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ABSTRACT 

Near infrared spectroscopy is a very promising non-invasive technique since it allows the use of 

calibration models to monitor physical and chemical properties of raw materials, intermediate 

products (blend), and the end product (tablets) without sample preparation. In this investigation, 

near infrared (NIR) spectroscopy and chemometric models were used as in-line techniques 

integrated to a closed-loop control system that provides drug concentration results in real time. 

The use of NIR chemometric modelling for continuous manufacturing (CM) processes, such as 

the one discussed in this study, allows the manufacture of large quantities of product in a short 

time while maintaining all necessary controls to ensure high quality of the end product. 

The first investigation presented in this dissertation focuses on the use of chemometric models 

and variographic analysis to evaluate the analytical and sampling errors of the predicted API 

concentration of blends produced during a pharmaceutical CM process. An NIR calibration 

model was developed using blends prepared in lab scale equipment. The model was validated 

with blends prepared using lab scale, pilot plant, and CM processes. Variographic analysis was 

performed to blends and tablets prepared using the CM process.  

The second investigation presented in this dissertation focuses on the integration of PAT and 

CM in a CGMP regulated pharmaceutical plant. This study shows the application of CM and 

chemometric modelling for the commercial manufacturing of a pharmaceutical product. Two NIR 

chemometric models were developed, validated, and implemented for the identification and 

quantification of blends produced during a commercial CM process. The calibration and 

validation sets were prepared using the CM process, thus including sample and process 

variations into the models. All blend spectra were collected in-line, during the manufacturing 

process. An original approach is suggested for the calculation of the standard error of prediction 

(SEP) acceptance criteria. Variographic analysis of a 28-hour commercial run was performed.  

The third investigation presented in this dissertation focuses on testing the robustness of an NIR 

calibration model for the prediction of drug concentration in core tablets during a CM process. 

The robustness evaluation was performed by exploring how the NIR spectra and predictions 

were affected when tablets were: (1) exposed to the environment for prolonged times; (2) 

protected from the environment; and (3) experiencing their “relaxation” phase (elastic recovery). 

An NIR calibration model was developed with tablets prepared using lab-scale equipment. Two 
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optimizations were performed to the NIR calibration model based on: (1) spectral range and (2) 

calibration sample set. The inclusion of tablets representative of the CM process to the NIR 

calibration model proved to be an efficient way of including inherent process variations, thus 

increasing the robustness of the model. 
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RESUMEN 

La espectroscopia de infrarrojo cercano es una técnica no invasiva muy prometedora ya que 

permite el uso de modelos de calibración para monitorear propiedades físicas y químicas de 

materiales, productos intermediarios (mezclas) y del producto final (tabletas) la necesidad de 

hacer preparación de muestras. En esta investigación, la espectroscopia de infrarrojo cercano 

y modelos quemométricos fueron utilizados como técnicas en línea integradas a un sistema de 

control cerrado que provee resultados de la concentración de droga en tiempo real. El uso de 

infrarrojo cercano con modelos quemométricos para procesos de manufactura continua, como 

los discutidos en esta disertación, permiten la manufactura de grandes cantidades de productos 

en un corto tiempo manteniendo todos los controles necesarios para asegurar la alta calidad 

del producto final. 

La primera investigación presentada en esta disertación se enfocó en el uso de modelos 

quemométricos y análisis variográfico para evaluar los errores analíticos y de muestreo de la 

predicción de concentración de droga de mezclas producidas durante un proceso farmacéutico 

de manufactura continua. Un modelo de calibración de infrarrojo cercano fue desarrollado con 

mezclas preparadas utilizando equipo de laboratorio. El modelo fue validado con mezclas 

preparadas utilizando equipo de laboratorio, una planta piloto, y un proceso de manufactura 

continua. El análisis variográfico fue realizado a mezclas y tabletas preparadas utilizando el 

proceso de manufactura continua. 

La segunda investigación presentada en esta disertación se enfocó en la integración de PAT y 

manufactura continua en una planta farmacéutica regulada (CGMP). Este estudio mostró la 

aplicación de manufactura continua y modelaje quemométrico para la manufactura comercial 

de un producto farmacéutico. Dos modelos quemométricos de infrarrojo cercano fueron 

desarrollados, validados e implementados para la identificación y cuantificación de mezclas 

producidas durante un proceso comercial de manufactura continua. Los conjuntos de 

calibración y validación fueron preparados utilizando el proceso de manufactura continua, 

incluyendo así variaciones de muestra y proceso a los modelos. Todos los espectros de las 

mezclas fueron tomados en línea, durante el proceso de manufactura. Un acercamiento original 

fue sugerido para calcular el criterio de aceptación para el error estándar de predicción (SEP 
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por sus siglas en ingles). El análisis variográfico fue realizado para una corrida comercial de 28 

horas de duración. 

La tercera investigación presentada en esta disertación se enfocó en comprobar la robustez del 

modelo quemométrico para la predicción de la concentración de droga en tabletas durante el 

proceso de manufactura continua. La evaluación de robustez se llevó a cabo explorando como 

se afectaron los espectros de infrarrojo cercano y las predicciones cuando las tabletas: (1) 

fueron expuestas al ambiente por un tiempo prolongado; (2) fueron protegidas del ambiente; y 

(3) estuvieron en su fase de relajación (recuperación elástica). Un modelo de calibración de 

infrarrojo cercano fue desarrollado con tabletas preparadas utilizando equipo de laboratorio. 

Dos optimizaciones fueron realizadas al modelo de calibración de infrarrojo cercano basadas 

en: (1) el rango espectral y (2) el conjunto de calibración. La inclusión de tabletas 

representativas del proceso de manufactura continua al modelo de calibración de infrarrojo 

cercano probó ser una manera eficiente de incluir variaciones del proceso, lo que a su vez 

aumento la robustez del modelo.  
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Chapter 1 

1 Introduction 

1.1 Motivation 

The work presented in this dissertation resulted as part of the collaboration between 

the University of Puerto Rico, Mayaguez Campus (UPRM) and Janssen Ortho LLC at 

Gurabo, PR.  

In pharmaceutical procedures, the quality of the final drug product is assured as long 

as critical process parameters (CPPs) and critical quality attributes (CQAs) are 

maintained within established limits [1]. Traditionally the quality verification of the product 

is performed off-line after the batch has been completed (batch process). Therefore, if the 

product is not in compliance with its specifications, the complete batch is lost. Continuous 

manufacturing offers the flexibility of monitoring the manufacturing process from 

beginning to end, decreasing the probability of losing a complete batch due to 

specification failure of the product during the quality verification, after batch completion. 

Traditionally, a batch process is performed during several separate steps. It may be 

noted that CM involves the merging of several process steps to make one whole 

continuous process. This merge of several steps could complicate the manufacturing 

process. However, if CQA and CPP parameters are monitored and maintained within 

specifications, CM can be successful. The use of process analytical technology (PAT) 

helps to understand and control the manufacturing process [2]. Implementation of PAT in 

a CM process will assure the manufacture of high quality drug products at low costs [3]. 

Multivariate data analysis (chemometric modelling), NIR spectrometers (in-line spectra 

acquisition), and process control tools are PAT techniques that can be combined to 

monitor a CM process.  

In this investigation, NIR and chemometric models were used as an in-line techniques 

integrated to a closed-loop control system that provides API concentration results (NIR 
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predictions) in real time. The use of NIR chemometric modelling for CM processes, such 

as the one discussed in this study, allows the manufacture of large quantities of product 

in a short time while maintaining all necessary controls to ensure high quality of the end 

product [4, 5]. This research includes the investigation performed for the implementation 

of the first FDA approved CM line for a pharmaceutical company in Puerto Rico. This 

investigation and subsequent approval serves as a basis for other companies worldwide 

to begin making changes in their manufacturing processes which will eventually lead to a 

revolution in the pharmaceutical industry. This approved change from a batch process to 

a CM process included the complete development, validation, and implementation of 

blend and tablet monitoring processes to achieve real time release testing (RTRt). This 

study will influence further investigations related to implementation of continuous 

manufacturing in pharmaceutical processes.  
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1.2 Scope 

The scope of this dissertation is to develop, validate, and implement multivariate 

calibration models using NIR spectroscopy to assure the desired product quality of the 

end product during a continuous manufacturing process in an FDA regulated 

pharmaceutical company. 

1.3 Goal 

The overall goal of this dissertation is the implementation of NIR calibration models to 

identify and determine the concentration of the active pharmaceutical ingredient (API) in 

blends and tablets. Part of this research was performed within the Engineering Research 

Center for Structured Organic Particulate Systems (ERC-CSOPS) while the other part 

was performed at the recently FDA approved CM line at Janssen, Puerto Rico [6-10]. 

The objectives of this investigation were to (1) analyze accuracy and precision of NIR 

predictions to assure the implementation of a robust calibration model; (2) evaluate 

spectra acquisition parameters for blends and tablets in diffuse reflectance and 

transmittance mode; (3) evaluate process parameters that could affect NIR predictions; 

(4) use alternative statistical tools such as the distance to the model in the X-space 

(DModX) and the Hotelling’s T2Range (T2R) to evaluate robustness of the calibration 

models; (5) incorporate theory of sampling for blend acquisition since sampling could 

affect the NIR results; (6) evaluate analytical and sampling errors of blends and tablets in 

the NIR predictions of the API using variographic analysis; and (7) compare blends and 

tablets results since blends could be affected by segregation and thus, tablet NIR spectra 

could be affected.  
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Chapter 2 

2 Background 

2.1 Summary 

Pharmaceutical companies are transforming the manufacture of drug products. FDA 

regulated facilities are investigating the modification of drug preparation by implementing 

continuous manufacturing (CM) processes using process analytical technology (PAT) 

and quality by design (QbD) approaches [1]. The pharmaceutical sector has intensified 

their research towards implementing CM processes as a substitute to the current batch 

process [1-5]. This increase in investigations has led to a deeper understanding of what 

is continuous manufacturing and how it is affected by different process parameters. 

Implementation of CM as a commercial pharmaceutical process is bound to increase 

efficiency (release time) and improve the financial (production cost), environmental 

(waste and footprint), and operational aspects (less, smaller equipment). CM can also 

improve the agility, flexibility, and robustness of manufacturing [2, 6, 7]. The 

implementation of CM involves the monitoring of critical quality attributes (CQAs), such 

as drug concentration, using process analytical technology linked to a control system [8-

13]. PAT systems provide real time results allowing the monitoring and control of the CM 

process. A CM process produces large data sets which require the use of multivariate 

data analysis (chemometric models). Multivariate data analysis combined with PAT 

techniques such as near infrared spectroscopy (NIRS), have been previously used to 

develop models for the identification and assay of solids to determine the quality of the 

end product [8, 14, 15]. The use of NIR has increased since the implementation of CM 

usually involves performing in-line and at-line analysis of the processes (e.g. blends, 

tablets) [16]. Therefore the implementation of CM integrated with PAT in pharmaceutical 

industries is expected to provide high quality products at lower manufacturing costs [17]. 

The studies presented in this dissertation include the use of the same concepts (NIR, 

PAT, CM, chemometric models) but applied to a commercial CM run.  
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2.2 Process Analytical Technology (PAT) 

Process analytical technology (PAT) is considered by the FDA as “a system for 

designing, analyzing, and controlling manufacturing through timely measurements (e.g. 

during processing) of critical quality and performance attributes of raw and in-process 

materials and processes, with the goal of ensuring final product quality” [18]. The 

objective of PAT is to improve the understanding and control of manufacturing processes 

by efficiently designing processes in which quality of the final product is achieved as the 

result of the design. The quality of the product is ensured through the design of the 

manufacturing process rather than just testing after production. There must be a complete 

understanding beforehand of how materials and process parameters affect the quality of 

the final product to achieve this type of process.  

Pharmaceutical processes involve several steps (unit operations) focused on 

performing specific tasks to ensure high quality of the final product. Powder mixing is a 

key unit operation for tablet manufacturing. Content uniformity, a CQA, is directly linked 

to blend homogeneity [19]. Therefore, powder blending and homogeneity should be 

closely monitored and controlled to ensure the quality of the tablets produced. The use of 

near infrared spectroscopy (NIRS) to monitor blends is widely accepted since this 

technique allows a non-invasive, fast in-line analysis of blends without sample 

preparation. 
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2.3 Near Infrared Spectroscopy (NIRS) 

Near infrared (NIR) is one of the most commonly used spectroscopic methods in the 

pharmaceutical industry [20-29]. This method offers essential information on chemical 

and physical properties of materials and is fast, non-invasive, and non-destructive. NIR 

spectroscopy shows absorption bands in the wavenumber region from about 4000 up to 

12500 cm-1 (800 – 2500 nm) (Figure 2.1) [30, 31]. This spectral region covers mainly 

overtones and combination bands of molecular vibrations that modulate the dipole 

moment of molecules with X-H bonds (e.g. organic compounds such as CH, OH, and 

NH). 

 

Figure 2.1 Electromagnetic spectrum with the infrared region defined 

Combination bands are formed due to the combination of two or more fundamental 

frequencies and are usually 10 times weaker (lower intensity) than the original 

fundamental band. Overtones occurs when the vibrational mode is excited from the 

fundamental or ground energy level (ʋ = 0) to a higher energy level (ʋ = 2), known as the 

first overtone. This excitation could also occur from the fundamental energy level (v = 0) 

to an even higher energy level (ʋ = 3), thus producing what is known as a second 

overtone. However, probability of occurrence decreases as the excitation from the 
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fundamental to a higher energy level increases (v = n; n = 2, 3, 4, etc.). Overtones tend 

to be 20 to 100 times weaker (lower intensity) than their fundamental band. The molecular 

vibrations that produce overtones and combination bands require more energy for the 

vibration to go from one energy level to the next. The absorptions observed in the NIR 

region are at a higher state of excitement and thus, require more energy than the 

fundamental absorption band. Fundamental frequencies obey Hooke’s Law (Eq. 1). 

v = 
1

2π
 √

k

μ
      Eq. 1 

Where v is the vibrational frequency, k is the classical force constant, and μ is the 

reduced mass of the two atoms given by Eq. 2. 

μ= 
m1m2

m1+ m2
      Eq. 2 

These fundamental vibrations are described by the harmonic oscillator (Figure 2.2) 

model where transitions are allowed for energy changes of ±1. This quantum model 

defines the possible energy levels for a specific vibration as: 

Ev 
= (v + 

1

2
)  hv    Eq. 3 

Where v is the quantum number of the vibrational frequency and v is the fundamental 

frequency of the vibration (Eq. 1). 
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Figure 2.2 Representation of the harmonic and anharmonic oscillators 

Molecular vibrations have been observed to occur with energy changes greater than 

±1 (e.g. overtones). These energy changes (Δn = ±2, ±3, etc.) cannot be explained by 

the harmonic oscillator model. Anharmonicity (Figure 2.2) explains the occurrence of 

these energy changes, thus allowing the existence of the overtones observed in NIR. 

Energy levels in the anharmonic oscillator are not equally spaced as they get slightly 

closer as the energy increases [31]. This phenomenon is described by the anharmonic 

equation (Eq. 4). 

Ev 
= (v + 

1

2
)  h𝜔𝑒 − (𝑣 +  

1

2
)

2
 𝜔𝑒𝜒𝑒 + (𝑣 + 

1

2
)

3
 𝜔𝑒𝑦𝑒 + ⋯  Eq. 4 

Where ωe is the vibrational frequency (Eq. 1) and ωeχe is the anharmonicity 

constant. 

NIR spectral differences are due to the differences observed in the intensity and 

position of overtones and combination bands [32]. In addition, differences in resonance, 

crystallinity, particle size, and temperature, among others, also have an influence on the 
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molecular spectral differences observed in NIR. Therefore, NIR spectra is dependent of 

the physical and chemical properties of the material [33]. 

Spectra of solids can be recorded in reflectance or transmittance. NIR diffuse 

reflectance is a technique widely used to analyze powders (Figure 2.3) [34]. When light 

is directed to a solid sample, it is reflected. The reflected light will endure specular or 

diffuse reflection. The specular reflection is the light reflected in a single angle (“mirror 

style”) while the diffused reflection light has uniform remission at all angles [35]. 

 

Figure 2.3 Schematic diagram of light scattering from a solid sample 

NIR diffuse reflectance is based on the diffuse component since the specular 

component gives no information on the composition of the material [33]. The diffuse 

reflected signal is reduced due to absorption and scattering [30]. Scattering is related to 

differences in particle size, has a multiplicative effect on the absorbed light, and combines 

with other additive effects (e.g. shifts in baseline and chemical absorption) [33]. The 

multiplicative effect is explained by the Kubelka-Munck theory and can also be seen in 

the absorbance equation (Eq. 5) [36]. 
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A= log (
1

R
)      Eq. 5 

The additive effect adopts the idea of theoretical models such as Kubelka-Munck and 

Beer-Lambert which assume that all or a constant part of the reflected light is detected 

[36]. However, most instruments used for diffuse reflectance only detect a fraction (1/c) 

of the reflected light. Therefore,  

Idetected= (
1

c
) (Ireflected)     Eq. 6 

Adetected= − 𝑙𝑜𝑔(𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) =  −𝑙𝑜𝑔 (
𝐼𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝐼𝑜
) 

= log 𝑐 + 𝑙𝑜𝑔 (
𝐼𝑜

𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑
) =  𝑐′ + 𝐴      Eq. 7 

An additive baseline (additive effect in the absorbance values) is caused if c′ = log(c) 

is dependent upon the sample [36]. 

In transmittance spectra (Figure 2.4), the amount of light scattered through a sample 

is measured. Transmittance is defined by Eq. 8.  

T = (
𝐼

𝐼𝑜
)      Eq. 8 

Where T is the transmittance, I is the transmitted light, and Io is the incident light. 

Transmittance will vary between 0 and 1. A transmittance of 1 indicates that no light was 

absorbed. Absorbance is calculated using Eq. 9. 

A = 2 − log %𝑇     Eq. 9 
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Where A is the absorbance and T is the transmittance. 

The emitted radiation penetrates the sample and interacts with a greater portion of it, 

compared to diffuse reflectance where light penetrates only a few millimeters before being 

reflected [37]. 

 

Figure 2.4 Schematic diagram of transmittance NIR 

NIR spectroscopy has been a widely used method since it is non-invasive, requires 

no sample preparation and can determine physical and chemical parameters 

simultaneously in a rapid, non-destructive way [20, 28]. NIR allows the determination of 

physical and chemical parameters without sample preparation which greatly reduces 

costs [20-26]. Understanding of NIR spectroscopy has increased during recent years. 

Researchers are now able to differentiate between the effects of physical properties and 

the spectral variation related to the quantified analytes [38, 39]. NIR is currently being 

used to monitor and control continuous manufacturing processes [3, 40-42]. 

NIR has become an important technique in the implementation of modern control 

strategies using in-line measurements [16]. In addition, the use of this method with 

multivariate data analysis (chemometric modelling) has allowed the development of 

models to identify and quantify solids used to determine the quality of the end product [8, 

14, 15]. The implementation of chemometric models in CM processes using NIR allows 

the manufacture of large quantities of product in less time while maintaining all necessary 

controls ensuring high quality of the end product [8, 43].  
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2.4 Literature Review 

Implementation of CM processes using NIR and PAT is an efficient alternative of drug 

manufacture to substitute the batch process [1, 2, 40]. The implementation of a CM 

process is bound to improve the financial, environmental, and operational aspects 

because this process reduces the equipment space, material, waste and release time [2, 

7]. Previous studies have also demonstrated how continuous manufacturing can increase 

the efficiency of the process by reducing the space needed for manufacturing (less and 

smaller equipment) and eliminating the relocation of material from room to room or from 

one facility to another [44-47]. 

Continuous manufacturing involves the monitoring of quality attributes such as API 

concentration, using process analytical technology (PAT). The use of multivariate data 

analysis such as chemometric modelling, allows the development of models to determine 

API concentration of blends and tablets prepared during a CM process, in real time (in-

line analysis). Previous studies have described the development and validation of NIR 

methods to monitor blending in CM [3, 40, 48]. Sulub et al. demonstrated the use off-line 

PLS calibration approach to quantitatively monitor the concentration of API in real-time 

from laboratory scale to production scale [49]. 

NIR calibration models have been successfully used in previous studies where drug 

concentration of powder mixtures and homogeneity characterization were performed in a 

blend with four components [48, 50]. However, pharmaceutical blends contain more than 

two components. Studies have also indicated the importance of including process and 

sample variations to the developed model [51]. Blanco et al. demonstrated that 

preparation differences (laboratory, production, production-doped) influences the spectra 

and accuracy of the predictions. Furthermore, results showed the spectral differences to 

be related to scattering due to physical differences between the samples [52]. 

This dissertation describes the efforts performed to evaluate how sample preparation 

(laboratory, pilot plant, and CM scale) of blends and tablets affects the model outcome 

(NIR predictions of the API concentration). The effects of changes in environmental 

conditions and process variability were also evaluated. In addition, variographic analysis 
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was used to evaluate sampling and analytical errors in the NIR predictions. This work 

also includes different approaches to identify, study, and classify the spectra variability 

associated with physical parameters of blends (e.g. particle size) and tablets (e.g. 

hardness). 

  



16 

 

2.5 References 

1. Anderson NG. Using Continuous Processes to Increase Production. Organic 
Process Research & Development. 2012;16(5):852-69.  

2. Byrn S, Futran M, Thomas H, Jayjock E, Maron N, Meyer RF et al. Achieving 
continuous manufacturing for final dosage formation: challenges and how to meet 
them. May 20-21, 2014 Continuous Manufacturing Symposium. Journal of 
pharmaceutical sciences. 2015;104(3):792-802.  

3. Martínez L, Peinado A, Liesum L, Betz G. Use of near-infrared spectroscopy to 
quantify drug content on a continuous blending process: Influence of mass flow and 
rotation speed variations. European Journal of Pharmaceutics and Biopharmaceutics. 
2013;84(3):606-15.  

4. Shi ZQ, McGhehey KC, Leavesley IM, Manley LF. On-line monitoring of blend 
uniformity in continuous drug product manufacturing process-The impact of powder 
flow rate and the choice of spectrometer: Dispersive vs. FT. J Pharm Biomed Anal. 
2016;118:259-66. doi:10.1016/j.jpba.2015.11.005. 

5. Colón YM, Vargas J, Sánchez E, Navarro G, Romañach RJ. Assessment of 
Robustness for a Near-Infrared Concentration Model for Real-Time Release Testing 
in a Continuous Manufacturing Process. J Pharm Innov. 2017;12(1):14-25. 
doi:10.1007/s12247-016-9265-6. 

6. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD et al. 
Modernizing pharmaceutical manufacturing: from batch to continuous production. 
Journal of Pharmaceutical Innovation. 2015;10(3):191-9.  

7. Allison G, Cain YT, Cooney C, Garcia T, Bizjak TG, Holte O et al. Regulatory and 
quality considerations for continuous manufacturing. May 20–21, 2014 Continuous 
Manufacturing Symposium. Journal of pharmaceutical sciences. 2015;104(3):803-12.  

8. Märk J, Andre M, Karner M, Huck CW. Prospects for multivariate classification of a 
pharmaceutical intermediate with near-infrared spectroscopy as a process analytical 
technology (PAT) production control supplement. European Journal of Pharmaceutics 
and Biopharmaceutics. 2010;76(2):320-7.  

9. Wu H, Tawakkul M, White M, Khan MA. Quality-by-design (QbD): an integrated 
multivariate approach for the component quantification in powder blends. International 
journal of pharmaceutics. 2009;372(1-2):39-48.  

10. Bakeev KA. Process Analytical Technology: Spectroscopic Tools and 
Implementation Strategies for the Chemical and Pharmaceutical Industries. Blackwell: 
Oxford, UK. 2005.  

11. Helmdach L, Feth MP, Minnich C, Ulrich J. Application of ATR-MIR spectroscopy 
in the pilot plant—Scope and limitations using the example of Paracetamol 



17 

 

crystallizations. Chemical Engineering and Processing: Process Intensification. 
2013;70:184-97.  

12. Yu LX. Pharmaceutical quality by design: product and process development, 
understanding, and control. Pharmaceutical research. 2008;25(4):781-91.  

13. Román-Ospino AD, Singh R, Ierapetritou M, Ramachandran R, Méndez R, 
Ortega-Zuñiga C et al. Near infrared spectroscopic calibration models for real time 
monitoring of powder density. Int J Pharm. 2016;512(1):61-74. 
doi:http://dx.doi.org/10.1016/j.ijpharm.2016.08.029. 

14. Olsen BA, Borer MW, Perry FM, Forbes RA. Screening for counterfeit drugs using 
near-infrared spectroscopy. Pharmaceutical technology. 2002;26(6):62-71.  

15. Sánchez MS, Bertran E, Sarabia LA, Ortiz MC, Blanco M, Coello J. Quality control 
decisions with near infrared data. Chemometrics and Intelligent Laboratory Systems. 
2000;53(1–2):69-80.  

16. Bu D, Wan B, McGeorge G. A discussion on the use of prediction uncertainty 
estimation of NIR data in partial least squares for quantitative pharmaceutical tablet 
assay methods. Chemometrics and Intelligent Laboratory Systems. 2013;120:84-91.  

17. McAuliffe MAP, O’Mahony GE, Blackshields CA, Collins JA, Egan DP, Kiernan L 
et al. The Use of PAT and Off-line Methods for Monitoring of Roller Compacted Ribbon 
and Granule Properties with a View to Continuous Processing. Organic Process 
Research & Development. 2015;19(1):158-66.  

18. Food and Drug Administration. PAT guidance for industry–a framework for 
innovative pharmaceutical development, manufacturing and quality assurance. US 
Department of Health and Human Services. Food and Drug Administration, Center for 
drug evaluation and research, Center for veterinary medicine, Office of regulatory 
affairs, Rockville, MD. 2004.  

19. Corredor CC, Lozano R, Bu X, McCann R, Dougherty J, Stevens T et al. Analytical 
method quality by design for an on-line near-infrared method to monitor blend potency 
and uniformity. Journal of Pharmaceutical Innovation. 2015;10(1):47-55.  

20. Blanco M, Bautista M, Alcala M. Preparing calibration sets for use in 
pharmaceutical analysis by NIR spectroscopy. Journal of pharmaceutical sciences. 
2008;97(3):1236-45.  

21. Meza CP, Santos MA, Romanach RJ. Quantitation of drug content in a low dosage 
formulation by transmission near infrared spectroscopy. AAPS PharmSciTech. 
2006;7(1):E29.  

22. Blanco M, Cruz J, Bautista M. Development of a univariate calibration model for 
pharmaceutical analysis based on NIR spectra. Analytical and bioanalytical chemistry. 
2008;392(7-8):1367-72.  

http://dx.doi.org/10.1016/j.ijpharm.2016.08.029


18 

 

23. Laasonen M, Harmia-Pulkkinen T, Simard C, Räsänen M, Vuorela H. 
Development and Validation of a Near-Infrared Method for the Quantitation of Caffeine 
in Intact Single Tablets. Analytical Chemistry. 2003;75(4):754-60.  

24. Blanco M, Alcalá M. Content uniformity and tablet hardness testing of intact 
pharmaceutical tablets by near infrared spectroscopy. Analytica Chimica Acta. 
2006;557(1-2):353-9.  

25. Blanco M, Peguero A. Influence of physical factors on the accuracy of calibration 
models for NIR spectroscopy. Journal of pharmaceutical and biomedical analysis. 
2010;52(1):59-65.  

26. Isaksson T, Næs T. Selection of Samples for Calibration in Near-Infrared 
Spectroscopy. Part II: Selection Based on Spectral Measurements. Applied 
spectroscopy. 1990;44(7):1152-8.  

27. Iyer M, Morris H, Drennen III J. Solid dosage form analysis by near infrared 
spectroscopy: comparison of reflectance and transmittance measurements including 
the determination of effective sample mass. Journal of Near Infrared Spectroscopy. 
2002;10(4):233-45.  

28. Blanco M, Cruz J, Bautista M. Development of a univariate calibration model for 
pharmaceutical analysis based on NIR spectra. Analytical and bioanalytical chemistry. 
2008;392(7-8):1367-72.  

29. Blanco M, Alcalá M. Content uniformity and tablet hardness testing of intact 
pharmaceutical tablets by near infrared spectroscopy: a contribution to process 
analytical technologies. Analytica Chimica Acta. 2006;557(1):353-9.  

30. Bakeev KA. Process analytical technology: spectroscopic tools and 
implementation strategies for the chemical and pharmaceutical industries. John Wiley 
& Sons; 2010. 

31. Burns DA, Ciurczak EW. Handbook of Near-Infrared Analysis, Second Edition. 
Taylor & Francis; 2001. 

32. Griffiths PR, De Haseth JA. Fourier transform infrared spectrometry. John Wiley 
& Sons; 2007. 

33. Blanco M, Coello J, Iturriaga H, Maspoch S, De La Pezuela C. Effect of data 
preprocessing methods in near-infrared diffuse reflectance spectroscopy for the 
determination of the active compound in a pharmaceutical preparation. Applied 
spectroscopy. 1997;51(2):240-6.  

34. Berntsson O, Danielsson L-G, Johansson M, Folestad S. Quantitative 
determination of content in binary powder mixtures using diffuse reflectance near 
infrared spectrometry and multivariate analysis. Analytica chimica acta. 
2000;419(1):45-54.  



19 

 

35. Dahm DJ, Dahm KD. The physics of near-infrared scattering. Near-Infrared 
Technology in the Agricultural and Food Industries. 2001;2.  

36. Naes T, Isaksson T, Fearn T, Davies T. A user friendly guide to multivariate 
calibration and classification. NIR publications; 2002. 

37. Sanchez-Paternina A, Roman-Ospino AD, Martinez M, Mercado J, Alonso C, 
Romanach RJ. Near infrared spectroscopic transmittance measurements for 
pharmaceutical powder mixtures. Journal of pharmaceutical and biomedical analysis. 
2016;123:120-7.  

38. Romañach R, Román-Ospino A, Alcalà M. A Procedure for Developing 
Quantitative Near Infrared (NIR) Methods for Pharmaceutical Products. In: 
Ierapetritou MG, Ramachandran R, editors. Process Simulation and Data Modeling in 
Solid Oral Drug Development and Manufacture. Methods in Pharmacology and 
Toxicology: Springer New York; 2016. p. 133-58. 

39. Romañach R. Near infrared spectroscopy: from feasibility to implementation in the 
pharmaceutical industry. NIR news. 2016;27(1):33-8.  

40. Colón YM, Florian MA, Acevedo D, Méndez R, Romañach RJ. Near infrared 
method development for a continuous manufacturing blending process. Journal of 
Pharmaceutical Innovation. 2014;9(4):291-301.  

41. Singh R, Velazquez C, Sahay A, Karry KM, Muzzio FJ, Ierapetritou MG et al. 
Advanced Control of Continuous Pharmaceutical Tablet Manufacturing Processes. In: 
Ierapetritou MG, Ramachandran R, editors. Process Simulation and Data Modeling in 
Solid Oral Drug Development and Manufacture. Methods in Pharmacology and 
Toxicology, 2016. p. 191-224. 

42. Shi Z, McGhehey KC, Leavesley IM, Manley LF. On-line monitoring of blend 
uniformity in continuous drug product manufacturing process—The impact of powder 
flow rate and the choice of spectrometer: Dispersive vs. FT. Journal of pharmaceutical 
and biomedical analysis. 2016;118:259-66.  

43. Shaibu A, Yang Y, Cho BR, Choi Y, Shin S, editors. Process analytical technology 
(PAT) initiatives in improving pharmaceutical quality by design. IIE Annual 
Conference. Proceedings; 2008: Institute of Industrial Engineers-Publisher. 

44. Allison G, Cain YT, Cooney C, Garcia T, Bizjak TG, Holte O et al. Regulatory and 
Quality Considerations for Continuous Manufacturing. Journal of pharmaceutical 
sciences. 2015;104(3):803-12.  

45. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. 
Economic Analysis of Integrated Continuous and Batch Pharmaceutical 
Manufacturing: A Case Study. Industrial & Engineering Chemistry Research. 
2011;50(17):10083-92.  



20 

 

46. Mollan Jr MJ, Lodaya M. Continuous processing in pharmaceutical manufacturing. 
American Pharmaceutical Review. 2004.  

47. McKenzie P, Kiang S, Tom J, Rubin AE, Futran M. Can pharmaceutical process 
development become high tech? AIChE Journal. 2006;52(12):3990-4.  

48. Vanarase AU, Alcalà M, Rozo JIJ, Muzzio FJ, Romañach RJ. Real-time monitoring 
of drug concentration in a continuous powder mixing process using NIR spectroscopy. 
Chemical Engineering Science. 2010;65(21):5728-33.  

49. Sulub Y, Wabuyele B, Gargiulo P, Pazdan J, Cheney J, Berry J et al. Real-time 
on-line blend uniformity monitoring using near-infrared reflectance spectrometry: a 
noninvasive off-line calibration approach. Journal of pharmaceutical and biomedical 
analysis. 2009;49(1):48-54.  

50. Koller DM, Posch A, Hörl G, Voura C, Radl S, Urbanetz N et al. Continuous 
quantitative monitoring of powder mixing dynamics by near-infrared spectroscopy. 
Powder technology. 2011;205(1):87-96.  

51. Pierna JAF, Chauchard F, Preys S, Roger JM, Galtier O, Baeten V et al. How to 
build a robust model against perturbation factors with only a few reference values: A 
chemometric challenge at ‘Chimiométrie 2007’. Chemometrics and Intelligent 
Laboratory Systems. 2011;106(2):152-9.  

52. Blanco M, Coello J, Iturriaga H, Maspoch S, Pou N. Influence of the procedure 
used to prepare the calibration sample set on the performance of near infrared 
spectroscopy in quantitative pharmaceutical analyses. Analyst. 2001;126(7):1129-34.  

  



21 

 

Chapter 3 

3 Evaluation of Analytical and Sampling Errors in the 
Prediction of the Active Pharmaceutical Ingredient 
Concentration in Blends and Tablets from a Continuous 
Manufacturing Process 

Published online in the Journal of Pharmaceutical Innovation, 2017, 12 (2), 155–167. 

Jenny M. Vargas, Andrés D. Román-Ospino, Eric Sánchez, Rodolfo J. Romañach 

  



22 

 

3.1 Introduction 

Current pharmaceutical procedures involve the preparation of tablets using a batch 

process. The quality of tablets is evaluated off-line after batch completion. Tablets are 

prepared using heterogeneous blend mixtures. However, the blend is not monitored or 

tested throughout the traditional batch manufacturing process. The use of continuous 

manufacturing (CM) together with process analytical technology (PAT) techniques such 

as near infrared spectroscopy (NIRS) allows the monitoring of blend mixtures before 

tablet compression. 

The FDA recently approved, the conversion of a commercial drug batch process into 

a continuous manufacturing process with integrated real-time release testing (RTRt) 

using near infrared (NIR) spectroscopy [1-5]. NIR spectroscopy is one of the most 

commonly used techniques in the pharmaceutical industry because it is fast, non-

invasive, non-destructive and offers chemical and physical information of materials [6-

13]. The use of NIR in continuous manufacturing allows the in-line analysis and 

monitoring of blends during the process.  

Continuous manufacturing can be designed to improve the quality of the product and 

decrease manufacturing costs [14-17]. Implementation of continuous manufacturing 

increases the efficiency of the manufacturing process by eliminating the relocation of 

material and reduces the manufacturing space needed by using less and smaller 

equipment. Therefore, the implementation of continuous manufacturing integrated with 

PAT techniques in pharmaceutical industries is expected to provide high quality products 

at lower manufacturing costs [18].  

This chapter presents the use of chemometric modelling and variographic analysis to 

evaluate the analytical and sampling error of the predicted API concentration of blends 

produced during a pharmaceutical continuous manufacturing (CM) process.  

Previous investigations have shown the development of NIR calibration to predict drug 

concentration in batch processes [8, 9, 19-28]. However, these studies have not 

evaluated the analytical and sampling errors of blends obtained from a CM process using 
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variographic analysis. This study includes the use of an NIR calibration model to predict 

the API concentration of CM blends and tablets and the evaluation of analytical and 

sampling errors using variographic analysis. A continuous mixing system including a 

sensing interface coupled with three NIR spectrometers was used to monitor the blending 

process after achieving steady state [29, 30]. Blends were evaluated with the use of 

variographic analysis to determine the optimal sampling frequency and evaluate sampling 

error [31]. 

  



24 

 

3.2 Materials and Methods 

3.2.1. Materials 

Prosolv® (JRS Pharma) silicified micro cellulose (SMCC) (filler) was chosen as the 

main excipient (approximately 48% w/w). Crospovidone NF/PH EUR (disintegrant), 

Screen Colloidal silicon dioxide (glidant), and Magnesium Stearate NF/EP (lubricant) 

were included as minor excipients along with a cohesive API. 

3.2.2. Preparation of the Calibration Set 

The calibration set was prepared in a lab-scale equipment by mixing placebo 

(composed of Prosolv®, crospovidone, and colloidal), API, and magnesium stearate in 

fixed quantities. A total of five placebos were prepared. The weights used to prepare the 

placebos were obtained by performing a full factorial D-Optimal Design of Experiment 

(DoE). Prosolv®, crospovidone, and colloidal were the only excipients included in the 

DoE. The target level for these excipients in the DoE was from 70% to 130% of their target 

concentrations, except for the colloidal silicon dioxide (set to zero in two of the placebos). 

Raw materials were individually weighed and placed in appropriate bottles. After, each 

placebo was placed in individual small plastic bags and transferred to 2.2 L polyethylene 

bottles; they were mixed inside a 16-qt PK Shell V-blender. Each placebo was individually 

mixed for 50 revolutions and aliquots were weighed to prepare the 33 calibration blends. 

The calibration blends were prepared in a concentration range spanning from 70% to 

130% of the target API concentration. All 33 calibration blends were individually prepared 

by placing fixed quantities of the placebo (chosen randomly using 

https://www.random.org/), API and magnesium stearate in a plastic zippered bag and 

manually mixing for two minutes.  
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3.2.3. Preparation of the Validation Sets 

Three validation sets were prepared and are described in Table 3.1. These validation 

sets included lab-scale, pilot plant, and CM prepared blends since each process entails 

distinctive characteristics of sample preparation (mixing, shear force, powder density, 

etc.). The validation sets prepared in lab-scale and pilot plant equipment were used to 

provide the preliminary evaluation of the calibration model while the CM plant was being 

built.  

Table 3.1 Description of the validation sets concentrations, number of blends and 
samples, and spectral acquisition mode 

Sample 
Preparation 

Mode 

Blends 
Prepared 

Concentration (% 
API target 

concentration) 

Spectral 
Acquisition 

Mode 

Number of 
Samples (n) 

lab-scale 1 80 Static 10 

pilot plant 1 100 Static 10 

*CM 2 100 Dynamic 1800 

*For the CM validation set, two runs were performed in which blend spectra were 
acquired. A total of 1800 spectra per run were acquired. 

The validation set prepared in lab-scale was 80% of the API target concentration. 

Prosolv®, crospovidone, colloidal, magnesium stearate, and the API were weighed, 

placed in 2.2 L polyethylene bottles inside a 16-qt PK Shell V-blender and mixed for 50 

revolutions. After mixing, each blend was stored in a sample container inside an 

Aluminum “Vapor-loc” bag. 

The validation set prepared in the pilot plant had an API target concentration of 100%. 

Prosolv®, crospovidone, magnesium stearate, and the API were weighed and placed 

inside a Bohle 40L Mobile laboratory-scale blender for mixing. The blender was set at 20 

rpm and materials were mixed for four minutes. Each blend was then stored in a sample 

container inside an Aluminum “Vapor-loc” bag.  

Two blends were prepared during two CM process runs (CM-1 and CM-2) at specific 

target concentrations. Prosolv®, Crospovidone, and the API were transferred 

pneumatically from their original containers through a sieve into a vacuum receiver which 
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transferred the materials to maintain the proper level of powder in the volumetric feeder 

(100% for the API and to a constant throughput for the filler). Magnesium stearate was 

filled manually into the feeder (e.g. 5kg of lubricant every 16 hrs.).  

3.2.4. Continuous Manufacturing Setup 

The continuous manufacturing setup used for the preparation of the validation set is 

shown in Figure 3.1. The setup included four K-Tron (KT-20) Gravimetric Feeders 

marked F1, F2, F3, and F4. Feeders were calibrated and were qualified with three studies: 

the installation qualification (IQ), the operational qualification (OQ), and the performance 

qualification (PQ). The mass flow (feed rate) of the four feeders was monitored and 

controlled by the line control system during all CM runs. Mass flow values of the feeders 

were compared against established limits defined based on the product attributes (i.e. to 

maintain a blend API concentration between 90.0% and 110.0% of the API target 

concentration). Alarms are activated if any feeder is dispensing materials below or above 

the established limits and the CM line acts on whether to accept or reject the blend. 

A Quadro Comil (In-line Quadro Comil U10) was used for de-lumping and a Glatt GCG 

70 continuous blender was used for the blending of materials. Figure 3.1 shows the 

continuous manufacturing setup including the three locations designed for the coupling 

of the three NIR spectrometers. The powder blend in the sensing interface is maintained 

at a specific level by the rotary valve which speed is moderated by a laser level sensor. 



27 

 

 

Figure 3.1 Diagram for the continuous manufacturing setup including the in-line NIR 
spectrometers location in the sensing interface. 

3.2.5. Preparation of Tablets 

Tablets were obtained from the two same continuous manufacturing runs used to 

prepare the blends validation set indicated above (Tab-CM-1 and Tab-CM-2). The tablets 

were prepared at an API target concentration of 100% following the CM process 

described above. After the blend reaching the sensing interface, it was directed to a 

Korsch XM-12 tablet press where the tablets were produced.  
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3.2.6. NIR Spectra Acquisition 

All blend spectra acquisition was performed using three Bruker (Billerica, MA) FT-NIR 

spectrometers (M1, M2, and M3), controlled by the OVP (OPUS Validation Program) 

software Version 4.2. These Matrix-F spectrometers are used for process control and 

have a sensor head attached that allows the analysis of solids and powders in the spectral 

range of 12,000 - 4,000 cm-1. The diffuse reflectance sensor head consists of two 

tungsten NIR light sources illuminating a 10-mm measurement area. All NIR spectra were 

obtained with a 16 cm-1 resolution and a total of 16 averaged scans (total scan time of 

1.47 seconds). All three NIR spectrometers were calibrated and qualified. 

Spectra acquisition for the calibration set and the validation sets prepared in lab-scale 

and pilot plant facilities was performed statically, at-line, as shown in Figure 3.2. Spectra 

were acquired after mixing was completed. Each blend sample was placed into a 

weighing tray (Fisher Scientific Company LLC, 1.62L x 1.62W x 0.31 in.) and five spectra 

were acquired in five different positions as indicated in Figure 3.2. The blend was then 

poured into a polyethylene bottle and then back again to the same weighing tray. Five 

more spectra were acquired in five different positions, for a total of ten spectra. A minimum 

of approximately 3.9 g of blend were deposited in the sample trays, each time. The 

calibration model was developed using 33 spectra (each spectrum was an average of the 

ten spectra acquired).  
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Figure 3.2 Representation of the static spectra acquisition setup for the calibration and 
validation sets prepared in lab-scale and pilot plant equipment. 

Spectra of the validation set prepared using the continuous manufacturing line were 

acquired in-line, during two CM process runs. Figure 3.3 shows the sensing interface 

setup where the three FT-NIR spectrometers were coupled for in-line spectra acquisition. 

The blended material passed from the blender (a) through a triangular sensing interface 

where spectra were collected by the three Bruker FT-NIR spectrometers (b-1, b-2, and b-

3). A total of 1800 spectra were acquired per spectrometer for each of the two runs. 
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Figure 3.3 Sensing interface spectra acquisition setup: (a) shows where the material 
exits the blender and (b) shows the three spectrometers positions for spectra acquisition 

of the material flowing through the sensing interface 

Sample mass was estimated for the NIR spectra acquired using the continuous 

manufacturing line as per equation (1) [32].  

𝑴 =  𝝆 [𝝅 (
𝒅

𝟐
)

𝟐
+ 𝒅 (𝒕𝒂𝒄𝒒 ∗  𝑽𝒑𝒐𝒘)]  𝑯   (1) 
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Where ρ is the bulk density of the blend (0.53 g/cm3), d is the NIR beam diameter, tacq 

is the time needed to acquire one NIR spectrum (16 scan average), Vpow is the linear 

velocity of the powder in the CM line, and H is the NIR beam depth of penetration. Sample 

mass was estimated to be approximately 37 mg per NIR spectrum (16 scan average). 

This estimated blend sample mass is considerably lower than the tablet mass (over 1000 

mg).  

Spectra of tablets prepared using the continuous manufacturing line were also 

collected. One Bruker Multi-Purpose Analyzer (MPA) NIR spectrometer was used to 

acquire the spectra of tablets. The system included an indium gallium arsenide (InGaAs) 

detector in the spectral range of 12500 - 5800 cm-1. NIR spectra of tablets were collected 

using transmittance measurements at a resolution of 64 cm-1 with a total of 32 averaged 

scans (total scan time of 5.8 seconds). 

3.2.7. NIR Calibration Model Development and Data Analysis 

A Partial Least Squares (PLS) NIR calibration model was developed using Simca 

P+12 (Umetrics, NJ, USA). Different spectral regions and pretreatments (such as 

Standard Normal Variate, first derivative, second derivative, and combinations of SNV 

with the derivatives) were evaluated [33, 34].  

The NIR calibration model was assessed in terms of precision (using the standard 

deviation) and predictive performance (using the root mean standard error). The 

predictive performance was evaluated for the cross validation (RMSECV - Eq. 2) [21, 35, 

36]) and prediction sets (RMSEP - Eq. 3). 

𝑹𝑴𝑺𝑬𝑪𝑽 =  √∑ (𝒚̂𝑪𝑽,𝒊− 𝒚𝒊)
𝟐𝑵

𝒊=𝟏

𝑵
    (2) 

 

𝑹𝑴𝑺𝑬𝑷 =  √∑ (𝒚̂𝒊− 𝒚𝒊)𝟐
𝑵𝒑
𝒊=𝟏

𝑵
     (3) 
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Where ŷCV,i is the estimate for yi based on the calibration equation with sample i 

deleted, ŷ and yi are the predicted and measured reference values for the test samples, 

and N is the number of samples. 

Variograms were calculated using a code written in MATLAB 2013b (Eq. 4) (The 

MathWorks, Natick, MA). The sill, nugget effect (MPE), and corrected sill were calculated 

and verified against the variogram calculations in the recently approved DS-3077 [37]. 

𝑽(𝒋) =  
𝟏

𝟐(𝑸𝒕𝒐𝒕𝒂𝒍−𝒋)
∑ (𝒉𝒒+𝒋 − 𝒉𝒒)𝟐𝑸𝒕𝒐𝒕𝒂𝒍−𝒋

𝒒=𝟏    (4) 

Where V(j) is the function of the distance between extracted increments (the lag which 

is defined as the inverse of the sampling frequency), Qtotal is the total number of analytical 

results, j is the lag and h is the heterogeneity contribution of the analyte measured in each 

increment. 
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3.3 Results and Discussion 

3.3.1. Development of the NIR Calibration Model 

The spectral region used for the development of the NIR calibration model was chosen 

based on the comparison of the API and placebo spectra (Figure 3.4). Spectral 

differences were observed between the two spectra. Principal component analysis (PCA) 

was performed to evaluate the variation of the calibration set. Figure 3.5 shows the PCA 

score plot for the 8956-6046 cm-1 spectral region. Standard normal variate (SNV) followed 

by first derivative (25-point window) were applied as pretreatments. Clusters are observed 

for the lowest, target, and highest API concentrations. The 1st principal component (PC1) 

explains 81.2% of the variation in the chosen spectral region after pretreatment. Figure 

3.6 shows the pretreated spectra for the calibration set at low, middle, and high 

concentration levels (70%, 100%, 130% of API target concentration) in the selected 

spectral range (8956-6046 cm-1). 
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Figure 3.4 Pretreated NIR spectra of placebo and API. The selected area corresponds 
to the two spectral ranges evaluated: 8956 – 6046 cm-1 (dotted box) and 9044 – 8231 

cm-1 (short lines box). 
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Figure 3.5 PCA scores plot of the target (100%), lowest (70%), and highest (130%) API target concentration levels for the 
calibration set. [Spectral pre-treatment: SNV+1st derivative (25 moving window); spectral range: 8956 cm-1 – 6046 cm-1. PC1 

explains 81.2% of the variation of the samples while PC2 explains 15.9%. 
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Figure 3.6 NIR spectra of calibration set developed in the spectral range 8956 – 6046 cm-1 using as pre-treatments SNV+1st 
derivative (25-point window) 
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The NIR calibration model was developed using 99 spectra (three NIR spectrometer 

– one averaged spectrum per spectrometer (n=10) – 33 concentration levels – three 

spectra per concentration level). Initial evaluation of the NIR model was performed using 

RMSECV (eq. 2) and the R2X values per PLS factor. Table 3.2 shows the leave-one-out 

“cross validation” (CV) results, spectral ranges, PLS factors, and pretreatments evaluated 

that provided the best preliminary calibration models. 
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Table 3.2 Evaluation parameters for the preliminary NIR calibration models. All values are reported in terms of percent of 
API target concentration 

NIR Calibration 
Model no. 

Spectral 
Range (cm-1) 

Pretreatment 
PLS 

Factors 
R2X (%) 

RMSECV 
(%) 

1 

8956 - 6046 

1st derivative (15 pts.) 
1 70.0 2.91 

2 23.8 2.07 

2 1st derivative (25 pts.) 
1 76.8 2.81 

2 18.5 2.13 

3 SNV+1st derivative (15 pts.) 
1 77.6 5.76 

2 18.5 2.87 

4 SNV+1st derivative (25 pts.) 
1 81.2 5.32 

2 15.9 2.93 

5 

9044 - 8231 

1st derivative (15 pts.) 
1 72.5 2.67 

2 0.90 2.12 

6 1st derivative (25 pts.) 
1 82.4 2.55 

2 0.65 2.06 

7 SNV+1st derivative (15 pts.) 
1 75.6 4.91 

2 0.75 2.99 

8 SNV+1st derivative (25 pts.) 
1 85.7 4.70 

2 0.43 2.85 

NIR near infrared, RMSECV root mean standard error of cross validation, SNV standard normal variate, R2X fraction of 
the x-variation modeled in the component 
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The spectral ranges analyzed (8956 – 6046 cm-1 and 9044 – 8231 cm-1) avoid the 

inclusion of lower wavelengths with: high background noise associated with the use of a 

fiber optical probe [19], and less penetration of the radiation in the sample [13, 38, 39]. 

Higher frequencies are associated with more penetration of the radiation in the sample 

and thus, larger sampling mass. Both spectral ranges analyzed exclude the O-H 

combination band expected around 5200 cm-1 since the formulation includes a highly 

hygroscopic excipient. Both spectral ranges contain distinct API absorption bands (Refer 

to Figure 3.4). The preliminary NIR calibration models in the spectral range 8956 – 6046 

cm-1 yield the highest R2X (cum) (>90%). R2X (cum) results for the spectral range 9044 – 

8231 cm-1 are above 70%, also showing a very good cumulative fraction of the X-variation 

modeled in the component. All RMSECV values for both spectral ranges using two PLS 

factors are within the same range (NMT 3% API target concentration). The final selection 

of spectral range and pre-treatment for the NIR calibration model was also based on the 

results of the repeatability study. Table 3.3 shows that repeatability varies according to 

the calibration model chosen (0.13 - 2.19% API target concentration). The selected 

calibration model no. 4 showed a repeatability of 0.14% with two PLS factors. These 

results are consistent with previous efforts that show that NIR methods are able to provide 

a repeatability in the range of 0.1 – 0.2% [32, 40].  

The repeatability study indicates the short-term precision. It provides an estimate of 

minimum variation that may be expected from the NIR method, and thus the minimum 

variation expected of the continuous mixing process in this study. The NIR method 

monitors the performance of the entire continuous mixing process after steady state is 

achieved. Thus, the variation from the NIR method should be minimal and its thorough 

evaluation is essential to CM processes. The standard deviation from the NIR method 

should be minimal and the thorough evaluation of precision is essential for the monitoring 

of a continuous manufacturing process. Repeatability was calculated by obtaining six 

consecutive spectra without moving the sample. 
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Table 3.3 Repeatability assessment for the preliminary NIR calibration models. All values 
are reported in terms of percent of API target concentration 

NIR Calibration Model no. Spectral Range (cm-1) SD (%) (n=6) 

1 

8956 - 6046 

0.24 

2 0.13 

3 0.24 

4 0.14 

5 

9044 - 8231 

1.86 

6 1.42 

7 2.19 

8 1.76 

3.3.2. Prediction of the Validation Set Prepared in Lab-Scale 

The NIR calibration model developed was first evaluated for performance, accuracy, 

and precision using a validation set prepared in lab-scale as described in Table 3.1. Table 

3.4 shows the results obtained for the NIR predictions of the validation set prepared in 

lab-scale equipment. The RMSEP results show the excellent predictions of drug 

concentration and excellent mixing, since the RMSEP encompasses both the accuracy 

and precision of the predictions [41]. 

RMSEP values were less than 0.83% of API target concentration. The low bias results 

(max. 0.57%) shows the excellent accuracy achieved by the NIR calibration model. The 

standard deviation varied from 0.41% to 0.82% of API target concentration. 

Table 3.4 NIR predictions of the validation set prepared in lab-scale. All values are 
reported in terms of percent of API target concentration 

NIR 
Spectrometer 

Average NIR Prediction 
(%) (n=10) 

Standard 
Deviation 

(%) 

RMSEP 
(%) 

Bias (%) 

M1 79.78 0.41 0.61 0.47 

M2 79.43 0.82 0.79 0.12 

M3 79.88 0.64 0.83 0.57 
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3.3.3. Prediction of Validation Set Prepared in Pilot Plant Equipment 

The NIR calibration model was also evaluated using a validation set prepared in a 

pilot plant, as described in Table 3.1. Table 3.5 shows the results obtained.  

Results showed the good predictive performance of the NIR calibration model for the 

validation set prepared in pilot plant. The highest RMSEP observed was 4.30% of API 

target concentration. Slightly higher predictions were expected since the preparation and 

spectra acquisition of the validation set prepared in pilot plant differed from the process 

used for the preparation and spectra acquisition of the calibration set.  

Table 3.5 NIR predictions of the validation set prepared in pilot plant equipment. All values 
are reported in terms of percent of API target concentration 

NIR 
Spectrometer 

Average NIR Prediction 
(%.) (n=10) 

Standard 
Deviation 

(%) 

RMSEP 
(%) 

Bias (%) 

M1 96.62 1.18 3.56 3.38 

M2 95.77 0.86 4.30 4.23 

M3 96.46 0.88 3.64 3.54 

3.3.4. Prediction of the Validation Set Prepared in a CM Process 

The validation of the NIR calibration model also included the prediction of blends 

prepared using a continuous manufacturing line. The previous validation sets involved 

tumble blending. However, a continuous manufacturing process mixer includes a motor 

driver impeller along the entire length [42]. The impeller and blades force inter-particle 

collisions and shearing that may affect NIR spectra [43]. Therefore, the NIR calibration 

model developed was validated using two validation sets prepared in a CM line, as 

described in Table 3.1. These two validation sets were named CM-1 and CM-2, for clarity 

purposes. Three NIR spectrometers were installed in the CM line as shown in Figure 3.3 

and used for the in-line spectra acquisition of blends. 

Figure 3.7 through Figure 3.9 show the PCA scores plot for the validation sets (CM-

1 and CM-2) prepared in a CM line using three NIR spectrometers (M1 – Figure 3.7, M2 

– Figure 3.8, and M3 – Figure 3.9). The scores plots show that most of the spectra 
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obtained during the CM process are within the 95% confidence interval of the calibration 

model. Therefore, the NIR calibration model developed with laboratory prepared 

calibration samples includes some spectral variation observed in the blend spectra 

acquired in the CM line and thus, is expected to provide adequate predictions. Table 3.6 

shows the prediction results for the validation set prepared in a CM line using three NIR 

spectrometers (M1, M2, and M3). The RMSEP values for spectrometers M1 and M2 (1.57 

– 3.69% of API target concentration) are generally two to four times the values reported 

for the validation set prepared in lab-scale equipment. However, RMSEP values for NIR 

spectrometer M3 ranged from 19.80 – 21.50% of target, showing extremely high 

prediction errors. M3 results were precise (SD NMT 1.63%) but not accurate (bias ≥ 

19.74). 

Table 3.6 NIR predictions of the validation set prepared in a CM process. All values are 
reported in terms of percent of target concentration 

Sample Name 
NIR 

Spectrometer 

Average NIR 
Prediction 

(% )* 

Standard 
Deviation 

(%) 

RMSEP 
(%) 

Bias 
(%) 

CM-1 

M1 101.67 0.97 1.93 1.67 

M2 103.60 0.84 3.69 3.60 

M3 119.74 1.63 19.80 19.74 

CM-2 

M1 101.19 1.02 1.57 1.19 

M2 103.16 0.85 3.27 3.16 

M3 121.44 1.58 21.50 21.44 

*A total of 1800 predictions were used to obtain the average NIR predictions. Each spectrum 
analyzed a sample mass of approximately 37 mg. 
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Figure 3.7 PCA scores plot of the validation set prepared in a CM process spectra obtained with NIR spectrometer M1 
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Figure 3.8 PCA scores plot of the validation set prepared in a CM process spectra obtained with NIR spectrometer M2 
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Figure 3.9 PCA scores plot of the validation set prepared in a CM process spectra obtained with NIR spectrometer M3 
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Considerable differences were observed between the results for M3 compared to the 

other two spectrometers (M1 and M2). The differences in the results between NIR 

spectrometers M1 and M2 and NIR spectrometer M3 did not appear to be related to 

instrument performance as all three instruments were calibrated and passed the 

qualifications performed (IQ, OQ, PQ, and OVP PQ). NIR spectrometer M3 was located 

in the sensing interface (Figure 3.3) just below the blender outlet which causes the blend 

to exert greater pressure on the material in front of this NIR spectrometer. The effect of 

probe location was evaluated through an experiment where the position of the three 

analyzers was changed to acquire blend spectra.  

A CM run was performed at 90% API target concentration for the probe location study. 

Spectra were acquired in-line using all three NIR spectrometers coupled in the sensing 

interface. A rotation of the NIR probes was performed so that all NIR spectrometers 

acquired spectra in each of the three sensing interface positions (Figure 3.3). Table 3.7 

shows the results obtained for this evaluation, where most of the error is associated with 

the bias. Higher results were observed for all three NIR spectrometers in position b-2. 

Position b-2 in the sensing interface is right below the blender outlet and is where NIR 

spectrometer M3 is installed to acquire process spectra. NIR spectrometer M3 predictions 

yield the highest average NIR prediction, bias and standard deviation, regardless of the 

sensing interface position. NIR spectrometers M1 and M2 have similar results in all three 

sensing interface positions. These results indicate that sensing interface position b-2 

affects the NIR predictions and that the results observed for NIR spectrometer M3 are 

because of internal instrument differences between M3 the other two instruments (M1 

and M2). Therefore, NIR spectrometer M3 was not included in the variographic analysis. 

After completing the investigation, NIR spectrometer M3 was sent to the vendor for 

further analysis. The spectrometer laser was replaced and after, the performance of the 

instrument improved. 
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Table 3.7 NIR predictions of NIR spectrometers in all three sensing interface positions. 
All values are reported in terms of percent of target concentration 

Sensing 
Interface 
Position 

NIR 
Spectrometer 

Average NIR 
Prediction (%) (n = 53) 

Standard 
Deviation 

(%) 

Bias 
(%) 

RMSEP 
(%) 

1 

M1 92.22 0.72 2.33 2.33 

M2 91.89 0.57 1.89 1.97 

M3 96.47 1.02 6.47 6.55 

2 

M1 99.56 0.69 9.56 9.59 

M2 98.41 0.71 8.41 8.43 

M3 105.36 1.07 15.36 15.40 

3 

M1 93.89 0.90 3.89 3.99 

M2 93.91 0.74 3.91 3.97 

M3 97.55 1.34 7.55 7.67 

3.3.5. Evaluation of Total Sampling and Analytical Errors 

Sampling and analytical errors were evaluated by performing a variographic analysis 

for two CM runs (CM-1 and CM-2). Variograms were calculated using the NIR predictions 

obtained achieving after steady state of the blend throughput in the CM line. Variographic 

analysis contributes to process understanding by elucidating the sources of errors. 

The variogram plots the values of the variogram function V(j) as a function of the lag, 

or distance between concentration values which are reported in terms of percent of target 

concentration. A lag of one corresponds to the unit distance (time or distance) between 

two consecutive analytical results, while a lag of two characterizes the doubled inter-

distance between measurements. A lag of 50 compares the first predicted concentration 

value to the fifty-first, and second to the fifty-second, until all concentration values that 

are fifty units apart are compared. Low V(j) values indicate that the concentration values 

are very similar; a low blend heterogeneity and the achievement of a good mixing. Larger 

V(j) values are often found with large lag values. At least 30 increments (composite 

samples) are necessary for a variogram. A higher number of increments was possible for 

this evaluation since sampling was performed using the NIR spectrometers in a sensing 

interface acquiring dynamic in-line spectra during a CM process. 

The MPE (minimum practical error), the sill, and the corrected sill can be calculated 

from the variogram. MPE is an estimate of the total sampling error and the total analytical 
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error [44]. It is calculated by extrapolating V(j) to intercept the Y-axis, to estimate “lag 0” 

[45]. The sill gives information about the maximum heterogeneity between samples (total 

process variation) including sampling and analytical errors. The corrected sill represents 

the true process variation, or residual variance in the blend after subtracting the nugget 

effect (MPE) from the sill [44]. Therefore, the lower the corrected sill, the closer to reach 

the final state of blending.  

Variographic analysis was performed for the individual and moving block (MB) 

predictions for the CM-1 and CM-2 runs (Figure 3.10 through Figure 3.13). The moving 

block was performed by averaging every three NIR predictions (n=3), considering that the 

estimated sample mass analyzed by the FT-NIR spectrometers (~ 37 mg per NIR 

spectrum) was lower than the tablet mass (> 1000 mg). The estimated sample mass 

analyzed was about 111 mg for the moving block (three averaged NIR spectra). Table 

3.8 shows the sill, MPE and corrected sill values for the CM runs, for the individual and 

the MB predictions. 

Table 3.8 Variographic analysis of the CM runs (individual and MB predictions) 

Individual predictions CM-1 M1 CM-2 M1 CM-1 M2 CM-2 M2 

Sill 0.93 1.03 0.66 0.71 

MPE 0.72 0.92 0.52 0.60 

Corrected sill 0.21 0.10 0.14 0.11 

Standard deviation 
(% label) 

0.97 1.02 0.84 0.85 

Individual predictions CM-1 M1 CM-2 M1 CM-1 M2 CM-2 M2 

Sill 0.43 0.39 0.30 0.29 

MPE 0.06 0.08 0.05 0.06 

Corrected sill 0.36 0.31 0.25 0.23 

Standard deviation 
(% label) 

0.66 0.63 0.59 0.55 

The sill, nugget effect (MPE), and corrected sill were calculated for the variograms 

prepared using the individual and the MB predictions. Sill results for the variogram using 

the individual predictions ranged from 0.7 to 1.0 and for the MB were no more than 0.4, 

showing an improvement of the low residual variation of the blending process with the 

MB performed. The MPE was also greatly reduced with the MB (MB predictions 0.1; 
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individual predictions NMT 0.4). This improvement was expected as there is a larger 

composite sample from the three averaged spectra (MB). The range is short at around 

three lags. The fact that sill values are so close to the MPE values shows that the process 

can only be improved if the MPE is reduced. 

Another evaluation of the results was done by calculating the “corrected sill”, directly 

related to the residual heterogeneity of the blend [44, 46]. This calculation was performed 

by subtracting the MPE from the sill for both the individual and the MB predictions (Table 

3.8). Results showed a low and flat sill demonstrating that the variograms are showing a 

blend in the final state of mixing [44, 46]. 
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Figure 3.10 Variograms for the validation set prepared in a CM process using NIR 
spectrometer M1. Plots include variograms for the individual NIR predictions for two CM 

runs. 
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Figure 3.11 Variograms for the validation set prepared in a CM process using NIR 
spectrometer M1. Plots include variograms for the moving block NIR predictions for two 

CM runs. 
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Figure 3.12 Variograms for the validation set prepared in a CM process using NIR 
spectrometer M2. Plots include variograms for the individual NIR predictions for two CM 

runs. 
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Figure 3.13 Variograms for the validation set prepared in a CM process using NIR 
spectrometer M2. Plots include variograms for the moving block NIR predictions for two 

CM runs. 
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Variograms were also calculated for tablets using the API concentrations predicted by 

the transmittance NIR calibration model. Figure 3.14 shows the variograms obtained for 

the Tablet CM-1 and Tablet CM-2 runs. Table 3.9 shows the tabulated analysis for the 

predictions of drug concentration in tablets, indicating relatively low heterogeneity in the 

tablets analyzed. A total of 60 tablets per CM run were evaluated. 

Table 3.9 Variographic analysis of tablets produced from CM run 

Individual predictions CM-1 M1 CM-2 M1 

Sill 0.16 0.17 

MPE 0.17 0.14 

Corrected sill 0.01 0.03 

Standard deviation (% label) 0.41 0.41 

 

Figure 3.14 (a) Variographic analysis of tablets obtained from the validation set 
prepared in a CM process (Tab-CM-1, Bruker FT-NIR spectrometer MPA1). The Nugget 
effect (MPE) is observed at V(j) = 0.2; (b) Variographic analysis of tablets obtained from 

the validation set prepared in a CM process (Tab-CM-2, Bruker FT-NIR spectrometer 
MPA1). The Nugget effect (MPE) is observed at V(j) = 0.1. Range = 0 for Tab-CM-1 and 

Tab-CM-2. 
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Variographic analysis of tablet results show the same value for the sill and MPE for 

the CM-1 run while there is a difference of 0.1 for the CM-2 run. The range is not observed 

for the variographic analysis of tablet drug concentration showing a process that cannot 

be improved. Lower sampling errors were obtained for tablets when compared to the 

blends individual prediction MPE results. The lower MPE was expected, since tablets 

were analyzed by NIR transmittance where a larger sample mass (composite sample) is 

analyzed. The sampling error for the MB predictions was found to be just as low as the 

sampling error obtained for tablets which might be directly related to analyzing a larger 

blend sample mass. Therefore, the use of the MB is recommended when analyzing blend 

results since sampling error is greatly reduced. These tablet results confirm the 

observations in the blends variograms which leads to conclude that the CM process 

evaluated is in control and blend spectra are being acquired when the blend is well mixed 

(final state of mixing). 
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3.4 Conclusion 

Variographic analysis was successfully used to estimate the analytical and sampling 

errors in the NIR prediction of the API concentration of blends for a CM process. Different 

validation sets were used to evaluate the developed NIR model. These validation sets 

were prepared in different settings: laboratory scale, pilot plant scale, and in a CM facility. 

A high level of accuracy and precision was achieved. This study demonstrated that the 

calibration set must be prepared including the variation of the process that will be 

evaluated once the NIR model is implemented.  

Variographic analysis was performed to blends and tablets obtained from two 

continuous manufacturing runs. Results showed that Sill and MPE values for the blends 

were similar indicative of a process that has little room for improvement. A low and flat sill 

were observed demonstrating low variation in the blends. This was confirmed with the 

V(j) and corrected sill values calculated. It was found that the sampling error for the 

variograms prepared using the moving block blend results was as low as the sampling 

error for tablets. Variographic analysis proved to be an excellent technique to evaluate 

the sampling error of blends produced in a continuous manufacturing process. 
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4.1 Introduction 

This study describes the integration of process analytical technology (PAT) and 

continuous manufacturing (CM) within a cGMP regulated facility. Continuous 

manufacturing has been recognized as an innovation with significant potential to improve 

agility, flexibility, and robustness in the manufacture of pharmaceuticals [1]. CM together 

with PAT systems are used to analyze and control the manufacturing process to ensure 

high quality of the final drug product. 

The implementation of CM reduces equipment space, material, waste, and release 

times thus improving the financial, environmental, and operational aspects [2-4]. The 

change from batch to continuous manufacturing eliminates the need to store and relocate 

intermediate products obtained during certain process steps avoiding segregation and 

degradation problems [1]. The change of a process from batch to continuous 

manufacturing was recently approved by the FDA and the PAT advances for this process 

are described in this study [5-9]. This study describes a significant advance by presenting 

a full continuous manufacturing run throughout 28 hours. 

  



64 

 

4.2 Materials and Methods 

4.2.1. Materials 

The formulation used for this study consisted of Prosolv® (JRS Pharma) silicified 

micro cellulose (SMCC), used as the major excipient; a cohesive API (> 50% LC 

concentration); crospovidone NF/PH EUR, and magnesium stearate NF/EP (lubricant). 

4.2.2. Preparation of the Calibration and Validation Sets in the CM 

System 

The calibration sample set (CSS) and validation sample sets (VSS) for the qualitative 

and the quantitative models were prepared using the CM process. Both sets of data were 

prepared on the same day and spectra were collected with the process in steady state. 

The CSS and VSS covered a concentration range spanning from 70% to 130% LC 

including five concentration levels (70%, 85%, 100%, 115%, and 130% LC). Two different 

API lot numbers were used during this CM run. Prosolv® and API concentrations were 

adjusted to achieve the desired concentration. Crospovidone and magnesium stearate 

were maintained at target concentration. A total of approximately 82 Kg were used to 

prepare the CSS and VSS. A second VSS (VSS2) was prepared at 95% and 105% LC. 

This VSS2 was used for the robustness evaluation. This validation set was prepared on 

a different day than the CSS and VSS using different API and excipient lot numbers. 

The CSS and VSS sets were prepared using the same CM process and line as the 

commercial manufacturing process to be monitored (Figure 4.1). The CM line includes 

five K-tron gravimetric feeders. However, feeder #4 was not used since it is only used for 

formulations with at least five components. Gravimetric feeders for the API, Prosolv®, 

and crospovidone were automatically refilled using volumetric feeders. Magnesium 

stearate was manually refilled since this gravimetric feeder does not include a volumetric 

feeder. The CM process consisted of a pneumatic transfer of the API and excipients from 

containers to the volumetric feeders and then to the gravimetric feeders at specific rates, 

determined by a level sensor in each volumetric feeder. Volumetric feeders are used to 

refill the gravimetric feeders during refill cycles, initiated once the amount of material (API, 
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Prosolv®, crospovidone) in the gravimetric feeder reaches a minimum. Gravimetric 

feeders can operate as gravimetric (feeding process) and as volumetric (refill cycle). In 

gravimetric mode, loss in weight (LIW) control is used. LIW determines the rate at which 

the material is dispensed from the feeders since it updates the screw speed to maintain 

the mass flow rate. The gravimetric feeders and the mass flow are used for accurate 

material dispensing and as the reference method for the blends concentration, 

respectively. 

The API and excipients pass from the gravimetric feeders to an in-line conical mill and 

then into an in-line continuous paddle blender. NIR spectroscopy is performed in the 

sensing interface, placed after the blender, as shown in Figure 4.1. Blend spectra are 

collected in-line as the powder flows from the blender to the tablet press. The level of the 

blend in the interface is controlled by the rotary valve and a level sensor. After the 

interface, the blended material passes through the diverter valve to the tablet press for 

tablet compaction or to the blend rejection port for waste. 
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Figure 4.1 Continuous manufacturing line. The diagram includes the volumetric (V1, 
V2, V3, V4) and gravimetric feeders (G1, G2, G3, G4, G5), the continuous blender, the 

interface, and tablet press. The line throughput was maintained at 40 kg/hr for this 
study. 

The feeder’s calculated gravimetric concentrations were used as the reference 

method for the quantitative model. These concentrations were calculated using the 

feeder’s mass flow and the residence time distribution (RTD). RTD correlates each blend 

spectrum with the mass flow data to calculate the concentration for each spectrum. Since 
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RTD gives the length of time a material spends in a system, it provided the length of time 

it takes the blend to flow from the feeders to the interface. The RTD was calculated to be 

140 seconds for this specific line and product. The 140 seconds were subtracted from 

each spectrum time and then paired with the corresponding mass flow timed data. RTD 

must be calculated for each product used in the CM line since is dependent on the 

material properties. 

4.2.3. Preparation of Challenge Blends for the Qualitative Model 

Challenge blends were used to evaluate the specificity of the qualitative model and 

thus should be rejected by the model.  

A total of six 100g challenge blends were prepared using Prosolv®, crospovidone, 

magnesium stearate, four APIs, and lactose. The four APIs (different from the API of the 

correct formulation) and lactose were chosen since they are common components used 

in the manufacturing site and might be used in the same CM line in the future. The 

preparation of the challenge blends at target concentration was performed by using the 

correct formulation excipients (crospovidone, Prosolv®, and magnesium stearate) and 

one of the four incorrect APIs. In addition, a placebo and a blend using the incorrect filler 

(lactose) were prepared. 

All challenge blends were prepared using lab-scale equipment to avoid introducing 

incorrect materials to the cGMP continuous manufacturing line. Raw materials (APIs, 

Prosolv®, lactose, crospovidone, and magnesium stearate) were weighted and placed in 

individual bottles inside a Bohle (40 liters) LM-Bin blender for mixing at 20 rpm for four 

minutes. After mixing, blends were stored in suitable sample containers inside an 

Aluminum “Vapor-loc” bag.  
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4.2.4. NIR Spectral Acquisition 

NIR spectra were acquired using the Bruker Matrix-FE FT-NIR spectrometer, emission 

series (Billerica, MA) controlled by the OVP (OPUS Validation Program) software Version 

4.2. The Matrix-F spectrometer includes a diffuse reflectance probe with two tungsten 

NIR light sources and works in the spectral range of 12,000 - 4,000 cm-1. A resolution of 

16 cm-1 with 16 averaged scans were used for spectra acquisition. Each spectrum was 

acquired approximately every 5 seconds (16 scans = ~1.46 seconds plus file creation = 

~3.54 seconds). Sample mass was calculated as 37 mg per NIR spectrum for 16 scans. 

Spectra for the CSS and VSS were acquired in-line during CM runs. Material passed 

through the interface where diffuse reflectance spectra were collected using the NIR 

spectrometer [10]. A total of 60 CSS spectra were used for the qualitative model (five 

concentration levels, ten spectra per concentration level plus ten spectra from an 

additional API lot of the 100% API target concentration) while 125 CSS spectra were used 

for the quantitative model (five concentration levels, twenty-five spectra per concentration 

level plus twenty-five spectra from an additional API lot of the 100% API target 

concentration). Spectra for the challenge blends were acquired at-line with the Bruker 

NIR spectrometer. Six challenge blends were prepared and six samples (approximately 

10-g per sample) were obtained per challenge blend prepared. Each 10-g sample was 

poured into a sample cup with a sapphire window bottom and placed on top of the NIR 

spectrometer. A total of 36 spectra (one spectrum per sample) were acquired for the 

challenge blends as indicated in Table 4.1. 

4.2.5. Development and Validation of the Qualitative and 

Quantitative Models 

Qualitative and quantitative multivariate models were developed and validated using 

the SIMCA-P+12 Software Prediction Engine from Umetrics [11-14]. The principal 

component analysis (PCA) algorithm was used to develop the qualitative model to 

determine whether the correct blend was prepared during the CM process. The 

quantitative model was developed using the partial least squares (PLS) algorithm and 
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was designed to predict API (drug) concentration of the blends. Table 4.1 shows the 

number of spectra used for the CSS, VSS, and challenge blends for the development and 

validation of the quantitative and qualitative models. 

Table 4.1 Summary of sample spectra used for the CSS, VSS, and challenge blends 

Sample Set 
Number of spectra in 

qualitative model 
Number of spectra in 

quantitative model 

CSS 60 150 

VSS 310 310 

Challenge blends 36 N/A 

Specificity and robustness of the qualitative model were evaluated using the distance 

to the model in the X-space (DModX). DModX is defined as the residual (difference) 

between a sample and its projection into the calibration model (Figure 4.2). The DModX 

absolute values of the predicted observation were calculated as [15]: 

𝑺𝒊 = 𝒔𝒒𝒓𝒕 (∑ 𝒆𝒊𝒌
𝟐 / (𝑲 − 𝑨))    (1) 

Where K is the X variables, A is the absolute distance, and eik is the X-residuals of 

the observation i. 
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Figure 4.2 Schematic representation of the information obtained from the DModX 

Robustness of the quantitative model was evaluated using the Hotelling’s T2Range 

(T2R). T2R displays a measure of how far each observation is from the center and was 

used as an evaluation tool before the NIR prediction (Figure 4.3). A pass result would 

lead the model to perform the NIR concentration prediction. T2R was used as a second 

identification (ID) but based on the quantitative model. The use of T2R gives assurance 

and reliability of the high quality the NIR predictions and is viewed as an additional control 

tool for the CM process. The T2R values for observation i were calculated as [15]: 

𝑻𝒊
𝟐 =  ∑(𝒕𝒊𝒂

𝟐 𝒔𝒕𝒂
𝟐⁄ )      (2) 
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Where S2
ta is the variance of ta per the class model, and tia is the selected range of 

components of the scores.  

 

Figure 4.3 Schematic representation of the information obtained from the T2Range 

The quantitative model was developed using the PLS algorithm and was set to predict 

drug concentration of blend during the CM process. Accuracy, precision, linearity, 

robustness, and specificity were assessed as part of the quantitative model validation 

[16]. Accuracy, precision, and linearity were evaluated across the concentration range of 

the model (70% - 130% LC). The predictive performance of the quantitative model was 

evaluated in terms of the standard error of prediction (SEP) as per EMA guidelines [17]: 
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𝐒𝐄𝐏 =  √
∑ (𝒚̂− 𝐘𝐢)

𝟐𝐧
𝐢=𝟏

𝐧
      (3) 

Where ŷ is the predicted value, yi is the reference concentration, and n is the number 

of samples.  

The qualitative and quantitative models are integrated in the SIPAT system (Siemens 

AG, Belgium) to evaluate blend spectra obtained in real time during commercial CM runs 

[18]. All blend spectra collected by the NIR spectrometers are sent to SIPAT where 

predictions are performed using the implemented models. SIPAT then communicates with 

the control system if an action needs to be taken (divert blend, stop the process, etc.) 

regarding the results obtained. Another evaluation (air diagnostic) is performed to the NIR 

spectra collected in the SIPAT system before the implemented models are applied. The 

air diagnostic evaluates each spectrum to ensure that spectra is not originate from the 

absence of sample in the sensing interface. 

The air diagnostic was developed to detect when air spectra is collected due to the 

lack of blend in the interface. The spectral range 8880 – 8159 cm-1 was chosen for the air 

spectra evaluation since the API bands in this range are not observed in the air spectra 

or when there is fine powder stuck to the interface window. The air diagnostic test was 

performed with the absorbance (log 1/R) values without the use of spectral pretreatments. 

Three types of spectra were used to establish the air diagnostic limit: (a) spectra of blends 

at 70%, 100%, and 130% LC, (b) a spectrum acquired when no material is presented to 

the NIR spectrometers through the interface window (spectrum of air inside the interface), 

(c) and a spectrum acquired with fine powder residue left in the interface window (fine 

powder stuck to the interface window). The air spectrum was acquired with the CM line 

clean while the spectrum with powder stuck to the interface window was acquired with 

the CM line dirty, after the CM line was emptied. The three types of spectra (concentration 

blends, air, fine powder stuck to the interface window) were plotted and compared as 

shown in Figure 4.4. The air diagnostic value of each spectrum at 70%, 100%, and 130% 

LC was calculated as the average of the absorbance (log 1/R) values in the 8880 – 8159 

cm-1 spectral range. All air diagnostic value calculated must yield absorbance values 
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above or equal to the blend spectra absorbance values but below the air spectrum 

absorbance values. Therefore, the air diagnostic limit was set as twice the average 

absorbance (log 1/R) value obtained for the blend spectra used (limit was set at 0.4). All 

spectra used for the validation of the NIR models complied with the air diagnostics. 
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Figure 4.4 Plot for the air diagnostic evaluation using blend spectra at API target concentrations (70%, 100%, 130% LC), 
an air spectrum, and a spectrum of fine powder stuck to window, after the CM line was emptied. The spectral range usd 

for the air diagnostic (8880 – 8159 cm-1) is shown in the boxed area. Limit was set as 0.4 absorbance value. 
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4.2.6. Variographic Analysis of Commercial CM Run 

Variograms were calculated for a commercial CM run using a program developed 

with the MATLAB 2013b software (The MathWorks, Natick, MA) [19]. Eq. 4 shows the 

equation used to write the MATLAB code to calculate variograms. 

𝑉(𝑗) =  
1

2(𝑄𝑡𝑜𝑡𝑎𝑙−𝑗)
 ∑ (ℎ𝑞+𝑗 −  ℎ𝑞)2𝑄𝑡𝑜𝑡𝑎𝑙−𝑗

𝑞=1    (4) 

Where V(j) is the function of the distance between extracted increments, Qtotal is the 

total number of analytical results, j is the lag and h is the heterogeneity contribution of the 

analyte measured in each increment. 

The sill, nugget effect or minimum practical error (MPE), and the corrected sill were 

calculated using the variogram results. MPE is the estimate of the total sampling and 

analytical error, the sill gives the expected minimum sampling variance, and the corrected 

sill relates to the residual heterogeneity of the blends. 
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4.3 Results and Discussion 

The qualitative model was developed and validated to determine whether the correct 

formulation was being prepared in the CM system. The model was implemented for the 

CM process to be located inside the SIPAT system and is applied before the quantitative 

model. The calibration set for the PCA model consisted of 60 spectra (five concentration 

levels, ten spectra per concentration level plus ten spectra from an additional API lot of 

the 100% target concentration) as indicated in Table 4.1. Two principal components (PCs 

- 98.2 % cumulative X-explained variance) described the spectral variation in the 6032 – 

5710 cm-1 spectral range (Figure 4.5) when the SNV and first (1st) derivative with a 25-

point window data pretreatments were applied to NIR spectra. This spectral range was 

chosen to target bands associated to the API of interest. Figure 4.6 shows the PCA score 

plot in the spectral region chosen for the model. Clearly defined clusters for all five CSS 

concentration levels are observed. The VSS projection in the PCA model ellipse shows 

that the validation set is distributed within the PCA scores plot. 
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Figure 4.5 NIR spectra of the 70%, 100%, and 130% API concentration blends included in the CSS. The selected 
spectral range (6032 – 5710 cm-1) used for the development of both models (qualitative and quantitative) is shown in the 

boxed area.
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Figure 4.6 PCA scores plot overlay of the qualitative model CSS and VSS. The model was developed using 2 PCs in the 
spectral range: 6032 cm-1 – 5710 cm-1 using the SNV+1st derivative (25-point moving window) pre-treatment. PC1 

explains 97.7% of the variation of the model while PC2 explains 0.58%. 
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An acceptance criterion was established for the DModX evaluation using the DModX 

values obtained for the CSS. The CSS DModX values were tested for normality to confirm 

if they followed a normal distribution before applying parametric calculations to establish 

a limit. Results showed that the DModX values were not drawn from a normal distribution 

and were then fit with a log-normal function to obtain a log-normal distribution. Figure 4.7 

shows the histogram plotted for the CSS and challenge blends DModX results. The mean 

plus 6σ of the log normalized DModX values was established as the DModX limit (2.6 x 

10-3). Six standard deviations were necessary because the CSS DModX values had a 

very narrow distribution and because of the high amount of data obtained from the CM 

process. If a lower limit had been established, it would have caused numerous process 

interruptions. However, this high limit did not compromise the ability of the model to reject 

the challenge blends which had DModX values 2.5 - 30 times higher than the established 

limit. 
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Figure 4.7 Histogram of the CSS and challenge blends DModX values. The red line shows the 6σ cutoff for the DModX 
limit. 
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Figure 4.8 shows the DModX results for the VSS. All DModX values were below the 

established limit (DModX limit = 2.6 x 10-3) demonstrating the reliability of this qualitative 

model to confirm the correct API in the blend. 

Specificity of the qualitative model was assessed with the VSS (Figure 4.8) and the 

challenge blends (Figure 4.9), as per the European Medicines Agency (EMA) guidelines 

[17]. The model was tested for specificity since this shows the ability of the method to 

detect the analyte of interest in the presence of other components in the formulation [20]. 

The challenge samples were compositionally incorrect formulations that should yield 

DModX results above the established limit for the qualitative model. The DModX results 

for the challenge blends were found to be between 2.5 and 30 times above the 

established limit (DModX limit = 2.6 x 10-3), as shown in Figure 4.9. The challenge blends 

DModX results demonstrate the ability of the qualitative model to respond to blends 

prepared with incorrect components and the high capability of the model to identify as 

incorrect, blends containing the API of interest but with different filler (Figure 4.9, lactose 

DModX results). 

Robustness of the qualitative model was evaluated using the VSS2. VSS2 was 

prepared varying both the API lot and the line throughputs (35, 40, and 45 kg/h) during 

the same CM run. DModX results were used to evaluate robustness. Figure 4.10 shows 

the DModX plot for the robustness evaluation. Results show all DModX results below the 

established limit, confirming the high robustness and reliability of the qualitative model to 

confirm the correct API. 
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Figure 4.8 Plot for the VSS DModX results (DModX limit = 2.6 x 10-3)
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Figure 4.9 Plot for the challenge blends DModX results (DModX limit = 2.6 x 10-3) 
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Figure 4.10 Plot for the DModX results for the robustness evaluation (DModX limit = 2.6 x 10-3) 
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4.3.1. Development and Validation of Quantitative Model 

The PLS quantitative model was developed in the spectral range 6032 – 5710 cm-1 

with two PLS factors and SNV and 1st derivative with a 25-point window as pretreatment. 

The CSS consisted of 150 spectra (for all five concentration levels). NIR spectra were 

obtained in-line using the CM process. The reference method for the CSS and VSS 

concentrations were calculated from the mass flow data (obtained from the gravimetric 

feeders) as discussed in the Experimental section. 

Robustness of the model was evaluated using T2R. The T2R acceptance criteria (limit 

= 6.2) was established using the PLS scores from the calibration set, based on a 95% 

confidence interval. T2R values obtained for the VSS met the acceptance criteria 

established as shown in Figure 4.11. 
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Figure 4.11 Plot for the VSS Hotelling’s T2Range results (T2R limit = 6.2) 
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The quantitative model was validated by assessing the validation parameters 

identified in ICH Q2 guidelines [16, 17]. Accuracy, precision, and linearity were evaluated 

across the concentration range of the model. Table 4.2 shows the results obtained for the 

quantitative model validation.  

Accuracy was assessed across the CSS concentration range by comparing NIR 

predictions with the gravimetric concentrations (reference method). Accuracy was 

assessed in terms of SEP, RSEP (%), and bias as shown in Table 4.2. The highest bias 

for the validation observed for the validated set was 1.15% LC and RSEP values were 

below 0.22% LC. Previous studies have shown RSEP results between 0.8% and 3.93% 

[21, 22, 12, 23]. Therefore, the results obtained in this study demonstrate the high 

accuracy of the model to predict samples from a CM process. The validation of this model 

within a regulated environment required the establishment of an acceptance criterion for 

accuracy. This acceptance criterion was established using the calibration range 

expectation from the European Medicines Agency (EMEA) guidelines. The guideline 

states that the calibration range should be at least 10 x SEP [17]. Therefore, since the 

calibration samples were prepared at ±30% of the API target concentration (70% - 130%) 

the SEP was established as ≤ 6.0% (60%/10 = 6%). The criterion for the SEP was 

established as ≤ 4.5% based on a conservative approach of 75% of the maximum SEP 

limit. Results showed SEP values below the established limit (4.5%) with a maximum SEP 

value of 1.82% LC. 

Precision was evaluated with the repeatability and the intermediate precision studies. 

Repeatability was performed using blend spectra obtained from one 100% API 

concentration sample. Six consecutive spectra were acquired, without moving the sample 

from its position. The standard deviation for the repeatability study was 0.23% showing 

the minimum standard deviation expected of the quantitative model and thus, the 

minimum variation of the CM process presented in this study. Two intermediate precision 

analyses were performed: IP1 and IP2. IP1 was performed using the NIR predictions of 

the validation set for the five API concentrations (70%, 85%, 100%, 115%, and 130% LC). 

Results ranged from 1.28% to 1.84%. IP2 was performed using spectra collected from 

five CM runs. The pooled standard deviation was calculated for a total of 20 sets of 60 
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spectra each, obtained from five CM runs performed on different days. The standard 

deviation varied from 1.30% to 5.52%. The pooled standard deviation yielded a value of 

2.12%. Although this estimate of intermediate precision depends on the heterogeneity of 

the powder mixtures obtained in the CM system, it also provides an estimate of the 

variation under actual conditions of use. While intermediate precision can be measured 

in diverse ways, the approach followed for this study provides an estimate using a CM 

process. This information is needed for the future establishment of acceptance criteria in 

CM processes. 

Linearity was evaluated based on the predictions of the VSS and the gravimetric 

concentrations (reference method). A plot of the NIR predictions versus the target 

concentration (Figure 4.12) yielded an R2 of 0.99, showed excellent linearity across the 

prediction range.  

Robustness was evaluated using the VSS2 which was prepared using API lot 

numbers different from the ones used for the CSS. Also, different line throughputs were 

used for the VSS2 preparation. T2R was evaluated for 474 spectra collected from two 

independent CM runs at 95% and 105% LC. All T2R results were below 6.2 with a 

minimum of 0.09 and a maximum of 3.89, meeting the established acceptance criterion. 

Robustness was also evaluated using SEP which results were below the limit established 

for this validation: ≤ 4.5% (1.94% for the CM blends at 95% LC and 1.64% for the CM 

blends at 105% LC). 

Tablets compacted during the same validation exercise were also analyzed and 

results summarized in Table 4.2. A total of 50 tablets (five concentration levels, 10 tablets 

per level) were obtained from the validation run for spectra acquisition and analysis. The 

average NIR prediction obtained for the 100% target concentration was 100.6% LC with 

a SEP of 1.1%. The average NIR predictions for the blends 100% target concentration 

was 100.94% LC, very close to the value obtained for tablets. 
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Table 4.2 Validation results for the quantitative model including accuracy, intermediate precision, repeatability, robustness, and linearity. 
All values are reported in terms of % LC. 

Evaluation Validation parameter Quantitative model results 

Accuracy 

Number of spectra 54 56 89 55 56 

API target concentration (%) 70 85 100 115 130 

Average NIR prediction (%) 70.02 85.03 100.94 114.90 128.85 

SEP (%) (limit ≤ 4.5) 1.82 1.70 1.69 1.48 1.71 

Bias (%) 0.03 0.03 0.95 0.11 1.15 

RSEP (%) 0.22 0.18 0.17 0.14 0.15 

Intermediate Precision 1 SD (%) 1.84 1.71 1.40 1.48 1.28 

Intermediate Precision 2 

Number of days 5 

Number of sets per day 4 

Total sets 20 

Number of spectra per set 60 

Pooled Standard Deviation (%) 2.12 

Repeatability 
Number of spectra 6 

SD (%) (limit ≤ 2.7) 0.23 

Robustness 

Number of spectra 474 

Max Hotelling’s T2Range (limit ≤ 6.2) 3.89 

Min Hotelling’s T2Range 0.09 

Number of spectra 158 316 

API target concentration (%) 95 105 

SEP (%) (limit ≤ 4.5) 1.94 1.64 

Linearity 

Number of spectra 50 

Target Concentration range (%) 70 – 130 

Intercept 3.57 

Slope 0.97 

R2 0.994 

Tablet Results 

Number of tablets 10 10 10 10 10 

API target concentration (%) 70 85 100 115 130 

Average HPLC concentration (% LC) 70.1 85.2 99.6 113.6 127.7 

Average NIR prediction (% LC) 68.9 85.8 100.6 114.1 128.8 

SEP (%) 1.2 0.9 1.1 0.7 1.6 

Bias (%) 1.1 0.6 1.0 0.4 1.0 

SD (%) 0.5 0.8 0.4 0.6 0.7 
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Figure 4.12 Regression plot for the linearity evaluation of the quantitative model NIR 
predictions 

4.3.2. Implementation within Commercial Continuous 

Manufacturing 

The validated qualitative model was implemented for routine use during commercial 

CM runs. During the beginning of one of the commercial runs, two blend ID failures were 

logged upon the initial blend testing performed with the qualitative model. A system alarm 

went off after two consecutive DModX values were obtained above the established limit 

(Figure 4.13). All CM processes were evaluated and it was concluded that the filler was 

spilling in the CM line, before the interface where NIR spectra of blends is acquired (Refer 

to Figure 4.1). NIR spectra were being collected of blends that contained approximately 

half of the filler that the formulation required. This event demonstrated the effectiveness 

of the qualitative model during a CM process to continuously monitor blends before 

applying the quantitative model and before tablet production. 
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Figure 4.13 Plot of the failed DModX results obtained during the beginning of a commercial CM run due to a filler spill
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The quantitative model was also implemented for routine use during commercial CM 

runs. Figure 4.14 shows the NIR predictions obtained for a 28-hour commercial CM run. 

The run included a total of 12633 blend spectra. The average NIR prediction obtained 

was 101.17% LC with a standard deviation of 2.17%, a bias of 1.31% LC, and a SEP of 

2.94% LC. The average NIR prediction for the tablets produced from these blends was 

100.86% LC with a standard deviation of 0.4%, a bias of 0.86% LC, and a SEP of 0.95% 

LC, for 500 tablets analyzed by FT-NIR transmission spectroscopy. Figure 4.15 shows 

NIR predictions obtained for the tablets prepared during the same CM process. 
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Figure 4.14 Plot of the NIR predictions obtained using the quantitative model during a commercial CM run. A total of 
12,633 blend spectra were acquired
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Figure 4.15 Plot of the CM tablet’s NIR predictions obtained using a transmittance PLS model. A total of 500 tablet 
spectra were acquired
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4.3.3. Variographic Analysis 

Drug concentration results were further evaluated for the blend spectra collected from 

a commercial CM run using variograms [19]. Variographic analysis decomposes the 

effective total sampling and analytical error from the inherent process variation. 

Variograms were calculated from the individual and moving block predicted NIR 

concentrations. The moving block was performed for the blends analysis during the CM 

run due to the difference in sample mass analyzed between blends (~37 mg per 

spectrum) and tablets (>1000 mg). Subsets of three NIR predictions were used to 

calculate every moving block: samples 1, 2, 3 were averaged for the moving block #1; 

samples 2, 3, 4 were averaged for the moving block #2; samples 3, 4, 5 were averaged 

for the moving block #3, etc. 

Figure 4.16 shows the variogram calculated using the NIR predictions obtained from 

a commercial CM run. The variogram plot shows the V(j) (variogram function) as a 

function of the lag (distance between concentration values reported in terms of % LC). A 

total of 12,633 spectra were used for the variographic analysis. This substantial number 

of samples was obtained since sampling was performed by acquiring in-line blend spectra 

for CM run of approximately 28 hours. The minimum practical error (MPE) or nugget 

effect, the sill, and the corrected sill were calculated from the variograms. MPE was 

calculated by extrapolating the first five V(j) values to the Y-axis to estimate “lag 0”. This 

“lag 0” is physically impossible since it would consist of a time difference of zero between 

the analytical results. However, this V(j) value at a lag (0) provides an estimate of the total 

sampling and analytical error. The range which is defined as the lag at which 

autocorrelation is no longer observed is also shown in Figure 4.16. Lags beyond the 

range shows the process variation. Table 4.3 shows the sill, the minimum practical error 

(MPE) or nugget effect, and the corrected sill values for the commercial CM run for the 

individual and the moving block NIR predictions. The MPE (0.29) greatly improved in the 

moving block results due to the larger sample composite. 

Figure 4.16 also shows the sill which provides the total process variation. The 

corrected sill shows the residual heterogeneity of the blend (calculated by subtracting the 

sill and MPE values) [19]. A cyclic behavior of the variogram is observed. Cyclic 
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variograms can be observed when cyclic fluctuations affect the process [24]. During the 

CM process, a rotary valve moves the blend from the sensing interface (where blend 

spectra were collected) to the tablet press, which may be the cause for the cyclic 

variogram. This cyclic behavior occurred approximately every 500 lags and the cyclic 

behavior is observed more clearly after the first 1000 lags. The variogram clearly indicates 

the low frequency cyclic variation. This shows the importance of using as many spectra 

as possible for the variographic analysis. If less than 1000 spectra had been used for this 

study, this cyclic behavior could have gone unnoticed.  
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Figure 4.16 Variogram plot for the commercial CM run process. The plot includes the variograms calculated for the 
individual NIR predictions.  
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Table 4.3 Variographic analysis results for the commercial CM run, including the results 
for both the individual and moving block NIR predictions 

NIR predictions Individual spectra Moving block 

Sill 4.70 2.71 

MPE 2.96 0.29 

Corrected sill 1.74 2.42 

Standard deviation (% LC) (n=12,633) 2.17 

Average NIR prediction (% LC) 101.17 
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4.4 Conclusion 

The qualitative and quantitative models validated as part of this study are currently 

being routinely used during commercial CM runs. Results showed the models to be fit for 

their intended purposes as they demonstrated to confirm the presence of the API of 

interest (qualitative model) as well as being accurate, precise, and linear (quantitative 

model). This work showed a modern way to prepare the CSS using the same CM process 

followed to manufacture commercial lots, ensuring the inclusion of variables inherent to 

the process to the model(s). 

A cyclic behavior was observed for the variograms which was most likely induced by 

the rotary valve  

Variograms showed a cyclic system more likely induced by the rotary valve found after 

the interface. The variographic results also showed the advantage of analyzing big sets 

of data as demonstrated by the variogram behavior observed after the first 1000 spectra. 

This study demonstrates the benefits and advantages of using chemometric models 

during a CM as in-process control tools to assure the high quality of the final product. 

Continuous manufacturing along with the use of PAT techniques is an innovative way of 

working that allows the in-line monitoring of blends eliminating the need to use a sample 

thief. The monitoring of blends using qualitative and quantitative models proved to be an 

efficient indicator of the expected quality for tablets produced during the same CM 

process. 

  



100 

 

4.5 References 

1. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD et al. 
Modernizing pharmaceutical manufacturing: from batch to continuous production. Journal 
of Pharmaceutical Innovation. 2015;10(3):191-9.  

2. Byrn S, Futran M, Thomas H, Jayjock E, Maron N, Meyer RF et al. Achieving 
continuous manufacturing for final dosage formation: challenges and how to meet them. 
May 20-21, 2014 Continuous Manufacturing Symposium. Journal of pharmaceutical 
sciences. 2015;104(3):792-802.  

3. Allison G, Cain YT, Cooney C, Garcia T, Bizjak TG, Holte O et al. Regulatory and 
quality considerations for continuous manufacturing. May 20–21, 2014 Continuous 
Manufacturing Symposium. Journal of pharmaceutical sciences. 2015;104(3):803-12.  

4. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. 
Economic Analysis of Integrated Continuous and Batch Pharmaceutical Manufacturing: 
A Case Study. Industrial & Engineering Chemistry Research. 2011;50(17):10083-92.  

5. Yu L. Continuous Manufacturing Has a Strong Impact on Drug Quality. In: FDA Voice. 
http://blogs.fda.gov/fdavoice/index.php/2016/04/continuous-manufacturing-has-a-
strong-impact-on-drug-quality/. 2016. Accessed July 23, 2016. 

6. Gray N. In first, FDA approves Janssen's switch to continuous manufacturing for HIV 
drug. In: BioPharma Dive. http://www.biopharmadive.com/news/in-first-fda-approves-
janssens-switch-to-continuous-manufacturing-for-hiv/417460/. 2016. Accessed July 23, 
2016. 

7. Brennan Z. FDA Allows First Switch From Batch to Continuous Manufacturing for HIV 
Drug. In: Regularoty affairs professionals society. http://raps.org/Regulatory-
Focus/News/2016/04/12/24739/FDA-Allows-First-Switch-From-Batch-to-Continuous-
Manufacturing-for-HIV-Drug/. 2016. Accessed July 23, 2016. 

8. Langhauser K. Janssen's Historic FDA Approval. The FDA has approved -- for the first 
time in history -- a manufacturer’s production method change from “batch” to continuous 
manufacturing. In: Pharmaceutical Manufacturing. 
http://www.pharmamanufacturing.com/articles/2016/janssens-historic-fda-approval/. 
2016. Accessed July 23, 2016. 

9. MacDonald G. Janssen working on other continuous processes post US FDA OK for 
Prezista. In: in-Pharma Technologist. http://www.in-
pharmatechnologist.com/Processing/Janssen-working-on-other-continuous-processes-
post-US-FDA-OK-for-
Prezista?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright. 2016. 
Accessed July 23, 2016. 

http://blogs.fda.gov/fdavoice/index.php/2016/04/continuous-manufacturing-has-a-strong-impact-on-drug-quality/
http://blogs.fda.gov/fdavoice/index.php/2016/04/continuous-manufacturing-has-a-strong-impact-on-drug-quality/
http://www.biopharmadive.com/news/in-first-fda-approves-janssens-switch-to-continuous-manufacturing-for-hiv/417460/
http://www.biopharmadive.com/news/in-first-fda-approves-janssens-switch-to-continuous-manufacturing-for-hiv/417460/
http://raps.org/Regulatory-Focus/News/2016/04/12/24739/FDA-Allows-First-Switch-From-Batch-to-Continuous-Manufacturing-for-HIV-Drug/
http://raps.org/Regulatory-Focus/News/2016/04/12/24739/FDA-Allows-First-Switch-From-Batch-to-Continuous-Manufacturing-for-HIV-Drug/
http://raps.org/Regulatory-Focus/News/2016/04/12/24739/FDA-Allows-First-Switch-From-Batch-to-Continuous-Manufacturing-for-HIV-Drug/
http://www.pharmamanufacturing.com/articles/2016/janssens-historic-fda-approval/
http://www.in-pharmatechnologist.com/Processing/Janssen-working-on-other-continuous-processes-post-US-FDA-OK-for-Prezista?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright
http://www.in-pharmatechnologist.com/Processing/Janssen-working-on-other-continuous-processes-post-US-FDA-OK-for-Prezista?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright
http://www.in-pharmatechnologist.com/Processing/Janssen-working-on-other-continuous-processes-post-US-FDA-OK-for-Prezista?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright
http://www.in-pharmatechnologist.com/Processing/Janssen-working-on-other-continuous-processes-post-US-FDA-OK-for-Prezista?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright


101 

 

10. Vargas, J. M.; Roman-Ospino, A. D.; Sanchez, E.; Romañach, R. J., Evaluation of 
Analytical and Sampling Errors in the Prediction of the Active Pharmaceutical Ingredient 
Concentration in Blends From a Continuous Manufacturing Process. J Pharm Innov 2017, 
12 (2), 155–167. doi:10.1007/s12247-017-9273-1. 

11. Bu D, Wan B, McGeorge G. A discussion on the use of prediction uncertainty 
estimation of NIR data in partial least squares for quantitative pharmaceutical tablet assay 
methods. Chemometrics and Intelligent Laboratory Systems. 2013;120:84-91.  

12. Peinado A, Hammond J, Scott A. Development, validation and transfer of a near 
infrared method to determine in-line the end point of a fluidised drying process for 
commercial production batches of an approved oral solid dose pharmaceutical product. 
Journal of pharmaceutical and biomedical analysis. 2011;54(1):13-20.  

13. Cogdill RP, Anderson CA, Drennen JK. Process analytical technology case study, 
part III: calibration monitoring and transfer. AAPS PharmSciTech. 2005;6(2):E284-E97.  

14. García-Muñoz S, Kourti T, MacGregor JF, Apruzzese F, Champagne M. Optimization 
of batch operating policies. Part I. Handling multiple solutions#. Industrial & engineering 
chemistry research. 2006;45(23):7856-66.  

15. Umetrics. User Guide to SIMCA-P+ Version 12. Kinnelon, NJ; 2008. p. 
www.umetrics.com. 

16. International Conference on Harmonisation Guideline.  Validation of analytical 
procedures: text and methodology Q2 (R1)2005. 

17. European Medicines Agency. Guideline on the use of near infrared spectroscopy by 
the pharmaceutical industry and the data requirements for new submissions and 
variations. Westferry Circus, Canary Wharf, London 2014. 

18. Markl D, Wahl PR, Menezes JC, Koller DM, Kavsek B, Francois K et al. Supervisory 
control system for monitoring a pharmaceutical hot melt extrusion process. AAPS 
PharmSciTech. 2013;14(3):1034-44.  

19. Esbensen KH, Román-Ospino AD, Sanchez A, Romañach RJ. Adequacy and 
verifiability of pharmaceutical mixtures and dose units by variographic analysis (Theory 
of Sampling)–A call for a regulatory paradigm shift. International journal of pharmaceutics. 
2016;499(1):156-74.  

20. Inczedy J, Lengyel T, Ure A. International Union of Pure and Applied Chemistry, 
Compendium of Analytical Nomenclature, definitive rules. Blackwell Science, on-line 
version; 1997. 

21. Colón YM, Florian MA, Acevedo D, Méndez R, Romañach RJ. Near Infrared Method 
Development for a Continuous Manufacturing Blending Process. Journal of 
Pharmaceutical Innovation. 2014;9(4):291-301.  

http://www.umetrics.com/


102 

 

22. Blanco M, Coello J, Eustaquio A, Iturriaga H, Maspoch S. Development and validation 
of a method for the analysis of a pharmaceutical preparation by near-infrared diffuse 
reflectance spectroscopy. Journal of pharmaceutical sciences. 1999;88(5):551-6.  

23. Blanco M, Cruz J, Bautista M. Development of a univariate calibration model for 
pharmaceutical analysis based on NIR spectra. Analytical and bioanalytical chemistry. 
2008;392(7-8):1367-72.  

24. Esbensen KH, Paasch-Mortensen P. Process sampling: Theory of Sampling—the 
missing link in process analytical technologies (PAT). Process Analytical Technology. 
2010:37-80.  

  



103 

 

 

Chapter 5 

5 Assessment of Robustness for a Near Infrared 
Concentration Model for Real Time Release Testing in a 
Continuous Manufacturing Process 

Published in Journal of Pharmaceutical Innovation, 2017, Issue 12, 14-25. 

Yleana M. Colon, Jenny M. Vargas, Eric Sanchez, Gilfredo Navarro, Rodolfo J. 

Romañach 

  



104 

 

5.1 Introduction 

Continuous Manufacturing (CM) is being studied to be implemented in the 

pharmaceutical industry for its potential, cost-efficacy, and quality advantages [1-3]. 

Recently, two continuous manufacturing processes were approved by the FDA [4, 5]. 

Previous publications have focused on evaluating the continuous manufacturing process 

and how process conditions such as feed rate, impeller rotation rate, shear intensity, total 

shear, and compression force could affect tablet properties [6-9]. Changes in the tablets 

properties could affect the near infrared (NIR) spectra which contains information related 

to the chemical and physical properties of the materials [10-13]. The understanding and 

use of NIR has increased in recent years until reaching a point where NIR is currently 

being used to monitor and control continuous manufacturing processes [3, 14-16]. 

However, there are still many challenges when NIR is used for real time release testing 

(RTRt) of a commercial pharmaceutical drug. 

NIR spectroscopy is one of the principal analytical methods in RTRt and offers many 

advantages over traditional chemical methods. NIR is non-destructive, requires no 

sample preparation (no reagents), no waste is produced, and has a high precision. NIR 

spectroscopy is a cross-sensitive analytical technique that can provide essential 

information to RTRt application in CM processes since it allows the determination of 

moisture, drug concentration, and tablet hardness from one single spectrum [17, 18]. 

NIR calibration models can be developed to monitor continuous manufacturing 

processes. The current industry approach is to develop NIR calibration models using 

calibration sets prepared in laboratory scale [19-22]. The calibration set must represent 

all significant sources of variability that will be found in future samples [19]. Variations in 

concentration levels, excipients, and the process must be included. Therefore, NIR 

calibration models that will be used in a continuous manufacturing line must include a 

calibration set prepared using the same CM process. The preparation of calibration sets 

using a continuous manufacturing process can be expensive and time consuming [13]. 

However, the development of the NIR calibration models must be done including the 

necessary sources of variability to obtain a robust calibration model. Therefore, identifying 

the sources of variability (physical and chemical) is very important.  
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This study shows the results obtained during the adaptation of a NIR spectroscopic 

calibration model to a pharmaceutical RTRt process. RTRt offers many advantages to the 

pharmaceutical manufacturing process such as a reduced operational cycle time, 

enabling real time control to improve quality, and assessment based on a large set of 

measurements.  

This investigation describes the implementation of RTRt using NIR spectroscopy for 

a continuous manufacturing process. The active pharmaceutical ingredient (API) used for 

this study exchanges solvate molecules with water from the environment. This exchange 

could affect the NIR spectra and thus, the NIR predictions of concentration. However, the 

exchange does not affect product quality. Several NIR calibration models have been 

previously developed to determine drug concentration in tablets. However, none of these 

models were developed using compounds that exchanged solvate molecules with the 

water from the environment [23-33]. Therefore, the effect on the NIR predicted 

concentrations of tablets exposed to the environment was investigated through the 

assessment of robustness for a NIR calibration model developed. This study is applicable 

to many other situations since screening studies have found that 80-90% of the organic 

compounds tested were capable of existing in polymorphic or solvatomorphic forms [34, 

35].  

Tablet relaxation was also investigated for this study since spectra acquisition of 

tablets might not occur immediately, right after compaction. The effect of relaxation could 

affect the drug concentration results. In this study, the drug concentration of tablets was 

determined at different time points after tablet compaction. Tablet relaxation has been 

previously studied to understand formation of pores (porosity) [36], assess viscoelastic 

properties of materials [37-41], and understand relaxation behavior during the ejection 

phase [42, 43] or throughout time [44, 45]). The effect of tablet relaxation on NIR predicted 

concentrations has not been previously studied. 
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5.2 Materials and Methods 

5.2.1. Materials 

The formulation used for this study was composed of an API (more than 50% LC of 

the formulation) and three excipients (filler, disintegrant, and lubricant). 

5.2.2. Sample Preparation 

Laboratory, pilot plant, and continuous manufacturing equipment were employed to 

prepare the different sample sets used to develop the NIR calibration models, as outlined 

in Table 5.1 and Table 5.2. Tablets were prepared across the 70 - 130 % LC 

concentration range including seven concentration levels with three tablets per 

concentration level. The CM Line was used to prepare the sample set used to optimize 

the calibration model. All tablets used for this study (lab scale, pilot scale, and CM Line 

equipment) were matched for thickness, weight, and hardness, to the best capability 

possible since lab and pilot scale tablets were prepared manually.  

Table 5.1 Summary of sample sets prepared 

API concentration (% LC) Sample preparation 
Calibration sample set (CSS) 

70 

Laboratory scale 

85 
95 

100 
105 
115 
130 

Calibration test sample set (CTSS) 

71 

Laboratory scale 
98 

102 
129 

Robustness sample set 

100 Pilot plant 
Sample set used to update the model 

90 
CM line 100 

110 
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Table 5.2 Laboratory, pilot-plant, and CM equipment description 

Description Equipment 
Weighing of all raw materials and blends Mettler Toledo Analytical Balance 
Manual Compression Enerpac P142 from GlobePharma Tablet Press 
Pilot Scale Operation Pilot Scale Equipment 
Weighing of minor excipients Mettler Toledo Analytical Balance 
Weighing of major excipients Mettler Toledo Loading Balance 
Blending Bohle LM- bin Blender with 40 l bin 
Compression Korsch KM12 Tablet Press 
Process Operation CM Line Equipment Train 
Weighing of raw materials Mettler Toledo Loading Balance 
Loading/Feeding K-Tron Volumetric/Gravimetric Feeders 
Milling In-line Quadro Comil U10 
Blending Glatt GCG 70 Continuous Blender 
Compression Korsch KM12 Tablet Press 

5.2.3. Tablet Preparation using Laboratory Scale Equipment 

The calibration sample set (CSS) and the calibration test sample set (CTSS) were 

prepared using laboratory scale equipment [46]. The CSS consisted of tablets prepared 

using seven blends (one blend per concentration level). A total of seven concentration 

levels were prepared for the CSS including 70%, 85%, 95%, 100%, 105%, 115% and 

130% LC of the API target concentration. Three tablets were prepared per concentration 

level for the CSS and the CTSS. 

CTSS provided the first challenge of the calibration model and consisted of tablets 

prepared using four blends (one blend per concentration level). A total of four 

concentration levels were prepared for the CTSS including 71%, 98%, 102% and 129% 

LC of the API target concentration. An experimental design was performed to reduce the 

correlation between the concentrations of the API and the main excipient using the Excel 

Solver tool. The CSS and CTSS blends were prepared individually by weighing the raw 

materials for a total of 100 g per blend except for the 100% LC CSS blend for which 500 

g were prepared. All raw materials were passed through a sieve before mixing (USA 

Standard Test Sieve No. 25: 0.0278 Inches, from the Fisher Scientific Company) to 

remove large aggregates. Once all raw materials were weighed, the blends were 

transferred to plastic bottles and placed inside a bin blender (Bohle LM-40 bin blender). 

The blender was operated at 20 rpm for four minutes. 
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An analytical balance was used to weigh the correct quantities of blend to prepare 

each tablet. Tablets were compressed using a hand press tablet compaction equipment 

(Enerpac P142 from GlobePharma) and thickness was measured using a Mitutoyo 

calibrated caliper. Tablets were compacted at a pressure of 3,800 psi (26.2 MPa) to match 

final average weight, thickness, and hardness of the formulation tablets. 

5.2.4. Tablet Preparation using Pilot Scale Equipment 

The tablets used for the robustness study were prepared at 100% LC API 

concentration using the pilot scale equipment. Raw materials were weight and place 

inside a bin blender (Bohle LM-40; filled to 60% capacity) set at 20 rpm for four minutes. 

After mixed, blends were poured through a hopper into a Korsch XM-12 tablet press to 

prepare the tablets matching the weight and thickness of the target commercial tablets.  

5.2.5. Tablet Preparation using the Continuous Manufacturing 

Process 

The tablets used to challenge the NIR calibration model developed were prepared 

using the CM line. These tablets were prepared at 90%, 100%, and 110% LC API 

concentration. The CM process included the use of four gravimetric feeders which 

delivered each material at its own set point into an in-line conical mill. After, the material 

enters an in-line continuous paddle blender which then directs it to the Korsch XM-12 

Tablet Press. All compressed tablets were analyzed using NIR spectroscopy. 

5.2.6. Tablet Spectra Acquisition 

NIR transmission spectra of tablets were acquired using a Bruker multi-purpose 

analyzer (MPA). The spectrometer has an indium gallium arsenide (InGaAs) detector with 

a useful wavenumber range of 12500 cm-1 to 5800 cm-1. Spectra were acquired using a 

resolution of 64 cm-1 with 32 spectra average scans (scan time = 5.8 secs). Background 

spectra were always measured before the tablet spectra acquisition. 
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5.2.7. NIR Calibration Model Development 

The Umetrics software prediction engine SIMCA P+12 was used to develop the NIR 

calibration model, using the partial least squares (PLS) algorithm. Several spectral 

regions, data pretreatments, and PLS components were analyzed before developing the 

NIR calibration model. Performance of the model was evaluated in terms of the root mean 

standard error of prediction (RMSEP) and the fraction of the Y-variation modeled by the 

PLS component (R2Ycum), using the CTSS. The RMSEP equation used was: 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑚

𝑖=1

𝑛
 

(1) 

where, 𝑦̂𝑖 is the API concentration predicted by the NIR calibration model, 𝑦𝑖 is the 

reference (gravimetric) concentration, n is the number of samples in the prediction. All 

spectra were mean centered. Pretreatments such as first derivative, second derivative, 

and standard normal variate (SNV) were analyzed for the development of the NIR 

calibration model. Derivatives were calculated using a 15-point window with a distance of 

one. 

5.2.8. API HPLC Method 

The reference method used to quantify the API in tablets was the high-performance 

liquid chromatography (HPLC). Each tablet collected was weighed and transferred to a 

50-mL volumetric flask using a solution of 50% acetonitrile: 50% distilled water as diluent. 

After sample preparation, the solution was analyzed using an HPLC equipped with a 

variable wavelength UV detector, column oven, and auto-sampler. 

  



110 

 

5.3 Results and Discussion 

5.3.1. Development of the NIR Calibration Model 

The NIR calibration model was prepared using the CSS consisting of 21 tablets (7 

concentration levels, 3 tablets per concentration level). The seven concentration levels 

included tablets at 70%, 85%, 95%, 100%, 105%, 115% and 130% LC of API 

concentration. The CTSS was composed of 12 tablets (4 concentration levels, 3 tablets 

per concentration level) including API target concentrations of 71%, 98%, 102% and 

129% LC. Variables associated with the molecular vibrations of the API (third overtones 

of C-H aromatic bands {11760 – 11630 cm-1} and the C-H stretching from methyl groups 

{11110 – 10990 cm-1}) were used to develop the calibration model. Figure 5.1 shows the 

spectra of tablets at 70%, 100%, and 130% LC API concentration. Low wavenumbers 

(10100 - 5800 cm-1) were not used for model development since the absorbance values 

obtained at these wavenumbers are associated with noise related to the low amount of 

radiation reaching the detector [47-49] . Variables corresponding to water bands (10260-

10150 cm-1) were also excluded since they could affect the accuracy of the NIR predicted 

concentration because the API used exchanges solvate molecules with water from the 

environment. 
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Figure 5.1 Spectra of tablets at 70%, 100%, and 130% LC API concentration 



112 

 

Several pretreatments and PLS factors were evaluated to develop the NIR calibration 

model. The evaluation was performed using RMSEP (eq. 1) and was based on the ability 

of the model to predict the CTSS. The spectral region chosen for the calibration model 

was 12034-10592 cm-1 using one PLS factor and SNV + 1st derivative as the 

pretreatment. Figure 5.2 shows the spectrum of placebo, API, and a 100% LC tablet with 

the 2nd derivative pretreatment applied. The plot shows the selectivity of the method to 

the used API in the presence of excipients in the chosen spectral range. Figure 5.3 shows 

the CSS tablets at 70% (low), 100% (middle), and 130% (high) LC API concentration with 

the chosen spectral pretreatment applied (SNV+1st derivative). The plot shows that as the 

API concentration increases, the response (absorbance) of the bands around 11800 - 

11400 cm-1 and 11320–10954 cm-1, increases. The cross validation statistical results and 

the calibration and CTSS NIR predicted concentrations, using one and two PLS factors, 

are shown in Table 5.3. 
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Figure 5.2 Plot of the placebo, API, and a 100% LC tablet spectra with the second derivative (15-point window) 
pretreatment applied in the spectral range 12034-10592 cm-1 
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Figure 5.3 Plot of tablet spectra at 70%, 100%, 130% LC with the SNV+ 1st derivative (15-point window) pretreatment 
applied in the spectral range 12034-10592 cm-1 
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Table 5.3 Calibration, cross-validation statistics and CTSS results 

PLS 
factors 

SEC CV parameters SECV *Intercept *Slope 
RMSEP 

(%) 
n=12 

1 0.9 

Leave 1 out 0.89 

0.0 1.0 1.0 Leave 3 out 0.92 

Leave 7 out 0.91 

2 0.7 

Leave 1 out 0.78 

0.0 1.0 1.1 Leave 3 out 0.84 

Leave 7 out 0.80 

*Intercept and slope values were obtained from the regression between the HPLC values 
and the NIR predicted concentrations. 

Results show that SEC, SECV, the intercept, and the slope yield similar results when 

using 1 or 2 PLS factors. However, differences were found in the RMSEP results. NIR 

predicted concentrations for the CTSS were lower using 1 PLS factor. Figure 5.4 shows 

the PLS scores plot for the CSS. Pretreatments SNV+1st derivative (15-point window) 

were applied to the CSS for this figure. The plot shows that the 1st PLS factor explains 

most of the variation of the PLS model (99.7% R2Ycum). In addition, defined clusters, 

based on the API concentration, are observed. The 2nd PLS factor only explains 0.2% of 

the variation in the PLS model. However, the NIR calibration model was evaluated using 

2 PLS factors but the results obtained were similar to the model using 1 PLS factor. 

Therefore, the model with 1 PLS factor was chosen for further evaluation. 
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Figure 5.4 PLS score plot of the calibration sample set (CSS) 
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5.3.2. Evaluation of Accuracy and Precision 

CTSS tablets were used for the accuracy and precision evaluation. A total of twelve 

tablets (four concentration levels, three tablets per level) prepared using lab scale 

equipment, were used. Tablet compression was performed manually by placing powder 

in a die while manual force was applied through the pressure of another die. Both sides 

of the tablets were analyzed since the embossing on the dies are different and this could 

have an impact on the NIR scattering. Six spectra per concentration level (one spectra 

per tablet side) were acquired. Table 5.4 shows the accuracy and repeatability results for 

the CTSS using 1 and 2 PLS factors. HPLC API concentrations and RMSEP results were 

also included in the table. For the repeatability study, ten consecutive spectra were 

acquired from tablet #1, without moving the tablet.  

RMSEP results were found to be below 1.5% for all the concentrations evaluated. 

Repeatability was ≤ 0.1%. No statistical differences were obtained between the spectra 

collected from each side of the tablets. These results indicate that NIR spectra can be 

acquired to either side of the tablet. 
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Table 5.4 Accuracy and repeatability results for the CTSS using 1 and 2 PLS factors 

API target 
conc. (% LC) 

Tablet 
HPLC API 

conc. (% LC) 
NIR conc. prediction 

(% LC) (Side 1) 
NIR conc. prediction 

(% LC) (Side 2) 
NIR SD (both 

sides combined) 
RMSEP 

(%) 
Repeatability 

(SD %) 

1 PLS factor 

71 

1 72.16 72.48 72.04 

1.1 0.6 0.1 2 73.14 73.35 73.13 

3 73.75 74.90 74.47 

98 

1 98.26 98.12 98.02 

1.4 1.2 0.1 2 99.25 100.56 100.01 

3 99.10 101.14 100.75 

102 

1 104.02 103.88 103.76 

0.4 0.6 0.1 2 104.07 104.56 104.39 

3 103.23 104.48 103.76 

129 

1 128.30 126.62 126.83 

1.1 1.4 0.1 2 128.67 128.99 128.19 

3 128.26 127.05 126.16 

2 PLS factors 

71 

1 72.16 73.04 72.53 

1.3 1.2 0.1 2 73.14 74.05 73.78 

3 73.75 75.80 75.35 

98 

1 98.26 97.01 96.92 

1.5 1.0 0.1 2 99.25 99.77 99.25 

3 99.10 100.28 99.86 

102 

1 104.02 103.52 103.36 

0.5 0.7 0.1 2 104.07 104.51 104.39 

3 103.23 104.43 103.73 

129 

1 128.30 126.44 126.73 

1.2 1.3 0.1 2 128.67 129.36 128.58 

3 128.26 127.38 126.50 
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5.3.3. Robustness Study 

The NIR calibration model was evaluated for robustness. Tablet relaxation and 

exposure to the environment were evaluated. Spectra were collected from ten 100% LC 

tablets, right after compaction. After spectra collection, tablets were left on the NIR 

carrousel, exposed to the environment, (room temperature, RH 56%) until NIR spectra 

was measured again after 2, 3, 4, 5, 9, 19, 77, and 99 hours of being compressed. Table 

5.5 shows the results for the robustness evaluation. Results show that NIR predicted 

concentrations of tablets from hour 1 through hour 5 are statistically similar (p-value < 

0.300). However, after five hours, the NIR predicted concentrations are statistically 

different (95% confidence interval) with a p-value < 0.003. These results demonstrate that 

the developed NIR calibration model is not suitable to be used in an environment where 

certain events could delay the analysis of tablets for more than five hours, after 

compaction. Therefore, the model required an optimization to extend the time range 

where the model could accurately predict the API concentration of tablets. 

Table 5.5 Robustness evaluation results: tablets exposed to the environment 

Time interval (hours) 
Average NIR conc. prediction 

(% LC) n=10 
Standard deviation (%) 

1 PC 

1 97.21 0.67 

2 97.59 0.65 

3 97.47 0.72 

4 97.23 0.60 

5 97.22 0.82 

9 96.48 0.60 

19 95.39 0.28 

77 93.92 0.67 

99 93.61 0.62 

Relative humidity was maintained within limits throughout the experiment since this was 
performed in a controlled production environment. Hours 1-5: p-value < 0.297 / Hours 1-
9: p-value < 0.002 / Hours 1–99: p-value < 0.000 

A second study was designed to evaluate the NIR predicted concentrations of tablets 

protected from the environment after compaction and between analyses. Spectra were 
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collected from a new set of ten 100% LC tablets, right after compaction. After spectra 

collection, tablets were placed inside sealed bags and re-measured after 2, 4, 8, 18, 25, 

48, and 113 hours of being compressed. Table 5.6 shows the results of the NIR predicted 

concentrations obtained for the protected tablets. Results showed no statistical difference 

up to 25 hours with a p-value < 0.200. The tablets NIR predicted concentrations started 

to decrease after 25 hours of being compressed, even if protected from the environment. 

These results indicate that tablets predictions will be accurate for approximately 20 hours 

after compaction if the tablets are stored in sealed bags. However, this practice of placing 

tablets in sealed bags is not practical during RTRt activities. Therefore, the NIR calibration 

model developed was optimized. 

Table 5.6 NIR predicted concentrations of stored tablets 

Time interval (hours) 
Average NIR conc. prediction 

(% LC) n=10 
Standard deviation (%) 

1 PC 

1 97.46 0.58 

2 97.81 0.97 

4 97.82 1.00 

8 97.32 0.79 

18 97.42 1.21 

25 97.00 0.53 

48 96.05 0.46 

113 96.55 0.90 

Hours 1-25: p-value < 0.2 / Hours 1-48: p-value < 0.001 / Hours 1–113: p-value < 0.001 

5.3.4. NIR Calibration Model Optimization #1: Spectral Range 

A spectra comparison was performed using tablet spectra collected at the beginning 

of the study (1 hour) and at the end of the study (113 hours) to understand why the API 

concentration decreased with time. Figure 5.5 shows the spectra compared. Differences 

between the spectra were observed in the free OH second overtone (10900 – 10592 cm-

1) spectral region. These differences could be related to the exchange of solvate 

molecules with water in the environment [50]. The spectral range of the NIR calibration 

model developed was optimized to reduce the effect that tablet humidity has on the NIR 
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predicted concentration. The spectral range was optimized from 12034 – 10592 cm-1 to 

12034 – 10900 cm-1.  
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Figure 5.5 Comparison of spectra of tablet(s) stored for the 1st and the 113 hours. 
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The spectra acquired of tablets under controlled storage conditions were also 

predicted using the optimized NIR calibration model. Table 5.7 shows the NIR predicted 

concentrations of the ten stored tablets (same from Table 5.6). Results showed that the 

NIR predicted concentrations remained statistically similar throughout 113 hours (p-value 

< 0.130). This demonstrates that the optimized NIR calibration model yields more robust 

results than the ones obtained prior to performing the spectra optimization. More accurate 

and precise results were obtained when using the optimized NIR calibration model. 

Table 5.7 NIR predicted concentrations of tablets under controlled storage conditions 

Time interval (hours) 
Average NIR conc. prediction 

(% LC) n=10 
Standard 

deviation (%) 
Bias 

(% LC) n=10 

1 99.23 0.46 0.77 

2 99.36 0.81 0.64 

4 99.32 0.95 0.68 

8 99.07 0.58 0.93 

18 99.31 1.13 0.69 

25 98.89 0.43 1.11 

48 98.52 0.44 1.48 

113 98.78 0.84 1.22 

Hours 1-113: p-value < 0.130. Bias based on 100% API target concentration. 

Robustness of the optimized NIR calibration model was also evaluated using tablets 

undergoing elastic recovery post-compaction. Previous studies have evaluated the 

dimensional changes of tablets resulting of the elastic recovery that occurs after tablet 

compaction [51-53]. Elastic recovery post-compaction could affect the NIR concentration 

results due to physical changes in the tablets. It has been previously published that 

differences in tablet compaction are observed in baseline and slope changes in the NIR 

spectra [54]. Therefore, tablets were collected immediately after compression and spectra 

was acquired immediately after ejecting from the press. Spectra acquisition was 

continuously performed (tablets 1-10) for 1 hour. A total of 28 spectra per tablet were 

obtained during this first hour.  

Table 5.8 shows the NIR predicted concentrations for the spectra obtained during the 

first hour of the study. The average NIR predicted concentration was 99.11% LC with an 
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RMSEP of 0.89 and a p-value < 1.001 (variability within the time interval is much larger 

than the variability between time intervals). Results demonstrated the robustness of the 

optimized model within this first hour, as predictions are not statistically different 

throughout this time range evaluated. Therefore, tablet relaxation (elastic recovery) 

effects during this first hour do not affect the NIR predicted concentration. 

Table 5.8 NIR predicted concentrations of the tablet relaxation study (Elastic recovery) 

Tablet collection 
interval 

Average NIR conc. 
prediction %LC (n=10) 

Tablet collection 
interval 

Average NIR conc. 
prediction %LC (n=10) 

1 99.26 15 99.07 

2 99.26 16 99.10 

3 99.21 17 99.14 

4 99.25 18 99.14 

5 99.19 19 99.09 

6 99.05 20 99.09 

7 99.02 21 99.01 

8 99.08 22 99.13 

9 99.17 23 99.14 

10 99.09 24 99.05 

11 99.14 25 99.14 

12 99.11 26 99.00 

13 99.10 27 99.02 

14 99.08 28 98.99 

5.3.5. NIR Calibration Model Optimization #2: CSS 

Samples representative of the CM process were included in the CSS of the developed 

NIR calibration model to include the inherent process variations and thus increase 

robustness of the model. Figure 5.6 shows the PCA scores plot of the CM tablet samples 

(90%, 100%, and 110% LC) projected onto the optimized NIR calibration model ellipse. 

The CSS and the CM tablets are aligned in increasing API concentration. The variation 

observed in the second factor could be due to the different preparation equipment used 

(e.g. lab scale and CM process). Process differences such as compaction force, 

hardness, and thickness could affect the NIR predicted concentrations. Therefore, 

spectra of CSS tablets prepared using lab-scale equipment (95%, 100%, and 105% LC) 

were substituted with spectra of tablets prepared using the CM process (three 
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concentration levels - 90%, 100%, and 110% LC). The lab-scale tablets were substituted 

instead of keeping them in addition to the CM tablets to reduce the effect that could 

happen if a lot of weight is applied to the target or near the target concentration (center 

of model).  
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Figure 5.6 PCA scores plot of the CM tablet samples projected onto the optimized NIR calibration model ellipse. CML 
indicates samples prepared using the continuous manufacturing line
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The accuracy of both optimized NIR calibration models (spectral range and CSS 

optimizations) was evaluated using five independent tablet sets prepared using the CM 

process. These independent runs were performed on different days using different API 

and excipient lot numbers, not included in the model. Table 5.9 shows the results 

obtained using both NIR calibration model optimizations (spectral range and CSS). Run 

#5, shown under optimization #2, shows the results obtained two years after the NIR 

calibration model was optimized. Results showed that the overall NIR predicted 

concentrations of the five CM runs. obtained with the optimized NIR calibration model 

(CSS optimization), yielded RMSEP and bias values of less than 2.0% with standard 

deviations of less than 1.0%, improving the RMSEP by 50% when compared to the 

spectral range optimized model. The low bias obtained from the CSS optimized model 

demonstrates the suitability of the NIR calibration model performance. The low standard 

deviations demonstrate the high precision of the model. Therefore, the addition of CM line 

samples improved the accuracy of the model predictions, without jeopardizing its 

precision.  

A paired t-test was performed to determine if there was a statistically significant mean 

difference between the results obtained using the spectral range optimized model and the 

CSS optimized model. Statistical differences were found between both optimizations with 

p-values < 0.005 (p-value of 0.000) for all four CM runs. In addition, a paired-sample t-

test was performed between the HPLC results and the NIR predicted concentration 

obtained from both optimized models. Table 5.9 shows the HPLC results and the 

predicted concentrations obtained using both optimized models. None of the NIR 

predicted concentrations obtained with the spectral range optimized model were 

statistically similar (p-values < 0.005); however, NIR predicted concentrations obtained 

with the CSS optimized model were statistically similar for Run #1 and Run #3 (target API 

concentrations of 90% and 100% LC) with p-values < 0.060 and 0.400, respectively. 

These results confirm that including CSS samples prepared using the CM process 

increases the accuracy of the predictions. 
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Table 5.9 Comparison of results obtained from both NIR calibration model optimizations 
(spectral range and CSS) 

Run # 
Average HPLC 

conc. (% LC) n=10 

Average NIR API 
prediction (% LC) 

n=10 
SD (%) RMSEP Bias (%) 

Optimization #1: spectral range 

1 90.1 88.3 0.8 2.0 1.9 

2 97.2 94.8 0.4 2.4 2.4 

3 100.0 98.4 0.4 1.6 1.5 

4 109.7 106.6 0.9 3.2 3.1 

Optimization #2: CSS 

1 90.1 89.6 0.8 1.0 0.6 

2 97.2 96.2 0.4 1.1 1.0 

3 100.0 99.8 0.5 0.5 0.2 

4 109.7 108.0 0.9 1.9 1.7 

5 100.1 100.2 0.4 0.4 0.1 

Run # 1 p-value < 0.05 / Run # 3 p-value < 0.30 
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5.4 Conclusion 

This study provides additional evidence of the high accuracy provided by NIR 

spectroscopy when used to predict drug concentration in tablets. An excellent agreement 

of results was obtained between HPLC and the CSS optimized model. The importance of 

including the expected process variability in the calibration model, was demonstrated. 

Results demonstrated that including CSS samples prepared using the CM process, 

added enough process variation to the model leading to more accurate predictions of CM 

tablets. This work also demonstrated the importance of selecting the correct spectral 

range for model development based on the analyte (API) of interest to avoid the effect of 

water bands associated with the exchange of solvate molecules with water in the 

environment. 
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6 Concluding Remarks 

6.1 Contributions 

The studies presented under this dissertation were part of the investigations 

performed for the implementation of the first commercial FDA approved continuous 

manufacturing line in Puerto Rico. Throughout the years, chemistry and chemists have 

been linked to laboratory work, analytical testing of manufacturing products, and quality 

assurance, after production is completed. However, this dissertation demonstrates the 

need of chemists in the manufacturing process to develop innovative ways to monitor 

chemical and physical properties of materials during pharmaceutical productions. 

The implementation of continuous manufacturing processes delivers high quality end 

products. However, this is not the only advantage. Figure 6.1 shows some of the benefits 

that accompany the implementation of continuous manufacturing processes. These 

percentages are based on the actual benefits achieved due to the implementation of the 

CM process discussed in this dissertation. 
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Figure 6.1 Plot of the reduction (in percentage, %) achieved due to the implementation of a continuous manufacturing 
process 


