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Abstract 

 
Thermal springs are high temperature aquatic environments.  The prokaryotic 

diversity in these environments has been studied world wide. However, there are few 

studies on the prokaryotic diversity in thermal springs in Puerto Rico. The main objective 

of this research was to isolate and characterize alkalithermophilic bacteria from the main 

thermal spring in Coamo Puerto Rico. To determine the culturable diversity of these 

bacteria, thermal spring water samples were filtered, plated into Thermus medium (TM) 

and Alkaline Yeast Extract Malt Medium (AYEMM) and incubated at 70ºC.  Selected 

isolates were characterized by standard microbiological techniques, by scanning electron 

microscopy, and by growing at optimal pH and different temperatures.  Molecular 

analysis using Restriction Fragment Length Polymorphism (RFLP) patterns of a 

Polymerase Chain Reaction (PCR) amplicon containing the 16S rDNA region was also 

used to classify the isolates. Taxonomic results indicated that the isolates belonged to the 

Bacteria Domain. All the 185 strains recovered represented the spore forming genus 

Geobacillus. This genus has been reported from other hot springs and during this study it 

was recovered recurrently and was the most abundant in all the three sampling sites of the 

spring. Many of these isolates showed a wide range of growth at various temperatures 

and pH values. The ability of these isolates to grow at high temperatures might indicate 

that they represent the extremophilic diversity of the thermal springs.  The Bacterial 

diversity was also analyzed by culture independent methods like 16S rDNA 

environmental clone libraries and Terminal Restriction Fragment Length Polymorphism 

(TRFLP). Clone libraries were very difficult to achieve due to the low diversity present in 

the community and chemical complexity of the sample. However, after protocol 
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optimization some clones were obtained and in silico analysis was performed. 

Environmental sequences belonging to the β-Proteobacteria were the most frequent 

Operational Taxonomic Units (OTUs), but some OTUs were closely related to members 

of the Bacteroidetes and γ-Proteobacteria. In addition, some cyanobacterial OTUs were 

obtained from this environment. TRFLP patterns were also used to study structure and 

diversity of the 16S rDNA microbial community.  The profiles obtained with different 

enzymes were similar among all the springs, suggesting that the community structure was 

very homogeneous throughout the sampling area. The combination of morphological, 

physiological and molecular approaches was very useful to describe the bacterial 

community present at the thermal spring of Coamo Puerto Rico.  
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Resumen 
 
 

Las aguas termales se caracterizan por ser ambientes acuáticos con altas 

temperaturas.  La diversidad procariota en estos lugares ha sido estudiada alrededor del 

mundo.  Sin embargo, existen pocos reportes enfocados en la diversidad bacteriana 

presente en este tipo de ambiente en Puerto Rico. El objetivo principal de este estudio lo 

fue el aislar y caracterizar bacterias alcalino-termofílicas presentes en las aguas termales 

de los Baños de Coamo en Puerto Rico. Para determinar la presencia de bacterias en estas 

aguas termales, las muestras fueron filtradas y colocadas en Thermus medium y Alkaline 

Yeast Extract Malt medium e incubadas a 70º C. Los aislados seleccionados se 

caracterizaron utilizando microscopía de luz, rastreo y algunas pruebas fisiológicas tales 

como: pruebas bioquímicas, pH óptimo y temperaturas de crecimiento. Un análisis 

molecular fue realizado utilizando patrones de RFLP de los productos de PCR 

conteniendo la región 16S del rDNA para poder clasificar los aislados.  Los resultados 

taxonómicos indicaron que todos los aislados pertenecían al Dominio Bacteria. Los 185 

aislados recuperados representaban a la bacteria formadora de esporas Geobacillus.  Este 

género  ha sido reportado en otros manantiales termales y fue recuperado con una alta 

frecuencia, siendo el más abundante en las tres áreas de muestreo de estas aguas.  Muchos 

de los aislados demostraron una gran amplitud de crecimiento a distintas temperaturas y 

pH.    La habilidad de estas cepas de crecer a altas temperaturas, podría indicar que 

representan la diversidad extremófila de las aguas termales.  La diversidad bacteriana 

también fue analizada mediante técnicas independientes de cultivo, como las librerías 

genómicas utilizando la subunidad ribosomal 16S y TRFLP. Las librerías genómicas 

fueron difíciles de obtener debido a la baja diversidad de microorganismos presentes en 
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esta comunidad y la complejidad química de la muestra.   Sin embargo, luego de la 

optimización experimental se obtuvieron algunos clones y estos fueron analizados in 

silico.  Las secuencias ambientales pertenecientes a las β-proteobacterias.   fueron UOTs 

más frecuentes, algunos estrechamente relacionados a  miembros de los Bacteroidetes y 

algunas γ-proteobacterias.  En adición a estos, otros UOTs relacionados a  las 

cianobacterias fueron recuperados de este ambiente.  Patrones de TRFLP fueron 

utilizados también para estudiar la estructura y diversidad del 16S rDNA de la comunidad 

de este ambiente.  Los patrones obtenidos con las distintas enzimas fueron similares en 

casi todas las area de muestreo de las aguas termales, indicando que la estructura de la 

comunidad es muy homogénea a través del área de muestreo.  La combinación de 

técnicas morfológicas, fisiológicas y moleculares fueron de gran utilidad  para describir la 

comunidad bacteriana de las aguas termales de Coamo Puerto Rico.  
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Thermal springs are high temperature aquatic ecosystems.  These water bodies are 

widely distributed throughout the world but are most numerous in areas that are 

volcanically active, such as hot springs (Saha, 1993).  These environments are of special 

interest from an ecological and evolutionary point of view, as inhabiting microorganisms 

that have developed mechanisms to thrive at different temperature ranges according to 

their optimal growth requirements.  

In general microorganisms have been grouped in different categories: 

psychrophiles, mesophiles, thermophiles and hyperthermophiles (Kristjansson and 

Stetter, 1992).  In addition to these categories, they can be grouped as acidophiles and 

alkaliphiles according to their growth requirements at different pH ranges (Horikoshi, 

1998). 

Thermophiles have an optimum growth temperature of around 50ºC with a 

maximum around 70ºC and a minimum of about 20ºC (Stetter, 1998).  On the other hand, 

alkaliphiles prefer high pH, and require high sodium ion concentrations for survival 

(Kitada et al., 2000).  The optimum pH for most alkaliphiles is about 10 (Horikoshi, 

1998).  Many alkaline environments can be placed into several broad categories 

depending on the nature of the process generating alkalinity (Jones et al., 1998).  

Many studies concentrate their efforts documenting diversity of thermophilic 

microorganisms from hot springs and hydrothermal systems around the world.  One of 

the most studied springs are those at the Yellowstone National Park (Reysenbach et al., 

2000). These hot springs have unique characteristics and can vary in temperature, flow 

rate and chemistry of the water (Brock, 1994).   The most common prokaryotic group 

found in these environments is the Aquificales (Huber et al., 1986).  On the other hand, 
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alkaliphiles are widely distributed throughout the world and have been isolated from a 

variety of biotopes, including mesophilic and neutrophilic soils and sediments (Wiegel & 

Kevbrin, 2004), but they can also be found growing at thermal waters where the 

temperature is very high. These microorganisms are named alkalithermophiles depending 

on their adaptation to grow in the presence of conditions of high pH and temperature 

(Wiegel & Kevbrin, 2004). 

Alkalithermophiles have been studied recently because they are the subset of 

extremophiles that are adapted to two extreme conditions; a combination of alkaline and 

thermobiotic growth conditions. Their adaptation to both high pH and high temperature 

draws the attention not only because they are potential sources of industrially valuable 

enzymes but also because of their adaptive mechanisms to extreme environmental 

parameters.  Thus, they could function as model organisms for extraterrestrial life in 

some environments and for theories on the origins of life (Wiegel & Kevbrin, 2004). 

Reports on the microbial diversity concerning these organisms in the Caribbean 

are scarce.  One of such studies dealt with the properties of the microbial communities 

present in the volcano of Montserrat Island.  Atkinson et al., (2000) found a variety of 

heterotrophic and chemolithotrophic thermophilic bacteria at this place.  Most of the 

bacteria recovered in pure culture were already known acidophiles and neutrophiles, but a 

novel iron-oxidizing species of Sulfobacillus was characterized. This bacterium was the 

first Sulfobacillus species having a maximum growth temperature of 65°C, which is 

highest, reported for this moderately thermophilic genus (Atkinson et al., 2000). 

To our knowledge there are no published reports about the prokaryotic microbial 

diversity present at the Coamo thermal springs in Puerto Rico besides the presence of 
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cyanobacteria (Almodóvar, 1958). The study of the heterotrophic bacteria present in this 

interesting and unusual site by applying morphological and molecular analyses might 

provide important information about the prokaryotic diversity that inhabits this extreme 

environment.  Therefore, the main goal of this research was to survey the 

alkalithermophilic prokaryotes isolated from the alkaliphilic thermal springs at Coamo, 

Puerto Rico, using traditional methods such as morphological and physiological studies 

combined with molecular techniques. Studying this type of habitat is of great interest 

because ancestral alkalithermophiles could have been one of the earliest forms of life 

(Kevbrin et al., 1999).  Moreover, they can be regarded as a model organism for the study 

of possible extraterrestrial life (Kevbrin et al., 1999).  The isolation and characterization 

of these microorganisms could provide crucial knowledge on the diversity of this group 

in this unexplored thermal environment that might also contain sources of products with 

biotechnological importance.  
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Literature Review 

 
Life at Extreme Conditions 

 
The majority of microbial populations that inhabit extreme environments belong 

to the domains Archaea and Bacteria.  These habitats are distinguished by means of 

extreme conditions like salinity, temperature, pH, and oxygen concentrations (Stetter, 

1998). Microorganisms not only growing under but requiring unusual environmental 

conditions for growth are grouped under the term extremophiles. Extremophiles have 

been defined based on the nature of the environments where they are found. For example, 

extremophiles that live under high pressure are called piedzophiles. Those that require 

cold temperatures for growth and reproduction are called psychrophiles, and those that 

have adapted to high temperatures are called thermophiles. Microorganisms associated to 

acidic environments are called acidophiles, whereas those found in highly alkaline 

conditions are alkaliphiles. The adaptation to thrive in these conditions draws the 

attention because of their mechanisms to flourish in environments with combined 

conditions such as pH and temperature (Wiegel & Kevbrin, 2004). 

Thermal Environments 

The most common thermal biotopes are volcanically and geothermally heated 

hydrothermal systems such as solfataric fields, neutral hot springs, and submarine saline 

hot vents.  Hot solfataric fields consists of one upper layer that contains significant 

amounts of oxygen, which present an ochre color owing to the presence of the ferric ion, 

and a layer below that shows a blackish-blue color due to the presence of ferrous ion. 

Submarine thermal systems consist of hot fumaroles, springs, sediments, and hot vents 

with temperature up to 400°C (Stetter, 1998). Other submarine hydrothermal systems 
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usually contain high concentrations of sodium chloride and exhibit a slightly acidic to 

alkaline pH between 5-8 (Horikoshi, 1998).   

Thermal environments differ in temperature, flow rate, and chemistry of the water 

(Brock, 1994).  The Yellowstone National Park (Wyoming, USA) has one of the highest 

concentrations of hot springs in the world.  Hot springs can be found also at Norris and 

Mud Vulcano in Italy,  Kamchatka in Russia (Wiegel, 1990), along the west coast of 

India (Saha, 1993), Sao Michel in Azores, submarine hot springs in Iceland, the Mount 

Grillo at Baia Naples in Italy (Romano et al., 2004), and various places in the Caribbean.   

Other examples of thermal environments are the hydrothermal vents at Guaymas 

Basin and the east Pacific Rise in México. The hydrothermal vents are located in shallow 

and abyssal depths (Stetter, 1998).  These environments also have a unique chemical 

composition such as high content of sulfur and hydrogen sulfide. 

In Puerto Rico there is at least one natural environment that can be considered 

alkalithermophilic. This habitat is the Coamo thermal springs located in the Municipality 

of Coamo (in south central Puerto Rico), which forms the east-early trending of the 

Cordillera Central (Glover, 1971).  Most of this area lies on the flank of a much-faulted 

geanticlinal volcanic core that is partly overlapped by a sequence of carbonate rocks and 

sediments (Glover, 1971).  

In this site, water resurfaces as a thermal spring having a constant temperature of 

44°C. The chemical composition of the water has been determined previously and it 

contains carbonates, sulfates, calcium, magnesium, sodium, potassium, fluoride, 

manganese, and chloride.  The analysis on these thermal springs has shown that they 

 



 
 

7

 
contain high amounts of carbonates, causing the pH to be around 8.5-9 (Quiñones & 

Guzmán, 1983).   

 
Biotic Communities in thermal environments: Bacteria, Archaea and Eukarya 

A diversity of microorganisms can thrive in thermal environments. Microbial life 

in these habitats is represented by the three domains, in both high pH and high 

temperature conditions. In Yellowstone National Park, several taxonomic studies on the 

characterization of members of Bacteria, Archaea and Eukarya had been conducted 

(Ward, 1998).   Most of the microbiological research at Yellowstone has involved studies 

on prokaryotes.   These studies have been focused particularly on bacterial diversity, 

including cyanobacteria, anoxygenic phototrophs, and aerobic and anaerobic 

chemoorganotrophs (Hugenholtz et al., 1998; Ward, 1998).  Munster et al. (1986) 

reported preliminary taxonomic studies on Thermus strains isolated from this habitat.  

There also have been reports on several unusual thermoacidophiles, such as Sulfolobus 

acidocaldarius (Ward, 1998).  

  Several taxonomic studies had been performed on diverse hot springs.  Mono Lake 

in California, an alkaline, hypersaline and closed basin, was the site of a study performed 

by Gorlenko et al. (2004). A novel species, Anaerobranca californiensis, was then 

isolated from the lake’s sediment.  Another hot spring that has been studied is Kamchatka 

at Russia, where Thermoproteus uzoniensis, an extremely thermophilic bacterium was 

isolated (Bonch-Osmolovskaya et al., 1990).  In Naples, Italy, there have also been 

reports of thermophilic slightly halophilic species from saline hot springs (Tenreiro et al., 

1997).   
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A study of fresh water and terrestrial Cyanophyta from Puerto Rico was performed 

by Almodóvar (1958), including many aspects of this group in the Coamo thermal 

springs.  Several species belonging to the genera Nostoc, Fisherella, Hapalosiphon, 

Amphithrix, Cylindrospermum, Scytonema, Microcoleus, Schizothrix, Oscillatoria, 

Phormidium, Plectonema, and Symploca were reported in this study. Representatives 

from the Diatomaceae can also be found in this environment. Hagelstein (1938), reported 

the presence of diatoms in the water that flows away from the cliff and the pools formed 

at the top and base, but there are no diatoms in the warm water. 

Numerous thermophilic microorganisms have also been isolated from chimneys, 

sediments, and ambient water of hydrothermal vent fields (Reysenbach et al., 2000). 

Thermotoga maritima was described from marine thermal vents at Vulcano (Huber et al., 

1986).  A similar organism, Thermotoga neapolitana was isolated from a submarine 

thermal vent at Lucrino, Italy (Belkin et al., 1986; Jamnasch et al., 1988).   

Another specific group of thermophiles, including some bacilli, have also been 

reported from natural and artificial high temperature biotopes (Caccamo et al., 2001; 

McMullan et al., 2004).  These thermophilic bacilli belonging to Bacillus genetic group 

5, have been reclassified as members of the recently named genus Geobacillus 

(Mcmullan et al., 2004).  Most Geobacillus species are widely distributed and have been 

successfully isolated from continents where geothermal areas occur (McMullan et al., 

2004; Sharp et al., 1992).  Geobacilli are also isolated from shallow marine hot springs 

and from deep-sea hydrothermal vents.  Maugeri et al. (2002) previously described the 

isolation of three novel halotolerant and thermophilic Geobacillus strains from three 

separate shallow marine vents of the Eolian Islands, Italy.  High temperature oilfields 
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have also yielded strains of Geobacillus, where two novel species, G. subterraneus and 

G. uzenensis, were isolated from the Uzen oilfield in Kazakhstan (Nazina et al., 2001; 

2004).  In addition, Geobacillus species have also been recovered from temperate soils 

(McMullan et al., 2004)  and artificial hot environments such as hot water pipelines, heat 

exchangers, waste treatment plants, burning coal refuse piles, and bioremediation biopiles 

(Maugeri et al., 2001; Obojska et al., 2002).   

On the other hand, Archaea is the least understood in terms of its diversity, 

physiology, and ecological panorama of the three primary phylogenetic domains.  

Although many species of Crenarchaeota (Woese et al., 1990) have been isolated, they 

constitute a relatively tight-knit cluster of lineages in phylogenetic analyses of rRNA 

sequences. It seemed possible that this limited diversity is merely apparent and reflects 

only a failure to culture the organisms, not their absence. This approach obviates the need 

for cultivation to identify organisms. The analyses documented the existence not only of 

species belonging to well-characterized crenarchaeal genera or families but also of 

crenarchaeal species for which no close relatives have so far been found. The large 

number of distinct archaeal sequence types retrieved from this single hot spring was 

unexpected and demonstrates that Crenarchaeota is a much more diverse group than 

previously suspected. These results have a strong impact on the concepts of the 

phylogenetic organization of Archaea.  

The use of molecular phylogenetic approaches in microbial ecology has 

revolutionized the view of microbial diversity at high temperatures and has led to the 

proposal of a new kingdom within the Archaea, namely the "Korarchaeota" (Reysenbach 

et al., 2000). Their report consisted on the occurrence of another member of this archaeal 
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group and a deeply rooted bacterial sequence from a thermal spring in Yellowstone 

National Park.  The phylotype is a lineage within the Aquificales.  In situ hybridization 

with bacterial-specific and Aquificales-specific fluorescent oligonucleotide probes 

indicated that the bacterial populations dominated the community and most likely 

contributed significantly to biogeochemical cycling within the community (Reysenbach 

et al., 2000). 

Representatives from the Eukarya domain can also be found in thermal 

environments.  Eukaryotic microbial life may be found actively growing in almost any 

extreme condition where there is a sufficient energy source to sustain it, with the 

exception of high temperature (>70ºC). For most eukaryotes, therefore, a central 

requirement for growth in a habitat is sufficient energy flowing through the biosphere to 

support a second trophic level, as illustrated by the Simi and Nakuru soda lakes. 

 Colonization of extreme habitats is not normally restricted to a single taxonomic 

group, with the exception of xerophytic habitats which are only tolerated by fungi. 

Eukaryotic cells are exceedingly adaptable and not notably less adaptable than 

prokaryotes, although most habitats have not been sufficiently well explored for sound 

generalizations. The best studied high-temperature eukaryote is the acidophilic 

phototroph Cyanidium caldarium (Seckbach, 1994). Its exact taxonomic affiliations are 

still unclear, but it is generally grouped with the "red algae" (rhodophytes) since its 

chloroplasts possess chlorophyll-a and C-phycocyanin. Brock (1978) carefully examined 

the growth and ecology of this organism and determined its optimal growth temperature 

was 45ºC and the maximum temperature at which growth occurred was 57ºC. Earlier 

reports of growth at much higher temperatures, 75-80˚C (Copeland, 1936), were 
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attributed by Brock and his colleagues to either the measurement of temperature away 

from the organisms themselves, or to the temperature having increased and the organisms 

being observed in the process of dying. It is interesting to note that Brock isolated 

numerous strains of C. caldarium growing at various temperatures and found that they all 

had the same optimum growth temperature; they do not seem to have adapted to growth 

at higher temperatures. It is also interesting to note that the niche occupied by Cyanidium, 

of hot acid conditions, does not seem to have any competition for the available resources 

in that thermophilic cyanobacteria require alkaline conditions for growth. It is also 

noteworthy that at the time he was writing (Brock, 1994), all the hot, acid soils and 

waters in the world were colonized by Cyanidium, which seem identical, except for the 

acid springs in Hawaii, which seem to be devoid of life. Brock suggests that this might 

simply be because Hawaii is geologically recent and far distant from other hot springs, so 

that there has not yet been an opportunity for Cyanidium to colonize this particular 

habitat. There is a wide variety of other eukaryotes living at somewhat less extreme 

temperatures (Tansey & Brock, 1978).  

Brock (1994), stressed the difficulties of estimating growth temperatures from 

ecological observations. There are many thermophilic fungi which have been isolated 

from compost and similar environments where temperatures can exceed 80ºC, but, until 

laboratory cultures demonstrate growth at these temperatures, the observations should be 

treated with caution. The upper limit for thermophilic fungi seems to be around 60ºC 

(Tansey & Broock, 1978). 

The polychaete Alvinella pompejana, (Pompeii worm) lives in burrows on 

hydrothermal vent chimneys with a strong temperature gradient, which averages 68ºC but 
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has frequent growth at temperatures exceeding 81ºC (Cary et al., 1998), although they do 

leave their burrows to feed. It is possible that, like Heteromita (soil flagellates), the worm 

conducts temperature-sensitive biochemical processes during those times when the 

temperature is more modest. 

 Unlike the situation in Cyanidium, three species of flagellates have been raised to 

grow at 70ºC by incremental increases in cultivation temperature (Dallinger, 1887). This 

study reported more than 100 years ago has not been repeated, but Dallinger noted that 

increasing the temperature in too large steps, or before the cells had fully adapted to the 

current temperature, killed the cultures. This phenomenon of incremental adaptation to 

growth temperature has also been noted for psychrophiles (Lee & Fenchel, 1972).   

There is a vigorous debate about whether it is possible for eukaryotic architecture to 

evolve as a true hyperthermophile (Forterre, 1995; Forterre et al., 1995; Miller & 

Lazcano, 1995). The crux of the debate revolves around the ability of the central 

biochemical machinery, nucleic acid transcription, and translation, to operate at these 

high temperatures. Clearly the cell's membrane composition must change to retain the 

required degree of fluidity for proper function (Sprott et al., 1991). Also, all 

hyperthermophiles contain reverse gyrases, which induces positive super-coiling of DNA 

that enhances its thermal stability (Bouthier de la Tour et al., 1991; Forterre et al., 1996; 

Forterre et al., 1995).  It seems clear that all the protective mechanisms operating, 

allowing cells like the archaeon Pyrococcus to grow above 100ºC are not well 

understood, and indeed what the actual upper limit for life might be (Erauso et al., 1996; 

Stetter et al., 1990). The half-life of unprotected RNA falls very rapidly with increasing 

temperature (Forterre et al., 1995) and as direct consequence eukaryotes face two major 
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problems. First, following transcription, many eukaryotic genes are subjected to post-

transcriptional modification, a process which takes a certain amount of time. However, a 

number of hyperthermophilic archaea post-transcriptionally modify the product of their 

tRNA genes in a manner which is reminiscent of the eukaryotes (Edmonds et al., 1991). 

Furthermore, the essential organization of the transcriptional apparatus predates the 

divergence of the Archaea and the Eukarya (Ciaramella et al., 1995). Second, the mRNA 

has to make its way out of the nuclear membrane in order to be translated by ribosomes. 

Any hyperthermophile would have to possess a mechanism to protect the mRNA from 

hydrolysis. From an evolutionary perspective, if the Archaea and the Eukarya are sisters 

taxa then the potential to colonize high-temperature environments presumably existed in 

their last common ancestor and there is therefore the potential in the eukaryotic lineage to 

do so too (Ciramella  et al., 1995).  

Two African soda lakes, with a pH of about 10, have been studied for their 

microbial populations: Lake Nakuru and Lake Simbi (Curds et al., 1986; Finlay et al., 

1987).  The former lake supports a very high population of flamingoes, counted in 

millions, feeding largely on cyanobacteria (Brown, 1975) (mostly Spirulina) growing in 

the lake. In this rich environment, there were at least 20 different heterotrophic species of 

protists, and three species of rotifers. Lake Simbi, on the other hand, was stratified with 

an extensive hypolimnion and there were far fewer flamingoes. The diversity and 

abundance of eukaryotic species was much lower than at Lake Nakuru. Samples from 

populations at Lake Nakuru, grew readily in the laboratory in a medium designed to 

mimic the ionic strength and pH of the lake, where several species not included in the 

above surveys were observed after enrichment.  The diversity and abundance are in the 
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same range as similar studies on non-soda lakes in the same region of Africa (Curds et 

al., 1986).  

Extrapolating from the observation that Cyanidium maintains its internal milieu at 

close to neutral pH, one might speculate that at pH 10 these cells were able to resist the 

influence of the external medium on their internal chemistry. Eukaryotes are now 

accepted as being the product of symbiotic events, which are normally thought of as 

between an eukaryote and a prokaryote (as in the mitochondrion or plastid, for instance). 

Many eukaryotes are themselves involved in a variety of intimate associations and there 

is some evidence that this close relationship is stressful, or in this context extreme 

(Douglas, 1996). There are many highly evolved groups of parasites which have adapted 

to these stresses and now cannot grow outside their hosts, and thus, can be considered to 

be living in an extreme habitat.  

Adaptation of Thermophiles to Thermal Conditions 

The modifications to protein structure for survival at extremes of temperature 

have been extensively reviewed (Fields, 2001; Jaenicke & Buhm, 1998), with most 

research into the field of thermophilic enzymes (thermozymes) (Adams, 1993; Burg et 

al., 1998).  As thermophilic microorganisms cannot shield their internal environment 

from the external temperature, the cellular components have adapted to cope with 

elevated temperatures. Studies of extremophilic proteins have revealed no structural 

motifs, covalent modifications, or additional amino acids that would explain the ability of 

the proteins to function at extremes. Analyses of structural data have shown that a 

redistribution of the same forces that ensure stability in mesophilic environments, and 

changes in protein-solvent interaction, are sufficient to maintain structural integrity at 
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temperature extremes.  This approach allows rapid modification of enzyme stability in 

response to environmental change by simply modifying the concentration of solutes, and 

allows the organism to adapt to new thermal niches (Fields, 2001). 

High temperatures lead to an increase in the fluidity of the cellular membrane. 

Excessive membrane fluidity is proposed to lead to "leaky" membranes, and a 

corresponding loss of function of membrane proteins.  In thermophilic bacteria, fatty 

acids are more saturated and longer than mesophilic fatty acids. Polar liquids are also 

enriched in carbohydrates and contain a greater proportion of methyl-branched fatty acid 

chains (Mermelstein & Zeikus, 1998). The archaeal cytoplasmic membrane contains 

unique ether lipids that are temperature and degradation resistant. They are also resistant 

to mechanical degradation and high salt concentrations, making these lipids more suitable 

for the membranes of extreme microorganisms than eubacterial ester-type lipids 

(Vossenberg et al., 1998).  

Alkaliphiles keep their internal pH near neutral and require high concentrations of 

sodium ions. This indicates that the proteins on the cellular surface must be adapted to pH 

extremes. The maintenance of pH homeostasis is an important topic in extremophile 

research, and several mechanisms have been suggested to play a role (Kitada et al., 

2000). Sodium dependent transport systems have been reported, which generate a sodium 

motive force via H+/Na+ antiport systems. Internal H+ is exchanged with Na+ by the cells, 

and Na+ then accompanies substrates into the cells (Horikoshi, 1998). 

The cell wall of extremely thermophilic archaea has been shown to be composed 

of an "S-layer" structure. This is a simple, regular two-dimensional lattice of 

glycoproteins that covers the cell surface, and leaves no periplasmic space. The 
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glycoprotein layers are highly resistant to mechanical and chemical degradation, and 

spontaneously reassemble due to strong subunit interactions (Herbert & Sharp, 1993). 

The cell wall of an alkaliphilic Bacillus was recently shown to contain an acidic 

teichuronopeptide polymer, which serves as a barrier to ionic flux and plays a role in pH 

homeostasis (Kitada et al., 2000). Several alkaliphilic cell walls also contain a large 

amount of acidic amino acids. The acidic charges on these components may act as 

charged membranes, reducing the pH on the cell surface between 8 and 9 (Horikoshi, 

1998) allowing the cell to maintain a neutral internal pH. 
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Part I.  Isolation and characterization of the culturable thermophilic 

prokaryotic diversity present at the Coamo thermal springs 
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Material and Methods 

I. Description of the thermal springs at Coamo, Puerto Rico 

The Coamo area encompasses about 518 km2 in south-central Puerto Rico, eastern 

most of the Greater Antilles (Glover, 1971) (Figure 1.1). It is approximately bounded on 

the north by the east-trending crest of the Cordillera Central and on the south by the shore 

of the Caribbean Sea (Glover, 1971).  The thermal waters are located in this municipality, 

where they resurface as thermal springs (Figure 1.2).  The origin of these thermal springs 

is not totally clear, however, there are some theories about the reasons of their existence 

(Giusti, 1971).  The most accepted theory is based on a geological fault in this area and 

the natural thermal gradient that exists on the terrestrial cortex (Quiñones & Guzmán, 

1983).  

II. Sample processing and isolation of alkalithermophilic bacteria 

The Thermus medium (TM) and Alkaline Yeast Extract Malt medium (AYEMM) 

were selected for this study. TM consisted of 8.0 g/L peptone; 4.0 g/L yeast extract and 

2.0 g/L NaCl, pH 7.5, adjusted with 1M NaOH.  AYEMM consisted of 10g/L malt 

extract; 4.0 g/L yeast extract; 4.0 g/L glucose, pH 9.0, adjusted with Na2CO3, 10% (w/v) 

solution. For solid media, 12g/L of gelrite and 1.62 g/L of MgCl2 were added (Lin & 

Casida, 1984).  

During August 2004, an assessment of three different sites of the thermal springs in 

Coamo, was performed (Figure1.2). For microbial isolation, five samples containing one 

liter (1L) of thermal water were collected (in triplicate) at the main water stream in 
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Coamo, from the three different sampling points and during different seasons of the year.  

The sampling was performed using sterile Whirl Pack® bags.  One liter of each sample 

was filtered through 0.45 µm nitrocellulose membrane (Millipore ®) and transferred into 

Petri plates containing TM and AYEMM. Inoculated plates were incubated at 70˚C.  

After 3 weeks of incubation colonies were selected and purified by the quadrant streak 

plate method. Pure cultures were transferred into TM and AYEMM media for further 

biochemical and molecular analyses.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Aerial view of the thermal springs from Coamo, Puerto Rico.  Map by Roy 
Ruiz, Puerto Rico Water Resources and Environmental Research Institute                      
(PRWRERI) -UPRM.  
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b)

a) c)
    
   Figure 1.2.  Sampling areas of Coamo thermal springs: main stream (a), waterway (b),  
   and outer watercourse (c). 

III. Morphological and cultural characterization 

Gram staining was performed using heat-fixed smears.  Macroscopic characteristics 

were documented using the classical characterization of colony appearance. The 

morphology of cells was examined by Nomarsky technique and scanning electron 

microscopy (SEM) under optimal growth conditions. Electron microscopy procedures 

were performed with modifications as previously described (Díaz-Muñoz and Montalvo-

Rodríguez, 2005). The strains were examined using a JEOL JSM-541 OL SEM 

microscope at 15 kv.  
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IV. Molecular and physiological Analysis 

A. Isolation of genomic DNA 

Isolated strains were grown in TM and AYEMM and incubated at 70°C for 24 hrs. 

DNA was extracted from cells using lysis buffer (40mM Tris-acetate pH 7.8-8.0, 20mM 

sodium-acetate pH 8.0, 1.0mM EDTA pH 8.0 and 1% SDS) with lysozyme treatment 

followed by chloroform extraction and ethanol precipitation. The isolated genomic DNA 

was resuspended in 50 µl of molecular water and treated with RNAse (at a final 

concentration of 20 µg/µl) for 30 minutes at 37ºC. The DNA quality was checked on 

0.8% agarose gels after staining with ethidium bromide. All genomic DNAs were used as 

templates for subsequent PCR amplification. 

 

B. Polymerase chain reaction (PCR) and gel electrophoresis 

The gene encoding the 16S rRNA was amplified by PCR using the combination of 

forward primer Univ-519-F (5’-CAGCMGCCGCGGTAATWC) and the reverse primer 

Univ-1392-R (5’-ACGGGCGGTGTGTRC). The reaction mixture consisted of ddH2O, 

buffer 1X, MgCl2 2.5mM, dNTP’s 250mM, primer foward 1pmol, primer reverse 1pmol, 

DNA (10 ng), and Taq polymerase 0.026U/μl.  PCR reaction consisted of 30 cycles with 

a denaturation period of 5 min at 94°C, 1 min at 50°C and polymerization for 3 min at 72 

°C (Hezayen et al., 2002). PCR amplicons were purified using the MinElute PCR 

purification kit (USA QIAGEN Inc.), according to the manufacturer instructions, and the 

product concentration was determined using a spectrophotometer at 260 nm.  
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C. Restriction fragment length polymorphism (RFLP) 

A double digestion was performed on the amplicons using the restriction 

endonucleases Hae III, Msp I, and Rsa I. All digestions were performed for an hour 

(twice) at 37ºC in a final volume of 10 µl. RFLP patterns were verified on 3% low 

melting agarose gels after staining with ethidium bromide. 

 

D. DNA sequencing  

Selected PCR products were sent to a DNA sequencing facility in Korea (Macrogen 

®) and UPR- Río Piedras Sequencing Facility. Samples were prepared according to the 

facility instructions. 

 

E. Phylogenetic  analysis  

Distance analysis of the resulting DNA sequences were performed using the PHYLIP 

program (version 3.63) (Felsenstein, 1993).  A multiple-sequence alignment with 16S 

rRNA gene sequences of closely related organisms (as determined by BLAST analysis) 

was made by using the Clustal W program (Maidak et al., 1996).  The 16S rRNA gene 

similarity values were calculated by pairwise comparison of the sequences within the 

alignment.  Seqboot was used to generate 100 bootstrapped data sets.  Distance matrices 

were calculated with DNAdist program.  One hundred trees were inferred by using 

neighbor program.  Any bias introduced by the order of sequence addition was minimized 

by randomizing the input order.  Consense was used to determine the most frequent 

branching order.  The final tree was drawn using TREEVIEW (Page, 1996). 
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F. DNA base composition by HPLC 

For G +C content, the strain CS4 was selected as a representative of the isolated 

strains and was sent to DSMZ Germany to perform the analysis.  Strains were subjected 

to DNA isolation. The cells were disrupted with French pressure cell.  The DNA was 

purified on hydroxyapatit according to the procedure of Cashion et al., (1977). The DNA 

was degraded according to the method of Mesbah et al., (1989).  The resulting 

deoxyribonucleosides were analyzed by HPLC. 

 

G. DNA-DNA  hybridization 

The DNA-DNA hybridization for strain CS4 was performed following De Ley et al. 

(1970) with some modifications as described by Huss et al. (1983), using a model Cary 

100 Bio UV/VIS- spectrophotometer equipped with a Peltier-thermostatted 6x6 multicell 

changer and a temperature controller with in-situ temperature probe (Varian®).  The  

DNA-DNA percent similarity (in 2 X SSC + 5 % formamide at 68°C) was performed 

against Geobacillus thermodenotrificans DSM 465T, Geobacillus stearothermophilus 

DSM 22T, Geobacillus subterraneus DSM 13552T, and Geobacillus uzenensis DSM 

13351T.  

 

H. Physiological  characterization 

Optimal growth conditions were determined by cultivating the strains in TM and 

AYEMM solid media at temperatures of 40, 50, 60 and 70°C, respectively. Growth was 

monitored visually at 24h and 48h. The pH range of growth for the isolates was tested in 

TM and AYEMM media at the strain optimal temperature adjusting the pH to the 

following values: 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. The pH tolerance was tested in TM and 
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AYEMM plates buffered with 20 mM MES (pH 5.0, 5.5), PIPES (pH 6.0, 6.5), Tricine 

(pH 7.0, 7.5, 8.0) or TAPS (pH 8.0, 9.1) (Montalvo-Rodríguez et al., 2000). All 

conditions were achieved in duplicates.  

I. Biochemical tests 

All biochemical tests were carried out at 60°C unless stated otherwise. Gelatin 

liquefaction, starch hydrolysis, indole production, Voges-Proskauer reaction, citrate 

utilization, hydrogen sulfide production, nitrate reduction, and acid and gas production 

from carbohydrate fermentations were performed as described elsewhere (Nazina et al., 

2001). 

Growth under anaerobic conditions was determined by incubating strains in an 

anaerobic chamber in TM and AYEMM media. Nutritional requirements were 

determined as previously described by Nazina et al. (2001).   The filter-sterilized 

carbohydrates were added to the medium at a final concentration 0.2% (w/v).  

J. Fatty acids analysis 

Isolated strains were sent to Dr. Aharon Oren’s Laboratory at the University of 

Jerusalem for fatty acids analysis (Miller, 1982; Kämpfer & Kroppenstedt, 1996). Cells 

were cultured on TM medium for 24 hours at pH 7.5, 70˚C to perform the analysis. 

 

 
 
 
 

 



 
 

25

 
Results 

A summary of the physical parameters of the thermal springs is presented in Table 

1.1.  Temperature and pH values varied among all the three sampling sites of the thermal 

waters.  

Table 1.1.  Summary of physical parameters from the Coamo alkaliphilic thermal waters 
 

 
Sampling Site 

 
Temperature ˚C 

 
pH 

 
Main stream 

 
38.5 

 
8.89 

 
Waterway 

 
38.5 

 
8.15 

 
Outer watercourse 

 
44.0 

 
9.36 

 
 

Isolation of alkalithermophilic Bacteria 

After 3 weeks of incubation, several colonies were observed growing on the 

inoculated membranes.  The highest number of colony forming units (CFU’s) was 

obtained in Thermus medium (Table 1.2).  The number of CFU’s obtained from the three 

samplings varied among seasons of the year. Appendix 1, show the significance 

difference of CFU’s obtained per sampling on the different media. All the isolates were 

grouped in one morphotype, recorded as the most abundant and frequent recovered 

isolate.   

Table 1.2 Numbers of CFU’s obtained per sampling on the different media per liter of  
                filtered water 
 

Sampling TM AYEMM 
1 48 16 
2 20 12 
3 85 4 

Total 153 32 
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Morphological characterization of isolates 

Morphological characterization was based on classical macroscopic techniques of 

color, form, margin, and elevation of pure colonies. Microscopic characterization was 

performed using the Gram reaction and cell shape after staining.   

A total of 185 strains were isolated from the Coamo springs.  Most of the isolates 

showed circular, entire, and flat macroscopical morphology.  Colonies showed also white 

to cream pigmentation.  Light microscopy of these strains revealed that all were gram-

positive rods in a wide variety of arrangements such as diplobacilli, streptobacilli and 

single bacilli among others.  Appendix 2 and figures 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 

show the macroscopical and microscopical characteristics of the isolated strains. 

Scanning Electron Microscopy (SEM) was very useful to examine the rod- shaped cells 

(Figure 1.10). 
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a) 

b) 

c) 

a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 Macroscopical and microscopical characteristics of strain CS4 isolated from                   
Coamo springs: Strain CS4 on TM (a), Gram positive stain on light microscopy (b), and 
SEM of rod cells (c). 
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 a) b) 

 

Figure 1.4 Macroscopical and microscopical characteristics of strain CS17 isolated 
from Coamo springs: Strain CS17 on TM (a), and Gram positive, rod shape on Bright 
Field microscopy (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 

Figure 1.5 Macroscopical and microscopical characteristics of strains CS30 isolated 
Coamo springs: Strain CS30 on TM (a), and Gram positive, rod shape on Bright Field 
microscopy (b). 
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 a) b) 

Figure 1.6 Macroscopical and microscopical characteristics of strains CS32 isolated 
from the Coamo springs: Strain CS32 on TM (a), and Gram positive, rod shape on 
Bright Field microscopy (b). 

 

 

 

 

 

 

 

 

 
a) b) 

Figure 1.7 Macroscopical and microscopical characteristics of strains CS33isolated 
from the Coamo springs: Strain CS33 on TM (a), and Gram positive, rod shape on 
Bright Field microscopy (b). 
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a) b) 

Figure 1.8 Macroscopical and microscopical characteristics of strain CS101 isolated 
from the Coamo springs: Strain CS17 on TM (a), and SEM of rod cells (b). 

 

 

 

 

 

 

 

 

 

a) b)

Figure 1.9 Nomarsky micrographs showing the prevailing Gram-positive rod-shape 
arrangement of some strains isolated from Coamo springs: Strain CS4 (a), and strain 
CS36 (b). 
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a) 

b) 

c) 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

Figure 1.10 Scanning electron micrographs showing the prevailing Gram-
positive rod-shape arrangement of some strains isolated from Coamo springs: 
Strain CS131 (a), strain CS130 (b), and strain CS8 (c). 
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Molecular and physiological analysis of isolates 

After macroscopical and microscopical observations, the strains were further 

analyzed using molecular and physiological approaches.  The 16S rDNA region was used 

for the molecular characterization. DNA from all strains were extracted using the 

phenol/chloroform technique. Figures 1.11, 1.12 and 1.13, show the quality of genomic 

DNA extractions from the isolated strains.  

 

 

10Kb 

              AS   AS     AS    CS    CS    CS     CS   
       M     2      7        9       4     101   126    147  

 

 

 

 

 

 

 

 

 

 

 Figure 1.11 Genomic DNA extractions of alkalithermophilic strains isolated 
from Coamo springs 
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10Kb 

        CS   
   M  1  2  3  5  6  7  8  9  10 11 12 13 14 15 16 17  18 

        CS   
   M  19  20  21  22  23  24 25 26 27 28 29  30 31 32 33     

10Kb 

 

 

 

 

 

 

 

 

 Figure 1.12 DNA extractions of alkalithermophilic strains isolated from 
Coamo springs  

                   CS   
          M     90   92    94     95    98    102  104  106 

             CS    
  M     110   112   113  114   115  141 142   143 

10 Kb 

10 Kb 

 

 

 

 

 

 

 

 

 

 
Figure 1.13 Extracted DNA of the alkalithermophilic strains isolated from 
Coamo springs 

 



 34

 

Genomic DNA’s were used as templates for 16S rDNA amplification by PCR.  

The PCR amplicons obtained had a size of approximately 873 bp (Figures 1.14, 1.15, and 

1.16).  It was necessary to perform optimization of the PCR parameters for some strains 

in order to achieve optimal amplification. 

 

 

                 AS  AS  AS   CS    CS    CS    CS    CS 
 M             2     7      9      4    101   105   126   147 

10 Kb 

~ 873 bp 

 

 

 

 

 

 

 

 

 

 
Figure 1.14. 16S rDNA amplification using universal primers 519-F and 1392-R, for 
strains isolated from the Coamo springs. 
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10 Kb 

10 Kb 

~ 873 bp

~ 873 bp 

M NC 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50   

   M 51 52 53 54 55 56 57 58 59 60 61 62

 

 

 

 

 

 

 

 

 

 
Figure 1.15 Amplification of the 16SrDNA using forward primers Univ-519-F 
and reverse primer Univ-1392-R 
 

10 Kb 

10 Kb 

                    CS   
             M        90   92  94  95  98 102 104 106 121 

         CS    
  M    110  112  113         114  115  141 142  143  146  147 

~ 873 bp 

~ 873 bp 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.16 16S rDNA amplification using universal primers for strains isolated 
from Coamo springs. 
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RFLP analysis of the PCR products was performed to determine how many 

genotypes resulted from the digestion with different restriction enzymes.  The restriction 

patterns were observed in 3% low melting agarose gel, allowing us to differentiate 

between strains and to classify them into groups based on restriction patterns.  Figures 

1.17, 1.18, and 1.19 show the restriction patterns using Hae III, Msp I and Rsa I for the 

alkalithermophilic strains recovered. 

    
M1 M2     CS1   CS2  CS3  CS4  CS5   CS6    CS7  CS8  CS9  CS10 CS11 CS12  M2 M 1

 1000 bp 

 500 bp 

 350 bp300 bp 

 
Figure 1.17. RFLP patterns of some strains isolated from Coamo springs using 
Hae III, and Rsa I enzymes in  3% low melting agarose. 
 

Strains CS1, CS2, CS3, CS4, CS5, CS6, CS7, CS9, and CS11 from the thermal 

springs showed the same restriction patterns when digested with enzymes Hae III and 

Rsa I (Figure 1.17). Strains CS8, CS10, and CS12 formed only one type of RFLP profile 

when double digested with Hae III and Rsa I. Additional digestions were performed, 

using the enzyme Msp I (Figures 1.18 and 1.19) to improve resolution on the restriction 

patterns already obtained.  Restriction analysis showed some significant differences for 

The isolated strains CS17, CS30, CS32, CS33, CS36, CS42, CS44, CS48, CS83, CS92, CS100, 

200 bp 

100 bp 

 250 bp
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CS101, CS105, CS106, CS110, CS117, CS120, CS121, CS125, CS126, CS134, CS136, CS144, CS146 

and CS147 when triple digested with Hae III, Msp I, and Rsa I.  In total, 5 groups were 

formed based on restriction patterns of the 16S rDNA amplicon. 

M1 M2            17  30   32  33   36  42  43   44  45         46   47  48   51  53  M2  M 1 

 
Figure 1.18. RFLP patterns of some strains isolated from Coamo springs using 
Hae III, Msp I, and Rsa I enzymes in  3% low  melting agarose. 
 

 
Figure 1.19 RFLP patterns of some strains isolated from Coamo thermal Springs  
using  Hae III, Msp I, and Rsa I enzymes in  3% low  melting agarose. 
 

 1000 bp 

 500 bp   

 200 bp 

 300 bp 

 100 bp 

M1 M2   83   92 100 101 105 106107 108 110 117 120 121 125 126 134    M2  M 1

250 bp

350 bp

250 bp

350 bp

   1000 bp 

 500 bp 

200 bp 

 300 bp 

100 bp 
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Strains representing different restriction patterns were selected for in silico 

analysis by sequencing.  Additional strains with particular properties (morphological or 

physiological) were also selected for sequencing analysis. 

Phylogenetic relationships of these sequences were determined using neighbor 

joining analysis. According to the results, all of the isolated strains are closely related to 

the group of the genus Geobacillus, a gram positive subdivision of the Bacteria. These 

strains were closely related to different Geobacillus species that had been isolated from 

other thermal environments (Nazina et al., 2001). 

Strain CS87 was closely related to G. lituanicus, forming a branch in this cluster 

(Figure 1.20).  Strain CS91, was in the G. vulcani branch, while CS78 and CS93 were 

closely related to the branch that included strain CS91. Strain CS79 was grouped with the 

branch that included G. uzenensis and G. stearothermophilus. This strain was more 

related to G. stearothermophilus (Figure 1.20). Strains CS74, CS73, CS77, CS17, CS83, 

CS81, CS75, CS72, and CS110 belonged to the G. thermodenitrificans cluster.  Two of them 

(CS74 and CS73) formed their own independent branch (Figure 1.20). CS71 was more 

closely related to Geobacillus thermodenitrificans. Strain CS121 and CS106 were clustered 

with G. tobebii (Figure 1.20).  

Geobacillus strain CS4 and G. thermodenitrificans are in the cluster of G. 

subterraneus.  CS4 is a strain of particular interest because it formed a distinctive branch 

closer to G. thermodenitrificans (Figure 1.21).  Strain CS101 is related to the G. toebii 

cluster (Figure1.22). Another Geobacillus isolates, AS7 and AS9 were grouped into the 

branch that includes G. caldoxyloxyliticus (Figure 1.23).  Although these strains were in 

this cluster, they formed a distinctive branch. 
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Figure 1.20 Neighbor-joining distance tree using the 16S rRNA sequences of 
Geobacillus strains isolated from Coamo springs.  Bar represents 10 substitutions per 100 
nucleotides. Bootstrap values higher than 40% are shown. Alicyclobacillus  
acidocaldariusT    (AB042056)   
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Geobacillus thermoleovoransT  DSM 5366 (Z26923) 

Geobacillus kaustophilusT NCIMB 8547 (X60618)  
80 

Figure 1.21 Neighbor-joining distance tree using the 16S rRNA sequences of 
Geobacillus strain CS4 isolated from Coamo springs.  Bar represents 10 substitutions per 
100 nucleotides. Bootstrap values higher than 40% are shown. Alicyclobacillus 
acidocaldariusT  (AB042056).   
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Figure 1.22 Neighbor-joining distance tree using the 16S rRNA sequences of 
Geobacillus strain CS101 isolated from Coamo thermal springs.  Bar represents 10 
substitutions per 100 nucleotides. Bootstrap values higher than 40% are shown. 
Alicyclobacillus acidocaldariusT   (AB042056).  
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Figure1.23  Neighbor-joining distance tree using the 16S rRNA sequences of 
Geobacillus strains AS7 and AS9 isolated from Coamo thermal springs.  Bar 
represents 10 substitutions per 100 nucleotides. Bootstrap values higher than 40% 
are shown. Alicyclobacillus  acidocaldariusT    (AB042056). 
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+C content and DNA-DNA similarities 

 which is in agreement for members of the genus Geobacillus.    The level of 

DNA-DNA similarities between strains CS4 and Geobacillus thermodenotrificans DSM 

465T was 81.1%. The level of similarity of CS4 against Geobacillus stearothermophilus 

SM 22T, Geobacillus subterraneus DSM 13552T, and Geobacillus uzenensis DSM 

3351T were 36.5%, 52.7%, and 50.6%, respectively.  Strain CS4 seems to belong to the 

ecies Geobacillus thermodenotrificans DSM 465T and does not belong to Geobacillus 

earothermophilus DSM 22T, nor to Geobacillus subterraneus DSM 13552T or 

eobacillus uzenensis DSM 13351T. 

 

hysiological characterization 

After screening for different genotypic groups based on patterns in RFLP analysis 

nd phylogenetic relationships, a total of twenty nine strains were selected as 

presentatives of these groups for physiological characterization. The selected strains 

ere CS4, CS17, CS30, CS32, CS33, CS36, CS42, CS44, CS48, CS83, CS92, CS100, CS101, 

S105, CS106, CS110, CS117, CS120, CS121, CS125, CS126, CS134, CS136, CS144, CS146,CS147, 

S2, AS7, and AS9 (Table 1.3).  These isolates were transferred to different media in 

order to perform a better characterization for each strain. The strains that grew on 

AYEMM medium

AS9) w

G

DNA base composition analysis for strain CS4 revealed a 49.4 mol % of G+C 

content,

D

1

sp

st

G

P

a

re

w

C

A

 were very difficult to cultivate and only three of them (AS2, AS7, and 

ere viable after several culturing rounds.  
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Optimal growth conditions (temperature and pH) were determined in TM solid 

media 

c.   

ptimal pH for the isolates tested ranged from 5 to 9 (Table 1.3). Some 

 (CS36, CS83, CS100, CS110, CS117, CS120, CS121, CS125, 

CS126, 

at 60˚C. The tests were performed in 

duplicates for best accuracy and validation of results. Appendix 3 shows the biochemical 

tests results for the twenty nine Geobacillus strains selected.  

for each strain after 24-48 hours of incubation.  Table 1.3 shows the results 

obtained for the isolated strains tested.  

Growth temperatures ranged between 40°C-70°C.  It was observed that some of 

the isolates had more tolerance to high temperatures than others. Most of the isolated 

Geobacillus strains from Puerto Rico had an optimal temperature for growth between 50 

-70°C.  Geobacillus strains CS126 and CS146 were capable of growing at 40˚C. These 

results indicate that the isolated strains had a preference for temperatures between 50-

70˚C as previously reported (Nazina et al; 2001).  Therefore, the majority of these 

isolates can be considered thermophili

O

Geobacillus strains grew at pH 5

CS134, CS136, CS144, and CS146).   Other strains (AS2, AS7, and AS9) were also 

tested at pH 10 but none of these strains was able to grow at this pH.  They showed an 

optimal growth pH value of 9.0. 

Most of Geobacillus strains had a preference for neutral pH values to slightly 

alkaliphilic pH values.  These strains had optimal conditions to grow at a pH ranging 

from 6 to 9. The optimal growth condition found was around 8.0 

 

Biochemical tests 

All biochemical tests were carried out 
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Table 1
                 springs at Coamo, P.R. 

 Temperature Optimal 
perature ˚C

 
pH range 

 
Optimal pH 

.3. Optimal growth conditions for Geobacillus strains of the isolates from thermal  

 

Strain range ˚C Tem
CS 50-70 70 6-9 7.0 4
C
CS 50-70 60 6-9 8.0 

CS 50-70 70 6-9 7.5 

CS 50-70 70 6-9 7.0 

CS 50-70 50 6-9 8.0 

CS 50-70 50 6-9 7.5 

CS 50-70 70 6-9 7.0 
60 6-9 7.5 

CS 50-70 60 6-9 7.5 
C
CS 50-70 60 5-9 7.5 

CS 50-70 60 5-9 7.0 

CS 40-70 60 5-9 8.0 

CS 50-70 50 5-9 8.0 
60 5-9 7.5 

CS 40-70 50 5-9 8.0 
C
AS 50-70 60 6-9 9.0 

AS 50-70 60 6-9 9.0 

S17 50-70 70 6-9 7.5 
30

CS32 50-70 50 7-9 8.0 
33

CS36 50-70 70 5-9 7.0 
42

CS44 50-70 50 6-9 7.5 
48

CS83 50-70 60 5-9 7.0 
92

CS100 50-70 60 5-9 7.5 
101

CS105 50-70 
106

S110 50-70 70 5-9 7.5 
117

CS120 50-70 50 5-9 8.0 
121

CS125 50-70 50 5-9 8.0 
126

CS134 50-70 60 5-9 8.0 
136

CS144 50-70 
146

S147 50-70 60 6-9 8.0 
2

AS7 50-70 60 6-9 9.0 
9

 
 

ally, all these strains were facultative anaerobic.  Negative results 

were documented for motility test in all strains.   Voges-Proskauer and methyl red tests 

were negative for all the strains except for CS  and CS .  The methyl red test was not 

determined for strain CS .  All strains can use glucose, xylose, and sucrose as carbon 

sources and produced acid but no gas, with the exception of strain CS92.  None of the 

Physiologic

4 17

101
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strains can hydrolyze gelatin.  Strains CS4, CS30, CS83, CS100, CS105, CS110, CS125, CS126, 

CS134, CS136, CS144, CS146, and CS147 have an extracellular amylase. Phenylalanine was 

not d ed and H ole w  in sted 

 

Fatty acids analysis 

 fatty acid c tion of Geobacillus strain CS4 determined. This strain 

was d ated by bran tty acids, in agreement with previous reports (Naz ., 

2001). The predominant fatty acids for Geobacillus strain C ere iso-C15:0, , and 

iso-C able 1.4). he strains e bited anteiso  and C17:0 as minor 

components.  However, a difference could be seen in the content of C17:0, methyl- C18:0 / 

iso- C nd C18:0.  None of the standards (type strains) had the high content of iso-C15:0 

and i :0 seen in str .  

 

 

 

 

 

 

 

 

 

 

eaminat 2S and ind ere not produced any of the te strains. 

The omposi  was 

omin ched fa ina et al
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17:0 (T  All t xhi -C15:0

18: 0 a
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Fatty acids 
Geobacillus 

subterraneusT 

DSM 13552 

Ge i
thermog s i

D 5

 
uzenensisT 

M 1 
4 

 
obac llus 
luco idas usT 

SM 2 42 

 
Geobacillus 

kaustophilusT 

DSM 7263 DS

 
Geobacillus

1355
CS

 

C14:0 methyl / C14:0 iso 0.64 
 
4 1.  0.5

 
1.52 

 
16 NP

C14:0 1.15  0.  

C15:0 iso 17.97 6.25 2

C15:0 anteiso 4.42 
 

6.46  

C15:0 1.69 
 

1.93 
 

0.45  

C16:0 methyl / C16:0 iso 22.19 
 

22.30
 

2.61  

C16:0 15.11 
 

16.57
 

5.28 5

C17:0 iso 15.94 
 

17.64
 

9.67 1

C17:0 anteiso 18.60 
 

17.38
 

2.71 0

C17:0 0.60 
 

0.67 
 

C18:0 methyl/ C18: 0 iso 0.34 
 

0.34 
 

C18:1 cis- 9 0.36 
 

0.29 
 

0.55  

C18:0 0.55 
 

0.50 
 

1.76 0.49 

 
NP

 
2.03 

 
18.51 

 
11.83 3

 
2.95 

 
6.08 

 
2.26 

 
 

35.23 1

 
 

17.25 

 
 

6.61 1

 
 

13.93 1
 

0.63 
 

0.53 
 

0.55 
 

0.67 

 
93 
 

0.96

38.4  

3.09

0.99

8.41

11.1  

25.9  

10.1  

NP NP 

0.44 NP 

NP

          * Values are percentages of total fatty acids. NP means not produced. 

Table 1.4 Cellular fatty acid composition (% w/w) of the thermophilic Geobacillus strain CSB4B and the closely related type strains of   

                thermophilic Geobacilli 

 



 48

Discussion 

This study was focused on the isolation of alkalithermophilic prokaryotes 

pre  th o  t a ri  a t e  ir tt t et ine 

the heterotrophic prokaryotic biota at this site.  Low numbers of isolates per liter of 

water samp b ed w  o e e  m a used i d he 

polyphasic taxonomical analysis perform cted isolates led to the classification 

of a total of 185 isolates, which represented 29 species within the genus Geobacillus.  

Their characterization was based on mo l al tu m cu an i ng 

16S rDNA region, fatty acid profiles, and physiological properties. 

Two different media were used in this study, Thermus medium (TM) and 

Alkaline Yeast Extract Malt Medium (AYEMM). They were used to increase the 

w fied by the addition of 1.2% of Gelrite and 0.162% of MgCl2 in order to gr

the isolates at 70˚C, since agar cannot be used as solidifying agent at this temperat

(Lin & Casida, 1984). Also, the concentrations of gelling agent and gelling aid in me

were optimized fo e  therm li k t M c o u

the ation of Thermus strains (Oshima & Imahori, 1974) and AYEMM is usua

selected for the growth of alkaline microorganisms such as Nocardiopsis spp.   

However, these enriched media were used first in our preliminary samplings and 

 goo uality of bacterial growth and differences on the number of CFU”s 

obtained. T ifferences w ttribut ore to the spring characteristics than the 

media used for isolation. e m t d r s ee he di ed

found in the number of morphotypes obtained.  TM medium sustained a highest 

sent in e C amo herm l sp ngs, nd i repr sents the f st a emp to d erm

led were o tain  gro ing n th

ed on sele

 diff rent edi in th s stu y. T

rpho ogic  fea res, ole lar alys s usi

chance

ere m

s of

odi

 proper isolation of prokaryotes able to grow at extreme conditions. They 

ow 

ure 

dia 

for 

lly 

ere 

r th  growth of ophi c pro aryo es. T  is omm nly sed 

 isol

showed d q

he d ere a

ost significan

ed m

 Th iffe ence betw n t  me a us  w
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number of CFU’s when compared to owever, TM medium showed a low 

diversi

e highest frequency 

of isol

 AYEMM.  H

ty within morphotypes recovered since most of the isolates represented the same 

strain.  It is common to find a very low diversity of alkalithermophiles in hot 

environments. Most of the alkalithermophiles are distributed in many mesophilic 

environments, but others have been isolated only from one specific location (Wiegel, 

1998).  This group is comprised by physiologically Gram positive Bacillus-Clostridim 

phylogenetic sub-branch.   

Preliminary observations on the strains revealed that aerobic, 

alkalithermophilic, spore forming and gram positive rod cells had th

ation obtained from the thermal springs.  The morphological characteristics 

observed on these strains revealed features corresponding to those described in the 

literature for the genus Geobacillus (Nazina et al., 2001) and are consistent with its 

natural biotope, where geothermal areas occur, such as hot springs (McMullan et al., 

2004).   

The isolated strains (CS17, CS30, CS32, CS33, CS36, CS42, CS44, CS48, CS83, CS92, 

CS100, CS101, CS105, CS106, CS110, CS117, CS120, CS121, CS125, CS126, CS134, CS136, CS144, 

and CS146) from this study belonged to Geobacillus.  In general, these strains show 

cream to brown pigments and long thin rods. Physiological analysis revealed that they 

do not grow at less than 50°C.  Optimal growth conditions were around 50-70°C and a 

pH ranged from 5 to 9. One of the main features of the genus Geobacillus is the ability 

to produce ellipsoidal or cylindrical endospores at terminal or subterminal position in 

slightly swollen or no swollen sporangia (Nazina et al., 2001), which was observed for 

our isolates.   
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Restriction fragment length polymorphism analysis of a PCR amplicon 

containing the 16S rDNA was used to molecularly classify the strains into groups.  The 

restriction pattern obtained with Hae III and Rsa I revealed that the first isolates CS1, 

CS2, CS3, CS4, CS5, CS6, CS7, CS9, and CS11 could not be divided in more than two 

different groups and might represent the same Geobacillus species.  Therefore, strain 

CS4, was selected randomly as representative of the isolated Geobacillus strains for 

further analyses.  The restriction pattern obtained with Hae III, Msp I and Rsa I 

reveale

re related to G. tobebii.  Another Geobacillus isolates, AS7 and AS9, were 

groupe

ol% of G+C 81.1% of similarity. All the results presented here strongly 

d more differences and allow us to divide isolates in other groups when 

compared to the RFLP profiles first obtained.  

Strains CS74, CS73, CS77, CS 17, CS83, CS81, CS75, CS72, CS110, and CS71 were 

closely related to G. thermodenitrificans.  Strain CS87 was closely related to G. 

lituanicus, while strains CS91, CS78, and CS93 were related to the G. vulcani branch.  

Strain CS79 was more related to strain G. stearothermophilus.  Strains CS101, CS121, and 

CS106 we

d with G. caldoxyloxyliticus.  Although these strains are related to most 

Geobacillus species, our isolates behave differently in the abilities to growth in 

presence of citrate.  

  In silico analysis of the 16S rDNA sequences revealed similarities to strains of 

G. thermodenitrificans, G. toebii, G. lituanicus, and G. caldoxylosilyticus. This 

information was used to construct a phylogenetic tree using the neighbor-joining 

method. The consensus distance tree places strain CS4 in the G. thermodenitrificans 

cluster. On the basis of DNA base composition and DNA-DNA hybridization data, CS4 

showed 49.4 m
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sugges

ith the ability to produce spores could 

explain

e all facultative alkaliphiles and that their doubling times are as 

t that isolate CS4 is a strain of G. thermodenitrificans.    Isolate CS101 is in the 

cluster of G. toebii and might be a strain of this species. 

Various studies reveal that Geobacillus species have been successfully isolated 

from all continents, specifically where geothermal biotopes exist (McMullan et al., 

2004).  Geoobacillus gargensis (Nazina et al., 2004) was isolated from Garga hot 

spring, Transbaikal.  Other species have been isolated from hydrothermal vents, hay 

compost, oilfields and cool soil environments (Kuisiene et al., 2004, McMullan et al., 

2004; Nazina et al., 2001; 2004). The common abundance of this genus in hot 

environments, as thermal springs, together w

 why those isolates were present in the alkalithermophilic waters at Coamo, 

Puerto Rico. 

We found a low diversity of microorganisms in this habitat.  Most 

alkalithermophiles are found frequently in non-alkaline environments and are as a 

group ubiquitous, although some species might be endemic to specific environments 

(Wiegel, 1998).  One of the reasons that several of these alkalithermophilic bacteria are 

found in environments with conditions less suitable for their optimal growth may lay in 

the fact that they ar

short as ten minutes (Wiegel, 1998).  Most of the alkalithermophilic bacteria belong to 

the Gram positive Bacillus subphylum, (Wiegel, 1998), currently known as Geobacillus 

(Nazina et al., 2001).  Therefore, the fact that we mainly isolated Geobacillus species 

from the thermal waters of Coamo indicates that this genus prefers this type of extreme 

environment; representing the first report of the genus Geobacillus from Puerto Rico 

and the Caribbean.  It remains possible that there are other type of extremophilic 
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prokaryotes present in this waters but the fact that we impose two extreme conditions at 

the same time (high pH and high temperature) was one factor that can explain the low 

diversi

eria Clostridium paradoxum and Thermoalkalibacter bogoria.  Other 

bacteri

 

 

 

ty documented, mainly restricted to an spore forming genus.  

Although the alkalithermophilic species that has been described previously 

(Wiegel and Kevbrin, 2004) neither represent the most thermophilic nor the most 

alkaliphilic microorganisms known.  Our isolates represent the most alkaliphilic among 

the thermophiles and the most thermophilic among alkaliphiles.  The combination of 

two extreme conditions of physico-chemical growth parameters restricts the range in 

which microorganisms can proliferate more than does one single growth condition. 

Most of the genera isolated from alkalithermophilic environments included the spore 

forming bact

a have been isolated from mesophilic environments such as  Clostridium 

thermoalkalophilum (Wiegel, 1998). 

Geobacillus strains described in this study had the physiological properties that 

allow their survival in extreme environments, like the thermal waters of the 

alkalithermophilic springs. Many of them probably can not survive for long terms. 

Spore production may contribute to their presence in the water. However, several 

strains isolated demonstrated to have alkaliphilic properties. They can grow at alkaline 

pH and high temperature for a long time. The results presented here may indicate a 

preference for thermal environments. 
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thermal springs by culture independent techniques 

 

 

 

 

 

 

 

 

 

 

Part II. Diversity of prokaryotic communities present at the Coamo 
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Material and Methods 

I. Sample processing 

Five samples containing one liter (1L) each of thermal water were collected (in 

triplicate) at the main water stream in Coamo from the three different sampling points 

during different seasons of the year.  The amples were collected using sterile Whirl 

Pack® bags.  One liter of each sample was filtered through 0.45 µm nitrocellulose 

membrane (Millipore ®). Membranes were  until DNA extraction was 

performed. 

 

II. Extraction of total genomic DNA from environmental samples  

Membranes containing microorganisms from the thermal springs were suspended in 

5 , 

pH 8.0) and  (1% w/v) 

were added to the suspension and incubated at 55ºC for 2h. The lysate was placed into a 

lean tube. The lysate was then rinsed with an additional 2ml of lysis buffer and 

in before pooling the lysates. To the pooled solution, 5M 

NaCl (final concentration 0.7 M) and hexadecyltrimethyl ammonium bromide were 

added and incubated at 65ºC for 20 min before extraction with chloroform-isoamyl 

lcohol (24:1). The upper aqueous-DNA phase was removed and placed into a clean 

be and DNA was precipitated after the addition of 0.6 volumes of isopropanol. The 

ellet was washed with 70% (w/v) ethanol, dried, and dissolved in 50 μl ultra pure 

ater (Saano et al., 1995). The purity of the DNA was assessed by gel electrophoresis 

s

 stored at -20 ºC

 mL lysis buffer (1 mg/ml lysozyme, 40 mM EDTA, 50 mM Tris-HCl, 0.75M sucrose

 incubated at 37ºC for 30min. Proteinase K (0.5 mg/ml) and SDS

c

incubated at 55ºC for 10 m

a

tu

p

w
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genomic DNA was used as templates for subsequent PCR 

amplification.  

 

2

2

μl (≈ 10 ng of template), and Taq polymerase (Promega®) 0.026U/μl 

in storage buffer B (Promega®). Those primers (IDT®) correspond to universal primers 

for am ication of the prokaryotic 16S rRNA gene. PCR was performed for 30 cycles 

with denaturation periods of 5 min at 94°C, 1 min at 50°C, and polymerization for 3 

min at 72 °C (Hezayen et al., 2002). One Kb DNA Ladder (New England Biolabs ) 

was used as DNA marker. Samples and controls were observed by eletrophoresis in 

agarose 0.8% and their quality were checked after staining with ethidium bromide. 

Fragments of DNA were purified using the MinElute PCR purification kit according to 

the manufacturer instructions (USA QIAGEN Inc.). The resulting amplicon 

concentration was determined measuring absorbance at 260nm. 

 

IV. Cloning of PCR products 

Environmental PCR products were ligated and transformed using the pGEM -T 

Vector System II (Promega ®). The products were ligated into pGEM -T cloning 

vector, and transformed into JM 109 high efficiency competent cells as described by 

(Øvrea°s et al., 2003). Total 

III. PCR amplification and gel electrophoresis 

The gene encoding the 16S rRNA was amplified by PCR using the forward primer 

Univ-519-F (5’-CAGCMGCCGCGGTAATWC-3’) and with the reverse primer Univ-

1392-R (5’ –ACG GGC GGT GTG TAC-3’). The reaction mixture consisted of ddH O, 

buffer 1X, MgCl  2.5mM, dNTP’s 250mM, primer F 1pmol, primer R 1pmol, BSA 

100ng/μl, DNA 1.0

plif

®

®

®
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the manufacturer’s protocol. Transformed cells were plated in Luria-Bertani (LB) agar 

plates with ampicillin (100 µg/ml).  

 

R products using the 

restriction endonucleases Msp I, Rsa I, and Hae III. All digestions were performed for 

an hour (twice) at 37ºC in a final volume of 10 µl. Restriction patterns were verified on 

3%

V. Screening and Purification 

The colony PCR technique (Güssow and Clackson, 1989) was selected to determine 

the nature of the insert present on the putative clones.  The primers selected for this 

procedure were T7 promoter and SP6 promoter (Promega ®) as recommended by the 

manufacturer to achieve proper amplification of the insert present in the construct. The 

reaction mixture consisted of ddH2O, buffer 1X, MgCl2 2.5mM, dNTP’s 250mM, T7 

promoter (5’ TAA TAC GAC TCA CTA TAGGG 3’) 1pmol, SP6 promoter (5’ ATT 

TAG GTG ACA CTA TAG AA 3’) 1pmol, DNA 2.0μl and Taq polymerase 0.026U/μl. 

Samples and controls were observed by electrophoresis in agarose 0.8% after staining 

with ethidium bromide. Fragments of DNA were purified using the MinElute PCR 

purification kit according to the manufacturer instructions (USA QIAGEN Inc.). The 

resulting amplicon concentrations were determined measuring absorbance at 260nm. 

 

VI. Restriction fragment length polymorphism (RFLP) 

A double digestion was performed on the amplified PC

 low melting agarose gels after staining with ethidium bromide. 
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NA was amplified by PCR as described in the 

improved protocol for T-RFLP by capillary electrophoresis (Grüntzig et al., 2002) with 

som or the amplification were the labeled-forward 

prim

ng 

absorbance at 260nm. 

 used for restriction 

dig

he digestions were 

incubated at 37°C in a the thermal cycler  for 4 hours followed by 10 minutes at 65°C 

VII. Terminal restriction fragment length polymorphism (T-RFLP) 

The gene encoding the 16S rR

e modifications. The primers used f

er 519F/ FAM (5’- /56-FAM/ CAGCMGCCGCGGTAATWC-3’) and the reverse 

primer 1392R (5’- ACGGGCGGTGTGTACA-3’). PCR reactions were carried in a 

total volume of 50 µl.  The reaction mixture consisted of ddH2O, buffer 1X, MgCl2 

2.5mM, dNTP’s 250mM, primer F 1pmol, primer R 1pmol, BSA 100ng/μl, DNA 1.0μl 

(≈ 10 ng of template), and Taq polymerase 0.026U/μl in storage buffer B (Promega ®). 

PCR was performed for 30 cycles with a denaturation periods of 5 min at 94°C, 1 min 

at 50°C, and polymerization for 3 min at 72 °C (Hezayen et al., 2002). Samples and 

controls were observed by electrophoresis in agarose 1.0% and their quality were 

assessed after staining with ethidium bromide. Fragments of DNA were purified using 

the MinElute PCR purification kit according to the manufacturer instructions (USA 

QUIAGEN Inc.). The resulting amplicon concentration was determined measuri

A total of 200 ng of each labeled 16S rDNA product was

estions separately with the following enzymes: Hae III, Rsa I, and Msp I (New 

England BioLabs®).  Each digestion reaction consisted of 2.0 µl of 10X reaction buffer, 

5 units of each restriction enzyme, and the ddH2O volume was adjusted by the amount 

of PCR product added for a total reaction volume of 20 µl. T
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to a sciences 

NE

t al; 1996; Montalvo-Rodríguez et al; 1998; 2000).  The 16S 

rRN

 

inactiv te the enzymes. Samples were processed using the LI-COR Bio

N®DNA Analyzer Model 4300 (LICOR Inc.).  

 

VIII. DNA sequencing 

Selected PCR products were sent to a DNA sequence facility in Korea 

(Macrogen®). Samples were prepared according to the facilities instructions. 

 

IX. Phylogenetic analysis 

To check for possible chimeric sequences all clones were analyzed using the 

Chimera Check program from the RDP database (Cole et al., 2003) version 2.7 

(http://rdp8.cme.msu.edu/cgis/chimera.cgi?su=SSU). Distance analysis of the resulting 

DNA sequences was performed using the PHYLIP program (version 3.5.1) 

(Felsenstein, 1993).  A multiple-sequence alignment was made by using the Clustal W 

program with 16S rRNA gene sequences of close related organisms (as determined by 

BLAST  analysis) (Kamekura and Dyall- Smith, 1995; McGenity & Grant, 1995; Oren 

et al; 1995; Maidak e

A gene similarity values were calculated by pairwise comparison of the sequences 

within the alignment. SEQBOOT was used to generate 100 bootstrapped data sets.  

Distance matrices were calculated with DNADIST.  One hundred trees were inferred by 

using NEIGHBOR.  CONSENSE was used to determine the most frequent branching 

order.  The final tree was drawn using TREEVIEW (Page, 1996). 

  

 



 
 

59

 

h and collegues (2003) proposed. 

Analyses and index values using the Jaccard, SAce, and SChao richness index were 

calculated in order to corroborate richness between samples. To measure how well the 

sam

 order to 

evaluate a level of differences among clone libraries, a p-value was calculated using 

We S bshuff.mib.uga.edu). 

 

 

 

 

 

 

 

X. Statistical analysis of clones libraries 

Statistical analyses were performed as Stac

ple represents the larger environment, the Good Coverage Index was calculated 

using the program ASLO (www.aslo.org/methods/free/2004/0114a.html). In

b-LIB HUFF program (http://li
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Results 

After performing several environmental DNA extractions for the spring 

samples, the Saano’s protocol with some modifications was selected since it was the 

best to achieve optimal environmental genomic DNA extraction (Saano et al; 1995).  

Three environmental genomic DNA extractions were obtained and named as Main 

stream, Waterway, and Outer watercourse which corresponded to the samples of first, 

second and third survey accordingly (Figures 2.1, 2.2, and 2.3).    

    

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Total population genomic DNA extraction from the mainstream of 
the Coamo springs. Samples: mainstream first survey (Ms1), mainstream second 
survey (Ms2), and mainstream third survey (Ms3). 
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i  the waterway of the 
o springs. Samples: waterway first survey (Ww1), waterway second 

urvey (Ww2), and waterway third survey (Ww3). 

Total population genomic DNA extraction from the outer 
atercourse of the Coamo springs. Samples: outer watercourse first survey 

 (Ow2), and outer watercourse third 
urvey (Ow3).  
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Figure 2.3 
w
(Ow1), outer watercourse second survey
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The total population genomic DNA obtained was of PCR quality (Figures 2.4, 

2.5, an 2.6). plification of the 16S 

al amplification 

rase (Promega®) were 

 

 

 

 

 

Figure 2.4 l waters of the Coamo 
prings using universal primers. Samples: mainstream first survey (Ms1), 

mainstream second survey (Ms2), and mainstream third survey (Ms3). 
 

 

 

 

 

d  These products were used as a template for PCR am

rDNA region.  Several optimizations were performed to achieve optim

of the desire products. Universal primers and Taq DNA polyme

used  for PCR reactions. Amplicons had a size of approximately 873bp. 
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 Coamo 
springs using universal primers. Samples: waterway first survey (Ww1), 
waterway second survey (Ww2), and waterway third survey (Ww3). 

 

 

 

 

 

 

 

 

Figure 2.5 16S rDNA PCR product from the thermal waters of the

  M              Ww1         Ww2            Ww3 

~ 873 bp 
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ird survey 
(Ow3).  

~ 873 bp 

    10 kb 

        M        Ow1      Ow2      Ow3 

Figure 2.6 16S rDNA PCR product from the thermal waters of the Coamo 
springs using universal primers. Samples: outer watercourse first survey (Ow1), 
outer watercourse second survey (Ow2), and outer watercourse th
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eneration of environmental 16SrDNA clone libraries from total genomic DNA 

opulation 

Genomic libraries were constructed with the PCR purified products described 

bove. A total of 132 clones were obtained.  Colony PCR revealed that a total of 81 

lones had inserts of the expected size. Amplicons with the expected size were 

submitted to RFLP analysis for classification into groups. Clones having dif erent 

 

Figure 2.7 PCR product of colony PCR using SP6 and T7 Promoter primers of 
the total genomic DNA from the mainstream samples. Bands show a PCR 
product of 1034 bp. 
 

G

p

a

c

f

restriction patterns were classified as Operational Taxonomical Units (OTU’s) and 

were selected for sequencing. Figure 2.7, 2.8 and 2.9 show some PCR products from 

clones from the mainstreams, waterway and outer watercourse genomic group library. 

The amplification product was approximately 1034 bp.  
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 ~ 1034 bp 
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 ~ 1034 bp 

 

Figure 2.8 PCR product of colony PCR using SP6 and T7 Promoter primers of 
e total genomic DNA from the waterway samples. Bands show a PCR product th

of 1034 bp. 
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ing of some clones from the three 

samplings sites using 

A total

were the100 bp and 50 bp ladders.  

 

 

 

 

 
Figure 2.9 PCR product of colony PCR using SP6 and T7 Promoter primers of 
the total genomic DNA from the water outercourse samples. Bands show a PCR 
product of 1034 bp.  
 

Figures 2.10, 2.11 and 2.12 show the screen

Hae III and Msp I restriction enzymes in 3% low melting agarose. 

 of 0.5-0.7 μg of template was used for enzymatic digestion. The DNA markers 
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igure 2.10 RFLP analysis of m
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striction enzymes in 3% low melting agarose. 

 

 

 

 
igure 2.11 RFLP analysis of waterway clones 
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Figure 2.12 RFLP analysis of outer watercourse clones group using Hae III an
Msp I restriction enzymes in 3% low melting agarose. 
 

Restriction analysis showed a low diversity of OTU’s among all the clone 

libraries constructed. Similar restriction patterns were observed and only a few OTUs

showed different banding patterns. Hae III, and Msp I restriction enzymes were an 

efficient way to screen among different OTU’s. 

   M1  M2  1     2    3    4      5    6    7    8      9   10 

1000 bp 

500 bp 

300 bp 

200 bp 

100 bp 

d 

 

comparison using in silico analysis.  Sequences having a 97% similarity were 

considered the same OTU’s. selected. OTU’s accession numbers are listed in Table 2.1. 

The closest relatives of representative OTUs, identified by searching in the GenBank 

database, are given in Table 2.2. 

 

A total of 81 OTUs (F1-F32, C1-C24, and S1-S25) were selected after sequence 
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one libraries  

                from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 

 

 

 
 
 

 
OTU 

 
Accession No.

Table 2.1 GenBank accession numbers for the environmental 16S rDNA cl
 Coamo, Puerto Rico 

 
F1 

 
EF660467 

 
F2 

 
EF660468 

 
F3 

 
EF660469 

 
F4 

 
EF660470 

 
F5 

 
EF660471 

 
F6 

 
EF660472 

 
F7 

 
EF660473 

 
F8 

 
EF660474 

  
EF660476 

EF660477 

 

 
F9 

 
EF660475 

F10 
 

F11 
 

 
F12 

 
EF660478 

 
F13 

 
EF660479 

 

 

 

 
F14 EF660480 

 
F15 

 
EF660481 

 
F16 

 
EF660482 

 
F17 

 
EF660483 
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Table 2.1 Continuation 
 

 
OTU 

 
Accession No.

 
 
   
 F18 EF660484 

   
 F19 EF660485 

   
 F20 EF660486 

   
 F21 EF660487 

   
 F22 EF660488 

   
 F23 EF660489 

   
 F24 EF660490 

   
 F25 EF660491 

   
 F26 EF660492 

   
 F27 EF660493 

   
 F28 EF660494 

   
 F29 EF660495 

   
 F30 EF660496 

   
 F31 EF660497 

   
 F32 EF660498 

   
 C1 EF584771 

    C2 EF584772 
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OTU Accession No.

Table 2.1 Continuation 
 
 
 

   
 
   
 C3  EF584773 

   
 C4 EF584774 

   
 C5 EF584775 

   
 C6  EF584776 

   
 C7 EF584777 

   
 C8 EF584778 

   
 C9  EF584779 

   
 C10 EF584780 

   
 C11 EF584781 

   
 C12  EF584782 

   
 C13 EF584783 

   
 C14 EF584784 

   
 C15  EF584785 

   
 C16 EF584786 

   
 EF584787 C17   

 
C19 

 
 EF584789 

 
 C18  EF584788 
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Table 2.1 Continuation 
 
 
 

   
OTU Accession No.

 
 
  
 C20 EF584790 

   
 C21 EF584791 

   
 C22  EF584792 

   
 C23 EF584793 

   
 C24  EF584794 

   
 S1 EF584795 

   
 S2 EF584796 

   
 S3  EF584797 

   
 S4 EF584798 

   
 S5  EF584799 

   
 S6  EF584800 

   
 S7 EF584801 

   
 S8  EF584802 

   
 S9  EF584803 

   
 EF584804 S10   

 
S13 

 
EF584807 

 
S14 

 
EF584808 

 
 S11  EF584805 

    S12  EF584806 
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able 2.1 Continutaion 

O A

 
T
 
 

 
ccession No.

 
TU 
 
15S E 

 
F584809 

 
16S  E

S E

S E

S E

S2 E

S2 E

S2 E

S2 E

S2 E

S2 E

 
 

F584810 
 
17 

 
F584811 

 
18 

 
F584812 

 
19 

 
F584813 

 
0 

 
F584814 

 
1 

 
F584815 

 
2 

 
F584816 

 
3 

 
F584817 

 
4 

 
F584818 

 
5 

 
F584819 
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Table 2.2.  16S rDNA sequences identified from the thermal springs, clone libraries  
Puerto Rico 

OTU 
Accession 

No. Closest relative 
Accession 

No. % Identity 

                 from Coamo, 
 

 
F1 

 
EF660467 Hydrgenophaga bisanensis 

 
EF532793 

 
97 

 

 
F2 

 
EF660468 

 
Citrobacter sp.  

 
AF530068 

 
94 

 
F3 

 
EF660469 

 
Uncultured bacterium clone  

 
DQ980877 

 
93 

 
F4 

 
EF660470 

 
Uncultured bacterium clone  

 
EF584792 

 
98 

 
F5 

 
EF660471 

 
Uncultured β-proteobacterium 

 
AB113609 

 
98 

 
F6 

 
EF660472 

 
Uncultured bacterium clone 

 
EF584788 

 
98 

 
F7 

 
EF660473 

 
Pseudomonas sp.  

 
AJ007005 

 
99 

 
F8 

 
EF660474 

 
Uncultured bacterium clone 

 
DQ302443 

 
99 

 
F9 

 
EF660475 

 
nophaga p.  

 
EF179863 

 
98 

 
F10 

 
EF660476 

 
Uncultured bacterium clone 

 
EF584777 

 
99 

 
F11 

 
EF660477 

 
Uncultured bacterium clone 

 
EF584777 

 
99 

 
F12 

 
EF660478 

 
Uncultured candidate bacterium 

 
EF032775 

 
93 

 
F13 

 
EF660479 

 
Uncultured β-proteobacterium 

 
DQ230946 

 
99 

 
F14 

 
EF660480 

 
Microleus sp.  

 
AY768403 

 
98 

 
F15 

 
EF660481 

 
Uncultured β-proteobacterium 

 
DQ230943 

 
99 

 
F16 

 
EF660482 

 
Uncultured bacterium clone 

 
EF584792 

 
100 

 
F17 

 
EF660483 

 
Uncultured bacterium clone 

 
EF584783 

 
99 

 
F18 

 
EF660484 

 
Uncultured bacterium clone 

 
EF584783 

 
100 

 
F19 

 
EF660485 

 
Uncultured β-proteobacterium 

 
DQ839333 

 
95 

 
F20 

 
EF660486 

 
Uncultured bacterium clone 

 
EF017757 

 
93 

Hydroge  s
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OTU 
Accession 

Closest relative 
Accession 

% Identity 

Table 2.2. Continuation 
 

No. No. 
 

F21 EF660487 Uncultured bacterium clone EF584792 99 
    

 
F22 EF660488 Uncultured bacterium clone AB186827 99 

F23 EF660489 Uncultured bacterium clone AB186827 99 

F24 EF660490 Uncultured bacterium clone EF584777 99 

F25 EF660491 Uncultured bacterium clone AJ30 778 98 

F26 EF660492 Uncultured β-proteobacterium DQ2 99 

F27 EF660493 Uncultured bacterium clone DQ2 100 

F28 EF660494 Microleus sp.  AY7 98 

F29 EF660495 Uncultured bacterium clone DQ3 99 

F30 EF660496 Uncultured bacterium clone DQ2 99 

F31 EF660497 Uncultured β-proteobacterium DQ2 99 

F32 EF660498 Uncultured bacterium clone DQ3 99 

C1 EF584771 Uncultured Comamonas  sp. DQ 77 

C2 EF584772 Uncultured β-proteobacterium  DQ2 99 

C3  EF584773 Uncultured β-proteobacterium AB113609 98 

C4 EF584774 Uncultured β-proteobacterium AB113609 98 

C5 EF584775 Uncultured soil bacterium  AF50 682 86 

C6  EF584776 Uncultured β-proteobacterium AB113609 98 

C7 EF584777 Bacterium strain 82348 AF22 863 98 

C8 EF584778 
 

Uncultured soil bacterium  AF50 682 86 

    

     

     

    
6

 

    
30943 

 

    
56357 

 

    
68403 

 

    
02443 

 

    
02200 

 

    
30946 

 

    
02443 

 

    
2340 

 

    
30943 

 

     

     

    
7

 

     

    
7

 

   
7
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Table 2.2. Continuation 
 

OTU 
Accession 

No. Closest relative 
Accession 

No. % Identity 
 

C9 
 

 EF584779 
 

Uncultured cyanobacterium  
 

DQ514215 
 

93 
 

C10 
 

EF584780 
 

U  

U   

 
Uncultured soil bacterium  

 

AF227863 

U

A

AM491458 
 

ncultured β-proteobacterium
 

DQ230943 
 

99 
 

C11 
 

EF584781 
 

Bacterium strain 82348 
 

AF227863 
 

98 
 

C12 
 

 EF584782 
 

Uncultured bacterium clone 
 

DQ227863 
 

99 
 

C13 
 

EF584783 
 

ncultured β-proteobacterium
 

DQ230943 
 

99 
 

C14 
 

EF584784 
 

Uncultured β-proteobacterium 
 

AB113609 
 

98 
 

C15 
 

 EF584785 
 

Uncultured bacterium clone 
 

DQ988325 
 

98 
 

C16 
 

EF584786 
 

AF507682 
 

86 
 

C17 
 

EF584787 
 

Bacterium strain 82348 
 

AF227863 
 

98 

C18 
 

 EF584788 
 

Bacterium strain 82348 
 

AF227863 
 

98 
 

C19 
 

 EF584789 
 

Bacterium strain 82348 
 

AF227863 
 

98 
 

C20 
 

EF584790 
 

Bacterium SRMC-277 
 

DQ104947 
 

93 
 

C21 
 

EF584791 
 

Bacterium strain 82348 
  

98 
 

C22 
 

 EF584792 
 

Bacterium strain 82348 
 

AF227863 
 

98 
 

C23 
 

EF584793 
 

Uncultured β-proteobacterium 
 

AB113609 
 

98 
 

C24 
 

 EF584794 
 

Uncultured bacterium clone 
 

DQ337072 
 

98 
 

S1 
 

EF584795 
 

ncultured bacterium clone 
 

EF121342 
 

99 
 

S2 
 

EF584796 
 

Pantoea sp. 
 

M491458 
 

100 
 

S3 
 

 EF584797 
 

Pantoea sp. 
  

99 
 

S4 
 

EF584798 Bacterium CCBAU 
  

DQ988944 99 
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T
 

O
A

No. Closest 
Ac

No %

able 2.2 Continuation 

TU 
ccession 

relative 
cession 

.  Identity 
 

S
 

 E
  

DQ
 

95 F584799 Bacterium CCBAU 988944 9 
 

S
 

 E
  

DQ
 

9
 

S
 

E
 

Uncu
 

EF
 

10
 

S
 

 E
 

Un
 

EF
 

7
 

S
 

 E
 

U
 

DQ
 

9
 

S
 

E
  

EF
 

9
 

S
 

 E
  

EF
 

9
 

S
 

 E
 

nc
 

EF
 

10

S
 

E
  

AY
 

9
 

E
  

AM
 

9

S E AM
 

9

S  E AM
 

9

S E AM 9

S EF584812 AM 9

S EF584813 AM491458 99 

S EF584814 Uncultured bacterium EF205552 99 

S21 EF584815 Uncultured bacterium clone DQ817705 99 

S22 EF584816 Uncultured bacterium clone EF121342 99 

S23 EF584817 Uncultured bacterium clone EF121342 99 

S24 EF584818 Uncultured bacterium clone EF121342 99 

S25 EF584819 Uncultured bacterium clone EF121342 99 

6 F584800 Bacterium CCBAU 988944 9 

7 F584801 ltured bacterium clone 153297 0 

8 F584802 cultured bacterium clone 375730 7 

9 F584803 ncultured bacterium clone 817705 9 

10 F584804 Enterobacter sp.  489448 6 

11 F584805 Enterobacter sp.  489448 6 

12 
 

F584806 U ultured bacterium clone 153297 0 

13 
 

F584807 Enterobacter sp.  946283 9 

S14 
 

F584808 
 

Pantoea sp.  
 

491458 
 

9 

15 
 

F584809 
 

Pantoea sp.  
 

491458 
 

9 

16 
 

F584810 
 

Pantoea sp.  
 

491458 
 

9 
 

17 
 

F584811 
 

Pantoea sp.  
 

491458 
 

9 
 

18 
 

 
 

Pantoea sp.  
 

491458 
 

9 
 

19
 

  
 

Pantoea sp.  
 

20
 

  clone 
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T-RFLP with different restriction enzymes 

Total community 16S rDNA was also amplified usi led primer pair 

519F/ FAM and 1392R (Figure 2.13) for T-RFLP analysis.  This technique is able to 

study community patterns and allows com ine possible 

changes in structure.  T-RFLP fingerprinting was applied using three different restriction 

enzymes.  PCR amplicons were digested separately with Hae Msp I, and Rsa I 

(Figure 2.14, 2.15, and 2.16) and the community T-RFLP patterns were analyzed in a gel 

based DNA sequencer. 
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oamo springs digested with 
sp I restriction enzyme. Samples: Main stream (a), waterway (b), and outer 
atercourse (c). 
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Figure 2.14  T-RFLP patterns of 16S rDNAs from Coam
Hae III restriction enzyme.  Samples: Main stream (a), waterway (b), an
w

 

 

 

 

 

 

 

 
 
 
Figure 2.15  T-RFLP patterns of 16S rDNAs from C
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a) 

b) 

c  

bp 

 

 

 

 

 

) 
 
Figu  

sa I restriction enzyme.  Samples: Main stream (a), waterway (b), and outer 

m  

The ma  the Msp I digested T-RFs had a size of less than 500 bp (Figure 2.15).  

Hae III also generated a large numbers of T-RFs with a broad size range of up to 900 bp 

(Figure 2.14).  Rsa I generated somewhat smaller numbers of T-RFs than the other 

enzyme ost of the Rsa I- digested fragments had a size between 400 to 500 

bp (Figure 2.16). 

he T-RFLP patterns generated with each enzyme revealed a very low 

prokaryotic diversity present at the thermal waters of Coamo.  Analysis of T-RFs patterns 

with Msp I indicated that there are some community changes among sampling sites and 

also ga

the oth restriction profile for enzyme Rsa I revealed shared prokaryotic 

re 2.16 T-RFLP patterns of 16S rDNAs from Coamo springs digested with
R
watercourse (c). 
 

A ong the restriction endonucleases tested, Msp I generated the most T-RFs. 

jority of

s used, and m

T

ve different profiles for all samples in comparison with the digestion profiles of 

er enzymes. The 

 



 
 

83

 
populations among all sampling sites. The restriction analysis for enzyme Hae III also 

showed sim

 

Phylogenetic analysis

he phylogenetic relationship among a total of 81 clones was analyzed with the 

PHYLIP program package (version 3.5.1) using neighbor joining analysis. An analysis 

for the possibility of chimeric sequences was performed. This analysis indicated that no 

chimeric sequences were present in these clones except for OTU C25 from the waterway 

group. Therefore it was removed from the analysis. 

clones am site represented the same operational taxonomic unit. The 32 

clones analyzed from this site of the spring were clustered in 15 different OTUs.  The 

OTUs obtained from this site of the spring were similar to the clones obtained  from the 

waterway site (Figures 2.17-2.31).  The 24 clones analyzed from the waterway site of the 

spring were clustered in 11 different OTU’s.  Clones C7, C11, C17, C18, C19, C21, and 

C22 corresponded to OTU one. This cluster is closely related to Vogesella indigofera 

(Figure 2.32). The second OTU is represented by C8 and C16 and formed a cluster in an 

independent branch near the branch of Alishewanella fetalis (Figure 2.33).  C5 represents 

the third OTU and it is near the cluster of the uncultured bacterium SC-NB03 (Figure 

2.34).  C12 was closely related to an uncultured bacterium, this clone corresponded to 

OTU four (Figure 2.35).  The clone C14, C23, C6, C4, and C3 represent OTU five and 

are related to the branch of Hydrogenophaga flava (Figure 2.36).  In this cluster C14 and 

C23 formed a cluster in and independent branch.  C15 corresponded to OTU six forming 

ilarities among community samples.   

 

T

Phylogenetic analysis using the neighbor joining algorithm revealed that several 

from the mainstre
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an independent branch of the cluster of uncultured bacterium (Figure 2.37).  The seventh 

OTU is represented by C20 and is clustered with bacterium SRMC-27-7 (Figure 2.38).  

TU C1 formed an independent branch within the cluster of Comamonas testosteroni 

e corresponded to C2, C10, and C13.  These are clustered in an 

indepen

tercourse were represented in six 

OTUs.   

S

O

re

u

re

(F

u

O

(Figure 2.39).  OTU nin

dent branch, within the branch of Vogesella indigofera and Chromobacterium 

violaceum (Figure 2.40).  The tenth OTU is represented by C24 that is clustered with an 

uncultured soil bacterium (Figure 2.41).  OTU eleven, C9, is closely related to an 

uncultured Arthrospira sp. clone (Figure 2.42).  

The clones obtained for the group of outer wa

The first OTU was represented by clones S1, S4, S5, S6, S7, S12, S15, S16, S17, 

18, S19, S23, S24, and S25, forming an independent cluster. (Figure 2.43).  The second 

TU, S14, was related to Averyella dalhousiensis  (Figure 2.44).  The clones S10 and S11 

present the third OTU.  These OTUs formed an independent branch within the branch of 

ncultured bacterium DQ011253 and Pantoea aglomerans (Figure 2.45).  OTU four is 

presented by S8, forming an independent branch within the clustered proteobacteria 

igure 2.46).  Figures 2.47 and 2.48 demonstrated how OTUs five and six are related to an 

ncultured Pantoea sp.  
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igure 2.17.  Neighbor-joining distance tree of partial 16SrDNA sequences for OTU F7, 
om the mainstream site, at the Coamo springs.  Bar represents 1 substitution per 100 
ucleotides. Bootstrap values higher than 40% are shown.  

 

 

 

 

Psudomonas mendocina AJ006109

Pseudomonas nitroreducens D84022

Gamma proteobacteriumn JAUIB78 DQ983422

Pseudomonas pseudoalcaligenes AJ628163

Uncultured Pseudomonas sp. DQ366084

Pseudomonas alcalophila AB030583
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F
fr
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0.01 

Pseudomonas sp. AJ007005 

Uncultured bacterium clone DQ803324

92 

90 

100 
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Uncultured bacterium AJ306778 

 
 

 
 

fr
n

Figure 2.18 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU F25, 
om the mainstream site, at the Coamo springs.  Bar represents 1 substitution per 100 
ucleotides. Bootstrap values higher than 40% are shown.  
 

 

0.01 

Uncultured gamma proteobacterium 
AY693817 

Gamma proteobacterium BAL281 
AY972868

F25

Aquatic bacterium R1-G3 AB195770 

Pseudomonas knackmusii AF039489 

Uncultured soil bacterium clone 
AY699600 

Pseudomonas stutzeri  pssu2 
AJ310484 

Uncultured alpha proteobacterium DQ463739 

100

59

98

65 

44 

100 
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Figure 2.19 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU F2, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from the mainstream site, at the Coamo springs.  Bar represents 1 substitution per 100 
nucleotides. Bootstrap values higher than 40% are shown.  
 

0.01

Citrobacter sp. AF530068 

F2 

Uncultured bacterium clone DQ817705 

Citrobacter freundii AY163805 

Citrobacter braakii AF025368  

Citrobacter sp. TSA-1 AF463533 

74 

48 

78 

98 

Candidatus Cuticobacterium kirbyi AY567708 
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igure 2.20 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs F13, 

 

 

0.01 

Hydrogenophaga atypica AJ585993  

Hydrogenophaga defluvi AJ585992 

Uncultured proteobacterium clone Hmd12B16  
EF196964

Aquatic bacterium R1-B31  

Uncultured bacterium clone 

F13

F31

F1

F30

Arsenite-oxidizing bacterium NT-14  
AY027497 

Uncultured beta proteobacterium AB113609

F5 

87 

91

95

65 

100 

76 

68

100

82 

F
F31, F1, F30, and F5 from the mainstream site, at the Coamo springs.  Bar represents 1 
substitution per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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0.01 

Uncultured marine bacterium DQ417906

Comamonas denitrificans 
AF233877 

F3 

Uncultured Microbacterium sp. 

Uncultured beta proteobacterium AY387319

Pseudomonas straminea 

Uncultured Comamonas sp. 

Comamonas testosteroni EF522133

Uncultured bacterium clone inwood DQ980877

65 

 

Figure 2.21 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU F3 
from the mainstream site, at the Coamo springs.  Bar represents 1 substitution per 100 
nucleotides. Bootstrap values higher than 40% are shown.  
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Comamonas aquatica AJ430346

F27 

Uncultured bacterium clone DQ256357 

Comamonas sp. AM184302

Comamonas denitrificans DQ836252 

Uncultured beta proteobacterium 
AB076869 

Pseudomonas testosteroni 
M11224 

Uncultured anaerobic bacterium 
AY953165 

Uncultured bacterium clone inwood 
DQ980915 

Comamonas kersterii AJ430348 

Acidovorax sp. AY258065 

47 

100 

100 

89 

99 

100

0.01 
 

Figure 2.22 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU F27 
from the mainstream site, at the Coamo springs.  Bar represents 1 substitution per 100 
nucleotides. Bootstrap values higher than 40% are shown.  
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, at the Coamo springs.  Bar 
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Figure 2.23 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs F6, 
F21, F4, F24, F16, F10, and F11 from the mainstream site
represents 10 substitutions per 100 nucleotides. B
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Figure 2.24 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs 
28, and F14 from the mainstream site, at the Coamo springs.  Bar represents 10 

p values higher than 40% are shown.  
F
substitutions per 100 nucleotides. Bootstra
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Uncultured bacterium clone DQ154801

Uncultured cyanobacterium clone  

Uncultured Plectonema sp. DQ058839
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Microleus sp. AY768403
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Gloethece sp. AB067576 

100 

100 

100 

95 

61 

64 

 



 
 

93
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Microbacterium kitamiense AB013919 

Uncultured Thermonosporaceae 
bacterium EF018492 

Uncultured firmicute clone AF445745 

Uncultured Crater Lake bacterium 
AF316757

Uncultured Hyphomicrobiaceae  EF019985 
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EF032775 

Uncultured actinobacterium EF613848 

Uncultured soil bacterium AY989265 

Uncultured bacterium EF019411  

100 

64 

83 
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Figure 2.25 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU 
F12 from the mainstream site, at the Coamo springs.  Bar represents 10 substitutions 
per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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Uncultured bacterium AB175561  

 

 
 
Figure 2.26 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU 
F20 from the mainstream site, at the Coamo springs.  Bar represents 10 substitutions 
per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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Unidentified Thermodesulfobacterium group OPB45 AF027096   
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Uncultured beta proteobacterium 
DQ230943 
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Bacterium strain 82348 AF227863 
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Aquitalea magnusonii DQ018117

 

Figure 2.27 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs 
F26, and F15 from the mainstream site, at the Coamo springs.  Bar represents 1 
substitution per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.28 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs 
F8, F32, F29, F22, F23, and F9 from the mainstream site, at the Coamo springs.  Bar 
represents 10 substitutions per 100 nucleotides. Bootstrap values higher than 4
s
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 the mainstream site, at the Coamo springs.  Bar represents 10 substitutions 
er 100 nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.29 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU 
F18 from
p
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Figure 2.30 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU 
F19 from the mainstream site, at the Coamo springs.  Bar represents 10 substitutions 

er 100 nucleotides. Bootstrap values higher than 40% are shown.  
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uences for OTU C17 
om the waterway site, at the Coamo springs.  Bar represents 1 substitution per 100 

nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.31 Neighbor-joining distance tree of partial 16SrDNA seq
fr

 

 

0.01 

s  

Laribacter honkongensis AF449221 

Vogesella indigoferaT ATCC 19706 AB021385 

74 

99 

100 

F17 

Uncultured bacterium clone C7 EF584772 

Uncultured bacterium clone EF584783 

84 

55 

 



 100

C22

 

Figure 2.32 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs C7, 
11, C17, C18, C19, C21, and C22 from the waterway site, at the Coamo springs.  Bar 

represents 10 substitutions per 100 nucleotides. Bootstrap values higher than 40% are 
hown.  
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Figure 2.33 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs C8
and C16 from the waterway site, of the Coamo springs.  Bar represents 10 substitutions
per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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nucleotides. Bootstrap values higher than 40% are shown.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.34 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C5 
from the waterway site, at the Coamo springs.  Bar represents 10 substitutions per 100 
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Figure 2.35Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C12 
from the waterway site, at the Coamo springs.  Bar represents 1 substitution per 100 
nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.36 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs 

14, C23, C4, C6, and C3 from the waterway site, at the Coamo springs.  Bar represents 
 substitution per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.37 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C15 
from the waterway site, at the Coamo springs.  Bar represents 1 substitution per 100 
nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.38 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C20 

 

 
 

 

from the waterway site, at the Coamo springs.  Bar represents 10 substitutions per 100
nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.39 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C1 
from the waterway site, at the Coamo springs.  Bar repres
n
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 Microvergula aerodenitrificans LMG 4329 AJ48713 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

igure 2.40 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs 
10, C2, and C13 from the waterway site, of the Coamo springs.  Bar represents 10 

ubstitutions per 100 nucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.41 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C24 
from the waterway site, at the Coamo springs.  Bar represents 10 substitutions per 100 
nucleotides. Bootstrap values higher than 40% are shown.  
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igure 2.42 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU C9 
om the waterway site, at the Coamo springs.  Bar represents 10 substitutions per 100 
ucleotides. Bootstrap values higher than 40% are shown.  
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Figure 2.43 Neighbor-joining distance tree of partial 16SrDNA sequences for OTUs S12, 
S7, S4, S5, S6, S23, S24, S25, S1, S16, S18, S15, S17, and S19 from the outer 
watercourse site, at the Coamo springs.  Bar represents 1 substitution per 100 nucleotides. 
Bootstrap values higher than 40% are shown.  
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Figure 2.44 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU S14 
from the outer watercourse, at the Coamo springs.  Bar represents 10 substitutions per 

00 nucleotides. Bootstrap values higher than 40% are show
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rDNA sequences for OTUs, 
10, and S11 from the outer watercourse site, at the Coamo springs.  Bar represents 1 
ubstitution per 100 nucleotides. Bootstrap values higher than 40% are shown.  

 

Figure 2.45 Neighbor-joining distance tree of partial 16S
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igure 2.46 Neighbor-joining distance tree of partial 16SrDNA sequences for OTU S8 
om the outer watercourse site, at the Coamo springs.  Bar represents 10 substitutions per 
00 nucleotides. Bootstrap values higher than 40% are shown.  
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S9, S13, S3, and S2 from the outer watercourse site, at the Coamo springs.  Bar 
represents 10 substitutions per 100 nucleotides. Bootstrap values higher than 40% are 
shown.  
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 sequences for OTU S20 
om the outer watercourse at the Coamo springs.  Bar represents 10 substitutions per 100 
ucleotides. Bootstrap values higher than 40% are shown.  
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Statistical analysis 

Statistical indices for the environmental 16S rDNA clone libraries, for 

mainstream  

sim

samp

Richness an

indices were calculated

d in 

clone library. 

To m

(www.aslo.org/m

for libraries M,  W  

compare observed richness among environments that have been unequally sampled 

sults demonstrated an increase in richness for clone libraries M and W (Figure 2.49). 

 (M), waterway (W) and outer watercourse (O) are shown in Table 2.3. The

unique distance to define an OTU for the three libraries was 0.03 or 97% of sequence 

ilarity (Dunbar, 2002; Singleton et al., 2001; Stout and Nusslein, 2005) between 

led clones. Numbers in parenthesis indicate the number of 16S rDNA clones used in 

the analyses. Richness is the number of phylotypes observed. Each phylotype consisted 

of either unique clone or a group of clones that has sequence similarities of over 97%. 

alysis showed greater diversity for communities mainstream and waterway 

libraries with 15 and 11 OTU’s respectively. The Shannon and Simpson’s diversity 

 and showed that M and W clone libraries had higher diversity 

than O library. The Jaccard, SAce, and SChao richness index values were calculate

order to corroborate richness between samples. All indexes indicated that mainstream and 

waterway libraries had the highest level of richness when compared to outer watercourse 

easure how well the samples represent the larger environment, the Good 

Coverage Index was calculated (Figure 2.50) using the ASLO program 

ethods/free/2004/0114a.html). The coverage was 68% , 75% and 84% 

 and O respectively. Rarefraction curves were done using the program

DOTUR (http://www.plantpath.wisc.edu/fac/joh/dotur.html). This is a method used to 

(Hughes and Bohannan, 2004). After 100 repeated randomizations of the samples, the 

re
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The graphic curves revealed that if clone library O had more clones screened, the 

istribution nes 

creening will be necessary to reach a continuous tendency in the graphic pattern 

orrespondent to coverage data. 

 

alculated using Web-LIBSHUFF program (http://libshuff.mib.uga.edu). The following 

rmula was used to calculate the standard p-value of two libraries: p=1-(1-a)k (k-1). A 

 p=0.05 with k being the number of clone 

he standard p-value for the clone libraries was 0.0256. The Web-

LIBSHUFF results revealed a p-value minor of the minimum expected p-value of 0.001 

indicating significant differences between the three 16S rDNA clone libraries. This was 

performed using all the possible combinations between libraries. 

LIBSHUFF analysis of homologous and heterologous coverage curves indicated 

that the M and W communities are significantly different from O community (P = 0.001) 

parison of the O community indicated a significant difference from M 

 communities (Figure 2.52). A test of multiple contrasts among M, W and O 

ommunities were obtained by examination of the distribution of (Cx-Cxy)2   with 

volutionary distance (D). During the calculation of ΔC, results suggests that the group M 

nd W libraries differ from the other library at high levels of genetic distance and shares 

ll deep taxa (D>0.10) (Figure 2.53).  

d would be constant. In contrast, for clone libraries M and W more clo

s

c

 In order to evaluate the level of differences among clone libraries, a p-value was

c

fo

confidence percent had been established at

libraries to be studied. T

(Figure 2.51.). Com

and W

c

e

a

a
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Table 2.3
              Puerto Rico. 

Clone Shannon 
(H) 

Simpsons 
(1/D) 

Richness 
Observed 

Jaccard 
% 

Sace 
% 

Schao 
% 

Coverege 
% 

 
  Statistical Indexes for 16s rDNA clone libraries from Coamo thermal springs 

  
 

Library 
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Rarefaction curves obtained for the three clone libraries
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Figure 2.49 Rarefaction curves for the three clone libraries sampled from the Coamo 

ermal springs. OTU’s were determined by >th 97% similarity. 
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overage curves for 16S rRNA clone libraries: mainstream clone 

library (a), waterway clone library (b), and  outer watercourse clone library (c). 

 

 

xy)2 for samples at each value of evolutionary distance (D). D is equal to 
tor evolutionary distance determined by the DNADIST program of 

PHYLIP. Purple lines indi 2 

Compa

 

 

Figure 2.50 Good C

 

Coverage curves for mainstream (X) compared to waterway (Y) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.51 LIBSHUFF comparisons of the two clone libraries. Blue lines indicate the 
value of  (Cx-C
the Jukes-Can

cate the P=0.05 value of (Cx-Cxy) for the randomized samples. 
rison of the clone library O (red/homologous) with clone library W (green/ 

heterologous). 
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Coverage curves for mainstream (X) compared to outer watercourse (Y) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.52 LIBSHUFF comparison of the two clones libraries. Blue lines indicate the 
value of  (Cx-Cxy)2 for samples at each value of evolutionary Distance (D). D is equal to 
the Jukes-Cantor evolutionary distance determined by the DNADIST program of 
PHYLIP. Purple lines indicate the P=0.05 value of (Cx-Cxy)2 for the randomized samples. 
Comparison of the clone library W (red/homologous) with clone library O 
(green/heterologous). 
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es for waterway (X) compared to outer watercourse (Y) 
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Figure 2.53 LIBSHUFF comparison of the two clones libraries. Blue lines indicate the 
value of  (Cx-Cxy)2 for samples at each value of evolutionary Distance (D). D is equal to 
the Jukes-Cantor evolutionary distance determined by the DNADIST program of 
PHYLIP. Purple lines indicate the P=0.05 value of (Cx-Cxy)2 for the randomized samples. 
Comparison of the clone library W (red/homologous) with clone library O
(green/heterologous). 
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Discussion 

ine the prokaryotic 

ommunity composition from the alkaliphilic thermal springs at Coamo, Puerto Rico 

ironmental clone libraries.  A total of 172 clones were obtained 

from the three genomic libraries. Each clone library was screened using the RFLP 

technique that revealed a small variety of restriction patterns indicating a low diversity 

mong all the clone libraries constructed.  

Approximately 25 OTUs for each library (M, W and O) were sequenced for a 

tal of 81 OTUs analyzed in silico. Clones were selected randomly to avoid possible 

iases. The Bacteria domain represented the 100% of the clone library and no archaeal 

analyses revealed that most of the OTU’s are related to 

bacterial groups associated with marine, soil, and plant environments.  The majority of 

the sequences analyzed showed close relationship to the Bacteroidetes, beta-

roteobacteria, and gamma-proteobacteria groups.   The most frequent OTU’s belonged 

 the beta-proteobacteria from humic lakes, activated sludge, hot springs, mangrove 

ils, and deep subsurface environments. OTU’s were related with the genera 

seudomonas sp., Hydrogenophaga sp., Comamonas sp., and other uncultured beta-

Pseudomonas sp. has been found associated to soils and Comamonas sp. 

was found from wetlands in Korea (Chang et al., 2002). 

 The second most abundant OTU’s belonged to the gamma-proteobacteria 

roup. These groups of clones were related to species such as Pantoea agglomerans and 

nterobacter ludwigii (Hoffman et al., 2005) isolated from Tiete River downstream of 

The principal goal of this part of the study was to determ

c

based on 16SrDNA env

a

to

b

clones were found.   Phylogenetic 

p

to

so

P

Proteobacteria. 

g

E
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related to microbial communities isolated from a saprophytic microbial mat cave in 

sulfidic springs 

In this study, Microbial communities were also analyzed by T-RFLP. T-RFs 

atterns gene pling 

ites tested.  T-RFLP profiles revealed that only a few changes in the community 

tructure occurred in the three samplings.  It is important to notice the presence of unique 

-RFs among samples, the absence of some T-RFs fragments in some samples and 

hanges in the T-RFs intensities demonstrating the possibility of changes in the 

bundance of some bacterial populations at a given stage and the appearance of new 

nes.  

Geobacillus representatives were detected in isolated strains from the 

lkaliphilic thermal springs.  Surprisingly, OTUs associated to the genus Geobacillus 

n not grow below 50˚C.  This suggests that the isolated microorganisms 

tage at the time of the samplings.  Another explanation could be the 

bias related to the primers used or the DNA extraction procedure.  A broader diversity 

might be obtained amplifying more than one DNA product instead of one amplified DNA 

roduct. However, the results from T-RFLP analysis and the genomic libraries agree in 

rms of the low prokaryotic diversity that these alkaliphilic thermal waters might contain 

hich has been the case for similar environments around the world (Wiegel, 1998).    

Sao Paulo in Brazil. Some OTU’s from the gamma-proteobacteria group were closely 

(Engel et al., 2004), and from rice plant (Hiraoka et al., 2006) 

 

p rated with each enzyme showed some similarities among the three sam

s

s

T

c

a

o

 

a

were not detected or found using non culture dependent method.  One possible 

explanation for this might rely on the water physical factors.  The temperature of the 

water at the time of samplings varied from 38.5-44˚C and the Geobacillus strains isolated 

 this study cain

were at the spore s

p

te

w
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 Statistical analysis indexes, (Jaccard, SAce, and SChao richness) indicated that 

brary W had the highest level of richness when compared with clone library O (Table 

.2). The  

airwise differences (Stach et al., 2003). Results from this program are dependent on 

ample size; the m ish between two 

issimilar libraries increases with library complexity and decrease with the magnitude of 

issimilarity (Singleton et al., 2001). The Web-LIBSHUFF results revealed a p-value 

inor of the minimum expected p-value of 0.001 indicating significance differences 

mong the 16S rDNA clone libraries. SONS was used to characterize the differences 

etween the two communities. Estimating the OTU0.03 richness of each clone library and 

e richness shared between groups (W and O) revealed no similarity among 

ommunities and Jabund values between the two communities revealed that most abundant 

embers were not shared. Community similarity index, (θ) revealed that the community 

pt to study the prokaryotic diversity at alkaliphilic thermal 

o Springs using culture-independent techniques like genomic libraries and 

T-RFLP. This study showed that there is a low prokaryotic diversity associated to the 

thermal springs in Coamo. Knowledge about the identity of these microorganisms will 

llow the potential development of biochemical applications in biotechnology and 

strobiology. 

 

li

2  LIBSHUFF program is a test of overlap, since it considers the distribution of

p

s inimum number of sequences necessary to distingu

d

d

m

a

b

th

c

m

structures were not identical or similar. These analyses describe the relative similarities 

of the memberships and structures of these communities for a specific OTU definition.   

This is the first attem

waters of Coam

a

a
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Conclusions 

 

• Slightly a  the thermal 

springs ram-positive 

rods th e optimum 

temp

 

• The com lar approaches was 

 

• A low diversity of prokaryotes was recovered using Thermus medium and 

Alkaline Yeast Extract Malt Medium.  

which have alkaliphilic and thermophilic properties. This genus 

showed the highest frequency of isolation in this research using culture 

dependent approaches. 

 

• Isolate CS4 is a strain of Geobacillu thermodenitrificans and CS 101 could be a 

strain of Geobacillus toebii. 

 

 

 

lkalithermophilic bacterial strains can be isolated from

 at Coamo Puerto Rico. Most of the isolates obtained were g

at grow well at temperatures above 40ºC.  The averag

erature for growth was 60ºC and the maximum around 70˚C. 

bination of morphological, physiological, and molecu

very useful in the characterization of the isolates. 

 

• The isolated microorganisms in this study belonged mainly to the genus 

Geobacillus, 

s 
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• Culture independent techniques revealed a low prokaryotic diversity present at the 

Caomo springs. The most fr belonged to the alpha-proteobacteria 

 

equent OTUs 

group.  

• This study is the first attempt to study the prokaryotic diversity present at the 

thermal springs at Coamo Puerto Rico. 
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different genera.  

 

• Design a temporal study to compare the prokaryotic diversity in different seasons 

of the year.  

 

• Further analysis to complete the characterization of isolated strains belonging to 

the genus Geobacillus. 

 

• In order to reach and cover most of the prokaryotic diversity from the alkaliphilic 

thermal waters at Coamo Puerto Rico, more clones must be analyzed.  

 

 

 

 

 

 

 

 

Recommendations 

 

• To design different sampling methods and media that allows the isolation of 
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Appendix 2.  Continuation 
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circular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.8 
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cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.1 x 0.7 

 
CS80
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streptobacilli 
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diplobacilli 
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3.5 x 0.7 

 
CS92

 
cream 

 
irre lat 

irre lat 

ir t 

c t 

gular, filamentous, f
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3. 0 x 0.4 
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long rods 

 
streptobacilli 

 
3.0 x 0.5 
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long rods 

 
streptobacilli 

 
1.0 x 0.5 

 
CS95

 
cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.4 x 0.3 

 
CS96

 
white 

 
regular, filamentous, fla

 
long rods 

 
streptobacilli 

 
1.0 x 0.3 

 
CS97

 
cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.7 x 0.6 

 
CS98

 
cream 

 
circular, entire, flat 

 
long rods 

 
diplobacilli 

 
3.2 x 0.6 

 
CS99

 
cream 

 
circular, entire, flat 

 
long rods 

 
single bacilli 

 
3.0 x 1.0 

 
CS100

 
cream 

 
ircular, filamentous, fla

 
long rods 

 
streptobacilli 

 
3.5 x  0.6 

 
CS101

 
white 

 
circular, entire, flat 

 
long rods 

 
single bacilli 

 
3.5 x 0.8 

 
CS102

 
cream 

 
circular, lobate, flat 

 
long rods 

 
single bacilli 

 
3.8 x 1.0 

 
CS103

 
cream 

 
circular, entire, flat 

 
long rods 

  
single bacilli 3.3 x 0.5 
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Colony Morphology 

 
Morphology 

 
Arrangement 

 
Average size (µm) 

 
CS104

 
cream 

 
irregular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 1.2 

 
CS105

 
cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.5 

 
CS106

 
white 

 
circular, entire,  flat 

 
long rods 

 
single bacilli 

 
3.5 x 1.0 

 
CS107

 
cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

  
CS108

 
cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 3.4 x 0.8 

 
CS109

 
cream 

 
irregular, undulate, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 0.6 

 
CS110

 
cream 

 
irregular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.3 x 0.8 

 
CS111

 
cream 

 
irr at 

irr at 

egular, filamentous, fl
 

long rods 
 

streptobacilli 
 

3.5 x 0.4 
 

CS112

 
cream 

 
irregular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.1 x 0.6 

 
CS113

 
cream 

 
irregular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.4 

 
CS114

 
cream 

 
egular, filamentous, fl

 
long rods 

 
streptobacilli 

 
3.1 x 0.8 

 
CS115

 
white 

 
circular, entire,  flat 

 
long rods 

 
single bacilli 

 
3.5 x 0.8 

 
CS116

 
cream 

 
irregular, lobate, flat 

 
long rods 

  
streptobacilli 3.5 x 0.4 

 

 



 
 
 

151

Appendix 2.  Continuation 
 

 
Strain 

 
Colony Color 

 
Colony Morphology 

 
Morphology 

 
Arrangement 

 
Average size (µm) 

 
CS117

 
cream 

 
irregular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

 
CS118

 
cream 

 
irregular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.5 x  0.6 

 
CS119

 
cream 

 
irregular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.8 

 
CS120

 
cream 

 
irr at egular, filamentous, fl

 
long rods 

 
streptobacilli 

 
3.8 x 1.0 

 
CS121

 
cream 

 
irregular, entire,  flat 

 
long rods 

 
streptobacilli 

 
1.3 x 0.5 

 
CS122

 
cream 

 
circular, entire,  flat 

 
short rods 

 
diplobacilli 

 
0.9 x 0.3 

 
CS123

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 0.3 

 
CS124

 
white 

 
circular, entire,  flat 

 
long rods 

 
streptobacilli 

 
3.8 x 1.0 

 
CS125

 
cream 

 
irregular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

 
CS126

 
white 

 
circular, entire,   flat 

 
long rods 

 
streptobacilli 

 
3.2 x 0.6 

 
CS127

 
cream 

 
irregular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.7 

 
CS128

 
cream 

 
irregular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3. 0 x 0.4 

 
CS129

 
cream 

 
irregular, lobate, flat 

 
long rods 

  
streptobacilli 3.0 x 0.5 
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Appendix 2.  Continuation 
 

 
Strain 

 
Colony Color 

 
Colony Morphology 

 
Morphology 

 
Arrangement 

 
Average size (µm) 

 
CS130

 
cream 

 
circular, entire,   flat 

 
long rods 

 
single bacilli 

 
3.1 x 0.5 

 
CS131

 
white 

 
circular, entire,   flat 

 
long rods 

 
diplobacilli 

 
3.4 x 0.3 

 
CS132

 
cream 

 
circular, entire,   flat 

 
long rods 

 
diplobacilli 

 
3.5 x 0.8 

 
CS133

 
cream 

 
circular, entire,   flat 

 
long rods 

 
diplobacilli 

 
3.7 x 0.6 

 
CS134

 
white 

 
circular, entire,   flat 

 
long rods 

 
diplobacilli 

 
3.2 x 0.6 

 
CS135

 
cream 

 
circular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

 
CS136

 
cream 

 
circular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.5 x  0.6 

 
CS137

 
cream 

 
circular, lobate,  flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.8 

 
CS138

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.8 x 1.0 

 
CS139

 
cream 

 
circular, entire, flat 

 
short rods 

 
streptobacilli 

 
1.3 x 0.5 

 
CS140

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 1.2 

 
CS141

 
cream 

 
circular, entire, flat 

 
short rods 

 
streptobacilli 

 
1.5 x 0.5 

 
CS142

 
cream 

 
circular, entire, flat 

 
long rods 

  
streptobacilli 3.8 x 1.0 
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Strain 

 
Colony Color 

 
Colony Morphology 

 
Morphology 

 
Arrangement 

 
Average size (µm) 

 
CS143

 
cream 

 
  circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

 
CS144

 
cream 

 
circular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

 
CS145

 
cream 

 
circular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.5 x  0.6 

 
CS146

 
cream 

 
circular, lobate, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.8 

 
CS147

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.8 x 1.0 

 
CS148

 
cream 

 
circular, entire, flat 

 
short rods 

 
diplobacilli 

 
1.3 x 0.5 

 
CS149

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 1.2 

 
CS150

 
cream 

 
circular, entire, flat 

 
short rods 

 
diplobacilli 

 
1.5 x 0.5 

 
CS151

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.0 x 1.0 

 
CS152

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.5 x  0.6 

 
CS153

 
cream 

 
circular, entire, flat 

 
long rods 

 
streptobacilli 

 
3.5 x 0.8 

 
AS2

 
brown 

 
circular, entire, flat 

 
short rods 

 
diplobacilli 

 
1.2 x 0.5 

 
AS7

 
brown 

 
circular, entire, flat 

 
short rods 

  
diplobacilli 1.0 x 0.3 
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Appendix 2. Continuation 
 

 
Strain 

 
Colony Color 

 
Colony Morphology 

 
Morphology 

 
Arrangement 

 
Average size (µm) 

 
AS9

 
brown 

 
circular, entire,   flat 

 
short rods 

  
1.0 x 0.3 diplobacilli 
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Appendix 3 
ristics that differentiate the alkalithermophilic bacilli  from Coamo thermal springs from other Geobacillus type 

strains. Taxa are identified as ) G. uzenensisT DSM 13551 , 2) G. vulcaniT DSM 13174, 3) G. kaustophilusT DSM 7263, 4) G. 
T DSM terran 6) G. dasiu
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Appendix 3. Continuation 
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