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ABSTRACT 
 
 

Fatigue lifetime prediction of various materials under three-point-bending is 

generally limited to the long testing periods consumed and the economic inversion 

needed develop the test.  The use of a vibration technique as a possible alternative to 

predict fatigue life can be an attractive cost effect option.  An innovative vibration fatigue 

methodology is developed.  The procedure uses geometric shape optimization along with 

finite element analysis to ensure that a specific three-point-bending stress pattern is 

mimicked in a given region of the test specimen while vibrating in the first resonance.    

The methodology was compared with three-point-bending tests for two different 

materials: FR-7140 foam and a sandwich composite.  When compared to three-point-

bending tests results, the vibration technique showed to be very promising and lifetime 

predictions fell clearly within the ninety percent confidence levels of the three-point-

bending tests. 
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RESUMEN 
 
 

La predicción del tiempo de v ida en fatiga de diversos materiales, bajo la 

configuración de T.P.B. generalmente es limitado por su alto consumo de tiempo e 

inversión económica durante su desarrollo. Utilizar el concepto de vibraciones, como 

posible alternativa para predicción de vida en fatiga, se convierte en una opción 

atrayente, por la ventaja que ofrecen en el significativo ahorro de tiempo y dinero durante 

el desarrollo de sus pruebas. Este trabajo desarrolla una innovativa técnica de fatiga, 

utilizando vibraciones; valiéndose de las propiedades modales de los materiales y 

utilizando optimización geométrica de los especimenes. En esta técnica, el patrón de 

esfuerzos generados por vibraciones busca imitar la distribución de esfuerzos generados 

en los especimenes por T.P.B. y fue aplicada en dos materiales, foam FR-7140 y 

materiales Compuestos Sándwich, obteniendo resultados experimentales muy razonables 

comparados con los obtenidos por T.P.B.  
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CHAPTER 1 

1. INTRODUCTION 

 Structures constructed with sandwich composites can offer a very high rigidity to 

weight ratio increased used applications ranging from satellites, aircraft, automobiles, rail 

cars, wind energy systems, bridge construction, and marine vessels continues to grow. A 

sandwich composite is usually structured of two face sheets and a core as depicted in 

Figure 1.1.  This construction does not have to be symmetric and the sandwich can have 

multiple cores within the face sheets.  The core material is normally a low strength 

material and provides the sandwich composite with transverse stiffness; face sheets on 

the other hand give the material the bending resistance needed.  Sandwich composites can 

be constructed with a variety of face sheet and core materials.  Common core materials 

can range from balsa, polyurethane foam, honeycomb craft paper, aluminum foam or 

even truss configurations to name a few.  Face sheets can be a variety of material these 

can include metal, wood, fiber reinforced materials with either a polyester resign or 

epoxy matrix. 

 
Figure 1.1:  Sandwich composite structure 
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 Because of the many advantages and the increased use of sandwich composite 

construction, knowledge of their behavior and loading properties must be known.  

 This proposal will suggest future research on a vibration fatigue methodology to 

determine the fatigue behavior of sandwich composites.   

OBJECTIVES 

The main objective of this research is to develop a novel methodology that can be 

used to determine the characteristic fatigue life of sandwich composite materials using a 

vibration technique.  The technique will be able to reduce the time in fatigue testing by an 

order of magnitude which in turn will have significant savings in money.  Here a 

procedure to design the test specimen will be developed.  The specimen, when tested at a 

fixed frequency, should produce a deflection pattern that will mimic typical fatigue 

testing In order to develop this technique mathematical modeling, finite element analysis, 

shape optimization, and experimental real-time mode shape calculations will be 

implemented. 

 

JUSTIFICATION: 

The need for fatigue characterization of sandwich composites is clearly evident.   

Advances in the use of sandwich composites as structural materials can be found in many 

applications such as transportation, marine vessels, tanks, refrigerator containers, bridge 

decks and even car body shells to name a few.   In these applications the high strength to 

weight ratio of this material offers an attractive solution.  In typical applications, these 

structures are often subjected to repetitive loading that may lead to fatigue failure, for 

example the effect of sea waves striking the hull of a marine vessel during its lifetime.  
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This cyclic loading can limit the life of the sandwich composite material and even alter 

its properties.  

Several methodologies for impact and fatigue testing exist.  Current fatigue 

testing is usually performed on hydraulic servo machines operating in the 1-10 Hz 

frequency range.  In order to obtain one point in a S-N diagram for 106 cycles of testing, 

at a frequency of 10Hz, a period of around 28 hrs is needed.  If the structure endures 107 

cycles around 12 days are required to test one point.  The typical suggested test procedure 

for an S-N-P diagram requires around 4 to 5 data points in the diagram.  Each data point 

is usually determined using the average of 15 specimens tested at a given frequency and 

stress ratio.  If testing is charged at the rate of one dollar per hour, a typical test could 

cost between $17,280 to 21,600 dollars per material configuration.  The ability to develop 

a test procedure that can operate at higher frequencies can reduce cost significantly.  If 

the rate of testing is increased by ten fold costs would now range from $1,728 to $2,160 

per material configuration, a savings of around over $15,000!  

METHODOLOGY 

The procedure used to design the vibration test specimen will consist of several 

phases.  Basically, a specimen will be designed to operate in resonance producing a mode 

shape that will mimic the deflection profile used in typical fatigue testing.  Modeling will 

consist of developing the governing equations of the specimen during vibration and then 

performing Finite Element Analysis to determine the mode shapes and frequencies.  

Because the natural frequency and mode shape are highly dependent upon the material 

properties and geometry of the specimen under question, a shape optimization procedure 

will be used to vary these parameters until the desired vibration profile and frequency are 
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determined.  This procedure is outlined in Figure 1.2.  After the shape optimization is 

performed validation of the procedure will be done with experimental vibrations.  An 

electromechanical shaker will be used to excite the structure.  Several sensors located at 

different positions along the span of the specimen will be used to monitor the 

translational mode shapes.  Curvature variation of the mode shape will determine when 

fatigue damage has occurred. 

 
Establish initial specimen geometry 

and determine natural frequency, mode 
shapes and stress pattern in a given 

region using Finite Element Analysis 

Establish model of specimen 
under cyclic three-point bending 
to determine stress patterns and 

deflection shape 

Compare initial/vibrations stress 
pattern results with those obtained in 

three point bending. 

Stress pattern converges (yes/no) 
No, proceed to reshape, determine 

stress pattern and re compare.   
Yes, 

Construct specimen and validate 
experimentally 

Compare experimental results using curvature changes in mode 
shape to determine damage.  Compare cycles to failure with those 

obtained from testing using cyclic three point bending 

Figure 1.2: Outline of procedure used in specimen design and testing 
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CHAPTER 2  
 
LITERATURE REVIEW 

 Sandwich composite testing can be performed using many different methods that 

yield different aspects of the material properties.  These testing methodologies can 

include areas such as: non-destructive evaluation, environmental factors, failure modes 

with analytical modeling and even testing procedures to name a few.  Unfortunately, the 

literature available is primarily concentrated on fiber matrix configurations and currently 

there is a limited amount of work on sandwich composites especially in the area of 

fatigue behavior.  The following literature review will cover some of the areas mentioned 

above with a focus on sandwich composite materials.   

2.1 FAILURE MODES 

Structural failure of sandwich composites can be attributed to many factors:  

ranging from loading, aging and even the operational environment.  In addition these 

modes can be classified in many different ways that can include loading effects such as 

tension or compression failure of the facings, shear failure of the core, wrinkling failure 

of the compression facing, local indentation, debonding of the core/facing interface, and 

global buckling to name a few.  Usually the initiation, propagation, and interaction of 

failure modes depends a great deal on the type of loading, constituent material properties, 

and geometrical dimensions.  Hence, this section of the literature review will examine 

literature related to the various failure modes that occur in sandwich composites under 

static loading, impact loading, and fatigue loading. 
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2.1.1 Static Loading  

Several investigations studying the basic failure modes of sandwich composites 

under static loading have been published by various authors: Allen [1] and Zenkert [2], 

Daniel et al. [3], Gdoutos et al. [4, 5], Steeves and Fleck [6, 7].   In addition, Lee and 

Tsotsis [8] investigated indentation failure in honeycomb panels and Pan et al. [9] studied 

the shear failure process in honeycomb cores in sandwich structures.  

  Petras and Sutcliffe [10] developed failure mode maps for honeycomb sandwich 

beams with specimens made from GFRP laminate skins and Nomex honeycomb cores. 

Three-point bend tests were carried out using the ASTM C393-62 [11] standard.  

Observed failure modes were divided into two categories: skin failure (that included face 

yielding, intra-cell dimpling and face wrinkling) and core failure.   

2.1.2 Impact loading 

In addition to static loading, impact testing on sandwich composites has also been 

investigated.  Lim et al [12] studied the transverse impact failure modes in foam core 

sandwich beams. Impact tests using the ASTM D 5942 standard [13] were performed on 

specimens with various and facesheet and core density configurations. Abrate [14], [15] 

also examined the similar type specimens. In both cases impact loading induced damage 

to the facings, the core material, and the core–facing interface. 

 Todd A. Anderson, [16] researched the effect of impact duration and classified the 

impact with respect to period of the first natural frequency of the specimen.   Impacts 

having a duration significantly longer than the period of the lowest natural frequency of 
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the structure were termed low velocity impacts.  These types of collisions usually occur 

when a large mass strikes an object.    Impacts classified under this category were found 

to initiate internal damage that is difficult or impossible to detect from the exterior face 

sheet surface of foam and honeycomb sandwich structures.  

Analytical and computational and experimental studies were also performed to 

predict and characterize the damage created by wave propagation and boundary condition 

controlled impacts.  Here the stiffness parameters of the models were derived from 

experimental results using energy-dissipating elements that were incorporated into the 

models to account for material damage.  Model validity was examined with comparisons 

of experimental force histories resulting from impact on six different core and face sheet 

configurations. 

2.1.3 Fatigue loading 

Failure modes found in fatigue loading are often similar to those observed in 

static and impact loading.   Harte et al [17] investigated cyclic loading of sandwich beams 

with aluminum alloy foam. Three failure modes were observed: face-sheet yield, core 

shear, and indentation.  Kulkarni et al [18] studied fatigue failure mechanisms in 

sandwich beams made of glass/epoxy and PVC foam. Sandwich panels were 

manufactured using the co-injection resin transfer molding (CIRTM) process to infuse 

the resin simultaneously in both top and bottom face sheets.  Fatigue tests were carried 

out in three-point bending.  Results concluded that the predominant failure mode in cyclic 

fatigue loading was initiated with core shear. Here the complete core shear crack growth 
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mechanism was studied, damage in the core was analyzed at a microscopic level and the 

crack growth mechanism was investigated. 

In most of the fatigue testing work performed in laboratories involves constant 

amplitude sinusoidal loading using three-point or four-point bend tests. But composite 

structures are rarely subjected to uniform constant amplitude service loads.  Loads 

usually fluctuate randomly producing a load spectrum in addition; the load can vary in 

sequential steps (i.e., block amplitude loading) or even consist of various combinations of 

these types of loading.  

Very little work has been performed using block loading on sandwich structures.  

Gamstedt and Sjogren [19] studied about the sequence effect in block amplitude loading 

for carbon-fiber /epoxy cross-ply laminates, as results they obtained that a sequence of 

high-low amplitude levels results in shorter lifetimes than low-high order amplitudes. 

Clark et al [20] investigated the fatigue behavior of sandwich beams using a two-step 

block-loading regimen. Sandwich samples used a Airex C70.130 thermoset cross-linked 

cellular foam, with face sheets manufactured with a hybrid glass/Kevlar/epoxy balanced 

0/90 woven construction. A combination of low–high loads and then high–low loads 

were investigated.  Beams were loaded with fifty percent of their average fatigue life at 

each respective load. Most of the beams did not fail and were tested for their residual 

static strength under static loading conditions.  Results concluded that under two-step 

loading no fatigue failures occurred, thus producing a stronger sample as compared to 

those used in single loading tests. 
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2.2 EFFECT OF ENVIRONMENTAL FACTORS 
 

  Sandwich composites are used in a vast range of environments ranging from 

Nordic to topical environments.  Temperature and moisture have been reported to vary 

material properties significantly. The effect of temperature on the behavior on fracture 

toughness and fatigue life of sandwich composites using constituents of Nomex 

honeycomb core with graphite/epoxy skins was investigated by Berkonitz and Johnson 

[21].  Here specimens were tested with a double cantilever beam configuration using the 

ASTM D5528-94a code as a guideline for the fracture toughness testing.  The 

experiments were evaluated using a displacement control mode at a frequency of 4-Hz 

with a R-ratio (Pmin/Pmax) of 0.1 in under three temperature conditions: a hot 

temperature, a cold temperature and room temperature.  Results showed that fracture 

toughness was inversely proportional to temperature; the lower the temperature, the 

higher the fracture toughness.   

 

In addition to fatrue toughness tesing the effect of temperature on impact has been 

investigated by Erickson et al [22].  Here the effect of temperature on the low velocity 

impact of composite sandwich panels was investigated. Sandwich panels were 

manufactured with a cross-woven E-glass 0/90 weave in an epoxy matrix.  Four different 

core material-thickness combinations were used these consisted of a 2.54 and 1.43 cm 

thick cardboard honeycomb core filled with a low density foam and a  2.54 and 1.43 cm 

thick plain cardboard honeycomb.  The impact tests were carried out at three different 

temperatures.  Specimens tested at low temperature exhibited back face sheet 

delamination.  Samples tested at room temperature showed fiber breakage and 
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delamination on the back face sheet and high temperature samples were completely 

penetrated.  

  Kanny and Mahfuz et al [23] investigated the effects of elevated temperature on 

the fatigue behavior of foam core sandwich structures. Sandwich specimens using two 

types of PVC cores: High-density foam and cross-linked high-density foam, having face 

sheets made of glass/vinyl ester composite were tested under three-point bending.  Static 

tests showed that the strength of the sandwich beams decreased with an increase in 

temperature. Close inspection revealed that damage occurred mainly in the foam cores 

and was more severe in high-density beams. 

In addition to changing temperature environments, sandwich structures used in 

marine applications are exposed to seawater for long periods of time. Smith and 

Weitsman [24] investigated the immersed fatigue response of polymer composites.  

Results showed that fatigue life was reduced drastically when saturated specimens were 

fatigued in an immersed environment.  In addition, Weitsman and Elahi 35 also published 

a review article on the effects of fluids on deformation, strength, and durability of 

polymeric composites that showed similar results. 

2.3 ANALYTICAL MODELING 

Analytical modeling used in the study of fatigue mechanisms in sandwich 

composites testing is limited.  Most studies include the use of fatigue loading S-N 

modeling, strength degradation classification, stiffness reduction and commutative 

damage modeling.   
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2.3.1 Basic S-N approach  

Kanny K and Mahfuz [25], and Burman M. and Zenkert [26,27] have performed 

work on lifetime prediction using S-N curves for sandwich composites.  Kanny and 

Mahfuz [25] investigated flexural fatigue tests performed on sandwich beams made up of 

a glass fiber skin and polyvinyl chloride (PVC) core of varying densities and derived a 

simple expression for predicting the fatigue life of foam core sandwich beams.  The 

approach used an empirical expression that best fitted the S-N curve for the given 

material.  .  Burman and Zenker [26,27] also proposed a simple curve fitting S-N 

approach using a two-parameter Weibull function.  Reasonable agreement between 

experimental and analytical results was obtained.   

2.3.2 Strength degradation approach  

The Strength degradation approach examines characterizes the strength reduction 

that occurs in a material during fatigue life testing.  A review of various residual strength 

degradation fatigue theories for composite materials was performed Sendeckyj [28]. Dai 

and Hahn [29] developed a wear-out model for sandwich beams.  This work assessed the 

fatigue behaviors of sandwich beams using the concept of strength degradation. The 

model requires only two parameters to describe the strength degradation in fatigue. One 

parameter represents the rate of the degradation; the other the relative fatigue life. Dai 

and Hahn [29] also proposed a new approach to determine the degradation that predicted 

fatigue using three parameters: the fatigue stress, the residual strength, and the number of 

cycles applied, respectively. 
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2.3.3 Stiffness Reduction Approach  

Reifsnider et al [30], Wu, Lee and Choy, et al [31] performed research that used 

the residual stiffness technique as a parameter to describe degradation behavior in 

predicting fatigue life.  This methodology was perfered because the residual stiffness can 

be monitored nondestructively and therefore can de related to the residual strength and 

fatigue life of the specimen.  In addition, El Mahi et al [32] also developed a model-based 

method using the stiffness reduction approach for sandwich composites.  Results were 

compared with experimental data from three-point bending fatigue tests on specimens 

made with PVC foam core and E-glass/epoxy skins. 

2.3.4 Cumulative Damage Modeling  

 Several authors have used a modified Palmgren–Miner [33] model for composites 

materials.  Sendeckyj [28] reviewed fatigue accumulation models and compared the 

applicability and accuracy of each model, including the life prediction models proposed 

by Hashin and Rotem [34], Wang et al [35], and Broutman and Sahu [36]. More recently, 

Epaarachchi and Clausen [37] have also developed a new cumulative damage model for 

glass fiber-reinforced plastic (GFRP) composites. All of these models are specifically for 

composite laminates, which can be used as skins in sandwich structures. By contrast, 

there seem to be few publications on the use of cumulative damage models for composite 

sandwich materials. Clark et al [20] reported on cumulative damage modeling of 

sandwich beams based with the stiffness degradation approach under two-step loading. 
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2.4 NONDESTRUCTIVE EVALUATION (NDE) 

Sandwich structures and materials exhibit different modes of failure, each of 

which may have a different NDE signature.   In fatigue testing, damage initiation and 

propagation is extremely important during testing.  In general, there is no single NDE 

method that will adequately cover all aspects of fatigue damage, and in most cases a 

combination of various NDE methods is necessary for complete characterization of a 

specific type of damage.  

2.4.1 Ultrasonic methods 

Ultrasonic investigation ranging from using C-scan testing in foams to even 

wavelet analysis with this NDE evaluation method has been performed.    Sachse et al 

[38] reviewed work in the area of quantitative ultrasonic NDE, and summarized new 

approaches for active and passive methods in composite materials measurements. In the 

area of C-scans, Akay and Hanna [39] assessed damage in Nomex honeycomb and 

Roacell foams and Gupta and Sankaran [40] investigated foam quality and skin/core 

debonds.  In addition, Legendre, Goyette, and Massicot et al [41], have utilized wavelets 

in ultrasonic NDE evaluation of composite materials.  

2.4.2 Infrared/ Thermal wave methods 

In addition to the use of Ultrasonic methods, Infrared (IR) thermography NDE has 

also been used on composite materials.  IR thermal wave analysis was performed Favro 

et al [42,43] for wide-area inspection of structures. Inspection of new aero engines with 

thermal wave thermography and the use of thermal waves to acquire color-coded 

temperature profiles were performed by Guazzone and Danjoux [44] and Dattoma et al 

[45] respectively.  In all cases, the authors asserted the impossibility of using thermal 
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waves to capture accurate dimensions of defects, and its suitability of the method as a 

good complementary technique to other NDE approaches. A method to eliminate surface 

roughness effects using a spatial white noise description in thermal wave NDE 

identification and its potential in many practial applications was performed by Mandelis 

[46].  In addition, Mandelis, Munidasa, and Nicolaides [47] applied laser infrared 

photothermal radiometry to various thermal wave inverse-problem NDE applications. 

2.4.3 Vibration Methods 

Vibration nondestructive analysis usually involves impulsive, random or sine 

sweep excitation of a test specimen upon which Fast Fourier Transform analysis of the 

response is performed.  Here identification of modal frequencies, damping and mode 

shapes can be combined with analytical modeling to determine intrinsic properties of the 

specimen under test.   Material or geometric changes due to degradation usually result in 

corresponding changes in the modal parameters. 

A summary of recent work used modal vibration response measurements in 

characterizing composite materials and structures was performed by Gibson [48]. Liew, 

Xiang, and Kitiponchai [49] reviewed vibration work on thick composite plates, Salawu 

[50] summarized vibration based damage detection that focused on frequency change 

methods.  The used of vibration NDE to evaluate impact damage of sandwich composite 

structures reinforced in the thickness direction was performed by Palozotto et al. [51].  In 

addition, Ayorinde [52], employed an inverse method based on a Timoshenko–Mindlin 

formulation to develop a method for the elastic characterization of thick composite plates.  

Free-vibration of sandwich beams with simple and double delaminations has been 

investigated by Shu, [53].  Solutions to the governing equations were express in 

analytical form without resorting to numerical approximations. Modeling was performed 

with an Euler-Bernoulli approximation to determine the vibration mode shapes along 
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with the local deformations at the delaminating fronts.  The validity of these assumed 

geometry and boundary conditions were compared with experimental results.  The 

solution for double delaminations resulted in both higher modes and mixed modes 

vibrations revealing a multitude of natural frequencies within a narrow range. 

2.5 OTHER RELATED WORKS 

Tommy George, Jeremy Seidt, Hernan Shen, Theodore Nicholas and Charles J. 

Cross, O. Scott-Emuakpor [54], [55] and [56] investigated a testing methodology to 

determine the fatigue limit strength of structural materials at high frequencies.  The 

procedure involved a base-exited plate specimen driven into a high frequency resonant 

mode which allows completion of a fatigue test in a few hours.  Specimen design 

consisted in using a topological design procedure, incorporating a finite element model, 

to produce its shape. Only steel, 6061-T6 aluminum and Ti-6A1-4V plates were 

investigates in the 106 y 107 cycles range using changes in the resonance frequency as the 

means to detect fatigue damage.   

Miguel Angel Moreles and Salvador Botello [57], published a paper developing 

the calculus of Natural frequencies in Elastic Beams with Shear effect and Rotational 

Inertia effect under multiple configurations such as, cantilever beam, simply supported 

beam, etc. using WPM (Wave Propagation Method) and compared their results with FEM 

(Finite Elements Method), showing the effectiveness of that method. 

 

 

 

 16



CHAPTER 3   

NUMERICAL SIMULATION 

In general a Timoshenko beam formulation is used to describe shear and 

rotational effects, neglected during Euler-Bernoulli beam modeling. The solution to the 

equation generated can become quite complex and can be either analytically or 

numerically solved depending upon the boundary conditions encountered. Because the 

vibration specimen designed will most likely have a varying geometric cross-section, 

Finite Element Analysis using ANSYS 11 was selected. Three elements: Beam, Shell and 

Solid were initially investigated for accuracy, computational efficiency and ease in 

modeling. The results using each element configuration were compared with a 

cantilevered Timoshenko beam [57]. The beam studied was constructed from aluminum 

with a length of 1555 cm, a width of 100 cm and thickness of 100 cm. The first three 

natural frequencies were calculated using elements of various dimensions. Results are 

shown in Table 3.1 

 

Table 3.1:  Results using beam, shell and solid elements for the first three natural   
        frequencies of a Timoshenko beam 
Type of element 1st mode (Hz) 2nd mode (Hz) 3rd mode (Hz) Element Size 

BEAM 3.5385 20.067 51.305 Length/40 
SHELL 3.5333 20.712 49.02 Width/8 
SOLID 3.53 20.186 47.61 Width/8 

 

 Even though, no significant difference can be found in using the various elements, 

the solid brick element was chosen because of its ease in programming varying geometry 

and its full 3-dimensional capabilities. In order to reduce the computational effort of this 

element, mesh size independency was investigated. Four mesh densities consisting of 
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elements of one-half, one-quarter, one-eighth and one-sixteenth the beams width, were 

investigated in modeling the previously mentioned Timoshenko beam. The results of 

these tests are shown in Table 3.2. Elements corresponding to one-eighth and one-

sixteenth beams widths predicted the same value for the first natural frequency and 

generated differences of less than six percent in the predicted second natural frequency. 

Thus by using an element of one-eighth, the beams width a minimal computational effort 

can be achieved.   

 

Table 3.2: First three-natural frequencies obtained with various element widths 
Elements Resonance Closed-Form 

Solution Width/2 Width/4 Width/8 Width/16 

1st 3.55430 3.72 (4.45%) 3.61 (1.54%) 3.53 (0.69%) 3.53 (0.69%) 

2nd 19.01901 21.9 (13.1%) 21.5 (11.5%) 20.186 (5.7%) 20.01 (4.95%) 

3rd 42.307 51.43 17.7%) 48.5 (12.8%) 47.61  (11.5%) 46.97 (9.92%) 

 

3.1 ANALYSIS OF FR-7140 FOAM 

In order to develop the design methodology, initial work was performed using a 

polyurethane foam manufactured by “General Plastic Manufacturing Company”. This 

foam was selected because its availability, consistency in manufacturing and information 

of the material properties specified by the manufacturer. Table 3.3 shows the material 

properties that were given for the FR-7140 foam. 
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      Table 3.3: Mechanical Properties of FR-7140 foam.  

Property English Metric Test Method

Density (pcf) (kg/m^3) 40 640 ASTM D-1623 

Shear Modulus (G), (psi) (kPa) 

Rise Parallel to Specimen 

Width (Gxz) 
26984 186057 

Rise Parallel to Specimen 

Thick (Gxy, Gyz)  
24593 169570 

ASTM C-273 

Compression Shear 

Flexural Modulus (E), (psi) (kPa) 

Rise Parallel to Beam Thick 163540 1127609

ASTM D-790 Method 1-

A 

Poisson's Ratio ~0.3 ~0.3 
Literature (Gibson and 

Ashby) 

  

3.1.1 T.P.B. Analysis 

Static and fatigue three point bending tests (TPB), were performed for various 

foam beams having dimensions of 16 cm in length, 3.81 cm in width and 1.9 cm in 

thickness. Testing was performed using the ASTM C393 standard [11]. Fatigue TPB was 

modeled using solid elements with vertical restrictions at the ends. Completely reversible 

(R = -1, ( min. max./σ σ )) center beam loading with a frequency corresponding to 0.75 Hz, 

was used. The Von MISSES stresses corresponding to the centerline were calculated and 

are shown in Figure 3.1 
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           Figure 3.1 Stress pattern in TPB of FR-7140 foam 

 

3.1.2 Vibration Analysis 

 In order to ensure that the FEA modeling predicted specimen behavior 

adequately, vibration testing was performed. A detailed description of the testing along 

with the experimental results is given in chapter five of this thesis.     Six rectangular 

cantilever beam specimens were vibrated using a double cantilever beam configuration as 

depicted in Figure 3.2. 

 

Electromechanical shaker 

Test Specimen in double cantilever beam

Sinusoidal 
Applied Force 

 

 

 

 

 

 

Figure 3.2: Experimental setup used in verifying FEA modeling.   
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 Specimens consisted of a double length beam with equivalent cantilever 

dimensions of 39 cm in length, 4 cm width and 1.3 cm thickness. The frequency response 

function (FRF) containing the first three natural frequencies was determined by exciting 

the beam with random white noise. The FEA model used consisted of solid elements 

distributed along its length with a width corresponding to one eight the beam tested. By 

restricting the degrees of freedom at the cantilevered end appropriate boundary 

conditions were established. Performing computational modal analysis, values of 19.03, 

109.45, and 321.40 Hz, were obtained.  When compared to experimental results, these 

produced errors of 2.41, 2.77, and 8.84 percent. Table 3.4, shows the values and errors 

generated in process.  

 

Table 3.4 First three natural frequencies from experiments and FEM 

Natural 

Frequency 

Experimental 

(FRF) 

FEM (ANSYS) 

Solid  (W/8) 
Percent Error 

1st 19.5 Hz 19.03 Hz 2.41% 

2nd 106.5 Hz 109.45 Hz 2.77 % 

3rd 295.3 Hz 321.40 Hz 8.84% 

 

 Once an adequate model was established, a harmonic analysis occurring at each 

of the beam, first three transverse natural frequencies using the same forcing amplitude 

was performed. Here the Von Misses centerline stress pattern for a completely reversible 

loading was determined. The results of the three mode shapes are shown in Figure 3.3. It 

is clearly evident that the stress pattern generated at the first resonance is significantly 

greater than those corresponding to the second and third resonances. Based on this 
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observation the first mode shape was selected as the starting point in the geometric 

specimen optimization procedure described next. 
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Figure 3.3: Comparison of the Von Misses centerline stress profile for the first three                              

flexural transverse natural frequencies.   
 

3.1.2.1 Geometric optimization 

By examining Figure 3.3 it is evident that the highest stress occurs at the 

cantilever end during the first mode of vibration.  In order to mimic three-point-bending 

in a given region, the stress profile must significantly change. This can be readily 

accomplished in two forms; the first is obtained by changing the loading pattern in other 

words, the boundary conditions or the geometry of the specimen, which is a more logical 

approach.   

 As a first step in this procedure, a parametric model of a cantilever beam with 

variable dimensioning is established.  The model used is shown in Figure 3.4, here, H1, 

H2, H3 and H4 correspond to thickness values that can be varied located at a distance of 

zero, L1, L2 and L3 from the cantilevered end. The width of the beam is designated by 

W. Initial constraints based upon the shaker capabilities and available equipment set the 
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maximum dimension of L3 to be 39 cm with a restriction of a first resonance less than 40 

Hz. 

 

H3H2
H1

L1
L2

L3

H4 

WY

X

Z 

 

 

Figure 3.4: Parametric model used in geometric optimization 

 

 The vibration method used to produce the cantilevered boundary conditions 

consists of vibrating a beam at its midspan for all possible combinations of forced 

sinusoidal vibration.  This produces an equivalent double-cantilevered configuration as 

shown in Figure 3.2.  Figure 3.5 shows the free-body-diagram of the beam as examined 

from the static equilibrium position.  By assuming an initial Euler-Bernoulli beam 

behavior and using elementary mechanics of materials (Gere) an equation, Equation: 3.1, 

can be established.  This equation describes the stress at the cantilevered end of the beam.    

     2

6 F L
W H

σ ⋅ ⋅
=

⋅
      (3.1) 

 Y

Z 

 

            

Sinusoidal Forcing Function  
 

 

Figure 3.5: Free-body-diagram of the double cantilever beam used in the experiment. 
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Here F is the sinusoidal forcing function; L is the cantilevered beam length, W the 

beam’s width and H the beam’s height. By examing Equation 3.1 it is possible to notice 

that by either increasing the beam’s height or width lowers the stress at the cantilevered 

end.  In addition, small changes in height reduce the stress significantly more than 

chances in the width.  This is due to the fact that the height appears with a greater power 

(H2) in the denominator.  Because of this, the height at locations H1, H2, H3 and H4 will 

be adjusted until the desired stress pattern is achieved.  

 The basic procedure consists of varying the H1, H2, H3, and H4 dimensions of an 

initial a rectangular specimen of uniform height of 1.27 cm.  In order to reduce the stress 

at the cantilevered end, the thickness at location H1 is increased in ten percent increments 

of its initial value.  After each change modal analysis is performed to determine the new 

stress pattern and ensure that the first resonance does not exceed the given constraint.  

This procedure is usually repeated several times until a decrease of twenty percent of the 

initial stress is obtained as seen by comparing Figures 3.6a and 3.6b.  By decreasing the 

values of H2 and H3, the maximum stress occurring on the beam changes its location 

from the cantilever end.  Again modal analysis is performed and values are examined to 

ensure that the changes are yielding desired output.  It should be noted that during the 

process the values of H2 and H3 may be individually or simultaneously changed until the 

desired stress pattern is obtained.  This process was repeated several times until the 

pattern shown in Figure 3.6c was obtained.  Increasing the value of H4 furthers changes 

the stress pattern to resemble that found in TPB.  Once again the interactive procedure of 

calculating the stress pattern and ensuring the first resonance is with limits was repeated.  

After several variations, the resulting pattern shown in Figure 3.6d was established.  As 
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seen in the figure the peak value generated a stress ratio of around 0.6 the ultimate stress 

found by TPB.   

Varying the values of L1 and L2 can also alter the location and shape of the Von 

Misses stress curve.  Here values were L1 and L2 were increased and decreased 

respectively to produce the Von Misses centerline curve shown in Figure 3.6e.  A image 

of the final test specimen along with the mesh distribution used in the calculations is 

shown in Figure 3.7.   A comparison of the Von Misses vibration centerline profile along 

with that obtained by TPB is shown in Figure 3.8.  The process of alternating the values 

of H2, H3, H4, L1 and L2 can be continued to produce a better distribution similarity.  

However, the most critical region should be where the test specimen is designed to 

fatigue; the region was the highest stress ratio occurs as seen in Figure 3.8.   
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  Figure 3.6:  Geometric Optimization Process: a) initial model, b) increasing H1,  
                    c) decreasing H2 and H3, d) increasing H4, e) modifying L1 and L2 
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Figure 3.7: Optimized test FR-7140 foam test specimen with meshing used for analysis. 
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Figure 3.8: Comparison of the predicted Von Misses centerline stress profile from TPB 

specimens and vibration test specimens.  
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3.2 ANALYSIS OF SANDWICH COMPOSITES 

Up to now, the methodology developed has been applied to an FR7140 foam 

beam.  This section of the thesis will examine application to a sandwich composite.  A 

sandwich beam will be constructed using facesheets with a 0-90 carbon-fiber weave 

bonded to a FR-7106 foam core with an epoxy resin.  Unfortunately the exact values of 

the properties that characterize the behavior of the facesheets was unavailable, thus an 

optimization procedure to best estimate these values was developed.  Once again, FEA 

using 3-D solid element modeling will be used.  As before, the design procedure will 

yield a vibration specimen that mimics TPB in a desired region during a given resonance.   

 
3.2.1 Fitting model parameters 
 

The dimensions of the cantilever beam sandwich beam modeled consist of a 

length of 40 cm and a width of 3.81 cm.  The core was FR-7106 foam and is 1.27 cm 

thick, 3.81 wide and 40 cm long.  Figure 3.9 shows the sandwich beam with its 

corresponding dimensions.   

 

 Y 

X 
Z 

40 cm

3.81 

1.37 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9:  FE model used for the sandwich composite cantilever beam 
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The solid brick element used in modeling requires an input of eight material 

properties for both the facesheet and the core and are listed in Table 3.5.  The core 

properties of the FR-7106 foam were obtained from the manufacturer and are given in 

Table 3.6.  

Table 3.5: Linear composite element properties used in the 3-D solid element 

 

Notation Property 
ρ  Mass density 

xE  Modulus of elasticity in X direction 

yE  Modulus of elasticity in Y direction 

zE  Modulus of elasticity in Z direction 

xG  Shear modulus of elasticity in X direction 

yG  Shear modulus of elasticity in Y direction 

zG  Shear modulus of elasticity in Z direction 

υ  Poisson’s Ratio 

 
 
Table 3.6   Mechanical Properties of foam FR-7106 as supplied by the General Plastic 
Manufacturing Company. 

 

Property English Metric Test Method 

Density (pcf) (kg/m^3) 6 96 ASTM D-1623  

Shear Modulus (G), (psi) (kPa) 

Rise Parallel to Specimen Width (Gxz) 1251 8626

Rise Parallel to Specimen Thick (Gxy, Gyz) 1304 8994

ASTM C-273 
Compression Shear 

Flexural Modulus (psi) (kPa) (E) 

Rise Parallel to Beam Thick 3119 21507

ASTM D-790 Method 1-
A 

Poisson's Ratio ~0.3 ~0.3 Literature (Gibson and 
Ashby) 
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The facesheet properties are optimized with an objective function, f, that uses the 

predicted FEA natural frequencies, nω , and actual experimental frequencies, eω .  The 

objective function is given in Equation 3.2 as: 

                  
22 2

3 31 1 2 2

1 2

( )
e ne n e n

e eobjective function f ω ωω ω ω ω
ω ω ω

⎛ ⎞⎛ ⎞ ⎛ ⎞ −− −
= + + ⎜⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠3

e ⎟                 3.2 

 

In order to obtain values of  eleven variables that must be evaluated.  

These values correspond to eight elastic properties in addition to three natural 

frequencies.  The elastic properties of the FR-7140 were specified by the manufacturer 

and will remain constant during the optimization procedure.   The actual values of the 

natural frequencies were obtained from experimental tests and correspond to values of 

27.5, 245, and 665Hz.  

)3,2,1( =in
iω

The natural frequency of a structure is a function of its geometry, mass and elastic 

properties.  In addition, the frequency can be sensitive to changes in some variables more 

than others.  For this reason, a simple sensitivity analysis of the variables given in Table 

3.5 was performed.  Here FEA was used to predict the natural frequencies (with initial 

values obtained from literature [59]) and the objective function was evaluated.  The 

results are shown in Figure 3.10.   The properties corresponding to the variables xE , yE , 

Gxz, Gyz and υ  (defined in Table 3.5) practically had no influence in varying the predicted 

natural frequencies.  Thus maintain these values constant in the optimization procedure 

should not affect the results.  This reduces the calculation to one using six 

variables , 1 2 3( , , , , )e e e
z zf E Gρ ω ω ω . 
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Figure 3.10: Variation of the objective function subject to changes in the input parameters.  
 

Since an explicit analytical expression for the natural frequencies is not available 

in terms of the elastic properties and only some discrete experimental values are it is 

necessary to apply an interpolation technique. The method chosen to optimize the 

reduced objective function was the quadratic interpolation method [Vanderplaats]. This 

procedure selects three initial values for the first variable 1 2, , 3ρ ρ ρ  and keeps the 

remaining variables ,z xyE G  fixed.  The predicted FEA natural frequency values are then 

determined and the objective function is evaluated with those results.  Afterwards, a 

second order polynomial 1( )h ρ  is used to approximate the objective function and a local 

minimum ( )ρ•  is determined.  The procedure is repeated for the second variable, Ex.  

Here the value of ρ•  is used for the variable ρ  and three new initial values for the 

second variable ( 1 1, , 1
z zE E Ez ) are selected.  Again the natural frequency is evaluated and 

three new values of the objective function are obtained.  A new second order polynomial 

2 ( )zh E is defined and a local minimum for zE •  is found. The procedure is repeated one 

more time for the last variable Gxy using the local minimum values of ρ* and Ex
* obtained 
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previously.   The predicted FEA natural frequency and objective function are evaluated 

using the three new estimates for ρ, Ex, and Gxy.  This new value of the objective function 

is examined and if the criteria (a minimum is reached) is obtained, the procedure is 

terminated.  However, if another set of iterations is required, the procedure described 

above is repeated.  Figure 3.11 shows the results of the optimization method for the 

variables ρ and Ex and Gxy.     
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Figure 3.11: Objective function values during the optimization procedure.   
 

 With three complete iterations a satisfactory value of the objective function is 

obtained. However, in order to investigate the stability of the solution, six interactions are 

performed.  Here the objective function yielded a value of 6.27 x 10-4.  By examining 

Figure 3.11 it is evident that the objective function converges to a local minimum.  The 

final elastic properties obtained through this process are used in modeling and are given 

in Table 3.7.    
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 Table 3.7: Optimized Elastic properties used in the FE model  

Property Face sheet Foam core 

Mass Density (kg/m3 ) 1117 96 

Longitudinal modulus of elasticity (MPa) 40x103 21.507 

Transversal modulus of elasticity (MPa) 40x103 21.507 

Longitudinal shear modulus of elasticity (MPa) 10x103 8.994 

Transversal shear modulus of elasticity (kPa) 10x103 8.626 

Poisson’s Ratio 0.35 0.3 

 

FEA modal analysis using the properties given in Table 3.7 for a cantilever beam 

configuration yielded a maximum error of 4% in predicting the first three transverse 

natural frequencies.   

 
3.2.2 Three point bending analysis  
 
 Once the facesheet properties are established and verified, TPB modeling can be 

performed to determine the stress pattern to be mimicked.  Here a sandwich beam having 

dimensions of 16 X 3.81 X 1.2cm using the aforementioned faceheet and a FR-7106 core 

was investigated.  Modeling consisted of a completely reversible (R=-1, ( min. max./σ σ )) 

cyclical load exerted on the specimen using a sinusoidal excitation frequency of 0.75 Hz.  

The Von Misses centerline stress profile required for the vibration specimen design was 

determined and is shown in Figure 3.12. 
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Figure 3.12:  Von Misses centerline stress profile used in specimen design 
 
 
3.2.3 Geometric optimization and Vibration analysis 
   

 As explained previously, the objective of this research is to design a vibration 

specimen capable of mimicking the stress profile found in TPB fatigue in a given region.  

In accordance with the section describing foam beam design, the cantilevered beam 

specimen will be vibrated at its first transverse resonance.   

 
3.2.3.1 Geometrical optimization 
 
  From the foam beam analysis, it is evident that the highest stress levels occur at 

the cantilever end.  Thus in order to establish a desired stress profile similar to Figure 

3.12 geometric changes must be performed.  This can easily be accomplished by either 

varying the facesheet or core thickness.  However a better insight in the effects of 

changing these constituents can be obtained by considering the following hypothetical 

sandwich beam under a given bending moment M acting at its cross section (see Figure 

3.13).    
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Figure 3.13:  Cross section of sandwich beam under a given bending moment.   

 

In the sandwich composite specimen to be designed, the modulus of elasticity of 

the face sheet is much greater than that of the core.  When this occurs, the expression to 

determine the normal stresses in the facesheet can be given by 
I

My
=σ .  Here y is the 

distance from the neutral axis and I is the moment of inertia of the two facesheets 

evaluated with respect to the neutral axis.  The maximum values of stress occur at the 

locations 
2
hy ±=  and the moment of inertia of a face sheet may is given by 

⎟
⎠
⎞

⎜
⎝
⎛ −+=

2212
1 3 thwtwtI f .  Assuming that the core is significantly thicker than the face sheet, 

for example hc=30t, it is possible to get an idea of how changes in thickness of the 

constituents affect the stress.  Consider the case when hc=30t, increasing the facesheet 
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thickness ten percent produces an 9.8 percent reduction of stress.  However, increasing 

the core thickness ten percent yields a 16.95 reduction in stress.  Thus by using the same 

procedure as described with the foam beam, the desired stress pattern mimicking TPB 

can be achieved by tailoring the core’s thickness.   

By establishing the parametric model shown in Figure 3.4, the vibration specimen 

may be designed.  Due to the shaker and manufacturing equipment limitations, 

constraints corresponding to a resonance of less than 40 Hz along with a core length of no 

more than 39 cm will be established.  Incrementing the value of H1 and then later 

reducing the values of H2 and H3 reduces and transfers the maximum stress (see Figures 

3.14b and 3.14c.  As in the case of the foam beam by increasing the value of H4, the 

stress pattern shown in Figure 3.14d begins to resemble that of the desired profile of 

Figure 3.12.   Finally adjusting the values of L1 and L2 yields the stress pattern given in 

Figure 3.14e.  It should be noted that after each modification a modal and harmonic FEA 

analysis must be performed in order to determine the new Von Misses centerline stress 

profile.    
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Figure 3.14:  Geometric Optimization Process for the Sandwich composite 
a)initial model, b) increasing H1, c) decreasing H2 and H3, d) decreasing H4,                         
e) modifying L1 and L2 
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The final optimized sandwich specimen is shown in Figure 3.15. 
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Figure 3.15:  Optimized Sandwich Composite Specimen 

 

Figure 3.16 compares the stress profile of the TPB specimen with that of the one 

designed using the aforementioned process.  It is easy to observe that the profile in TPB 

is more acute than that of the optimized vibration specimen.  A possible explanation of 

this is that the TPB specimen has a smaller length thus producing a greater curvature 

while under testing.  Despite this difference in the profiles, the resultant specimen is still 

valid.  This is because the greatest stress values occur in the area that is designed to 

fatigue during the vibration (see Figure 3.16).  A finer approximation in the profiles could 

be obtained by further modification, however this would lead to a very thin region that 

would be unpractical to manufacture.   
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Figure 3.16:  Comparison of the TPB and vibration specimen stress profiles 

 

A flow chart of the optimization process used to design the vibration specimen is 

given in Figure 3.17.   

Initial rectangular 
specimen 

Modal and harmonic analysis to find 
natural frequencies and stress pattern 

Modifying the 
dimensions

Best geometry of 
the specimen 

Comparing results with 
stress pattern (TPB pattern)

 

 

 

 

 

 

 

 

 

 

Figure 3.17:  Sequence used in the vibration optimization process 
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 Table 3.8 shows a comparison of the predicted FEA transverse natural frequencies 

and the obtained experimental frequencies.  A maximum error 13.39 percent helps to 

demonstrate the effectiveness of this developed methodology. 

Table 3.8: First three natural frequencies in FEA and experiments 

Mode 
No

Optimized FE model 
(Hz) 

Experimental specimen 
(Hz) 

% Error 

1 32.165 32.5 1.03 
2 277.37 257.5 7.7165 
3 581.34 671.25 13.39 
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Chapter 4 

EXPERIMENTAL VALIDATION 

 In order to validate the specimen design methodology, experimental verification 

was performed.  Experiments using TPB and a double cantilever configuration were used.  

Testing validated the procedure with polyurethane foam and sandwich composite beams 

designed with the methodology.    

4.1 Experimental Equipment  

 An INSTRON MTS 810 servo-hydraulic machine was used for static and fatigue 

testing, shown in Figure 4.1.  Static testing was performed using the ASTM C-393 

standard.  In addition fully reversible, (R=-1, min. max./σ σ ), TPB fatigue testing at room 

temperature was executed on both the polyurethane FR7140 foam and sandwich 

specimens.  A 0.75 Hz sinusoidal loading frequency was used.   

 

 

 

 

 

 

 

 

 

        Figure 4.1: Material MTS 810 test system. 

 

 42



The total numbers cycles before catastrophic failure were recorded at various 

stress ratios.   A Goodman Diagram S-N curve for both the foam and sandwich composite 

specimens was developed.   

In order to maximize vibration testing, a constraint of a maximum sinusoidal 

excitation frequency of no greater than 40Hz was imposed.   A VTS VG-150 

electromagnetic shaker with a maximum capacity of 150 lbs, an operating frequency 

range of 0 to 4000 Hz and a 1-inch stroke was used for the vibration testing.  Data 

analysis and excitation signal generation was done using a 6-channel DSPT SigLab 

Dynamic Signal Analysis (DSA) system.  A Laser Doppler Vibrometer (LDV) was used 

to measure the beams transverse motion.  Figure 4.2 depicts the experimental set up used.   

 

 

 

 

 

 

 

 

 

 

 

 

   Shaker

Force transducer of 
reference 

Power 
Amplifier 

Test Specimen

PC-SIGLAB software (DSA) System

LDV

Figure 4.2: Schematic of experimental vibration setup. 
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4.2 FR-7140 Foam testing 

4.2.1 T.P.B. Test 

Before proceeding with the experimental TPB fatigue, static tests were conducted. 

Five specimens with dimensions of 16 X 3.81 X 1.27cm were tested in order to obtain the 

ultimate stress (σult.).  An average ultimate stress value of 25.2 Mpa with a standard 

deviation of 0.62MPa was obtained.  Figure 4.3a and Figure 4.3b show the static test set 

up and a typical stress-strain diagram respectively.   

                                                                       Strain
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Figure 4.3a:  Static three-point bending              Figure 4.3b: Stress-strain diagram 

    

In order to generate the FR-7140 foam beam fatigue curve, a total of sixteen 

specimens were tested.   Four specimens were evaluated at four stress ratios, σ/σult, 

corresponding to 0.55, 0.49, 0.43, and 0.39.    Figure 4.4 shows a T.P.B. cyclic fatigue 

test being performed on a specimen.   
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Figure 4.4:  FR7140 foam beam under cyclic TPB fatigue testing.  

 

4.2.1.1 TPB results 

Specimens were fatigued at each stress level until catastrophic failure occurred.  

Table 4.1 gives the experimental data corresponding to frequency of loading, applied 

force, average number of cycles to failure and the average centerline displacement.   

    
   Table 4.1:  Experimental results from T.P.B. test 
 

Stress 

Ratio 

Experimental 

Frequency 

(Hz) 

Average cycles 

to failure 

Applied 

Force (N)

Average measured 

displacement (mm) 

0.55 0.75 2921 685 2.3 

0.49 0.75 8091 630 1.75 

0.43 0.75 18784 540 1.45 

0.39 0.75 53359 490 1.25 
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The corresponding S-N diagram for this data is shown in Figure 4.5.  Because the 

data seems to exhibit exponential behavior, the data was graphed using a semi-log scale 

as shown in Figure 4.6  
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Figure 4.5: S-N plot of TPB fatigue data  

 

Assuming an exponential relationship as suggested by several authors, [18, and 

56] and deriving the least squares approximation constants of a best-fit line, Figure 4.6, 

the graph shown in Figure 4.7 was obtained.    
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Figure 4.6: Semi-long scale representation of TPB data.  . 
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Figure 4.7: Exponential curve approximating lifetime behavior in TPB. 

 47



By examining Figure 4.6 and Figure 4.7, it is possible to notice that less data 

scatter occurs at higher stress ratios and at lower values an increased dispersion is 

observed.    

 

4.2.2 Vibration Test 

In order to validate the FEA modeling of the foam specimens, vibration testing 

was performed.  Here the first two natural frequencies of each specimen were determined 

using a random noise excitation.  Figure 4.8 shows a typical FRF (Frequency Response 

Function) plot. 
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           Figure 4.8: Typical FRF plot, from Modal Test  
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Once modeling was verified and the specimen was designed, manufacturing was 

performed. The specimen manufacturing process can be divided into the following steps: 

1.   Specimen dimensions are obtained from the FEA modeling and geometric 

information is exported into a computer aided drafting package such as Auto-

CAD.  

2.   From Auto-CAD the geometry is read using the CNC program package 

GIBSCAM.  This program generates the code needed to control the milling 

machine used to cut the specimen from foam block.  

 3.  Final manufacture was performed on a CINCINNATI Milacron ARROW 

500.  

Figure 4.9 and Figure 4.10 show the FEA model of the specimen along with the 

final manufactured specimen respectively.   

 

2.4 cm 

 

 

 

 

 

 

 

 

Figure 4.9:  FEA model of the final specimen design 
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Figure 4.10:  Actual manufactured specimen.   

The specimens were mounted using the double cantilever configuration shown in 

Figure 4.11.   Fatigue testing using a harmonic signal was performed.  Here a force 

transducer measured the input force and amplification adjustment was implemented until 

the desired stress ratio was obtained.  The lifetime of each specimen was determined with 

the input frequency and time required to failure.  By evaluating specimens under different 

stress ratios the data required to generate a S-N curve for the FR-7140 foam specimens 

was obtained.  Vibration testing was performed at room temperature.  As with TPB 

testing 16 specimens were vibrated (four specimens for each stress ratio).  The values of 

stress ratios (0.55, 0.49, 0.43, and 0.39) were similar to those used in TPB.  Figure 4.12 

show a specimen in resonance vibration.   

 

 

 

 

 

 

   Figure 4.11: Experimental test setup      Figure 4.12: Specimen vibrating. 
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4.2.2.1 Experimental Vibration Results 

 Vibration fatigue analysis was performed until catastrophic failure occurred.  

Table 4.2 shows results obtained from testing along with the predicted values from the 

FEA modeling used to design the specimen.   

 Table 4.2: Experimental results from vibration test. 

Stress 

 

Ratio 

Experimental 

Result (Hz) 

Predicted 

Frequency 

(Hz) 

Average 

cycles to 

failure 

Applied 

Force (N) 

Average 

measured 

displacement 

(cm) 

Predicted 

displacement 

(cm) 

0.55 18.9375 19.295 4971 32.1 4.15 4.08 

0.49 18.9375 19.295 10937 27.4 3.825 3.79 

0.43 19.125 19.295 26643 21.94 3.39 3.405 

0.39 19 19.295 78788 16.71 3 3.12 

 As with TPB, vibration fatigue exhibited an exponential behavior, Figure 4.13.   

By plotting data on a semi-log scale and obtaining a least square line approximation, 

Figure 4.14, an exponential curve similar to the one obtained TPB is generated, Figure 

4.15.  It is also interesting to note that the same type of scatter behavior found in TPB is 

also observed with the vibration technique.   
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Figure 4.13: Plot lifetime data for FR7140 foam using vibration methodology 
developed  
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 Figure 4.14: Semi-long scale representation of vibration fatigue data 
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Figure 4.15: Exponential curve approximating lifetime behavior using vibration 

technique.   
 

4.2.3 Thermal Analysis 

Since temperature has been observed to reduce the lifetime of foams [21, 22] and 

in order to ensure that the vibration methodology did not generate excessive heat, several 

preliminary experiments conducted at room temperature, (15 °C) , were performed.  The 

beam’s temperature was measured at several locations using T type thermocouples with a 

precision of ± 0.1°C around the point of highest stress.  Table 4.3 shows the results of 

average increase of temperature from the experimental fatigue test. 

 

  Table 4.3   Increment of temperature during fatigue test 

Material Number of 
specimens 

First mode 
of Vibration 
average (Hz) 

Increment of 
Temperature 

(°C) 
Foam FR-7140 4 19.5 1.5 0.6±  
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Based on the data given in Table 4.4 it is possible to conclude that the increase in 

temperature is minimal. One possible explanation can be related to the frequency at 

which the tests are conducted.  During vibration, the beam most likely undergoes a forced 

convective cooling that prevents extensive heat accumulation during the test.  

 

4.3 Sandwich Composite Specimens 

4.3.1 Manufacture and drying time 

 The composites specimens made consisted of a carbon-fiber facesheet (5.2 oz 

0/90 weave) bonded to a FR-7106 foam core using an epoxy resin manufactured with the 

VARTM method.  In order to ensure that the correct drying time had occurred, specimens 

were tested with static loading every day after the initial manufacture (see Figure 4.16).  

Twenty days after manufacturing repeatable ultimate stresses was obtained.  Figure 4.17 

shows the ultimate load as function of curing time.  Result of these tests revealed that 

specimens dried one week or less presented wrinkling and indentation failures, but those 

with more than 12 days of drying always presented core shear failure as shown in Figure 

4.18.   
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Figure 4.16:  Static test setup for curing time evaluation with typical output 
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  Figure 4.17: Curing time as a time after manufacture 

 

 

 

 

 

Figure 4.18: Shear core delamination failure after 20 days of drying 

   

4.3.1.1 Experimental TPB results 

As with the foam specimens, TPB fatigue tests were performed.  Five specimens 

were tested at each of the four stress ratios (0.77, 0.70, 0.62, and 0.55).  Shear core failure 

with facesheet debonding always occurred in very failure.  Table 4.4 shows the results for 

these tests. 
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   Table 4.4:  Experimental results from T.P.B. test 
 

 Stress 
Ratio 

Experimental 
Frequency 

(Hz) 

Average cycles 
to failure 

Applied 
Force (N)

Average measured 
displacement (mm) 

0.77 0.75 4507 510 3.27 

0.70 0.75 14726 460 2.69 

0.62 0.75 66741 410 2.28 

0.55 0.75 166742 360 2.112 

 

 

 

 

 

Cycles to failure at each of the four stress ratios was plotted to generate the S-N 

curve for the sandwich composite vibration specimens (see Figure 4.19).    Similar to the 

foam results exponential behavior was noticed and a best-fit linear regression line was 

obtained by plotting the data in a semi-log manner as shown in Figure 4.20.    Once the 

exponential behavior was verified, the resultant exponential curve was determined and 

graphed, Figure 4.21.  As with the previous foam analysis the specimens showed an 

increase in scatter with decreasing stress ratio.   
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Figure 4.19:  S-N plot of sandwich composite specimens tested in TPB. 
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Figure 4.20:  Confirmation of exponential behavior by plotting S-N data in a semi-log                                    
format.   
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4.3.2 Vibration testing 

 Vibration specimens were designed with core modification.  The design sequence 

for the sandwich foam core geometry uses the exact procedure for the foam specimens.  

Once the foam core was manufactured carbon-fiber face sheets were laminated with the 

VARTM process.  A period of 20 drying days was allowed to ensure proper curing of the 

epoxy resin used.  Figure 4.22 shows the final sandwich specimen designed for vibration 

fatigue testing. 

 

 

 

 

Figure 4.22: Final sandwich specimens design used in fatigue vibration. 

 

As with TPB five specimens were evaluated at each of the four stress ratios used 

(0.77, 0.70, 0.62, and 0.55). Specimens were mounted using a double cantilever 

technique as shown in Figure 4.23.   
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Figure 4.23: Composite specimen vibration using the double cantilever technique. 

In this technique the fatigue limit is defined as the number of cycles required 

(time) change the dynamic response of the beam.  In all samples that were fully cured, the 

associated failure mode in TPB specimens was observed to be core shear failure 

accompanied with facesheet debonding.  When this failure occurs in a vibrating 

specimen, its stiffness changes and a change in the resonance frequency is immediately 

observed. The development of the core shear failure in vibrating specimen was observed 

by the onset of an immediate decrease in the measured resonance displacement.  The use 

of a verified FEA model along with force transducer reading and shaker amplifier input 

adjustments ensured that the correct stress ratio occurred at the desired area during 

testing.   Figure 4.24 shows and example of core shear failure in the vibrations specimen. 
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Figure 4.24: Shear core delamination failure occurring in vibration specimens 

 

4.3.2.1 Experimental vibration results 

 Vibration fatigue analysis was performed until shear core-failure and facesheet 

delamination occurred.  The specimen vibration time was recorded and the number of 

cycles to failure was determined.  Experimental results are shown in Table 4.5.   

 

   Table 4.5 Experimental result from Vibration test 

Stress 
Ratio 

Experimental 
Result (Hz) 

Predicted 
Frequency (Hz)

Average cycles 
to failure 

0.77 32.5 31 5954 

0.70 31.95 31 18078 

0.62 32.25 31 85461 

0.55 32.5 31 186876 
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As with TPB, the vibration fatigue data exhibited an exponential behavior as 

shown in Figure 4.25.   By plotting the data on a semi-log scale, Figure 4.26, a best-fit 

least square line approximation could be obtained.  By calculating the appropriate 

information from the semi-log graph (example, the slope of the line) an exponential curve 

could be graphed. See Figure 4.27.  It is also interesting to note that the same type of 

scatter behavior found in TPB is also observed with the vibration technique.   
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Figure 4.25: Plot lifetime data for composite specimen using vibration methodology 
developed 
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Figure 4.26: Semi-long scale representation of composite specimen vibration  
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Figure 4.27: Exponential curve approximating lifetime behavior using vibration 
technique for composite specimen  

 

Table 4.6 shows average number of cycles for each stress ratio obtained through 

T.P.B. and Vibration testing. 

 

Table 4.6:  Comparative results between TPB and Vibrations results 

Stress ratio Number of cycles 
(TPB) 

Number of cycles 
(Vibrations) 

0.77 4507 5954 
0.70 14726 18078 
0.62 66741 85461 
0.55 166742 186876 

 

 

 

 

 

 

 62



4.4 Comparative results of both the Foam and Sandwich Composite 

The S-N diagrams of both the FR-7140 foam and sandwich composites samples 

under TPB and vibration fatigue testing exhibited an exponential behavior.  By 

comparing the data simultaneously, as in Figures 4.28 and 4.29, the accuracy and validity 

of the procedure can be examined.     
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Figure 4.28:  Fatigue Lifetime S-N curves for FR7140 foam using both TPB and 
Vibration fatigue testing.   
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Figure 4.29:  Fatigue Lifetime S-N cures for sandwich composites using both TPB and 
Vibration fatigue testing.   
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Figures 4.28 and 4.29 clearly show that the results obtained with vibration fatigue 

are always higher than those from TPB.  In addition to this, the scatter observed at the 

different stress ratios seems to be similar to that found in TPB.  In order to help 

distinguish the effects of the methodology from that of material imperfections both 

graphs were plotted with their best fit least square lines in a semi-log format as shown in 

Figures 4.30 and 4.31.    It is interesting to note that both material graphs show nearly 

parallel lines with the vibration technique yielding longer fatigue life predictions for a 

given stress ratio.  By examining Figure 4.4 it is evident that contact between the 

specimen and testing actuator is always present in TPB testing.  This most likely creates 

contact stresses that influence in the stress life predictions obtained using TPB.  

Incorporating the contact stress in the Von Misses centerline calculations and transferring 

these values to the vibration curves can reduce the observed difference.    
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Figure 4.30:  FR-7140 S-N semi-log plot for vibration and TPB data   
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Figure 4.31:  Sandwich composite specimen S-N semi-log plot for vibration and   TPB data   

 

Figures 4.32 and 4.33 show the TPB exponential curve, the adjusted vibration 

curve and the vibration curve for the FR7140 foam and sandwich composite respectively.   
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Figure 4.32: Comparison of FR-7140 fatigue life curves (TPB, adjusted vibrations and 
vibrations). 
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Figure 4.33: Comparison of sandwich composite fatigue life curves (TPB, adjusted   
vibrations and vibrations). 

 

Graphing the TPB curves with ninety percent confidence intervals further help 

support the validity of the vibration procedure.  Figures 4.34 and 4.35 clearly demonstrate 

that the error from the vibration technique is well below that of the scatter from material 

imperfections.    
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Figure 4.34:  FR-7140 TPB fatigue life curve with 90 percent confidence level. 
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Figure 4.35: Sandwich composite TPB fatigue life curve with 90 percent confidence 
level. 

 

4.4.1 Contact Stress 

  It is clearly evident that the fatigue life predicted from vibration testing is higher 

than that produced by TPB.  One possible explanation for this behavior could be 

attributed to the effect of contact stress encountered in the jig used to hold the TPB 

specimens.     When values are calculated in typical TPB tests, the effect of contact 

stress is not determined.  Thus when compared to TPB these vibration values tend to 

yield a longer fatigue life.  By adjusting for the contact stress, [60, and 61] and 

considering this in the calculation of the Von-Misses stress, the vibration results can be 

adjusted.   As result of this new consideration the errors between both techniques were 

reduced considerably, in case of FR-7140 foam from 29% as minimum until -1.25% as 

minimum and in case of Sandwich Composites from 17% until 1.9% as minimum. 

Figures 4.36 and 4.37 shows the variation of error over each stress ratio considering 
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contact stress. Finally Figures 4.38 and 4.39 shows the new curves considering contact 

stresses with additional curves of 90% of confidence.  

 

Figure 4.36: Contact stresses and errors in FR-7140 foam 

 

Figure 4.37: Contact stresses and errors in Sandwich Composites 
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Figure 4.38: Characteristic fatigue curves in FR-7140 foam, considering contact stress 
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Figure 4.39: Characteristic fatigue curves in Sandwich Composites, considering contact 

stress 
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CONCLUSIONS 
 
1. The proposed objective to develop and prove an alternative method using a 

vibration technique to simulate T.P.B. fatigue testing was developed.   
 
2. This technique was validated using two materials configurations: 

• FR-7140 foam, using sixteen specimens in Vibrations and sixteen 
specimens to T.P.B.  

• Sandwich composites specimens, using twenty specimens in Vibrations 
and twenty specimens to T.P.B.  

In all cases fatigue testing was for fully reversed cycles. 
 

3. The time of test using Vibration technique compared with T.P.B. test, was reduced 
significantly in both cases: 26 times faster in FR-7140 foam and 43 times faster in 
Sandwich Composites. 

 
4. Analyzing the original result curves of characteristic fatigue life   in both cases (FR-

7140 foam and Sandwich Composites) always the number of cycles under Vibration 
test was greater than T.P.B. test, (29% as minimum in FR-7140 foam and 17% as 
minimum in Sandwich Composites). 

 
5. Considering that T.P.B. specimens generate a contact stress under application of 

load, and Vibration specimens do not, additional analysis considering the effect of 
contact stress, and recalculating the Von Misses stress values in the Vibration 
fatigue curve was performed.  This reduces the error between fatigue life curves 
under Vibrations and T.P.B. significantly. (-1.25% as minimum in FR-7140 foam 
and 1.9% as minimum in Sandwich Composites).  

 
6. Values of standard deviation seem to be very similar in both methodologies at the 

same stress ratio.  This phenomenon is most likely a characteristic property of the 
material. The scatter of data increased as the stress ratio decreased. 
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APENDIX 

A. ANALYTICAL MODELING 

A one-dimensional Timoshenko beam formulation is developed for a rectangular 

cantilever beam.  In addition, the natural frequencies derived for a cantilever beam from 

[57] are discussed as a comparative base for future FEA modeling that will be performed 

on the FR-7140 sandwich beam and sandwich composite.     

A.1 Formulation of the problem  

Consider a non-uniform beam undergoing transverse vibration, Figure A.1, and a 

beam element of differential length dx as shown in Figure A.2.   Where, y(x,t) is the beam 

deflection, x is the longitudinal direction, L is the length of the beam, p(x,t) is the forcing 

function, ψ  is the angle of rotation due to bending, β is the angle of distortion due to 

shear, Q is the shear force, G is the shear modulus of elasticity, M is the moment due to 

bending.  

 

 

L 
x

dx

x

y 

p(x,t) 

m(x), A(x), I(x), J(x)

 

 

 

 

 

Figure A.1: Timoshenko uniform beam 
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Figure A.2: Timoshenko beam differential element 

  

 

 The total deflection y(x, t) at an arbitrary point x is caused by the effects of 

bending and shear and is given in Equation A.1.  In addition, the linear and angular 

deflections are assumed small. 

                       ( )
( ) ( )

,
, ,

x t
x t x

y
tx

ψ β
∂

= +
∂

,                                              (A.1) 

From mechanics of materials, the relation between the bending moment and 

bending deformation can be given equation A.2. 

( , )( , ) ( ) x tM x t EI x
x

ψ∂
=

∂
,                                            (A.2) 
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Here, E is the Modulus of elasticity and I (x) is the Moment of inertia of area 

about the neutral axis.  The relation ship between the shearing force and searing 

deformation [58], can be given by Equation A.3 

( ) ( ) ( ), ' , ,x t xQ k GA x tβ=                                            (A.3) 

Here G is the shear modulus of elasticity, A is the cross sectional area of the beam 

and k’ is a numerical factor that depends on the cross sectional shape.  The governing 

partial differential equation will be formulated using the extended Hamilton principle, 

given by Equation A.4. Here T is the kinetic energy and W is the virtual work. The power 

of this approach becomes evident when we observe that it furnishes automatically the 

correct number of boundary conditions and their correct expressions. 

( )
2

1

0
t

t

T W dtδ δ+ =∫                                                  (A.4) 

The kinetic energy is due to translation and rotation and is expressed by Equation 

A.5 as  

2 2

0 0

1 ( , ) 1 ( , )( ) ( ) .
2 2

L Ly x t x tT m x dx J x dx
t t

ψ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦∫ ∫                              (A.5) 

Here m(x) is the mass per unit length and J(x) is the mass moment of inertia per 

unit length about the neutral axis.  The mass moment of inertia can be related to the 

moment of area using the relationship  

( ) ( )
( )

( )
( ) ( ) ( )

2x
x x x x

x

m
J I I k m

A
ρ= = = x ,                                          (A.6) 

Here k is the radius of gyration about the neural axis and ρ(x) is the mass density 

of the beam per unit length.  The variation of T can be readily written as: 
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( )
2

0 0

,
L L

t
y yT m dx k m d
t t t t

ψ ψδ δ δ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫ x

x

   (A.7)
 

 The virtual work consists of conservative and non-conservative terms and can be 

express as: 

( ) ( ) ( ) ( ) ( ) ( ), ,
0

L

t t t t x t x tW Wc Wnc V p y dδ δ δ δ δ= + = − + ∫ ,                    (A.8) 

Where the terms Wc, Wnc and V are the conservative work, the non-conservative 

work and the potential energy respectively.  Moments and shear cause the beam to bend 

thus producing potential energy that can be expressed by: 

( ) ( )
( )

( ) ( )
,

,
0 0

1 1
2 2

L L
x t

t x t x t xV M dx Q
x , ,t dx

ψ
β

∂
= +

∂∫ ∫                                      (A.9) 

By substituting Equations A.7, A.8 and A.9, into Equation A.4, the following 

expression given in Equation A.10 is obtained.   

( )
2 2

2

1 1 0 0 0

0 0

' 0

t t L L L

t t

L L

y yT W dt m dx k m dx EI d
t t t t t t

y yk GA dx p x y dt
x x

ψ ψ ψ ψδ δ δ δ δ

ψ ψ δ δ

⎡ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + −⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣
⎤∂ ∂⎛ ⎞⎛ ⎞− − − + =⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎦

∫ ∫ ∫ ∫ ∫

∫ ∫

x
      (A.10) 

 Assuming that integration with respect to x and t is interchangeable, the variation 

and differentiation operators are commutative, and performing integration by parts yields 

the two arbitrary and independent equations with the following boundary conditions.    
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0 0

0,    ' 0
LL

yEI k GA y
x x
ψ δψ ψ δ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

=                    (A.12) 

 

 Solving Equation A.11b for x
ψ∂
∂  and substituting the result into Equation 

A.11a, yields the commonly known Timoshenko’s equation, Equation A.13, for a 

uniform beam undergoing forced vibrations.   

4 2 4 2 4 2 2

4 2 2 2 4 2 21 0y y E y I y EI p I pEI A I p
x t KG x t KG t KAG x KAG t

ρ ρρ ρ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
− =        (A.13) 

In free vibrations, p(x,t) = 0, and Equation A.13 can be expressed as Equation 

A.14 

2 4 4 4 4

2 2 2 4 4 2 2 0Y Y Y Y YA I EI I EI
t t x x KGA t t x

ρρ ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

− + + −⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
=⎟                  (A.14) 

 In order to obtain the vibration frequencies of the beam, an eigen-value problem 

must be formulated.  This will be done using the separation of variables method, 

considering an harmonic movement of the form: 

( ) ( ),
i t

x t xY y e ω−= ⋅                                               (A.15) 

Substituting Equation A.15 into the Timoshenko’s beam equation, Equation 

(A.14), for free vibration, yields Equation A.16. 

2 4 2
2 2 2 2

2 4 2 0y y yA y I EI I y EI
x x KGA x

ρρ ω ρ ω ω ρ ω
⎛ ⎞∂ ∂ ∂

− + + + +⎜∂ ∂ ∂⎝ ⎠
=⎟               (A.16) 

By defining the following non-dimensional parameters 

4
2 2

2, , , , 2

x y AL EI I
L L EI KGAL

ρξ η φ ω α β= = = = =
AL

            (A.17) 
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And replacing these expressions into Equation A.16 yields Equation A.18:  

( ) ( )
4 2

2 2 2
4 2 1d d

d d
η ηφ α β φ φ αβ η
ξ ξ

+ + − − = 0                              (A.18) 

In this study, we will investigate a cantilever beam whose boundary conditions for 

Equation A.18 can be given by.   

• Clamped end: 

0

0

=

=

ξ
η
η

d
d

rotationZero

ntdisplacemeZero
        (A.19a) 

• Free end: 

( ) 0

0

2
3

3

2

2

=++

=+

ξ
η

βαφ
ξ
η

φαη
ξ
η

d
d

d
d

effectshearZero

d
d

momentZero

    (A.19b) 

In many applications as assumed here, the effects of rotational inertia can be 

neglected, 0β = , and Equation A.18 can be reduced to: 

4 2
2 2

4 2 0d d
d d
η ηαφ φ η
ξ ξ

+ − =

2

                                              (A.20) 

Equation A.20 is a fourth-order differential equation whose characteristic 

polynomial can be expressed as: 

( ) 4 2 2P r r rαφ φ= + −                                                (A.21) 

Equation A.21 has 4 roots given by: 

1 2

3 4

r r i
r r

λ
μ

= − = −
= − = −

                                                       (A.22) 
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where:  

( )

( )

2 2 2 2

2 2 2

1 1 4
2 2

and

1 1 4
2 2

λ αφ α φ φ

2μ αφ α φ φ

= + +

= − + +

                                       (A.23) 

Once the characteristic values of equation 3.20 are obtained, the general solution 

can be expressed as:  

( ) ( 1)cos sinA B Ce Deμξ μ ξη ξ λξ λξ − − −= + + +                            (A.24) 

By using the boundary conditions given in Equation A.19 into Equation A.24 

produces the following matrix-vector relationship 

( ) 0

A
B

M
C
D

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

.                                                   (A.25) 

Here ( )M λ  is the matrix  given by Equation (A.26) 

2 2 2 2 2 2 2 2

3 2 3 2 3 2 3 2

1 0 1
0

0
cos cos sin sin
sin sin cos cos

e
e

e e
e e

μ

μ

μ μ

μ μ

λ μ μ
λ λ φ α λ λ λ φ α λ μ φ α μ φ α
λ λ φ αλ λ λ λ φ αλ λ μ φ α μ φ αμ

−

−

− −

− −

⎡ ⎤
⎢ ⎥−⎢ ⎥ =
⎢ ⎥− + − + + +
⎢ ⎥
− − − + −⎢ ⎥⎣ ⎦

  (A.26) 

In order to obtain a nontrivial solution, the determinant must equal zero thus: 

0)(det)( == λλ Mfd     (A.27) 

Performing this task and simplifying terms yields:  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 4 41 sin 1 2 cos 2df e eμ μλ μλ λ μ μ λ μ λ λ λ μ− −⎡ ⎤= − − + + + +⎣ ⎦ 0e μ− =     (A.28) 
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The roots of Equation 3.28 can be expressed by the function: 

( ) ( ) ( ) ( )222
2 2

22

1 1
1 sin 2 1 cos 2

11
f e e eμ μ μ

αλλλ α λ λ
αλαλ

− −
+ +

= − + + +
++

−              (A.29) 

( ) ( )2 1 2 1 , 1,2,3,...
2 2nn n nπ πλ− < < + =                                (A.30) 

A more details deduction about the above solution and equations developed can 

be found in references [57, 58, and 59] 

 

A.2 Numeric application 

Consider the example given in the reference [56].  Here an Aluminum beam 

having a square cross sectional area under a cantilever beam configuration is examined. 

The physical parameters are given by: 
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By using Equation A.29 Table A.1 is obtained.  A detailed discussion of this is 

found in [56].  Table A.1 shows a comparison between the first five natural frequencies 

of a classical Euler-Bernoulli beam and those of the Timoshenko beam developed.  This 

information is quite helpful because it can be used as a base line to validate the FEA that 

will be used in modeling the FR-7140 foam beam and the sandwich composite.    

 

Table A.1: Comparative results using Euler-Bernoulli and Timoshenko’s equation 

 
1st mode 

(Hz) 

2nd mode 

(Hz) 

3rd mode 

(Hz) 

4th mode 

(Hz) 

5th mode 

(Hz) 

Timoshenko Beam 3.55430 19.01901 42.30733 65.18720 87.79796 

Euler - Bernoulli 3.51602 22.03449 61.69721 120.90192 199.85953 
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B. CONTACT STRESS CALCUALTION 
 
 This appendix discusses the methodology used to calculate the effect of the 

contact stress produced by the holding jig used in T.P.B.  The equation [60] used was 

developed for the contact stress between two rollers and is given by Equation B.1 as:  

2/1
'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∗

R
EPPo π

.     B.1 

 Here  is the maximum pressure over the specimen, P’ is the applied force per unit 

length, R is the effective curvature and E* is the contact modulus.  The formulas for 

determining the effective curvature and contact modulus are given in Equations B.2 and 

B.3 respectively.   

oP

21

111
RRR

+=                    Effective curvature            B.2 

2

2
2

1

2
1 111

EEE
υυ −

+
−

=∗       Contact Modulus              B.3 

Since the jig holds a bar R2 is assumed infinite because of the flat surface.  R1, which is 

0.5 inch for this case, is the radius of the damping rubbers placed around the metallic pin 

used to hold the specimen in the jig.  The Modulus of elasticity of the rubber, E1, is 100 

MPa [ xx] and E2 is the Modulus of elasticity of the FR-7140 foam which is 1.127 GPa 

[xx ].  P’ is the applied force per unit length and is calculated in this example as the case 

corresponding to a applied force of 650 N which represents a stress ratio of 0.55 in the 

T.P.B. fatigue curve.  Considering that the pin holding the specimen is 3.81 cm long, the 

value of P’ is calculated to be 16250N/m. Using the aforementioned values in Equation 

B.1 yields a contact stress corresponds to a compression stress of 4.585 MPa.  It should 

be noted that this stress is perpendicular to the surface of the specimen.   In order to 
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recalculate the new Von Misses stress value at the surface, the effect of the compressive 

stress along with the bending stress, which is perpendicular to the contact stress, is taken 

into account. Once this is performed, the new value was divided by ultimate stress to 

determine the new stress ratio value, which changed from 0.55 to 0.57.  Taking this value 

and placing it over the vibration fatigue curve yields the new fatigue life value as 

explained in chapter 4.    
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