. minutus. First we
identified crypts or foveae at the propleural plates (Figure 3.1 A and B). Plates also presented

few microtrichia (hairs-like projection) located around the foveae (Fig 3.1). Foveae are only
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located on the propleural plates of the ant close to the head and the frontal legs. The foveae
measured less than 10pum in diameter and were scattered around the plates (Figure 3.1 A).
Inside the foveae we observed a porous and irregular surface, completely different from the
propleural plate surface (Figure 3.1 B). The plate surface and microtrichia were covered with
unidentified substances or microorganisms (Figure 3.1C-F). Insome cases, a globular
coverage was present inside some foveae (black arrow Figure E). Because of the description
and size of the globular coverage we suggest that this is consistent with secretion products
fixed during sample preparation, but we cannot rule out microbial growth associated with the

secretion.
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Figure 3.1: SEM pictures of Cyphomyrmex minutus propleural plate. (A) Crypts in the propleural plates are show
up by the black arrow. (B) A zoom in of the crypts (C) Propleural plate covered with an unidentified substance or
microorganism. (D) Close up of the propleural plate showing globular substance coving the surface (black arrow)
(F) Accumulation of unidentified cover over the propleural hairs.

In addition to the propleural plates we examined the ant head, thorax and abdomen. The ant
head presented pores without microorganisms, hairs and duct cells that cover its surface

(Figure 3.2A). The same area in another ant sample presented a conspicuous microbial
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coverage over the ant head (Figure 3.2B). The ant frontal legs without fixation presented hair
like projections, pores (black arrow on figure 3.2C) and glandular secretary ducts (black arrow
on figure 3.2E). The frontal legs surface presented microbial growth on their surface (Figure
3.2D, F-H), which was characterized by mycelium-like growth (Figure 3.2D and G) and

visible bacilli close to glandular ducts (black arrow on Figure H).
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Figure 3.2: SEM microphotographs of different areas of C. minutus exoskeleton. Samples in picture A, C and E
present only the ant exoskeleton surface. Samples in the pictures B, D, F, G and H were fixed to preserve any
biological coverage. (A-B) Ant head close by the ocular aperture (A) the surface with pores, hairs and (B) the
same area preserved to observe the microorganisms covering. (C-H) Forelegs close up of the exoskeleton. (D)
Possible mycelia growth in the foreleg exoskeleton (arrow). (E) Glandular aperture (arrow) on the exoskeleton.
(B) Same structure (arrow) with microbial growth. (G -H) Bacillus type cells (arrow) growing around the
glandular aperture.
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3.3.2. ACTINOBACTERIA ASSOCIATED WITH THE ANT EXOSKELETON AND THE
YEAST CULTIVAR
Actinobacteria present small differences in16S rDNA gene sequences between species,
which can be used to identify genera and in some cases established a connection between
isolates and well-studied type strains. Type strains are available both at the Ribosomal
Data Base Project and GenBank websites (Appendix A). With this information we
attempted to describe and classify the isolates associated with C. minutus and compare

them to other available data from attine ants.

We analyzed and identified 208 different isolates from 26 nests in Cambalache Tropical
Forest during the rainy and dry seasons. Using 16S rDNA we identified 5 different
Actinobacteria genera. Nocardia, Rhodococcus, Kitasatospora, Tsukamurella and
Streptomyces. The most frequent isolated genus was Streptomyces, which represented 93%
of all isolates. Other genera were less frequent: Nocardia (1%), Rhodococcus (2%),

Kitasatospora (2%) and Tsukamurella (2%) (Figure 3.3).
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Figure 3.3: Actinobacteria genera isolated from C. minutus exoskeleton and its yeast cultivar

The most frequently isolated strain overall was Streptomyces sp. 31 (similar to
Streptomyces sp. 8-1 EU054375.1), which represented 41.83% of all isolates. Other strains
of Streptomyces were also fairly abundant, but in smaller proportions: 4.33%
Streptomyces sp. 9 (similar to Streptomyces cinereoruber NR043344.1), 3.85%
Streptomyces sp. 11 (similar to Streptomyces exfoliatus FJ532461.1) and 3.37%
Streptomyces sp. 23 (similar to Streptomyces lateritius GU479442.1). The rest of the
isolates (47 potential species) combined represent 46.63% of the total, but each

independently has frequencies lower than 3% (Figure 3.4).
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Figure 3.4: Frequency of the Actinobacteria isolates associated with Cyphomyrmex minutus exoskeleton.

From the yeast cultivar we identified 36 potential species from 84 different samples. All
samples came from ant cultivar derived from 26 different nests of C. minutus. We isolated 4
Actinobacteria genera from cultivar washes: Kitasatospora, Nocardia, Rhodococcus and
Streptomyces (Figure 3.5). Again, Streptomyces was the most frequent genus isolated from the
samples. The most frequent Streptomyces strain was Streptomyces sp. 31, similar to
Streptomyces sp. 8-1 EU054375 (33%). Other frequent isolates were: 6% Streptomyces sp. 38
(similar to Streptomyces yaglinensis AY882020.1), 6% Streptomyces sp. 9 (similar to
Streptomyces cinereoruber NR043344.1), 4% Streptomyces sp. 26 (similar to Streptomyces
phaeogfaciens HQ607439.1), 4% Streptomyces sp. 24 (similar to Streptomyces omiyaensis

AB184411.1) and 4% Streptomyces sp. 22 (similar to Streptomyces kummingensis
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NR043823.1). The other 30 isolates combined represented 43% of the total. Individually, no

strain exceeded 2% in frequency. The complete list of all the isolates appears in Appendix A.

Isolates
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Streptomyces polychromogenes
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Streptomyces lateritius
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Streptomyces flavoviridis
Streptomyces flavovariabilis
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Figure 3.5: Frequency of isolates associated with Cyphomyrmex minutus yeast cultivar.

3.3.3. DIVERSITY INDICES

To describe the biodiversity of the cultivable Actinobacteria taxa isolated from C. minutus

exoskeleton and its yeast cultivar we used the Simpson (S) and the Shannon (H) Indices

(Table 3.1). The Simpson Index evaluates the quantity of species in the sample and the

richness in each sample (entropy). With the Dominance (D) calculation, it can also evaluate

the presence of dominant species over the rest of the population. The Actinobacteria

community associated with C. minutus exoskeleton (29 different isolates from 124 samples)

presented a diversity entropy indicator S,,; = 0.0836 and dominance value D,,; = 0.9164. In
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the case of the Actinobacteria community associated with the yeast cultivar (36 different
isolates from 84 samples) using the same indeces we obtained Syyivar = 0.0192 for entropy and
Deutivar = 0.9808 for dominance. The Actinobacteria community from the ant exoskeleton
appears to be less entropic in terms of species diversity than the community from the yeast
cultivar (Sznt = 0.0836 > Scypivar = 0.0192). The possibility of dominant species in the

community is higher in the case of the Actinobacteria community isolated from the cultivar.

To confirm the results we also analyzed them using the Shannon Index (H). This index
evaluates the number of observed individuals for each species. In the case of the
Actinobacteria community from the exoskeleton we obtain H,,, = 2.3002 index value and
Hcurivar = 2.8952 for the Actinobacteria community from the yeast cultivar. Values over 2.0
indicate variety of species in the community diversity. The exoskeleton community seems to
be less diverse in terms of species numbers than the yeast cultivar Actinobacteria community
(Hant = 2.3002 < Heypivar = 2.8952). We also calculated Eveness (E), which indicates how close
in species number are the communities. The Eveness indicators for both communities exceed
1, indication that the proportion of members of the each species is similar in both communities

(Table 3.1).
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Table 3.1: Simpson Index values for the Actinobacteria community isolated from C. minutus
exoskeleton and its yeast cultivar.

Actinobacteria isolated from

Diversity index Ant Ant yeast
exoskeleton cultivar
Simpson Index (S) 0.0836 0.0192

S=0 low entropy (one species or few)
S=1 high entropy (diverse community)
Dominance (D=1-S) 0.9164 0.9808
D=0 all species are equally present
D=1 one species dominates the community
completely
Shannon Index (H) 2.3002 2.8952
H=0 only one species in the
community
H>0 more than one species in
the community
Eveness (E=H/In(isolates)) 1.5729 1.8603
E=1 similar proportion of all species in the
community
E>1 dissimilar proportion of the species in the
community, dominant species

3.3.4. PHYLOGENETIC RELATIONSHIPS OF ACTINOBACTERIA ISOLATES

We created 16S rDNA phylogenetic trees comparing the relationships between Actinobacteria
isolated from the ant exoskeleton and the yeast cultivar to database sequences (Figures 3.6 and
3.7). Two orders in the Class Actinobacteria, Streptomycetales and Corynebacteriales were
represented in our samples from both ant exoskeleton and yeast cultivar. The most frequent
Streptomyces isolate, represented by sequences PR110305M-H214 and -AL610, are closely

related to Streptomyces sp. 8-1 EU054375, which relates to the type species S. fulvissimus.
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Figure 3.6: A 16S rDNA phylogenetic Neighbor-Joining (NJ) consensus tree of Actinobacteria isolated from
Cyphomyrmex minutus exoskeleton (green circles). The number of isolates represented by selected sequences in
the tree is shown in parentheses after the name. The phylogeny is based on partial 16S rDNA sequences of
approximately 1470bp. Type strain and additional sequences were selected from Ribosomal Data Base and
GenBank. The scale bar corresponds to 0.01 substitutions per site and bootstrap support values are >70% after
5,000 pseudoreplicates.
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In the yeast cultivar isolates, the Corynebacteriales are represented by Nocardia,
Tsukamurella and Rhodococcus. The latter was the only genus found associated with the ant
exoskeleton. The Streptomycetales are represented by Streptomyces, the most common genus

and by Kitasatospora. As before, the most frequent isolate was also Streptomyces sp. 8-1

EU054375 with 21 sequences (Figure 3.7, black arrow).
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Figure 3.7: A 16S rDNA phylogenetic Neighbor-Joining (NJ) consensus tree of Actinobacteria isolated from
Cyphomyrmex minutus yeast cultivar (orange circles). The number of isolates represented by selected sequences
in the tree is shown in parentheses after the name. The phylogeny is based on partial 16S rDNA sequences of
approximately 1470bp. Type strain and additional sequences were selected from Ribosomal Data Base and
GenBank. The scale bar corresponds to 0.01 substitutions per site and bootstrap support values are >70% after

5,000 pseudoreplicates.
3.4. DISCUSSION AND CONCLUSIONS

The microbial community and their ecological dynamics in the yeast agriculture is an
understudied aspect of the fungus-growing ant symbiotic system. We presented critical points
about the interaction between the yeast agriculture ant C. minutus, its defense mechanismand

the potential symbiosis with Actinobacteria.

First, C. minutus workers do not present visible Actinobacteria growth over the propleural
plate or the exoskeleton. However using SEM we observed bacterial growth on the forelegs
exoskeleton and an unidentified coverage over the propleural plates (Figure 3.1).
Cyphomyrmex minutus presents propleural plates with crypts covered with an unidentified
substance. The crypts resembled previous morphological descriptions in other attine ant
species and thus, have the potential to harbor Actinobacteria in them. However, minor
morphological differences of the crypts related to their form and arrangement in the propleural
plate were recognized when compared to other Cyphomyrmex species that are not part of the
rimosus group (Currie et al. 2006). Further comparison with other members of the rimosus

group is needed to explore these differences in detail.

The characterization of Actinobacteria communities associated with the ant exoskeleton and
the yeast cultivar showed similar composition. Both communities shared Streptomyces as the
most frequent isolate. Other common isolated genera included Nocardia, Rhodococcus and

Tsukamurella. This is not surprising because attine ants manage or rearrange the cultivar yeast

46



pellets with their antennae, frontal legs, and mouth and propleural plates; hence coming in
constant contact with other microorganisms in the community (Currie 2001a, Currie et al.
2006, Shultz and Brady 2008, Mehdiabadi and Shultz 2010). Based on our results, we
interpret that there are almost no differences between the Actinobacteria communities

associated with the ant exoskeleton and the yeast cultivar.

The most frequent isolated species of Actinobacteria was Streptomyces sp. 31 100% similar to
Streptomyces sp. 8-1 (EU054375). This strain was isolated from 48% of the ant exoskeleton
samples and from 33% of the yeast cultivar samples. High probability of isolating this
particular strain from C. minutus exoskeleton and yeast cultivar indicates a potential role in
the yeast agriculture symbiosis system. Streptomyces sp. 8-1 was isolated originally from
“torrid zone forest soil”” in China, but unfortunately no other information is available for the
strain. The closest comparable type strain is Streptomyces avermitilis, an important industrial
strain for the production of secondary metabolites (Omura et al. 2001). The predominant
presence of Streptomyces strains in the yeast agriculture system suggests an initial acquisition
from soil of secondary metabolite products with potential benefits for the ant and its cultivar.
Furthermore, the low diversity in the ant and cultivar communities, as indicated by Simpson
and Shannon indices, in combination with one highly prevalent member as suggested by
Dominance and Eveness indicators, give support to the idea of a beneficial relationship. At
least for C. minutus ants in Cambalache Forest Streptomyces sp. 31 seems to be prevalent
enough to play a possible beneficial role in the community that may include defense
mechanisms against pathogens by secondary metabolite production as described for other

fungus-growing ant agricultural systems.
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4. FUNGI ASSOCIATED WITH THE CULTIVAR AND THE REFUSE MATERIAL
4.1. INTRODUCTION

The ants in the monophyletic tribe Attini are characterized by their agricultural practices. In
general the ants of this group collect organic material as substrate for their fungal cultivar
(Currie 2001a). The cultivar is a Leucocoprinaceus fungus (Basidiomycota) that serves as the
main source of food. The Attini ants and the cultivar have a coevolution history of over 50
million years (Shultz and Brady 2008). This interaction was described as an important
example of symbiosis, an arms race between the ant and the cultivar to evolve and survive
against pathogens (Currie 2001a). The ant-cultivar mutualism has evolved into 5 different
agricultural practices: Lower Attini agriculture, Coral fungi agriculture, Yeast agriculture
(Cyphomyrmex rimosus group), Higher domesticated agriculture and Leaf-cutter agriculture
(Mehdiabadi 2010, Shultz and Brady 2008). Cyphomyrmex species members of the rimosus
group (39 species) are the only Attini ants that do not cultivate fungi as mycelium, but rather

in yeast form (Weber 1972, Shultz and Brady 2008, Mehdiabadi and Shultz 2010).

The cultivar reproduces clonally in the presence of the ants and is transmitted vertically from
one nest to the other by the new queen (Currie et al. 1999). Clonal reproduction and nest
environment make the cultivar vulnerable to pathogens. To protect the cultivar the ant
developed complex hygienic behaviors that include: antennal inspection, nest rearrangement,
cultivar and exoskeleton weeding and grooming, antimicrobial glandular secretion and
association with antibiotic producing Actinobacteria among others (Murakami and Higashi

2007, De Finelinch and Boomsma 2010, Mehdiabadi and Shultz 2010, Pagnocca et al. 2012)

Escovopsis (Ascomycota) is the specialized parasite of the fungus-growing ant cultivar, but

other microfungi and yeasts have been consistently isolated from Attini nests (Weber 1972,
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Rodrigues et al. 2008). Escovopsis is an anamorphic and necrotic mycoparasite that belongs to
the order Hypocreales of the Ascomycota (Reynolds and Currie 2004, Currie 2003). The
transmission of the pathogen between nests is unknown, but it has been suggested to be
horizontal because Escovopsis has not been reported for any other environment other than
Attini ant nests (Currie 1999b, Bo et al. 2001, Reynolds and Currie 2004). In addition,
Escovopsis is specific to the cultivar in four of the Attini agricultural practices infecting on
average 39.7% of the studied cultivar gardens (Currie 2001b, Mehdiabadi and Shultz 2010).
Infection rate varies between species and sampling sites from 11-75% (Currie 2001b,
Rodrigues et al. 2008). Escovopsis infected colonies of Atta have smaller cultivar gardens and
lower production of workers (Currie 2001b). On the other hand, the new queen does not carry
pathogen inoculums, the infection does not start immediately after nest establishment and one
Escovopsis species can be related to many Attini genera and vise versa (Currie et al. 1999,
Currie 20014, Seal et al. 2007, Pagnocca 2008). How the pathogen is transmitted has not been
determined yet, but the possibility exists that other insects that live in the nest can serve as

vectors for Escovopsis (Currie et al. 1999).

After inspecting the cultivar, substrate, nest material and other workers with the antennae, the
ants start grooming and weeding refuse material. The ants lick and moisten the material with
their mandibles and salivary secretions. The refuse material is disposed in dumps (Weber
1958, Bot et al. 2001, Seal et al. 2006). This adaptation appears to be similar for all the Attini
and it is suggested as a standard behavior for all the agricultural practices (Weber 1958). The
Attini ants that practice yeast agriculture are the smallest of all genera. Their nests consist of
only one chamber, where the ants place the cultivar, the brood and the refuse material

separately by areas (Weber 1958, Seal et al. 2006). In other Attini groups the ants have
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multiple chambers and ants with more specialized behaviors (Weber 1958, Weber 1972,

Currie 20014, Bot et al. 2001).

Besides multiple chemical and mechanical defenses, the Attini nest is not a sterile
environment. Inaddition to the cultivar, cultivar pathogen and the Actinobacteria symbionts,
other microorganisms can colonize this environment (Weber 1972, Rodrigues et al. 2005b). In
laboratory nests of Atta cephalotes a change in the mycoflora associated with the cultivar as a
consequence of the plant substrate provided has been observed (Pagnocca et al. 2012). This
suggests that the organic materials that ants bring into the nest might function as vectors for
the mycoflora. Common soil fungi such as Fusarium, Rhizopus and Trichoderma and yeast in
the genera Cryptococcus, Pichia, Rhodotorula, Sporobolomyces and Trichosporon were
detected in environmental samples of Atta (Carreiro et al. 2002, Pagnocca et al. 2009,

Pagnocca 2012).

Studies with multiple species of Acromyrmex showed a high prevalence of Fusarium
oxysporum and Cunninghamella binarae in addition to 13 other genera (Xylaria, Volutella,
Penicillium, Paecilomyces, Monliella, Lecythophora, Thrichoderma, Cladosporium,
Chaetomium, Eupenicillium, Aspergillus, Syncephalastrum and Mucor) representing 10% of
all isolates (Rodrigues et al. 2005a, Rodrigues et al. 2008). The above mentioned genera are
common soil fungi and some of them are potential pathogens; although none of them appear
to cause significant damage to the cultivar or to be as highly specialized as Escovopsis
(Rodrigues et al. 2008). In Acromyrmex species, F. oxysporum and C. binarae do not seem to
affect the cultivar garden. They appear to compete for nutrients in the same environment,

acting as antagonists, but not as pathogens (Rodrigues et al. 2008).
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In yeast agriculture, Escovopsis has not been isolated in association with the cultivar or any
other part of the symbiosis. Additionally, there are no studies about the mycoflora associated
with this community. The information about Escovopsis and other fungi in the Attini refuse
material is limited. In Atta colombica, Ecovopsis is present in 48% of the sampled nests, while
it was isolated from 66% of the refuse material sampled (Currie et al. 2001b). In this case, as
expected, the prevalence of the pathogen is higher in the ants refuse material than in the
cultivar. Proportions might vary between species and sampling sites, but have not yet been
reported. Experimental work with Acromyrmex laboratory colonies showed that ant workers
kept near refuse material dumps died sooner than non-exposed ants (Bot et al. 2001). The
refuse material might represent another adaptation of the Attini ants to protect their main

source of food against potential pathogens.

For many years, yeast agriculture was considered as the most primitive agricultural practice
among Attini ants (Weber 1958, 1972, Mueller 2001). The rimosus group was described as
the smallest ant species with the simplest nest and cultivar gardens among the Attini species.
One important reason was that they cultivate a unicellular phase of fungi instead of a more
complex multicellular form. Furthermore, they only add raw material as a substrate to their
gardens such as insect corpses and feces (Weber 1952, Weber 1972, Brady and Shultz 2008).
In addition, their cultivar can be found as free-living fungi in the environment (Mikheyev et

al. 2010).

Molecular studies showed that the rimosus group is an intermediate group between the Lower
and Higher Attini (Shultz and Brady 2008). The cultivar presents pleomorphisimand grows,
in the ant presence, as yeast pellets created with salivary secretions and the provided substrate

(Weber 1958, 1972). A recent study demonstrated that the primary nutrient source for the
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cultivar is the regurgitated liquid nectar (De Finelincht and Boomsma 2010). Furthermore, the
Leucocoprinae C. minutus cultivar itself has the ability to produce antifungal
diketopipperazines (Wang et al. 1998). We wondered if behind the possible absence of the
pathogen is a very successful adaptation between the rimosus group and its cultivar perhaps

including other associated microorganisms.

The main goal of this study is to describe, for the first time, the microfungal community
associated with the nest of the yeast agriculture ant C. minutus in Puerto Rico. We described
the microfungi in association with the cultivar and the refuse material of the nest. Even
though it is generally accepted that Escovopsis is not present in yeast agriculture gardens there
are no studies reporting the presence or absence of the pathogen or any other microfungi

associated with yeast agriculture.

4.2. MATERIALS AND METHODS

4.2.1. SAMPLES SELECTION
We collected samples in two periods, 2010 rainy season and 2011 dry season at Cambalache
Tropical Forest. Samples from stabilized artificial C. minutus nests were processed in the
laboratory the same day of sampling. We selected 3 cultivar pellets from each nest.
Separately, we selected 3 refuse material clusters from 6 different nests and prepare them for

direct DNA isolation.

4.2.2. MICROORGANISM AT THE CULTIVAR AND REFUSE MATERIAL SURFACE

We selected three different yeast cultivar clusters and 3 different refuse material samples to be
fixed with 2.5% gluteraldehyde for 24 hour at 4°C ina 1.5mL microcentrifuge tubes. We

washed the samples three times with phosphate buffer [0.1 M]. Samples were dehydrated
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using serial ethanol washes (10%-100%) for 15 minutes each. Every time we changed liquids
we centrifuged the samples for 30 seconds at 300 rpm. Dehydration was completed by critical
point drying for 30 minutes. Dried samples were covered with gold/palladium to allow

electron conductivity. Using the scanning electron microscope (SEM) we observed the yeast

clusters (De Nollin and Borgers 1975, Gabriel 1982).

4.2.3. ISOLATION AND IDENTIFICATION OF THE MICROFUNGI ASSOCIATED FORM
THE YEAST CULTIVAR

Cultivar pellets were washed, macerated and mixed with vortex in 1.5mL microcentrifuge
tubes with 900uL of 0.7% NaCl. Intriplicate, we inoculated 300 pL of each wash in Potato
Dextrose Agar (PDA) (39 g Potato Dextrose Agar powder in a final volume of 1000mL of
dH,0). To avoid bacterial growth we supplemented the media with Penicillin and
Streptomycin (0.05¢/L). We spread the solution and incubated at 25°C. We checked the plates
for growth every 24 hours. Selection and further purification was performed every day during
four weeks. Multiple transfers were needed to obtain pure cultures. We classified isolates from

each nest and identified macroscopic morphological characteristics.

4.2.4. DNA EXTRACTION AND ITS1/ITS2 AMPLIFICATION

We extracted total DNA from all isolates in pure culture with the Cetyl-trimethyl ammonium
bromide (CTAB) modified protocol (Mueller et al. 1998, Vo et al. 2009). We macerated the
cells ina frozen mortar (-80°C) until we obtained a fungal powder. The powder was
transferred to 1.5 mL tubes with CTAB. To continue cell wall disruption, we subjected the
samples to three cycles of freeze (-80°C) thawing (65°C). Later we treated the samples with
chloroform followed by isopropanol precipitation and 100% ethanol washes. Samples were

dried and then resuspended with TE 1:10 buffer and preserved at -20°C.
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Approximately 40ng of DNA template were used for amplification of the ITS1/ITS2 in 50puL
reactions, which included: 0.8x PCR buffer, 2.5nm MgCL, 0.6 M of each primer 0.16 mM
dNTps and 5U Taq polymerase per reaction. We used the following thermal parameters: 95°C
37,95°C 457, 52°C 457, 72°C 1"3"and 72°C for 30 cycles. Fungal primers that amplify the
ITS1/ITS2 region: ITS4 Reverse (5 TCCTCCGCTTATTGATATGC) and IT5 Forward
(5'GGAAGTAAAAGTCGTAACAAGG) (White 1990) were used. We used 10ng/uL DNA
amplification product that varies between 550-700 bp to sequence at the High-Throughput

Genomics Unit of the University of Washington, Seattle, WA.

4.2.5. FUNGI FROM THE REFUSE MATERIAL

Each refuse material sample was processed separately. First we performed a DNA extraction
with Cetyl-trimethyl ammonium bromide (CTAB) modified protocol (Mueller et al. 1998, Vo
etal. 2009). We macerated refuse material clusters with a pestle in 1.5 mL tubes with CT AB.
To disrupt cells we changed temperature from 65°C to -80°C for 10 minutes each time and
repeated the process 3 times. Later we treated the samples with chloroform followed by
isopropanol precipitation and 100% ethanol washes. Samples were dried and then
resuspended with TE 1:10 buffer and stored at -20°C. We used a Gel/PCR DNA Fragment
extraction kit (1BI Scientific) after Polymerase Chain Reaction of the ITS1 and ITS2.
Approximately 40ng of purified DNA template was used for amplification in 50uL reactions
that included: 0.8x PCR buffer, 2.5nM MgCL, 0.6uM of each primer, 0.16mM dNTPs and
0.15 pL Taq polymerase per reaction. Fungal specific primers for PCR were used: ITS4
Reverse (5'-TCC TCC GCT TAT TGA ATG C-3") and IT5 Forward (5'-GGA AGT AAA

AGT CGT AAC AAG G-3") (White 1990). PCR parameters used: 95°C 3", 95°C 457, 51. °C
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4577, 72°C 13”7 72°C during 30 cycles. Cloning was performed using pPGEM-T and pGEM-T
Easy vector System and the manufacturer recommended competent cells (Promega
Corporation). Positive clones were selected by colony PCR using the vector primers SP6 (5" -
TAC GAT TTAGGT GAC ACT ATAG-3") and T7 (5-TAATAC GAC TCACTATAG
GG-3"). PCR parameters used: 95°C 37, 95°C 457,45 °C 457", 72°C 1"3"" 72°C during 30
cycles. Sequencing was performed with the vector primer SP6 at the High-Throughput
Genomics Unit of the University of Washington, Seattle, WA. We used 10ng/uL DNA

amplification product for the reaction.

4.2.6. DATA ANALYSIS

Sequences were edited and analyzed using Sequencher 3.0 (Gene Codes, Ann Arbor, MI) and
Mega 5 (Tamura et al. 2011) programs. GenBank searches with BLASTn were performed to
identify the fungi at the refuse material and the cultivar pellets. We determined fungal

frequency and diversity (Shannon and Simpson indices) present in both samples.

4.3. RESULTS

4.3.1. EXPLORING THE CULTIVAR AND THE REFUSE MATERIAL SURFACE
Using SEM we studied the surface of the cultivar (Figure 4.1 A and B). We observed the yeast
pellet as a whole and disrupted by zones. The intact surface of the pellet presented an
unidentified substance covering all the yeast cells (Figure 4.1B). In figure 4.1A, we observed
disrupted areas with pseudohyphal growth. The refuse material presented a very diverse
community of microorganisms on its surface (Figure 4.1C-D). We identified bacterial and

mycelial growth around possible plant residues.
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Figure 4.1: SEM microphotographs of cultivar and refuse material surfaces. (A) The cultivar pellet presents
pleomorphisim growth with yeast and filamentous forms. (B) The yeast cells present an unidentified coverage.
(C) Plant material surrounded by microorganism growth in the refuse material surface. (D) Bacilli growing over
the refuse material surface.

4.3.2. FUNGI IDENTIFIED FROM THE CULTIVAR AND THE REFUSE MATERIAL OF
CYPHOM YRMEX MINUTUS
From 26 different nests 156 isolates were obtained and 32 different genera in association with
C. minutus cultivar were identified (Figure 4.2). Basidiomycota, Ascomycota and
Zygomycota members were found associated with the cultivar (Figure 4.4). The most frequent
genera were Penicillium (24%), Aspergillus (22%), Fusarium (9%), Trichoderma (8%),
Neurospora (6%) and Microdochium/Monographella (5%). The rest of the isolates together

represent 25% of the sample, less than 2% per genus.
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Figure 4.2: Frequency of microfungi cultures isolated from C. minutus cultivar.

We sequenced 145 different clones from refuse material samples. We identified 25 genera in the
Basidiomycota and Ascomycota. The high frequency genera (Figure 4.3) in our culture-independent
samples were Microdochium/Monographella (50%), Fusidium (8%), Petriella (7%) and
Leptosphaeria (6%). The rest of the samples combined represent less than 29% of all studied

clones.
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Figure 4.3: Frequency of clones identified from the refuse material samples by genus.

We consistently recovered from the cultivar and the refuse material the following genera:
Aspergillus, Bionectria, Microdochium/Monographella, Paecilomyces and
Penicillium/Talaromyces (Figures 4.2 and 4.3). In both samples we used ITS1/ITS2 as marker
to identified organisms, but only analyzed them to genus level. We are not confident in
species level identifications with this marker. In addition, many of the clones might represent

the same fungus reported here as two different names (i.e. telomorph/anamorph).

4.3.3. DIVERSITY INDICES

Biodiversity of cultivable microfungi isolated from C. minutus cultivar was described using
Simpson (S) and Shannon (H) indices (Table 4.1). The Simpson index evaluates the quantity
of species in the sample and the richness in each sample (entropy). With the Dominance (D)

calculation we can assess the presence of dominant species over the rest of the population.
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The cultivable microfungal community associated with C. minutus cultivar (32 different
genera in 156 samples) presented a diversity entropy indicator S,pjvar = 0.0718 and dominance
value D¢ypivar = 0.9282. In the fungal community associated with the refuse material we
identified 25 genera from 145 clones. Using the same indices, we obtained S ese = 0.1274 for
entropy and D efse = 0.8726 for dominance. The fungal community from the cultivar appears
to be less entropic in terms of diversity than the community from the refuse material (Scutivar =
0.0718 < Sieuse = 0.1274). The possibility of dominant species in the community is higher in

the case of the community isolated from the cultivar (Defyse = 0.8726 < Dypivar = 0.9282).

In addition, we analyzed the same results using the Shannon index (H). This index evaluates
the number of observed individuals for each species. In the case of the cultivable microfungal
community from the cultivar we obtained Hyivar = 2.569 index value and H fyse = 2.092 for
fungal clones from the refuse material. Values over 2.0 indicated variety of species in the
community and high diversity. When we compared these two communities, the cultivar
community appears to be slightly more diverse than the refuse material community (Hcugivar =
2.569 < Hpeise= 2.092). Eveness (E) indicates how close in species numbers are the
communities. Eveness indicators for both communities exceed 1, indicating that the

proportion of members of the each species is very similar in both communities (Table 4.1).
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Table 4.1Diversity indices estimated for fungal communities from the cultivar and the refuse

material

Diversity index

Fungi identified from

Simpson Index (S)

S=0 low entropy (one species or few)

S=1 high entropy (diverse community)
Dominance (D=1-S)

D=0 all species are equally present

D=1 one species dominates the community
completely

Shannon index (H)

H<0 only one species at the community

H>0 more than one species at the community
Eveness (E)

E=1 similar proportion of all species in the
community

E>1 dissimilar proportion of the species in the
community, dominant species

Yeast Refuse
cultivar material
0.0718 0.1274
0.9282 0.8726
2.569 2.092
1.692 1.496

4.3.4. PHYLOGENETIC RELATIONSHIP BETWEEN THE IDENTIFIED FUNGI

Phylogenetic relationships between isolates from the cultivar were analyzed through

Neighbor-Joining with p-distance and bootstrap support values after 5,000 pseudoreplicates.

We included the closest previously identified sequences form GenBank using BLASTnand

our isolates obtained in this study (Figure 4.4). We identified members of the Basidiomycota

(green area), Ascomycota (orange area) and Zygomycota (purple area) (Figure 4.4).

Ascomycota members were the most frequent including Penicillium/Talaromyces,

Aspergillus, Trichoderma, Neurospora and Microdochium/Mographella (Figure 4.4).
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Figure 4.4: Neighbor-Joining tree of microfungi associated with C. minutus cultivar. Sequences from this study
(blue squares) were compared with sequences from GenBank database using BLASTn. The tree was made using
the information from the ITS region of the ribosomal DNA. The scale bar corresponds to 0.02 substitutions per
site. Bootstrap support after 5,000 repetitions. The black arrows present the most frequent genera isolated.
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Culture-independent identification of the fungi at the refuse material showed that only 1% of
the genera belonged to Basidiomycota (Agaricales). The rest of the isolates were Ascomycota
members in the following orders: Chaetothyriales, Eurotiales, Helotiales, Hypocreales,
Magnaporthales, Pleosporales and Xylariales. The most frequent isolates were market with a
black arrow (Figure 4.5). Monographella, anamorph of Microdochium, is the most prevalent
followed by Fusidium (Hypocreales: Nectriaceae). It is important to highlight here that these
samples were obtained by cloning and the majority of them belong to uncultivable fungi.
Unfortunately, GenBank database does not have many closely related sequences to compare.

Thus, we used the best sequence matches available to construct our trees.
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Figure 4.5: Neighbor-Joining tree of fungi associated with C. minutus refuse material. Sequences from this study
(green squares) were compared with sequences from GenBank database using BLASTn. The tree was made
using the information from the ITS region of the ribosomal DNA. The scale bar corresponds to 0.02 substitutions
per site. Bootstrap support after 5,000 repetitions. The black arrows present the most frequent genera identified
from the refuse material.
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When comparing cultivar and the refuse material commnuties we observed five genera in
common that were present in our samples: Aspergillus, Bionectria, Microdochium,
Penicillium and Talaromyces. Interestingly, many of the recognized fungi are members of the
order Hypocreales: Aschersonia, Bionectria, Cylindrocladiella, Fusarium, Glomerella,
Hypocrea, Paecilomyces, Nectria, Trichoderma and Volutella. Among these Hypocreales
Bionectria is the only one that was identified from both communities. Escovopsis, the specific

fungus-growing ants cultivar pathogen, belongs in the Hypocreales.
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Table 4.2: Comparison between identified fungi in association with the cultivar and the nest
refuse material. Genera repeated in both environment are in red. Hypocreales members are

identifiey with (*).
Classification Cultivar Refuse material
Basidiomycota Coprinus sp. Clitopilus sp.
Cryptococcus sp.
Earliella sp.
Phlebia sp.

Rhizoctonia sp.
Rigidoporus sp.
Trametes sp.
Wrightoporia sp.

Ascomycota

Zygomycota

Aspergillus sp.
Bionectria sp.*
Candida sp
Cladosporium sp
Cochliobolus sp
Cylindrocladiella sp*
Eupenicillium sp
Fusarium spp *
Glomerella sp*
Helotiaceae sp
Hypocrea sp*
Lasiodiplodia sp
Leptosphaerulina sp
Microdochium
sp/Monographella sp
Neurospora sp.
Paecilomyces sp.
Penicillium sp/ Talaromyces sp
Pestalotiopsis sp
Phlebiopsis sp
Trichoderma sp*
Volutella sp*
Xylaria sp

Mucor sp
Rhizomucor sp

Aschersonia*
Aspergillus sp
Bionectria sp*
Dactylella
Dendroclathra sp
Dokmaia sp
Fusidium sp*
Leiosphaerella sp
Leptodiscella sp
Leptosphaeria sp
Liberomyces sp

Microdochium sp/Monographella sp

Mycoleptodiscus sp

Nectria sp*

Paecilomyces sp

Peltaster sp

Penicillium sp/ Talaromyces sp
Petriella sp

Podospora sp

Rhinocladiella sp
Scolecobasidium sp
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4.4, D1scussION AND CONCLUSIONS

The fungus-growing ant symbiosis system was described as an almost axenic environment for
years. In the system, the ant cultivated a garden of basidiomycetous mycelial fungi (with the
exception of C. rimosus group) (Weber 1955, Weber 1958). Later, the description of the
system expanded as a complex environment consisting of various fungi that had specialized
interactions including the pathogen Escovopsis (Currie 1999b). In addition, multiple
mechanisms to protect the cultivar were explored including: (1) the mutualism with antibiotic
producing bacteria, (2) ant hygienic behaviors (weeding, grooming, antennae activity,
glandular and salivary secretions, etc) and (3) antimicrobial metabolites produced by other
microorganisms present in the nest (bacteria, yeast or mycelial fungi different from the
described symbionts) or the cultivar by itself (Wang et al. 1998, Currie et al. 1999a, Currie
2001a, Currie 2001b, Rodrigues et al. 2005a, Rodrigues et al. 2008). The interaction between
the main symbionts in the system and other microorganisms remains understudied, although
recent works suggest that additional defense mechanisms may be involved while in some
cases parasitism or competence for the same environment may be occurring (Rodrigues et al.
2005b, Rodrigues et al. 2008, Pagnocca et al. 2008, Little and Currie 2009, Pagnocca et al.

2012).

Previous to this study there was no information about the actinobacteria community or the
presence of Escovopsis in the yeast agriculture system. Our results established the absence of
Escovopsis, the fungus-growing ant specialized pathogen, from the cultivar and refuse
material of C. minutus in Cambalache Forest. We propose several alternative scenarios, which
are not necessarily mutually exclusive. (1) Escovopsis is not present in Puerto Rico. In order

to demonstrate this assumption we need to study the mycoflora associated with other species
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of fungus-growing ants in Puerto Rico (Trachymyrmex jamaicensis, Mycetophylax conformis
and Mycocepurus smithii), which do not practice yeast agriculture (Wheeler 1862). (2) The
rimosus group prevents growth of pathogens through antimicrobial secretions that induce the
cultivar pleomorphisim, but we do not know the mechanism. Based on nest observation, in
addition to hygienic behavior, C. rimosus regurgitates liquid and insect feces as substrate for
the cultivar, and then the ants apply the substrate to the pellets through licking (De Finelinch
and Boomsma 2010). The regurgitated substrate might contain salivary and digestive
secretions with antimicrobial capabilities. Regurgitation is unique to yeast agriculture ants (De
Finelinch and Boomsma 2010). (3) The cultivar in yeast form cannot be infected by the
fungus-growing cultivar pathogen. The yeast form decreases the exposed area available for
infection; hence preventing Escovopsis from penetrating the mycelium and secreting necrotic
enzymes, which initiate infection (Currie 2001b, Reynolds and Currie 2004). (4) Another
possibility is that the cultivar in yeast form has the ability to protect itself. Leucoagaricus
cultivar specialized to live in association with yeast agriculture ants evolved about 25 million
years ago with the possibility of having its own defenses against pathogens (Mikheyev et al.
2010). Such defenses might have included the cultivar antifungal diketopipperazines or some
other similar adaptation (Wang et al. 1998). (5) Finally, other microorganisms present in the
system might compete for nutrients and resources not available to Escovopsis and/or have
antagonistic relationships with pathogens not yet reported (Rodrigues 2008, Freinkman et al.

2009).

The fungal community living in association with the yeast agriculture ant C. minutus was
studied inan attempt to identify potential fungal antagonists. If we compare the cultivar and

the refuse material communities we observe that five genera were isolated from both the
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cultivar and the refuse material: Aspergillus, Penicillium/Talaromayces,
Microdochium/Monographella, Bionectria and Paecilomyces (Table 4.2). All of them are

Ascomycota, like Ecovopsis.

In terms of diversity, both communities show relatively low diversity according to the
calculated indices with one or four possible dominant species over the rest of the community.
In the case of the cultivar, Penicillium and Aspergillus appear to be dominant. As a
consequence of their arial spores propagation system these two genera might have an
advantage growing in laboratory medium over other species. However, these two genera have
been isolated from other fungus-growing ant nests (Table 4.3). Penicillium and Aspergillus
species were identified from Trachymyrmex septentrionalis, Atta spp., Acromyrmex spp.,
Cyphomyrmex wheeleri (Lower agriculture) nests (Weber 1955, Rodrigues et al. 20053,
Rodrigues et al. 2008, Rodrigues et al. 2011). Members of Aspergillus and Penicillium also
have cellulose degradation capabilities that allow them to affect several plants and their fruits
(Wood et al. 1989, de Vries and Visser 2001) and can be transported into the nest. In addition,
some species of Aspergillus, such as A. ochraceus, are facultative entomopathogens (Lage et
al. 2001). Both genera might have the capability of infecting the cultivar, but because they are
considered common soil saprofitic fungi and they were present in a low frequency this
posibility is unlikely (Rodrigues et al. 2005a, Rodrigues et al. 2008, Rodrigues et al. 2011).
Hence, Aspergillus and Penicillium are part of the normal soil and the nest mycoflora, which

can sometimes overgrow in the ant nest (Steiman 1995,Currie 2001a, Rodrigues et al. 2008).

The diversity indices also indicate that between both communities the refuse material fungal

community is more diverse. These results might be a consequence of the culture independent
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used, which takes in consideration uncultivable fungi. The most dominant group in this
community appears to be Microdochium, which was also isolated from the cultivar pellets in a
lower frequency. Inaddition, this genus has never been reported in any other fungus-growing
ant nests (Table 4.3). Members of Microdochium are well known plant pathogens (Ernest
2011). Recently, cyclosporine A was isolated from the estuarine species M. nivale, which
shows antifungal activity against species of Aspergillus, Trichophyton, Microsporium and
Fusarium (Bhosale et al. 2011). As suggested by Rodrigues et al. (2011), microfungi present
in the Attini nest with antifungal capabilities may indicate an additional protection from

pathogenic organisms.

Escovopsis belongs in the order Hypocreales. We identified 9 members of this order from both
communities (Aschersonia, Bionectria, Cylindrocladiella, Fusarium, Glomerella, Hypocrea,
Nectria, Trichoderma and Volutella). The only Hypocreales genus in common to both
communities was Bionectria, a common soil fungus (Wang 2011, Freinkman 2009), which
has also been identified in association with wood-feeding bark beetle (Freinkman 2010).
Bionectria spp. have been reported from the Attini ant Apterostigma dentigerum cultivar
(Table 4.3) (Freinkman 2010). Bionectria species isolated from A. dentigerum nests produce
Bionectriol A, a polyketide glycoside who’s role in the interaction remains unknown.
However, similar polypeptide glycosides produced by Streptomyces have significant activity

against antibiotic resistant staphylococci and enterococci (Herold et al. 2005).

Paecilomyces species have been describe from decaying plants and different soil samples
including high heat resistant strains isolated from food (Sampson et al. 2009). Paecilomyces
fumosoroseus is an entomopathogen that affects the Russian wheat aphid, Diuraphis noxia

(Mesquita et al. 2001), which also degrades cellulose and lining efficiently (Kapoor et al.

69



1978). Another entomopathogen species is P. lilacinus, which produces proteases and
chitinases that can alter the eggshell structure of nematodes (Khan et al. 2004). Our results
identified a closely related species (Figure 4.4) indicating that the nest environment is

subjected to common soil entomopathogens.

Several genera that were identified from C. minutus in this study were also recorded from C.
wheeleri (Rodrigues et al. 2011). A detailed comparison for both ants is shown in Table 4.3.
Although C. wheeleri does not practice yeast agriculture, the two ants belong in the same
genus and cultivate closely related Leucoagaricus fungi (Mikheyev et al. 2010). The two
species share similar behavior characteristics such as nest establishment, architecture and
colony size (Weber 1958, Weber 1972). Phlebia species (Basidiomycota) were isolated in
low frequency for both ant species. Phebia gigantea, a well-known member of this genus,
causes white rot on turf grasses, demonstrating cellulose and lignin degradation capabilities

(Sartain and Volk 1983).

Other Ascomycota genera identified from both Cyphomyrmex species are: Paecilomyces,
Penicillium, Trichoderma, Fusarium, Eupenicillium, Cladosporium, Hypocrea,
Leptosphaerulina and Podospora. Paecilomyces and Penicillium were also isolated from
other fungus-growing ants as mentioned above. Fusarium sp. and Trichoderma sp. appear to
be frequent invaders of the fungus-growing ants without causing any negative effect in the
community (Rodrigues et al. 2005a, 2008, 2011). Some authors consider them garden weeds
that can be influenced by sampling season, ant species and geographical location (Currie
1999b, Rodrigues et al. 2005, 2011). Inaddition, Candida species associated with fungus-

growing ants show mycotoxin activity that affects other fungi in the community (Pagnocca
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2008). The yeast Cryptococcus also presents an inhibitory effect on the specific pathogen
Escovopsis in Atta texana nests (Pagnocca 2008, Rodrigues et al. 2011). Both yeasts were

isolated from C. minutus nests in Puerto Rico (Table 4.3).

In this study, we show the absence of Escovopsis in C. minutus nests and the presence of a
fungal community comparable to other fungus-growing ant nests. Further studies are needed
to understand and explore these fungi capabilities and roles in association with yeast-growing
ants. We determine that genera like Penicillium, Aspergillus, Fusarium and Trichoderma are
present in almost every sampled nest (Table 4.3). Nevertheless, these microfungi do not affect
the cultivar or seem to act as pathogens. They appear to compete for the nutrients in the
fungus-growing ant systems as they do in their natural environment (Rodrigues et al. 20009,
2011). Genera suchas Bionectria, Microdochium and Paecilomyces produce antifungal
compounds or can be potential entomopathogens. Rodrigues et al. (2009) suggest that
microfungi in the fungus-growing ant communities can be controlling nutrient competition
and as a consequence the ant and potential cultivar pathogens. Further studies must
concentrate efforts in understanding Candida, Cryptococcus, Bionectria, Microdochium and

Paecilomyces antibiosis and their potential role in yeast cultivar defense.
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Table 4.3: Comparison between the fungi community identified from Cyphomyrmex minutus (cultivar and refuse material) and other
fungus-growing ants (cultivar, refuse material or ant body). All the fungi listed were identified from C. minutus (*) in this study.

Isoleted from

Clasification Classification Cultivar Refuse material Ant body
Basidiomycota Clitopilus Cyphomyrmex minutus*
Coprinus Cyphomyrmex minutus*
Cryptococcus Cyphomyrmex minutus* Myrmicocrypta sp (Pagnocca et al. 2009) Atta spp (Pagnocca et al. 2008)
Atta texana (Rodrigues et al. 2009)
Earliella Cyphomyrmex minutus*
Phlebia Cyphomyrmex minutus*
Cyphomyrmex wheeleri (Rodrigues et al. 2011)
Rhizoctonia Cyphomyrmex minutus* Acromyrmex spp (Van Borm et al. 2002)
Atta texana (Rodrigues et al. 2011)
Rigidoporus Cyphomyrmex minutus*
Trametes Cyphomyrmex minutus*

Wrightoporia

Cyphomyrmex minutus*
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Table 4.3: (Cont.)

Isoleted from
Clasification  Classification Cultivar Refuse material Ant body
Ascomycota  Arthrobotrys Atta sexdens rubropilosa (Rodrigues et al. 2005a) Cyphomyrmex minutus*
Aschersonia Cyphomyrmex minutus*
Aspergillus Cyphomyrmex minutus* Cyphomyrmex minutus* ?étg\ggaevigata (Pagnocea etal.
Atta sexdens rubropilosa (Rodrigues et al. 2005a) ?{t)tg\szt)axdens rubropilosa (Rodrigues et al.
Trachymyrmex seotentrionalis (Weber 1955, Rodrigues
et al. 2011)
Cyphomyrmex wheeleri (Rodrigues et al. 2011)
Acromyrmex spp (Rodrigues et al. 2008)
Atta texana (Rodrigues et al. 2011)
Bionectria Cyphomyrmex minutus* Cyphomyrmex minutus*
Apterostigma dentigerum (Freinkman et al. 2009)**
Candida Cyphomyrmex minutus* Myrmicocrypta sp (Pagnocca et al. 2009) Atta spp (Pagnocca et al. 2008)

Cladosporium

Cochliobolus
Cylindrocladiella
Dactylella

Atta texana (Rodrigues et al. 2009)
Cyphomyrmex minutus*

Atta sexdens rubropilosa (Rodrigues et al. 2005a)
Acromyrmex hispidus (Rodrigues et al. 2008)
Chyphomyrmex wheeleri (Rodrigues et al. 2011)
Cyphomyrmex minutus*

Cyphomyrmex minutus*
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2005a) Atta spp (Pagnocca et al. 2008)

Cyphomyrmex minutus*



Table 4.3: (Cont.)

Isoleted from
Clasification Classification Cultivar Refuse material Ant body
Ascomycota Dendroclathra Cyphomyrmex minutus*
Eupenicillium Cyphomyrmex minutus*
Acromyrmex hispidus (Rodrigues et al. 2008)
Chyphomyrmex wheeleri (Rodrigues et al. 2011)
Trachymyrmex septentrionalis (Rodrigues et al. 2011)
Atta texana (Rodrigues et al. 2011)
Fusarium Cyphomyrmex minutus* Atta sexdens rubropilosa (Rodrigues et al. 2005a)  Atta spp (Pagnocca et al. 2008)
Acromyrmex spp (Rodrigues et al. 2008)
Atta sexdens rubropilosa (Rodrigues et al. 2005a)
Chyphomyrmex wheeleri (Rodrigues et al. 2011)
Trachymyrmex septentrionalis (Rodrigues er al 2011)
Fusidium Cyphomyrmex minutus*
Glomerella Cyphomyrmex minutus*
Helotiaceae Cyphomyrmex minutus*
Hypocrea Cyphomyrmex minutus*

Cyphomyrmex wheeleri (Rodrigues et al. 2011)
Lasiodiplodia Cyphomyrmex minutus*
Atta texana (Rodrigues et al. 2011)
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Table 4.3: (Cont.)

Clasification

Classification

Isoleted from

Cultivar

Refuse material

Ant body

Ascomycota

Leiosphaerella
Leptodiscella
Leptosphaeria

Leptosphaerulina

Liberomyces
Microdochium
Mycoleptodiscus
Nectria
Neurospora .
Paecilomyces

Cyphomyrmex wheeleri (Rodrigues et al. 2011)
Cyphomyrmex minutus*

Cyphomyrmex wheeleri (Rodrigues et al. 2011)
Atta texana (Rodrigues et al. 2011)

Cyphomyrmex minutus*

Trachymyrmex septentrionalis (Rodrigues et al. 2011)
Cyphomyrmex minutus*

Cyphomyrmex minutus*

Acromyrmex coronatus (Rodrigues et al. 2008)
Trachymyrmex septentrionalis (Rodrigues et al. 2011)
Cyphomyrmex wheeleri (Rodrigues et al. 2011)

Atta texana (Rodrigues et al. 2011)
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Cyphomyrmex minutus*
Cyphomyrmex minutus*
Cyphomyrmex minutus*

Cyphomyrmex minutus*
Cyphomyrmex minutus*
Cyphomyrmex minutus*
Cyphomyrmex minutus*

Cyphomyrmex minutus*



Table 4.3: (Cont.)

Clasification  Classification

Isoleted from

Cultivar

Refuse material

Ant body

Ascomycota  Penicillium

Pestalotiopsis

Petriella
Phlebiopsis
Podospora
Rhinocladiella
Scolecobasidium

Cyphomyrmex minutus*

Atta sexdens rubropilosa (Rodrigues et al. 2005a)

Acromyrmex spp (Rodrigues et al 2008)

Trachymyrmex septentrionalis (Rodrigues et al. 2011,

Weber 1955)
Cyphomyrmex wheeleri (Rodrigues et al 2011)

Atta texana (Rodrigues et al 2011)
Cyphomyrmex wheeleri (Rodrigues et al 2011)
Cyphomyrmex minutus*

Atta texana (Rodrigues et al 2011)

Cyphomyrmex minutus*
Cyphomyrmex wheeleri (Rodrigues et al 2011)
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Cyphomyrmex minutus*

Atta sexdens rubropilosa (Rodrigues et al.

2005a)

Cyphomyrmex minutus*

Cyphomyrmex minutus*
Cyphomyrmex minutus*
Cyphomyrmex minutus*

Atta spp (Pagnocca et al.
2008)



Table 4.3: (Cont.)

Clasification

Classification

Isoleted from

Cultivar

Refuse material Ant body

Ascomycota

Trichoderma

Volutella

Xylaria

Cyphomyrmex minutus*
Acromyrmex spp (Rodrigues et al 2008)
Atta sexdens rubropilosa (Rodrigues 2005a)

Trachymyrmex septentrionalis (Rodrigues er al 2011)

Atta texana (Rodrigues et al 2011)
Cyphomyrmex wheeleri (Rodrigues et al 2011)
Cyphomyrmex minutus*

Acromyrmex spp (Rodrigues et al 2008)

Cyphomyrmex minutus*

Acromyrmex spp (Rodrigues et al 2008)

Atta texana (Rodrigues et al 2011)

Trachymyrmex septentrionalis (Rodrigues er al 2011)

Atta sexdens rubropilosa (Rodrigues 2005a) Atta spp (Pagnocca et al 2008)

Zygomycota

Mucor

Rhizomucor

Cyphomyrmex minutus*

Trachymyrmex septentrionalis ( Weber 1955, Rodrigues et al 2011)

Cyphomyrmex wheeleri (Rodrigues et al 2011)
Acromyrmex laticeps (Rodrigues et al 2008)
Cyphomyrmex minutus*

Bionectria was isolated from Apterostigma dentigerum cultivar substrate (Freinkman et al 2009)**
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