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ABSTRACT 

High porosity metal foams are excellent candidates for high heat dissipation. They 

are employed in aerospace applications mainly, but their use has been widened to include 

cooling in Electronic Packaging. Other important applications have been found taking 

advantage of the thermal properties of the metal foam. These applications include 

compact heat exchangers for airborne equipment, regenerative and dissipative air-cooled 

condenser towers, and compact heat sinks for power electronics.  The low relative 

density, open porosity and high thermal conductivity of the cell edges, as well as the 

large accessible surface area per unit volume, and the ability to mix the cooling fluid, all 

make metal foam heat exchangers efficient, compact and light weight. The purpose of 

this work is to provide an analytical model to determine the two-dimensional temperature 

distribution in open cell metal foams when they are used in a forced convective heat 

transfer mode.  The analysis uses the typical parameters reported by the foam 

manufacturers such as the porosity and the area density, defined as the ratio of the surface 

area of the foam to the volume. The simplicity and applicability of the present approach 

offer a significant advantage over previous models.  It eliminates the need for complex 

microscopic analytical or numerical modeling of the flow and the heat transfer in and 

around the pores.  The correlations obtained experimentally through this research also 

have a great importance in the model proposed.  
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RESUMEN 

Las esponjas de metal altamente porosas son candidatos excelentes para generar 

gran disipación de calor. Son empleadas en la industria aerospacial principalmente, pero 

su uso ha ido ampliándose para enfriamiento en dispositivos electrónicos.  Se han 

encontrado aplicaciones importantes aprovechando las propiedades térmicas de las 

esponjas de metal. Estas aplicaciones incluyen intercambiadores de calor compactos para 

equipos de aire, torres condensadoras enfriadas por aire de tipo regenerativo y disipativo, 

y sumideros de calor compactos para electrónica de potencia. La baja densidad relativa, 

porosidad abierta y alta conductividad térmica de los bordes de la celda, así como la gran 

área superficial por unidad de volumen y su habilidad para mezclar el fluido refrigerante, 

todo junto hacen que los intercambiadores de calor creados con esponja de metal sean 

eficientes, compactos y de bajo peso. El propósito de este trabajo es proveer un modelo 

analítico para determinar la distribución de temperatura en dos dimensiones en esponjas 

de metal de celdas abiertas cuando son usadas en un modo de transferencia de calor por 

convección forzada. El análisis usa los parámetros típicos reportados por los 

manufacturadores de la esponja de metal tales como porosidad y densidad de área, 

definida como la razón de área superficial de la esponja al volumen de la misma. La 

simplicidad y aplicabilidad de la presente aproximación  ofrece significantes ventajas 

sobre modelos previos. Este análisis elimina la necesidad de modelación analítica a nivel 

microscópico o modelación numérica compleja del flujo y transferencia de calor en y 

alrededor de los poros. Las correlaciones obtenidas experimentalmente a través de esta 

investigación también tienen una gran importancia en el modelo propuesto.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Metal foams are a relatively new class of materials with low densities and novel 

thermal, mechanical, electrical and acoustic properties.  They are used to construct 

lightweight structures, to develop energy absorption devices and for thermal applications, 

which is the focus of this thesis. Also, they are recyclable and nontoxic. At present, metal 

foams have not been completely characterized, and the processes to manufacture them 

are imperfectly controlled, therefore the properties of the metal foams suffer variability. 

However, all these issues are improving rapidly.  

 

Metal foams consist of small filaments that are continuously connected in an 

open-celled foam structure. The strength of the foam depends mostly on the base material 

and the relative density of the foam. Other properties, such as pore size, filament size, 

and cell shape influence certain foam characteristics, such as the heat transfer through 

them. In order to define a foam material for an application, it is necessary to specify two 

characteristics; pore size and relative density. These characteristics are independent foam 

variables which provide great flexibility in product design. Figure 1.1 is a picture of the 

metal foam structure similar the one used in this research. 
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 Figure 1.1 Actual foam structure. 

 

The cells of metal foam are conformed by polyhedrons of 12 to 14 faces. 

Likewise, each face has a pentagonal or hexagonal shape, and therefore, each one is 

formed by five or six filaments. Figure 1.2 is a very simple representation of the metal 

foam cell described above. 

 

 

 

 

 

 

 

 

 

Figure 1.2 Representation of metal foam cell. 
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The most important characteristic of the metal foams, the pore size, is defined by 

the diameter of the open window in each of the faces that compose the cell. The pore 

density is the number of pores that can be measured in a linear inch and its unit is PPI 

(pores per linear inch). The available pore densities vary depending upon the base foam 

material, but their overall uncompressed range is 5-100 PPI. Figure 1.3 shows some 

samples of open-cell metal foams of different densities.  

 

 

Figure 1.3 10, 20 and 40 PPI metal foam samples. 

 

The second most important characteristic, the relative density, is defined as a 

percentage (%) of solid material. In other words, it is the volume of solid foam material 

relative to the total volume of metal foam. It is known that when the relative density is 

increased, the filaments become larger in diameter and stronger, increasing the strength 

of the foam structure.  



4 

Most commercially available metal foams are based on aluminum or nickel. Our 

research uses open-cell aluminum foam. This kind of metal foam will be better described 

in Section 4.1. 

 

The focus of this thesis is the study of the heat transfer through a commercially 

available metal foam sample. As it was explained before, metal foam is composed of a 

porous matrix that consists of tortuous, irregular shaped flow passages.  Heat transfer 

takes place between the surface of the solid matrix and the fluid. The flow re-circulates at 

the back of the solid fibers. Turbulence and unsteady flows occur when a Reynolds 

number greater than 100 is presented in the pore-scale. Due to the geometric complexity 

and the random orientation of the solid phase of the porous medium, the exact solutions 

of the transport equations inside the pores are difficult to obtain.  

 

A number of studies were undertaken to try to characterize metal foams. Next 

Chapter presents a literature review that was made at the earlier stages of this research. 

This review summarizes a lot of works that compose a contribution to the concurrent 

development of the science and uses of the metal foams.   

 

The present work provides an analytical model to determine the two-dimensional 

temperature distribution in open cell metal foams when they are used in a forced 

convective heat transfer mode.  Two of the most important characteristics of the metal 

foams were mentioned before. However, there exist other typical parameters reported by 

the foam manufacturers such as the porosity and the area density, which are used in the 
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analysis. The area density is defined as the ratio of the surface area of the foam to the 

volume.  The simplicity and applicability of the present approach offer a significant 

advantage over previous models.  It eliminates the need for rigorous microscopic 

analytical or numerical modeling of the flow and the heat transfer in and around the 

pores.  Another advantage is that the current model is easily verified by simple 

experiments, as described in Chapter 4. 

 

1.2 APPLICATIONS 

 

Metal foams have been used as lightweight supporting structure in aerospace 

applications, especially in the cryogenic field [1, 2].   Different types of metal foams are 

used as cladding on buildings, strain isolation and as a buffer between a stiff structure and 

a fluctuating temperature field.  They are also used in geothermal operations and in 

petroleum reservoirs [15].  Ceramic foams are used in advanced burners and heat pipes.  

And nickel foams have been used to improve the performance of high-power batteries, 

such as those used in lightweight cordless electronics [14].  Thermal management 

applications of foams include compact heat exchangers for airborne equipment, air-

cooled condenser towers, both the regenerative and the dissipative type, and compact heat 

sinks for power electronics [4].  The open porosity, low relative density and high thermal 

conductivity of the cell edges, the large accessible surface area per unit volume, and the 

ability to mix the cooling fluid by promoting eddies [8]; all make metal foam heat 

exchangers efficient, compact and light weight. 
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Focusing on the open–cell foams made out of metal, especially aluminum; it is 

found that they have been used to construct fluid flow control devices as gas diffusers 

and mixers as well as separators of liquid and gas. The capacity of the metal foams to 

absorb a great quantity of energy produced by impact when they are used in materials 

type sandwich is well known. So, the stress-strain response of metal foams can be 

customized for some specific applications varying the density and alloy of the foam, 

while its isotropic properties provide identical response without considering the impact 

angle. 

 

As previously mentioned, one of the most important applications of the aluminum 

metal foams is to build compact heat exchangers. The high surface area to volume ratio 

allows a more compact design than provided by any other materials.  A compact heat 

exchanger made using aluminum metal foam can be observed in Figure 1.4.  

 

 

Figure 1.4 Compact heat exchanger using metal foam. 
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1.3 AN OVERVIEW OF THE RESEARCH  

 

This research consists of the study of the temperature distribution in open-cell 

metal foams when these foams are in a convective heat transfer mode. A mathematical 

model is developed and validated with experimental work. The whole research work has 

been divided into several parts to achieve the objectives. The first part of the research 

consists of a literature review of the works related to this research topic. This has a great 

value because it allows getting a strong background in the topic.  

 

A two-dimensional analytical heat transfer model is developed and some solutions 

are obtained for different conditions. A justification to consider a local average 

temperature between the solid and fluid parts inside the metal foam is given, and 

correlations developed by different authors in some related works are used in the 

mathematical model. Boundary conditions in the model will be carefully determined 

because the temperature behavior at the face where the air exits the foam is unknown.  

Thus, four different mathematical solutions will be obtained varying the boundary 

conditions at the face where the air exits the foam. All the details of these mathematical 

solutions are given in the Chapter 3 and Appendix B.  

 

To validate the analytical model and to find the real boundary condition at the exit 

of the foam, a series of experiments is carried out using a sample of open cell aluminum 

foam and a heater attached to it. To perform these experiments, a wind tunnel and a data 

acquisition system was employed. The heater generates a constant heat flux at the base of 
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the foam which is conducted along the filaments of the foam and through the air. The 

foam is located inside the wind tunnel in order to pass air through it. When the air passes 

through the metal foam, heat transfer by convection from the filaments to the air begins 

to happen and the heat is dissipated in a very small space along the axial direction. This 

information is revealed by employing some thermocouples to measure the actual 

temperature distribution in the metal foam along two directions. All the details about the 

foam and the equipment employed for the experimental work are given in Chapter 4.  

 

Once the mathematical model has been developed and the experiments are run, 

the next step is to compare the results generated and to analyze if these have a good 

agreement. It was useful to find a mathematical model that could be adjusted to the 

experiments and to develop some interesting conclusions.  
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CHAPTER 2 

LITERATURE REVIEW 

Heat transfer in porous media is an interesting topic which has been studied in the 

recent years. Literature review indicates that some investigators have tried to find an 

effective conductivity coefficient considering the two elements present in the foam: solid 

aluminum and air as a single phase. Experimental, analytical and numerical works about 

the topic of porous media has been carried out.  

In 1998, Bastawros [1] demonstrated the efficiency of metallic foams in forced 

convection heat removal. Bastawros showed that a high performance cellular aluminum 

heat sink removed 2-3 times the usual heat flux removed by a pin-fin array, at a third of 

the weight and with only a moderate increase in the pressure drop. When the air flow was 

at low velocities, the heat flux was governed by the convective heat transfer to the 

flowing fluid. At higher velocities, the heat flux was limited by heat conduction from the 

substrate to the foam block through the constricted nodal passages of the foam. 

An important application of metal foams, as it has been mentioned in multiple 

occasions, is to construct compact heat exchangers. An interesting study carried out by 

Boomsma et al. [2] where open-cell aluminum foams were compressed by various factors 

and then fashioned in to heat exchangers for electronic cooling applications, which 

dissipate large amounts of heat. Some parameters that describe the heat exchangers were 

evaluated through experiments, which included the hydraulic characterization, the heat 

transfer performance and a study to determine the most efficient heat exchanger for 
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particular heat transfer necessities. It was seen that the compressed aluminum foams 

made a significant improvement in the efficiency over several commercially available 

heat exchangers, which operate under nearly identical conditions.  

Zhao et al. [3] studied the dependence of the effective thermal conductivity on the 

temperature in metal foams. In their work, the effective thermal conductivity of five 

FeCrAlY foam samples with different pore sizes and relative densities were measured 

using a guarded-hot-plate apparatus under both vacuum and atmospheric conditions. The 

results showed that the effective thermal conductivity increased rapidly as the 

temperature increased, particularly in the higher temperature range (500-800 K) where 

the thermal radiation dominated the transport. The results showed that the contribution of 

the heat transfer by natural convection was also significant. The effective thermal 

conductivity increased as the pore size or relative density increased. In addition, relative 

density had a great effect on the natural convection in the metal foam.   

Some purely analytical works has been developed. Between the first works of this 

kind we found the one developed by Vafai and Tien [4] who showed the nature and 

importance of the boundary and inertial effects upon flow and heat transfer in porous 

media. The effect of the boundary on the heat transfer was quite important and more 

pronounced for the thermal boundary layer with a thickness less than or of the same order 

as the momentum boundary layer. 

Writz [5] developed a semi-empirical model for the combined conduction and 

convection heat transfer in a thin porous wall.  The model assumed a one-dimensional 
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conduction in the porous matrix and a one-dimensional flow of the coolant through the 

foam wall.  For the same volume of the heat exchanger, the porous matrix provided 

approximately 1.5 times more heat transfer surface than the offset strip fin array. 

Lu et al. [6] studied the use of open-celled metal foams as heat sinks for high 

power electronic devices and multi-layered heat exchangers for aeronautical applications.  

An analytical model was developed with simple cubic unit cells consisting of heated 

slender cylinders, based on existing heat transfer data on convective cross flow through 

cylinders banks. A foam-filled channel having constant wall temperatures was analyzed 

to obtain the temperature distribution inside the channel as a function of foam density, 

cell size and other heat transfer parameters. The overall heat transfer coefficient of the 

heat exchanging system was calculated, and the pressure drop experienced by the fluid 

flow was obtained. 

A purely numerical work also was found. Regarding the improvement the heat 

transfer using porous media as heat sinks, Kiwan and Al-Nimr [7] numerically simulated 

the thermal performance of porous fins. They established a comparison between their 

performance and that of solid fins. It was found that using porous fins may enhance the 

performance of an equal size conventional solid fin and, as a result, save one hundred 

percent of the fin material.  This model was used to study the effect of several operating 

and design parameters on the thermal performance of the fin, like the Rayleigh number, 

Darcy number and the thermal conductivity ratios.  
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It is obvious that analytical and numerical methods to model the heat transfer in 

porous media validated experimentally composes the biggest group of works related to 

the topic. First, a description of the works that involves numerical models validated 

experimentally will be given.  

Younis and Viskanta [8] designed an apparatus to determine the volumetric heat 

transfer coefficient between a stream of air and ceramic foam. The governing 

conservation equations of energy for both the gas and the solid phases with appropriate 

boundary conditions were solved using a finite-difference procedure. Heat transfer 

correlations were developed for each different mean pore diameter of ceramic foam and 

for different values of air velocity entering to the foam sample. 

Decker et al. [9] provided detailed experimental characterization and numerical 

modeling of the heat and mass transport properties of highly porous media for solar 

receivers and porous burners.  They considered the foam as a pseudo-homogeneous 

(locally-volume-averaged) medium, where the solid and the fluid phases were treated as 

an artificial single phase with effective properties. 

Calmidi and Mahajan [10] quantify thermal dispersion and thermal no equilibrium 

effects in metal foams. To this end, both experimental and numerical methods were 

employed. Experiments were performed with a variety of aluminum metal foams. Their 

results indicated that for foam-air combinations, the thermal dispersion was extremely 

low. However, for foam-water combinations, results indicated that the thermal dispersion 

was very high. 
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Phanikumar and Mahajan [11] performed numerical and experimental studies for 

flows in high porosity metal foam heated from below. Experiments were conducted under 

natural convection for the same configuration and these were used to test the numerical 

model, and the validity of the thermal equilibrium assumption for metal foams. Several 

metal foam-fluid combinations were used to study the heat transfer enhancement relative 

to the base in which there was no metal foam but only a heated plate. Thermal dispersion 

effects and the effect of Darcy number on heat transfer were reported. 

Related to the non-metallic foams, some numerical-experimental works were also 

founded and reviewed, as the developed by Pan et al. [12], who presented experimental 

investigations on the effective heat conductivity of ceramic foams. Guessing the radial 

and axial effective heat conductivities, the temperature profiles in the porous media were 

solved under local averaged temperature assumption using a finite-volume code. The best 

combination of radial and axial effective heat conductivities was found when the minimal 

error, based on the least-squares method, between the measured and two-dimensionally 

simulated temperature fields were reached. 

Sullines and Daryabeigi [13] measured the thermal conductivity of this kind of 

foam for a pressure difference range of 10-4 to 750 mm Hg. They developed a numerical 

model to predict the behavior of the effective thermal conductivity at various 

temperatures and pressures. When numerical results and experimental values were 

compared, they realized that numerical values required the introduction of a conducting 

coupling term to the gas/solid conduction model in order to have a good approach. When 
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the coupling term was introduced, calculated values corresponded to within an average of 

nine percent to the experimental values.  

The most similar works to ours, this is, these that includes analytical models 

validated experimentally will be mentioned next. Zumbrunnen et al. [14] made several 

experimental studies using porous solids with complex internal geometries. They 

developed a thermal conductance model for the heat transfer in the porous solid. They 

also designed an apparatus to measure the overall thermal conductances of porous solids 

over a wide temperature range.  Good agreement between the model and the experiments 

was determined. It was also found that when radiation is significant, the overall thermal 

conductance increased with the temperature difference across the porous solid, and was 

independent of thickness, when the thickness is much larger than the characteristic pores 

size.   

Hunt and Tien [15] demonstrated the increase in heat transfer with thermal 

dispersion. The model developed a relation for the dispersion by equating the dispersion 

conductivity to a product of the velocity, square root of the permeability and an 

experimental constant determined from seven different pieces of fibrous media.  

In 1999, Bastawros et al. [16] performed some experiments using open cell foams 

attached to an aluminum substrate and subject to a cross flow of air. The foam thermal 

performance was characterized through sets of steady-state experimental measurements. 

The thermal measurements were correlated with models of the thermal dispersion in 

porous media. These correlations revealed that the filaments normal to the flow direction 
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transmitted most of the heat flux. It is important to notice that these correlations were 

used in the analytical model developed in this thesis. In their work, Bastawros et al. also 

conducted some hydraulic measurements to study the pressure drop trough the foam 

sample.   

Boomsma, K. and Poulikakos, D. [17] developed a one-dimensional heat 

conduction model for open celled metallic foams. It was based on a three dimensional 

description of the foam geometry. It demonstrated that for metallic foams, in which the 

solid conductivity is markedly higher than the fluid conductivity, improvements in the 

overall effective thermal conductivity are best made by increasing the thermal 

conductivity of the solid phase through manipulation of the foam solid structure at the 

manufacturing phase, since the solid phase appeared to govern the effective thermal 

conductivity value, even at a very high porosity. 

Ozmat et al. [18] developed analytical and experimental studies to characterize 

the structural and thermal properties of Retriculated Metal Foams (RMF) based heat 

exchangers. It was pointed out that increasing the as fabricated specific density of the 

foam by successive compression steps was one of the key features of the RMF based heat 

exchanger technology.  

Bhattacharya et al. [19] provided analytical and experimental results for the 

effective thermal conductivity for high porosity metal foams. The analytical model 

represented the foam by a two-dimensional array of hexagonal cells.  The porosity and 

the pore density were used to describe the porous media. Experimental data with 
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aluminum foams using air and water as the fluid media were used to validate the 

analytical solutions. 

Continuing with their work, Bhattacharya and Mahajan [20] carried out an 

interesting research which was presented in their paper “Finned metal foam heat sinks for 

electronics cooling in forced convection”. These heat sinks can be thought to be similar 

to longitudinal finned heat sinks where the air gap between two adjacent fins is replaced 

by high porosity metal foams. Experiments were conducted on aluminum foams of 90 

percent porosity and pore density corresponding to 5 and 20 PPI. The forced convection 

results showed that the heat transfer was considerably enhanced when fins were 

incorporated in metal foams. 

Dukhan and Quinones [21] used a one-dimensional heat transfer model for open-

cell metal foam. Aluminum foams with different areas, relative densities, filament 

diameters, and number of pores per inch were analyzed. They found that the effective 

thermal conductivity of the foams can be up to four times higher than that of solid 

aluminum and that the heat transfer can be improved by a factor of 1.5. The maximum 

heat transfer for the aluminum foam occurred at a pore Reynolds number of 52. 

All the literature reviewed is about thermal and hydraulic characterization of 

porous media in natural and forced convective flow conditions. However, at the moment 

there are not any universal correlations to characterize the porous media due to the great 

variability of geometry and the materials of which they are constructed. The base material 

of the porous media can be metallic and non-metallic.  These reasons in addition to the 
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flow conditions under which porous media are put to work generate different thermal and 

hydraulic behaviors. This thesis gives a novelty way not addressed in the past to 

characterize the thermal behavior of aluminum metal foams using a model of one 

equation to predict the temperature distribution of the solid and fluid phases present 

inside the foam. This equation is easy to solve and the temperature distribution generated 

by it can be used to calculate some effective parameters in this kind of materials that 

could be used as design parameters in thermal applications where metal foam is used.  
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Author Type of Model Relevant Parameters 

Boomsma, K et al. (2003) Open cell metal foams into 
heat exchangers 

Hydraulic characterization, 
Heat transfer performance 

Boomsma, K et al. (2000) Steel alloy foams in guarded-
hot-plate apparatus 

Effective thermal 
conductivity (steel alloy 

foams) 

Lu et al. (1997) Model of foam as simple 
cubic unit cells 

Overall heat transfer 
coefficient, pressure drop of 

fluid flow 

Calmidi V. V. et al. (2000) 
Numerical study, semi-

empirical volume-averaged 
form of governing equations 

Thermal dispersion 
conductivity, interstitial heat 

transfer coefficient 

Bastawros, A.F. et al. (1999) 
Model of thermal dispersion 
in porous media subjected to 

local volume averaging 

Foam thermal performance, 
foam morphology influence, 

hydraulic characterization 

Boomsma, K et al. (2000) 
1-D heat conduction based 

on a three dimensional 
description of metal foam 

Effective thermal 
conductivity 

Bhattacharya, A. et al. (2001) 
2-D array of hexagonal cells 

where the fibers form the 
sides of the hexagons 

Effective thermal 
conductivity, permeability, 

inertial coefficient 

Bhattacharya, A. et al. (2002) 
Empirical correlation for 

Nusselt number in terms of 
Peclet number 

Heat transfer coefficient, 
pressure drop 

Dukhan, N. et al (2003) 
1-D model for conduction 

and convection in open cell 
metal foams 

Effective conductivity, 
Reynolds number 

Present Work 
2-D model for conduction 

and convection in open cell 
metal foams 

Effective conductivity, 
Reynolds number 

Table 2.1 Literature Review Summary Table 
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CHAPTER 3 

ANALYTICAL MODELING 

 

The objective of this Chapter is to present a justification for assuming a local 

averaged temperature in open cell metal foams. Also, it presents the mathematical 

procedure followed to obtain solutions that could provide an accurate representation of 

the heat transfer through the foam. 

 

3.1 JUSTIFICATION FOR THE FOAM LOCAL AVERAGE TEMPERATURE 

 

Heat transfer in porous media has been generally studied under the assumption of 

local averaged temperature among the two phases present in the medium: fluid and solid. 

We know that temperature of solid phase and temperature of fluid phase are never exactly 

equal, but the assumption is taken in order to facilitate the modeling of the heat transfer 

in the metal foams. A strong reference to consider this assumption as valid is the work 

developed by Dae-Young Lee et al. [22] in which a validation of the local averaged 

temperature assumption is carried out based in physical parameters of the metal foams 

and physical conditions under which they work.  Some works mentioned in the literature 

review used two separate energy equations to model the temperature in each. In this 

thesis, like in other research works, a single homogenous equation is used to describe the 

heat transfer under the assumption that the solid and fluid phases have the same local 

temperature. Keeping in mind that the main goal of this thesis is to find a simple method 
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to model the heat transfer in metal foams, only one transport equation is proposed. But, 

what is the justification to do it? Below, some arguments will be given to justify such 

assumption.  

 

In the literature related to heat transfer in porous media, various ways to represent 

the metal foam structure are found with the purpose of studying its thermo-physical 

properties. For example, Bhattacharya [19] proposed a representation of the foam 

structure (Figure 3.1 (a)) as an array of cubes of unit volume, as shown in Figure 3.1 (b). 

Holman [24] considered the metal foam structure as a bank of cylinders (Figure (c)), and 

it will be the array that we will use in our model. 

 

 

 

 

 

 

 

Figure 3.1 Metal Foam Representations. (a) Actual metal foam structure. (b) Metal foam as an 

arrangement of cubes. (c) Metal foam as a staggered bank of cylinders. 

 

Figure 3.1 (c) is the model for the foam structure that is adopted in this work. For 

the bank of cylinders, there exists an extensive set of correlations. Some of these 

correlations are used to explain why the temperature of the solid and the fluid can be 

(a) (b) (c) 
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considered the same. At the same time, they are used to find the convective heat transfer 

coefficient hfm inside the foam structure. 

 

The cylinders of a bank are either staggered or aligned in the direction of the fluid 

velocity U. The configuration is characterized by the cylinder diameter D and by a 

transverse pitch ST and longitudinal pitch SL, measured between cylinder centers. Figure 

3.2 show all the physical characteristics mentioned. Let T∞ represents the temperature of 

the fluid when it enters the bank of cylinders and it rapidly increases until it almost 

reaches the surface temperature of the cylinders. Since the random structure of the foam, 

a staggered bank of cylinders is considered in this work. 

 

 

 

 

 

 

 

 

Figure 3.2 Tube arrangements in a bank. (a) Aligned. (b) Staggered. 

 

First, the fluid velocity U must be known. This is an input data that is used to 

calculate the average pore velocity. The fluid velocity is known through experiments; 

these experiments will be described in the next Chapter. Correlations developed by 

SL 

ST 

SL 

D

D

ST 

U, T∞ U, T∞ 

(a) (b) 
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Bastawros [16] have an important role in the development of the heat transfer equations 

of this thesis. He proposes an average pore velocity, u, in an open cell metal foam sample 

defined as, 

 

ρ−
=

1
Uu          (3.1) 

 

where,  ρ  represents the relative density of the foam sample. Once the average pore 

velocity has been calculated, it is used to calculate the Reynolds number in the pores. 

 

ν
ud

=Re              (3.2) 

 

where d is the filament diameter and ν is the kinematic viscosity of the fluid. It is 

important to note that the filament diameter is the characteristic length for the bank of 

cylinders. An important parameter in the study of convection heat transfer is the Nusselt 

number Nu. The Nusselt number (Nu) is equivalent to the dimensionless temperature 

gradient at the surface, and it provides a measure of the convective heat transfer 

occurring at the surface.  

 

f

fm

k
dh

Nu =                                                           (3.3) 

 



23 

mCNu Re1=

where kf is the fluid thermal conductivity of the fluid and hfm is the convective heat 

transfer coefficient inside the foam structure. 

 

The Nusselt number is experimentally correlated with the flow conditions using 

power law relations. This is done for a wide range of porous media, specially packed 

beds of spherical particles and ordered banks of cylinders. For airflow across tube 

bundles composed of 10 or more rows, Grimison [23] has obtained a correlation of the 

form, 

 

 

 

where C1 and m depend on the physical parameters of the bank, like the transverse and 

longitudinal pitches. More recent results have been obtained by Zhukauskas [23], who 

proposed the following correlation. 

 

4/1
36.0

Pr
PrPrRe ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

s

mCNu                                          (3.4) 

 

where  

 

α
v

=Pr  
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For air, the Prandtl number is approximately equal to 0.707 [23]. There are other 

important parameters in the study of heat transfer that need to be defined in this Section. 

The Biot number, Bi, is a non-dimensional measure of the combined effects of 

conduction along the cell borders and heat transfer into the fluid.  

 

Nu
k
k

k
dh

Bi
s

f

s

fm
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==                                               (3.5) 

 
where ks is the conductivity of the solid part of the foam. 

 

The correlation that has been adopted in this research, is the one developed by 

Holman [23], who established equations for a micro staggered bank of cylinders. These 

equations are shown next. 

 

)/(RePr91.0 4.036.0
sf kkBi =   )40(Re ≤    (3.6) 

)/(RePr62.0 5.036.0
sf kkBi =   )40(Re >    (3.7) 

 

Equations 3.8 and 3.9 are the same as the equations 3.6 and 3.7 in term of the 

Nusselt number. 

 

4.036.0 RePr91.0=Nu    )40(Re ≤                           (3.8) 
 

5.036.0 RePr62.0=Nu    )40(Re >                           (3.9) 
 



25 

Once the Nusselt number is calculated, the convective coefficient inside the pores 

of the metal foam can be obtained taking it from Eqn. 3.3. However, following the 

method developed by Bastawros [1], Eqns. 3.8 and 3.9 need a connection factor λ. So, 

the effective convective coefficient inside the foam is  

 

     hhfm λ=                   (3.10) 
 

The coefficient λ is determined by experimental calibration and for low density 

foams it is  

09.042.0 ±=λ  

 

Once that the convective coefficient has been found, it is proceeded with the 

analysis of the local averaged temperature assumption. From the bank of cylinders 

theory, it is known that the exit temperature of a fluid once it has passed along the bank 

can be calculated. The dimensionless temperature difference between the surface cylinder 

temperature and the air leaving is given in [23]. 
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pTT
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dNh

TT
TT

ρ
π

exp       (3.11) 

 

The analysis to verify the local averaged temperature assumption is carried out in 

a small portion of foam. This portion is located in the most critical zone of heat transfer 

analysis, due to it is very close to the heated base, figure 3.3. 
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Figure 3.3 Analyzed metal foam zone and representation as a bank of cylinders. 
 
 
 

Figure 3.3 shows the representation of foam zone as a bank of cylinders. The 

diameter of the cylinders presented in Figure 3.3 is equivalent to the diameter of the foam 

filaments.  

 

The value of the filament diameter is taken from Calmidi and Mahajan [10]. They 

employed a microscope to measure the filament diameter of a metal foam sample similar 

to the one used in this research. It was found that the filament diameter for a 40 PPI 

sample is equal to 0.00025 m.  To estimate the measured pitch, the definition of PPI is 

used, which establishes that the pore size is equal to the number of pores that can be 

counted in a length of one inch. The transversal pitch is calculated as, 

 

Metal 
Foam 

U, T∞ 

D 

ST 
U, T∞ 

SL 
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The density and the specific heat at constant pressure for the air are obtained 

interpolating between values given by Incropera [23] in the table of thermo physical 

properties of gases at atmospheric pressure. These values are taken at a temperature of 

22oC, which was the air temperature entering to the foam sample during the experiments.  

 

3/1847.1 mkga =ρ    KkgJcp ⋅= /1007  

 

Previously mentioned, the meet temperature employed was obtained 

experimentally, as well as the filament surface temperature, which was the highest base 

temperature observed (85oC) during experimentation.  

 

A length of one inch along the fluid flow direction and a height of 0.05 inches 

(0.00127 m) are considered in this work. These parameters allow having a total of 82 

cylinders and 2 cylinders in the transverse plane. So far, it has only been considered the 

filaments that are in the horizontal position but, what about the filaments that have 

vertical position? These filaments also conduct heat and dissipate it into the air. They 

generate a warming up of the air similar to the horizontal ones. Keeping this in mind, 

these filaments are considered by doubling the number of cylinders in the horizontal 

position. Figure 3.4 shows these two possible representations. 
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Figure 3.4 Bank of cylinders arrangements to model metal foam. (a) Modeling with foam filaments 

only in horizontal position. (b) Considering metal foam filaments in vertical as in horizontal position. 

 

Thus, the transverse pitch is reduced to one half of its original length. The total 

number of cylinders is equal to 164 and the number of cylinders in the transverse plane is 

equal to 4. All these parameters and the convective coefficient given by Eqn. 3.10 are 

substituted into Eqn. 3.11. Table 3.1 presents the temperature difference between the 

surface of the filament and the air at one inch of distance from the entrance. These 

differences were obtained for different pore Reynolds’ numbers. The third column of this 

table gives the percentage difference in temperature at one inch of distance from the 

entrance against the temperature difference that exists between the solid and fluid phases 

when the air is entering to the metal foam. 

 

ST 
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ST U, T∞ 

D

D
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Pore Reynolds 
Number 

Temperature 
Difference (oC) 

Percentage of the temperature 
difference at the exit relative to 
the temperature difference at the 

entrance (%) 
27.378 0.099 0.159 
49.528 0.626 1.010 
66.994 1.192 1.923 
74.904 1.478 2.383 
84.735 1.848 2.980 

 
Table 3.1 Temperature difference between the surface filament and the air at one inch from the 

entrance. 

 

These temperature differences are indeed very small. The maximum temperature 

difference between the surface of the filament and the air was of 1.848oC, corresponding 

to the highest pore Reynolds number. This represented only 2.98% of the temperature 

difference at the entrance, which means that the temperature difference between the solid 

and fluid phases can be considered negligible. If the analysis is made at two and three 

inches of distance from the entrance, the percentage presented in Table 3.1 is still 

smaller, this is due to the fact that at these distances, the number of cylinders N would 

increase and when substituted into Eqn. 3.11, the power on the right side of this equation 

will be a higher negative number and the difference lower. This analysis proves that the 

assumption of the local averaged temperature is valid for the kind of foams considered in 

this work.  

 

3.2 HEAT TRANSFER MODEL 

 

Once the justification for the local thermal assumption has been presented, the 

next sections are dedicated to the analysis developed to model the heat transfer in the 
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metal foam. The directions, in which the temperature distribution is studied, and the 

dimensions of the foam are shown in Figure 3.5. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 3.5 Foam dimensions and heat flow directions. 
 
 

To begin the analysis of the heat transfer in the foam, a control volume is defined 

and the law of conservation of energy is applied to it. In this balance, the heat transfer by 

conduction through the aluminum filaments and the air is combined with the heat transfer 

by convection that takes place inside the pores of the foam. Figure 3.6 shows the control 

volume defined inside the metal foam and used for the analysis, where W represents the 

width of the foam and dx and dz are small thicknesses in the x and z directions, 

respectively. The energy fluxes due to the conduction and convection heat transfer are 

considered in Figure 3.6.  
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Figure 3.6 Control volume defined inside metal foam. 

 

Applying an energy balance in the control volume, yields, 

 

convdzzdxxzx qqqqq ++=+ ++                  (3.12) 

 

Heat fluxes by conduction and convection are introduced in Eqn. 3.12. All 

substitutions of the fluxes and the areas by which these are going to take place, as well as 

the algebraic manipulations to obtain the energy equation for metal foam are detailed in 

Appendix A.  The energy equation is,  
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Gathering of terms and introduction of dimensionless variables are applied in 

Eqn. 3.13. Details are also given in Appendix A. Thus, a dimensionless form of Eqn. 3.13 

is obtained as, 
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          (3.14) 

 

A boundary condition of a constant temperature Tb is considered at x=0 (X=0). An 

explanation to consider this assumption is given in Appendix A. 
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The foam sample is insulated at the tip in the x direction (x=L, X=1),  

 

0),1( =
∂

∂
Z

X
fmθ

    1@ =X                                     (3.16) 

 

The air enters at z=0, Z=0 where an assumption of local averaged temperature between 

fluid and solid phases prevails. Therefore, the temperature at this boundary equals the 

inlet temperature of the fluid. 
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3.3. PROPOSED BOUNDARY CONDITIONS AT THE AIR EXIT OF FOAM 

 

At z=t, some assumptions are made in order to find a good approximation of the 

variation of temperature at this boundary. These assumptions are listed next: 

 

 Case 1. Temperature Distribution with linear behavior 

 Case 2. Temperature Distribution with exponential behavior 

 Case 3. Temperature Distribution for a one dimensional model developed 

by Dukhan and Quiñones [21] 

 Case 4. Temperature Distribution with zero-slope 

 

3.3.1. Temperature distribution with linear behavior  

 

This Section proposes a model in which the temperature distribution has a linear 

behavior at the border z=t. It is known that the temperature at x=0 for any z, is equal to 

Tb. For the upper part of this border, the assumption was that the temperature is equal to 

the fluid temperature T∞ coming from the fan. So, Eqn. 3.18 defines the variation of the 

temperature at the boundary z=t. 
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Once that the condition for the boundary at z=t has been defined, it is considered 

the face of the foam where the temperature distribution is been studied. This face is 

represented in Figure 3.7 with its respective boundary conditions. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 3.7 Two-dimensional model. 
 

 

As it can be seen, there are two non-homogenous boundary conditions in the 

model. So, the superposition principle is applied in order to find a solution for θfm. 

Applying superposition, θfm is defined as the sum of two different variables that depends 

on X and Z: 

 

),(),(),( ZXZXZXfm Φ+Ψ=θ                 (3.19) 
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Figure 3.8 shows how the model can be separated in two arrangements with only one 

non-homogeneous boundary condition in each case. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.8 Superposition applied to the model (linear case). 

 

Details of the application of superposition and separation of variables methods to 

obtain the solution are given in Appendix B. The final solution for the dimensionless 

temperature for this case is given as, 
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3.3.2. Temperature distribution with exponential behavior  

 

To model the exponential variation of the temperature on the border z=t, the 

temperature in the lower and upper part of the border are considered. The temperature at 

x=0 for any z, is equal to Tb (X=0, θfm =1) and at x=L, the temperature is equal to the inlet 

temperature T∞. (X=1, θfm =0) The exponential equation that defines the variation of the 

dimensionless temperature is: 
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This is the new boundary condition at z=t.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 Superposition applied to the model (exponential case). 
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As observed from Figure 3.9, the first individual model of the two models 

generated after applying superposition is identical to the first individual model generated 

for case one after superposition. So, it will have the same solution for the first model and 

the effort is dedicated to solve the second model of the present case.  Details of the 

solution obtained are given in Appendix B. The final solution for the exponential 

variation case is given as, 
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3.3.3. Temperature distribution for a one dimensional model of Dukhan and 

Quiñones 

 

For this case, the equation developed by Dukhan and Quinones [21] for the 

characterization of the heat transfer in a foam using a one dimensional model is 

employed.  
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Taking the dimensionless parameters defined in this research, Eqn. 3.23 is non-

dimensionalized obtaining Eqn. 3.24. 
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Again, the problem is separated into two easier problems to solve. The boundary 

conditions are distributed between the two models. Figure 3.10 shows the models 

generated once the superposition principle has been applied. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Superposition (case of the 1D model boundary condition). 
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The final solution for the dimensionless temperature in the metal foam under the 

boundary condition specified in this case is given by Eqn. 3.25. Details of deduction are 

given in Appendix B.  
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3.3.4. Temperature distribution with zero-slope 

 

For this case the slope of the temperature variation at z=t is zero is analyzed; is 

where the temperature reaches its maximum value in the z direction at this point. When 

air leaves the foam, it is at the maximum temperature and then it begins to drop off.  So, 

after air leaves the foam, the temperature of the air keeps decreasing until it reaches the 

ambient conditions. Therefore, the boundary condition at z=t is considered as, 
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Figure 3.11 represents the surface in which the variation of the temperature is 

analyzed using the boundary condition described above. 
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Figure 3.11 Two-dimensional model for the zero slope case. 

 
 

The final solution for this fourth case is obtained and is expressed by Eqn. 3.26. 

Details of its derivation are given in Appendix B. 
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The comparisons between these solutions and the experimental results will be 

shown in Chapter 5 of this thesis. The model that best represents the heat transfer will be 

selected and in this way, a mathematical method to predict the heat transfer through metal 

foams under different forced convection conditions will be established.    
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CHAPTER 4 

EXPERIMENTAL WORK 

 

The objective of this Chapter is to show some of the most important aspects of the 

materials and equipment employed to carry out the research and the experimental 

methodology followed to validate the analytical model.   

 

4.1 MATERIALS AND EQUIPMENT 

 

The most important items employed in this research are the metal foam sample, a 

wind tunnel, heaters, a power supply and a data acquisition system. The metal foam 

sample is the heart of the entire research setup. Other equipment is used to generate the 

physical conditions described in the Chapter 3 (convective medium, heat, etc). 

 

4.1.1 Metal foam sample 

 

The foam sample used in the research is made of aluminum alloy 6101-T6 

manufactured by ERG Materials and Aerospace Corporation. This alloy has a 

conductivity of 218 W/m K. The pore density can be found in several options, the most 

common are 5, 10, 20 and 40 pores per linear inch (PPI) and can be adjusted 

independently of the variation of the relative density. Figure 4.1 shows a picture of a 40 

PPI foam sample. 
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Figure 4.1 Metal foam sample. 

 

The metal foam sample employed in this research has a pore density of 40 PPI. 

The dimensions of the sample are 4”×9.5”×4”, brazed to a solid aluminum base of 0.5”× 

4”×4”. Figure 4.2 show a drawing of the foam sample with its respective dimensions. 

This figure shows also the coordinate system to which we are going to be reference in the 

entire thesis.  

 

 

 

 

 

 

 

 

Figure 4.2 Foam sample dimensions and coordinate system. 
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The relative density ρ reported by the manufacturer is 6-8%. Since this value is of 

great importance to us because it is used to calculate the air velocity at the pores, an 

analysis is carried out in order to find a more exact value for ρ. Another important 

parameter used in the heat equation is the porosity, ε, which is also calculated. 

 

In the procedure employed, the sample was weighted and this value was traduced 

to mass. The result was 1.946 lbs. Knowing that the density of the Al 6101-T6 is about 

0.098 lb/in3, and having the dimensions of the solid base, it was possible to calculate the 

mass of the base and subtracted this value from the total mass of the sample. This was 

made because we were only interested in the mass of the metal foam. Once we had this 

value, it was divided by the volume of the foam in the following manner: 
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The definition of the relative density is the ratio of the density of the foam to the 

density of the base material, which is aluminum alloy 6101. So, the relative density of our 

foam sample is: 
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The porosity ε of the sample is the ratio of the volume that the air occupies in the 

sample to the total volume of the sample. To know the volume of the air, we calculate the 

volume of solid part of the foam. This can be known dividing the mass of solid part of the 

foam (mass of the foam) by the density of the base material.  
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The volume of the solid part of the sample (Vss) is subtracted from the total 

volume of the sample to get the volume of the air inside the foam sample. This value is 

then divided by the total volume of the sample and so the porosity of the foam is 

obtained. 
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4.1.2 Wind tunnel 

 

The wind tunnel employed was manufactured by TecQuipment. Its official name 

is TD.49 Multi-Purpose Air Duct. The apparatus consists of a rectangular duct which is 

designed and constructed in sections, clipped tightly together with snap-action fasteners 

and supported at four points along its length.  
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The duct section is 150 mm wide by 300 mm high inside measurement (6 in x 12 

in), the cross sectional area of the duct is 0.045 m2 (0.485 ft2) and the overall length of 

the duct section is 290 mm (11.4 in). The duct and its conical inlet are constructed in 

accordance with British Standard recommendations. Entry and exit duct-sections are 

separated by a plain centre-section which is easily removed. Figure 4.3 is a picture of the 

wind tunnel used in the research. 

 

 

Figure 4.3 Wind tunnel. 

 

The centrifugal fan is arranged to draw air along the duct and is provided with a 

throttle slide-plate at the fan delivery for varying the flow rate. The fan delivery is a 

single-inlet, overcast discharge flanged aperture 90 mm x 90 mm suction aperture 

approximates of 20 mm in diameter.  
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The motor specifications are as follows: 220/240 V., 1 ph., 50 Hz, 4.6 amps, 2850 

rpm directly connected to the fan shaft. Determination of the air-flow rate and the air 

velocity profiles can be made by pitot-static tubes mounted in a traversing mechanism.  

Figure 4.4 shows a diagram where the major components of the wind tunnel are 

indicated. 

 

 

 

Figure 4.4 Diagram of wind tunnel 

 

A pitot tube was used to take measurements of the dynamic pressure and these 

measurements are transduced to velocity measurements. Figure 4.5 shows a diagram of 

the Pitot tube used in the wind tunnel and its sliding mechanism. 
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. 

 
Figure 4.5 Diagram of Pitot tube 

  

4.1.3 Heaters 

 

Several heaters manufactured by Minco, Inc. were used in this experimental work. 

They were made of Silicone Rubber, which is a rugged, flexible elastomer material with 

excellent temperature properties. Silicon Rubber heaters are ideal for applications with 

limitations in space, as in the case of the experimental set-up constructed for this 

research. The temperature range in which this kind of heaters can work is from -45 to 

235°C (-50 to 455°F). 

 

The heaters used in this work have a size that is identical to the size of the base of 

the foam (4” x 4”).  They have an electric resistance of 42.9 Ω and the maximum power 

that this kind of heater can supply is 308 W at 115 VDC. The wires by which the heater is 
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fed have a diameter of 0.050” to support the necessary current for the power mentioned. 

Figure 4.4 shows a picture of the heaters employed.   

 

 

Figure 4.6 Heaters. 

 

4.1.4 Power Supplies 

 

Two pairs of power supply were used to feed the heaters. Two GP-4303TP DC  

power supply manufactured by EZ Digital Co. and two E3632A DC power supply 

manufactured by Hewlett Packard were employed in the research. The first pair has 0-

30VDC as range of output voltage and a current range of 0-3 AMP. The maximum output 

power is then equal to 90 W. The second pair has two options of output power. The first 

option has a voltage range from 0 to 15 V with a maximum current of 7 A, and the 

second option has an output voltage range from 0 to 30 V reaching an output current of 4 
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A. The maximum power of this second kind of power supply is 120 W. So, these devices 

are connected in series in order to reach the necessary voltage to generate maximum 

required power. In the series connection, three of the power supplies are set to give their 

maximum output voltage (30 V) and the fourth power supply is set to give 25 V in order 

to obtain 115 V corresponding to the maximum power. Figure 4.7 shows a picture of the 

power supplies described in this Section. 

 

 

Figure 4.7 Power Supplies. 

 

4.1.5 Data acquisition system 

 

The data acquisition system employed to take the temperature measurements was 

composed of the following elements: 

• Computer 

• SCXI 2000 chassis  

• SCXI-1200 module DAQ device  

• SCXI 1122 signal conditioning module 
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• SCXI-1322 terminal block  

• Serial cable  

• 7-inch Parallel-port cable adapter 

• 14 Type T thermocouples 

The computer used was a commercial PC in which LabView software from 

National Instruments was installed. The SCXI-2000 is a rugged, low-noise chassis that 

can hold up to four SCXI modules. This chassis powers SCXI module handles all timing, 

trigger, and signal routing between the digitizer and SCXI modules. SCXI-1200 is a 

device that can be used to acquire data and as a control module. It has eight analog input 

channels, 24 Lines of TTL-Compatible Digital I/O and 16-Bit Counter/Timer. The 

National Instruments SCXI-1122 is designed for a wide variety of sensor and signal 

inputs requiring isolation. This module can acquire strain, RTD, thermocouple, millivolt, 

volt, 250 V, 0 to 20 mA, and 4 to 20 mA current input signals. Terminal blocks, as the 

SCXI-1322, are devices designed for specific input types, such as thermocouples, strain 

gauges, and high-voltage inputs. SCXI-1322 terminal block is compatible with the SCXI-

1122 module. The serial cable is a RS-232 communications cable. The 7-inch Parallel-

port cable adapter is a small cable with serial ports that was used to connect the SCXI-

2000 chassis to the SCXI-1200 DAQ device.  

 

A total of fourteen thermocouples type T were employed. These thermocouples 

are made of Copper and Constantan, and they are employed in applications where the 

temperature is less than 400oC.  Some subminiature thermocouple connectors were used 
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in order to connect the thermocouples to the SCXI-1322 terminal block. The elements 

were connected in the following manner. First, the SCXI-1200 module DAQ Device was 

inserted into the first slot of the SCXI-2000 chassis and the SCXI-1122 in the second slot. 

Then, the parallel-port cable was connected from the back of the SCXI-1200 to the 

parallel port (LPT1) on the back of the computer. While this connection was maintained, 

the SCXI-1200 module DAQ device was installed in the computer. This action could be 

made following the procedure described by National Instruments Company, who is the 

manufacturer of the SCXI chassis and DAQ device, signal conditioning module as well 

as the terminal block. Once that the DAQ device was recognized by the computer, the 7-

inch parallel-port cable was connected from the back of the SCXI-1200 module to the 

back of the SCXI-2000 chassis and then the RS-232 serial cable was connected from the 

front of the SCXI-2000 chassis; to the serial port (COM1) of the computer. After that, all 

the steps remaining were related to the software. Once that the chassis, DAQ device, 

signal conditioning module and terminal block were settled, the fourteen thermocouples 

were attached to the terminal block. Connection of the thermocouples to the terminal 

block was careful because thermocouples have polarity and if this polarity is changed, 

problems in taking the data appear. The wire made of copper has a positive polarity, and 

the wire made of constantan has a negative polarity. The SCXI-1322 has indication of 

where the positive and negative terminals have to be connected. 

A computer program to read the temperature measurements was developed in the 

LabView ambient. An important characteristic of this system is that the data was not 
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taken in real time, but this is not relevant since the temperature measurements were taken 

at steady state conditions.  

 

Figure 4.8 Data Acquisition System. 

 

4.2  EXPERIMENTAL METHODOLOGY 

 

4.2.1 Average tunnel velocity measurement 

The first step in the experiments carried out to validate the analytical model was 

to take measurements of the flow velocity inside the wind tunnel. To take these 

measurements a Pitot tube was employed. Figure 4.9 shows the Pitot tube mounted in the 

wind tunnel.  
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Figure 4.9 Pitot tube 
 

The equation used to calculate the air velocity when a pitot tube is employed is, 

a

dpU
ρ

2
=          (4.1) 

where pd is the ∆p between the total pressure and the static pressure. The density of the 

air can be calculated measuring the air temperature inside the tunnel with a thermocouple 

and so, we will have all the data necessary to calculate the velocity of the air.  

The methodology that was followed to find the average velocity along the wind 

tunnel follows Kaviany’s [27] theory. It considers that the air velocity profile that exits 

the foam has a constant behavior. So, taking advantage of this velocity characteristic, it 

was assumed that the exit air velocity was equal to the average velocity along the wind 

tunnel. To find this constant velocity profile, the Pitot tube was set at different distances 
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from the face of the foam where the air exits. These distances were ½, 1, 1½ and 2 

inches, as shown in Figure 4.10.  For each distance, a set of measurements were taken to 

be sure that the data taken was good. This was made for different air flow rates. The air 

flow rates used in the experiments were 100%, 80%, 60%, 40% and 20%. These air flow 

rates were gotten sliding a throttle plate at the exit of the air from the wind tunnel. Figure 

4.10 shows a schematic of the pressure measurement methodology used to find the 

average velocity.  

 

 

 

 

 
 
 
 
 
 
 

Figure 4.10 Velocity measurement methodology 
 
 
 

Once that the last procedure was made, the velocity profiles were obtained using 

the Eqn. 4.1 It was found that the most constant velocity profile was reached taking 

measurements at 2 inches from the face where the air exists for all the flow rates. Table 

4.1 presents the average velocity calculated for each flow rate. 
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Flow rate Velocity 
(m/s) 

100% 4.97 

80% 4.39 

60% 3.93 

40% 2.90 

20% 1.60 

Table 4.1 Average velocity in the 

 wind tunnel for different flow rates 

 

4.2.2 Temperature measurements 

 

Once the average velocity was determined, some Kapton heaters were used to 

supply the heat. The foam sample was provided with three thin thermfoil heaters that 

were attached to its solid aluminum base.   

 

The heaters were connected in parallel in order to receive the same voltage. As 

previously stated, each one of these heaters has a maximum power of 80 W. The total 

power was 240 W with a power density of 15.79 W/in2. Heaters needed to be connected 

to a source of 115 VDC in order to give the maximum power. So, the heaters were 

connected to the DC power supply to provide the electrical power.  Figure 4.11 shows the 

experimental set-up used in this experimental work. 
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Figure 4.11 Schematic of the experimental set-up 
 

The four sides of the foam sample that constituted its outer perimeter were 

insulated using one-inch thick Styrofoam insulation, and the sample was placed in the 

tunnel’s test section.  The other two sides were perpendicular to the flow direction and 

remain open to the airflow.  The insulation material ensured that the flow travel through 

the foam only, allowing only a negligible flow between the insulation and the tunnel 

walls. 

 

A total of fourteen thermocouples were used to measure the temperature at 

different strategic locations in the foam as well as the ambient and the base temperatures.  

The fourteen thermocouples were moved along the z direction to verify the temperature 

variation in this direction.  The temperature measurement locations in the sample are 

listed in Table 4.2. 

 

Manometer 

Pitot tube 
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Smaller spacing of the thermocouples was used close to the base, to capture the 

anticipated steep drop in temperature.  The thermocouples were attached to the channels 

of the automatic data acquisition system, which was connected to the computer, where 

the temperature readings were shown on the screen. 

 

Thermocouple 
No. 

Location, x,  
cm (inch) 

z = 25.4 (1.00) 

Location, x,  
cm (inch) 

z = 50.8 (2.00) 

Location, x,  
cm (inch) 

z = 76.2 (3.00) 

Location, x,  
cm (inch) 

z = 95.25 (3.75) 
1 Base Base Base Base 
2 0.64 (0.25) 0.64 (0.25) 0.64 (0.25) 0.64 (0.25) 
3 1.27 (0.50) 1.27 (0.50) 1.27 (0.50) 1.27 (0.50) 
4 1.91 (0.75) 1.91 (0.75) 1.91 (0.75) 1.91 (0.75) 
5 2.54 (1.00) 2.54 (1.00) 2.54 (1.00) 2.54 (1.00) 
6 3.18 (1.25) 3.18 (1.25) 3.18 (1.25) 3.18 (1.25) 
7 3.81 (1.50) 3.81 (1.50) 3.81 (1.50) 3.81 (1.50) 
8 4.44 (1.75) 4.44 (1.75) 4.44 (1.75) 4.44 (1.75) 
9 5.08 (2.00) 5.08 (2.00) 5.08 (2.00) 5.08 (2.00) 

10 6.35 (2.50) 6.35 (2.50) 6.35 (2.50) 6.35 (2.50) 
11 8.89 (3.50) 8.89 (3.50) 8.89 (3.50) 8.89 (3.50) 
12 13.97 (5.50) 13.97 (5.50) 13.97 (5.50) 13.97 (5.50) 
13 19.05 (7.50) 19.05 (7.50) 19.05 (7.50) 19.05 (7.50) 
14 Ambient Ambient Ambient Ambient 

 
Table 4.2 Thermocouples locations 

 
 
The temperature measurements were read from the computer screen and these 

were introduced in Excel pages where the calculation of the dimensionless temperature 

was carried out using Eqn.A.20. Dimensionless temperature was plotted against 

dimensionless distance along x direction and these plots were used to compare with the 

theorical data generated by the equations obtained in Chapter 3. More details about the 

results and comparisons will be given in Chapter 5. It will show how the analytical model 

proposed in this work was easily validated with very simple experiments.  
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4.3 UNCERTAINTY ANALYSIS 

 

The uncertainty analysis is used to quantify the data validity and accuracy of the 

experimental work. An uncertainty analysis was conducted for the length, air velocity and 

temperature measurements taken in this research.  

 

4.3.1 Uncertainty in length 

 

As it was explained before, some temperature measurements were taken in the 

metal foam at different locations. It must be noticed that in order to set the thermocouples 

to measure the temperature, we had to drill a hole to insert the thermocouple in the metal 

foam. These locations were determined using an appropriate length scale to set the 

distances. From an analysis of the variables and parameters that can affect the outcome of 

the length measurements, it was realized that the uncertainty in the length can be 

estimated using the ruler employed in the length measurement that has a resolution of 

1/16 inch. However, there are other conditions that we must keep in mind to do a good 

uncertainty analysis, such as the structure of the metal foam. When we set the distance 

for the thermocouples, we tried to make the hole in the correct position, but the drill had 

the tendency to travel where the foam is more porous. Also, the thermocouple is made of 

flexible wires that can be easily bent and it can deviate from its original direction. All of 

these increase our uncertainty to at least 1/8 inch. The uncertainty can be expressed as a 

percentage, which is called relative uncertainty. The relative uncertainty in the length for 

our case is given by, 
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The value of 3.75 in corresponds to the mid value of the range in which we did 

length measurements (the range measured was 0 – 7.5 in). So, this uncertainty represents 

the average relative uncertainty of the length measurements.  

 

4.3.2 Uncertainty in air velocity 

 

To calculate the uncertainty in the air velocity, an analysis of the propagation of 

the uncertainty in the calculations is made. In this analysis, the relative uncertainty of 

each independent measured quantity is estimated. The measurements are used to calculate 

some result R for the experiment. This result is a function of other measured variables, 

which are denoted by x1, x2,…,xn. The effect that has a measuring error of a variable xi on 

R is given by 
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It is convenient to normalize this equation to obtain 
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Equation 4.3 is used to estimate the uncertainty interval in the result due to variations in 

xi. 

 

ii x
i

i
R u

x
R

R
x

u
∂
∂

=                                                    (4.4) 

 

To estimate the uncertainty in R due to the combined effects of uncertainty intervals in all 

the xis, Eqn. 4.5 is employed. 
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The calculation of the air velocity was made employing a Pitot tube. Dynamic 

pressure measurements were taken with this device and Eqn. 4.1 was used to transduce 

the pressure measurements into velocity measurements. Partial derivations are obtained 

from Eqn. 4.1 with respect to the two variables involved in this: 
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Applying Eqn. 4.5, the uncertainty in the air velocity can be estimated by 
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The relative uncertainty of the pressure is calculated considering a calibration 

error of the manometer and the zero-order uncertainty of the same device. The most 

common calibration error for this kind of devices is about 1 mm H2O and the zero-order 

uncertainty is calculated taking one half of the instrument resolution. The resolution is 1 

mm H2O, so one might estimate the probable measurement error as ±0.5 mm H20. 

However, it is very probable that a measurement could not be done with this type of 

accuracy. The meniscus in the barometer must be aligned by eye, and this has a least 

count of 2 mm. A measurement is made to the nearest millimeter, so the probable value 

of a single measurement would be expressed as 30±1 mm. Using the mid value of the 

range used to measure the average relative uncertainty (0 – 30 mm H20), we have: 
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These two uncertainties are combined in one to find the total uncertainty of the 

dynamic pressure.  
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The uncertainty of the air density is negligible, so, the uncertainty of the air velocity is, 
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0471.0±=Uu               or          71.4±=Uu % 

 

4.3.3 Uncertainty in temperature 

 

In the case of uncertainty in the temperature measurements, the procedure 

followed is the root-sum-squares (RSS) method. In this method, each elemental error is 

combined with other elemental errors to increase the uncertainty of the method. A 

realistic estimate of the uncertainty in the measurement, ux, caused by these elemental 

errors can be computed by using the RSS method 

 



63 

22
2

2
1 ... Kx eeeu +++±=  

∑
=

±=
K

j
jx eu

1

2  

 

From the manufacturer, it was obtained the following data for the SCXI-1322 

terminal block. 

 

Accuracy: 1.2oC 

Repeatability: 0.4oC 

 

Using these data, it is possible to calculate an uncertainty for the terminal block. 
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Knowing that the interval of the temperature measurement varied from 22oC to 85oC, the 

average relative uncertainty can be calculated. 
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The value 53.5oC is the mid value in the temperature range found when the 

temperature measurements were taken. 

 

Also from the manufacturer of the thermocouples, it was found that these 

elements have a standard limit of error of 1.0oC. The resolution of the system used is 

equal to 0.01oC, so, the zero-order uncertainty is equal to ±0.005oC. The uncertainty of 

the thermocouples can be calculated as 
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The average relative uncertainty for the thermocouple is given by 
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The total uncertainty of the temperature measurement system is obtained applying the 

RSS method to all the data obtained. 
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0301.0±=Tu  or 01.3±=Tu  % 

 

So, it was shown that the measurements taken in this research have a good level 

of confidence, due to the small uncertainties found in this analysis.  
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CHAPTER 5 

RESULTS AND COMPARISONS 

 

In this Chapter, the experimental results generated in the research as well as 

comparisons between them and the theorical results generated by the analytical solutions 

developed in Chapter 3 will be shown. Once all this work has been made and shown in 

this Chapter, a decision about which one of the theorical models developed in the present 

work has the best prediction of the experimental data obtained. Following all the 

mentioned above, a very simple and practical way to predict the heat transfer in porous 

media will be obtained, which can be applied to the design of heat sinks and heat 

exchangers. 

 

5.1 COMPARISONS BETWEEN EXPERIMENTAL RESULTS AND ANALYTICAL 

SOLUTIONS 

 

In Chapter 4 we explained in detail the methodology used in the research in order 

to obtain the data presented here. Figure 5.1 and 5.2 present only experimental results 

which show the variation of the temperature distribution along the z axis (direction of the 

fluid flow) in the metal foam. These temperature distributions were obtained for different 

flow rates. Table 5.1 presents the air velocity that corresponds to each flow rate and the 

Reynolds number obtained with Eqn. 3.2. As it was explained in Chapter 4, the air 

velocity was obtained with an indirect method using a Pitot tube and measuring dynamic 
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pressure to transduce it to velocity. The different flow rates were obtained sliding a 

throttle plate that regulates the exit of the air. 

  

Flow rate Air velocity (m/s) Pore Reynolds 
number 

100% 5.386 84.735 
80% 4.761 74.904 
60% 4.258 66.994 
40% 3.148 49.528 
20% 1.74 27.378 

Table 5.1 Flow rates and air velocity 

 

Figure 5.1 shows the temperature distribution along the z axis when the Reynolds 

number at the pores is equal to 84.375, this is, when the flow rate is 100% of the total 

flow that is allowed to pass through the wind tunnel.  
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Figure 5.1 Variation of the temperature distribution along z direction for Re=84.735 
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The temperatures of the base and at the entrance of the foam, as well as the 

temperatures taken at different locations of the foam (Table 4.2), were substituted in Eqn. 

A.20. So, the dimensionless temperature was obtained for the different locations along 

the z axis. The distances shown along the x axis in Table 4.2 are divided between the total 

length of the metal foam in that direction. The dimensionless temperature was plotted 

versus the dimensionless distance along the x direction as given in the Figure 5.1. It can 

be seen how the temperature distribution is modified when the distance along the z 

direction is increased. When the position along z axis is close to the fluid entrance of the 

foam, the temperature drops faster, but when the position is far from the entrance, the 

temperature takes a little more distance in the x direction to drop.  Figure 5.2 shows the 

same distributions, but when the flow rate is equal to 20% of the total flow rate allowed 

to pass by the wind tunnel, which corresponds to a pore Reynolds number of 27.378. 
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Figure 5.2 Variation of the temperature distribution along z direction for Re=27.378 
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As it can be seen in the last figures, the variation of the temperature distribution is 

more notorious at low Reynolds numbers. If we compare the temperature distribution at 

3.75 inches from the foam entrance to the temperature distribution at one inch from the 

entrance, it can be seen that these two distributions are more similar for the case 

presented in Figure 5.1 than the case shown in Figure 5.2. These comparisons were also 

made for the other Reynolds number presented in Table 5.1. When this was made, a 

relationship between the pore Reynolds number and the temperature distribution was 

found. This relation establishes that the lower the Reynolds number is, the higher is the 

variation in the temperature distribution along the z axis.  Another way to analyze the 

temperature behavior is fixing the distance along the z direction and plotting the 

temperature distribution at different Reynolds numbers. Figure 5.3 shows the temperature 

distribution for different Reynolds numbers at one inch from the entrance.  
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Figure 5.3 Variation of the temperature distribution for different Reynolds numbers at one inch 

from the entrance 
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In the Fig, 5.3 it is observed how the temperature distribution drops in a small 

distance when the Reynolds number is high. For the next three Reynolds numbers, the 

temperature distribution is very similar, but it can be noticed that for Re=27.378 the 

temperature takes more distance to drop, compared to other cases.  Figure 5.4 shows the 

temperature distributions at different Reynolds numbers at a distance of 3.75 inches from 

the entrance. At this distance, it is more notorious that the temperature at Re=49.528 and 

Re=27.378 take more distance to reach a dimensionless temperature equal to zero.  
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Figure 5.4 Variation of the temperature distribution for different Re at 3.75 inches from the entrance 

 

The analytical solutions obtained in Chapter 3 were plotted using Maple. Figure 

5.5 shows the two-dimensional plotting of each case solved in Chapter 3.  
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Figure. 5.5 Two-dimensional plotting of proposed solutions. (a) Linear case. (b) Exponential case. (c)  

One-dimensional model case. (d) Zero slope case. 

  

We tried to determine how many terms of the infinite series solutions we need to 

obtain the dimensionless temperature distribution profiles. We begin obtaining the 

solution using a high number of terms, so, we choose 95 terms and obtained the 

temperature profiles. Then obtained the values of the temperature distribution for 

different number of terms, and we used 1, 5, 10, 25 and 45 terms.  

 

(a) (b) 

(c) (d) 
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The percentage of error between the values obtained with 95 terms and the values 

obtained with the numbers of terms mentioned was calculated. It would seem that we 

could use 25 terms to obtain a good solution, since that the maximum percentage of error 

found for this case was less than 1%.  But when the graphs were plotted using this 

number, we realize that at x=0, the fluctuation of the temperature distribution on this 

border is high. As we know, the value of dimensionless temperature distribution at this 

border should be equal to one, but using 25 terms, we can visually determine that this 

value is still changing a lot along the z direction. Continuing increasing the number of 

terms and observing the resultant graphs, we determine that at 45 terms, the graph 

obtained is enough to consider the  dimensionless temperature value good, this is due to 

at the border x=0, the temperature remains almost constant and equal to one. So, this 

number of terms (45) was used in the determination of the temperature profiles used in 

the graphs presented in this Chapter.  

 

As it was explained before, these graphics were obtained using Maple. Using this 

program, it was possible to find some points belonging to the two-dimensional 

temperature distribution for the different cases. The distances in the z direction that were 

established in the experimental set-up were substituted in the equations and then the 

dimensionless temperature was calculated at different distances in the x direction. In that 

way, it was possible to compare the results given by the analytical modeling and the 

experiments. This was done for all the cases. Figure 5.6 shows the comparison between 

the results given by the analytical solution of the first case and the experiments. We used 

the convective heat transfer coefficient for Re=84.735 in the analytical solution and the 
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data at the same Reynolds number for the temperature distribution generated by the 

experiments. The comparison was made for the data at one inch from the entrance. It can 

be appreciated that there is a good agreement between the two sets of data. 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Dimensionless distance (x axis)

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re

Analytical solution

Experiments

 

Figure 5.6 Comparison between analytical and experimental data for Re=84.375 at one inch from the 

entrance (first boundary condition case) 
 

The same comparison was made for the remaining four Reynolds numbers. All 

the comparisons showed a good agreement between the analytical solution and the 

experimental data at this distance from the fluid enhance (one inch). However, it was 

noticed a better adjustment for the cases in which the Reynolds number is greater. It can 

be shown comparing Figure 5.6 to Figure 5.7 which shows the comparison between the 

analytical solution and the experiments, at the same distance, and for the same case (first 

case, linear behavior), but at different flow velocity (Re=27.378).  
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Figure 5.7 Comparison between analytical and experimental data for Re=27.378 at one inch from the 

entrance (first boundary condition case) 
 

It can be said that from the five cases corresponding to the different Reynolds 

number, the one presented in Figure 5.7 was the worst. However, the first case continues 

being a good approach. 

 

The rest of the cases have a similar behavior. It means that at one inch from the 

entrance, none of the four cases analyzed in Chapter 3 had bad agreement, although all 

the cases gave evidence of better adjustment at high Reynolds numbers. The maximum 

error found between the analytical and experimental temperature distributions at this 

distance was 8% at Re=27.378.  

 

Analyzing the temperature distribution at two inches from the entrance, it was 

observed that the good agreement between analytical and experimental data continued, as 
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can be observed in Figure 5.8, which shows the comparison between the analytical and 

experimental data at two inches from the entrance, for a Re=84.735 and having the linear 

behavior assumption at the boundary z=t.  
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Figure 5.8 Comparison between analytical and experimental data for Re=84.735 at two inches from 

the entrance (first boundary condition case) 
 

     As the temperature distribution at one inch from the entrance, the analytic 

temperature distribution at two inches from the entrance has a better agreement with the 

experimental data at high Reynolds numbers. Figure 5.9 shows how the comparison 

between analytical and experimental data at Re=27.378 has less concurrence than the 

comparison presented in Figure 5.8. It happens for all the different boundary conditions 

cases. 
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Figure 5.9 Comparison between analytical and experimental data for Re=27.378 at two inches from 

the entrance (first boundary condition case) 

 

Until the moment the analytical solutions and the experimental data seem to be in 

agreement. However, it can be realized that things begin to change when the temperature 

distribution is studied at three inches from the air entrance.  

 

At this distance (three inches), the analytical and experimental data do not have a 

concord as good as at the other distances. This behavior is shown in Figure 5.10 in which 

the analytical solution and the experimental data at three inches from the air entrance are 

compared for the linear boundary condition case and at a Reynolds number of 84.735.  
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Figure 5.10 Comparison between analytical and experimental data for Re=84.735 at three inches 

from the entrance (first boundary condition case) 
 

The comparison shown by the Figure 5.10 shows still a good agreement. But 

when the Reynolds is diminished, the agreement is worst.  
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Figure 5.11 Comparison between analytical and experimental data for Re=27.378 at three inches 

from the entrance (first boundary condition case) 
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Figure 5.11 shows the comparison at a Reynolds number of 27.378. At this 

distance, the cases for the different boundary condition at z=t begin to have poor 

agreement, mainly at low Reynolds numbers. Figure 5.12 show the behavior for the 

boundary condition with an exponential behavior. 
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Figure 5.12 Comparison between analytical and experimental data for Re=27.378 at three inches 

from the entrance (second boundary condition case) 

 

Figure 5.13 shows the comparison at three inches from the entrance for the case in 

which the one-dimensional solution found by Dukhan and Quinones [21] is applied at the 

boundary z=t. It can be observed that this case shows a poorer agreement than the last 

two cases at this distance. The Reynolds number used in this comparison is equal to 

27.378. 
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Figure 5.13 Comparison between analytical and experimental data for Re=27.378 at three inches 

from the entrance (third boundary condition case) 

 

For the fourth case in which it was proposed a zero slope at the boundary z=t, the 

comparison was similar to the last case presented.  

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Dimensionless distance (x axis)

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re

Analytical Solution
Experiments

 

Figure 5.14 Comparison between analytical and experimental data for Re=27.378 at three inches 

from the entrance (fourth boundary condition case) 
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Figure 5.14 shows the comparison for the fourth case at three inches from the 

entrance. This is the point in which it is arrived to the determination of the most 

appropriate boundary condition. The comparison between the analytical and experimental 

data is carried out at 3.75 inches from the face in which the air enters the foam. As it is 

remembered, the physical dimensions of the foam sample are 4” x 4” at the base, which 

means that the thermocouples are located at 0.25 inches from the air exit face. This 

distance is appropriate to determine the best boundary condition for the model developed 

in this research.  Figure 5.15 shows the first case developed in the research at the distance 

mentioned. It is noticed a great difference between the distribution generated by the 

analytical solution and the experiments. This was made for Re=27.378, which was found 

to be the most critical condition. However, a very similar behavior was found for all the 

other temperature distribution generated at different Reynolds numbers. 
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Figure 5.15 Comparison between analytical and experimental data for Re=27.378 at 3.75 inches from 

the entrance (first boundary condition case) 
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Figure 5.16 shows the comparison under the same conditions as the last case, but 

for the case in which the boundary condition has an exponential behavior. Again, a poor 

agreement between the analytic and experimental results is observed.  
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Figure 5.16 Comparison between analytical and experimental data for Re=27.378 at 3.75 inches from 

the entrance (second boundary condition case) 
 

An improvement is observed for the remaining cases. For the third boundary 

condition case, a better adjustment than the last cases is observed. Figure 5.17 shows the 

comparison corresponding to this case. 
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Figure 5.17 Comparison between analytical and experimental data for Re=27.378 at 3.75 inches from 

the entrance (third boundary condition case) 

 

The Figure 5.18 represents the fourth case which has a similar behavior than the 

case presented before.  
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Figure 5.18 Comparison between analytical and experimental data for Re=27.378 at 3.75 inches from 

the entrance (fourth boundary condition case) 
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5.2 DETERMINATION OF THE PARAMETER M VARIATION ALONG THE Z 

DIRECTION 

 

As it can be seen, none of analytical solutions presented has a good fit with the 

experimental data. However, observing the graphs plotted and doing an error analysis, we 

can determine that the last case is the one that has the better approach to the experimental 

data. But the maximum error found is about 33% and it is an indicative that something is 

bad with the model employed. So, we had to focus on the parameters that cause the 

modification of the temperature distribution along the z direction. Doing this, we realize 

that the parameter that determines the modification of the temperature distribution is the 

convective coefficient hfm in the foam sample. In our equations, we considered this 

coefficient as a constant value, and it generates that the temperature profile does not 

change along the z direction, as it can be observed in Figure 5.19. 
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 Figure 5.19 Plot of the analytical solution (fourth case) data for Re=27.378 
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As we know, the convective coefficient inside the foam depends on the Nusselt 

number, that depends on the Reynolds number and the last depends on the velocity at the 

pores. But, how is this dependence? To know it, we use the data generated from the 

experiments and we applied a linear regression to these in order to study the temperature 

behavior at the boundary z=t. Then, the boundary condition at z=t is of the form  

 

Xa
fm

fme−=θ                                  (5.1) 

 

In order to linearize Eqn. 5.1, it was applied natural logarithm to both sides of the 

equation: 

 

Xa fmfm −=θln                                     (5.2) 

 

It can be seen that Eqn. 5.2 has the form xaay 10 += . So, fmy θln=  and fmaa −=1 .  

 

The objective of the linear regression analysis is to find the value of the 

coefficient fma . A linear regression analysis is applied to each set of data corresponding 

to a few flow rates. Table 5.2 shows the values for fma obtained. 
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Flow rate Coefficient 
fma  

100% 28 
80% 28 
60% 28 
40% 23 
20% 18 

Table 5.2 Coefficient fma for different flow rates 

 

By varying the temperature profile in the sample along the z direction, we 

establish a linear relation between the coefficient afm and the coefficient M derivated from 

all the correlations presented in Chapter 3. Linear relation has the form ZaaZM 10)( += , 

and the boundary conditions for this equation are @Z=0, M(Z)=M and @Z=t/L, 

M(Z)=afm. Once that the boundary conditions are applied to the equation 

 

)()( Ma
t

LZMZM fm −+=     (5.3) 

 

We have to keep in mind that this variation dependent on the variation of the 

coefficient hfm and in turn the last dependent on the velocity at the pores. In that way, an 

important conclusion obtained during the comparison of the analytical and experimental 

results is that the velocity profile of the air at the pores is reduced when the air flow 

advances in the z direction. This is something logical, since the air encounters a lot of 

aluminum filaments in its way and it represent resistance to the flow. That’s the reason by 

which the velocity is reduced in the z direction, and also the reason by which the 
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convective coefficient along the z direction is reduced too. Having made these 

conclusions and having obtained Eqn. 5.3, this is substituted in Eqn. 3.26. 
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(5.4) 

 

Equation 5.4 is plotted at the distances in study. We can see in Figure 5.20 that 

now the temperature distribution is changing along the z direction and the behavior is 

very similar to the temperature behavior showed by the experiments. Equation 5.4 was 

plotted for the case in which Re=27.378. 
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Figure 5.20 Plot of the analytical solution (fourth case) with the parameter M varying along the z 

direction.  
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When we plot Eqn. 5.4 at the distances where the temperature distributions are 

studied, we found an excellent agreement for all the Reynolds number cases.  

 

Figures 5.21 to 5.24 show the comparison between the new analytical solution 

and the experimental data at 1, 2, 3 and 3.75 inches from the entrance. All the 

comparisons showed in the mentioned figures were plotted for the case in which 

Re=27.378, but as we mentioned some lines before, the good agreement was observed for 

the five Reynolds number cases. 
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Figure 5.21 Comparison between analytical and experimental data for Re=27.378 at 1 inch from the 

entrance (fourth boundary condition case with M(Z)) 
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Figure 5.22 Comparison between analytical and experimental data for Re=27.378 at 2 inches from 

the entrance (fourth boundary condition case with M(Z)) 
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Figure 5.23 Comparison between analytical and experimental data for Re=27.378 at 3 inches from 

the entrance (fourth boundary condition case with M(Z)) 

 



89 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Dimensionless distance

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re

Analytical Solution
Experiments

 

Figure 5.24 Comparison between analytical and experimental data for Re=27.378 at 3.75 inches from 

the entrance (fourth boundary condition case with M(Z)) 

 

The error analysis carried out showed a maximum error of less than 10% in all 

cases and the major part of the error oscillated between 0 and 3%, which means an 

excellent approach. So, we conclude that this model represents very well the temperature 

distribution in the foam sample. 

 

It must be remembered that the coefficient fma used in this model depends on the 

flow velocity of the air incoming to the foam sample. When the Reynolds numbers are 

high, the coefficient remains almost constant, suffering only little variations, but when 

the Reynolds number decrease to 49.528, the coefficient begins to change. So, it can be 

said that the coefficient fma  is function of the Reynolds number at low values of it. 
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67Re010.948  0.2513Rea

a

fm

fm

<<+=

≥= 67Re28
          (5.5) 

 

It is important to mention that these correlations were obtained with the 

experimental data generated from one sample of metal foam, so that; this correlation 

applies only to a sample with the characteristics described in Chapter 4. To obtain more 

general correlations, we would have to work with more than one sample with different 

dimensions.  

 

5.3 SIMPLIFIED SEMI-ANALYTICAL SOLUTION FOR THE TEMPERATURE 

FIELD IN METAL FOAM 

 

Once that we obtained an analytical model that could describe the heat transfer in 

an open cell metal foam sample, we were focused on obtaining a simplified semi-

analytical solution for the temperature distribution inside the sample. The proposed 

pseudo two-dimensional solution for Eqn. 3.14 has the form  

 

)(zfe xm

b

fm fm−=
θ

θ
     (5.6) 

 

Using the dimensionless parameters defined in Chapter 3 for temperature, 

distance and the foam parameter, Eqn. 5.6 is transformed to Eqn. 5.7. 
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)(Zfe MX
fm

−=θ                 (5.7) 

 

Equation 5.7 is substituted in the two-dimensional derivation for heat transfer in 

dimensionless form represented by Eqn. 3.14. 

 

Doing the derivations and working with the algebra, we obtain 

 

0)()(")( 22 =−+ −−− ZfeMZfeZfeM MXMXMX  

 

Doing simplification, it is found that: 

 

0)(" =Zf      (5.8) 

 

Solution of Eqn. 5.8 has the form, 

 

BAZZf +=)(                                             (5.9) 

 

From our experience deriving the two-dimensional model for the metal foam 

sample, it is observed that at the boundary Z=0, the dimensionless temperature has the 

form, 

 

MX
fm e−=θ      (5.10) 
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And at the boundary Z=t/L, the dimensionless temperature distribution is obtained 

from a treatment of the experimental data, so 

 

Xa
fm

fme−=θ      (5.11) 

 

Substituting Eqn. 5.10 and Eqn. 5.11 in Eqn. 5.7  the boundary conditions to find 

the constants of Eqn. 5.9 are obtained. The boundary conditions are: 

 

@Z=0;  )(Zfee MXMX −− =   1)( =Zf  

@Z=t/L; )(Zfee MXXa fm −− =   XaM fmeZf )()( −=  

 

Substituting the boundary conditions in Eqn. 5.9 the constants A and B are found. 

 

[ ]1)( −= − XaM fme
t
LA ;  B=1; 

 

Substituting the constants in Eqn. 5.9: 

 

[ ] 11)( )( +−= − XaM fme
t

LZZf     (5.12) 
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Finally, substituting Eqn. 5.12 in Eqn. 5.7, the simplified two-dimensional 

solution for the dimensionless heat transfer in the metal foam sample is found. 

 

[ ] MXMXXa
fm eee

t
LZ fm −−− +−=θ    (5.13) 

 

When we plot Eqn. 5.13 and compare these graphs with the experimental data, we 

found a very good agreement in which the maximum percentage error found was less 

than 10%, practically the same level of confidence as the total analytical solution. Figures 

5.25 to 5.28 shows the comparisons between the semi-analytical solution and the 

experiments for a pore Reynolds number of 84.375 at different distances along the z 

direction.  
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Figure 5.25 Comparison between semi-analytical and experimental data for Re=84.375 at 1 inch 

from the entrance. 
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Figure 5.26 Comparison between semi-analytical and experimental data for Re=84.375 at 2 inches 

from the entrance. 
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Figure 5.27 Comparison between semi-analytical and experimental data for Re=84.375 at 3 inches 

from the entrance. 
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Figure 5.28 Comparison between semi-analytical and experimental data for Re=84.375 at 3.75 inches 

from the entrance. 

 
In Figs. 5.29 to 5.32 we present the comparison between the same semi-analytical 

solution and the experiments but at Re=27.378.  
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Figure 5.29 Comparison between semi-analytical and experimental data for Re=27.378 at 1 inch 

from the entrance. 
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Figure 5.30 Comparison between semi-analytical and experimental data for Re=27.378 at 2 inches 

from the entrance. 
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Figure 5.31 Comparison between semi-analytical and experimental data for Re=27.378 at 3 inches 

from the entrance. 
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Figure 5.32 Comparison between semi-analytical and experimental data for Re=27.378 at 3.75 inches 

from the entrance. 

 

As it can be seen, the agreement is as good as the agreement reached at high 

Reynolds numbers. With these graphs, we have shown that the semi analytical solution 

developed in this Chapter can be also used to model the temperature distribution inside 

the foam sample. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

The most important conclusions reached during this work are: 

 

• It was found that the temperature distribution in a metal foam sample with the 

characteristics described in this thesis presents a modification along the 

direction of the flow that is used to dissipate the heat to which the sample is 

being exposed. 

•  It was found that the best way to find the temperature distribution inside the 

foam is to set the boundary condition where the air leaves the sample as a zero 

slope condition. This means that the temperature is increasing along the z 

direction and it reaches its maximum value at the boundary where the air 

leaves the foam. 

• The convective coefficient derivated from the correlations referenced in this 

thesis is not constant throughout the whole sample. It is varying along the z 

direction and this is precisely the parameter that modifies the temperature 

distribution along the mentioned direction.  

• The variation of the convective coefficient is attributed to a reduction in the 

velocity at the pores when the air advances in the z direction and it is due to 

the resistance that the foam structure presents to the air to flow. 
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• The analytical solution to model the temperature distribution includes a 

parameter afm determined from experimental data. This parameter is a function 

of the Reynolds number when the value of this is low. This relationship 

between the coefficient afm and the Reynolds number is expressed by Eqn. 5.5. 

 

The study of materials as the metal foam is exciting and very interesting. With this 

research we have learned a lot about how others have modeled the heat transfer in this 

kind of materials, and we have realized by ourselves that there are a lot of parameters that 

could affect the heat transfer in the metal foams under convection. The experience gained 

along the development of this research allows us to make some recommendations for 

future work related to this topic. Some recommendations are: 

 

• As we have explained, until this moment we only have had the opportunity to 

work with one foam sample. The correlations founded worked well with our 

analytical solution and our experiments. However, it is necessary to extend the 

correlations obtained developing more experiments with more samples of 

different sizes and physical structure, like the pore density, pore size, filament 

diameter, relative density, etc. If it would be possible to work with samples 

larger in the z direction, it would be possible to obtain correlations for the 

parameter afm that could be a function of the thickness of the sample as well as 

the Reynolds number at the pores.  

• As we explained in Chapter 5, we proposed a linear variation for the 

convective coefficient hfm and therefore a linear variation for the parameter M 
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since that M is function of hfm. We conclude that this is good because the 

percentage of error results in less than 10%. Doing more experiments with 

different samples we could realize if it continues being true, that is, if the 

relation found for M continues to be linear or it takes a different form at some 

distance along the z direction. 

• Another issue present in our research was the ambient conditions under which 

the experiments were run. May be it would be positive to run experiments in a 

more controlled ambient, specifically free of humidity. We can not be sure 

that this is affecting our results, but may be they could. 

• Of course, we would like to propose our work to be applied to practical 

situations in which the metal foam are used as a heat sink to cool computer 

microprocessors or to construct heat exchangers. 
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APPENDIX A 
DERIVATION OF ENERGY EQUATION  
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Energy equation to model heat transfer inside the foam is derivate in next lines. 

Figure 3.6, shows the cross sectional areas for different heat fluxes. The heat conduction 

area in the solid part is given as,  

pccond AAA −=         (A.1) 

 

where Ac is the total cross sectional area and Ap is the area occupied by the pores. This 

area was approximated by Sullines and Daryabeige [13]: 

 

( )ε−= 1ccond AA            (A.2) 

 

where ε is the porosity of the foam and it is a property reported by the manufacturer. 

Following the last arrangement the conduction area for the solid part, the x direction is 

defined by Eqn. A.3 as, 

dzWdA
sxcond )1()( ε−=                                             (A.3) 

 

Air is also a heat conductor, although not as efficient. However, in order to get a 

good approximation, the heat conduction in the air is considered by defining the area 

occupied by the pores through Eqn. A.4 

 

dzWdA
fxcond ε=)(         (A.4) 

Similarly, in the z direction, the conduction areas for the solid aluminum filaments 

and the air are defined by Eqns. A.5 and A.6 respectively. 
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dxWdA
szcond )1()( ε−=              (A.5) 

 

dxWdA
fzcond ε=)(          (A.6) 

 

The convective surface area is defined using the property of surface density (σ), 

that is the surface area per unit volume. This property is specified by the manufacturer. 

 

Wdxdz
Aconv=σ      (A.7) 

 

where Aconv is the surface area through which heat transfer by convection takes place. 

Fourier’s law of conduction is used to define the energy fluxes in the x and z directions, 

and it is considered for the solid part and the air present inside the foam. It must be noted 

that different conductivities are employed for heat conduction for the solid part and air.  

These conductivities are denoted by ks and kf respectively. Tfm is the local averaged 

temperature inside the foam. The heat flux entering the control volume in the x direction 

is,  

x
T

Ak
x

T
Akq fm

xcondf
fm

xcondsx fs ∂
∂

−
∂
∂

−= )()(                               (A.8) 

 

Using the conduction areas defined by Eqns. A.2 to A.6, Eqn. A.8 is modified to, 
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x
T

dzWkk
x

T
Wdzkq fm

fs
fm

sx ∂
∂

−+
∂
∂

−= ε)(                     (A.9) 

 

A similar analysis is made for the heat flux by conduction leaving the control volume:  

 

dx
x
qqq x

xdxx ∂
∂

+=+          (A.10) 

 

Substituting Eqn. A.9 into Eqn. A.10, we obtain the heat flux that leaves the metal foam 

in the x direction: 

 

dx
x
T

dzWkkdx
x
T

Wdzk
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T

Wdzkq fm
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2

2

2

)()(
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∂
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∂
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−=+ εε  

(A.11) 

For the conduction heat fluxes in the z direction we followed the same procedure. The 

equations obtained in this way are  

 

z
T

dxWkk
z

T
Wdxkq fm

fs
fm

sz ∂
∂

−+
∂
∂

−= ε)(    (A.12) 

dz
z
T

dxWkkdz
z
T

Wdxk
z

T
dxWkk

z
T

Wdxkq fm
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fm
s

fm
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sdzz 2

2

2

2

)()(
∂
∂

−+
∂
∂

−
∂
∂

−+
∂
∂

−=+ εε  

(A.13) 

Newton’s law of cooling is employed for the convection heat transfer inside the 

pores. The effective convection coefficient defined by Eqn. 3.10 is introduced in the heat 
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transfer equations to calculate the temperature distribution in the metal foam. At this 

point, the convection area includes the property of surface density which is incorporated 

in the analysis. 

 

)()( ∞∞ −⋅=−= TTWdxdzhTTAhq fmfmfmconvfmconv σ         (A.14) 

 

Equations A.9 and A.11 to A.14 are substituted into Eqn. A.7 to obtain,   
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(A.15) 

 

which is simplified as, 
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(A.16) 

Dividing by Wdxdz and making some algebraic arrangements, the heat transfer 

through the metal foam is expressed as, 
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0)(
)1(2
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∞TT

kk
h

z
T

x
T

fm
fs
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εε
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   (A.17) 

 

The term relating the convective coefficient, the surface area and the 

conductivities of the solid and fluid, as well as the porosity of the metal foam is the foam 

parameter and is given by, 

 

εε
σ

fs

fm
fm kk

h
m

+−
=

)1(
2                     (A.18) 

 

Substituting the foam parameter in Eqn. A.17, yields, 

 

0)(2
2

2

2

2

=−−
∂

∂
+

∂

∂
∞TTm

z
T

x
T

fmfm
fmfm     (A.19) 

 
In order to non-dimensionalize the equation and establish the proper boundary 

conditions, an analysis of the conditions to which the foam will be subjected during the 

experimentation is made. A constant heat flux will be applied to the base of the foam by 

means of a flat heater. In [22] is considered that applying a constant heat flux at the base 

of a metal foam sample, it causes that the entire base can be considered remain at a 

constant temperature Tb. Also, the experimental verification of this assumption was 

validated in our case taking measurements at different locations along the entire base. 

The inlet temperature of the fluid is denoted by T∞. So, a dimensionless temperature θfm is 
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defined as the ratio of the difference between the local temperature in any point in the 

foam and the inlet temperature of the fluid and the difference between the constant 

temperature Tb at the base of the foam and T∞.  

 

∞

∞

−

−
=

TT
TzxT

zx
b

fm
fm

),(
),(θ     (A.20) 

 

The distance across the x and z direction are also non-dimensionalize as, 

 

L
xX =    

L
zZ =  

 

and, for the foam parameter 

 

222 MmL fm =  

 

Thus, a dimensionless form of Eqn. A.19 is obtained as, 
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APPENDIX B 
MATHEMATICAL PROCEDURES  
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Case 1. Temperature distribution with linear behavior 

 

We begin to solve this case substituting Eqn. 3.19 into Eqn. 3.16, two separate 

partial differential equations are obtained.  The first equation is 

 

02
2

2

2

2

=Ψ−
∂
Ψ∂

+
∂
Ψ∂ M

ZX
                 (B.1) 

 
 

Equation B.1 corresponds to the first one of the two models presented in Figure 

3.8. This means that the boundary conditions defined in the model of Figure 3.8 will be 

applied to the Eqn. B.1 in order to solve it to know the temperature distribution. 

Separation of variables is applied to the Eqn. B.1 to begin its solution, so 

 

)()(),( 11 ZZXXZX =Ψ     (B.2) 

 

substituting Eqn. B.2 in Eqn. B.1; 

 

0'''' 11
2

1111 =−+ ZXMZXZX  

 

Dividing by X1Z1 

 

0'''' 2

1

1

1

1 =−+ M
Z
Z

X
X            (B.3) 
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The terms of Eqn. B.3 can be represented as constants; 

 

2

1

1 ''
β−=

X
X   2

1

1 ''
η−=

Z
Z  

 

then, 

 

22

1

1 ''
η+= M

X
X     (B.4) 

 

and the solution for Eqn. B.4 is: 

 

])([sinh])([cosh)( 22
2

22
11 XMCXMCXX ηη +++=     (B.5) 

 

On the other hand, for the variable Z1, we have 

 

2

1

1 ''
η−=

Z
Z      (B.6) 

 

and its solution is,  

 

ZCZCZZ ηη sincos)( 431 +=       (B.7) 
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Substituting Eqn. B.5 and B.7 in Eqn. B.2, the general solution is found. 

 

}sincos]}{)([sinh])([cosh{),( 43
22

2
22

1 ZCZCXMCXMCZX ηηηη ++++=Ψ  

                                                                                                                                      (B.8) 

 

To know the value of the constants of Eqn. B.8, the boundary conditions are 

applied. Starting with the B.C. at Z=0 (Ψ=0); 

 

)}0sin()0cos(]}{)([sinh])([cosh{0 43
22

2
22

1 CCXMCXMC ++++= ηη  

 

∴ 03 =C  

At the boundary z=t/L, Ψ=0; 

 

( )}sin]}{)([sinh])([cosh{0 4
22

2
22

1 L
tCXMCXMC ηηη +++=  

 

As 04 ≠C , ( ) 0sin =L
tη . So, this is the eigenfunction. From this equation, the 

eigenvalues of the equations are obtained. These are, 

 

t
Ln

n
πη =      (B.9) 
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The third boundary condition, at X=1, defines an adiabatic condition. So, 

0=
∂
Ψ∂
X

. Deriving Eqn. B.8 and substituting the corresponding values;  

 

])([cosh)(])([sinh)(0 22
2

2222
1

22
nnnn MCMMCM ηηηη +++++=     (B.10) 

 

One of the constants of Eqn. B.10 can be expressed as a function of the other one; 

 

 ])([tanh 22
12 nMCC η+−=  

 

Substituting the values of the constants C2 and C3 in Eqn. B.8 and gathering the 

values of the constants C1 and C4 as one in Cn, 

 

∑
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++−+=Ψ
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(B.11) 

 

Applying boundary condition at X=0 (Ψ=1),  

 

∑
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=
=

0
sin1

n
nn ZC η  

 

Applying orthogonality: 



116 

 

dZZCdZZ
L
t

L
t

o
nn

o
m ∫∫ = ηη 2sinsin  

 

Solving to find the coefficient Cn, and applying the respective integration limits, it 

is found that, 

 

( )( )
πn

C
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Finally, the solution for the first model generated by superposition is obtained. 
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(B.12) 

 

The second equation generated in the substitution of Eqn. 3.36 into Eqn. 3.31 is 

Eqn. B.13. It corresponds to the second model shown in Figure 3.8 

 

02
2

2

2

2

=Φ−
∂
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+
∂
Φ∂ M

ZX
                                            (B.13) 

 

Applying separation of variables: 
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)()(),( 22 ZZXXZX =Φ     (B.14) 

 

Substituting Eqn. B.14 in Eqn. B.13: 

 

0'''' 22
2

2222 =−+ ZXMZXZX  

 

Dividing by X2Z2 

 

0'''' 2

2

2

2

2 =−+ M
Z
Z

X
X            (B.15) 

 

The terms of Eqn. B.15 can be defined as; 

 

2
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The same procedure used with the first part is followed and a general solution for 

Eqn. B.13 is given by Eqn. B.16. 

 

]})([sinh])([cosh}{sincos{),( 22
4

22
321 ZMCZMCXCXCZX γγγγ ++++=Φ  

(B.16) 
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Applying the boundary conditions at X=0 and at X=1, the eigenfunction 

0cos =γ and eigenvalues ⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nn πγ  of the solution are obtained.  

 

Applying the boundary condition at Z=0,  

 

∑
∞

=

+=Φ
0

22 ])([sinhsin),(
n

nnn ZMXCZX γγ        (B.17) 

 

where the constant Cn gathers the initial constants C2 and C4. 

 

Applying boundary condition at z=t, (Z= L
t ) 

 

( )[ ]∑
∞

=
+=−

0

22 )(sinhsin1
n

L
t

nnn MXCX γγ      (B.18) 

 

Orthogonality is then applied to Eqn. B.18 

 

( )[ ]∫∫∫ +=−
1

0

222
1

0

1

0

)(sinhsinsinsin dXMXCdXXXdXX L
t

nnnmm γγγγ      (B.19) 

 

Integrating all the terms that compose Eqn. B.19 and applying the limit values to 

each one of them, it is possible to find the value of the constant Cn. 
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Substituting the value of Cn into Eqn. B.17; 
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The final solution for the dimensionless temperature for this case is given as, 
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Case 2. Temperature distribution with exponential behavior 

 

As we mentioned in the main part of this document, and observing Figure 3.9, the 

first individual model corresponds to the solution of the Eqn.B.1, which was given above. 

We focus then in the solution of the second individual model, which follows a behavior 

again Eqn. B.13 but, as we know, the boundary condition at z=t is different now. So, 

applying separation of variables: 

 

)()(),( 22 ZZXXZX =Φ      

 

Substituting the last equation inn Eqn. B.13: 
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Two individuals differential equations are generated; 
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Solving the last equations, a general solution for Eqn. B.13 is founded and given 

by, 

 

]})([sinh])([cosh}{sincos{),( 22
4

22
321 ZMCZMCXCXCZX γγγγ ++++=Φ  

 

Applying the boundary conditions at X=0 and at X=1, the eigenfunction 

0cos =γ and eigenvalues ⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nn πγ  of the solution are obtained.  

 

Applying the boundary condition at Z=0,  

 

∑
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0

22 ])([sinhsin),(
n
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where the constant Cn gathers the initial constants C2 and C4. 

 

Applying boundary condition at z=t, (Z= L
t ) 
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Orthogonality is then applied to Eqn. B.22 
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Integrating all the terms that compose Eqn. B.23 and applying the limit values to 

each one of them, it is possible to find the value of the constant Cn. 
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Substituting the value of Cn; 
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(B.24) 

 
The final solution for the exponential variation case is given as, 
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Case 3. Temperature distribution for a one dimensional model of Dukhan and 

Quiñones 

 

It case present same conditions as last one, this is, the first individual model 

shown in Figure 3.10 corresponds to the solution of the Eqn.B.1, which was derivated in 

the first case. Again, we will show how was obtained the solution of the second 

individual model with the third boundary condition. Applying separation of variables: 

 

)()(),( 22 ZZXXZX =Φ      

 

Substituting the last equation inn Eqn. B.13: 

 

                0'''' 22
2

2222 =−+ ZXMZXZX  

 

Dividing by X2Z2 
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                                                        0'''' 2

2

2

2

2 =−+ M
Z
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X
X      

 

Two individuals differential equations are generated; 

 

2

2

2 ''
γ−=

X
X   2

2

2 ''
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Z
Z    

 

Solving the last equations, a general solution for Eqn. B.13 is founded and given by, 

 

]})([sinh])([cosh}{sincos{),( 22
4

22
321 ZMCZMCXCXCZX γγγγ ++++=Φ  

 

Applying the boundary conditions at X=0 and at X=1, the eigenfunction 

0cos =γ and eigenvalues ⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nn πγ  of the solution are obtained.  

 

Applying the boundary condition at Z=0,  

 

∑
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where the constant Cn gathers the initial constants C2 and C4. 
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Applying boundary condition at z=t, (Z= L
t ) 
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Orthogonality is then applied to Eqn. B.26 
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Integrating all the terms that compose Eqn. B.27 and applying the limit values to 

each one of them, it is possible to find the value of the constant Cn. 
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Substituting the value of Cn; 
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(B.28) 
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The final solution for the exponential variation case is given as, 
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(B.29) 

Case 4. Temperature distribution with zero-slope 

 

As observed from Figure 3.11, for this case it is not necessary to use superposition 

principle. The method of separation of variables is directly used since it case presents 

only one non-homogenous boundary condition. So, 

 

)()(),( ZXZXfm κχθ =              (B.30) 

 

Substituting Eqn. B.30 into Eqn. 3.14, 

 

0'''' 2 =−+ χκχκκχ M  

 

Dividing by XZ 
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χ
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The terms of Eqn. B.31 can be defined as: 
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Substituting the above constants in the Eqn. B.31, Eqn. B.32 is obtained. 
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The general solution of equation B.32 is: 
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Solution for variable κ of Eqn. B.30 is obtained by solving Eqn. B.34. 
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κ
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 Solution of Eqn. B.34 has the form of Eqn. B.35. 
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ZCZCZ ηηκ sincos)( 43 +=       (B.35) 

 

A solution for θfm employing Eqn. B.33 and B.35 is given by Eqn. B.36. 
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The boundary conditions at Z=0 and Z= L
t are applied to the Eqn. B.36. The 

eigenfunction and eigenvalues of the solution are obtained and defined by Eqn. B.37 and 

Eqn. B.38. 
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The boundary condition at X=1 is applied next. Once that is done, a general 

solution that describes the dimensionless temperature inside the foam under this proposed 

conditions is obtained and is given by Eqn. B.39. 
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Finally, the last boundary condition is applied (X=0). Orthogonality theorem is 

applied to find the value of the constant Cn. When this is made, the constant is substituted 

in Eqn. 3.71 and the final solution for this fourth case is obtained and is expressed by 

Eqn. B.40. 
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