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This research work presents an experimental study on unmixing of hyperspectral

images at different spatial resolutions. The study looks at how the assumptions made

in the unmixing procedure affects the results of the inversion. Different algorithms

such as Constrained Positive Matrix Factorization (cPMF), Sequential Maximum

Angle Convex Cone (SMACC), and Maximum distance (MaxD) are studied and

compared. We also study the problem of estimating the number of endmembers

using the rank and the positive-rank of a matrix. The rank is estimated by the

Scree test and the positive rank is estimated with a search procedure. Hyperspectral

Imagery from the Guanica Dry Forest at one and four meters and Enrique Reef Area

in Parguera at one, two, and eight meters,were used in the experiments. The data

was collected using the AISA sensor during the 2007 Puerto Rico Hyperspectral

Mission. Field work in Guanica area and previous class maps of Enrique Reef area

were used in validation of the results.
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Este trabajo de investigación presenta un studio experimental acerca del desmez-

clado de imágenes hiperspectrales a diferentes resoluciones espaciales. El estudio

muestra de que forma los supuestos establecidos durante el proceso de desmez-

clado afectan los resultados del proceso de inversión. Diferentes algoŕitmos como

la Factorización matricial positiva con restricciones (cPMF), Cono convexo secuen-

cial de máximo ángulo (SMACC) y Distancia máxima (MaxD) son estudiados y

comparados. Además se estudia el problem de la estimación del número de firmas

espectrales clase, utilizando la aproximación del rango y el rango positivo. El rango

se estima usando un método llamado Test Scree y el rango-positivo se estima hal-

lando un valor de error adecuado en los resultados obtenidos con la Factorización

matricial positiva con restricciones con respecto al cambio en el número de las firmas

espectrales clase usadas. Imágenes del área de Guánica a uno y cuatro metros y

del área del Cayo Enrique en Parguera, a uno, dos y ocho metros, son usadas para

experimentar. Los datos fueron coleccionados por el sensor AISA durante la misión

hiperespectral de Puerto Rico en 2007. Trabajo de campo en el área de Guánica y

mapas previos de clases del área del Cayo Enrique fueron utilizadas para realizar un

reconocimento de las caracteŕisticas principales de las áreas de estudio.
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CHAPTER 1

INTRODUCTION

1.1 Justification

In hyperspectral imaging, the reflected or emitted radiation represented by a

single pixel in the remotely sensed image rarely comes from the interaction with

a single homogeneous material. However, the high spectral resolution of imaging

spectrometers enables the detection, identification, and classification of subpixel

objects from their contribution to the measured spectral signal.

Unmixing is an approach for subpixel information extraction where the mea-

sured spectral signature is decomposed into a collection of constituent spectra, or

endmembers, and a set of corresponding fractions or abundances which correspond

to the fractional area occupied by the particular endmember in that pixel. Never-

theless, Unmixing is an ill-posed inverse problem and as such the solution computed

with different unmixing algorithms depends on the underlying assumptions for the

inverse problem.

At present many authors have developed different algorithms to find endmem-

bers based on linear mixing model. Different approaches such as geometric approx-

imations and matrix algebraic approximations, have been exploited to choose the

best set of endmembers. One important issue is that the endmembers obtained
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could be or not be pixels of the image. Sequential maximum angle convex cone

(SMACC) and Maximum distance (Max D) are examples of algorithms in which

their endmembers are pixels of the image. These algorithms are fast but the opti-

mization of their results is limited by the presence of pure pixels in the image. On

the other hand cPMF obtain endmembers that are not present in the image and

makes it possible for better results with longer processing time.

Proposed and existing hyperspectral remote sensors provide information about

the scene of interest at resolutions ranging from few meters to few kilometers in

terrestrial and space applications. Understanding the type of information extracted

with image exploitation algorithms and how it relates to actual spectra on the ground

are important problems when algorithms that perform unmixing of hyperspectral

images for subpixel analysis are studied. Ideally one would expect similar solutions

for unmixing a hyperspectral image of different spatial resolutions of the same scene.

For this reason, we study the results of unmixing different images of the same

area at different spatial resolutions using different unmixing algorithms. We also

compare the estimation of the number of endmembers by using different approaches.

1.2 Objectives

1.2.1 General Objective

Study how the spatial resolution affects the type of information that is possible

to extract from a scene using unmixing techniques.

1.2.2 Specific Objectives

• Study the dependency of abundance estimation algorithms on spatial resolution.
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• Study the dependency of endmembers extraction algorithms on spatial resolution

• Study the dependency of algorithms to estimate the number of endmembers on

spatial resolution.

1.3 Contribution of this work

Our work represents a review of the performance of different endmembers ex-

traction methods where additionally the impact of the changes in the spatial reso-

lution of the images is analyzed. This is an important issue because it is useful to

know where the data from hyperspectral sensor with low spatial resolution can be

used. We also analyze the differences between endmembers extraction methods that

obtain virtual endmembers and image pixels as endmembers.

The work also introduces the use of the rank estimation and positive-rank esti-

mation as a tools to estimate the number of endmembers.

1.4 Outline

The thesis is presented in five chapters. The first one, is the introductory

chapter. The second one, is dedicated to present the theoretical background and

literature review that are necessary for the development of this thesis, in this chap-

ter the fundamental concepts of hyperspectral images, the linear mixing model and

the spectral unmixing problem are described, including the review of topics such

as estimation of the number of endmembers, abundance estimation and different

approaches about extraction of endmembers. The third chapter one presents our

problem where the linear mixing model is analyzed as a Forward problem and the

unmixing problem as an inverse problem, evaluating the impact of spatial resolution

changes in the general idea of the problem. This chapter also presents how the prob-

lem is going to be studied. Chapter four presents the experiments and the analysis
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of the results obtained with the hyperspectral data from Guanica and Enrique Reef

area. Finally the conclusions are presented in chapter five.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Hyperspectral images

A hyperspectral image (HSI) is the result of the collection of a hyperspectral

sensor. In remote sensing, the sensor can be on an aircraft or a satellite [1]. The

image is built from the energy radiated by the earth which is collected by the sensor.

The smallest element in a HSI is called pixel. The reflectance associated with each

pixel is the result of interaction of different physical factors but in specially of the

constituent materials of the area covered by the spatial field of view of the sensor.

Three aspects define in a general way a hyperspectral image: the spatial resolution

that determines the spatial size of the pixel, the spectral resolution that is the

wavelength width of the different frequency bands recorded by the sensor and the

radiometric resolution that is the number of different intensities of radiation that

the sensor is able to discriminate. The spectral resolution of an image is also related

to the number of spectral bands, typically, the hyperspectral images have more than

100 bands. Each hyperspectral pixel is a vector, where the number of components

depends on the number of bands in the image and represents a spectral signature.

(See Figure 2–1)
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Figure 2–1: Graphical representation of a pixel in a hyperspectral image

2.1.1 Examples of Hyperspectral Sensors

AISA

The AISA Eagle is a hyperspectral sensor normally used in aircrafts. The sensor

has 244-channels between the 400 to 970 nm [2],resolving spectral differences as fine

as 2-4 nm. The spectral resolution of the sensor is 2.9 nm that works with a pro-

gressive scan CCD camera. The system is capable of collecting around 1,000 pixels

per scanning line using push broom scanning and it is able to image at sub-meter

resolution. Besides a high performance sensor head, all AISA systems integrate the

following basic system components:

• Real time acquisition computer with a user-friendly interface

• GPS/INS sensor

• Power supply

• Galileo post-processing software
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The sensor has established its ability in a range of commercial, research and

public service applications. Some of the applications that AISA Eagle has been

involved in are forestry management, vegetation cultivation, environmental inves-

tigations, precision farming, target identification, water assessment and land use

planning. The sensor is operated and distributed by Galileo Group and manufac-

tured by SPECIM [3].

HYPERION

The Hyperion sensor is part of the primary instruments on the EO-1 spacecraft.

The E0-1 orbit is sun-synchronous, with an altitude of 705 kilometers, inclination of

98.2 degrees, a period of 99 minutes, and a repeat cycle of 16 days. The Hyperion

provides a high resolution hyperspectral images with 220 spectral bands (from 0.4

to 2.5 m) with a 30-meter resolution. The instrument can image a 7.5 km by 100

km land area per image, and also has a high radiometric accuracy.

The sensor has 70 spectral channels in the VNIR (visible and near-infrared)

interval (356 nm - 1058 nm) and 172 channels in the SWIR (Short-wavelength in-

frared) interval (852 nm - 2577 nm). The spectral bandwidth is equal to 10nm.

Hyperspectral imaging has different applications in mining, geology, forestry,

agriculture, and environmental management. All the Hyperion products are dis-

tributed by the U.S. Geological Survey (USGS) Earth Resources Observation and

Science (EROS)

AVIRIS

AVIRIS is an acronym for the Airborne Visible InfraRed Imaging Spectrome-

ter [4]. The sensor works across the 400 to 2500 nanometers (nm) range allowing
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complete VIS-NIR-SWIR spectrum. The AVIRIS instrument contains 224 differ-

ent detectors, each with a wavelength sensitive range of approximately 10 nanome-

ters (nm), that provide 224 contiguous spectral channels. The system uses “Whisk

broom” scanning with a scanning rate equal to 12 hertz (Hz).

AVIRIS is a sensor used on aircraft platforms. It has been flown on four aircraft

platforms:

• NASA’s ER-2 jet: It flies at approximately 20 km above sea level, collecting pixels

on the ground with an area approximately 20 meters in diameter, and yielding a

ground swath about 11 kilometers wide.

• Twin Otter International’s turboprop: It flies at 4km above ground level with a

speed of 130km/hr, collecting pixels with an area approximately of 4 meters square,

and with a swath equal to 2km wide.

• Scaled Composites’ Proteus.

• NASA’s WB-57.

AVIRIS has flown all across the US, plus Canada and Europe.

HyspIRI

HyspIRI is part of a new NASA mission that is currently at the study stage[5].

The mission was recommended in the National Research Council Decadal Survey

requested by NASA, NOAA, and USGS. This mission includes two instruments

mounted on a satellite in Low Earth Orbit. There is an imaging spectrometer

measuring from the visible to short wave infrared (VSWIR) and a multispectral

thermal infrared (TIR) imager.

The VSWIR will have a spatial resolution of 60 m at nadir with a temporal

revisit of approximately 3 weeks. TIR will also have a spatial resolution of 60 m at

nadir with a temporal revisit of approximately 1 week. The application of the data
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is oriented on a wide variety of studies, two of the most important are the Carbon

Cycle and Ecosystem and Earth Surface and Interior focus areas.

2.2 Linear Mixing Model

In hyperspectral imaging, the reflected or emitted radiation represented by a

single pixel in the remotely sensed image rarely comes from the interaction with

a single homogeneous material. A pixel would be pure if the spatial resolution

was smaller than the size of the class portion in the image, but, in real data it is

not common to find pure pixels. However, the high spectral resolution of imaging

spectrometers enables the detection, identification, and classification of sub-pixel

objects from their contribution to the measured spectral signal.

The linear mixing model [6] presents a pixel as the linear combination of the

spectral signatures of each material multiplied by its relative abundances. The

spectral signature of each pure material is known as endmember.

The model is mathematically presented for each pixel by the equation 2.1.

x j = S a j + w j (2.1)

where x ∈ <m
+ is the measured spectral signature at a pixel, S ∈ <mxp

+ is the

matrix of endmembers, a ∈ <p
+ is the vector of spectral abundances, and w ∈ <m

+

is measurement noise, m is the number of spectral bands, and p is the number of

endmembers [6]. In hyperspectral imaging, m > p, notice that all elements of S , a ,

and x are constrained to be positive, and
∑m

i=1 aij = 1. For the entire hyperspectral

image, the linear mixing model given above can be written in matrix form as

X = SA + W (2.2)
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whereX = [x 1 . . .xN ] is the matrix containing all image pixels, S = [s1 . . . sp ]

is the matrix of endmembers,A = [a1 . . .aN ] is the matrix of abundances of all

image pixels, W = [w1 . . .wN ] is the noise matrix , and N is the number of pixels

in the image.

2.3 Spectral Unmixing Problem

The spectral unmixing problem is the determination of the endmembers and

their abundances. Most state of the art methods solve the unmixing problem in two

stages. In the first stage, the number of endmembers are determined and spectral

signatures of the endmembers are extracted by searching for “pure” pixels in the

image or by using spectral signatures from a library, or field spectroradiometer data

[6, 7]. In the second stage, the abundances are estimated in many cases by solving a

constrained linear least squares problem. [8–10]. The most endmembers extraction

methods considers the number of endmembers as an input for the algorithm, for this

reason the estimation of the number of endmember also have to be consider in the

analysis of the unmixing problem solution.

2.3.1 Estimation of the Number of Endmembers

x The estimation of the number of the endmembers is a problem that many

researchers have tried to study. Virtual Dimensionality (VD) [11] is an example of

this kind of attempt and it is being used in many publications. However, recently

the effectiveness of this method has been disputed and the concepts associated with

it. Bajorski [12] shows us that the method has some inconsistencies and for this

reason we do not consider this method. We decided to explore methods oriented

into the estimation of the rank of the matrix such as the Scree Test.
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Scree Test

This test is a graphical method that was developed by Cattell [13]. This method

is based on the idea of identifying the “elbow” of a correlation factors curve. The

term “scree” comes from geology [14]; it means the rubble at the bottom of a cliff. In

our context the curve is built with eigenvalues of the normalized correlation matrix.

The correlation matrix of the image is obtained by

Rx =
1

n
XX T (2.3)

where, Rx ∈ <mxm is the correlation matrix, n is the number of pixels of the

image and X ∈ <mxn is the image matrix. For rank determination, it is better to

work with the normalized correlation matrix presented in equation 2.4

R̃x = D̃
−1/2

RD−1/2 (2.4)

where D = diag(Rx). The elements of the diagonal of R̃x are normalized to 1

and the off diagonal elements have magnitude less than or equal to one. The Scree

test is performed with the eigenvalues of the R̃x matrix. A graphical representation

of the ideal Scree curve is shown in Figure 2–2. The number of eigenvalues above

the knee of the curve is used as an estimate of the linear rank. In practice, finding

the elbow is not an easy task with real data.

2.3.2 Endmembers Extraction Methods

At present many authors have developed diverse algorithms to find endmembers

based on the linear mixing model. Different approaches ([16–18]) such as geomet-

ric approximations, statistical methods, and matrix algebraic approximations, have

been exploited to choose the best set of endmembers. Some of the most popu-

lar algorithms are N-FINDR [19], Maximum Distance (Max D) [20], Independent
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Figure 2–2: Graphic representation of the ideal Scree test model based on [15]

Component Analysis - Endmember Extraction Algorithm (ICA-EEA) [16], Vertex

Component Analysis (VCA) [21], among others.

NFINDR

This method developed by Winter [19] and modified by Du et al. [22] , looks

for a simplex with the maximum volume that could be inscribed into the data based

on
∑M

i=1 aij = 1 and imposing the assumption that there exists at least one pure

pixel per endmember species within the image. They define a pure pixel as a pixel

that has one of its abundance coefficients approximately equal to one.

They initialize the process with a random set of pixels as endmembers. The

set of endmembers estimated is refined by evaluating each pixel to find new “pure”

pixels. The endmembers are allocated in the matrix S and the volume of the simplex

is calculated. If the new pixel increases the volume, the endmember is replaced by

the pixel. This procedure is repeated until there are no more replacements. The

matrix S̃ (See equation 2.5) is the matrix of the endmembers S augmented with a

row of ones.
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S̃ =

 1 1 1 . . . 1

s1 s2 s3 . . . sM

 (2.5)

The volume V of the simplex depends on the following relation:

V
(
S̃
)

=
1

M − 1

∣∣∣S̃ ∣∣∣ (2.6)

In the Figure 2–3 the graphical representation of the simplex is showed.

Figure 2–3: Graphical representation of the simplex with maximum volume based
on the graphics of [23]. Points A, B, and C form a simplex but it does not have the
maximum volume. The points A, B, D are the three true endmembers for the image
and form the simplex with the maximum volume.

Maximum Distance (MaxD)

This is a method proposed by Lee [20]. MaxD is a geometric method that has

the objective of finding the vertices of a simplex that involves all the data. The

method starts by finding two vectors with special characteristics; it chooses the

vectors with the largest and smallest magnitude in the data. These two vectors are
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the two initial endmembers and the two initial vertices of the simplex. Let us call

these vectors v1 and v2 respectively. The next step is to build the difference vector

between v1 and v2 and project all pixels of the image in the orthogonal plane to the

vector difference called v12. In the orthogonal plane, we find the maximum distance

between the pixel projections and the vector distance projection and the vector with

the maximum distance is the new endmember and it is called v3. In the second step,

we build a new vector distance and the process is repeated until the desired number

of endmembers is obtained. This process is illustrated in the Figure 2–4.

Figure 2–4: Graphical representation of the orthogonal projection for the Maximum
Distance method.

Independent Component Analysis - Endmember Extraction Algo-
rithm (ICA-EEA)

ICA-EEA is an algorithm that chooses pure endmembers based on ICA (Inde-

pendent Component Analysis). Originally ICA is an algorithm that tries to obtain

a solution for the classic cocktail-party problem in signal processing that presents a

room where two different people are talking at the same time when we have a mixed

signal and want to reconstruct the two original sources. The ICA decomposes each

xj pixel of an image into their k independent components using the following ex-

pression:
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x j = aj1s1 + aj2s2 + · · ·+ ajksk ,∀j (2.7)

Assuming that si is an independent random variable that symbolizes an in-

dependent component or endmember and the aj1, aj2, , ajk are the coefficients of

abundance of each independent component in the image, k is the number of bands

and theoretically the algorithm could find independent components but ICA-EEA

only keeps m of these k endmembers where m is a number with physical meaning.

The independent components are ordered and scored [16] and the highest compo-

nents are kept. In practice ICA-EEA uses an improved algorithm of ICA known

as fast ICA [24]. In fact, the ICA model does not apply to the unmixing problem

since endmembers are linearity dependent due to the sum to one constraint normally

used in linear mixing model. A graphical representation of the model is presented

in Figure 2–5.

Figure 2–5: Graphical representation of the cocktail party problem. Taken from
Encyclopedia of Statistics in Behavioral Science [25]

Vertex Component Analysis (VCA)

Nascimento [21] describes the model adopted for the image in a manner sim-

ilar to the above algorithms but adding a new coefficient γ that is a scale factor
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modeling illumination variability due to surface topography. In this model a pixel

is represented as in the equation 2.8:

x j = S (γa) (2.8)

where, S is the matrix of endmembers and a is the vector of abundances and

γ is the scale factor defined previously. Each element of a ∈ <+ meets the sum to

one constraint, and forms a simplex. This approach explains that each pixel can

be presented as a vector in a k-dimensional Euclidean space, where each channel

is assigned to one axis of the space and k is the number of bands. Figure 2–6 (b)

presents the two-dimensional scatterplot of mixtures of the three endmembers shown

in Figure 2–6 (a). The circles denote pure materials.

Figure 2–6: (a) Reflectances of carnallite, ammonioalunite, and biotite.(b) Two-
dimensional scatterplot of mixtures of the three endmembers shown in (a). Taken
from Nascimento and Bioucas [21]
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2.3.3 Abundance Estimation

Abundance estimation is the process through the abundances associated with

the endmembers are determined for each pixel in the image. Velez-Reyes and Rosario

[10] proposed a method to solve the abundance estimation as a least distance. In

this way, they present an approach based on the QR decomposition that permits an

exact solution to the fully constrained problem, where:

ã = arg min︸︷︷︸
a

‖Sa − x‖2
2

subject to a ≥ 0 and
∑m

i=1 ai = 1

(2.9)

The solution proposed for the above equation is based on the solution of the

problem proposed in the equation 2.10, where the condition of the abundances is

relaxed to sum less than or equal to one. For this reason, we will analyze first,

the solution to equation 2.10 that is called Non Negative Least Squares Algorithm

(NNLS).

ã = arg min︸︷︷︸
a

‖Sa − x‖2
2

subject to a ≥ 0 and
∑m

i=1 ai ≤ 1

(2.10)

The algorithm to solve 2.10 can be explained in some steps:

• Compute QR decomposition of S

QTS =

 R

0

 ; c = QTx =

 c1

c2

 (2.11)

• Rewrite the equation 2.10 with the QR decomposition in equation 2.11, obtaining:
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ã = arg min︸︷︷︸
A

‖Ra − c1‖2
2

subject to a ≥ 0 and
∑m

i=1 ai ≤ 1

(2.12)

• Compute ãULS = R−1c1

• Define:

z = Rã − c1 ⇒ ã = R−1 (z + c1) = R−1z + ãULS (2.13)

• Substitute equation 2.13 in the equation 2.12, obtaining:

ã = arg min︸︷︷︸
z

‖z‖2
2

subject to Gz ≥ g

(2.14)

where G =

[
I −1

]T
, g =

[
-aT

ULS 1TaULS − 1

]T
, I ∈ <mxm is the

identity matrix and 1T = ( 1 1 . . . 1 ). The problem presented in the equation

2.14, finally can be solved as a Non Negative Least Square Problem.

• Define:

arg min︸︷︷︸
u

‖Eu-f ‖2
2

subject to u ≥ 0

(2.15)

where E =

[
GT gT

]T
, f =

[
0 1

]T
, and 0 = ( 0 0 . . . 0 ) is a vector

of m zeros.
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• Define:

r = Eu-f (2.16)

Note: if ‖r‖ = 0 there are no solutions because it would be inconsistent with

the constraints imposed.

• The unique solution for equation 2.14 is

ã = ãULS −R−1z (2.17)

where, z i = −ri/rn+1, for 1 ≤ i ≤ m. Then, the estimation of ã can be

obtained by the equation 2.13

Now, having the solution for the equation 2.10, we can obtain the solution for

equation 2.9, that is the problem of our interest.

First, equation 2.9 is redefined as:

arg min︸︷︷︸
a

‖Sa − x‖2
2

subject to a ≥ 0 and a1 = 1−
∑m

i=1 ai

(2.18)

Then, the equation 2.18 is transformed into a inequality constrained problem:

arg min︸︷︷︸
ā

∥∥S̄ ā− x̄
∥∥2

2

subject to ā ≥ 0 and
∑m

i=2 āi ≤ 1

(2.19)
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where, ā = [a2, . . . , am], S̄ = [a2 − a1, . . . , am − a1], and x̄ = x − a1. Now we

apply the NNLS algorithm to estimate ā and a1 = 1−
∑i=2

m ā

2.3.4 Full Unmixing Algorithms

The full unmixing algorithms bring a complete solution for the unmixing prob-

lem, extracting endmembers and solving abundances in the same process. Some of

these algorithms are presented below.

Sequential Maximum Angle Convex Cone(SMACC)

The method solves linear unmixing using a convex factorization technique that

simultaneously generates the set of endmembers and their abundances [26]. When

the abundance coefficients are constrained to sum to one, the convex cone reduces

to a convex hull and the extreme vectors form a simplex.

The endmembers and abundance coefficients are determined sequentially. To

obtain the endmembers, SMACC first selects a group of pixels that are extreme

vectors in the data. They become a basis and form a convex cone within their

subspace. The data that is outside of the cone is called residual. A test is used to

determine the next basis vector or endmember based on the length of its residual

in the actual model. The length of the residual is the distance that the vector

lies outside the convex cone defined by the current endmembers [26]. After an

endmember has been identified, its contribution to the residual is removed by oblique

projections. The sequence is repeated until the desired number of endmembers is

obtained. This method is available as part of the ENVI/IDL software from ITT

VIS.



21

Positive Matrix Factorization (PMF)

Positive Matrix Factorization is as a factorization problem with non-negativity

constraints which, given a matrix X ∈ <mxn
+ is desired to find two matrices that

satisfies:

X = SA (2.20)

where S is a matrix mxp ∈ <+ and A is a matrix pxn ∈ <+. The minimum

value of p for which an exact solution to the PMF problem exist is called the positive

rank [27] of X .

In unmixing, X is the matrix containing all image pixels, S is the matrix of

endmembers, and A is the matrix of abundances for all pixels in the image.

PMF of a matrix X can be approximated by finding solution to an optimization

problem defined as follows:

S̃ , Ã = arg min︸︷︷︸
S̃,Ã

‖X − SA‖2
F

subject to sij ≥ 0 and aij ≥ 0 and
∑m

i=1 aij = 1

(2.21)

Based on the approximation used to find the solution of the PMF problem, the

minimum value of p is found when ‖X − SA‖2
F is approximately equal to zero.

Paatero [28] and Lee and Seung [29] have proposed approaches that had been

the basis of many subsequent studies. Initially, Paatero worked with alternating

least squares (ALS). The method is initialized with different random matrices to

obtain a global optimum. Paatero in later studies presented improvements to this

technique as PMF2 and PMF3 for two and three dimensions respectively [30]. One
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of the most popular contributions of Lee and Seung bring an algorithm based on

multiplicative updating rules that are applied to solve this kind of optimization

problem.

In general, the positive matrix factorization had been explored to find solutions

for problems in different applications of image processing such as classification, face

recognition, and target detection among others. In the process to obtain better

solutions for these applications, many authors have found that imposing additional

constraints could improve the behavior of the algorithm [8, 9, 31–33].

2.3.5 Constrained Approaches for Positive Matrix Factorization

Masalmah and Velez-Reyes [9] and Jia and Qian [8] have shown that the un-

mixing problem can be related to the computation of a constrained positive matrix

factorization (cPMF). In addition to the positivity constraint, a very common prac-

tice is to add the sum to one constraint to the columns of A making this a constrained

PMF or cPMF. The cPMF has been shown to be a powerful approach for hyperspec-

tral unmixing ([8, 9]). Jia and Qian [8] also build up the idea to include the sparse

and smooth concepts in the constraints based on the studies of Pascual-Montano et

al. [32] and Hoyer [33].

Sum to one

Masalmah and Velez-Reyes [9] proposed an iterative algorithm based on an

optimization problem described by Lee and Seung [29] but adding the sum to one

constraint to the columns of A:

S̃ , Ã = arg min︸︷︷︸
S̃,Ã

‖X − SA‖2
F

subject to sij ≥ 0 and aij ≥ 0 and
∑m

i=1 aij = 1

(2.22)
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The initial endmembers are obtained using SVDSS algorithm in order to find

the more independent pixels in the image. This method has two principal iterative

steps. In the first step, the endmember matrix will be fixed and the consequent

abundances will be estimated. In this phase, we are applying that the
∑m

i=1 aij = 1

. This constraint has a physical significance because a material cannot have an

associated abundance above 100%. This constraint also could be substituted using∑m
i=1 aij ≤ 1 opening space to a shadow endmember to take into consideration

topography as described by Nascimento [21]. In the second step the abundance

matrix will be fixed and the endmember matrix is estimated. The estimation of

each matrix on each step is done by solving a nonnegative linear least squared

problem. The method iterates between the two steps until convergence is reached.

One of its key features is its capability to extract endmembers from the image

that are not present as pure pixels. This is an important feature since many objects

of interest are only present in a sub-pixel level.

Sparseness

In the image processing environment, the sparseness concept refers to an image

where only a few pixels can effectively represent the typical data vectors of the

scheme. It implies that high quantities of pixels are zero or close to zero and only

few pixels are contributing with considerable information [33]. It also suggests that

the number of basis components required to represent X is minimized.

Actually, PMF produces a sparse representation of the data, with the disad-

vantage that we cannot control the degree to which representation is sparse. The

sparseness measure permits us to identify how much energy of a vector is crowded

into only few components.
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The sparseness criterion is presented including the minimization of the ma-

trix of abundances using the 1 norm [34]. The complete minimization problem is

transformed as follows:

S̃ , Ã = arg min︸︷︷︸
S̃,Ã

‖X − SA‖2
2 + β ‖A‖

subject to sij ≥ 0 and aij ≥ 0

(2.23)

where, β is regularization parameter.

A solution for this optimization problem is presented by Kim and Koh [34]. This

work suggests an algorithm based on an interior-point method for solving large-scale

l1 regularized least squares.



CHAPTER 3

UNMIXING ALGORITHMS

3.1 Linear Mixing Model as Forward Problem

Linear mixing is a forward problem that can explain the formation of a hy-

perspectral image.(See Figure 3–1). Even though our work is to analyze the inverse

problem, so-called Unmixing problem, it is important to understand how the forward

problem changes when the spatial resolution is modified.

Figure 3–1: Linear Mixing Model as a forward problem

Each pixel in the image covers an area that is approximately defined by the

spatial resolution of the sensor. Each detector in the sensor has an Instantaneous

Field of View (IFOV) that defines its angular coverage[35]. The altitude between

25
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the optics of the detector element and the Earth’s surface establishes the Ground-

projected Instantaneous Field of View (GIFOV) that defines the spatial resolution

of the pixel [35]. (See Figure 3–2).The pixel is formed with the radiation collected by

the detector over the area delimited by the GIFOV. It means the spatial resolution

of an image changes when the altitude has been modified, as the resolution changes

the level of mixing in the pixel may increase. For example, if we have two images of

the same scene with different spatial resolution, although we will have the presence

of the same materials, the level of mixing in the pixels is going to be different because

the area covered by the pixel is not exactly the same.

Figure 3–2: Geometric description of a single detector element in the focal plane of
an optical sensor. Taken from [35]

3.2 Unmixing as an Inverse Problem

In the inverse problem our input is the output of the forward problem, and the

objective is try and extract the correct endmembers and their abundances. (See

Figure 3–3). Unmixing is an ill-posed inverse problem such as the solution com-

puted with different unmixing algorithms depends on the underlying assumptions

for the inverse problem. The performance of the unmixing process is also influ-

enced by the number of endmembers, because if the number is lower some of the

endmembers solution are going to be the mixture of different spectral classes or
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there will be be missing classes; on the other hand, if the number is higher we can

“repeat”endmembers, “add” non existing classes or “divide” the same class.

Figure 3–3: Unmixing Model as an inverse problem

In conclusion, the complete unmixing process requires paying attention to three

important aspects:

• Number of Endmembers

• Estimation of the Endmembers, and

• Abundances

Ideally one would expect similar solutions for unmixing a hyperspectral image

of different spatial resolutions of the same scene. (See Figure 3–4). This means that

the case of two images of the same scene with different spatial resolutions would

obtain the same endmembers matrix response with different abundance estimation

matrices as a result. However, this is only an assumption of the solution to the

problem when it is exposed to changes in the spatial resolution of the images. For

this reason, we study the results of unmixing different images of the same area at

different spatial resolution using different unmixing algorithms.
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Figure 3–4: Unmixing Model for images at different spatial resolution

Based on the interest of analyzing the performance of the unmixing techniques

according with changes in the spatial resolution of the images, we decided to work

with three geometric algorithms SMACC, MaxD and cPMF. The estimation of the

number of endmembers will be completed using the estimation of the Rank and

Positive Rank. The abundance estimation will be made with NNSTO algorithm

developed by Velez-Reyes and Rosario. [10]

3.2.1 Estimation of the number of Endmembers and its relation with
the spatial resolution

An important component of estimating the parameters of the LMM is deter-

mination of the number of endmembers. Many approaches use the rank of the

endmember matrix X or of a matrix related to it such as the correlation matrix

X TX . A more reasonable approach is to use the positive rank [36] which is the
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minimum value of p in equation 2.21 for which the approximation holds with equal-

ity. The rank is a lower bound on the positive rank. No direct method is known

to estimate the positive rank. Only search methods are used [36]. In the following

experiments, the rank is estimated using the Scree Test [13]. The positive-rank is

estimated by plotting the fitting error in equation 2.22 as a function of the number

of endmembers and using the point at which the normalized fitting error flattens as

the estimate of the positive rank.

Rank Estimation

As mentioned earlier, the Scree Test will be use to estimate the rank of the image

matrix. This method was explained in Chapter 2. The following chart presents the

procedure graphically.

Positive-Rank Estimation

There is no direct method to calculate the positive-rank (p-rank) of a matrix. To

determine an estimate of the p-rank, we will look at a plot of the fitting error in the

approximation showed in equation 2.22 as a function of the number of endmembers

and choose as an estimate the value after which no significant reduction in fitting

error occurs. The fitting error is given by equation 3.1.

Fitting Error =
‖X-SA‖2

F

‖X‖2
F

(3.1)

where, || ||F represents the Frobenious norm.

A model of the curve obtained using this approach is shown in the Figure 3–6,

the graphic showed is an example of one of the experimental result obtained with

real data.
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Figure 3–5: Graphical representation of the Scree model for hyperspectral imagery

3.2.2 Endmembers Extraction and Abundance Estimation and its rela-
tion with the spatial resolution

As we showed in chapter 2, different approaches have been developed to try to

find the best solution to the unmixing problem. In fact, the extraction of endmem-

bers is the part of the problem with most advances at the moment. The methods

are generally classified in two main ways: Geometric Algorithms (SMACC, MaxD,

VCA, NFIDR, and cPMF) and Statistical Algorithms (ICA-EEA).
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Figure 3–6: Fitting error model curve.

Approaches employed to make the Endmembers Extraction

In our work, we are concentrated in the analysis of Geometric Algorithms. We

selected SMACC, MaxD and cPMF to make the comparison among different end-

members extraction methods and different spatial resolutions. SMACC and MaxD

are methods that are based on projections, the principle of the methods are based on

the presence of pure pixels in the image. On the other hand, cPMF is an algorithm

that obtains virtual endmembers; it means, that the method does not require pure

pixels in the image. SMACC and MaxD are sequential algorithms and cPMF is an

iterative method. For this reason, cPMF has a heavier computational cost compared

to SMACC and MaxD. Despite of SMACC is also a full unmixing algorithm, we only

use the endmembers extracted by the method.

The same abundance estimation is applied to the results of all the endmember

extraction methods. The abundance estimation algorithm is NNSTO. An interesting

detail of cPMF is that it is a full unmixing algorithm and it has implicit the NNSTO

algorithm for the abundance estimation, in fact, the result of abundances in each

iteration is also employed by the algorithm to refine the group of endmembers. Table

3–1 shows the comparison of the main characteristics of the three algorithms.
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Characteristic

Constrained
Positive Matrix
Factorization

(cPMF)
[Masalmah,2006]

Sequential
Maximum Angle
Convex Cone
(SMACC)

[Gruninger,2004]

Maximum Distance
method (MaxD)

[Lee,2003]

Endmembers
Not necessary pixels in

the image
Pixels in the image

Pixels in the image

Type of algorithm Iterative Sequential
Sequential

Computational
Resource

Very high Low
Low

Table 3–1: Comparison between Endmembers Extraction Methods



CHAPTER 4

EXPERIMENTS AND ANALYSIS OF THE

RESULTS

4.1 Methodology

Two experiments were performed to explore the estimation of the number of

endmembers, extraction of endmembers and abundance estimation.

The methodology for experimental work is shown in Figure 4–1.

Figure 4–1: Fitting error model curve.

The experiments are divided in three main parts. The first one, is the estimation

of the number of endmembers using the estimation of the rank and the positive-rank.

33
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The rank will be estimated using the Scree Test and the positive-rank by fitting error

analysis. These two approaches were explained in Chapters 2 and 3 respectively.

The second part is endmember extraction. SMACC, MaxD and cPMF are the

methods studied. For the abundance estimation NNSTO will be used and the same

method is going to be employed in all cases.

4.2 Experiment 1 - Guanica Dry Forest Area

4.2.1 Imagery

Guanica Dry forest images with spatial resolution of one and four meters are

used. These two images are part of the data collected with AISA sensor during the

2007 Puerto Rico Hyperspectral Mission [37]. The images have spectral information

from 397 to 995 nm and 128 bands. The complete area covered by the flights at one

and four meters is shown in the Figure 4–2.

Figure 4–2: Flight lines over Guanica area in 2007 Puerto Rico Hyperspectral Mis-
sion. (a)Flight lines at 1 meter. (b)Flight lines at 4 meters.

Figure 4–3 shows the true and the color infrared composites of the image subset

selected. The scene is mostly covered by vegetation and a road crosses from north

to south. Three general classes of vegetation are observable: tall vegetation, low

vegetation and a grass field as shown in Figure 4–4. In the center part of the scene,

is a building near a road.
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Figure 4–3: Guanica Dry Forest Image. (a)True Color Composite of image at 1
meter. (b) True Color Composite of image at 4 meters. (d)Color Infrared Composite
of image at 1 meter (e)Color Infrared Composite of image at 4 meters.

During the field work, RGB images of the main vegetation classes of the area

were collected. In Figures 4–5, 4–6, and 4–7, Buffel grass, Bourreria Suculenta and

Exostema Caribeaum, and Prosopis Procera are presented. In these figures, the

spectral signatures of the species are also shown. These spectral signatures were

collected during the mission in 2007. It is important to mention that Bourreria Su-

culenta and Exostema Caribeaum species are presented in the same figure, because

their spectral signatures are very similar. This is a common situation with vegeta-

tion classes, and for this reason we do not specify the classes in the interpretation

figure by species, but instead identify general classes.
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Figure 4–4: Interpretation of the Guanica Dry forest image based on fieldwork at
the area.

Figure 4–6: Photos ansd Spectral signature Bourreria Suculenta and Exostema

Caribeaum
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Figure 4–5: Photos ansd Spectral signature of Buffel grass and some images of grass
field.

Figure 4–7: Photos ansd Spectral signature Prosopis Procera
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4.2.2 Results and Discussion

Estimation of the Number of Endmembers

• Rank Estimation

The estimation of the rank using Scree test is presented in Figure 4–8. Appli-

cation of the Scree test is sometimes difficult because it is difficult to identify the

“elbow” of the curve. This point is found by visual inspection of the curve and for

this case the rank estimated was three.

Figure 4–8: Scree test for Guanica subset images at one and four meters.

• Positive-Rank Estimation

The positive rank was estimated by calculating the fitting error (See equation

3.1) across the results obtained with cPMF between 2 and 10 endmembers. In this

case we also show the fitting error obtained for the PMF results. In Figure 4–9, the

results of the fitting error are shown. The estimate of the positive-rank according to

Figure 4–9 is equal to five. In the Figure, we can identify that the error decreases
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faster and is lower for the image at 4 meters.This is due to the number of pixels in

each image,the image with higher spatial resolution has more pixels. In addition,

the results for PMF present a lower error for both cases. This is expected since

PMF does not need to satisfy the sum to one constraint.

Figure 4–9: Fitting Error for Guanica Dry Forest Image at 4 meters and 1 meter.

Endmembers Extraction and Abundance Estimation

Based on the estimate of the number of endmembers obtained in the previous

section for the Guanica image subset, we compared the unmixing results for 3 and

5 endmembers. Figure 4–10 presents the spectral signatures obtained for three and

five endmembers by using cPMF, SMACC and MaxD. The results obtained with

SMACC and MaxD are very similar at the same spatial resolution. However, the

cPMF results are more consistent across scale changes.
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When comparing the abundances it is clear that there are certain features that

all algorithms easily retrieve such as the asphalt road from top to bottom. However

the different types of vegetation such as those on the left and right of the road and

the grass field on the top center area as well as unpaved road running from left to

right and the small rock formation near the center right are better captured by the

cPMF abundance maps than the SMACC or MaxD maps.

The results for the experiment with 3 endmembers present an interesting fea-

tures. For the image at 4 meters, the abundances maps obtained with the endmem-

bers extracted by the three methods identify in the first map a mixture between grass

field and tall vegetation, in the second map low vegetation and in the last one a mix-

ture between roads and building. For the image at 1 meter the abundance maps for

SMACC and MaxD have the same performance at 4 meters. Meanwhile, the results

with cPMF show another allocation. In the first abundance map a triangle-shaped

area is shown in the north part of the image. This area was identified in the field

work as an area covered by low grass. The second abundance map shows a mixture

between tall and low vegetation, and roads and building are shown in the third

abundance map. We found that the results obtained with cPMF at 1 meter, better

extract the information presented in the scene, despite of this it is clear that we

have more than 3 classes, the distribution of the classes agree better in comparison

with the field work (See Figures 4–11, 4–12 and 4–13).

Table 4–1 shows the angle distance between the endmembers obtained with

the same method at different spatial resolutions. Results show that the shapes

of retrieved endmembers are similar while Figure 4–10 shows that their intensities

might differ significativly.
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Figure 4–10: Endmembers obtained with different endmembers extraction algo-
rithms. Results for image at 4 meters and 1 meter of spatial resolution.

Figure 4–11: Unmixing results using cPMF with 3 endmembers from Guanica Area

at one and four meters.
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Figure 4–12: Unmixing results using SMACC with 3 endmembers from Guanica

Area at one and four meters

Figure 4–13: Unmixing results using MaxD with 3 endmembers from Guanica Area

at one and four meters
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Cosine Angle distance for results with 3 endmembers

Endmembers

Extraction

Method

Comparison

between:
Endm 1 Endm 2 Endm 3

cPMF 1m/ 4m 1.00 1.00 0.96

SMACC 1m/ 4m 1.00 0.98 1.00

MaxD 1m/ 4m 1.00 0.98 1.00

Table 4–1: Comparison of results with 3 endmembers at different spatial resolution

using cosine angle distance

In Figures 4–14 to 4–16, we show abundance maps for similar endmembers

obtained with the different methods. Tables 4–2 and 4–3, present the cosine of

angle among the similar endmembers that produce the abundances maps shown in

Figures 4–14 to 4–16.

Figure 4–14: Abundance Maps forendmember 1 using cPMF, SMACC and MaxD.
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Figure 4–15: Abundance Maps for endmember 2 using cPMF, SMACC and MaxD.

Figure 4–16: Abundance Maps for endmember 3 using cPMF, SMACC and MaxD.
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Cosine Angle distance for results with 3 endmembers at 4 meters

Comparison between: Endm 1 Endm 2 Endm 3

cPMF/SMACC 1.00 0.96 0.98

cPMF/MaxD 1.00 0.96 0.98

SMACC/MaxD 1.00 1.00 1.00

Table 4–2: Cosine Angle distance for results with 3 endmembers at 4 meters.

Cosine Angle distance for results with 3 endmembers at 1 meter

Comparison between: Endm 1 Endm 2 Endm 3

cPMF/SMACC 1.00 0.96 0.98

cPMF/MaxD 1.00 0.96 0.98

SMACC/MaxD 1.00 1.00 1.00

Table 4–3: Cosine Angle distance for results with 3 endmembers at 1 meter

For the five endmembers case, the results for SMACC and MaxD do not ex-

tract information significantly different from the already extracted with 3 endmem-

bers(See Figures 4–12,4–13, 4–19, and 4–20). However, for the image with spa-

tial resolution of 4 meters, the first two maps for each case (cPMF, SMACC and

MaxD), retrieve the same areas, but the results for the last three abundance maps

for SMACC and MaxD are difficult to interpret. For cPMF, results at 4 meters,

the results are coherent; the maps extract the following classes: the small area of

grass, two vegetation areas at each side of the image, a road class and in the last one

recover the buildings. The same classes are retrieved with cPMF as with 1 meter,

but for this case the areas are better delimited. For SMACC and MaxD at 1 meter,

the results are similar to those obtained with the same algorithms at 4 meters. The

best result was the obtained for cPMF with 5 endmembers (See Figure 4–18). We

also present abundances maps for similar similar endmembers among methods in

Figures 4–21, 4–22,4–23, 4–24, and 4–25.
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Figure 4–17: Endmembers obtained with different endmembers extraction algo-
rithms. Results for image at 4 meters and 1 meter of spatial resolution.

Figure 4–18: Unmixing results using cPMF with 5 endmembers. (a) Results for

image at 4 meters and (b) 1 meter.
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Figure 4–19: Unmixing results using SMACC with 5 endmembers. (a) Results for

image at 4 meters and (b) 1 meter.

Figure 4–20: Unmixing results using MaxD with 5 endmembers. (a) Results for

image at 4 meters and (b) 1 meter.
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Figure 4–21: Abundance Maps for endmember 1 using cPMF, SMACC, and MaxD

Figure 4–22: Abundance Maps for endmember 2 using cPMF, SMACC, and MaxD
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Figure 4–23: Abundance Maps for endmember 3 using cPMF, SMACC, and MaxD

Figure 4–24: Abundance Maps for endmember 4 using cPMF, SMACC, and MaxD
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Figure 4–25: Abundance Maps for endmember 5 using cPMF, SMACC, and MaxD

Cosine Angle distance for results with 5 endmembers

Endmembers

Extraction

Method

Comparison

between:
Endm 1 Endm 2 Endm 3 Endm 4 Endm 5

cPMF 1m/ 4m 1.00 1.00 1.00 1.00 0.99

SMACC 1m/ 4m 1.00 0.98 1.00 0.92 0.97

MaxD 1m/ 4m 1.00 0.98 1.00 0.93 0.98

Table 4–4: Comparison of results with 5 endmembers at different spatial resolution

using cosine angle distance

Cosine Angle distance for results with 5 endmembers at 4 meters

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4 Endm 5

cPMF/SMACC 1.00 0.98 0.85 0.95 0.99

cPMF/MaxD 1.00 0.98 0.85 0.99 0.96

SMACC/MaxD 1.00 1.00 1.00 0.98 0.97

Table 4–5: Cosine Angle distance for results with 5 endmembers at 4 meters
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Cosine Angle distance for results with 5 endmembers at 1 meter

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4 Endm 5

cPMF/SMACC 1.00 0.99 0.85 0.74 0.96

cPMF/MaxD 1.00 0.99 0.85 0.85 0.86

SMACC/MaxD 1.00 1.00 1.00 0.95 0.93

Table 4–6: Cosine Angle distance for results with 5 endmembers at 1 meter

Table 4–4 presents the comparison between endmembers retrieved with each

method across different spatial resolution changes using cosine angle distance. Ta-

ble 4–5, and 4–6 present the comparison between different endmember extraction

algorithms. The results agree with the discussion in above paragraphs. Table 4–7

presents the comparison of the total area abundance of the different endmembers in

the scene for each method at each spatial resolution. Notice that total fraction of

area are closer for cPMF than for SMACC and MaxD. Endmember 1 is the most

consistent across methods. Endmember 5 is also consistent in cPMF.

Comparison of the fraction areas covered by the endmembers in Guanica Dry Forest

Method: cPMF SMACC MaxD

Resolution: 1m 4m 1m 4m 1m 4m

Endmember 1 0.33 0.36 0.47 0.52 0.44 0.46

Endmember 2 0.16 0.26 0.47 0.46 0.42 0.51

Endmember 3 0.21 0.17 0.02 0.00 0.01 0.00

Endmember 4 0.26 0.17 0.00 0.02 0.02 0.02

Endmember 5 0.04 0.04 0.04 0.00 0.11 0.01

Sum 1.00 1.00 1.00 1.00 1.00 1.00

Table 4–7: Comparison of the fraction areas covered by the endmembers in Guanica

Dry Forest

An additional analysis was included in this experiment, we use the endmembers

obtained with the image at 4 meters and obtain the abundance associated in the

image at 1 meter. The results are shown in Figures 4–26, 4–27, 4–28. Despite of
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the result with the original endmembers for the image at 1 meter are better, these

results can extract the main classes in a good way.

Figure 4–26: Abudance estimation using image at 1 meter and endmembers obtained

by cPMF for 4 meters
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Figure 4–27: Abudance estimation using image at 1 meter and endmembers obtained

by SMACC for 4 meters

Figure 4–28: Abudance estimation using image at 1 meter and endmembers obtained

by MaxD for 4 meters
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cPMF is more consistent in well identified classes with point to the robustness

of this approach.

In addition, unmixing results were obtained using PMF algorithm with the

objective of evaluating the impact of the sum-to-one constraint imposed on the

abundance coefficients. The endmembers obtained by PMF with 3 and 5 endmem-

bers for images at 1 and 4 meters are compared with the obtained with cPMF in

Figures 4–29 and 4–31. Their abundances maps are presented in Figures 4–30, and

4–32. PMF results for both resolutions are capable to extract the general spatial

distribution of the classes, it is important to point out that the sum to one constraint

helps to introduce coherency in the scale of the abundances maps.

It is important to mention that the number of endmember is a fact that modifies

significantly the results of unmixing. Experimentally the best estimation that we

found was the positive rank, we also tested the algorithms with higher number of

endmembers and the results showed us for values higher than the positive rank

estimate. the new endmembers have very small abundances across the image. The

results points to a differncy of our method that could miss small targets.

Figure 4–30: Unmixing results using PMF with 3 endmembers from Guanica at one

and four meters.
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Figure 4–29: Endmembers obtained with PMF and cPMF algorithms. Results for
images at 4 meters and 1 meter spatial resolution.

Figure 4–32: Unmixing results using PMF with 5 endmembers. (a) Results for

image at 4 meters and (b) 1 meter.
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Figure 4–31: Endmembers obtained with PMF and cPMF algorithms. Results for
images at 4 meters and 1 meter spatial resolution.

4.3 Experiment 2 - Enrique Reef Area

4.3.1 Imagery

The Enrique Reef data used in this experiment is also part of the data collected

during the 2007 Puerto Rico Hyperspectral Mission[37]. We are use data at three

different spatial resolutions: one, two, and eight meters. Figure 4–33 presents a true

color composite of Enrique Reef image at one, two, and eight meters.

The Enrique Reef area is a widely studied area, Figure 4–34 shows a class

map published in 2008 [38], where spatial classes can be observed. In addition, we



57

Figure 4–33: Enrique reef image at three different spatial resolutions.

present a high definition image taken from Google Earth where the main areas are

observable (See Figure 4–35).

Figure 4–34: Class map from Enrique Reef at 1 meter spatial resolution.
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Figure 4–35: High definition image from Google Earh.

4.3.2 Results and Discussion

Estimation of the Number of Endmembers

As in the first experiment, the rank and the positive-rank were estimated using

the Scree test and the Fitting error analysis respectively.

• Rank Estimation

Figure 4–36 shows the results for the Scree test applied to Enrique Reef images

at different spatial resolutions. The number of endmembers estimated was four.

Figure 4–36: Scree Test for Enrique Reef image at different spatial resolutions.
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• Positive-Rank Estimation

The fitting error analysis was applied to the cPMF results of the Enrique Reef

images at one, two, and eight meters of spatial resolutions. cPMF was run across 2

to 10 endmembers. The estimation of positive-rank was found equal to five. Figure

4–37 presents the results.

Figure 4–37: Fitting error curves of Enrique Reef Images.

Endmembers Extraction and Abundance Estimation

Owing to the results obtained in the rank and positive-rank estimation, the

endmember extraction methods were run for 4 and 5 endmembers. First, we will

show the results for 4 endmembers.

Figure 4–38 presents the four endmembers extracted by cPMF, SMACC and

MaxD for each spatial resolution. In addition, the abundances maps associated with

each endmember were obtained. Abundance maps for cPMF endmembers are given

in Figures 4–39 to 4–41. Abundance maps for SMACC results are shown in Figures

4–42 to 4–44. Finally, abundances maps for MaxD results are presented in Figures

4–45 to 4–47.
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Figure 4–38: Endmembers Spectral signatures , from Enrique Reef Images, using
cPMF, SMACC and MaxD. (4 endmembers case)

The endmembers obtained were organized by similarity among the spatial res-

olution and methods. The first endmember, in dark blue (see Figure 4–38), is

associated with sea water. In Figure 4–48, the abundances maps associated with

the first endmember in all the methods and resolutions are shown.

The second endmember is associated with the mangrove that is clearly shown

in the class map of Figure 4–34 in red. Despite the fact that the spectral signatures

are diverse in scale over the different methods and spatial resolutions, in all cases
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the general form of a vegetation spectral signature is preserved. Figure 4–49 shows

the result for mangrove at different spatial resolution with the different endmembers

extraction methods.

The third endmember represents the area primarily covered by sand (see Figure

4–50). The area with highest abundances agree with sand area in the class map

presented in Figure 4–34.

The last endmember is associated with the reef as well. Figure 4–51 shows the

abundances maps associated with the reef crest and deep reef area.

In general, the results with 4 endmembers in all methods, identified similar

classes associated with similar areas. The performance of the three methods was very

good and the results were consistent across different spatial resolutions. However

notice the confusion between water and see grass area.

Figure 4–39: cPMF result for Enrique Reef image at 1 meter with 4 endmembers.
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Figure 4–40: cPMF result for Enrique Reef image at 2 meters with 4 endmembers.

Figure 4–41: cPMF result for Enrique Reef image at 8 meters with 4 endmembers.
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Figure 4–42: SMACC result for Enrique Reef image at 1 meter with 4 endmembers.

Figure 4–43: SMACC result for Enrique Reef image at 2 meters with 4 endmembers.

Figure 4–44: SMACC result for Enrique Reef image at 8 meters with 4 endmembers.
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Figure 4–45: MaxD result for Enrique Reef image at 1 meter with 4 endmembers.

Figure 4–46: MaxD result for Enrique Reef image at 2 meters with 4 endmembers.

Figure 4–47: MaxD result for Enrique Reef image at 8 meters with 4 endmembers.
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Figure 4–48: Comparison for endmember 1 between methods for different spatial
resolutions.

Figure 4–49: Comparison for endmember 2 between methods for different spatial

resolutions.
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Figure 4–50: Comparison for endmember 3 between methods for different spatial
resolutions.

Figure 4–51: Comparison for endmember 4 between methods for different spatial

resolutions.
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Cosine Angle distance for results with 4 endmembers at 1 meter

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4

cPMF/SMACC 0.90 1.00 0.97 0.82

cPMF/MaxD 0.77 1.00 0.97 0.82

SMACC/MaxD 0.84 1.00 1.00 1.00

Table 4–8: Cosine Angle distance for 4 endmembers results, for Enrique Reef at 1

meter

Cosine Angle distance For results with 4 endmembers at 2 meters

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4

cPMF/SMACC 0.71 0.99 0.88 0.74

cPMF/MaxD 0.71 0.99 0.98 0.74

SMACC/MaxD 1.00 1.00 0.95 1.00

Table 4–9: Cosine Angle distance for 4 endmembers results, for Enrique Reef at 2

meters

Cosine Angle distance For results with 4 endmembers at 8 meters

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4

cPMF/SMACC 0.99 1.00 0.92 0.71

cPMF/MaxD 0.98 0.97 0.98 0.76

SMACC/MaxD 0.99 0.97 0.88 0.57

Table 4–10: Cosine Angle distance for 4 endmembers results, for Enrique Reef at 8

meters

Tables 4–8 to 4–10, present the cosine angle distance among the endmembers

obtained with the different methods. We found that the results between SMACC and

MaxD are closer than the results from cPMF. However, the results with cPMF are

similar across different spatial resolutions. The fourth endmember was the endmem-

ber that presented the most differences between cPMF and the other two methods.

In addition, it is important to mention that the good results obtained with SMACC
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and MaxD idealizate that the image has “pure” pixels that permit to make good

identification of the main classes.

The following results were obtained using five endmembers. Figure 4–52 presents

the endmembers obtained using cPMF, SMACC, and MaxD across the different

spatial resolutions. The results obtained using SMACC and MaxD are very similar,

which is supported by Tables 4–11 to 4–13, where the cosine angle distance among

endmembers are compared. However, the first four classes present a behavior similar

to those with four endmembers. Again, the first endmember represents water (see

Figure 4–62), the second one describes mangrove areas (see Figure 4–63), the third

endmember represents sand (see Figure 4–64), and the fourth endmember describes

the reef (see Figure 4–65). The fifth endmember difficult to relate to a particular

class (see Figure 4–66).

Figure 4–52: Spectral signatures obtained for different endmembers, from Enrique

Reef images, using cPMF, SMACC and MaxD. Case with 5 endmembers.
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Figure 4–53: cPMF result for Enrique Reef image at 1 meter with 5 endmembers.

Figure 4–54: cPMF result for Enrique Reef image at 2 meters with 5 endmembers.

Figure 4–55: cPMF result for Enrique Reef image at 8 meters with 5 endmembers.
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Figure 4–56: SMACC result for Enrique Reef image at 1 meter with 5 endmembers.

Figure 4–57: SMACC result for Enrique Reef image at 2 meters with 5 endmembers.

Figure 4–58: SMACC result for Enrique Reef image at 8 meters with5 endmembers.
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Figure 4–59: SMACC result for Enrique Reef image at 1 meter with 5 endmembers.

Figure 4–60: MaxD result for Enrique Reef image at 2 meters with 5 endmembers.

Figure 4–61: MaxD result for Enrique Reef image at 8 meters with 5 endmembers.
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Figure 4–62: Comparison among endmember 1 of each method with different spatial

resolutions.

Figure 4–63: Comparison among endmember 2 of each method with different spatial

resolutions.
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Figure 4–64: Comparison among endmember 3 of each method with different spatial

resolutions.

Figure 4–65: Comparison among endmember 4 of each method with different spatial

resolutions.
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Figure 4–66: Comparison among endmember 4 of each method with different spatial

resolutions.

Cosine Angle distance For results with 5 endmembers at 1 meter

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4 Endm 5

cPMF/SMACC 0.95 0.99 0.97 0.89 0.68

cPMF/MaxD 0.70 0.99 0.97 0.87 0.68

SMACC/MaxD 0.84 1.00 1.00 0.95 1.00

Table 4–11: Cosine Angle distance for 5 endmembers results, for Enrique Reef at 1

meter

Cosine Angle distance For results with 5 endmembers at 2 meters

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4 Endm 5

cPMF/SMACC 0.93 1.00 0.98 0.90 0.63

cPMF/MaxD 0.92 1.00 0.98 0.83 0.63

SMACC/MaxD 1.00 1.00 1.00 0.77 1.00

Table 4–12: Cosine Angle distance for 5 endmembers results, for Enrique Reef at 2

meters
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Cosine Angle distance For results with 5 endmembers at 8 meters

Comparison between: Endm 1 Endm 2 Endm 3 Endm 4 Endm 5

cPMF/SMACC 0.98 1.00 0.90 0.74 0.85

cPMF/MaxD 0.98 0.96 0.98 0.85 0.64

SMACC/MaxD 0.99 0.97 0.88 0.95 0.57

Table 4–13: Cosine Angle distance for 5 endmembers results, for Enrique Reef at 8

meters

Although results in terms of endmembers correlation across scale and methods

are similar to those for Guanica, it is important to point out that, as with four

endmembers, we could not separate water from sea grass. We were not capable to

separate after many trials and varying parameters.

To understand this problem, we decided to analyze the spectral signatures of

pixels that we understand that are part of the water, sea grass and reef classes.

Figure 4–67 show some of these signatures. The similarity of pixels of sea grass with

water and reef is very high and point to do the confusion. We selected edmemembers

manually and are shown in Figure 4–68 and computed the corresponding abundance

map shown in figure 4–69. The abundance maps show that with manual endmembers

we were capable of separating all classes in the map. This result shows that the errors

in the Enrique reef experiment was in the endmember extraction stage because the

methods used cannot separate these spectral signatures.
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Figure 4–67: Enrique reef high resolution photo and spectral signatures associated

with water, reef and sea grass classes.

Figure 4–68: Manual endmembers selected by the average of six pixel of each class

for different spatial resolution
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Figure 4–69: Abundance maps obtained for different spatial resolution with manual

endmembers



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Unmixing results for algorithms that assume pure pixels present in the image

did not improve when the number of endmembers is larger than the rank of the

training data matrix. cPMF had similar results to the other approaches with the

number of endmembers was equal to the matrix rank.

For the Guanica area, the cPMF extracted abundance distributions that agree

more with field knowledge of the area under study when using the positive rank as the

estimate of the number of endmembers. Endmembers extracted with cPMF agree

more across spatial scales as opposed to those with MaxD or SMACC which agree

more between themselves for a given spatial scale. It is also interesting to point out

that cPMF with 3 endmembers at 1 meter resolution identifies a distribution more

correlated with the broad classes present in the picture: grass, tall/low vegetation,

roads.

For the Enrique reef area, the presence of pure pixels is clear, and we can

see similar results for the three methods when the rank estimation is being used

as a number of endmembers. The positive rank estimation does not give us an

improvement of the results in any case for this image.
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Unmixing results depend on the assumption made in the development of the

unmixing algorithms. cPMF produces better results than PMF. However results

with PMF also agree well with our knowledge of the area for the case of Guanica

experiment.

The SMACC and MaxD are fast algorithm but need presence of pure pixels

in the image, cPMF is significantly slower than the other two algorithms but can

obtain virtual endmembers of the image.

Estimating the number of endmembers is a hard problem and we have identified

that this number has a high impact in the results of the endmembers extraction

algorithms and abundance estimators.

For good performance of any algorithm used, it is important to verify that the

image has an appropriate atmospheric correction.

5.2 Future Work

Further work is needed in estimating of number of endmembers. This is very

important to continue because of the impact that it has over the performance of the

unmixing algorithms is very significant.

It would be interesting compare the results of the endmembers extraction algo-

rithm based on geometrical approaches with algorithms based on statistical princi-

ples.

We need to work in the improvement of the atmospheric correction of the En-

rique reef images.
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