Publication:
Heat and mass transfer effects in air-cooled vertical tube absorbers

Thumbnail Image
Authors
Pérez-Reisler, Rafael A.
Embargoed Until
Advisor
Benítez-Rodríguez, Jaime
College
College of Engineering
Department
Department of Mechanical Engineering
Degree Level
M.S.
Publisher
Date
2007
Abstract
Most of the models to predict the heat and mass transfer in vertical absorption chillers underestimate the heat and mass transfer coefficients. Generally the models put too many constraints such as: laminar profile, constant properties, non-absorbable gases are ignored. This investigation attempts to create a more realistic model to estimate the air-cooled absorption process. The model couples the energy and mass balance equations through constraint equations at the interface. Using a method for computing the thermodynamic properties from a Gibbs free energy equation and correlations to estimate the transport properties, a robust MathCad routine was created that computes the solution composition and temperature as functions of the vertical position in the tube. The results from the model show that increasing the air content from 1 to 20% by volume reduces the mass absorption flux by 43%. Furthermore, it suggests that there is a critical tube length that depends on the air concentration at which the absorption process ceases (1.3-m for 1% air).

La mayoría de los modelos existentes para predecir los efectos de transferencia de calor y masa en procesos de refrigeración por absorción subestiman los efectos de éstos. Generalmente los modelos restringen demasiado el fenómeno con asunciones tales como: flujo laminar, propiedades constantes, no consideran gases no-condensables. Esta investigación intenta crear un modelo más real del fenómeno de absorción enfriado por aire. Usando un método para calcular las propiedades termodinámicas a partir de la energía libre de Gibbs y usando correlaciones para estimar las propiedades de transporte de la solución, se desarrolló un programa robusto en MathCad que calcula la composición y la temperatura de la solución como función de la posición en el tubo vertical. Los resultados del modelo muestran que incrementar el contenido de aire de 1% a 20% por volumen tiene un efecto de reducir el flujo másico de absorción en un 43%. Además, sugieren que existe un largo crítico de tubo que depende de la concentración de aire, al cual el proceso de absorción cesa (1.3-m para 1% de aire).
Keywords
heat
Cite
Pérez-Reisler, R. A. (2007). Heat and mass transfer effects in air-cooled vertical tube absorbers [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/774