Publication:
Design and characterization of a pressure differential trapping mechanism for suspended micro-particles in a micro-fluidic device

Thumbnail Image
Authors
Cruz-Díaz, Alvin O.
Embargoed Until
Advisor
Díaz-Rivera, Rubén E.
College
College of Engineering
Department
Department of Mechanical Engineering
Degree Level
M.S.
Publisher
Date
2012
Abstract
The increasing interest for dedicated analysis of single particles at microscopic scales, such as biological cells, has led researchers to create micro-fluidic systems capable of trapping particles in a liquid flow. The present study tests a device that employs a pressure difference trapping mechanism to isolate suspended micro-particles. The studied microfluidic device was fabricated using typical soft lithography and consists of parallel canals that are linked by small apertures that function as localized pressure-gradient traps. Experiments to characterize the functionality of the trapping sites of the device were conducted using polystyrene beads. These experiments consisted of using 20 µm polystyrene beads suspended in PBS, which were introduce using a syringe pump, while one outlet port of the device was controlled to produce an outflow rate of 25%, 50%, 62.5% and 75% of the inflow rate. Another case in which the outlet remained at atmospheric pressure was also studied. The experiments performed with 20 µm beads demonstrated that the apertures were capable of trapping and retaining the beads. A micro-PIV was used to characterize the flow and the velocity profile in different parts of the device. The results from the micro-PIV experiments were used to validate a computational fluid dynamics model using COMSOL Multiphysics. The experiments show that the trapping efficiency is a strong function of the controlled output flow suggesting that the functionality of the device could be manipulated with a variable fluidic resistance. It was also found that the velocity profile of the computational model agrees well with experiments carried out with the micro-PIV, but only when there is slip at the PDMS walls. We suspect that the velocity slip is due to the surface treatment of the microchannel walls (air plasma followed by bovine serum albumin functionalization). However, the evidence is not conclusive. The validated computational model presented in this study will serve as a stepping stone for the development of high-density cell isolation micro-devices for high-throughput single-cell electroporation applications and the detection of circulating tumor cells.

El creciente interés para el análisis dedicado de partículas individuales a escalas microscópicas, tales como las células biológicas, ha llevado a los investigadores a crear sistemas micro-fluídicos capaces de atrapar partículas suspendidas en un flujo. El presente estudio coloca a prueba un dispositivo que utiliza una diferencia de presión como mecanismo para aislar micro-partículas suspendidas. El dispositivo micro-fluidico fue fabricado utilizando litografía blanda y consiste de canales paralelos que están unidos por pequeñas aberturas que funcionan como trampas de gradiente de presión. Los experimentos para caracterizar la funcionalidad de los sitios de captura del dispositivo se realizaron utilizando esferas de poliestireno. Estos experimentos consistieron en utilizar esferas de poliestireno 20 µm suspendidos en PBS, que se introducen mediante una bomba de jeringa, mientras que un puerto de salida del dispositivo fue controlado para producir una razón de flujo de salida de 25%, 50%, 62.5% y 75% de la razón de flujo de entrada. Además se estudio un caso en el que la salida se mantuvo a presión atmosférica. Los experimentos realizados con esferas de 20 µm demostraron que las aberturas eran capaces de atrapar y retener las esferas. Un microPIV se utilizó para caracterizar el flujo y el perfil de velocidad en diferentes partes del dispositivo micro-fluidico. Los resultados de los experimentos de micro-PIV fueron utilizados para validar un modelo computacional para el cual se utilizó COMSOL Multiphysics. Los experimentos muestran que la eficiencia de captura es una fuerte función del flujo de salida controlado que sugiere que la funcionalidad del dispositivo podría ser manipulado con una resistencia fluidica variable. También se encontró que el perfil de velocidad del modelo computacional concuerda bien con los experimentos llevados a cabo con el micro-PIV, pero sólo cuando hay deslizamiento en las paredes de PDMS. Se sospecha que el deslizamiento de velocidad es debido al tratamiento superficial de las paredes de los micro-canales (plasma de aire seguido por funcionalización con suero albumino de bovino). Sin embargo, la evidencia no es concluyente. El modelo computacional validado en este estudio servirá como un trampolín para el desarrollo de micro-dispositivos de alta densidad de celdas de aislamiento para aplicaciones de alto rendimiento de electroporación de una sola célula y la detección de células cancerígenas suspendidas en un fluido.
Keywords
Microfluid device
Cite
Cruz-Díaz, A. O. (2012). Design and characterization of a pressure differential trapping mechanism for suspended micro-particles in a micro-fluidic device [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/405