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ABSTRACT 

 

An approach to automatic control of a continuous tumble mixer of powders is 

presented. The control system is based on an ideal model that describes the mixer 

dynamics where the controlled variables are the outlet flow from the mixer and the 

variance of mixing, while the manipulated variables are the inlet flow of material to mix, 

with a predetermined ratio of compounds A and B, and the rotational velocity of the 

mixer. The system illustrates a Multi Input Multi Output (MIMO) control problem, where 

each manipulated variable affect both controlled variables. A strategy of two feedback PI 

controllers was successfully implemented, and it was compared to an MPC strategy: The 

simulations results provided an excellent tool to compare and study stability, effects of 

overshoots on set-point tracking, performance, robustness and the capacity to reject the 

effect of load disturbances. 
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RESUMEN 

 

Una propuesta para el control automático de un mezclador continuo giratorio de 

polvos es presentado a continuación. El sistema de control está basado en un modelo 

ideal que describe la dinámica de mezclado, en el cual las variables controladas son el 

flujo de salida de material y la varianza de mezclado, mientras las variables manipuladas 

son el flujo de entrada de material, con una relación predeterminada de compuestos A y 

B, y la velocidad de rotación del mezclador. El sistema ilustra un problema de control 

Múltiples Entradas Múltiples Salidas (MIMO), donde cada variable manipulada afecta 

las dos variables controladas. Una estrategia de dos controladores PI feedback fue 

implementada y comparada con una estrategia MPC: Los resultados obtenidos por 

simulación fueron la herramienta usada para comparar y estudiar estabilidad, efectos de 

sobrepasos por cambios en set-point, desempeño, robustez y capacidad para contrarrestar 

los efectos de perturbaciones. 
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CHAPTER I: INTRODUCTION 

I.1 Justification 

Pharmaceutical companies have developed extensive research programs in drug 

delivery, but much less effort has been devoted to the technology used to manufacture 

drug products. Most of the operations in the manufacturing process are powder 

technologies where, for more than thirty years, the methods of production and control 

strategies have not changed significantly. 

 

Typical operations in the manufacture of powder drug products, such as mixing, 

granulation, milling, drying, and others, are batch operations. When these operations are 

subjected to control activities and functions that provide process finite quantities of input 

materials and an ordered set of processing activities over a finite period of time using one 

or more pieces of equipment, the operations are under batch control. 

 

Due to economic trends and social impacts, pharmaceutical product 

manufacturing is in serious need of technical upgrading [1]. Moving from batch to 

continuous operations of manufacturing systems is an option that is being considered by 

U. S. Food and Drug Administration (US FDA) and research groups. In powder mixing, 

the change from batch to continuous mixers is prompted by the availability of 

instrumentation and simplified production scheme [2]. 

 

In the field of control focused to powder mixing, the batch control is the tool 

implemented following the recommendations of ISA-88 ISA Batch Systems Standards 

[3]. No previous open literature was presented, to the best knowledge of the author, in 

control of continuous powder mixing, perhaps due to the absence of dynamic models of 

mixing. For continuous powder drug mixing processes where the controlled variables are 

the flow of mixed material and its variance, the control strategies should insure a stable 

operation, execution of accurate ranges, removal of effects of dead time, predict the 

effects of load disturbances, avoid excessive overshoots on set-point tracking, and other 
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common characteristics of performance and safety in order to comply with established 

governmental regulations and laws. 

 

A direct synthesis tuning method for a Proportional Integral (PI) controller of 

mixing should produce smooth closed-loop response with strong robustness, without 

modifying the original structure into this controller. However, the measure of the 

variance in the flow of mixed material is obtained using on-line image analysis involving 

dead time. Many schemes have been suggested to remove the detrimental effects of dead 

time on close-loop stability and feedback control [4].  

 

Advanced control strategies like Model Predictive Control (MPC) are introduced 

to move the process variables dynamically for productivity improvement, utility cost 

reduction, and quality control as was summarized by Seborg et al. [5]. The main 

advantages of MPC are: (1) the control strategy is suitable for non-linear processes with 

long delay; (2) the control performance is optimized by on-line optimizer, (3) prevent 

violations of input and output constraints, and (4) the process model and control strategy 

can be updated on-line to compensate for changes in the process conditions. This strategy 

begins to prevail in industrial environment for difficult process where it is necessary to 

reach high levels of performance and robustness. 

I.2 Objectives 

The main objective is to determine the best control strategy for a continuous 

rotating powder mixer. Specific objectives include to: 

 

• Develop an ideal model to describe a continuous rotating powder mixer. 

• Develop two feedback control strategies (PI, MPC) for a continuous rotating 

powder mixer, where the mixer dynamics is described by the model developed 

above. 

• Compare the robustness, overshoots on set-point tracking, performance and 

capacity to reject the effect of load disturbances of the strategies developed. 
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CHAPTER II: BACKGROUND AND LITERATURE REVIEW 

II.1 Background 

Powder mixtures can be classified into two major groups, one that involves free-

flowing particles and the other containing cohesive or interactive constituents. A free-

flowing mixture will generally permit individual particles to move independently or 

freely, while a cohesive mixture generally has some interparticulate bonding mechanism, 

permitting particles to move only with an associated cluster of particles.  

 

The formation of a mixture involving only free-flowing particles is a statistical or 

stochastic process in which the rules of probability apply. If the free-flowing particles are 

identical in all aspects except color, then a completely random mixture can be obtained. If 

they are not identical, a partially randomized final mixture will be generated due to 

incomplete mixing or segregation present in the mixing process. A cohesive mixture 

contains one or more cohesive constituents and its final state is mainly determined by 

interparticulate forces.  

 

A few studies have been conducted to model solid mixing. Significant progress 

has been made in the understanding of mixing and segregation of free-flowing and 

relatively large particles. However, mixing of cohesive powders remains largely 

untouched [1]. Fan et al. [6] conducted a review of the major developments in solids 

mixing from 1976 to 1990, in which they present the rates and mechanisms of mixing and 

they make a classification based on flow characteristic leading to random models.  

 

Malhotra et al. [7] presented experimental results on the fundamental particle 

mixing phenomena in a bed of granular material agitated by a moving blade in a two-

dimensional cylindrical vessel. The results demonstrated that the particle velocity 

distribution map within the bed is circular in nature and there exists a small region of 

very little particle movement just above the tip of the blade. 
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Computational studies of mixing have been performed by Kaneko et al. [8] in a 

single helical ribbon agitator demonstrating that the distance between the blade top and 

the bed surface is the most important parameter to attain good mixing. The mathematical 

model was developed based on the following assumptions for simplification: 

 

• Particles are spherical in shape and uniform in diameter and move in a three 

dimensional space. 

• The gas-to-particle interaction and the particle-to-particle adhesion are neglected. 

Forces considered are those for gravity and collisions between particles, between 

particle and wall and between particle and blade. 

• Particles are supposed to have a soft sphere interaction expressed by a Hookean linear 

spring, a dash pot and a friction slider with Coulomb’s law of friction. 

• The spring constant is adjusted only from the viewpoint of numerical economy. 

 

Both translational and rotational motions are considered in equations of motion 

into the model: 

 

( )
g

FF
x +

+
=

m
tn&&           (II.1) 

 

I
cT

=ω&                (II.2) 

 

where x  is the position vector of the center of the particle, nF  and tF  are the sum of the 

collisions forces respectively for the normal and tangential directions acting on colliding 

particles, m  is the mass of particles, g  is the gravity acceleration, ω  is the angular 

velocity vector of a particle, cT  is the summation of torque caused by particle collision 

and I  is the moment of inertia. The Euler scheme was used to integrate (II.1) and (II.2) 

to obtain the new velocity, position and angular velocity of a particle after a time step. 
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McCarthy et al. [9] did some computational studies of tumbler mixing, focused on 

two very different techniques: Particle Dynamics (PD) and Lagrangian Simulation (LS). 

According to the results, PD is versatile in that particle level interactions, including 

inelastic, frictional forces can be accounted for, such that segregation resulting from 

differences in particle properties can be explicitly studied. LS are based on continuum 

models.  

 

McCarthy [10] also examined both computationally and experimentally a micro-

modeling of cohesive mixing process, where it was established that mixing is enhanced 

only slightly at intermediate levels of cohesion in wet systems. 

 

Aoun-Habbache et al. [11] developed the simultaneous axial and radial model for 

mixing of particles in a hoop mixer in the absence of segregation effects, based on image 

analysis of photographs of sections taken at different depths of the mixer. The results 

showed that the particles located at the bottom and in the central part of the mixer can 

experience higher mobility than the others, and consequently enhance the mixing 

kinetics. 

II.2 Mixing of granular materials in circular rotating containers 

A tumbler refers to any hollow vessel which is partially filled with granular 

material and rotates, so that a circulating flow is produced. Tumblers exhibit different 

flow regimes (avalanching, slumping, rolling, cascading, raining, and centrifuging), 

depending on the rotational speed. 

 

McCarthy et al. [12] presented a model of granular mixing developed using 

experimental pictures of mixing in simple tumblers in a variety of 2-D mixer geometries. 

The materials to mix were two similar and noncohesive granular powders, that is, the 

particle’s diffusivity was small. His work was focused primarily on the simplest regime, 

from the viewpoint of mixing and granular flow: the avalanching regime. In this regime 

each avalanche completes its descent before another avalanche begins. When a granular 
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material exceeds its maximum angle of stability (left in Figure II.1), an avalanche occurs 

and the surface relaxes to the material’s angle repose (right in Figure II.1). When this 

avalanche occurs, the dark gray material moves from the top of the surface to the bottom 

as shown. 

 
Figure II.1 Movement of a wedge of material [12]. 

 

For problems involving the mixing of two similar, noncohesive powders, where 

they differ only in color, geometrical effects dominate and the mixing within a wedge is 

well described by one of the simplest wedge dynamics [12]. The most straightforward use 

of this approach is to study mixing in uniformly-convex 2-D containers such as a 

cylinder. In this geometry, the material is allowed to fall freely down the surface and the 

location of the avalanching material both before and after the avalanche is easily 

determined by a differential balance, with the additional constraint that the bed density 

remains constant. 

 

 

 

 

 

 

 

 

 

 
Figure II.2 Motion of wedges in a circle tumbling mixer [12]. 
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Figure II.2 shows three fill levels f , 0.25, 0.50 and 0.75. During an avalanche, 

the dark wedge falls to the position of the light wedge, and mixing occurs. For 25.0=f  

the material in one wedge will enter a new wedge upon further rotation, enhancing 

interwedge mixing. There are no wedge intersections for 50.0=f . For 75.0=f  appears 

the formation of a core, that is, centrally located material which never participates in an 

avalanche and therefore never mixes. 

 

Elperin et al. [13] did a study using a kinematic approach for the mixing of 

granular material in a two-dimensional slowly rotating container. The model aims at 

estimating the mixing capacity of a mixer when the particles diffusivity is small. In this 

study, it was considered a two-dimensional convex mixer partially filled with a granular 

material with constant bulk density. The container slowly rotates around a horizontal axis 

with a constant angular velocity 1=ϖ& . Thus, the angle of rotation can be used instead of 

the time variable. The free surface of the granular material bed is supposed to be flat and 

it is inclined at a constant angle of repose. The height of the free surface is ( )ϖhz = . 

Each particle rotates with the bulk of the material and when it reaches the free surface it 

falls down and sediments at the bulk at a new position. When a container with volume 0V  

is filled with granular material occupying a volume V , the mixing efficiency μ  is 

defined as the product of the mean deformation per unit volume of the avalanching 

material, in function of stretching rate λ  and the length of the free surface L , and the 

filling level of the granular material in a mixer 0VVf = : 

 

V

dL

f
ϖλ

μ

π

∫
=

2

0

2

2             (II.3) 

 

 The simulated and experimental results obtained by McCarthy et al. and the 

analytical results obtained by Elperin et al. are similar. For any fill level, a diagram can 

be drawn to follow the motion of a wedge of material as it travels clockwise from its 

original position to its avalanche position, as is shown in Figure II.2. This demonstrates 
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the importance of the fill level. At low fill levels, there are many wedge intersections, so 

a share of any wedge eventually finds itself being part of another wedge, thus enhancing 

interwedge mixing. However, as the fill level increases, the mixing goes through a 

maximum. As the length of material increases no wedge of material can mix with any 

other wedge since their intersections decreasing the mixing. When the fill level reaches 

specifically above the center of mass of the mixer throughout the entire rotation, the 

mixing arrives to its minimum. From this fill level on, occurs the core formation, where 

the wedges do not encompass the entire breadth of the material, generating a region of 

material, called core, that does not get included in the avalanching process. When the 

container is full, no avalanching can occur and the mixing stops. Figure II.3 shows the 

mixing efficiency in a two-dimensional mixer with a circular cross-section [12-13].  

Mixing Efficiency

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

0.00 0.20 0.40 0.60 0.80 1.00

f (fill level)

X
 (m

ix
in

g 
ef

fic
ie

nc
y)

 

Figure II.3 Mixing efficiency in a 2-D mixer with a circular cross-section [11]. 

 

 McCarthy et al. [12] also described the case of the three-dimensional geometries 

for rotating containers, where the wedge shapes vary in a complex way, but the same idea 

of the two-dimensional geometry is hold: avalanches move material from the upper 

portion of the surface to the lower, and mixing within the wedge of material occurs only 

during the avalanche. Basically, the radial mixing, that is, mixing perpendicular to the 

axis of rotation of the mixer, is described in the same form that in the two-dimensional. 
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II.3 Simulation of granular mixing in a rotating tumble 

McCarthy et al. [9] developed, based on continuum mechanics studies in rolling 

regime, where the rotation of a tumbler results in a flow of particles from the fixed bed 

into the cascading layer in the uphill half of the surface and a flow from the layer into the 

fixed bed in the downhill half. Lagrangian Simulation (LS) of the particle motion within 

a rotating tumbler, requires the velocity and layer thickness profiles for the flowing layer. 

Referring to Figure II.4, they used a macroscopic balance approach to obtain the velocity 

and the layer thickness. Within the layer, the components of the velocity at any point, xv  

and yv , respectively, are given by: 

 

( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
+==

x
yu

dt
dxvx δ

12              (II.4) 

 

( )

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

x
yx

dt
dyvy δ

                       (II.5) 

 

where y  is the coordinate perpendicular to the free surface, x  is the coordinate parallel 

to the free surface, ( )xδ  is the layer thickness, t  is the time, and u  is the average 

velocity within the layer, which is roughly constant. 

 
Figure II.4 Schematic representation of a cylindrical tumbler used by McCarthy et al. [9]. 
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 They placed identical particles of different colors, sugar crystals (SC) and sugar 

ball (SB), in two halves of a short cylinder using a separator. The separator was removed, 

the cylinder was mounted on the rollers and rotated, and digital images were recorded at 

short time intervals as the mixing progressed. Figures II.5 and II.6 shows the results 

obtained respect to the time evolution of the mixed state for two mixing experiment and 

the variation in the intensity of segregation sI , respectively. 

 

 
Figure II.5 Experimental time evolution of the mixing process for two differing materials: (a) Sugar 
                    crystals (SC) filled to H=0.35. (b) Sugar balls (SB) filled to H=0.42 [9]. 
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Figure II.6 Experimental intensity of segregation Is evolution. Sugar crystals (SC) filled to H=0.35 and 
                    Sugar balls (SB) filled to H=0.42 [9]. 
 

Moakher et al. [14] experimentally validated computations of flow, mixing and 

segregation of non-cohesive grains in two types of three dimensional tumbling blenders: 

double-cone and V. Their results are shown in Figures II.7 and II.8. They made a 

quantification of the mixing rate for three upper insets, plotting the concentrations of the 

outermost (light gray), central (gray) and innermost (black) particles as a function of axial 

position after 1, 3 and 6 revolutions of the tumblers. These fits show an exponential trend 

between the variance of mixing and the number of revolutions of the mixer. Similarly, 

after a segregation study in both tumblers, they demonstrated that the intensity of 

segregation has the form: 

 
kNAeII −−= 0            (II.6) 

 

where N  represents the number of revolutions, 0I  the initial segregation value, A  and k  

are constants. 
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Figure II.7 Trend of the variance of volume elements in double-cone blender as a function of time [14]. 

 

 
Figure II.8 Trend of the variance of volume elements in V-blender as a function of time [14]. 
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II.4 Continuous mixing 

An industrial continuous mixer, as an Ajax LunFlow™ [15], operates on a small 

cross section of product that, in principle, contains the correct ratio of the required final 

make-up. The machine function is to successively replicate a disturbance process that re-

organises the bulk, to progressively increase the degree of disorder until suitable 

homogeneity is obtained. This is more efficient than employing significant axial sections 

to convey only and concentrating the work input by opposing the product transfer at a 

small region. Fixed blades are more secure for production use, although adjustable blades 

may be employed for test purposes. 

 

Two main techniques are used to achieve a cross sectional mix, according to the 

nature of work input needed to secure the appropriate condition. To blend fine powders 

that are not very cohesive it is usual to run the machine at a fast speed to induce a high 

degree of dilate agitation. This action separates the particles and allows the different 

components to diffuse in the mass. The corresponding cross sectional loading of the 

machine is relatively low. Paddle type blades are usually used in this mode.  

 

More intensive effort is required to merge cohesive powders mixtures. In this case 

the machine is run at a higher cross sectional fill so that the blades shear the product in a 

confined state and thereby induce higher stresses to affect the dispersion. 

 

It should be recognized that continuous mixers may have to accommodate short-

term variations in the output of the component feeders. A continuous system cannot 

compensate for a protracted deficiency of an ingredient but can deal with fluctuations of a 

cyclic or erratic nature if the average output within a short period falls within acceptable 

bounds. 
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CHAPTER III: SEMI-EMPIRICAL MODELS OF A CONTINUOUS 

TUMBLE MIXER 

III.1 Goal of the semi-empirical models 

The biggest hindrance to understanding of powders mixing is that there is no 

accepted set of governing equations, in part, to the difficulty in experimentally measuring 

the bulk properties, which would be necessary in a continuum description of a granular 

flow. In the previous chapter, the dynamics models and simulations of mixing processes 

proposed by different investigators was presented. These models were based on batch 

processes, where the mixer is charged with a definite quantity of material to mix and after 

some time is discharged.  

 

 It was demonstrated that even simple geometrical considerations can provide very 

helpful information about the characteristic mixing time and the optimal filling level of a 

circular mixer [13], while noncircular mixers are presented in terms of Poincaré sections 

and blob deformation, demonstrating the chaotic characteristics of these systems [16]. 

For the circular mixers, the geometrical considerations are based mainly on the following 

assumptions: 

 

• The powder particles are spherical and their adhesion is neglected. 

• The flow inside the mixer exhibits an avalanching regime. 

• The particles diffusivity is small, this is, the powders to mix are noncohesive granular 

and have similar characteristics. 

• The density of the powders A and B to mix are similar and the bulk density remains 

constant. 

 

An objective of this research is to propose and validate a semi-empirical model 

that describes, accurately, the continuous mixing process of powders. This model showed 

approximate the dynamics of a continuous rotating mixer whose input variables will be 

the inlet flow of material to mix, with a predetermined ratio of compounds A and B, and 
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the rotational velocity of the mixer. The output variables will be the material outlet flow 

from the mixer and the variance of mixing. The schematic of the continuous circular 

mixer is presented in the Figure III.1. 

 

 
Figure III.1 Schematic of a circular mixer. 

III.2 Model of fill level in a circular rotated mixer 

No previous works have been reported in the open literature, to the best 

knowledge of the author, on powder mixing flow in a continuous mixer. The study of 

powder flow within a mixer is a rigorous problem of transport phenomena that involves 

contact between different solid phases. For this, a first approach to understanding 

granular mixing, should consider the liquid mixing problem [12], and consequently, to 

model the variation of fill level inside the mixer as if it were a liquid. The fill level 

depends on the total amount of noncohesive granular materials that is being mixed; thus, 

respect to Figure III.1 where the front view is an approximation when the mixer is 

stopped, the conservation equation selected is an overall material balance on the system: 
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oi FF
dt
dm ρρ −=          (III.1) 

 

An acceptable assumption [13] is that the densities of noncohesive granular 

materials are similar and they remain constant during the mixing process and, similar to 

the avalanching regime for mixing, the surface of powders inside the mixer is assumed 

flat at all time. The geometrical construction in Figure III.1 indicates that x is the length 

of one side of a right triangle whose hypotenuse is R. Thus, x is related to the level h by: 

 

( ) 222 RhRx =−+           (III.2) 

 

22 hRhx −=           (III.3) 

 

The mass accumulation term in Eq. (III.1) can also be written as: 

 

dt
dhxL

dt
dV

dt
dm 2ρρ ==              (III.4) 

 

where 2xL represents the changing surface area of the powders. Substituting Eqs. (III.3) 

and (III.4) in (III.1) and simplifying one obtains: 

 

222 hRhL
FF

dt
dh oi

−

−
=            (III.5) 

 

Eq. (III.5) represents the variable fill level in the circular mixer, where Fi and Fo 

are the inlet and outlet flows, respectively, R and L are the radius and the length of the 

mixer, respectively. 

 

If the mixer is stopped, as in Figure III.1, the gravity flow of bulk solids occurs 

under the pressure corresponding to the equivalent of a static head of the material. Such 
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head would be caused by the height of a solid column in a bin, but in practice is often not 

available to produce the flow due to phenomena known as arching or bridging. The 

velocity head at the discharge from the bin is usually a small fraction of the head, with 

the major part being consumed by the friction of the moving solids against the walls of 

the bin, as well as against similar solids. The friction force is tangent to the surfaces of 

contact of the two bodies and always opposes motion. The coefficient of static friction μ 

for any two surfaces is the ratio of the limiting friction to the corresponding normal 

pressure: 

 

N
F

=μ              (III.6) 

 

where F is the maximum friction of impeding motion and N is the normal pressure. If a 

body rest on an inclined plane and if the angle of inclination of the plane to the 

horizontal, α, is such that motion of the body impends, this angle α is defined as the 

angle of repose, so it follows that: 

 

αμ tan=                (III.7) 

 

As an approximation, the outlet flow of mixed powder Fo depends only on the 

mechanical adjustment at the bottom of the mixer. For modeling effects, it is assumed 

that the mixed powder outlet flow behaves in a similar way to flow rate through an 

orifice1, according to: 

 

hKF oo =      (III.6) 

 

where h represents the fill level of powder inside the mixer and Ko the flow constant 

[L(5/2)/t]. The substitution of Eq. (III.6) into (III.5) gives: 
                                                 
1 This relation is derived from a mechanical energy balance or Bernoulli equation. In the practice, this 
relations type for a circular mixer could be approximated making a calibration procedure over mechanical 
equipment, measuring the powder mixed flow out as function of the fill level into the mixer. 
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222 hRhL

hKF
dt
dh oi

−

−
=            (III.7) 

 

Eq. (III.7) represents the change in the fill level inside the mixer if the mixer is stopped, 

this considering an approximation in the powders physics similar to a Newtonian fluid.  

 

As it is shown in Figures II.2, II.4, II.6 and III.2, the flat surface is displaced in 

direction of the rotation of the mixer. Khakhar et al. [16] found that when the mixer is 

half full, the entire bed passes through the layer in half a revolution of the mixer, so that 

the volumetric flow per unit cylinder length calculated at the midpoint of the layer (x = 0) 

is: 

 

( ) 2/
1

2

22

0
ML

M
LQ ==

π
π               (III.8) 

 

where L is the length scale of the system and M the rotational velocity of the mixer.  

 

 
 

Figure III.2 Dynamics of a circular mixer view. (a) Mixer stopped. (b) Mixer rotating. 
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 The behavior of the mixing depends of the operating regime, which may be 

quantified in terms of the Froude number. The Froude number represents the proportion 

between the inertial force and gravitational force, and is used in momentum transfer in 

general and open channel flow and wave and surface behavior calculations in particular. 

It is normally defined as:  

 

gL
MFr

2

=                (III.9) 

 

 At low speeds or low Froude number, the flow is intermittent and comprises 

discrete time-periodic avalanches [16]. The transverse mixing in this case is dominated 

by geometry. Each avalanche results in a wedge-shaped bed of particles at the free 

surface, abruptly cascading to form a new wedge at a lower position. At higher mixer 

rotational speeds, the continuous flow rolling regime is obtained, in which a thin layer of 

particles flows down the free surface while the remaining particles rotate as a fixed bed. 

Particles continuously enter the layer from the fixed bed in the upper-half of the layer, 

and exit from the layer into the fixed bed in the lower half; the free surface in this regime 

remains flat.  

 

 From the Figure III.2 (b) and rewriting mixed powder outlet flow as '
0 hKF o= , 

then ( )hfh ,' α=  and ( )Mf=α . Thus, the outlet flow Fo, as the mixer is rotating, can 

be approximated for simulation effects as a function of fill level inside and the rotational 

velocity of the mixer: 

 

( )hMfFo ,=                 (III.10) 

 

 When the rotational velocity of the mixer is very low, the outlet flow of mixed 

powder Fo, is approximated by Eq. (III.6), and as the rotational velocity increases, the 

outlet flow must decrease due to the change in the angle α and h’. Thus, as a first 
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approximation, the differential equation proposed to model the fill level h within a 

continuous mixer is given by: 

 

222
1

hRhL
M
hK

F

dt
dh

o
i

−

+
−

=
β           (III.11) 

 

where β  is a constant. This suggestion is only a heuristic, yet it appears to be followed by 

the system simulated as will be shown later. 

III.3 Model of variance of mixing for the continuous rotated mixer 

As it was presented above, the models, experiments and simulations of 

segregation and variance presented in the literature were developed in batch operations in 

cylinders, double-cone and V-blenders. Diverse studies [8,13] evaluate the segregation 

rate in bidisperse systems by plotting the intensity of segregation as a function of the 

number of revolution, as in Figure II.6. The intensity of segregation, I, is defined as: 

 

( )
1

1
2

−

−
= ∑ =

N
I

n

i mi φφ
          (III.12) 

 

where φi are the concentrations at the set on N uniformly distributed points in the bed and 

φm is the overall concentration. Figures II.7 and II.8 depict the exponential relation that 

exits between the number of revolutions of a tumbler and the variance of mixing. This 

type of relation can be extended to continuous mixers [14]. Figure III.3 depicts the 

relation as function of time found experimentally that exists between the fill level h  

inside the mixing and the variance of mixed. The constant nk  is a proportional function 

of the fill level within the mixer, this is, )(hfkn ∝ . 
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Figure III.3 Logarithmic behavior of the variance of mixing for a continuous mixer (F.J. Muzzio, 2005). 

 

 Thus, as a first approximation, the generalized model proposed to simulate the 

variance of mixing within a continuous mixer is given by: 

 
hMAe ψθθ −

∞ =− 22        (III.13) 

 

where A  and ψ  are constants, h  is the fill level within the mixer and M  represents the 

rotational velocity of the mixer. 

 

 The semi-empirical models in Eqs. (III.11) and (III.13) for outlet flow and 

variance respectively, are strongly nonlinear and dependent on inlet flow ( )tFi  and  

rotational velocity ( )tM . 

III.4 Simulation of semi-empirical models 

The proposed semi-empirical models were simulated on Simulink® file, where 

the model in differential form, Eqs. (III.11) and (III.13), was run with a simulation time 

of 200 000 seconds with the following changes in the input variables: 
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• Load over Inlet Flow: 
Table III.1 Load over inlet flow within the semi-empirical models. 

Time [sec] Final Value [cm3/s] Change Type 

0 64 --- 

40 000 40 Step 

170 000 --- Ramp 

200 000 64 --- 

 

• Load over Rotational Velocity: 
Table III.2 Load over rotational velocity within the semi-empirical models. 

Time [sec] Final Value [rps] Change Type 

0 2 --- 

80 000 4 Step 

 

 
Figure III.4 Response of semi-empirical models. (a) Fill Level, (b) Outlet Flow, (c) Inlet Flow,  

                                (d) Variance, (e) Rotational velocity. 
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Figure III.4, shows the response of the semi-empirical models to changes in the 

inputs variables. When the inlet flow increases, both the variance and outlet flow 

increases too, this is due to the presence of greater amount of material within the mixer. 

Similarly, when the inlet flow decreases, the outputs variables decrease too. Finally, 

when the rotational velocity of the mixer increases, the variance decreases and the outlet 

flow decreases too. These trends in the output variables of the semi-empirical models are 

consistent with the expected from the physical point of view. 
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CHAPTER IV: MULTIVARIABLE CONTROL - PI DESIGN  

IV.1 Goals of the multivariable PI control 

This chapter focuses on the analysis of the continuous mixer from a control theory 

point of view, applying some analysis and design techniques focused on the multivariable 

system where the input variables are the inlet flow of material to mix and the rotational 

velocity of the mixer, and the output variables are the material outlet flow from the mixer 

and the variance of mixing.  

 

First, the semi-empirical models in time domain were connected in Laplace domain 

to convert the original differential equations in a set of algebraic equations, known as 

transfer functions. Then, these transfer functions and the characteristic of a multivariable 

control system, were used to perform a controllability and observability analysis in terms 

of state space.  

 

Last step was the design of two Proportional Integral controllers (PI) with their 

interactions for the control of the system in study. 

IV.2 Model system development using linear regression 

The time domain models previously developed are strongly nonlinear. Their 

transformation to Laplace domain requires many assumptions to obtain the final model, 

which add inaccuracies that could make the model ineffective.  

 

An alternate approach is to develop an experimental model from an output data 

response to a change previously defined input and performing an analysis known as 

parameter estimation or regression. 

 

The first step was to perform a step change in one of the process input 

maintaining the others constant. The second step was to obtain the model using Design 
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Tools of Control Station Software1. The fitting routine systematically searches for the 

model parameters that minimize the Sum of Squared Errors (SSE) between the response 

contained in the measured data, and the response predicted by the model being fit both to 

the same change in the manipulated variable data in the file. With i indicating any one of 

the N total data points in the set, the SSE is expressed: 

 

( )∑
=

−=
N

i
ii DataModelDataMeasuredSSE

1

2__        (IV.1) 

  

In general, the smaller the SSE, the better the model describes the data. To obtain 

a meaningful fit, it was essential to recognize that the process in the original model will 

be at steady state before collection of dynamic data begins and that the first data point in 

the file will equal the initial steady state value. The best models obtained were: 

 

( )
( ) ( )

14704
9908.0

11 +
==

s
sG

sF
sF

p
i

o      (IV.2) 

 

( )
( ) ( )

159.54
6.1 546

12 +
−

==
Θ −

s
esG

sF
s s

p
i

      (IV.3) 

 

( )
( ) ( )

15964
0012.0

21 +
==

s
sG

sM
sF

p
o      (IV.4) 
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p      (IV.5) 

 

where the manipulated variables are ( )sFi  that represents the inlet flow of material to 

mixer and ( )sM  that represents the rotational velocity of the mixer, while the controlled 
                                                 
1 CONTROL STATION ® FOR WINDOWS. Software Registered by Douglas J. Cooper. 
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variables are ( )sFo  that represents the material outlet flow from the mixer and ( )sΘ  that 

represents the variance of mixing. 

 

From the principle of superposition and in vector-matrix notation, it follows that 

simultaneous changes in ( )sFi  and ( )sM  have an additive effect on each controlled 

variable: 
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   (IV.7) 

 

 Eq. (IV.7) provides a compact representation in conventional control theory for 

the 2X2 Multi Input Multi Output (MIMO) system. Modern control theory is based on the 

description of the system’s equations in terms of n first-order differential equations, 

which may be combined into a first-order vector-matrix differential equation which is 

essentially a time-domain approach. In the other hand, conventional control theory is a 

complex frequency-domain approach. In the state-space analysis exists three types of 

variables that are involved in the modeling of dynamic system: input, output and state 

variables. The state variables of a dynamic system are the variables making up the 

smallest set of variables that determine the state of the dynamic system [17]. The state-

space representation for a system is not unique, except that the number of state variables 

is the same for any of the different state-space representations. Any set of transfer 

functions of any system can be represented in state-space by the following form: 

 

( ) ( ) ( )
( ) ( ) ( )ttt

ttt
DuCxy
BuAxx

+=
+=&

           (IV.8) 
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where A  is called the state matrix, B  the input matrix, C  the output matrix, D  the 

direct transmission matrix, ( )tu  the control vector, ( )tx  the state vector and ( )ty  the 

output vector.  

 

 A description of the conversion from compact representation in conventional 

control theory for the 2X2 MIMO system, Eq. (IV.7), to state-space representation in 

Matlab® is provided in Appendices B through E. The state, input, output and the direct 

transmission matrices are respectively: 
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 Then, the state-space representation of the rotated powder mixer is: 
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where: 

 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Θ

=⎥
⎦

⎤
⎢
⎣

⎡
= oi F

tand
M
F

t yu     (IV.14) 

IV.3 Model Validation 

The validation of the representations of the original model described by Eqs. 

(IV.7) and (IV.13) was performed in Simulink® (Matlab® tool) and plotted in Figure 

IV.1. The three models, time domain, transfer functions and state-space were ran in 

parallel with a simulation time of 60 000 seconds and subjected to the same changes in 

the inputs variables.  

 

Computing the SSE between the response obtained by the model in time domain 

and both models in transfer functions and state-space according to Eq. (IV.1) the 

following values were obtained: 

 

56146_
_ =OutFlow

FunctionsTransferSSE         56563_ =−
OutFlow

SpaceStateSSE          (IV.15) 

 

6397.1_ =Variance
FunctionsTransferSSE         6578.1=−

Variance
SpaceStateSSE                    (IV.16) 
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These results show that both models represent with the same trend and error level 

the time domain. However, the variance shows a better agreement than the outlet flow 

which has a higher non-linearity relation. 

 

 
Figure IV.1 Response of the rotated mixer system. Model in time domain (solid), model in transfer  
                     functions  (dashed), model in state-space (dotted). 
 

IV.4 Output controllability 

For the practical design of a control system, it is desired to control the output 

rather than the state of the system. Complete state controllability is neither necessary nor 

sufficient for controlling the output of the system. Considering the system described by 

Eq. (IV.8) where x  the state vector has a size n, the control vector u  has a size r, the 

output vector y  has a size m, A  is a matrix nn× , B  is a matrix rn× , C  is a matrix 

nm×  and D  is a matrix rm× , it is said to be completely output controllable if and only 

if it is possible to construct an unconstrained control vector ( )tu  that will transfer any 



 30

given initial output ( )0ty  to any final output ( )1ty  in a finite time interval 10 ttt ≤≤ . 

Therefore, the system is completely output controllable if and only if the ( )rnm 1+×  

matrix 

 

[ ]DBCABCACABCB 12 −nK  

is of rank m .  

 

 In this case study, the matrix D  is equal to zero, m  and r  are equal to 2 and n  is 

equal to 5. Then the system is completely output controllable if and only if the composite 

nrm×  matrix CON  defined as 

 

[ ]BCABCABCACABCBCON 432=  

 

is of rank m . Computing the rank of matrix CON  from Eqs. (IV.9) to (IV.11), it is 

obtained: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−
−−−−−

=
000000000002.00
0000000005.000293.00002.0

CON    (IV.17) 

 

where the rank is equal to 2, proving that the system is completely output controllable.  

IV.5 Observability 

The system is said to be completely observable if every state ( )0tx  can be 

determined from the observation of ( )ty  over a finite interval, 10 ttt ≤≤ . The system is, 

therefore, completely observable if every transition of the state eventually affects every 

element of the output vector. Mathematically, the system described by Eq. (IV.8) is 

completely observable if and only if the nmn×  matrix 
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( )[ ]TnTTTT CACAC 1−
K  

 

is of rank n  or has n  linearly independent column vectors. Similar to the controllability 

proof, the rank of the matrix OBS  from Eqs. (IV.9) and (IV.11) is computing as 
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=  
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where the rank is equal to 5, proving that the system is completely observable.  

IV.6 Multivariable control 

 
Figure IV.2 Controller pairing options for continuous tumble mixer. 

 

Since the continuous tumble mixer in study is a MIMO system with two 

controlled variables and two manipulated variables, it is necessary to select the correct 

pairing of controlled and manipulated variables from the two options showed in Figure 

IV.2. A wrong pairing will result in poor control system performance and reduced 
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stability margins. Next, it is considered a systematic approach for determining the best 

pairing of controlled and manipulated variables, the Relative Gain Array (RGA) method. 

IV.6.1 Pairing of controlled and manipulated variables 

 
The pairing of variables is determined by the relative gain array: 
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where each element ijλ  between a controlled variable iy  and a manipulated variable ju  

is determined by:  
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 In this work, the subscripts i and j take the values of either 1 or 2. The relative 

gain 11λ  in Eq. (IV.19), for a 2X2 MIMO system is equal to: 
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 Because each row and each column of Λ in Eq. (IV.19) sums to one, the other 

relative gains are easily calculated from 11λ  for the 2X2 case as: 

 

112112 1 λλλ −==     and    1122 λλ =          (IV.22) 

 

thus, the RGA for the system can be expressed as: 
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The relative gains are easily calculated from the process model, represented by the Eq. 

(IV.7), where for a stable process: 
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and hence: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=Λ

0316.10316.0
0316.00316.1

             (IV.26) 

 

 The positive relative gains and closer to one as possible establish the pairing of 

the controlled and manipulated variables. However, this method is based solely on 

steady-state information, ignoring the process dynamics, which can be an important 

factor in the pairing decision. If a paring of inputs and outputs corresponds to a negative 

relative gain, then the close-loop system will exhibit instability in the overall close-loop 

system. Thus, the RGA analysis indicates the 1-1/2-2 pairing should be used for the 

control design of the rotated mixer, this is, oF  should be controlled by iF  and Θ  by M .  

 

 The RGA does not indicate severe interactions, therefore it is not necessary to use 

decoupling control. Decoupling improve control performance only when process 

interaction is unfavorable, so favorable interaction should not be reduced by decoupling. 

The stability and performance of full decoupling can be very sensitive to model error 

when the relative gain is greater than 1.  
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 However, the ideal decoupling transfer functions for the continuous tumble mixer 

system would be: 
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 The decoupler described by the Eq. (IV.27) is a lead-lag unit with dead time and 

it cancel the effect of variance output controller over ( )sFo , while the decoupler 

described by the Eq. (IV.28) is a dynamic model with two zeros and two poles, and it 

cancel the effect of outlet flow output controller over ( )sΘ , being both physically 

realizable, but not recommended by theirs dynamic characteristics, this is the high value 

of dead time and presence of zeros.  

IV.6.2 Tuning of multiloop PI control system 

 

Several methods have been proposed for estimating the tuning for multiloop 

systems without the time-consuming iterations associated with trial and error or the 

computer computations associated with the optimization approach [18]. Seborg et al. [5] 

present four types of tuning methods for multiloop PID control systems: 

 

• Detuning method (Luyben, 1986) 

• Sequential loop tuning method (Hovd and Skogestad, 1994) 

• Independent loop method (Grosdidier and Morari, 1987; Skogestad and Morari, 1989) 

• Relay auto-tuning (Shen and Yu, 1994) 

 

  An additional method bases the tuning on the characteristic equation for a 2X2 

system, divided by ( ) ( )sGsGC 1121+  [18], which does not change the stability limit: 
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From the RGA analysis made for the continuous tumble mixer, it was established 1-1/2-2 

pairing for the control design, that is ( )sFo - ( )sFi / ( )sΘ - ( )sM . In Eq. (IV.7), it can be 

seen that the transfer function that relate ( )sFo - ( )sFi  is much slower than the transfer 

function that relate ( )sΘ - ( )sM . When the first loop is much slower, the term for the fast 

controller would have a very large magnitude at the critical frequency of first loop, 

because the amplitude ratio of the integral mode in ( )ωjGC 2  will have a very high value 

at a frequency much less than the second loop critical frequency. Therefore, 

( ) 12 >>ωjGC , which leads to the following simplification in the characteristic equation: 

 

( ) ( ) ( ) ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≈

ωω
λωω

ωω
jGjG

jGjG
GjGjCE

C

C
C

222

11222
111

/
1        (IV.30) 

 

( ) ( ) ( )
11

11
1 λ

ω
ωω

jG
jGjCE C≈     (IV.31) 

 

 Summarizing, the first loop stability is affected by the change in close-loop 

process gain, therefore the gain of single-loop controller must be divided by 11λ . Thus, 

for the first loop: 
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 The Internal Model Control (IMC) method [19] was used to derive PI controller 

settings for the ( )sFo - ( )sFi  loop from the corresponding FOPDT transfer function: 
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where: 
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ττ =I            (IV.35) 

 

 In Eq. (IV.34) cτ  is a design parameter. An increase of this parameter produces a 

more conservative controller because CK  decreases while Iτ  increases. A good rule of 

thumb for selection of this parameter is 20% of the dominant time constant of the process 

model. From Eq. (IV.33): 

 

sec8.940
5

sec4704
5

=== dom
c

τ
τ       (IV.36) 

 

 The value of 8.940=cτ  means that the desired closed-loop response is five times 

faster than the open-loop response. Substituting the corresponding values into (IV.34) 

and (IV.35) it was obtained: 

 

21.51 =CK              (IV.37) 

 

47041 =Iτ              (IV.38) 

 

 For the second loop, the transfer function for the controller parameters is 22pG , 

described by Eq. (IV.5), which is a second order with lead time model. For this model, 

controller tuning values are not available in IMC relations, therefore, 22pG  must be 
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approximated by a first order model. For this approximation, the model fitting tool of 

Control Station Software was used once again: 

 

( ) ( )
( )( ) 14.53

063.0
106.801106.801

11867063.0
22 +
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++
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=
sss

ssGp      (IV.39) 

 

 The second order with lead time model, Eq. (IV.5), produced an R2 = 0.8823 and 

a SSE = 0.0062, while the fist order model, Eq. (IV.39), produced an R2 = 0.8613 and a 

SSE = 0.0073. Figure IV.2 depicts the response of both transfer functions to a step 

change in the input. 

 

 
Figure IV.3 Response after a step change of  Gp22. According to Eq. (IV.5) (solid), and according to  
                     approximation (IV.39) (dashed). 
  

After the approximation and as the second loop is much faster than first loop, it is 

desired, as a design condition, that closed-loop response will be two times faster than the 
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open-loop response. Again, evaluating Eqs. (IV.34), (IV.35) and (IV.36) using Eq. 

(IV.39), the following values are obtained: 

 

sec7.262
sec4.53 ==cτ            (IV.40) 

 

6.31
sec7.26*063.0

sec4.532 ==CK               (IV.41) 

 

4.532 =Iτ             (IV.42) 

IV.6.3 Implementation of multiloop PI control system 

 

Once the tuning parameters were determined, the close loop system was simulated 

in Simulink®, where the model in transfer functions were executed with a simulation 

time of  40 000 seconds with the following changes in the variables: 

 

• Set-Point in Outlet Flow: 
Table IV.1 Set-point change of outlet flow with PI controllers. 

Time [sec] Final Value [cm3/s] Change Type 

0 5 --- 

4 000 40 Step 

22 000 30 Step 

40 000 30 --- 

 

• Load Disturbance (noise) over Outlet Flow: 
Table IV.2 Load disturbance over outlet flow with PI controllers. 

Time [sec] Random [cm3/s] Change Type 

0 0 --- 

9 000 +/- 1e-4 Frequency 50 sec  

40 000 +/- 1e-4 Frequency 50 sec 
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• Set-Point in Variance: 
Table IV.3 Set-point change of variance with PI controllers. 
Time [sec] Final Value [ ] Change Type 

0 0.04 --- 

6 000 0.03 Step 

11 000 1e-6 sec-1 Ramp 

17 000 0.011 Step 

40 000 0.011 --- 

 

• Load Disturbance (noise) over Variance: 
Table IV.4 Load disturbance over variance with PI controllers. 

Time [sec] Random [ ] Change Type 

0 +/- 1e-9 Frequency 50 sec  

17 000 0 ---  

40 000 0 --- 

 

 
Figure IV.4 Multiloop PI control over model in Laplace domain. (a) Outlet Flow, (b) Variance. Set-Point 
                     (dashed), Variable (solid). 
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  Figure IV.3 depicts the multiloop PI control over model process in Laplace 

domain for changes in set-points and disturbances. Figure IV.4 depicts the multiloop PI 

control too, but this time over time domain. 

 

 
Figure IV.5 Multiloop PI control over model in time domain. (a) Outlet Flow, (b) Variance. Set-Point 
                     (dashed), Variable (solid). 
 

 In order to determine an appropriate operating point such that product quality may 

be guaranteed, the controller performance was tested with the combination of changes in 

set-points described above. The closed-loop performance in state-steady is reasonably 

well-controlled for both the Laplace domain and time domain, which confirm that the 

computation of tuning parameters for PI controllers from an approximate model is a good 

tool for initial tuning constants. The set-point tracking with the model in Laplace domain 

presents small overshoots, while with the model in time domain do not present. Both 

models do not present oscillations in the controlled variables and the interactions are 
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corrected without sacrificing stability. The disturbance rejection performance was very 

smooth and will be analyzed in chapter VI. 

 

The trend of the manipulated variables with the model in time domain is shown in 

Figure IV.5. It can be seen tat they do not present large changes that could affect the 

behavior of the final elements. The constraints of the manipulated variables fixed in the 

simulations were: The inlet flow changed between 0 to 64 cm3/s and the mixer velocity 

between 0 to 4 rps. 

 

 
Figure IV.6 Multiloop PI control over model in time domain. (a) Inlet Flow, (b) Mixer Velocity. 
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CHAPTER V: MULTIVARIABLE CONTROL - MPC DESIGN  

V.1 Goal of the multivariable MPC control 

This chapter is focused on the design and analysis of a Model Predictive Control 

(MPC) strategy applied to the continuous tumble mixer in study. MPC [20,21] is an 

optimization based strategy that uses a plant model to predict the effect of potential 

control actions on the evolving state of the plant. At each time step, an open-loop optimal 

control problem is solved by a linear program (LP) or quadratic program (QP) and the 

input profile is injected into the plant until a new measurement becomes available.  

 

To develop the strategy of described above, the Model Predictive Control toolbox 

of Matlab® will be used. This toolbox is a collection of software that helps to design, 

analyze and implement advanced industrial automation algorithms.  

V.2 Overview of MPC for the continuous tumble mixer 

An MPC strategy is a discrete-time controller; this is, it takes action at regularly-

spaced, discrete time instants [22]. The sampling instants are the times at which the 

controller acts. The interval separating successive sampling instants is the sampling 

period, tΔ . 

 

The block diagram for model predictive control is provided in Appendix I, while 

Figure V.1 shows the state of a MPC system that has been operating for many sampling 

instants. Integer k  represents the current instant. The latest measured outputs vector, ky , 

and previous measurements, 1−ky , 2−ky ,…, are known. The previous moves vectors are 

represented by 4−ku , …, 1−ku . As is usually the case, a zero-order hold array receives 

each set of move from the controller and holds it until the next sampling instant, causing 

the step-wise variations.  
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Figure V.1 Basic concept for MPC [22]. 

 

 To calculate its next move ku , the controller operates in two phases [22]: 

V.2.1 Estimation 

 

In order to make an optimum controller move, the controller needs to know the 

current state. This includes the true value of the controlled variable set ky , and any 

interval variables that influence the future trend, 1+ky , …, Pk+y .  

V.2.2 Optimization 

 

Values of set-points, measured disturbances, and constraints are specified over a 

finite horizon of future sampling instants, 1+k , 2+k , …, Pk + , where P is the 
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prediction horizon. The controller computes M moves ku , 1+ku , …, 1−+Mku , where M is 

the control horizon. Some typical rules of thumb to select M [5] are 205 ≤≤ M  and 

23 NMN << , where: 

 

t
t

N s

Δ
=               (V.1) 

 

st  is the settling time for the open-loop response. For the present research, 35=N , 

1=Δt  and 15=M , fulfilling with the rules specified above. The prediction horizon P is 

often selected to be MNP += , this is 50=P . 

V.3 Prediction and optimization model 

The linear model used in the design of MPC for prediction and optimization is 

depicted in Figure V.2. 

 

 
Figure V.2 Linear model for MPC for a continuous tumble mixer. 

 

 In the Matlab MPC toolbox of [22], the model of the plant is a linear time-

invariant system described by the equations: 

 

( ) ( ) ( ) ( ) ( )kkkkk dvu dBvBuBAxx +++=+1       (V.2) 

 

( ) ( ) ( ) ( )kkkk dmvmmm dDvDxCy ++=             (V.3) 
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 ( ) ( ) ( ) ( ) ( )kkkkk uuduvuuu uDdDvDxCy +++=         (V.4) 

  

where ( )kx  is the xn -dimensional state vector of the plant, ( )ku  is the un -dimensional 

vector of manipulated variables, ( )kv  is the vn -dimensional vector of measured 

disturbances, ( )kd  is the dn -dimensional vector of unmeasured disturbances entering the 

plant, ( )kmy  is the vector of measured outputs, and ( )kuy  is the vector of unmeasured 

outputs. The matrices DCBA ,,,  of the model that represent the continuous tumble mixer 

are defined by the Eqs. (IV.9) to (IV.12). The unmeasured disturbances ( )kd  is modeled 

as the output of the linear time invariant system: 

 

( ) ( ) ( )kkk ddd nBxAx +=+1        (V.5) 

 

( ) ( ) ( )kkk dd nDxCd +=                (V.6) 

 

The system described by the above equations is driven by the random Gaussian 

noise ( )kdn , having zero mean and unit covariance matrix.  

 

The MPC control action at time k  is obtained by solving the optimization 

problem [22]: 
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where the subscript j  denotes the j-th component of a vector, ( )"|" kik +  denotes the 

value predicted for time ik +  based on the information available at time k ; ( )kr  is the 

current sample of the output reference, subject to: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
0

1,...,0|
1,...,0|1

|
|

maxmaxminmin

maxmaxminmin

maxmaxminmin

≥
−==+Δ

−=+≤++≤−
+Δ≤+Δ≤−Δ

+≤+≤−
ΔΔ

ε

εε
εε

εε

PMhkhk
Piiikikii

iikikii
iikikii

jjjjj

jjjjj

jjjjj

u
VyyVy
VuuVu

VuuVu

yy

uu

uu

    (V.8) 

 

with respect to the sequence of input increment ( ) ( ){ }kkMkk |1,...,| +−ΔΔ uu  and to the 

slack variable ε , and by setting ( ) ( ) ( )*|1 kkkk uuu Δ+−= , where ( )*| kkuΔ  is the first 

element of the optimal sequence. uw Δ
ji, , uw ji, , yw ji, , are nonnegative weight vectors for the 

corresponding set variables. The smaller w , the less important is the behavior of the 

corresponding variable to the overall performance index. min,ju , max,ju , min,juΔ , max,juΔ , 

min,jy , max,jy  are lower and upper bounds on the corresponding variables, commonly 

named as constraints by bounds. In equation (V.8), the constrains are relaxed by 

introducing the slack variable 0≥ε . The weight ερ  on the slack variable ε  penalizes de 

violation of the constraints. The Equal Concern for the Relaxation ECR vectors uVmin , 
uVmax , uV Δ

min , uV Δ
max , yVmin  y yVmax  have nonnegative entries which represent the concern for 

relaxing the corresponding constraint. 

 

For our continuous tumble mixer, the values of measured outputs and controlled 

variables vectors in (V.2) to (V.8) are:  
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 The manipulated variable vector is represented by: 

 

( ) ( )
( )⎥⎦

⎤
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⎡
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kM
kF

k iu       (V.10) 

 

 The disturbance model in Eqs. (V.5) and (V.6) is a unit gain, this is ( ) ( )kk dnd =  

corresponding to a white Gaussian noise. Unmeasured outputs and measured disturbances 

vectors are zero, similarly to unmeasured disturbances and white noise innovations 

vectors: 

 

( ) ( ) ( ) ( ) ][0yndv ==== kkkk ud         (V.11) 

 

( ) [ ]1x =kd                (V.12) 

 

 The constraints are divided in two types: hard and soft. Hard constraints are those 

that can not be violated, and if necessary, the controller ignores its other objectives in 

order to satisfy them, for this may cause infeasibility of the optimization problem. Soft 

constraints can be violated with a fixed tolerance. In practical, lower and upper bounds, 

and maximum down and up rates of manipulated variables are hard constraints, since 

they are limits imposed by the final control elements of the system. As in previous 

chapter, the inlet flow changed between 0 to 64 cm3/s and the mixer velocity between 0 

to 4 rps. The maximum amount that the manipulated variables can decrease or increase in 

one move is unlimited. Therefore, 
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 Constraints on maximum value of output variables are not defined in this study, 

because its definition will avoid the comparison with PI strategy implemented in previous 

chapter, however this is an important and useful parameter in design of MPC controller. 

Thus: 
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In Eq. (V.8), the Equal Concern for the Relaxation (ECR) vectors that multiply 

hard constraints have a zero value, while those that multiply soft constraints are equal to 

one, this is: 

[ ]0VVVV uuu ==== ΔΔ u
maxminmaxmin        (V.19)  

 

[ ]1VV yy == maxmin         (V.20) 

 

 Input and output weight vectors have strong influence over controller 

performance. On inputs, weight vector penalizes deviations of a manipulated variable 

from its nominal value, while outputs vector penalizes deviation from its set-point. When 

w  values of a weight input vector or weight change input vector are zero, the 

manipulated variable can move between its upper and lower bound, while if the values 

are positives, this increases the weight to keep the manipulated variable near its nominal 
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value. A zero value of w  into a weight output vector is used when the output does not 

have a set-point and a positive value increase the weight to keep the output close to its 

set-point. The model for the variance of mixing ( )kΘ  is a nonlinear output variable, due 

to its exponential behavior. In order to give priority to the function of mixing control, its 

w  value in the weight output vector is very much higher than that of the ( )kFo . Weight 

input and weight change input vectors are set to zero, thus: 

 

[ ]0ww uu == Δ
jiji ,,         (V.21) 
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 Finally, the value of the weight ερ  on the slack variable ε  is by default [22]: 

 

{ }yuu www jijiji ,,,
5 max10 Δ=ερ        (V.23) 

 

 As the algorithm implemented in the toolbox of Matlab for the control of the 

continuous tumble mixer includes constraints, the solution of Eqs. (V.7) and (V.8) is 

obtained by a Quadratic Programming (QP) [22]. 

V.4 QP matrices 

In the process to obtain the matrices associated with the MPC optimization 

problem, Bemporad et al. [22, 23] assume first, for the prediction, that the disturbance 

model in Eqs. (V.5) and (V.6) is a unit gain denoted by: 
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then, the prediction model is given now by: 

 

 ( ) ( ) ( ) ( ) ( )kkkkk ddvu nBvBuBAxx +++=+1       (V.24) 

 

( ) ( ) ( ) ( )kkkk ddv nDvDCxy ++=         (V.25) 

 

 The prediction of the future trajectories of the model performed at time 0=k  and 

( ) [ ]0n =id  for all predictions instants i, and it is obtained [22]: 
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which gives 
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The optimization variables are calculated by the following algorithm [22]:  
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where MJ  depends on the choice of blocking moves. Together with the slack variable ε , 

vectors 0z , …, 1−Mz  constitute the free optimization variables of the optimization 

problem. The function to be optimized is: 
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where G is a constant and K are Hessian matrices. The constraints are involved through: 
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where matrices zM , εM , limM , vM , uM  and xM  are obtained from the upper and 

lower bounds and ECR values [22]. The optimal solution *z , *ε  is computed by solving 

the quadratic program described in Eqs. (V.33) and (V.34). 

V.5 Implementation of MPC control 

The closed loop system with MPC controller was simulated in Simulink® with a 

simulation time of  40 000 seconds with the following changes in the variables: 

 

• Set-Point in Outlet Flow: 
Table V.1 Set-point change of outlet flow with MPC controller. 

Time [sec] Final Value [cm3/s] Change Type 

0 40 --- 

10 000 50 Step 

22 000 30 Step 

36 000 -0.004 sec-1 Ramp 

40 000 14 --- 

 

• Load Disturbance (noise) over Outlet Flow: 
Table V.2 Load disturbance over flow out with MPC controller. 

Time [sec] Random [cm3/s] Change Type 

0 0 --- 

9 000 +/- 1e-4 Frequency 200 sec  

40 000 +/- 1e-4 Frequency 200 sec 
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• Set-Point in Variance: 
Table V.3 Set-point change of variance with MPC controller. 
Time [sec] Final Value [ ] Change Type 

0 0.04 --- 

6 000 0.03 Step 

11 000 1e-6 sec-1 Ramp 

17 000 0.011 Step 

40 000 0.011 --- 

 

• Load Disturbance (noise) over Variance: 
Table V.4 Load disturbance over variance with MPC controller. 

Time [sec] Random [ ] Change Type 

0 +/- 1e-9 Frequency 200 sec  

17 000 0 ---  

40 000 0 --- 

 

Figures V.3, V.4 and V.5 depict the MPC controller performance for the 

continuous tumble mixer, for the same changes in set-points and disturbances. The 

difference between the three figures is the value set for the output weight vectors yw ji, . 

Figure V.3 was obtained with [ ]1,03.0, colji =yw , Figure V.4 with [ ]10,03.0, colji =yw  and 

Figure V.5 with [ ]100,03.0, colji =yw . 

 

The results show that as w  increases for the variance of mixing ( )kΘ  in the 

weight output vector, its value is closer to the set-point, while for ( )kFo  a light positive 

value of w  keeps the output over its set-point. Large w  values for any output variable 

keeps the output close to its set-point, with a possible sacrifice in stability for the others. 

This is observed as w  in the variance is increased for the three figures, and w  for ( )kFo  

is maintained constant, starts showing light overshoots. 
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Figure V.3 MPC controller over continuous tumble mixer with wy

i,j = col [0.03,1]. (a) Outlet Flow, (b) 
                   Variance. Set-Point (dashed), Variable (solid). 
          

 
Figure V.4 MPC controller over continuous tumble mixer with wy

i,j = col [0.03,10]. (a) Outlet Flow, (b) 
                   Variance. Set-Point (dashed), Variable (solid).  
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Figure V.5 MPC controller over continuous tumble mixer with wy

i,j = col [0.03,100]. (a) Outlet Flow, (b) 
                   Variance. Set-Point (dashed), Variable (solid). 
 
 

With all values of yw ji,  the feedback system for MPC controller is stable, but with 

[ ]100,03.0, colji =yw  the control over the variance of mixing ( )kΘ  is better for set-points 

tracking without present overshoots. The trend of manipulated variables is shown in 

Figure V.6 and it can be seen how they present some strong changes when the set-points 

tracking were registered by the controller. 
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Figure V.6 MPC controller with wy

i,j = col [0.03,100]. (a) Inlet Flow, (b) Mixer Velocity. 
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CHAPTER VI: MULTIVARIABLE CONTROL - MPC VERSUS PI 

VI.1 Goal of the comparison 

This chapter is focused on comparing the behavior and performance of two 

feedback PI controllers developed in chapter IV and that of the MPC strategy developed 

in chapter V, studying the stability, overshoots on set-point tracking, accurate ranges and 

capacity to reject the effect of load disturbances. 

 

For the analysis, set-point changes and load disturbances were implemented over 

system for the analysis the proposed control strategies with step, ramp, sine wave and 

random changes, and the interaction effects between variables. 

VI.2 Set-point tracking 

The closed-loop system behavior for set-point changes is commonly referred as 

servo problem. While the set-point of a manipulated variable was maintained constant, 

set-point of the other manipulated variable was changed to study the performance of the 

controllers. 

VI.2.1 Set-point changes in oF  

 

Figure VI.1 depicts the closed-loop response to set-point changes. For two step 

changes in oF  from 40 cm3/s to 30 cm3/s and 30 cm3/s to 45 cm3/s both controllers avoid 

overshoot and oscillations, but MPC controller is faster than outlet flow PI controller. 

These step changes generate overshoots over Θ , but MPC controller does not presents 

oscillations to reestablish the process variable to its set point, while with variance PI 

controller the decay ratio is 20% approximately. 
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Figure VI.1 Closed-loop response and effects over Θ to set-point changes in Fo. Set-Point (dotted),  

       MPC (solid), Multivariable PI (dashed). 
 

 
For a ramp change in oF  at 0.003 cm3.s-1/s, the process variable controlled with 

MPC follows the ramp without deviations, compensating simultaneously the effect that 

this change has over Θ , while with the outlet flow PI controller occurs the classic change 

that implies that after an initial transient period the ramp input yields a ramp output, in 

addition to produce a light effect smaller to 1% over Θ  that is compensated by variance 

PI controller. 

 

For sine wave change in oF  with amplitude 3 cm3/s and frequency 0.0021 rad/s, 

the MPC controller has the robustness to force the process variable to follow the 

trajectory of set-point with the same phase. Over Θ , again MPC controller is more 

accurate for reject the effect of set-point change in oF . 
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In the three cases, it can be confirmed that no exist severe interactions between 

the two controlled variables, that is changes in set-point of oF , do not produce high 

variations in Θ . 

VI.2.2 Set-point changes in Θ  

 

 
Figure VI.2 Closed-loop response and effects over Fo to set-point changes in Θ. Set-Point (dotted),  

       MPC (solid), Multivariable PI (dashed). 
 
 

Figure VI.2 depict the closed-loop response to set-point changes. For two step 

changes in Θ  from 0.03 to 0.02 and 0.02 to 0.025, the MPC controller follows the trend 

without deviations, while with variance PI controller the decay ratio is 13% 

approximately. The variation in oF  produced by the changes in Θ  is quickly 

compensated by MPC controller, while with outlet flow PI controller the stabilization is 

three times slower. 
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For a ramp change in Θ  at 1x10-6/s and sine wave change with amplitude 0.005 

and frequency 0.0021 rad/s, both controllers follow the same trajectory of set-point, and 

similarly to previous section, changes in set-point of Θ  do not produce high variations in 

oF . 

VI.3 Disturbance changes 

The case of disturbance changes is also referred to as the regulator problem. 

Again, while the load disturbances of a manipulated variable were eliminated, a 

disturbance set was loaded over other manipulated variable to study the performance of 

the controllers. 

 

 
Figure VI.3 Closed-loop response and effects over Θ to load disturbances in Fo. Set-Point (dotted),  

       MPC (solid), Multivariable PI (dashed). 
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Figures VI.3 and VI.4 depict the closed-loop response to load disturbances on oF  

and Θ , respectively. In all cases, MPC controller always showed better levels of 

response to reestablish the process variables to their desired values.  

 

 
Figure VI.4 Closed-loop response and effects over Fo to load disturbances in Θ. Set-Point (dotted),  

       MPC (solid), Multivariable PI (dashed). 
 

VI.4 Simultaneous changes 

To verify the stability and performance of the controllers was simulated the close 

loop response in Simulink® with a simulation time of  40 000 seconds and the following 

changes in the variables: 
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• Set-Point in Outlet Flow: 
Table VI.1 Set-point change of outlet flow. 

Time [sec] Final Value [cm3/s] Change Type 

0 40 --- 

10 000 30 Step 

16 000 45 Step 

22 000 0.003 sec-1 Ramp 

24 000 51 --- 

27 000 3*sin (2*π*2.1x10-3) Sine Wave 

35 000 48.2 --- 

 

• Load Disturbance (noise) over Outlet Flow: 
Table VI.2 Load disturbance over outlet flow. 

Time [sec] Random [cm3/s] Change Type 

0 +/- 0.1 Frequency 100 sec 

35 000 +/- 0.1 Frequency 100 sec 

 

• Set-Point in Variance: 
Table VI.3 Set-point change of variance. 

Time [sec] Final Value [ ] Change Type 

0 0.03 --- 

10 000 0.02 Step 

14 000 0.025 Step 

20 000 1x10-6 sec-1 Ramp 

23 000 
0.005* 

sin (2*π*2.1x10-3)  
Sine Wave 

30 000  2x10-6 sec-1 Ramp 

35 000 0.0178 --- 

 

• Load Disturbance (noise) over Variance: 
Table VI.4 Load disturbance over variance. 

Time [sec] Random [ ] Change Type 

0 +/- 1e-7 Frequency 150 sec  

35 000 +/- 1e-7 Frequency 150 sec  
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Figure VI.5 Closed-loop response for Fo and Θ. Set-Point (dotted), MPC (solid), Multivariable PI  
                     (dashed). 
 
 
 As can be seen in Figure VI.5 both controllers produce similar closed-loop 

responses for outlet flow. This is corroborated in Figure VI.6, which depicts the 

difference between set-point and process variable error for the changes described above. 

For control of variance, MPC controller is slower to reach the steady state, but it does not 

generate overshoots in the process variable after a step change in set-point, contrary to 

the effect of the PI controller. 
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Figure VI.6 Error percent in closed-loop response for Fo and Θ. MPC (solid), Multivariable PI (dashed). 
 

VI.5  Robustness test 

The final test of the controllers developed was a robustness test. The performance 

of the controller system must be checked when the values of the process parameters 

deviate from the estimated nominal values, maintaining the adjustment parameters. In 

this case, first it was investigated only the effect of uncertainties in the output matrix C , 

and next it was added the effect of uncertainties in the state matrix A . To represent these 

uncertainties, Eqs. (IV.9) and (IV.11) are modified as: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−
−

=

00039.0000
0004.00025.0000
000183.000
0000006.00
00000002.0

A     (VI.1) 
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 and 

 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

00152.001111.0000038.00
002228.000128.0

C     (VI.2) 

 

Figure VI.7 depicts the case of 5% decrease in values of matrix C , that is the 

description of the vector of system’s outputs. Figure VI.8 depicts the case described 

above adding a decrease in the element (2,2) of matrix A  from -0.0002 to 0.0006, that is 

an element of state that describe the system’s dynamics. For MPC controller, Matrix A  

is part of the optimization function, Eq. (V.7), since it participates in the calculation of 

vector of measured outputs ( )kmy  from the state vector of the plant ( )kx . 

 

 
Figure VI.7 Robustness test in presence of uncertainties in matrix C. Set-Point (dotted), MPC with exact 
                     process model (solid), MPC with uncertain process model (dotted), Multivariable PI with 
                     exact process model (dashed), Multivariable PI with uncertain process model (dashdot). 
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Figure VI.8 Robustness test in presence of uncertainties in matrices A and C. Set-Point (dotted), MPC with 
                     exact process model (solid), MPC with uncertain process model (dotted), Multivariable PI 
                     with exact process model (dashed), Multivariable PI with uncertain process model (dashdot). 
 
 

For the test with uncertainties in the output matrix C , both controllers showed 

robustness, while adding uncertainties in the state matrix A  caused that the close-loop 

response deteriorated under MPC. As can be seen in Figure VI.8, Multivariable PI 

controller has a good performance, while MPC is not able to handle adequately these 

changes in the model, since its optimum moves are based on the dynamics model.  
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CHAPTER VII: CONCLUSIONS AND RECOMMENDATIONS 

VII.1 Conclusions 

The objectives of this investigation were accomplished. A continuous rotating 

powder mixing was modeled. The specific objectives were realized: 

 

• An ideal model was developed to describe a continuous rotating powder 

mixer. 

• Two feedback control strategies (PI, MPC) were developed for a continuous 

rotating powder mixer, where the mixer dynamics is described by the model 

developed above. 

• Last but not least implementation of the model through Simulink by Matlab 

allowed to compare the robustness, overshoots on set-point tracking, 

performance and capacity to reject the effect of load disturbances of the 

strategies developed. 

 

Two multivariable control strategies PI and MPC were developed to control a 

continuous tumble mixer of granular materials. Both strategies were based on a semi-

empirical model, whose input variables are the inlet flow of material to mix and the 

rotational velocity of the mixer, while the output variables are the material outlet flow 

from the mixer and the variance of mixing. 

 

A contribution of this research was the development of a semi-empirical model, in 

which assumptions were incorporated that the powder level variation inside the mixer has 

the same behavior of a Newtonian liquid discharging from an orifice by the effect of the 

gravitational force, and that the densities of noncohesive granular materials are similar 

and remain constant during the mixing process. This component of the model was 

coupled with an exponential expression for the behavior of variance of mixing as a 

function of fill level inside the mixer and its rotational velocity. The results showed that 
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the trends of the output variables obtained from the semi-empirical model are consistent 

with expected behavior observed by other authors in batch mixers. 

 

The time domain semi-empirical model developed is nonlinear with the largest 

nonlinearity in the outlet flow. Linear transformations through an analysis of parameter 

estimation on Laplace domain and state-space representation show a better agreement for 

the variance behavior than for outlet flow. The control strategies designed are based on 

these linear mathematical models. 

 

In the design of the multivariable control PI strategy, a RGA analysis does not 

indicate severe interactions between manipulated and controlled variables, suggesting 

that it was not necessary to consider the use of decoupling control. The tuning of PI 

controllers was based on the fact that the transfer function that relate ( )sFo - ( )sFi  is 

much slower than the transfer function that relate ( )sΘ - ( )sM , forestalling that the first 

loop stability was affected by the change in closed-loop process gain. 

 

MPC control strategy was developed incorporating hard constraints on inputs, 

simulating the limits imposed by the final control elements of the system. In the state 

feedback control law associated with MPC, it was used a weight vector on outputs system 

that penalizes deviations from its set-point. The corresponding element to ( )kΘ  in this 

vector was greater than that of ( )kFo , by an order of magnitude of 1x104. This forced the 

controller to have a priority on stability and performance on the variance of mixing. 

However this large w  value for ( )kΘ  sacrifices slightly the stability of ( )kFo . 

 

For set-point tracking in both oF  and Θ , MPC controller does not present 

oscillations and overshoots. In the control of variance, MPC controller was slower to 

reach the steady state than PI, but it did not generate overshoots, contrary to the PI 

controller. Multivariable PI controller had better performance when the state matrix into 
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state-space representation of the process was modified, confirming its robustness. On the 

other hand MPC could not handle these changes in the model. 

 

Based on the conditions and assumptions used in this work, the simulation results 

show that the proposed strategies are valid and provide a reliable control. The 

multivariable PI showed an adequate robustness. 

VII.2  Recommendations 

For the implementation on a continuous tumble mixer of two control strategies 

developed in this research, it is necessary to use an on-line image analysis in order to 

determine the variance of mixing and a sensor for outlet flow of material from the mixer. 

As final control elements, a motor connected to a driver and two feed systems with a ratio 

controller for compounds A and B to mix. For the data acquisition in order to propose the 

empirical model of mixing, configuration and commissioning of the MPC or 

Multivariable PI strategies, a Distributed Control System (DCS) would prove to be a 

suitable control architecture, especially if the decision is to implement the MPC 

controller in which the computational expense associated with solving the QP on-line can 

be inconvenient. 

 

Due to the absence of mixing models in continuous tumbles based in fundamental 

equations, and because the mixing problem is treated as a statistical or stochastic process, 

new control schemes such as Fuzzy Logic (FL) control strategy could be explorer for the 

control of these mixers. This technique provides a simple way to arrive at a definite 

conclusion based upon vague, ambiguous, imprecise, noisy, or missing input information. 



 

 70

REFERENCES 
 

[1] F. J. Muzzio, T. Shinbrot, B. J. Glasser. Powder technology in the 
pharmaceutical industry: the need to catch up fast, Powder Technology 124 
(2002) 1-7. 

 
[2] S. Muerza, H. Berthiaux, S. Massol, G. Thomas. A dynamic study of static 

mixing using on-line image analysis, Powder Technology 128 (2002) 195-204. 
 

[3] Batch Systems Standards: ANSI/ISA-88.01-1995, ANSI/ISA-88.00.02-2001, 
ANSI/ISA-88.00.03-2003, ISA-TR88.0.03-1996, ISA – The Instrumentation, 
Systems, and Automation Society. http://www.isa.org. 

 
[4] F. Zhao, W. Du, G. Yu. An improved generalizad analytical predictor for 

chemical process control, Journal of Process Control 9 (1999) 185-191. 
 

[5] D. E. Seborg, T. F. Edgar, D. A. Mellichamp. Process Dynamics and Control, 
2d ed., John Wiley & Sons, Inc., New Jersey, 2004. 

 
[6] L. T. Fan, Y. M. Chen. Recent developments in solids mixing, Powder 

Technology 61 (1990) 255-287. 
 

[7] K. Malhotra, A. S. Mujumdar. Fundamental particle mixing studies in an 
agitated bed of granular materials in a cylindrical vessel, Powder Technology 55 
(1998) 107-114. 

 
[8] Y. Kaneko, T. Shiojima, M. Horio. Numerical analysis of particle mixing 

characteristics in a single helical ribbon agitator using DEM simulation, Powder 
Technology 108 (2000) 55-64. 

 
[9] J. J. McCarthy, D. V. Khakhar, J. M. Ottino. Computational studies of granular 

mixing, Powder Technology 109 (2000) 72-82. 
 

[10] J. J. McCarthy. Micro-modeling of cohesive mixing processes, Powder 
Technology 138 (2003) 63-68. 

 
[11] M. Aoun-Habbache, M. Aoun, H. Berthiaux, V. Mizonov. An experimental 

method and a Markov chain model to describe axial and radial mixing mixing in 
a hoop mixer, Powder Technology 128 (2002) 159-169. 

 
[12] J.J. McCarthy, T. Shinbrot, G. Metcalfe, J. E. Wolf, J.M. Ottino. Mixing of 

granular materials in slowly rotated containers, AIChE Journal 42 (1996) 3351-
3363. 

 



 71

[13] T. Elperin, A. Vikhansky. Kinematics of the mixing of granular material in 
slowly rotating containers, Europhysics Letters 43 (1998) 17-22. 

 
[14] M. Moakher, T. Shinbrot, F.J. Muzzio. Experimentally validated computations 

of flow, mixing and segregation of non- cohesive grains in 3D tumbling 
blenders, http://www.muzzio.rutgers.edu/OnlinePapers/MDPaper.pdf. 

 
[15] AJAX Equipment. Ajax LunFlow™ Continuous Mixer, 

http://www.ajax.co.uk/conmix.htm. 
 

[16] D.V. Khakhar, J.J. McCarthy, J.F. Gilchrist, J.M. Ottino. Chaotic mixing of 
granular materials in two-dimensional tumbling mixers, Chaos 9 (1999) 195-
205. 

 
[17] K. Ogata. Modern Control Engineering, 4th ed., Prentice Hall, New Jersey, 

2002. 
 

[18] T. E. Marlin. Process Control: Designing Processes and Control Systems for 
Dynamic Performance, McGraw-Hill, Inc., New York, 1995. 

 
[19] D.E. Rivera, M. Morari, S. Skogestad. Internal Model Control. 4. PID 

Controller Design, Ind. Eng. Process Design Dev., 25 (1986) 252. 
 

[20] J.G. Van Antwerp, R.D. Braatz. Model predictive control of large scale 
processes, Journal of Process Control 10 (2000) 1-8. 

 
[21] C.V. Rao, J.B. Rawlings. Linear programming and model predictive control, 

Journal of Process Control 10 (2000) 283-289. 
 

[22] A. Bemporad, M. Morari, N.L. Rocker. Model Predictive Control Toolbox for 
use with Matlab®, The MathWorks, Inc., Natick, MA, 2005. 

 
[23] A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos. The explicit solution of 

Model Predictive Control via Multiparametric Quadratic Programming, 
Proceedings of the American Control Conference, Chicago, Illinois, 2000. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 



 73

A. Definition of semi-empirical models of mixing in Simulink by Matlab 
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B. Definition of transfer functions system in Matlab 
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C. MIMO 2X2 system in Matlab 
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D. Conversion from MIMO 2X2 system to state-space system 
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E. Definition of state-space system in Matlab 
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F. PI system control over Laplace domain in Simulink by Matlab 
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G. PI system control over time domain in Simulink by Matlab 
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H. Comparison between PI system control with and without decouplers over  
      time domain 
 

 
 

Solid line - Control system without decoupling.
Dotted line – Control system with decoupling. 
Dashed line – Set point. 

Solid line - Control system without decoupling.
Dotted line – Control system with decoupling. 
Dashed line – Set point. 
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I. Block diagram for model predictive control 
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J. MPC system control over continuous tumble mixer in Simulink by Matlab 
 

 
 




